1
|
Wang WG, Yang MJ, Sheng ZB, Tao LM, Xu WP, Zhang Y. Avermectin induces photoreceptor functional impairment and color vision deficits in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138085. [PMID: 40174454 DOI: 10.1016/j.jhazmat.2025.138085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/17/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
The effects of avermectin on the visual function of nontarget organisms, particularly aquatic organisms, require further evaluation. Avermectin can come into direct contact with the eyes of nontarget organisms through air or water. However, few studies have investigated the safety of avermectin in the eyes of nontarget organisms. Therefore, it is important to assess its safety in the eyes of nontarget organisms. The results demonstrate that avermectin induces ocular morphological abnormalities, retinal structural damage, and decreased locomotor behavior in zebrafish larvae. Further analyses indicate that avermectin-induced ocular toxicity in zebrafish larvae is associated with the thyroid hormone and retinoic acid signaling pathways. The evaluation of the effect of avermectin on the visual function of adult zebrafish reveals that avermectin induces changes in the sensitivity of adult zebrafish to different light wavelengths and colors. Male adult zebrafish showed greater variation, suggesting possible sex differences. These results indicate that avermectin induces ocular developmental damage in zebrafish larvae and visual behavioral abnormalities in adult zebrafish.
Collapse
Affiliation(s)
- Wei-Guo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Ming-Jun Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Engineer Research Center of Reproduction Health Drugs and Devices, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Zhu-Bo Sheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Li-Ming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Ping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Longakit AN, Bourget H, Van Raamsdonk CD. Mitf over-expression leads to microphthalmia and coloboma in Mitf-cre mice. Exp Eye Res 2025; 251:110209. [PMID: 39694408 DOI: 10.1016/j.exer.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/05/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
The Mitf transcription factor is a critical regulator of the melanocyte lineage and eye development. Mitf activity in different cell types is controlled in part by ten alternative promoters and their resulting isoforms. A useful tool for melanocyte-based research, Mitf-cre was designed to express Cre from the Mitf-M promoter, which is melanocyte specific. However, Mitf-cre mice are also microphthalmic, perhaps because of insertional mutagenesis or disrupted gene expression. Here, we investigated these possibilities and described the eye phenotype. Targeted locus amplification indicated that the transgene integrated on chromosome 2, in between Spred1 and Meis2. The BAC transgene used to make Mitf-cre was larger than expected, carrying three upstream alternative promoters, Mitf-H, Mitf-D, and Mitf-B, which could express their isoforms intact off the transgene. RT-qPCR using eye tissue demonstrated a 5-fold increase in Mitf transcripts containing exon 1B1b, which is shared by Mitf-H, Mitf-D, and Mitf-B, while Spred1 and Meis2 did not differ in their expression. These findings clarify and support the usage of Mitf-cre in conditional mutagenesis in melanocytes. The specific over-expression of these isoforms, which are preferentially expressed in the RPE, presents a unique resource for those interested in eye development and coloboma.
Collapse
Affiliation(s)
- Anne Nathalie Longakit
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Hannah Bourget
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Catherine D Van Raamsdonk
- Department of Medical Genetics, University of British Columbia, Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
3
|
Wang J, Guo S, Yang L. Methylmercury-induced visual deficits involve loss of GABAergic cells in the zebrafish embryo retina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178329. [PMID: 39756296 DOI: 10.1016/j.scitotenv.2024.178329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/03/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Methylmercury (MeHg) is a neurotoxicant with adverse effects on visual systems from fish to man. Clinical signs of visual deficits including color-vision alterations, visual field constriction and blindness have been frequently identified in patients and affected animals following acute and chronic exposure to MeHg. However, it is still unclear whether MeHg causes developmental defects in the eye. We performed here an experimental study to analyze retinal cells expressing gamma-aminobutyric acid (GABA) of MeHg-exposed zebrafish embryos and combined this with a deep RNA-seq analysis. Exposure of zebrafish embryos to MeHg (10-30 μg/L) from 4 to 96 h post fertilization (hpf) resulted in significantly decreased number of GABAergic neurons located in the ganglion cells layer (GCL) and inner nuclear layer (INL). Twenty μg MeHg/L abolished the color preference characterized in larval zebrafish aged 5 days post fertilization (dpf), and impaired optomotor response (OMR) in larval zebrafish at 6 dpf. The genes playing a role in retinal cell redox homeostasis, steroid hormone and folate biosynthesis, lysosome activity and necroptosis were enriched in MeHg-treated eyes. The expression patterns of genes encoding opsin and genes involved in phototransduction were altered in the eye by MeHg. Our experimental findings show that MeHg disturbs the retinal cells development by interfering with the cell differentiation and cellular homeostasis, which in turn may lead to visual deficits in the larval zebrafish.
