1
|
Du S, Hu Z, Shen J, Hamuro L, Lam J, Lu M, Zhu L, Roy A, Kondic A. A Novel Empirical Autoinduction Model to Characterize the Population Pharmacokinetics and Recommend Dose for Repotrectinib in Adult and Adolescents With Advanced Solid Tumors Harboring ALK, ROS1, or NTRK1-3 Rearrangements. CPT Pharmacometrics Syst Pharmacol 2025. [PMID: 40313033 DOI: 10.1002/psp4.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/13/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025] Open
Abstract
Repotrectinib is approved in the US for treating ROS1-positive non-small cell lung cancer (NSCLC) and solid tumors harboring an NTRK gene fusion. A Population Pharmacokinetic (PopPK) model for repotrectinib was developed using data from 620 adults (118 healthy volunteers and 502 patients) across seven studies and 24 pediatric patients from one study. The PopPK model, a two-compartment model with first-order absorption and an absorption lag time, incorporating a time-varying clearance due to drug-induced autoinduction, adequately described all PK data. Clearance was modeled as a time- and concentration-dependent (Ctrough) autoinduction process, accounting for increased clearance over time. While empirical in nature, this Ctrough-driven autoinduction model effectively described the changes in clearance and avoided the abrupt concentration changes that can occur with discrete dose-driven autoinduction models. Additionally, this approach avoided time-consuming differential equation computations for the semi-mechanistic enzyme turnover autoinduction models. The model estimated that the maximum drug-induced clearance (CLMAX) was 4.9 times the baseline clearance. Body weight (BW) effects on clearance and volume of distribution were estimated as allometric scaling exponents of 0.477 and 0.962, respectively. Age was found to affect CLMAX, with younger patients generally exhibiting higher CLMAX values. Simulations suggested that a flat dosing regimen (e.g., 160 mg QD for 14 days followed by 160 mg BID) provides comparable drug exposures in both adult and adolescent patients. The PopPK model supported the health authority approval of the dosing regimen for repotrectinib in both adult and adolescent patients with NTRK gene fusion-positive solid tumors.
Collapse
Affiliation(s)
- Shengnan Du
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Zheyi Hu
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Jun Shen
- Bristol-Myers Squibb, Princeton, New Jersey, USA
- Former Employee of BMS, Currently Employed at AbbVie Inc., North Chicago, Illinois, USA
| | - Lora Hamuro
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Justine Lam
- Bristol-Myers Squibb, Princeton, New Jersey, USA
- Former Employee of BMS, Currently Employed at Erasca Inc., San Diego, California, USA
| | - Ming Lu
- Bristol-Myers Squibb, Princeton, New Jersey, USA
- Former Employee of BMS, Currently Employed at Avenzo Therapeutics, San Diego, California, USA
| | - Li Zhu
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| | - Amit Roy
- Bristol-Myers Squibb, Princeton, New Jersey, USA
- Former Employee of BMS, Currently Employed at PumasAI Inc., Dover, Delaware, USA
| | - Anna Kondic
- Bristol-Myers Squibb, Princeton, New Jersey, USA
| |
Collapse
|
2
|
Abdelgawad N, Wasserman S, Gausi K, Davis A, Stek C, Wiesner L, Meintjes G, Wilkinson RJ, Denti P. Population Pharmacokinetics of Rifampicin in Plasma and Cerebrospinal Fluid in Adults With Tuberculosis Meningitis. J Infect Dis 2025:jiaf178. [PMID: 40295169 DOI: 10.1093/infdis/jiaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Several ongoing clinical trials are evaluating high-dose rifampicin (up to 35 mg/kg) for tuberculous meningitis (TBM). However, rifampicin pharmacokinetics at higher doses is not fully characterized, particularly in cerebrospinal fluid (CSF), the site of TBM disease. METHODS In a randomized controlled trial, adults with HIV-associated TBM were assigned to experimental arms of high-dose rifampicin (oral, 35 mg/kg; intravenous, 20 mg/kg) plus linezolid, with or without aspirin, or a control arm that received the standard of care with 10 mg/kg of oral rifampicin. Rifampicin concentrations, including the unbound fraction, were measured on plasma samples, and CSF was collected on days 3 and 28 of study enrollment. Data were analyzed by nonlinear mixed effects modeling. RESULTS In total, 400 plasma and 44 CSF rifampicin concentrations from 48 participants were used for model development. The median (range) age and weight were 39 years (25-78) and 60 kg (30-107). Rifampicin pharmacokinetics was best described by a 2-compartment disposition model with first-order transit oral absorption and elimination via saturable hepatic extraction. Typical clearance values for the standard dose for days 3 and 28 were 33.1 and 41.4 L/h, respectively; high-dose values were 46.1 and 70.2 L/h. The CSF-plasma ratio was approximately 6% and the equilibration half-life was 3.2 hours. Simulated standard-dose rifampicin did not reach CSF concentrations above the critical concentration for Mycobacterium tuberculosis. CONCLUSIONS CSF penetration with standard-dose rifampicin is low. Our findings support continued evaluation of high-dose rifampicin for TBM treatment.
Collapse
Affiliation(s)
| | - Sean Wasserman
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Institute for Infection and Immunity, City St George's University of London, London, United Kingdom
| | | | - Angharad Davis
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- The Francis Crick Institute, London, United Kingdom
- Queen Mary and Barts Tuberculosis Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University London, United Kingdom
| | - Cari Stek
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine
| | - Graeme Meintjes
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- Department of Medicine, University of Cape Town, Observatory, South Africa
- Blizard Institute, Queen Mary University of London, United Kingdom
| | - Robert J Wilkinson
- Wellcome Discovery Research Platforms for Infection, Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, South Africa
- The Francis Crick Institute, London, United Kingdom
- Division of Infectious Diseases and HIV Medicine, Department of Medicine, University of Cape Town, Observatory, South Africa
- Department of Infectious Diseases, Imperial College London, United Kingdom
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine
| |
Collapse
|
3
|
Ju G, Liu X, Gu M, Chen L, Wang X, Li C, Yang N, Zhang G, Zhang C, Zhu X, He Q, Ouyang D. Parametric Population Pharmacokinetics Model Repository of Rifampicin: Model-Informed Individualized Therapy. Clin Pharmacol 2025; 17:49-78. [PMID: 40255481 PMCID: PMC12009037 DOI: 10.2147/cpaa.s502272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 04/07/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction Rifampicin is a crucial first-line anti-tuberculosis drug that has been extensively studied through population pharmacokinetic (popPK) analyses. This study aims to construct a comprehensive rifampicin popPK model repository to support model-informed individualized therapy. Methods A systematic review was conducted using PubMed, Web of Science, and Embase databases up to September 2023 to retrieve popPK model articles on rifampicin. Extracted data included basic information, dosing regimens, sampling strategies, model parameters, and covariate details. Non-English studies, non-parametric models, and duplicates were excluded. The repository was built using R package mrgsolve, and a Shiny application was developed for simulation and individualized dosing predictions. Results A total of 29 studies were included in the rifampicin model repository: 23 on adults, 5 on pediatrics, 1 on both populations, and 1 on pregnant women. Most rifampicin popPK models were one-compartment linear elimination models, with transit compartment or lagged absorption models improving drug absorption fitting. An allometric growth model based on fat-free mass (FFM) might improved model fit. Postmenstrual age (PMA) significantly impacted elimination in pediatric patients. All models underwent internal validation, with three studies validated externally. Significant variations in exposure predictions were observed among models, indicating challenges in achieving therapeutic targets under standard treatment. Discussion The model repository provides a comprehensive resource for exploring various models and their application in different populations, supporting individualized rifampicin therapy. Further research is needed for special populations and to determine whether weight or FFM is more rational for dosing. External validation is essential for model development.
Collapse
Affiliation(s)
- Gehang Ju
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institute of Clinical Pharmacology, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
| | - Xin Liu
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Meng Gu
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Lulu Chen
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
- Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
| | - Xintong Wang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
- Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
| | - Chao Li
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
- Phamark Data Technology Co., Ltd., Changsha, People’s Republic of China
| | - Nan Yang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
- Phamark Data Technology Co., Ltd., Changsha, People’s Republic of China
| | - Gufen Zhang
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
- Phamark Data Technology Co., Ltd., Changsha, People’s Republic of China
| | - Chenchen Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiao Zhu
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Qingfeng He
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, People’s Republic of China
| | - Dongsheng Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- Institute of Clinical Pharmacology, Central South University, Changsha, People’s Republic of China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
- Changsha Duxact Biotech Co., Ltd., Changsha, People’s Republic of China
| |
Collapse
|
4
|
Huynh J, Chabala C, Sharma S, Choo L, Singh V, Sankhyan N, Mujuru H, Nguyen N, Trinh TH, Phan PH, Nhung NV, Nkole KL, Sirari T, Mutata C, Frangou E, Griffiths A, Wobudeya E, Muller C, Santana S, Kestelyn E, Nguyen LV, Nguyen T, Tran D, Seddon JA, Turkova A, Abarca-Salazar S, Basu-Roy R, Thwaites GE, Crook A, Anderson ST, Gibb DM. Effectiveness and safety of shortened intensive treatment for children with tuberculous meningitis (SURE): a protocol for a phase 3 randomised controlled trial evaluating 6 months of antituberculosis therapy and 8 weeks of aspirin in Asian and African children with tuberculous meningitis. BMJ Open 2025; 15:e088543. [PMID: 40180374 PMCID: PMC11967003 DOI: 10.1136/bmjopen-2024-088543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/11/2025] [Indexed: 04/05/2025] Open
Abstract
INTRODUCTION Childhood tuberculous meningitis (TBM) is a devastating disease. The long-standing WHO recommendation for treatment is 2 months of intensive phase with isoniazid (H), rifampicin (R), pyrazinamide (Z) and ethambutol (E), followed by 10 months of isoniazid and rifampicin. In 2022, WHO released a conditional recommendation that 6 months of intensified antituberculosis therapy (ATT) could be used as an alternative for drug-susceptible TBM. However, this has never been evaluated in a randomised clinical trial. Trials evaluating ATT shortening regimens using high-dose rifampicin and drugs with better central nervous system penetration alongside adjuvant anti-inflammatory therapy are needed to improve outcomes. METHODS AND ANALYSIS The Shortened Intensive Therapy for Children with Tuberculous Meningitis (SURE) trial is a phase 3, randomised, partially blinded, factorial trial being conducted in Asia (India and Vietnam) and Africa (Uganda, Zambia and Zimbabwe). It is coordinated by the Medical Research Council Clinical Trial Unit at University College London (MRCCTU at UCL). 400 children (aged 29 days to <18 years) with clinically diagnosed TBM will be randomised, using a factorial design, to either a 24-week intensified regimen (isoniazid (20 mg/kg), rifampicin (30 mg/kg), pyrazinamide (40 mg/kg) and levofloxacin (20 mg/kg)) or the standard 48-week ATT regimen and 8 weeks of high-dose aspirin or placebo. The primary outcome for the first randomisation is all-cause mortality, and for the second randomisation is the paediatric modified Rankin Scale (mRS), both at 48 weeks. Nested substudies include pharmacokinetics, pharmacogenetics, pathophysiology, diagnostics and prognostic biomarkers, in-depth neurodevelopmental outcomes, MRI and health economics. ETHICS AND DISSEMINATION Local ethics committees at all participating study sites and respective regulators approved the SURE protocol. Ethics approval was also obtained from UCL, UK (14935/001). Informed consent from parents/carers and assent from age-appropriate children are required for all participants. Results will be published in international peer-reviewed journals, and appropriate media will be used to summarise results for patients and their families and policymakers. TRIAL REGISTRATION ISRCTN40829906 (registered 13 November 2018).
Collapse
Affiliation(s)
- Julie Huynh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Ho Chi Minh, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX1 4BH, UK
| | - Chishala Chabala
- Department of Paediatrics, University of Zambia, Lusaka, Zambia
- University Teaching Hospitals-Children's Hospital, Lusaka, Zambia
| | - Suvasini Sharma
- Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | | | - Varinder Singh
- Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Naveen Sankhyan
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hilda Mujuru
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | - Nhung Nguyen
- Department of Paediatrics, Pham Ngoc Thach Hospital, Ho Chi Minh City, Vietnam
| | | | - Phuc Huu Phan
- Paediatric Intensive Care, Vietnam National Children's Hospital, Hanoi, Vietnam
| | | | | | - Titiksha Sirari
- Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | - Eric Wobudeya
- Makerere University-John Hopkins University Research Collaboration, Kampala, Uganda
| | | | | | - Evelyne Kestelyn
- Oxford University Clinical Research Unit, Ho Chi Minh City, Ho Chi Minh, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX1 4BH, UK
| | - Lam Van Nguyen
- Center for Tropical Diseases, Vietnam National Children's Hospital, Hanoi, Vietnam
| | - Thanh Nguyen
- Oxford University Clinical Research Unit, Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - Dai Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Ho Chi Minh, Vietnam
| | - James A Seddon
- Department of Infectious Disease, Imperial College London, London, UK
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Capetown, South Africa
| | | | - Susan Abarca-Salazar
- MRC Clinical Trials Unit at UCL, London, UK
- Clinical Research Department, London School of Hygiene & Tropical Medicine, London, UK
| | - Robin Basu-Roy
- Blizard Institute, Queen Mary University of London, London, UK
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Ho Chi Minh, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford OX1 4BH, UK
| | | | | | | |
Collapse
|
5
|
Goutelle S, Bahuaud O, Genestet C, Millet A, Parant F, Dumitrescu O, Ader F. Exposure to Rifampicin and its Metabolite 25-Deacetylrifampicin Rapidly Decreases During Tuberculosis Therapy. Clin Pharmacokinet 2025; 64:387-396. [PMID: 39871048 PMCID: PMC11954713 DOI: 10.1007/s40262-025-01479-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND AND OBJECTIVE Limited information is available on the pharmacokinetics of rifampicin (RIF) along with that of its active metabolite, 25-deacetylrifampicin (25-dRIF). This study aimed to analyse the pharmacokinetic data of RIF and 25-dRIF collected in adult patients treated for tuberculosis. METHODS In adult patients receiving 10 mg/kg of RIF as part of a standard regimen for drug-susceptible pulmonary tuberculosis enrolled in the Opti-4TB study, plasma RIF and 25-dRIF concentrations were measured at various occasions. The RIF and 25-dRIF concentrations were modelled simultaneously by using a population approach. The area under the concentration-time curves of RIF and 25-dRIF were estimated on each occasion of therapeutic drug monitoring. Optimal RIF exposure, defined as an area under the concentration-time curve over 24 hours/minimum inhibitory concentration > 435, was assessed. RESULTS Concentration data (247 and 243 concentrations of RIF and 25-dRIF, respectively) were obtained in 35 patients with tuberculosis (10 women, 25 men). Mycobacterium tuberculosis minimum inhibitory concentration ranged from 0.06 to 0.5 mg/L (median = 0.25 mg/L). The final model was a two-compartment model including RIF metabolism into 25-dRIF and auto-induction. Exposure to 25-dRIF was low, with a mean area under the concentration-time curve over 24 h ratio of 25-dRIF/RIF of 14 ± 6%. The area under the concentration-time curve over 24 h of RIF and 25-dRIF rapidly decreased during therapy, with an auto-induction half-life of 1.6 days. Optimal RIF exposure was achieved in only six (19.3%) out of 31 patients upon first therapeutic drug monitoring. CONCLUSIONS Exposure to both RIF and 25-dRIF rapidly decreased during tuberculosis therapy. The contribution of 25-dRIF to overall drug exposure was low. Attainment of the target area under the concentration-time curve over 24 hours/minimum inhibitory concentration for RIF was poor, supporting an increased RIF dosage as an option to compensate for auto-induction.
Collapse
Affiliation(s)
- Sylvain Goutelle
- Hospices Civils de Lyon, GH Nord, Hôpital de la Croix-Rousse, Service de Pharmacie, 103 Grande rue de la Croix-Rousse, 69004, Lyon, France.
- UMR CNRS 5558, Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France.