Collapse
Affiliation(s)
- Jinghan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Shaojuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China
| | - Lixin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| |
Collapse
|
4
|
Hammer J, Röppenack P, Yousuf S, Machate A, Fischer M, Hans S, Brand M. Blind But Alive - Congenital Loss of atoh7 Disrupts the Visual System of Adult Zebrafish. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 39565303 PMCID: PMC11583992 DOI: 10.1167/iovs.65.13.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose Vision is the predominant sense in most animal species. Loss of vision can be caused by a multitude of factors resulting in anatomic as well as behavioral changes. In mice and zebrafish, atoh7 mutants are completely blind as they fail to generate retinal ganglion cells (RGCs) during development. In contrast to mice, raising blind zebrafish to adulthood is challenging and this important model is currently missing in the field. Here, we report the phenotype of homozygous mutant adult zebrafish atoh7 mutants that have been raised using adjusted feeding and holding conditions. Methods The phenotype of adult mutants was characterized using classical histology and immunohistochemistry as well as optical coherence tomography. In addition, the optokinetic response was characterized. Results Adult atoh7 mutants display dark body pigmentation and significantly reduced body length. They fail to form RGCs, the resulting nerve fiber layer as well as the optic nerve, and consequently behave completely blindly. In contrast, increased amounts of other retinal neurons and Müller glia are formed. In addition, the optic tectum is anatomically reduced in size, presumably due to the missing retinal input. Conclusions Taken together, we provide a comprehensive characterization of a completely blind adult zebrafish mutant with focus on retinal and tectal morphology, as a useful model for glaucoma and optic nerve aplasia.
Collapse
Affiliation(s)
- Juliane Hammer
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Paul Röppenack
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Sarah Yousuf
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Marika Fischer
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies at TU Dresden(CRTD), Dresden, Germany
- Cluster of Excellence Physics of Life (PoL), TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Mirzaei F, Eslahi A, Karimi S, Alizadeh F, Salmaninejad A, Rezaei M, Mozaffari S, Hamzehloei T, Pasdar A, Mojarrad M. Generation of Zebrafish Models of Human Retinitis Pigmentosa Diseases Using CRISPR/Cas9-Mediated Gene Editing System. Mol Biotechnol 2024; 66:2909-2919. [PMID: 37980693 DOI: 10.1007/s12033-023-00907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/14/2023] [Indexed: 11/21/2023]
Abstract
Generating animal models can explore the role of new candidate genes in causing diseases and the pathogenicity of a specific mutation in the underlying genes. These animals can be used to identify new pharmaceutical or genetic therapeutic methods. In the present experiment, we developed a rpe65a knock out (KO) zebrafish as a retinitis pigmentosa (RP) disease model. Using the CRISPR/Cas9 system, the rpe65a gene was KO in zebrafish. Two specific single-guide RNAs (sgRNAs) were designed for the zebrafish rpe65a gene. SgRNAs were cloned into the DR274 plasmid and synthesized using in vitro transcription method. The efficiency of Ribonucleoprotein (synthesized sgRNA and recombinant Cas9) was evaluated by in vitro digestion experiment. Ribonucleoprotein complexes were microinjected into one to four-celled eggs of the TU zebrafish strain. The effectiveness of sgRNAs in KO the target gene was determined using the Heteroduplex mobility assay (HMA) and Sanger sequencing. Online software was used to determine the percent of mosaicism in the sequenced samples. By examining the sequences of the larvae that showed a mobility shift in the HMA method, the presence of indels in the binding region of sgRNAs was confirmed, so the zebrafish model for RP disease established. Zebrafish is an ideal animal model for the functional study of various diseases involving different genes and mutations and used for evaluating different therapeutic approaches in human diseases. This study presents the production of rpe65a gene KO zebrafish models using CRISPR/Cas9 technology. This model can be used in RP pathophysiology studies and preclinical gene therapy experiments.