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| | - Olivier Bahuaud
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital de la Croix-Rousse, Lyon, France
| | - Charlotte Genestet
- Institut des Agents Infectieux, Laboratoire des Mycobactéries, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| | - Aurélien Millet
- Service de Biochimie et Biologie Moléculaire, UM Pharmacologie-Toxicologie, Hospices Civils de Lyon, Groupement Hospitalier Sud, Lyon, France
| | - François Parant
- Service de Biochimie et Biologie Moléculaire, UM Pharmacologie-Toxicologie, Hospices Civils de Lyon, Groupement Hospitalier Sud, Lyon, France
| | - Oana Dumitrescu
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Institut des Agents Infectieux, Laboratoire des Mycobactéries, Hospices Civils de Lyon, Hôpital de la Croix Rousse, Lyon, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| | - Florence Ader
- Facultés de Médecine et de Pharmacie de Lyon, Univ Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Service des Maladies Infectieuses et Tropicales, Hospices Civils de Lyon, Groupement Hospitalier Nord, Hôpital de la Croix-Rousse, Lyon, France
- CIRI-Centre International de Recherche en Infectiologie, Inserm, U1111, Université́ Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, 69007, Lyon, France
| |
Collapse
|
6
|
Alsultan A, Aljutayli A, Aljouie A, Albassam A, Woillard JB. Leveraging machine learning in limited sampling strategies for efficient estimation of the area under the curve in pharmacokinetic analysis: a review. Eur J Clin Pharmacol 2025; 81:183-201. [PMID: 39570408 DOI: 10.1007/s00228-024-03780-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE Limited sampling strategies are widely employed in clinical practice to minimize the number of blood samples required for the accurate area under the curve calculations, as obtaining these samples can be costly and challenging. Traditionally, the maximum a posteriori Bayesian estimation has been the standard method for the area under the curve estimation based on limited samples. However, machine learning is emerging as a promising alternative for this purpose. Here, we review studies that utilize machine learning approaches to develop limited sampling strategies and compare the strengths and weaknesses of these machine learning methods. METHODS We searched the literature for studies that used machine learning to estimate the area under the curve using a limited sampling strategy approach. RESULTS We identified ten studies that developed machine learning models to estimate the area under the curve for six different drugs. Several of these models demonstrated good accuracy and precision in area under the curve estimation in reference to the traditional Bayesian approach, highlighting the potential of machine learning models in precision dosing. CONCLUSIONS Despite these promising early results, the development of machine learning for limited sampling strategies is still in its early stages. Further research might be needed to validate machine learning models with larger, high-quality clinical datasets to ensure their reliability and applicability in clinical settings.
Collapse
Affiliation(s)
- Abdullah Alsultan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
- Clinical Pharmacokinetics and Pharmacodynamics Unit, King Saud University Medical City, Riyadh, Saudi Arabia.
| | - Abdullah Aljutayli
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, Saudi Arabia
| | - Abdulrhman Aljouie
- Department of Data Management, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Artificial Intelligence and Bioinformatics, King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Health Informatics, College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Ahmed Albassam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jean-Baptiste Woillard
- INSERM U1248 P&T, University of Limoges, 2 Rue du Pr Descottes, 87000, Limoges, France
- Department of Pharmacology and Toxicology, CHU Limoges, Limoges, France
| |
Collapse
|
7
|
D'Agate S, Velickovic P, García-Barrios N, Ramón-García S, Della Pasqua O. Optimizing β-lactam-containing antibiotic combination therapy for the treatment of Buruli ulcer. Br J Clin Pharmacol 2025; 91:179-189. [PMID: 39290131 DOI: 10.1111/bcp.16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 09/19/2024] Open
Abstract
AIMS The current treatment for Buruli ulcer is based on empirical evidence of efficacy. However, there is an opportunity for shortening its duration and improving response rates. Evolving understanding of the pharmacokinetic-pharmacodynamic relationships provides the basis for a stronger dose rationale for antibiotics. In conjunction with modelling and simulation, it is possible to identify dosing regimens with the highest probability of target attainment (PTA). This investigation aims to: (i) assess the dose rationale for a new combination therapy including amoxicillin/clavulanic acid (AMX/CLV) currently in clinical trials; and (ii) compare its performance with alternative dosing regimens including rifampicin, clarithromycin and AMX/CLV. METHODS In vitro estimates of the minimum inhibitory (MIC) concentration were selected as a measure of the antibacterial activity of different drug combinations. Clinical trial simulations were used to characterize the concentration vs. time profiles of rifampicin, clarithromycin and amoxicillin in a virtual cohort of adult and paediatric patients, considering the effect of baseline covariates on disposition parameters and interindividual variability in exposure. The PTA of each regimen was then assessed using different thresholds of the time above MIC. RESULTS A weight-banded dosing regimen including 150-600 mg rifampicin once daily, 250-1000 mg clarithromycin and AMX/CLV 22.5 mg/kg /1000 mg twice daily ensures higher PTA than the standard of care with AMX/CLV 45 mg/kg/2000 mg once daily. CONCLUSION The higher PTA values support the proposed 4-drug combination (rifampicin, clarithromycin, AMX/CLV) currently under clinical investigation. Our findings also suggest that higher rifampicin doses might contribute to enhanced treatment efficacy.
Collapse
Affiliation(s)
- Salvatore D'Agate
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - Peter Velickovic
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | | | - Santiago Ramón-García
- Research and Development Agency of Aragón Foundation (ARAID Foundation), Zaragoza, Spain
- Department of Microbiology, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
- Spanish Network for Research on Respiratory Diseases (CIBERES), Carlos III Health Institute, Health Institute Carlos III, Madrid, Spain
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London, UK
- National Research Council (CNR), Rome, Italy
| |
Collapse
|
8
|
Pardos SL, Hope W, Kotsaki A, Das S, Giamarellos-Bourboulis EJ, Kontopoulouk T, Akinosoglou K, O'Hare M, Attwood MLG, Bowker KE, Noel AR, Lovering AM, Bayliss MAJ, Evans RN, MacGowan AP. Population pharmacokinetics/pharmacodynamics of minocycline plus rifampicin in patients with complicated skin and skin structure infections caused by MRSA. J Antimicrob Chemother 2024; 79:3303-3312. [PMID: 39412246 DOI: 10.1093/jac/dkae363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/24/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The population pharmacokinetics/pharmacodynamics (PK/PD) of minocycline, rifampicin and linezolid in patients with complicated skin and soft tissue infections (cSSTIs) caused by MRSA are described. METHODS Samples were collected in a Phase 4 study of oral minocycline plus rifampicin versus linezolid showing minocycline plus rifampicin to be non-inferior to linezolid. Antibiotics were assayed by HPLC or LC-MS, and a population PK model was developed using Pmetrics. The association between PK/PD indices and patient outcomes was explored. RESULTS A three-compartment model (with an absorption compartment) with first-order input and elimination best described the data for the three drugs. No covariates were included in the final model. The population median values (95% credibility limits) of the clearance and volume of distribution were 7.412 L/h (5.121-8.361) and 14.155 L (6.799-33.901) for minocycline, 5.683 L/h (3.703-7.726) and 7.736 L (6.031-8.948) for rifampicin, and 1.970 L/h (1.326-2.499) and 20.169 L (12.857-32.629) for linezolid, respectively. Maximum a posteriori probability-Bayesian estimation plots of observed versus predicted had a slope of 0.999 r20.967 for minocycline, slope 0.998 r20.769 for rifampicin and slope 0.998 r20.895 for linezolid. PK/PD indices were not related to clinical outcome. Taking a translational minocycline fAUC24h/MIC target of >0.5 for minocycline in the presence of rifampicin, 96% (49/51) of patients reached the target. CONCLUSIONS Population PK models of minocycline, rifampicin and linezolid were developed in patients with MRSA cSSTI and almost all patients reached the predefined PD index targets. As a result, neither AUC, MIC nor the AUC/MIC ratio could be related to clinical outcome.
Collapse
Affiliation(s)
| | - William Hope
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | - Antigone Kotsaki
- 4th Department of Internal Medicine, National and Kapodistrain University of Athens Medical School, Athens, Greece
| | - Shampa Das
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK
| | | | - Theano Kontopoulouk
- 1st Department of Internal Medicine, Evangelismos General Hospital, Athens, Greece
| | - Karolina Akinosoglou
- Department of Internal Medicine, University of Patrea Medical School, Rion, Greece
| | - Miriam O'Hare
- Micron Research Ltd, 109B Lancaster Way, Ely CB6 3 NX, UK
| | - Marie L G Attwood
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Karen E Bowker
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Alan R Noel
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Andrew M Lovering
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mark A J Bayliss
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| | - Rebecca N Evans
- Bristol Trials Centre, Bristol Medical School, University of Bristol, 1-5 Whiteladies Road, Clifton, Bristol BS8 1NU, UK
| | - Alasdair P MacGowan
- Bristol Centre for Antimicrobial Research and Evaluation (BCARE), Antimicrobial Reference Laboratory, Infection Sciences, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
9
|
Petermann YJ, Said B, Cathignol AE, Sariko ML, Thoma Y, Mpagama SG, Csajka C, Guidi M. State of the art of real-life concentration monitoring of rifampicin and its implementation contextualized in resource-limited settings: the Tanzanian case. JAC Antimicrob Resist 2024; 6:dlae182. [PMID: 39544428 PMCID: PMC11561919 DOI: 10.1093/jacamr/dlae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
The unique medical and socio-economic situation in each country affected by TB creates different epidemiological contexts, thus providing exploitable loopholes for the spread of the disease. Country-specific factors such as comorbidities, health insurance, social stigma or the rigidity of the health system complicate the management of TB and the overall outcome of each patient. First-line TB drugs are administered in a standardized manner, regardless of patient characteristics other than weight. This approach does not consider patient-specific conditions such as HIV infection, diabetes mellitus and malnutrition, which can affect the pharmacokinetics of TB drugs, their overall exposure and response to treatment. Therefore, the 'one-size-fits-all' approach is suboptimal for dealing with the underlying inter-subject variability in the pharmacokinetics of anti-TB drugs, further complicated by the recent increased dosing regimen of rifampicin strategies, calling for a patient-specific methodology. In this context, therapeutic drug monitoring (TDM), which allows personalized drug dosing based on blood drug concentrations, may be a legitimate solution to address treatment failure. This review focuses on rifampicin, a critical anti-TB drug, and examines its suitability for TDM and the socio-economic factors that may influence the implementation of TDM in clinical practice in resource-limited settings, illustrated by Tanzania, thereby contributing to the advancement of personalized TB treatment.
Collapse
Affiliation(s)
- Yuan J Petermann
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Bibie Said
- Kibong'oto Infectious Diseases Hospital, Sanya Juu Siha/Kilimanjaro Clinical Research Institute, Kilimanjaro, United Republic of Tanzania
- The Nelson Mandela African Institution of Science and Technology, Arusha, United Republic of Tanzania
| | - Annie E Cathignol
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Margaretha L Sariko
- Kilimanjaro Clinical Research Institute Kilimanjaro, Moshi, United Republic of Tanzania
| | - Yann Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - Stellah G Mpagama
- Kibong'oto Infectious Diseases Hospital, Sanya Juu Siha/Kilimanjaro Clinical Research Institute, Kilimanjaro, United Republic of Tanzania
| | - Chantal Csajka
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva & Lausanne, Switzerland
| | - Monia Guidi
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
- Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Bilal M, Ullah S, Jaehde U, Trueck C, Zaremba D, Wachall B, Wargenau M, Scheidel B, Wiesen MHJ, Gazzaz M, Chen C, Büsker S, Fuhr U, Taubert M, Dokos C. Assessment of body mass-related covariates for rifampicin pharmacokinetics in healthy Caucasian volunteers. Eur J Clin Pharmacol 2024; 80:1271-1283. [PMID: 38722350 PMCID: PMC11303472 DOI: 10.1007/s00228-024-03697-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/29/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Currently, body weight-based dosing of rifampicin is recommended. But lately, fat-free mass (FFM) was reported to be superior to body weight (BW). The present evaluation aimed to assess the influence of body mass-related covariates on rifampicin's pharmacokinetics (PK) parameters in more detail using non-linear mixed effects modeling (NLMEM). METHODS Twenty-four healthy Caucasian volunteers were enrolled in a bioequivalence study, each receiving a test and a reference tablet of 600 mg of rifampicin separated by a wash-out period of at least 9 days. Monolix version 2023R1 was used for NLMEM. Monte Carlo simulations (MCS) were performed to visualize the relationship of body size descriptors to the exposure to rifampicin. RESULTS A one-compartment model with nonlinear (Michaelis-Menten) elimination and zero-order absorption kinetics with a lag time best described the data. The covariate model including fat-free mass (FFM) on volume of distribution (V/F) and on maximum elimination rate (Vmax/F) lowered the objective function value (OFV) by 56.4. The second-best covariate model of sex on V/F and Vmax/F and BW on V/F reduced the OFV by 51.2. The decrease in unexplained inter-individual variability on Vmax/F in both covariate models was similar. For a given dose, MCS showed lower exposure to rifampicin with higher FFM and accordingly in males compared to females with the same BW and body height. CONCLUSION Our results indicate that beyond BW, body composition as reflected by FFM could also be relevant for optimized dosing of rifampicin. This assumption needs to be studied further in patients treated with rifampicin.
Collapse
Affiliation(s)
- Muhammad Bilal
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany.
| | - Sami Ullah
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ulrich Jaehde
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Christina Trueck
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Dario Zaremba
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bertil Wachall
- InfectoPharm Arzneimittel Und Consilium GmbH, 64646, Heppenheim, Germany
| | | | | | - Martin H J Wiesen
- Pharmacology at the Laboratory Diagnostics Centre, Faculty of Medicine, University Hospital Cologne, University of Cologne, Therapeutic Drug Monitoring, Cologne, Germany
| | - Malaz Gazzaz
- Pharmaceutical Practices Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Chunli Chen
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Sören Büsker
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Uwe Fuhr
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max Taubert
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Charalambos Dokos
- Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Hohmann N, Friedrichs AS, Burhenne J, Blank A, Mikus G, Haefeli WE. Dose-dependent induction of CYP3A activity by St. John's wort alone and in combination with rifampin. Clin Transl Sci 2024; 17:e70007. [PMID: 39152679 PMCID: PMC11329750 DOI: 10.1111/cts.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024] Open
Abstract
The dose dependence of the effect of enzyme inducers and the effect of the combined administration of two inducers that exert their effect via the same induction pathway (pregnane X receptor) have not been well studied. Using oral midazolam microdoses (30 μg), we have investigated CYP3A4 induction by St. John's wort (SJW) in 11 healthy volunteers using low (300 mg/day containing 7.48 mg hyperforin), therapeutic (900 mg/day), and supratherapeutic doses of SJW (1800 mg/day) for 14 days. SJW was then co-administered with rifampin (600 mg/day) for a further 7 days to evaluate the effect of the combined administration of two inducers. In addition, intravenous midazolam microdoses (10 μg) were administered before SJW, at SJW 1800 mg/day, and during administration of the two inducers to assess the hepatic contribution to total induction (semi-simultaneous administration). Administration of SJW increased oral midazolam clearance 1.96-fold (300 mg/day), 3.86-fold (900 mg/day), and 5.62-fold (1800 mg/day), and 17.5-fold after the addition of rifampin. Concurrently, the clearance of intravenous midazolam increased 2.05-fold (1800 mg/day) and 2.93-fold (SJW + rifampin). These results show that rifampin significantly enhances the induction of the highest SJW doses both hepatically and overall and suggest that these metabolic effects occur predominantly in the gut. These findings also suggest that in drug interactions involving strong and moderate enzyme inducers, the perpetrator effects of the strong inducer are decisive for the interaction.
Collapse
Affiliation(s)
- Nicolas Hohmann
- Department of Clinical Pharmacology and Pharmacoepidemiology, Internal Medicine IX, Medical Faculty of Heidelberg, Heidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Anna S. Friedrichs
- Department of Clinical Pharmacology and Pharmacoepidemiology, Internal Medicine IX, Medical Faculty of Heidelberg, Heidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Internal Medicine IX, Medical Faculty of Heidelberg, Heidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, Internal Medicine IX, Medical Faculty of Heidelberg, Heidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, Internal Medicine IX, Medical Faculty of Heidelberg, Heidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Internal Medicine IX, Medical Faculty of Heidelberg, Heidelberg University HospitalUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
12
|
Nardotto GHB, Svenson EM, Bollela VR, Rocha A, Slavov SN, Ximenez JPB, Della Pasqua O, Lanchote VL. Effect of Interindividual Variability in Metabolic Clearance and Relative Bioavailability on Rifampicin Exposure in Tuberculosis Patients with and without HIV Co-Infection: Does Formulation Quality Matter? Pharmaceutics 2024; 16:970. [PMID: 39204315 PMCID: PMC11359463 DOI: 10.3390/pharmaceutics16080970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
The present study aims to characterise the pharmacokinetics of rifampicin (RIF) in tuberculosis (TB) patients with and without HIV co-infection, considering the formation of 25-O-desacetyl-rifampicin (desRIF). It is hypothesised that the metabolite formation, HIV co-infection and drug formulation may further explain the interindividual variation in the exposure to RIF. Pharmacokinetic, clinical, and demographic data from TB patients with (TB-HIV+ group; n = 18) or without HIV (TB-HIV- group; n = 15) who were receiving RIF as part of a four-drug fixed-dose combination (FDC) regimen (RIF, isoniazid, pyrazinamide, and ethambutol) were analysed, along with the published literature data on the relative bioavailability of different formulations. A population pharmacokinetic model, including the formation of desRIF, was developed and compared to a model based solely on the parent drug. HIV co-infection does not alter the plasma exposure to RIF and the desRIF formation does not contribute to the observed variability in the RIF disposition. The relative bioavailability and RIF plasma exposure were significantly lower than previously reported for the standard regimen with FDC tablets. Furthermore, participants weighting less than 50 kg do not reach the same RIF plasma exposure as compared to those weighting >50 kg. In conclusion, as no covariate was identified other than body weight on CL/F and Vd/F, low systemic exposure to RIF is likely to be caused by the low bioavailability of the formulation.
Collapse
Affiliation(s)
- Glauco Henrique Balthazar Nardotto
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil; (G.H.B.N.); (A.R.); (J.P.B.X.)
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elin M. Svenson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden;
| | - Valdes Roberto Bollela
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Adriana Rocha
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil; (G.H.B.N.); (A.R.); (J.P.B.X.)
| | - Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Evaluation-CeVIVAs, Butantan Institute, Sao Paulo 05503-900, Brazil;
| | - João Paulo Bianchi Ximenez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil; (G.H.B.N.); (A.R.); (J.P.B.X.)
| | - Oscar Della Pasqua
- Clinical Pharmacology & Therapeutics Group, University College London, London WC1J 9JP, UK;
| | - Vera Lucia Lanchote
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-903, Brazil; (G.H.B.N.); (A.R.); (J.P.B.X.)
| |
Collapse
|
13
|
Yohane M, Naufal F, Mendoza-Ticona A, Svensson EM, Weir IR, Scarsi KK, Haas DW, Maartens G, Metcalfe J. Conjugated hyperbilirubinemia associated with accidental rifapentine overdose. Int J Tuberc Lung Dis 2024; 28:354-356. [PMID: 38961547 PMCID: PMC11392536 DOI: 10.5588/ijtld.23.0494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Affiliation(s)
- M Yohane
- Johns Hopkins Research Project/Blantyre Catholic Relief Services, Blantyre, Malawi
| | - F Naufal
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital and Trauma Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | | | - E M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands;, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - I R Weir
- Center for Biostatistics in AIDS Research in the Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - K K Scarsi
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, USA
| | - D W Haas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA;, Department of Internal Medicine, Meharry Medical College, Nashville, TN, USA
| | - G Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - J Metcalfe
- Division of Pulmonary and Critical Care Medicine, San Francisco General Hospital and Trauma Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
14
|
Gafar F, Yunivita V, Fregonese F, Apriani L, Aarnoutse RE, Ruslami R, Menzies D. Pharmacokinetics of standard versus high-dose rifampin for tuberculosis preventive treatment: A sub-study of the 2R 2 randomized controlled trial. Int J Antimicrob Agents 2024; 64:107197. [PMID: 38750674 DOI: 10.1016/j.ijantimicag.2024.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Pharmacokinetic data of rifampin, when used for tuberculosis preventive treatment (TPT) are not available. We aimed to describe the pharmacokinetics of rifampin used for TPT, at standard and higher doses, and to assess predictors of rifampin exposure. METHODS A pharmacokinetic sub-study was performed in Bandung, Indonesia among participants in the 2R2 randomized trial, which compared TPT regimens of 2 months of high-dose rifampin at 20 mg/kg/day (2R20) and 30 mg/kg/day (2R30), with 4 months of standard-dose rifampin at 10 mg/kg/day (4R10) in adolescents and adults. Intensive pharmacokinetic sampling was performed after 2-8 weeks of treatment. Pharmacokinetic parameters were assessed non-compartmentally. Total exposure (AUC0-24) and peak concentration (Cmax) between arms were compared using one-way ANOVA and Tukey's post-hoc tests. Multivariable linear regression analyses were used to assess predictors of AUC0-24 and Cmax. RESULTS We enrolled 51 participants in this study. In the 4R10, 2R20, and 2R30 arms, the geometric mean AUC0-24 was 68.0, 186.8, and 289.9 h⋅mg/L, and Cmax was 18.4, 36.7, and 54.4 mg/L, respectively; high interindividual variabilities were observed. Compared with the 4R10 arm, AUC0-24 and Cmax were significantly higher in the 2R20 and 2R30 arms (P < 0.001). Drug doses, body weight, and female sex were predictors of higher rifampin AUC0-24 and Cmax (P < 0.05). AUC0-24 and Cmax values were much higher than those previously reported in persons with TB disease. CONCLUSIONS Doubling and tripling the rifampin dose led to three- and four-fold higher exposure compared to standard dose. Pharmacokinetic/pharmacodynamic modelling and simulations are warranted to support trials of shortening the duration of TPT regimens with high-dose rifampin.
Collapse
Affiliation(s)
- Fajri Gafar
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, McGill University, Montreal, Quebec, Canada; Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Vycke Yunivita
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Federica Fregonese
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, McGill University, Montreal, Quebec, Canada
| | - Lika Apriani
- TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia; Division of Epidemiology and Biostatistics, Department of Public Health, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| | - Rovina Ruslami
- McGill International TB Centre, McGill University, Montreal, Quebec, Canada; Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia; TB Working Group, Research Center for Care and Control of Infectious Diseases, Universitas Padjadjaran, Bandung, Indonesia
| | - Dick Menzies
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; McGill International TB Centre, McGill University, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Montreal Chest Institute, McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
15
|
Kang DW, Kim JH, Kim KM, Cho SJ, Choi GW, Cho HY. Inter-Species Pharmacokinetic Modeling and Scaling for Drug Repurposing of Pyronaridine and Artesunate. Int J Mol Sci 2024; 25:6998. [PMID: 39000107 PMCID: PMC11241507 DOI: 10.3390/ijms25136998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Even though several new targets (mostly viral infection) for drug repurposing of pyronaridine and artesunate have recently emerged in vitro and in vivo, inter-species pharmacokinetic (PK) data that can extend nonclinical efficacy to humans has not been reported over 30 years of usage. Since extrapolation of animal PK data to those of humans is essential to predict clinical outcomes for drug repurposing, this study aimed to investigate inter-species PK differences in three animal species (hamster, rat, and dog) and to support clinical translation of a fixed-dose combination of pyronaridine and artesunate. PK parameters (e.g., steady-state volume of distribution (Vss), clearance (CL), area under the concentration-time curve (AUC), mean residence time (MRT), etc.) of pyronaridine, artesunate, and dihydroartemisinin (an active metabolite of artesunate) were determined by non-compartmental analysis. In addition, one- or two-compartment PK modeling was performed to support inter-species scaling. The PK models appropriately described the blood concentrations of pyronaridine, artesunate, and dihydroartemisinin in all animal species, and the estimated PK parameters in three species were integrated for inter-species allometric scaling to predict human PKs. The simple allometric equation (Y = a × Wb) well explained the relationship between PK parameters and the actual body weight of animal species. The results from the study could be used as a basis for drug repurposing and support determining the effective dosage regimen for new indications based on in vitro/in vivo efficacy data and predicted human PKs in initial clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Gyeonggi-do, Republic of Korea; (D.W.K.); (J.H.K.); (K.M.K.); (S.-j.C.); (G.-W.C.)
| |
Collapse
|
16
|
Hou W, Huo KG, Guo X, Xu M, Yang Y, Shi Z, Xu W, Tu J, Gao T, Ma Z, Han S. KLF15-Cyp3a11 Axis Regulates Rifampicin-Induced Liver Injury. Drug Metab Dispos 2024; 52:606-613. [PMID: 38670799 DOI: 10.1124/dmd.123.001617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Rifampicin (RFP) has demonstrated potent antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver intensively limit the clinical usage of the drug. Deacetylation greatly reduces the toxicity of RFP but also retains its curative activity. Here, we found that Krüppel-like factor 15 (KLF15) repressed the expression of the major RFP detoxification enzyme Cyp3a11 in mice via both direct and indirect mechanisms. Knockout of hepatocyte KLF15 induced the expression of Cyp3a11 and robustly attenuated the hepatotoxicity of RFP in mice. In contrast, overexpression of hepatic KLF15 exacerbated RFP-induced liver injury as well as mortality. More importantly, the suppression of hepatic KLF15 expression strikingly restored liver functions in mice even after being pretreated with overdosed RFP. Therefore, this study identified the KLF15-Cyp3a11 axis as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury. SIGNIFICANCE STATEMENT: Rifampicin has demonstrated antibacterial effects in the treatment of pulmonary tuberculosis. However, the serious adverse effects on the liver limit the clinical usage of the drug. Permanent depletion and transient inhibition of hepatic KLF15 expression significantly induced the expression of Cyp3a11 and robustly attenuated mouse hepatotoxicity induced by RFP. Overall, our studies show the KLF15-Cyp3a11 axis was identified as a novel regulatory pathway that may play an essential role in the detoxification of RFP and associated liver injury.
Collapse
Affiliation(s)
- Wanqing Hou
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Ku-Geng Huo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Xiaohua Guo
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Mengtong Xu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Yongting Yang
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Zhuangqi Shi
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Weixiong Xu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Jinqi Tu
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Tangxin Gao
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Zhenghai Ma
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China (W.H., X.G.); Cyagen Biosciences (Guangzhou) Inc. Guangzhou, Guangdong, China (K.-G.H.); Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China (M.X., Y.Y., Z.S., J.T., Z.M., S.H.); Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio (W.X.); and Lantu Biopharma, Guangzhou, China (T.G.)
| |
Collapse
|
17
|
Ngo HX, Xu AY, Velásquez GE, Zhang N, Chang VK, Kurbatova EV, Whitworth WC, Sizemore E, Bryant K, Carr W, Weiner M, Dooley KE, Engle M, Dorman SE, Nahid P, Swindells S, Chaisson RE, Nsubuga P, Lourens M, Dawson R, Savic RM. Pharmacokinetic-Pharmacodynamic Evidence From a Phase 3 Trial to Support Flat-Dosing of Rifampicin for Tuberculosis. Clin Infect Dis 2024; 78:1680-1689. [PMID: 38462673 PMCID: PMC11175687 DOI: 10.1093/cid/ciae119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND The optimal dosing strategy for rifampicin in treating drug-susceptible tuberculosis (TB) is still highly debated. In the phase 3 clinical trial Study 31/ACTG 5349 (NCT02410772), all participants in the control regimen arm received 600 mg rifampicin daily as a flat dose. Here, we evaluated relationships between rifampicin exposure and efficacy and safety outcomes. METHODS We analyzed rifampicin concentration time profiles using population nonlinear mixed-effects models. We compared simulated rifampicin exposure from flat- and weight-banded dosing. We evaluated the effect of rifampicin exposure on stable culture conversion at 6 months; TB-related unfavorable outcomes at 9, 12, and 18 months using Cox proportional hazard models; and all trial-defined safety outcomes using logistic regression. RESULTS Our model-derived rifampicin exposure ranged from 4.57 mg · h/L to 140.0 mg · h/L with a median of 41.8 mg · h/L. Pharmacokinetic simulations demonstrated that flat-dosed rifampicin provided exposure coverage similar to the weight-banded dose. Exposure-efficacy analysis (n = 680) showed that participants with rifampicin exposure below the median experienced similar hazards of stable culture conversion and TB-related unfavorable outcomes compared with those with exposure above the median. Exposure-safety analysis (n = 722) showed that increased rifampicin exposure was not associated with increased grade 3 or higher adverse events or serious adverse events. CONCLUSIONS Flat-dosing of rifampicin at 600 mg daily may be a reasonable alternative to the incumbent weight-banded dosing strategy for the standard-of-care 6-month regimen. Future research should assess the optimal dosing strategy for rifampicin, at doses higher than the current recommendation.
Collapse
Affiliation(s)
- Huy X Ngo
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Ava Y Xu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Gustavo E Velásquez
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
- Division of HIV, Infectious Diseases, and Global Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Nan Zhang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Vincent K Chang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Erin Sizemore
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kia Bryant
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wendy Carr
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Marc Weiner
- University of Texas Health Science Center at San Antonio and the South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Kelly E Dooley
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Melissa Engle
- University of Texas Health Science Center at San Antonio and the South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Susan E Dorman
- Medical University of South Carolina, Charleston, South Carolina, USA
| | - Payam Nahid
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
| | | | | | - Pheona Nsubuga
- Uganda-Case Western Reserve University Research Collaboration, Kampala, Uganda
| | - Madeleine Lourens
- TASK Applied Science CRS, Brooklyn Chest Hospital, Bellville, South Africa
| | - Rodney Dawson
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
- UCSF Center for Tuberculosis, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
18
|
Namale PE, Boloko L, Vermeulen M, Haigh KA, Bagula F, Maseko A, Sossen B, Lee-Jones S, Msomi Y, McIlleron H, Mnguni AT, Crede T, Szymanski P, Naude J, Ebrahim S, Vallie Y, Moosa MS, Bandeker I, Hoosain S, Nicol MP, Samodien N, Centner C, Dowling W, Denti P, Gumedze F, Little F, Parker A, Price B, Schietekat D, Simmons B, Hill A, Wilkinson RJ, Oliphant I, Hlungulu S, Apolisi I, Toleni M, Asare Z, Mpalali MK, Boshoff E, Prinsloo D, Lakay F, Bekiswa A, Jackson A, Barnes A, Johnson R, Wasserman S, Maartens G, Barr D, Schutz C, Meintjes G. Testing novel strategies for patients hospitalised with HIV-associated disseminated tuberculosis (NewStrat-TB): protocol for a randomised controlled trial. Trials 2024; 25:311. [PMID: 38720383 PMCID: PMC11077808 DOI: 10.1186/s13063-024-08119-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND HIV-associated tuberculosis (TB) contributes disproportionately to global tuberculosis mortality. Patients hospitalised at the time of the diagnosis of HIV-associated disseminated TB are typically severely ill and have a high mortality risk despite initiation of tuberculosis treatment. The objective of the study is to assess the safety and efficacy of both intensified TB treatment (high dose rifampicin plus levofloxacin) and immunomodulation with corticosteroids as interventions to reduce early mortality in hospitalised patients with HIV-associated disseminated TB. METHODS This is a phase III randomised controlled superiority trial, evaluating two interventions in a 2 × 2 factorial design: (1) high dose rifampicin (35 mg/kg/day) plus levofloxacin added to standard TB treatment for the first 14 days versus standard tuberculosis treatment and (2) adjunctive corticosteroids (prednisone 1.5 mg/kg/day) versus identical placebo for the first 14 days of TB treatment. The study population is HIV-positive patients diagnosed with disseminated TB (defined as being positive by at least one of the following assays: urine Alere LAM, urine Xpert MTB/RIF Ultra or blood Xpert MTB/RIF Ultra) during a hospital admission. The primary endpoint is all-cause mortality at 12 weeks comparing, first, patients receiving intensified TB treatment to standard of care and, second, patients receiving corticosteroids to those receiving placebo. Analysis of the primary endpoint will be by intention to treat. Secondary endpoints include all-cause mortality at 2 and 24 weeks. Safety and tolerability endpoints include hepatoxicity evaluations and corticosteroid-related adverse events. DISCUSSION Disseminated TB is characterised by a high mycobacterial load and patients are often critically ill at presentation, with features of sepsis, which carries a high mortality risk. Interventions that reduce this high mycobacterial load or modulate associated immune activation could potentially reduce mortality. If found to be safe and effective, the interventions being evaluated in this trial could be easily implemented in clinical practice. TRIAL REGISTRATION ClinicalTrials.gov NCT04951986. Registered on 7 July 2021 https://clinicaltrials.gov/study/NCT04951986.