Collapse
Affiliation(s)
- Farzaneh Mirzaei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atiyeh Eslahi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Karimi
- Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Alizadeh
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Salmaninejad
- Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rezaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sina Mozaffari
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tayebeh Hamzehloei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Safrina O, Vorontsova I, Donaldson PJ, Schilling TF. Zebrafish Optical Development Requires Regulated Water Permeability by Aquaporin 0. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 39330988 PMCID: PMC11437712 DOI: 10.1167/iovs.65.11.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Purpose Optical development of the zebrafish eye relies on the movement of the highly refractive lens nucleus from an anterior to a central location in the optical axis during development. We have shown that this mechanism in turn depends on the function of Aquaporin 0a (Aqp0a), a multifunctional and extremely abundant protein in lens fiber cell membranes. Here, we probe the specific cellular functions necessary for rescuing lens nucleus centralization defects in aqp0a-/- null mutants by stable overexpression of an Aqp0 orthologue from a killifish, MIPfun. Methods We test in vivo requirements for lens transparency and nucleus centralization of MIPfun for auto-adhesion, water permeability (Pf), and Pf sensitivity to regulation by Ca2+ or pH by overexpression of MIPfun mutants previously shown to have defects in these functions in vitro or in silico. Results Water permeability of MIPfun is essential for rescuing lens transparency and nucleus centralization defects, whereas auto-adhesion is not. Furthermore, water permeability regulation by Ca2+ and pH appear residue-dependent, because some Ca2+-insensitive mutants fail to rescue, and pH-insensitive mutants only partially rescue defects. MIPfun lacking Pf sensitivity to both, Ca2+ and pH, also fails to rescue lens nucleus centralization. Conclusion This study shows that regulation of water permeability by Aqp0 plays a key role in the centralization of the zebrafish lens nucleus, providing the first direct evidence for water transport in this aspect of optical development.
Collapse
Affiliation(s)
- Olga Safrina
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
| | - Irene Vorontsova
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
- Department of Physiology, The University of Auckland, Aotearoa New Zealand National Eye Centre, Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, The University of Auckland, Aotearoa New Zealand National Eye Centre, Auckland, New Zealand
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, California, United States
| |
Collapse
|
7
|
Adam E, Zanon M, Messina A, Vallortigara G. Looks like home: numerosity, but not spatial frequency guides preference in zebrafish larvae (Danio rerio). Anim Cogn 2024; 27:53. [PMID: 39066805 PMCID: PMC11283429 DOI: 10.1007/s10071-024-01888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024]
Abstract
Despite their young age, zebrafish larvae have a well-developed visual system and can distinguish between different visual stimuli. First, we investigated if the first visual surroundings the larvae experience during the first days after hatching shape their habitat preference. Indeed, these animals seem to "imprint" on the first surroundings they see and select visual stimuli accordingly at 7 days post fertilization (dpf). In particular, if zebrafish larvae experience a bar background just after hatching, they later on prefer bars over white stimuli, and vice versa. We then used this acquired preference for bars to investigate innate numerical abilities. We wanted to specifically test if the zebrafish larvae show real numerical abilities or if they rely on a lower-level mechanism-i.e. spatial frequency-to discriminate between two different numerosities. When we matched the spatial frequency in stimuli with different numbers of bars, the larvae reliably selected the higher numerosity. A previous study has ruled out that 7 dpf zebrafish larvae use convex hull, cumulative surface area and density to choose between two numerosities. Therefore, our results indicate that zebrafish larvae rely on real numerical abilities rather than other cues, including spatial frequency, when spontaneously comparing two sets with different numbers of bars.
Collapse
Affiliation(s)
- Elisabeth Adam
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy.
| | - Mirko Zanon
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Andrea Messina
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| | - Giorgio Vallortigara
- CIMeC - Center for Mind/Brain Sciences, University of Trento, 38068, Rovereto, Italy
| |
Collapse
|
8
|
Matsubara H, Chujo S, Mase Y, Muramoto Y, Kato K, Kondo M. Effects of angle of incidence of stimulus light on photopic electroretinograms of zebrafish larvae. Sci Rep 2024; 14:14733. [PMID: 38926421 PMCID: PMC11208667 DOI: 10.1038/s41598-024-65017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
In electroretinographic (ERG) recordings of zebrafish, the light stimulus is usually delivered by a fiber optic cable. The purpose of this study was to determine whether the angle of incidence of the stimulus light from the fiber optic cable will affect the amplitudes and implicit times of the ERGs of zebrafish larvae. The larvae were positioned on their side with the right eye pointed upward. The light stimuli were delivered by a fiber optic cable from three directions of the larvae: frontal 0° (F0°), dorsal 30°(D30°), and ventral 30°(V30°). Photopic ERGs were recorded from 16 larvae at age 5-6 days post-fertilization. Our results showed that the mean amplitude of the b-wave elicited at D30° and V30° stimulation was significantly smaller than that elicited at F0° stimulation (P = 0.014 and P = 0.019, respectively). In addition, the mean amplitude of the d-wave elicited at D30° and V30° stimulation was significantly smaller than that elicited at F0° stimulation (P < 0.0001 and P = 0.015, respectively). However, the difference between the b-wave amplitudes elicited at D30° and V30° stimuli were not significant (P = 0.98), and the d-wave amplitudes were also not significantly different (P = 0.20). The average b-wave amplitudes elicited at D30° stimulation was 84.6 ± 15.7% and V30° stimulation was 84.8 ± 17.4% relative to that of F0° stimulation. The average d-wave amplitudes elicited by D30° stimulation was 85.5 ± 15.2% and by V30° stimulation was 79.0 ± 11.0% relative to that of F0° stimulation. The differences in the implicit times of the b- and d-wave elicited by the different directions of stimulation were not significant (P = 0.52 and P = 0.14, respectively). We conclude that the amplitude of the photopic ERGs is affected by the angle of the incident light. Thus, it would be better to use ganzfeld stimuli to elicit maximum b- and d-wave amplitudes of the photopic ERGs of zebrafish larvae.
Collapse
Affiliation(s)
- Hisashi Matsubara
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Shinichiro Chujo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoko Mase
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yukiko Muramoto
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kumiko Kato
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
9
|
Saputra F, Kishida M, Hu SY. Oxidative stress induced by hydrogen peroxide disrupts zebrafish visual development by altering apoptosis, antioxidant and estrogen related genes. Sci Rep 2024; 14:14454. [PMID: 38914633 PMCID: PMC11196719 DOI: 10.1038/s41598-024-64933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Hydrogen peroxide is considered deleterious molecule that cause cellular damage integrity and function. Its key redox signaling molecule in oxidative stress and exerts toxicity on a wide range of organisms. Thus, to understand whether oxidative stress alters visual development, zebrafish embryos were exposed to H2O2 at concentration of 0.02 to 62.5 mM for 7 days. Eye to body length ratio (EBR) and apoptosis in retina at 48 hpf, and optomotor response (OMR) at 7 dpf were all measured. To investigate whether hydrogen peroxide-induced effects were mediated by oxidative stress, embryos were co-incubated with the antioxidant, glutathione (GSH) at 50 μM. Results revealed that concentrations of H2O2 at or above 0.1 mM induced developmental toxicity, leading to increased mortality and hatching delay. Furthermore, exposure to 0.1 mM H2O2 decreased EBR at 48 hpf and impaired OMR visual behavior at 7 dpf. Additionally, exposure increased the area of apoptotic cells in the retina at 48 hpf. The addition of GSH reversed the effects of H2O2, suggesting the involvement of oxidative stress. H2O2 decreased the expression of eye development-related genes, pax6α and pax6β. The expression of apoptosis-related genes, tp53, casp3 and bax, significantly increased, while bcl2α expression decreased. Antioxidant-related genes sod1, cat and gpx1a showed decreased expression. Expression levels of estrogen receptors (ERs) (esr1, esr2α, and esr2β) and ovarian and brain aromatase genes (cyp19a1a and cyp19a1b, respectively) were also significantly reduced. Interestingly, co-incubation of GSH effectivity reversed the impact of H2O2 on most parameters. Overall, these results demonstrate that H2O2 induces adverse effects on visual development via oxidative stress, which leads to alter apoptosis, diminished antioxidant defenses and reduced estrogen production.
Collapse
Affiliation(s)
| | - Mitsuyo Kishida
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan.
| | - Shao-Yang Hu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung, Taiwan.
| |
Collapse
|
10
|
Lu C, Hyde DR. Cytokines IL-1β and IL-10 are required for Müller glia proliferation following light damage in the adult zebrafish retina. Front Cell Dev Biol 2024; 12:1406330. [PMID: 38938553 PMCID: PMC11208712 DOI: 10.3389/fcell.2024.1406330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
Zebrafish possess the ability to regenerate dying neurons in response to retinal injury, with both Müller glia and microglia playing integral roles in this response. Resident Müller glia respond to damage by reprogramming and undergoing an asymmetric cell division to generate a neuronal progenitor cell, which continues to proliferate and differentiate into the lost neurons. In contrast, microglia become reactive, phagocytose dying cells, and release inflammatory signals into the surrounding tissue following damage. In recent years, there has been increased attention on elucidating the role that microglia play in regulating retinal regeneration. Here we demonstrate that inflammatory cytokines are differentially expressed during retinal regeneration, with the expression of a subset of pro-inflammatory cytokine genes upregulated shortly after light damage and the expression of a different subset of cytokine genes subsequently increasing. We demonstrate that both cytokine IL-1β and IL-10 are essential for Müller glia proliferation in the light-damaged retina. While IL-1β is sufficient to induce Müller glia proliferation in an undamaged retina, expression of IL-10 in undamaged retinas only induces Müller glia to express gliotic markers. Together, these findings demonstrate the essential role of inflammatory cytokines IL-1β and IL-10 on Müller glia proliferation following light damage in adult zebrafish.