Collapse
Affiliation(s)
- Phiona E Namale
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa.
- Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Linda Boloko
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Marcia Vermeulen
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kate A Haigh
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Fortuna Bagula
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Alexis Maseko
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Bianca Sossen
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Scott Lee-Jones
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Yoliswa Msomi
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Ayanda Trevor Mnguni
- Department of Medicine, Khayelitsha Hospital, Cape Town, South Africa
- Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Thomas Crede
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Mitchells Plain Hospital, Cape Town, South Africa
| | - Patryk Szymanski
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Mitchells Plain Hospital, Cape Town, South Africa
| | - Jonathan Naude
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Mitchells Plain Hospital, Cape Town, South Africa
| | - Sakeena Ebrahim
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, Mitchells Plain Hospital, Cape Town, South Africa
| | - Yakoob Vallie
- Department of Medicine, New Somerset Hospital, Cape Town, South Africa
| | | | - Ismail Bandeker
- Department of Medicine, New Somerset Hospital, Cape Town, South Africa
| | - Shakeel Hoosain
- Department of Medicine, New Somerset Hospital, Cape Town, South Africa
| | - Mark P Nicol
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Division of Infection and Immunity School of Biomedical Sciences, University of Western Australia, Perth, Australia
| | - Nazlee Samodien
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Chad Centner
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wentzel Dowling
- Division of Medical Microbiology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Freedom Gumedze
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Francesca Little
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Arifa Parker
- Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Brendon Price
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Denzil Schietekat
- Department of Medicine, Khayelitsha Hospital, Cape Town, South Africa
- Department of Medicine, Stellenbosch University, Stellenbosch, South Africa
| | - Bryony Simmons
- LSE Health, London School of Economics and Political Science, London, UK
| | - Andrew Hill
- LSE Health, London School of Economics and Political Science, London, UK
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
- Francis Crick Institute, London, UK
- Department of Medicine, Imperial College London, London, UK
| | - Ida Oliphant
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Siphokazi Hlungulu
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ivy Apolisi
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Monica Toleni
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Zimkhitha Asare
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mkanyiseli Kenneth Mpalali
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Erica Boshoff
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Denise Prinsloo
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Francisco Lakay
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Abulele Bekiswa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Amanda Jackson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ashleigh Barnes
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Ryan Johnson
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sean Wasserman
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - David Barr
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlotte Schutz
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Madadi AK, Sohn MJ. Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies. Pharmaceutics 2024; 16:540. [PMID: 38675201 PMCID: PMC11054600 DOI: 10.3390/pharmaceutics16040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood-brain barrier (BBB), which significantly restricts the delivery of anti-tuberculous medications to the central nervous system (CNS), leading to subtherapeutic drug levels and poor treatment outcomes. The standard regimen for initial TBM treatment frequently falls short, followed by adverse side effects, vasculitis, and hydrocephalus, driving the condition toward a refractory state. To overcome this obstacle, intrathecal (IT) sustained release of anti-TB medication emerges as a promising approach. This method enables a steady, uninterrupted, and prolonged release of medication directly into the cerebrospinal fluid (CSF), thus preventing systemic side effects by limiting drug exposure to the rest of the body. Our review diligently investigates the existing literature and treatment methodologies, aiming to highlight their shortcomings. As part of our enhanced strategy for sustained IT anti-TB delivery, we particularly seek to explore the utilization of nanoparticle-infused hydrogels containing isoniazid (INH) and rifampicin (RIF), alongside osmotic pump usage, as innovative treatments for TBM. This comprehensive review delineates an optimized framework for the management of TBM, including an integrated approach that combines pharmacokinetic insights, concomitant drug administration strategies, and the latest advancements in IT and intraventricular (IVT) therapy for CNS infections. By proposing a multifaceted treatment strategy, this analysis aims to enhance the clinical outcomes for TBM patients, highlighting the critical role of targeted drug delivery in overcoming the formidable challenges presented by the blood-brain barrier and the complex pathophysiology of TBM.
Collapse
Affiliation(s)
- Ahmad Khalid Madadi
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
| | - Moon-Jun Sohn
- Department of Biomedical Science, Graduate School of Medicine, Inje University, 75, Bokji-ro, Busanjin-gu, Busan 47392, Republic of Korea;
- Department of Neurosurgery, Neuroscience & Radiosurgery Hybrid Research Center, College of Medicine, Inje University Ilsan Paik Hospital, 170, Juhwa-ro, Ilsanseo-gu, Goyang City 10380, Republic of Korea
| |
Collapse
|
20
|
Stemkens R, de Jager V, Dawson R, Diacon AH, Narunsky K, Padayachee SD, Boeree MJ, van Beek SW, Colbers A, Coenen MJH, Svensson EM, Fuhr U, Phillips PPJ, te Brake LHM, Aarnoutse RE. Drug interaction potential of high-dose rifampicin in patients with pulmonary tuberculosis. Antimicrob Agents Chemother 2023; 67:e0068323. [PMID: 37768317 PMCID: PMC10583668 DOI: 10.1128/aac.00683-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/29/2023] Open
Abstract
Accumulating evidence supports the use of higher doses of rifampicin for tuberculosis (TB) treatment. Rifampicin is a potent inducer of metabolic enzymes and drug transporters, resulting in clinically relevant drug interactions. To assess the drug interaction potential of higher doses of rifampicin, we compared the effect of high-dose rifampicin (40 mg/kg daily, RIF40) and standard-dose rifampicin (10 mg/kg daily, RIF10) on the activities of major cytochrome P450 (CYP) enzymes and P-glycoprotein (P-gp). In this open-label, single-arm, two-period, fixed-order phenotyping cocktail study, adult participants with pulmonary TB received RIF10 (days 1-15), followed by RIF40 (days 16-30). A single dose of selective substrates (probe drugs) was administered orally on days 15 and 30: caffeine (CYP1A2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-gp). Intensive pharmacokinetic blood sampling was performed over 24 hours after probe drug intake. In all, 25 participants completed the study. Geometric mean ratios (90% confidence interval) of the total exposure (area under the concentration versus time curve, RIF40 versus RIF10) for each of the probe drugs were as follows: caffeine, 105% (96%-115%); tolbutamide, 80% (74%-86%); omeprazole, 55% (47%-65%); dextromethorphan, 77% (68%-86%); midazolam, 62% (49%-78%), and 117% (105%-130%) for digoxin. In summary, high-dose rifampicin resulted in no additional effect on CYP1A2, mild additional induction of CYP2C9, CYP2C19, CYP2D6, and CYP3A, and marginal inhibition of P-gp. Existing recommendations on managing drug interactions with rifampicin can remain unchanged for the majority of co-administered drugs when using high-dose rifampicin. Clinical Trials registration number NCT04525235.
Collapse
Affiliation(s)
- Ralf Stemkens
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Rodney Dawson
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | | | - Kim Narunsky
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherman D. Padayachee
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
| | - Martin J. Boeree
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stijn W. van Beek
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Colbers
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marieke J. H. Coenen
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Elin M. Svensson
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Uwe Fuhr
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Lindsey H. M. te Brake
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E. Aarnoutse
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - on behalf of the PanACEA consortium
- Department of Pharmacy, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- TASK, Cape Town, South Africa
- Division of Pulmonology and Department of Medicine, University of Cape Town and University of Cape Town Lung Institute, Cape Town, South Africa
- Department of Pulmonary Diseases, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- />Clinical Pharmacology, Department I of Pharmacology, Center for Pharmacology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- UCSF Center for Tuberculosis, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Kluwe F, Michelet R, Huisinga W, Zeitlinger M, Mikus G, Kloft C. Towards Model-Informed Precision Dosing of Voriconazole: Challenging Published Voriconazole Nonlinear Mixed-Effects Models with Real-World Clinical Data. Clin Pharmacokinet 2023; 62:1461-1477. [PMID: 37603216 PMCID: PMC10520167 DOI: 10.1007/s40262-023-01274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Model-informed precision dosing (MIPD) frequently uses nonlinear mixed-effects (NLME) models to predict and optimize therapy outcomes based on patient characteristics and therapeutic drug monitoring data. MIPD is indicated for compounds with narrow therapeutic range and complex pharmacokinetics (PK), such as voriconazole, a broad-spectrum antifungal drug for prevention and treatment of invasive fungal infections. To provide guidance and recommendations for evidence-based application of MIPD for voriconazole, this work aimed to (i) externally evaluate and compare the predictive performance of a published so-called 'hybrid' model for MIPD (an aggregate model comprising features and prior information from six previously published NLME models) versus two 'standard' NLME models of voriconazole, and (ii) investigate strategies and illustrate the clinical impact of Bayesian forecasting for voriconazole. METHODS A workflow for external evaluation and application of MIPD for voriconazole was implemented. Published voriconazole NLME models were externally evaluated using a comprehensive in-house clinical database comprising nine voriconazole studies and prediction-/simulation-based diagnostics. The NLME models were applied using different Bayesian forecasting strategies to assess the influence of prior observations on model predictivity. RESULTS The overall best predictive performance was obtained using the aggregate model. However, all NLME models showed only modest predictive performance, suggesting that (i) important PK processes were not sufficiently implemented in the structural submodels, (ii) sources of interindividual variability were not entirely captured, and (iii) interoccasion variability was not adequately accounted for. Predictive performance substantially improved by including the most recent voriconazole observations in MIPD. CONCLUSION Our results highlight the potential clinical impact of MIPD for voriconazole and indicate the need for a comprehensive (pre-)clinical database as basis for model development and careful external model evaluation for compounds with complex PK before their successful use in MIPD.
Collapse
Affiliation(s)
- Franziska Kluwe
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Graduate Research Training Program PharMetrX, Berlin/Potsdam, Germany
| | - Robin Michelet
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| | - Wilhelm Huisinga
- Institute of Mathematics, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Gerd Mikus
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
- Department of Clinical Pharmacology and Pharmacoepidemiology, University Hospital Heidelberg, Im Neuenheimer Feld 419, 69120 Heidelberg, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Kelchstraße 31, 12169 Berlin, Germany
| |
Collapse
|
22
|
Martinecz A, Boeree MJ, Diacon AH, Dawson R, Hemez C, Aarnoutse RE, Abel zur Wiesch P. High rifampicin peak plasma concentrations accelerate the slow phase of bacterial decline in tuberculosis patients: Evidence for heteroresistance. PLoS Comput Biol 2023; 19:e1011000. [PMID: 37053266 PMCID: PMC10128972 DOI: 10.1371/journal.pcbi.1011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 04/25/2023] [Accepted: 03/06/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Antibiotic treatments are often associated with a late slowdown in bacterial killing. This separates the killing of bacteria into at least two distinct phases: a quick phase followed by a slower phase, the latter of which is linked to treatment success. Current mechanistic explanations for the in vitro slowdown are either antibiotic persistence or heteroresistance. Persistence is defined as the switching back and forth between susceptible and non-susceptible states, while heteroresistance is defined as the coexistence of bacteria with heterogeneous susceptibilities. Both are also thought to cause a slowdown in the decline of bacterial populations in patients and therefore complicate and prolong antibiotic treatments. Reduced bacterial death rates over time are also observed within tuberculosis patients, yet the mechanistic reasons for this are unknown and therefore the strategies to mitigate them are also unknown. METHODS AND FINDINGS We analyse a dose ranging trial for rifampicin in tuberculosis patients and show that there is a slowdown in the decline of bacteria. We show that the late phase of bacterial killing depends more on the peak drug concentrations than the total drug exposure. We compare these to pharmacokinetic-pharmacodynamic models of rifampicin heteroresistance and persistence. We find that the observation on the slow phase's dependence on pharmacokinetic measures, specifically peak concentrations are only compatible with models of heteroresistance and incompatible with models of persistence. The quantitative agreement between heteroresistance models and observations is very good ([Formula: see text]). To corroborate the importance of the slowdown, we validate our results by estimating the time to sputum culture conversion and compare the results to a different dose ranging trial. CONCLUSIONS Our findings indicate that higher doses, specifically higher peak concentrations may be used to optimize rifampicin treatments by accelerating bacterial killing in the slow phase. It adds to the growing body of literature supporting higher rifampicin doses for shortening tuberculosis treatments.
Collapse
Affiliation(s)
- Antal Martinecz
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Martin J. Boeree
- Department of Lung Diseases, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, the Netherlands
| | - Andreas H. Diacon
- Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- TASK Applied Science, Cape Town, South Africa
| | - Rodney Dawson
- Division of Pulmonology and Department of Medicine, University of Cape Town, Cape Town, South Africa
- University of Cape Town Lung Institute, Cape Town, South Africa
| | - Colin Hemez
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Graduate program in Biophysics, Harvard University, Boston, Massachusetts, United States of America
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Pia Abel zur Wiesch
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
- Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Eberly College of Science, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Norwegian Institute of Public Health (Folkehelseinstitutt), Oslo, Norway
| |
Collapse
|
23
|
Abdelgawad N, Tshavhungwe M(P, Rohlwink U, McIlleron H, Abdelwahab MT, Wiesner L, Castel S, Steele C, Enslin J(N, Thango NS, Denti P, Figaji A. Population Pharmacokinetic Analysis of Rifampicin in Plasma, Cerebrospinal Fluid, and Brain Extracellular Fluid in South African Children with Tuberculous Meningitis. Antimicrob Agents Chemother 2023; 67:e0147422. [PMID: 36815838 PMCID: PMC10019224 DOI: 10.1128/aac.01474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
Limited knowledge is available on the pharmacokinetics of rifampicin in children with tuberculous meningitis (TBM) and its penetration into brain tissue, which is the site of infection. In this analysis, we characterize the distribution of rifampicin in cerebrospinal fluid (CSF), lumbar (LCSF) and ventricular (VCSF), and brain extracellular fluid (ECF). Children with TBM were included in this pharmacokinetic analysis. Sparse plasma, LCSF, and VCSF samples were collected opportunistically, as clinically indicated. Brain ECF was sampled using microdialysis (MD). Rifampicin was quantified with liquid chromatography with tandem mass spectrometry in all samples, and 25-desacetyl rifampicin in the plasma samples. The data were interpreted with nonlinear mixed-effects modeling, with the CSF and brain ECF modeled as "effect compartments." Data were available from 61 children, with median (min-max) age of 2 (0.3 to 10) years and weight of 11.0 (4.8 to 49.0) kg. A one-compartment model for parent and metabolite with first-order absorption and elimination via saturable hepatic clearance described the data well. Allometric scaling, maturation, and auto-induction of clearance were included. The pseudopartition coefficient between plasma and LCSF/VCSF was ~5%, while the value for ECF was only ~0.5%, possibly reflecting low recovery of rifampicin using MD. The equilibration half-life between plasma and LCSF/VCSF was ~4 h and between plasma and ECF ~2 h. Our study confirms previous reports showing that rifampicin concentrations in the LCSF are lower than in plasma and provides novel knowledge about rifampicin in the VCSF and the brain tissue. Despite MD being semiquantitative because the relative recovery cannot be quantified, our study presents a proof-of-concept that rifampicin reaches the brain tissue and that MD is an attractive technique to study site-of-disease pharmacokinetics in TBM.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Ursula Rohlwink
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahmoud T. Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Chanel Steele
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Johannes (Nico) Enslin
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Nqobile Sindiswa Thango
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
24
|
Ayoun Alsoud R, Svensson RJ, Svensson EM, Gillespie SH, Boeree MJ, Diacon AH, Dawson R, Aarnoutse RE, Simonsson USH. Combined quantitative tuberculosis biomarker model for time-to-positivity and colony forming unit to support tuberculosis drug development. Front Pharmacol 2023; 14:1067295. [PMID: 36998606 PMCID: PMC10043246 DOI: 10.3389/fphar.2023.1067295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/27/2023] [Indexed: 03/15/2023] Open
Abstract
Biomarkers are quantifiable characteristics of biological processes. In Mycobacterium tuberculosis, common biomarkers used in clinical drug development are colony forming unit (CFU) and time-to-positivity (TTP) from sputum samples. This analysis aimed to develop a combined quantitative tuberculosis biomarker model for CFU and TTP biomarkers for assessing drug efficacy in early bactericidal activity studies. Daily CFU and TTP observations in 83 previously patients with uncomplicated pulmonary tuberculosis after 7 days of different rifampicin monotherapy treatments (10–40 mg/kg) from the HIGHRIF1 study were included in this analysis. The combined quantitative tuberculosis biomarker model employed the Multistate Tuberculosis Pharmacometric model linked to a rifampicin pharmacokinetic model in order to determine drug exposure-response relationships on three bacterial sub-states using both the CFU and TTP data simultaneously. CFU was predicted from the MTP model and TTP was predicted through a time-to-event approach from the TTP model, which was linked to the MTP model through the transfer of all bacterial sub-states in the MTP model to a one bacterial TTP model. The non-linear CFU-TTP relationship over time was well predicted by the final model. The combined quantitative tuberculosis biomarker model provides an efficient approach for assessing drug efficacy informed by both CFU and TTP data in early bactericidal activity studies and to describe the relationship between CFU and TTP over time.
Collapse
Affiliation(s)
- Rami Ayoun Alsoud
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Robin J. Svensson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Elin M. Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Stephen H. Gillespie
- Division of Infection and Global Health, School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Martin J. Boeree
- Department of Lung Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Rodney Dawson
- Division of Pulmonology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- University of Cape Town Lung Institute, Cape Town, South Africa
| | - Rob E. Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ulrika S. H. Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- *Correspondence: Ulrika S. H. Simonsson,
| |
Collapse
|
25
|
Soedarsono S, Jayanti RP, Mertaniasih NM, Kusmiati T, Permatasari A, Indrawanto DW, Charisma AN, Lius EE, Yuliwulandari R, Quang Hoa P, Ky Phat N, Thu VTA, Ky Anh N, Ahn S, Phuoc Long N, Cho YS, Shin JG. Development of population pharmacokinetics model and Bayesian estimation of rifampicin exposure in Indonesian patients with tuberculosis. Tuberculosis (Edinb) 2023; 139:102325. [PMID: 36841141 DOI: 10.1016/j.tube.2023.102325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Interindividual variability in the pharmacokinetics (PK) of anti-tuberculosis (TB) drugs is the leading cause of treatment failure. Herein, we evaluated the influence of demographic, clinical, and genetic factors that cause variability in RIF PK parameters in Indonesian TB patients. METHODS In total, 210 Indonesian patients with TB (300 plasma samples) were enrolled in this study. Clinical data, solute carrier organic anion transporter family member-1B1 (SLCO1B1) haplotypes *1a, *1b, and *15, and RIF concentrations were analyzed. The population PK model was developed using a non-linear mixed effect method. RESULTS A one-compartment model with allometric scaling adequately described the PK of RIF. Age and SLCO1B1 haplotype *15 were significantly associated with variability in apparent clearance (CL/F). For patients in their 40s, each 10-year increase in age was associated with a 10% decrease in CL/F (7.85 L/h). Patients with the SLCO1B1 haplotype *15 had a 24% lower CL/F compared to those with the wild-type. Visual predictive checks and non-parametric bootstrap analysis indicated good model performance. CONCLUSION Age and SLCO1B1 haplotype *15 were significant covariates of RIF CL/F. Geriatric patients with haplotype *15 had significantly greater exposure to RIF. The model could optimize TB pharmacotherapy through its application in therapeutic drug monitoring (clinical trial no. NCT05280886).
Collapse
Affiliation(s)
- Soedarsono Soedarsono
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Sub-pulmonology Department of Internal Medicine, Faculty of Medicine, Hang Tuah University, Surabaya, 60244, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia.
| | - Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Ni Made Mertaniasih
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia; Department of Clinical Microbiology, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Tutik Kusmiati
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Ariani Permatasari
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Dwi Wahyu Indrawanto
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Anita Nur Charisma
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Elvina Elizabeth Lius
- Department of Pulmonology & Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, 60131, Indonesia; Dr. Soetomo General Hospital, Surabaya, 60131, Indonesia
| | - Rika Yuliwulandari
- Department of Pharmacology, Faculty of Medicine, YARSI University, Jakarta, 10510, Indonesia; Genetic Research Center, YARSI Research Institute, YARSI University, Jakarta, 10510, Indonesia
| | - Pham Quang Hoa
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Vo Thuy Anh Thu
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Ky Anh
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Sangzin Ahn
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea.
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, 47392, Republic of Korea; Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan, 47392, Republic of Korea
| |
Collapse
|
26
|
High dose rifampin for 2 months vs standard dose rifampin for 4 months, to treat TB infection: Protocol of a 3-arm randomized trial (2R2). PLoS One 2023; 18:e0278087. [PMID: 36730240 PMCID: PMC9894386 DOI: 10.1371/journal.pone.0278087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023] Open
Abstract
INTRODUCTION Tuberculosis preventive treatment (TPT) is an essential component for TB elimination. In order to be successfully implemented on a large scale, TPT needs to be safe, affordable and widely available in all settings. Short TPT regimens, that are less burdensome than longer regimens, to patients and health systems, are needed. Doses of rifampin higher than the standard 10mg/kg/day were tolerated in studies to reduce duration of treatment for tuberculosis disease (TBD). The objective of this trial is to test the safety of high dose rifampin monotherapy to shorten the duration of the currently recommended TPT of 4 months rifampin. METHODS AND ANALYSIS This is a phase 2b, randomised, controlled, parallel group, superiority, partially-blind trial. Primary outcomes are completion of treatment (as a proxy measure of tolerability) and safety. The two experimental arms comprise 60 days of (i) 20mg/kg/day or (ii) 30mg/kg/day rifampin; the control arm comprises 120 days of 10mg/kg/day rifampin as TPT. Participants are adults and children 10 years or older, eligible for TPT. Completion is the primary outcome, measured by pill count and is defined as taking minimum of 80% of treatment in 120% of allowed time; it will be tested for superiority by logistic regression. Safety outcome comprises proportion of grade 3-5 adverse events and grade 1-2 rash, adjudicated related to study drug, and resulting in permanent drug discontinuation; compared for non-inferiority between each of the two high dose arms and the standard arm, using Poisson regression. A sample size of 1,359 participants will give 80% power to detect a 10% difference in completion rates and a 1% difference in the safety outcome. The study is conducted in Canada, Indonesia and Vietnam. Enrolment is ongoing at all sites. ETHICS AND DISSEMINATION Approvals from a local research ethics board (REB) have been obtained at all participating sites and by the trial coordinating centre. Approval has been given by drug regulatory agencies in Canada and Indonesia and by Ministry of Health in Vietnam; participants give written informed consent before participation. All data collected are non-nominal. Primary results will be submitted for publication in a peer-reviewed journal when all participants have completed treatment; results of secondary outcomes will be submitted for publication at the end of study; all sites will receive the final data of participants from their sites. TRIAL REGISTRATION Trial registered in ClinicalTrials.gov (Identifier: NCT03988933). Coordinating center is the study team working at McGill University Health Center-Research Institute (MUHC-RI); sponsor is the MUHC-RI; funding has been granted by Canadian Institute of Health Research (FDN-143350).
Collapse
|
27
|
Cheng S, Flora DR, Rettie AE, Brundage RC, Tracy TS. A Physiological-Based Pharmacokinetic Model Embedded with a Target-Mediated Drug Disposition Mechanism Can Characterize Single-Dose Warfarin Pharmacokinetic Profiles in Subjects with Various CYP2C9 Genotypes under Different Cotreatments. Drug Metab Dispos 2023; 51:257-267. [PMID: 36379708 PMCID: PMC9901215 DOI: 10.1124/dmd.122.001048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
Warfarin, a commonly prescribed oral anticoagulant medication, is highly effective in treating deep vein thrombosis and pulmonary embolism. However, the clinical dosing of warfarin is complicated by high interindividual variability in drug exposure and response and its narrow therapeutic index. CYP2C9 genetic polymorphism and drug-drug interactions (DDIs) are substantial contributors to this high variability of warfarin pharmacokinetics (PK), among numerous factors. Building a physiology-based pharmacokinetic (PBPK) model for warfarin is not only critical for a mechanistic characterization of warfarin PK but also useful for investigating the complicated dose-exposure relationship of warfarin. Thus, the objective of this study was to develop a PBPK model for warfarin that integrates information regarding CYP2C9 genetic polymorphisms and their impact on DDIs. Generic PBPK models for both S- and R-warfarin, the two enantiomers of warfarin, were constructed in R with the mrgsolve package. As expected, a generic PBPK model structure did not adequately characterize the warfarin PK profile collected up to 15 days following the administration of a single oral dose of warfarin, especially for S-warfarin. However, following the integration of an empirical target-mediated drug disposition (TMDD) component, the PBPK-TMDD model well characterized the PK profiles collected for both S- and R-warfarin in subjects with different CYP2C9 genotypes. Following the integration of enzyme inhibition and induction effects, the PBPK-TMDD model also characterized the PK profiles of both S- and R-warfarin in various DDI settings. The developed mathematic framework may be useful in building algorithms to better inform the clinical dosing of warfarin. SIGNIFICANCE STATEMENT: The present study found that a traditional physiology-based pharmacokinetic (PBPK) model cannot sufficiently characterize the pharmacokinetic profiles of warfarin enantiomers when warfarin is administered as a single dose, but a PBPK model with a target-mediated drug disposition mechanism can. After incorporating CYP2C9 genotypes and drug-drug interaction information, the developed model is anticipated to facilitate the understanding of warfarin disposition in subjects with different CYP2C9 genotypes in the absence and presence of both cytochrome P450 inhibitors and cytochrome P450 inducers.
Collapse
Affiliation(s)
- Shen Cheng
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
| | - Darcy R Flora
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
| | - Allan E Rettie
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
| | - Richard C Brundage
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
| | - Timothy S Tracy
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Twin Cities, Minnesota (S.C., D.R.F., R.C.B.); Tracy Consultants, Huntsville, Alabama (T.S.T.); and Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, Washington (A.E.R.)
| |
Collapse
|
28
|
Perumal R, Naidoo K, Naidoo A, Letsoalo MP, Esmail A, Joubert I, Denti P, Wiesner L, Padayatchi N, Maartens G, Dheda K. The impact of enteral feeding and therapeutic monitoring of rifampicin with dose escalation in critically ill patients with tuberculosis. Int J Infect Dis 2023; 126:174-180. [PMID: 36462574 DOI: 10.1016/j.ijid.2022.11.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Critically ill patients with tuberculosis (TB) face a high mortality risk and require effective treatment. There is a paucity of data on rifampicin pharmacokinetics, the impact of continuous enteral feeding on drug absorption, and the potential of therapeutic drug monitoring (TDM) to optimize drug exposure in these patients. METHODS We performed a sequential pharmacokinetic study to determine the impact of feeding and TDM with rifampicin dose escalation in critically ill patients with TB. Noncompartmental pharmacokinetic analysis was performed. RESULTS Among 20 critically ill patients (40% were HIV-infected), median rifampicin Cmax (maximum serum concentration) in the fasted and fed states were 5.1 µg/ml versus 3.3 µg/ml, respectively (P <0.0001; geometric mean ratio 1.95; 90% confidence interval 1.46-2.60). The proportion of patients with low rifampicin concentrations in the fasted and fed states was 80% vs 100% (P-value = 0.1336). Optimized dosing led to a per-patient median rifampicin dosing of 24.6 mg/kg and a median Cmax increase from 2.4 µg/ml to 17.8 µg/ml (P-value = 0.0005; geometric mean ratio 8.29; 90% confidence interval 3.88-17.74). TDM-guided dose escalation increased the proportion of patients achieving the suggested target rifampicin concentration compared with standard dosing (83% vs 0%, P-value = 0.004). CONCLUSION We found low rifampicin concentrations in all patients receiving continuous enteral feeding. TDM-guided dose escalation provided an effective strategy to achieve target drug exposure in these critically ill patients with TB.
Collapse
Affiliation(s)
- Rubeshan Perumal
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-Centre for the AIDS Programme of Research in South Africa HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Kogieleum Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-Centre for the AIDS Programme of Research in South Africa HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Anushka Naidoo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Marothi P Letsoalo
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Aliasgar Esmail
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa
| | - Ivan Joubert
- Division of Critical Care Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nesri Padayatchi
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, South Africa Medical Research Council-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa; Medical Research Council-Centre for the AIDS Programme of Research in South Africa HIV-TB Pathogenesis and Treatment Research Unit, University of KwaZulu-Natal, Durban, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity Unit, Division of Pulmonology, Department of Medicine and University of Cape Town Lung Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa; Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
29
|
Yang Z, Song M, Li X, Zhang Q, Shen J, Zhu K. Synergy of outer membrane disruptor SLAP-S25 with hydrophobic antibiotics against Gram-negative pathogens. J Antimicrob Chemother 2022; 78:263-271. [PMID: 36385317 DOI: 10.1093/jac/dkac387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVES An effective strategy for combating MDR Gram-negative pathogens can greatly reduce the cost and shorten the antibiotic development progress. Here, we investigated the synergistic activity of outer membrane disruptor SLAP-S25 in combination with hydrophobic antibiotics (LogP > 2, including novobiocin, erythromycin, clindamycin and rifampicin) against MDR Gram-negative pathogens. METHODS Five representative Gram-negative bacteria were selected as model strains to analyse the synergistic combination of SLAP-S25 and hydrophobic antibiotics. Carbapenem-resistant hypervirulent Klebsiella pneumoniae CRHvKP4 was used to investigate the synergistic mechanism. The in vivo synergistically therapeutic activity of SLAP-S25 and hydrophobic antibiotics was measured in the mouse peritonitis/sepsis model infected with K. pneumoniae CRHvKP4. RESULTS SLAP-S25 disrupted the outer membrane by removing LPS from Gram-negative bacteria, facilitating the entry of hydrophobic antibiotics to kill MDR Gram-negative pathogens. Moreover, the combination of SLAP-S25 and rifampicin exhibited promising therapeutic effects in the mouse infection model infected with K. pneumoniae CRHvKP4. CONCLUSIONS Our findings provide a potential therapeutic strategy to combine SLAP-S25 with hydrophobic antibiotics for combating MDR Gram-negative pathogens.
Collapse
Affiliation(s)
- Zhiqiang Yang
- Department of Basic Veterinary Medicine, Key Laboratory of Traditional Chinese Veterinary Medicine Biology, Ministry of Agriculture and Rural Affairs, College of VeterinaryMedicine, China Agricultural University, Beijing 100193, China
| | - Meirong Song
- Department of Basic Veterinary Medicine, Key Laboratory of Traditional Chinese Veterinary Medicine Biology, Ministry of Agriculture and Rural Affairs, College of VeterinaryMedicine, China Agricultural University, Beijing 100193, China
| | - Xiaoyu Li
- Department of Basic Veterinary Medicine, Key Laboratory of Traditional Chinese Veterinary Medicine Biology, Ministry of Agriculture and Rural Affairs, College of VeterinaryMedicine, China Agricultural University, Beijing 100193, China
| | - Qi Zhang
- Department of Basic Veterinary Medicine, Key Laboratory of Traditional Chinese Veterinary Medicine Biology, Ministry of Agriculture and Rural Affairs, College of VeterinaryMedicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- Department of Basic Veterinary Medicine, Key Laboratory of Traditional Chinese Veterinary Medicine Biology, Ministry of Agriculture and Rural Affairs, College of VeterinaryMedicine, China Agricultural University, Beijing 100193, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Kui Zhu
- Department of Basic Veterinary Medicine, Key Laboratory of Traditional Chinese Veterinary Medicine Biology, Ministry of Agriculture and Rural Affairs, College of VeterinaryMedicine, China Agricultural University, Beijing 100193, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
30
|
Alffenaar JWC, de Steenwinkel JEM, Diacon AH, Simonsson USH, Srivastava S, Wicha SG. Pharmacokinetics and pharmacodynamics of anti-tuberculosis drugs: An evaluation of in vitro, in vivo methodologies and human studies. Front Pharmacol 2022; 13:1063453. [PMID: 36569287 PMCID: PMC9780293 DOI: 10.3389/fphar.2022.1063453] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
There has been an increased interest in pharmacokinetics and pharmacodynamics (PKPD) of anti-tuberculosis drugs. A better understanding of the relationship between drug exposure, antimicrobial kill and acquired drug resistance is essential not only to optimize current treatment regimens but also to design appropriately dosed regimens with new anti-tuberculosis drugs. Although the interest in PKPD has resulted in an increased number of studies, the actual bench-to-bedside translation is somewhat limited. One of the reasons could be differences in methodologies and outcome assessments that makes it difficult to compare the studies. In this paper we summarize most relevant in vitro, in vivo, in silico and human PKPD studies performed to optimize the drug dose and regimens for treatment of tuberculosis. The in vitro assessment focuses on MIC determination, static time-kill kinetics, and dynamic hollow fibre infection models to investigate acquisition of resistance and killing of Mycobacterium tuberculosis populations in various metabolic states. The in vivo assessment focuses on the various animal models, routes of infection, PK at the site of infection, PD read-outs, biomarkers and differences in treatment outcome evaluation (relapse and death). For human PKPD we focus on early bactericidal activity studies and inclusion of PK and therapeutic drug monitoring in clinical trials. Modelling and simulation approaches that are used to evaluate and link the different data types will be discussed. We also describe the concept of different studies, study design, importance of uniform reporting including microbiological and clinical outcome assessments, and modelling approaches. We aim to encourage researchers to consider methods of assessing and reporting PKPD of anti-tuberculosis drugs when designing studies. This will improve appropriate comparison between studies and accelerate the progress in the field.
Collapse
Affiliation(s)
- Jan-Willem C. Alffenaar
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, NSW, Australia,School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, NSW, Australia,Westmead Hospital, Sydney, NSW, Australia,*Correspondence: Jan-Willem C. Alffenaar,
| | | | | | | | - Shashikant Srivastava
- Department of Pulmonary Immunology, University of Texas Health Science Center at Tyler, Tyler, TX, United States
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| |
Collapse
|
31
|
Karballaei-Mirzahosseini H, Kaveh-Ahangaran R, Shahrami B, Rouini MR, Najafi A, Ahmadi A, Sadrai S, Mojtahedzadeh A, Najmeddin F, Mojtahedzadeh M. Pharmacokinetic study of high-dose oral rifampicin in critically Ill patients with multidrug-resistant Acinetobacter baumannii infection. Daru 2022; 30:311-322. [PMID: 36069988 PMCID: PMC9715901 DOI: 10.1007/s40199-022-00449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/05/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE Although rifampicin (RIF) is used as a synergistic agent for multidrug-resistant Acinetobacter baumannii (MDR-AB) infection, the optimal pharmacokinetic (PK) indices of this medication have not been studied in the intensive care unit (ICU) settings. This study aimed to evaluate the PK of high dose oral RIF following fasting versus fed conditions in terms of achieving the therapeutic goals in critically ill patients with MDR-AB infections. METHODS 29 critically ill patients were included in this study. Under fasting and non-fasting conditions, RIF was given at 1200 mg once daily through a nasogastric tube. Blood samples were obtained at seven time points: exactly before administration of the drug, and at 1, 2, 4, 8, 12, and 24 h after RIF ingestion. To quantify RIF in serum samples, high-performance liquid chromatography (HPLC) was used. The MONOLIX Software and the Monte Carlo simulations were employed to estimate the PK parameters and describe the population PK model. RESULTS The mean area under the curve over the last 24-h (AUC0-24) value and accuracy (mean ± standard deviation) in the fasting and fed states were 220.24 ± 119.15 and 290.55 ± 276.20 μg × h/mL, respectively. There was no significant difference among AUCs following fasting and non-fasting conditions (P > 0.05). The probability of reaching the therapeutic goals at the minimum inhibitory concentration (MIC) of 4 mg/L, was only 1.6%. CONCLUSION In critically ill patients with MDR-AB infections, neither fasting nor non-fasting administrations of high-dose oral RIF achieve the therapeutic aims. More research is needed in larger populations and with measuring the amount of protein-unbound RIF levels.
Collapse
Affiliation(s)
- Hossein Karballaei-Mirzahosseini
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
| | - Romina Kaveh-Ahangaran
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
| | - Bita Shahrami
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
| | - Mohammad Reza Rouini
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atabak Najafi
- Department of Anesthesiology and Critical Care, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Ahmadi
- Department of Anesthesiology and Critical Care, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Sadrai
- Department of Pharmaceutics, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Najmeddin
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran.
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, 16-Azar St., Enghelab Ave., Tehran, 14176-14418, Iran
- Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Khadka P, Tucker IG, Das SC. In vitro Dissolution Testing of Rifampicin Powder Formulations For Prediction of Plasma Concentration–Time Profiles After Inhaled Delivery. Pharm Res 2022; 40:1153-1163. [DOI: 10.1007/s11095-022-03439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022]
|
33
|
Effects of Enzyme Induction and Polymorphism on the Pharmacokinetics of Isoniazid and Rifampin in Tuberculosis/HIV Patients. Antimicrob Agents Chemother 2022; 66:e0227721. [PMID: 36069614 PMCID: PMC9578428 DOI: 10.1128/aac.02277-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tuberculosis is the most common cause of death in HIV-infected individuals. Rifampin and isoniazid are the backbones of the current first-line antitubercular therapy. The aim of the present study was to describe the time-dependent pharmacokinetics and pharmacogenetics of rifampin and isoniazid and to quantitatively evaluate the drug-drug interaction between rifampin and isoniazid in patients coinfected with HIV. Plasma concentrations of isoniazid, acetyl-isoniazid, isonicotinic acid, rifampin, and 25-desacetylrifampin from 40 HIV therapy-naive patients were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after the first dose and at steady state of antitubercular therapy. Patients were genotyped for determination of acetylator status and CYP2C19 phenotype. Nonlinear mixed-effects models were developed to describe the pharmacokinetic data. The model estimated an autoinduction of both rifampin bioavailability (0.5-fold) and clearance (2.3-fold). 25-Desacetylrifampin clearance was 2.1-fold higher at steady state than after the first dose. Additionally, ultrarapid CYP2C19 metabolizers had a 2-fold-higher rifampin clearance at steady state than intermediate or extensive metabolizers. An induction of isonicotinic acid formation from isoniazid dependent on total rifampin dose was estimated. Simulations indicated a 30% lower isoniazid exposure at steady state during administration of standard rifampin doses than isoniazid exposure in noninduced individuals. Rifampin exposure was correlated with CYP2C19 polymorphism, and rifampin administration may increase exposure to toxic metabolites by isoniazid in patients. Both findings may influence the risk of treatment failure, resistance development, and toxicity and require further investigation, especially with regard to ongoing high-dose rifampin trials.
Collapse
|
34
|
Quantitative Systems Pharmacology Modeling Framework of Autophagy in Tuberculosis: Application to Adjunctive Metformin Host-Directed Therapy. Antimicrob Agents Chemother 2022; 66:e0036622. [PMID: 35862740 PMCID: PMC9380544 DOI: 10.1128/aac.00366-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Quantitative systems pharmacology (QSP) modeling of the host immune response against Mycobacterium tuberculosis can inform the rational design of host-directed therapies (HDTs). We aimed to develop a QSP framework to evaluate the effects of metformin-associated autophagy induction in combination with antibiotics. A QSP framework for autophagy was developed by extending a model for host immune response to include adenosine monophosphate-activated protein kinase (AMPK)-mTOR-autophagy signaling. This model was combined with pharmacokinetic-pharmacodynamic models for metformin and antibiotics against M. tuberculosis. We compared the model predictions to mice infection experiments and derived predictions for the pathogen- and host-associated dynamics in humans treated with metformin in combination with antibiotics. The model adequately captured the observed bacterial load dynamics in mice M. tuberculosis infection models treated with metformin. Simulations for adjunctive metformin therapy in newly diagnosed patients suggested a limited yet dose-dependent effect of metformin on reduction of the intracellular bacterial load when the overall bacterial load is low, late during antibiotic treatment. We present the first QSP framework for HDTs against M. tuberculosis, linking cellular-level autophagy effects to disease progression and adjunctive HDT treatment response. This framework may be extended to guide the design of HDTs against M. tuberculosis.
Collapse
|
35
|
Rodrigues AD. Reimagining the Framework Supporting the Static Analysis of Transporter Drug Interaction Risk; Integrated Use of Biomarkers to Generate
Pan‐Transporter
Inhibition Signatures. Clin Pharmacol Ther 2022; 113:986-1002. [PMID: 35869864 DOI: 10.1002/cpt.2713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Solute carrier (SLC) transporters present as the loci of important drug-drug interactions (DDIs). Therefore, sponsors generate in vitro half-maximal inhibitory concentration (IC50 ) data and apply regulatory agency-guided "static" methods to assess DDI risk and the need for a formal clinical DDI study. Because such methods are conservative and high false-positive rates are likely (e.g., DDI study triggered when liver SLC R value ≥ 1.04 and renal SLC maximal unbound plasma (Cmax,u )/IC50 ratio ≥ 0.02), investigators have attempted to deploy plasma- and urine-based SLC biomarkers in phase I studies to de-risk DDI and obviate the need for drug probe-based studies. In this regard, it was possible to generate in-house in vitro SLC IC50 data for various clinically (biomarker)-qualified perpetrator drugs, under standard assay conditions, and then estimate "% inhibition" for each SLC and relate it empirically to published clinical biomarker data (area under the plasma concentration vs. time curve (AUC) ratio (AUCR, AUCinhibitor /AUCreference ) and % decrease in renal clearance (ΔCLrenal )). After such a "calibration" exercise, it was determined that only compounds with high R values (> 1.5) and Cmax,u /IC50 ratios (> 0.5) are likely to significantly modulate liver (AUCR > 1.25) and renal (ΔCLrenal > 25%) biomarkers and evoke DDI risk. The % inhibition approach supports integration of liver and renal SLC data and allows one to generate pan-SLC inhibition signatures for different test perpetrators (e.g., SLC % inhibition ranking). In turn, such signatures can guide the selection of the most appropriate individual (or combinations of) biomarkers for testing in phase I studies.
Collapse
Affiliation(s)
- A. David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc Groton CT USA
| |
Collapse
|
36
|
Keutzer L, You H, Farnoud A, Nyberg J, Wicha SG, Maher-Edwards G, Vlasakakis G, Moghaddam GK, Svensson EM, Menden MP, Simonsson USH. Machine Learning and Pharmacometrics for Prediction of Pharmacokinetic Data: Differences, Similarities and Challenges Illustrated with Rifampicin. Pharmaceutics 2022; 14:pharmaceutics14081530. [PMID: 35893785 PMCID: PMC9330804 DOI: 10.3390/pharmaceutics14081530] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 01/27/2023] Open
Abstract
Pharmacometrics (PM) and machine learning (ML) are both valuable for drug development to characterize pharmacokinetics (PK) and pharmacodynamics (PD). Pharmacokinetic/pharmacodynamic (PKPD) analysis using PM provides mechanistic insight into biological processes but is time- and labor-intensive. In contrast, ML models are much quicker trained, but offer less mechanistic insights. The opportunity of using ML predictions of drug PK as input for a PKPD model could strongly accelerate analysis efforts. Here exemplified by rifampicin, a widely used antibiotic, we explore the ability of different ML algorithms to predict drug PK. Based on simulated data, we trained linear regressions (LASSO), Gradient Boosting Machines, XGBoost and Random Forest to predict the plasma concentration-time series and rifampicin area under the concentration-versus-time curve from 0–24 h (AUC0–24h) after repeated dosing. XGBoost performed best for prediction of the entire PK series (R2: 0.84, root mean square error (RMSE): 6.9 mg/L, mean absolute error (MAE): 4.0 mg/L) for the scenario with the largest data size. For AUC0–24h prediction, LASSO showed the highest performance (R2: 0.97, RMSE: 29.1 h·mg/L, MAE: 18.8 h·mg/L). Increasing the number of plasma concentrations per patient (0, 2 or 6 concentrations per occasion) improved model performance. For example, for AUC0–24h prediction using LASSO, the R2 was 0.41, 0.69 and 0.97 when using predictors only (no plasma concentrations), 2 or 6 plasma concentrations per occasion as input, respectively. Run times for the ML models ranged from 1.0 s to 8 min, while the run time for the PM model was more than 3 h. Furthermore, building a PM model is more time- and labor-intensive compared with ML. ML predictions of drug PK could thus be used as input into a PKPD model, enabling time-efficient analysis.
Collapse
Affiliation(s)
- Lina Keutzer
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (L.K.); (H.Y.)
| | - Huifang You
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (L.K.); (H.Y.)
| | - Ali Farnoud
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany; (A.F.); (M.P.M.)
| | - Joakim Nyberg
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (J.N.); (E.M.S.)
| | - Sebastian G. Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, 20146 Hamburg, Germany;
| | - Gareth Maher-Edwards
- Research, Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, London TW8 9GS, UK; (G.M.-E.); (G.V.); (G.K.M.)
| | - Georgios Vlasakakis
- Research, Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, London TW8 9GS, UK; (G.M.-E.); (G.V.); (G.K.M.)
| | - Gita Khalili Moghaddam
- Research, Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, London TW8 9GS, UK; (G.M.-E.); (G.V.); (G.K.M.)
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Elin M. Svensson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (J.N.); (E.M.S.)
- Department of Pharmacy, Radboud Institute of Health Sciences, Radboud University Medical Center, 6525 EZ Nijmegen, The Netherlands
| | - Michael P. Menden
- Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany; (A.F.); (M.P.M.)
- Department of Biology, Ludwig-Maximilian University Munich, 82152 Planegg-Martinsried, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Ulrika S. H. Simonsson
- Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden; (L.K.); (H.Y.)
- Correspondence:
| | | |
Collapse
|
37
|
Zou HX, Zhang YF, Zhong DF, Jiang Y, Liu F, Zhao QY, Zuo Z, Zhang YF, Yan XY. Effect of autoinduction and food on the pharmacokinetics of furmonertinib and its active metabolite characterized by a population pharmacokinetic model. Acta Pharmacol Sin 2022; 43:1865-1874. [PMID: 34789919 PMCID: PMC9252999 DOI: 10.1038/s41401-021-00798-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022]
Abstract
Furmonertinib (AST2818) is a novel third-generation irreversible EGFR TKI and recently has been approved in China for the treatment of non-small cell lung cancer (NSCLC) with EGFR-sensitizing and T790M resistance mutations. In the current study, we developed a semi-mechanistic population pharmacokinetic model to characterize the nonstationary pharmacokinetics (PK) of the furmonertinib and its active metabolite AST5902 simultaneously. The PK data of furmonertinib and AST5902 were obtained from 38 NSCLC patients and 16 healthy volunteers receiving 20-240 mg furmonertinib in three clinical trials. A nonlinear mixed-effects modeling approach was used to describe the PK data. The absorption process of furmonertinib was described by a transit compartment model. The disposition of both furmonertinib and AST5902 was described by a two-compartment model. An indirect response model accounted for the autoinduction of furmonertinib metabolism mediated by CYP3A4. The model-based simulation suggested that furmonertinib clearance was increased in one cycle of treatment (orally once daily for 21 days) compared to baseline, ranging from 1.1 to 1.8 fold corresponding to the dose range of 20-240 mg. The concentration of furmonertinib was decreased over time whereas that of AST5902 was increased. Interestingly, the concentration of the total active compounds (furmonertinib and AST5902) appeared to be stable. The food intake, serum alkaline phosphatase and body weight were identified as statistically significant covariates. The mechanism of food effect on PK was investigated, where the food intake might increase the bioavailability of furmonertinib via increasing the splanchnic blood flow. Overall, a population PK model was successfully developed to characterize the nonstationary PK of furmonertinib and AST5902 simultaneously. The concentrations of total active compounds were less affected by the autoinduction of furmonertinib metabolism.
Collapse
Affiliation(s)
- Hui-Xi Zou
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Feng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Da-Fang Zhong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yong Jiang
- Shanghai Allist Pharmaceutical Technology Co., Ltd., Shanghai, 201203, China
| | - Fei Liu
- Shanghai Allist Pharmaceutical Technology Co., Ltd., Shanghai, 201203, China
| | - Qian-Yu Zhao
- Shanghai Allist Pharmaceutical Technology Co., Ltd., Shanghai, 201203, China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Fan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Xiao-Yu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
38
|
Gupta N, Pierrillas PB, Hanley MJ, Zhang S, Diderichsen PM. Population pharmacokinetics of mobocertinib in healthy volunteers and patients with non-small cell lung cancer. CPT Pharmacometrics Syst Pharmacol 2022; 11:731-744. [PMID: 35316867 PMCID: PMC9197538 DOI: 10.1002/psp4.12785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/31/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Mobocertinib is an oral tyrosine kinase inhibitor approved for treatment of patients with locally advanced or metastatic non‐small cell lung cancer (mNSCLC) with epidermal growth factor receptor gene (EGFR) exon 20 insertion mutations whose disease has progressed on or after platinum‐based chemotherapy. This population pharmacokinetic (PK) analysis describes the PK of mobocertinib and its active metabolites, AP32960, and AP32914, using data from two phase I studies in healthy volunteers (n = 110) and two phase I/II studies in patients with mNSCLC (n = 317), including the pivotal phase I/II study. The plasma PK of mobocertinib, AP32960, and AP32914 were well‐characterized by a joint semimechanistic model that included two compartments for mobocertinib with absorption via three transit compartments, two compartments for AP32960, and one compartment for AP32914. The observed time‐dependency in PK was described by an enzyme compartment with drug and metabolite concentration‐dependent stimulation of enzyme production, resulting in the enzyme increasing the apparent clearance of mobocertinib, AP32960, and AP32914. Effects of healthy volunteer status (vs. patients with mNSCLC) on apparent oral clearance of all three moieties and on apparent central volume of distribution for mobocertinib were included as structural covariates in the final model. No clinically meaningful differences in mobocertinib PK were observed based on age (18–86 years), race, sex, body weight (37.3–132 kg), mild‐to‐moderate renal impairment (estimated glomerular filtration rate 30–89 ml/min/1.73 m2 by modification of diet in renal disease equation), or mild‐to‐moderate hepatic impairment, suggesting that no dose adjustment is required based on these covariates in patients with mNSCLC.
Collapse
Affiliation(s)
- Neeraj Gupta
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | | - Michael J Hanley
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | - Steven Zhang
- Takeda Development Center Americas, Inc., Lexington, Massachusetts, USA
| | | |
Collapse
|
39
|
Jayanti RP, Long NP, Phat NK, Cho YS, Shin JG. Semi-Automated Therapeutic Drug Monitoring as a Pillar toward Personalized Medicine for Tuberculosis Management. Pharmaceutics 2022; 14:pharmaceutics14050990. [PMID: 35631576 PMCID: PMC9147223 DOI: 10.3390/pharmaceutics14050990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Standard tuberculosis (TB) management has failed to control the growing number of drug-resistant TB cases worldwide. Therefore, innovative approaches are required to eradicate TB. Model-informed precision dosing and therapeutic drug monitoring (TDM) have become promising tools for adjusting anti-TB drug doses corresponding with individual pharmacokinetic profiles. These are crucial to improving the treatment outcome of the patients, particularly for those with complex comorbidity and a high risk of treatment failure. Despite the actual benefits of TDM at the bedside, conventional TDM encounters several hurdles related to laborious, time-consuming, and costly processes. Herein, we review the current practice of TDM and discuss the main obstacles that impede it from successful clinical implementation. Moreover, we propose a semi-automated TDM approach to further enhance precision medicine for TB management.
Collapse
Affiliation(s)
- Rannissa Puspita Jayanti
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Phuoc Long
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Nguyen Ky Phat
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Yong-Soon Cho
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
| | - Jae-Gook Shin
- Center for Personalized Precision Medicine of Tuberculosis, Inje University College of Medicine, Busan 47392, Korea; (R.P.J.); (N.P.L.); (N.K.P.); (Y.-S.C.)
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Busan 47392, Korea
- Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 47392, Korea
- Correspondence: ; Tel.: +82-51-890-6709; Fax: +82-51-893-1232
| |
Collapse
|
40
|
Araki H, Takenaka T, Takahashi K, Yamashita F, Matsuoka K, Yoshisue K, Ieiri I. A semimechanistic population pharmacokinetic and pharmacodynamic model incorporating autoinduction for the dose justification of TAS-114. CPT Pharmacometrics Syst Pharmacol 2022; 11:604-615. [PMID: 34951129 PMCID: PMC9124359 DOI: 10.1002/psp4.12747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/17/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022] Open
Abstract
TAS-114 is a dual deoxyuridine triphosphatase (dUTPase) and dihydropyrimidine dehydrogenase (DPD) inhibitor expected to widen the therapeutic index of capecitabine. Its maximum tolerated dose (MTD) was determined from a safety perspective in a combination study with capecitabine; however, its inhibitory effects on DPD activity were not assessed in the study. The dose justification to select its MTD as the recommended dose in terms of DPD inhibition has been required, but the autoinduction profile of TAS-114 made it difficult. To this end, an approach using a population pharmacokinetic (PPK)/pharmacodynamic (PD) model incorporating autoinduction was planned; however, the utility of this approach in the dose justification has not been reported. Thus, the aim of this study was to demonstrate the utility of a PPK/PD model incorporating autoinduction in the dose justification via a case study of TAS-114. Plasma concentrations of TAS-114 from 185 subjects and those of the endogenous DPD substrate uracil from 24 subjects were used. A two-compartment model with first-order absorption with lag time and an enzyme turnover model were selected for the pharmacokinetic (PK) model. Moreover, an indirect response model was selected for the PD model to capture the changes in plasma uracil concentrations. Model-based simulations provided the dose justification that DPD inhibition by TAS-114 reached a plateau level at the MTD, whereas exposures of TAS-114 increased dose dependently. Thus, the utility of a PPK/PD model incorporating autoinduction in the dose justification was demonstrated via this case study of TAS-114.
Collapse
Affiliation(s)
- Hikari Araki
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Toru Takenaka
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Koichi Takahashi
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Fumiaki Yamashita
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Kazuaki Matsuoka
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Kunihiro Yoshisue
- Pharmacokinetics Research LaboratoriesTaiho Pharmaceutical Co. Ltd.TsukubaIbarakiJapan
| | - Ichiro Ieiri
- Department of Clinical Pharmacology and Biopharmaceutics, Graduate School of Pharmaceutical SciencesKyushu UniversityFukuokaJapan
- Department of PharmacyKyushu University HospitalFukuokaJapan
| |
Collapse
|
41
|
Radtke KK, Svensson EM, van der Laan LE, Hesseling AC, Savic RM, Garcia-Prats AJ. Emerging data on rifampicin pharmacokinetics and approaches to optimal dosing in children with tuberculosis. Expert Rev Clin Pharmacol 2022; 15:161-174. [PMID: 35285351 DOI: 10.1080/17512433.2022.2053110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite its longstanding role in tuberculosis (TB) treatment, there continues to be emerging rifampicin research that has important implications for pediatric TB treatment and outstanding questions about its pharmacokinetics and optimal dose in children. AREAS COVERED This review aims to summarize and discuss emerging data on the use of rifampicin for: 1) routine treatment of drug-susceptible TB; 2) special subpopulations such as children with malnutrition, HIV, or TB meningitis; 3) treatment shortening. We also highlight the implications of these new data for child-friendly rifampicin formulations and identify future research priorities. EXPERT OPINION New data consistently show low rifampicin exposures across all pediatric populations with 10-20 mg/kg dosing. Although clinical outcomes in children are generally good, rifampicin dose optimization is needed, especially given a continued push to shorten treatment durations and for specific high-risk populations of children who have worse outcomes. A pooled analysis of existing data using applied pharmacometrics would answer many of the important questions remaining about rifampicin pharmacokinetics needed to optimize doses, especially in special populations. Targeted clinical studies in children with TB meningitis and treatment shortening with high-dose rifampicin are also priorities.
Collapse
Affiliation(s)
- Kendra K Radtke
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Elin M Svensson
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Louvina E van der Laan
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa
| | - Radojka M Savic
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Tygerberg, South Africa.,Department of Pediatrics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
42
|
Ekqvist D, Bornefall A, Augustinsson D, Sönnerbrandt M, Nordvall MJ, Fredrikson M, Carlsson B, Sandstedt M, Simonsson USH, Alffenaar JWC, Paues J, Niward K. Safety and pharmacokinetics-pharmacodynamics of a shorter tuberculosis treatment with high-dose pyrazinamide and rifampicin: a study protocol of a phase II clinical trial (HighShort-RP). BMJ Open 2022; 12:e054788. [PMID: 35273049 PMCID: PMC8915351 DOI: 10.1136/bmjopen-2021-054788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Increased dosing of rifampicin and pyrazinamide seems a viable strategy to shorten treatment and prevent relapse of drug-susceptible tuberculosis (TB), but safety and efficacy remains to be confirmed. This clinical trial aims to explore safety and pharmacokinetics-pharmacodynamics of a high-dose pyrazinamide-rifampicin regimen. METHODS AND ANALYSIS Adult patients with pulmonary TB admitted to six hospitals in Sweden and subjected to receive first-line treatment are included. Patients are randomised (1:3) to either 6-month standardised TB treatment or a 4-month regimen based on high-dose pyrazinamide (40 mg/kg) and rifampicin (35 mg/kg) along with standard doses of isoniazid and ethambutol. Plasma samples for measurement of drug exposure determined by liquid chromatography tandem-mass spectrometry are obtained at 0, 1, 2, 4, 6, 8, 12 and 24 hours, at day 1 and 14. Maximal drug concentration (Cmax) and area under the concentration-time curve (AUC0-24h) are estimated by non-compartmental analysis. Conditions for early model-informed precision dosing of high-dose pyrazinamide-rifampicin are pharmacometrically explored. Adverse drug effects are monitored throughout the study and graded according to Common Terminology Criteria for Adverse Events V.5.0. Early bactericidal activity is assessed by time to positivity in BACTEC MGIT 960 of induced sputum collected at day 0, 5, 8, 15 and week 8. Minimum inhibitory concentrations of first-line drugs are determined using broth microdilution. Disease severity is assessed with X-ray grading and a validated clinical scoring tool (TBscore II). Clinical outcome is registered according to WHO definitions (2020) in addition to occurrence of relapse after end of treatment. Primary endpoint is pyrazinamide AUC0-24h and main secondary endpoint is safety. ETHICS AND DISSEMINATION The study is approved by the Swedish Ethical Review Authority and the Swedish Medical Products Agency. Informed written consent is collected before study enrolment. The study results will be submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER NCT04694586.
Collapse
Affiliation(s)
- David Ekqvist
- Department of Infectious Diseases, Region Östergötland, Linköping University, Linköping, Sweden
| | - Anna Bornefall
- Department of Infectious Diseases, Region Östergötland, Linköping, Sweden
| | | | | | - Michaela Jonsson Nordvall
- Department of Clinical Microbiology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Björn Carlsson
- Department of Clinical Pharmacology, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Mårten Sandstedt
- Department of Radiology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Jan-Willem C Alffenaar
- School of Pharmacy, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
- Westmead Hospital, Sydney, New South Wales, Australia
| | - Jakob Paues
- Department of Infectious Diseases, and Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| | - Katarina Niward
- Department of Infectious Diseases, and Department of Biomedical and Clinical Sciences, Linköping University, Linkoping, Sweden
| |
Collapse
|
43
|
Muda MR, Harun SN, Syed Sulaiman SA, Sheikh Ghadzi SM. Population Pharmacokinetics Analyses of Rifampicin in Adult and Children Populations: A Systematic Review. Br J Clin Pharmacol 2022; 88:3132-3152. [PMID: 35253251 DOI: 10.1111/bcp.15298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
AIMS Rifampicin has become an essential component as the first-line therapy for pulmonary tuberculosis (PTB). Several population pharmacokinetic (PK) studies on rifampicin in the adult and children population have been studied previously. Therefore, the aims of the systematic review were (i) to summarize the relevant published studies and significant covariates that influence the PK of rifampicin across different populations, (ii) to identify any knowledge gap that requires additional research in the future. METHODS A total of 121 relevant population PK articles were systematically identified using PubMed and Scopus from inception to October 2021. Review articles, in-vitro, and physiological methods, animal studies, and noncompartmental analysis were excluded. RESULTS 19 studies which 16 involved adults, two involved children, and one involved both adults and children were included in the review. The structural model of rifampicin can be described as one compartment with a transient compartment absorption model and first-order elimination in most of the studies. Pharmaceutical formulation, body weight, gender, pregnancy status, diabetes, and nutritional supplementation were found to be the significant covariates that affect the PK parameters. External validation of the developed PK model was only conducted in two studies. CONCLUSIONS The source of variability for PK parameters of rifampicin remains inconsistent and poorly understood even though there were many potential covariates investigated in the selected studies. Exploring other possible factors and implementation a strict sampling strategy by considering the induction effects might unravel precise and reliable information. Furthermore, external validation should be frequently conducted to produce better predictability of model performance.
Collapse
Affiliation(s)
- Mohd Rahimi Muda
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia.,Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Bandar Puncak Alam, Selangor, Malaysia
| | - Sabariah Noor Harun
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | | | | |
Collapse
|
44
|
Zhang M, Wang M, He JQ. Intensified Antituberculosis Therapy Regimen Containing Higher Dose Rifampin for Tuberculous Meningitis: A Systematic Review and Meta-Analysis. Front Med (Lausanne) 2022; 9:822201. [PMID: 35280900 PMCID: PMC8916538 DOI: 10.3389/fmed.2022.822201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background Tuberculous meningitis is difficult to diagnose and is associated with high mortality. Recently, several studies evaluated the intensified regimen containing higher dose rifampin to treat tuberculous meningitis. However, this topic remains to be concluded. Therefore, this systematic review and meta-analysis was conducted to evaluate pharmacokinetics parameters, safety, and survival benefits of high-dose rifampin for tuberculous meningitis. Method Data were searched from PubMed, EMBASE, The Cochrane Library, and Web of Science for studies describing an antituberculosis regimen including a higher dose of rifampin for patients with tuberculous meningitis. The quality of eligible studies was evaluated via The Cochrane Risk of Bias Tool. The meta-analysis was performed by Review Manager 5.3 software, the synthesis of the data was shown in mean difference (MD) or relative risk (RR), and 95% confidence intervals (CIs). Results There were six randomized control trails included in this meta-analysis. The results showed that the concentration in plasma and cerebrospinal fluid (CSF) were significantly higher in the intervention group than the standard group [MD = 22.08, 95%CI (16.24, 27.92), p < 0.00001; MD = 0.74, 95%CI (0.42, 1.05), p < 0.00001], as well as the area under the time concentration curve between 0 and 24 h (AUC0−24) of rifampin [MD 203.56, 95%CI (153.07, 254.05), p < 0.00001] in plasma, but the overall survival did not improve [RR = 0.92, 95%CI (0.67, 1.26), p = 0.61]. For adverse events, the results showed a statistically significant lower incidence of hypersensitivity compared with the intervention group [RR = 1.72, 95%CI (1.13, 2.62), p = 0.01]. Fortunately, other common adverse drug reactions such as liver injury, neurological events, myelosuppression, and cardiotoxicity had no significant increase [RR = 0.98, 95%CI (0.77, 1.26), p = 0.90; RR = 1.10, 95%CI (0.94, 1.30), p = 0.23; RR = 0.82, 95%CI (0.59, 1.13), p = 0.22; RR = 1.11, 95%CI (0.66, 1.86), p = 0.70]. Conclusion This meta-analysis suggested that the intensified treatment regimen including a higher dose of rifampin significantly increased the rifampin concentration both in the plasma and CSF, and it was safe in patients with tuberculous meningitis, but resulted in no improvement in survival rates.
Collapse
|
45
|
Wilson CG, Aarons L, Augustijns P, Brouwers J, Darwich AS, De Waal T, Garbacz G, Hansmann S, Hoc D, Ivanova A, Koziolek M, Reppas C, Schick P, Vertzoni M, García-Horsman JA. Integration of advanced methods and models to study drug absorption and related processes: An UNGAP perspective. Eur J Pharm Sci 2021; 172:106100. [PMID: 34936937 DOI: 10.1016/j.ejps.2021.106100] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023]
Abstract
This collection of contributions from the European Network on Understanding Gastrointestinal Absorption-related Processes (UNGAP) community assembly aims to provide information on some of the current and newer methods employed to study the behaviour of medicines. It is the product of interactions in the immediate pre-Covid period when UNGAP members were able to meet and set up workshops and to discuss progress across the disciplines. UNGAP activities are divided into work packages that cover special treatment populations, absorption processes in different regions of the gut, the development of advanced formulations and the integration of food and pharmaceutical scientists in the food-drug interface. This involves both new and established technical approaches in which we have attempted to define best practice and highlight areas where further research is needed. Over the last months we have been able to reflect on some of the key innovative approaches which we were tasked with mapping, including theoretical, in silico, in vitro, in vivo and ex vivo, preclinical and clinical approaches. This is the product of some of us in a snapshot of where UNGAP has travelled and what aspects of innovative technologies are important. It is not a comprehensive review of all methods used in research to study drug dissolution and absorption, but provides an ample panorama of current and advanced methods generally and potentially useful in this area. This collection starts from a consideration of advances in a priori approaches: an understanding of the molecular properties of the compound to predict biological characteristics relevant to absorption. The next four sections discuss a major activity in the UNGAP initiative, the pursuit of more representative conditions to study lumenal dissolution of drug formulations developed independently by academic teams. They are important because they illustrate examples of in vitro simulation systems that have begun to provide a useful understanding of formulation behaviour in the upper GI tract for industry. The Leuven team highlights the importance of the physiology of the digestive tract, as they describe the relevance of gastric and intestinal fluids on the behaviour of drugs along the tract. This provides the introduction to microdosing as an early tool to study drug disposition. Microdosing in oncology is starting to use gamma-emitting tracers, which provides a link through SPECT to the next section on nuclear medicine. The last two papers link the modelling approaches used by the pharmaceutical industry, in silico to Pop-PK linking to Darwich and Aarons, who provide discussion on pharmacometric modelling, completing the loop of molecule to man.
Collapse
Affiliation(s)
- Clive G Wilson
- Strathclyde Institute of Pharmacy & Biomedical Sciences, Glasgow, U.K.
| | | | | | | | | | | | | | | | | | | | - Mirko Koziolek
- NCE Formulation Sciences, Abbvie Deutschland GmbH & Co. KG, Germany
| | | | - Philipp Schick
- Department of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, University of Greifswald, Germany
| | | | | |
Collapse
|
46
|
Gordon O, Lee DE, Liu B, Langevin B, Ordonez AA, Dikeman DA, Shafiq B, Thompson JM, Sponseller PD, Flavahan K, Lodge MA, Rowe SP, Dannals RF, Ruiz-Bedoya CA, Read TD, Peloquin CA, Archer NK, Miller LS, Davis KM, Gobburu JVS, Jain SK. Dynamic PET-facilitated modeling and high-dose rifampin regimens for Staphylococcus aureus orthopedic implant-associated infections. Sci Transl Med 2021; 13:eabl6851. [PMID: 34851697 PMCID: PMC8693472 DOI: 10.1126/scitranslmed.abl6851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major human pathogen causing serious implant–associated infections. Combination treatment with rifampin (10 to 15 mg/kg per day), which has dose-dependent activity, is recommended to treat S. aureus orthopedic implant–associated infections. Rifampin, however, has limited bone penetration. Here, dynamic 11C-rifampin positron emission tomography (PET) performed in prospectively enrolled patients with confirmed S. aureus bone infection (n = 3) or without orthopedic infection (n = 12) demonstrated bone/plasma area under the concentration-time curve ratio of 0.14 (interquartile range, 0.09 to 0.19), exposures lower than previously thought. PET-based pharmacokinetic modeling predicted rifampin concentration-time profiles in bone and facilitated studies in a mouse model of S. aureus orthopedic implant infection. Administration of high-dose rifampin (human equipotent to 35 mg/kg per day) substantially increased bone concentrations (2 mg/liter versus <0.2 mg/liter with standard dosing) in mice and achieved higher bacterial killing and biofilm disruption. Treatment for 4 weeks with high-dose rifampin and vancomycin was noninferior to the recommended 6-week treatment of standard-dose rifampin with vancomycin in mice (risk difference, −6.7% favoring high-dose rifampin regimen). High-dose rifampin treatment ameliorated antimicrobial resistance (0% versus 38%; P = 0.04) and mitigated adverse bone remodeling (P < 0.01). Last, whole-genome sequencing demonstrated that administration of high-dose rifampin in mice reduced selection of bacterial mutations conferring rifampin resistance (rpoB) and mutations in genes potentially linked to persistence. These data suggest that administration of high-dose rifampin is necessary to achieve optimal bone concentrations, which could shorten and improve treatments for S. aureus orthopedic implant infections.
Collapse
Affiliation(s)
- Oren Gordon
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Donald E. Lee
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Bessie Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Brooke Langevin
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Alvaro A. Ordonez
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Babar Shafiq
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - John M. Thompson
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Paul D. Sponseller
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Flavahan
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Martin A. Lodge
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Steven P. Rowe
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert F. Dannals
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Camilo A. Ruiz-Bedoya
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Timothy D. Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Charles A. Peloquin
- Infectious Disease Pharmacokinetics Laboratory, Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Immunology, Janssen Research and Development, Spring House, PA 19477, USA
| | - Kimberly M. Davis
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jogarao V. S. Gobburu
- Center for Translational Medicine, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Sanjay K. Jain
- Division of Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
47
|
Tan YM, Barton HA, Boobis A, Brunner R, Clewell H, Cope R, Dawson J, Domoradzki J, Egeghy P, Gulati P, Ingle B, Kleinstreuer N, Lowe K, Lowit A, Mendez E, Miller D, Minucci J, Nguyen J, Paini A, Perron M, Phillips K, Qian H, Ramanarayanan T, Sewell F, Villanueva P, Wambaugh J, Embry M. Opportunities and challenges related to saturation of toxicokinetic processes: Implications for risk assessment. Regul Toxicol Pharmacol 2021; 127:105070. [PMID: 34718074 DOI: 10.1016/j.yrtph.2021.105070] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023]
Abstract
Top dose selection for repeated dose animal studies has generally focused on identification of apical endpoints, use of the limit dose, or determination of a maximum tolerated dose (MTD). The intent is to optimize the ability of toxicity tests performed in a small number of animals to detect effects for hazard identification. An alternative approach, the kinetically derived maximum dose (KMD), has been proposed as a mechanism to integrate toxicokinetic (TK) data into the dose selection process. The approach refers to the dose above which the systemic exposures depart from being proportional to external doses. This non-linear external-internal dose relationship arises from saturation or limitation of TK process(es), such as absorption or metabolism. The importance of TK information is widely acknowledged when assessing human health risks arising from exposures to environmental chemicals, as TK determines the amount of chemical at potential sites of toxicological responses. However, there have been differing opinions and interpretations within the scientific and regulatory communities related to the validity and application of the KMD concept. A multi-stakeholder working group, led by the Health and Environmental Sciences Institute (HESI), was formed to provide an opportunity for impacted stakeholders to address commonly raised scientific and technical issues related to this topic and, more specifically, a weight of evidence approach is recommended to inform design and dose selection for repeated dose animal studies. Commonly raised challenges related to the use of TK data for dose selection are discussed, recommendations are provided, and illustrative case examples are provided to address these challenges or refute misconceptions.
Collapse
Affiliation(s)
- Yu-Mei Tan
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | | | - Rachel Brunner
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | | | - Rhian Cope
- Australian Pesticides and Veterinary Medicines Authority, Sydney, NSW, Australia
| | - Jeffrey Dawson
- U.S. Environmental Protection Agency, Office of Chemical Safety and Pollution Prevention, Washington, DC, USA
| | | | - Peter Egeghy
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Pankaj Gulati
- Australian Pesticides and Veterinary Medicines Authority, Sydney, NSW, Australia
| | - Brandall Ingle
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Durham, NC, USA
| | - Nicole Kleinstreuer
- National Toxicology Program, Interagency Center for the Evaluation of Alternative Toxicological Methods, Research Triangle Park, NC, USA
| | - Kelly Lowe
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Anna Lowit
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Elizabeth Mendez
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - David Miller
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Jeffrey Minucci
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - James Nguyen
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Alicia Paini
- European Commission, Joint Research Centre, Ispra, Italy
| | - Monique Perron
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - Katherine Phillips
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Hua Qian
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | | | - Fiona Sewell
- National Centre for the Replacement, Refinement, and Reduction of Animals in Research, London, UK
| | - Philip Villanueva
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington, DC, USA
| | - John Wambaugh
- U.S. Environmental Protection Agency, Office of Research & Development, Durham, NC, USA
| | - Michelle Embry
- Health and Environmental Sciences Institute, Washington DC, USA.
| |
Collapse
|
48
|
Litjens CHC, Verscheijden LFM, Bolwerk C, Greupink R, Koenderink JB, van den Broek PHH, van den Heuvel JJMW, Svensson EM, Boeree MJ, Magis-Escurra C, Hoefsloot W, van Crevel R, van Laarhoven A, van Ingen J, Kuipers S, Ruslami R, Burger DM, Russel FGM, Aarnoutse RE, Te Brake LHM. Prediction of Moxifloxacin Concentrations in Tuberculosis Patient Populations by Physiologically Based Pharmacokinetic Modeling. J Clin Pharmacol 2021; 62:385-396. [PMID: 34554580 PMCID: PMC9297990 DOI: 10.1002/jcph.1972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/18/2021] [Indexed: 02/03/2023]
Abstract
Moxifloxacin has an important role in the treatment of tuberculosis (TB). Unfortunately, coadministration with the cornerstone TB drug rifampicin results in suboptimal plasma exposure. We aimed to gain insight into the moxifloxacin pharmacokinetics and the interaction with rifampicin. Moreover, we provided a mechanistic framework to understand moxifloxacin pharmacokinetics. We developed a physiologically based pharmacokinetic model in Simcyp version 19, with available and newly generated in vitro and in vivo data, to estimate pharmacokinetic parameters of moxifloxacin alone and when administered with rifampicin. By combining these strategies, we illustrate that the role of P-glycoprotein in moxifloxacin transport is limited and implicate MRP2 as transporter of moxifloxacin-glucuronide followed by rapid hydrolysis in the gut. Simulations of multiple dose area under the plasma concentration-time curve (AUC) of moxifloxacin (400 mg once daily) with and without rifampicin (600 mg once daily) were in accordance with clinically observed data (predicted/observed [P/O] ratio of 0.87 and 0.80, respectively). Importantly, increasing the moxifloxacin dose to 600 mg restored the plasma exposure both in actual patients with TB as well as in our simulations. Furthermore, we extrapolated the single dose model to pediatric populations (P/O AUC ratios, 1.04-1.52) and the multiple dose model to children with TB (P/O AUC ratio, 1.51). In conclusion, our combined approach resulted in new insights into moxifloxacin pharmacokinetics and accurate simulations of moxifloxacin exposure with and without rifampicin. Finally, various knowledge gaps were identified, which may be considered as avenues for further physiologically based pharmacokinetic refinement.
Collapse
Affiliation(s)
- Carlijn H C Litjens
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Laurens F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Celine Bolwerk
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen J M W van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Martin J Boeree
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cecile Magis-Escurra
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Department of Pulmonary Diseases, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Reinout van Crevel
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arjan van Laarhoven
- Department of Internal Medicine, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jakko van Ingen
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Saskia Kuipers
- Department of Medical Microbiology, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rovina Ruslami
- TB/HIV Research Centre, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia.,Department of Biomedical Sciences, Division of Pharmacology and Therapy, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - David M Burger
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lindsey H M Te Brake
- Department of Pharmacy, Radboud Institute for Health Sciences & Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
49
|
Garcia-Prats AJ, Svensson EM, Winckler J, Draper HR, Fairlie L, van der Laan LE, Masenya M, Schaaf HS, Wiesner L, Norman J, Aarnoutse RE, Karlsson MO, Denti P, Hesseling AC. Pharmacokinetics and safety of high-dose rifampicin in children with TB: the Opti-Rif trial. J Antimicrob Chemother 2021; 76:3237-3246. [PMID: 34529779 DOI: 10.1093/jac/dkab336] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rifampicin doses of 40 mg/kg in adults are safe and well tolerated, may shorten anti-TB treatment and improve outcomes, but have not been evaluated in children. OBJECTIVES To characterize the pharmacokinetics and safety of high rifampicin doses in children with drug-susceptible TB. PATIENTS AND METHODS The Opti-Rif trial enrolled dosing cohorts of 20 children aged 0-12 years, with incremental dose escalation with each subsequent cohort, until achievement of target exposures or safety concerns. Cohort 1 opened with a rifampicin dose of 15 mg/kg for 14 days, with a single higher dose (35 mg/kg) on day 15. Pharmacokinetic data from days 14 and 15 were analysed using population modelling and safety data reviewed. Incrementally increased rifampicin doses for the next cohort (days 1-14 and day 15) were simulated from the updated model, up to the dose expected to achieve the target exposure [235 mg/L·h, the geometric mean area under the concentration-time curve from 0 to 24 h (AUC0-24) among adults receiving a 35 mg/kg dose]. RESULTS Sixty-two children were enrolled in three cohorts. The median age overall was 2.1 years (range = 0.4-11.7). Evaluated doses were ∼35 mg/kg (days 1-14) and ∼50 mg/kg (day 15) for cohort 2 and ∼60 mg/kg (days 1-14) and ∼75 mg/kg (day 15) for cohort 3. Approximately half of participants had an adverse event related to study rifampicin; none was grade 3 or higher. A 65-70 mg/kg rifampicin dose was needed in children to reach the target exposure. CONCLUSIONS High rifampicin doses in children achieved target exposures and the doses evaluated were safe over 2 weeks.
Collapse
Affiliation(s)
- Anthony J Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 2870 University Avenue, Suite 200, Madison, WI 53705, USA
| | - Elin M Svensson
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen (864), The Netherlands.,Department of Pharmacy, Uppsala University, PO Box 580, 751 23 Uppsala, Sweden
| | - Jana Winckler
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Heather R Draper
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Lee Fairlie
- Wits Reproductive Health and HIV Institute Shandukani CRS, Faculty of Health Sciences, University of the Witwatersrand, 22 Esselen Street, Hilbrow 2001, South Africa
| | - Louvina E van der Laan
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Masebole Masenya
- Wits Reproductive Health and HIV Institute Shandukani CRS, Faculty of Health Sciences, University of the Witwatersrand, 22 Esselen Street, Hilbrow 2001, South Africa
| | - H Simon Schaaf
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, K45 Old Main Building, Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa
| | - Jennifer Norman
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, K45 Old Main Building, Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa
| | - Rob E Aarnoutse
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen (864), The Netherlands
| | - Mats O Karlsson
- Department of Pharmacy, Uppsala University, PO Box 580, 751 23 Uppsala, Sweden
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, K45 Old Main Building, Groote Schuur Hospital, Observatory, Cape Town 7925, South Africa
| | - Anneke C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
50
|
Sundell J, Bienvenu E, Äbelö A, Ashton M. Effect of efavirenz-based ART on the pharmacokinetics of rifampicin and its primary metabolite in patients coinfected with TB and HIV. J Antimicrob Chemother 2021; 76:2950-2957. [PMID: 34337654 PMCID: PMC8521403 DOI: 10.1093/jac/dkab258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/24/2021] [Indexed: 11/12/2022] Open
Abstract
Objectives To evaluate the effects of concomitant efavirenz-based ART and genetic polymorphism on the variability in rifampicin and 25-desacetylrifampicin pharmacokinetics. Patients and methods Plasma concentrations of rifampicin and 25-desacetylrifampicin from 63 patients coinfected with TB and HIV were analysed by LC-MS/MS followed by non-linear mixed-effects modelling. Patients were genotyped for SLCO1B1 (463 C>A, 388 A>G, 11187 G>A, rs4149015, 521 T>C and 1436 G>C) and SLCO1B3 (334 T>G). Results One-compartment disposition models described the observations adequately. The oral clearances of rifampicin and 25-desacetylrifampicin were 140% and 110% higher, respectively, in patients on concomitant efavirenz-based ART. Rifampicin bioavailability was also lower in patients on concomitant ART. Further, although not included in the final model, a lower relative bioavailability in carriers of WT SLCO1B3 334 T>G compared with carriers of mutations in the genotype was estimated. Conclusions The results presented indicate both pre-systemic and systemic induction by efavirenz-based ART affecting rifampicin pharmacokinetics. The described drug–drug interaction has a clinical impact on rifampicin exposure prior to steady state and may impact the early bactericidal activity in patients on efavirenz-based ART.
Collapse
Affiliation(s)
- Jesper Sundell
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emile Bienvenu
- Department of Pharmacy, School of Medicine and Pharmacy, University of Rwanda, Rwanda
| | - Angela Äbelö
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Michael Ashton
- Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|