Collapse
Affiliation(s)
| | - David R. Hyde
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, and Center for Zebrafish Research, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
11
|
Hermans A, Tajnai S, Tieman A, Young S, Franklin A, Horutz M, Henle SJ. A 3D-Printed and Freely Available Device to Measure the Zebrafish Optokinetic Response Before and After Injury. Zebrafish 2024; 21:144-148. [PMID: 38621210 PMCID: PMC11035845 DOI: 10.1089/zeb.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024] Open
Abstract
Zebrafish eyes are anatomically similar to humans and have a higher percentage of cone photoreceptors more akin to humans than most rodent models, making them a beneficial model organism for studying vision. However, zebrafish are different in that they can regenerate their optic nerve after injury, which most other animals cannot. Vision in zebrafish and many other vertebrate animals, including humans, can be accessed using the optokinetic response (OKR), which is an innate eye movement that occurs when tracking an object. Because fish cannot use an eye chart, we utilize the OKR that is present in virtually all vertebrates to determine if a zebrafish has vision. To this end, we have developed an inexpensive OKR setup that uses 3D-printed and off-the-shelf parts. This setup has been designed and used by undergraduate researchers and is also scalable to a classroom laboratory setup. We demonstrate that this setup is fully functional for assessing the OKR, and we use it to illustrate the return of the OKR following optic nerve injury in adult zebrafish.
Collapse
Affiliation(s)
- Ashley Hermans
- Carthage College, Kenosha, Wisconsin, USA
- Published on BioRxiv preprint server: https://www.biorxiv.org/content/10.1101/2023.08.15.553448v1 (doi: https://doi.org/10.1101/2023.08.15.553448)
| | - Sophia Tajnai
- Carthage College, Kenosha, Wisconsin, USA
- Published on BioRxiv preprint server: https://www.biorxiv.org/content/10.1101/2023.08.15.553448v1 (doi: https://doi.org/10.1101/2023.08.15.553448)
| | - Allison Tieman
- Carthage College, Kenosha, Wisconsin, USA
- Published on BioRxiv preprint server: https://www.biorxiv.org/content/10.1101/2023.08.15.553448v1 (doi: https://doi.org/10.1101/2023.08.15.553448)
| | - Sarah Young
- Carthage College, Kenosha, Wisconsin, USA
- Published on BioRxiv preprint server: https://www.biorxiv.org/content/10.1101/2023.08.15.553448v1 (doi: https://doi.org/10.1101/2023.08.15.553448)
| | - Ashley Franklin
- Carthage College, Kenosha, Wisconsin, USA
- Published on BioRxiv preprint server: https://www.biorxiv.org/content/10.1101/2023.08.15.553448v1 (doi: https://doi.org/10.1101/2023.08.15.553448)
| | - Mackenzie Horutz
- Carthage College, Kenosha, Wisconsin, USA
- Published on BioRxiv preprint server: https://www.biorxiv.org/content/10.1101/2023.08.15.553448v1 (doi: https://doi.org/10.1101/2023.08.15.553448)
| | - Steven J. Henle
- Address correspondence to: Steven J. Henle, PhD, Carthage College, Neuroscience Department, 2001 Alford Park Drive, Kenosha, WI 53140, USA
| |
Collapse
|
12
|
Schmidt AR, Placer HJ, Muhammad IM, Shephard R, Patrick RL, Saurborn T, Horstick EJ, Bergeron SA. Transcriptional control of visual neural circuit development by GS homeobox 1. PLoS Genet 2024; 20:e1011139. [PMID: 38669217 PMCID: PMC11051655 DOI: 10.1371/journal.pgen.1011139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/16/2024] [Indexed: 04/28/2024] Open
Abstract
As essential components of gene expression networks, transcription factors regulate neural circuit assembly. The homeobox transcription factor encoding gene, gs homeobox 1 (gsx1), is expressed in the developing visual system; however, no studies have examined its role in visual system formation. In zebrafish, retinal ganglion cell (RGC) axons that transmit visual information to the brain terminate in ten arborization fields (AFs) in the optic tectum (TeO), pretectum (Pr), and thalamus. Pretectal AFs (AF1-AF9) mediate distinct visual behaviors, yet we understand less about their development compared to AF10 in the TeO. Using gsx1 zebrafish mutants, immunohistochemistry, and transgenic lines, we observed that gsx1 is required for vesicular glutamate transporter, Tg(slc17a6b:DsRed), expression in the Pr, but not overall neuron number. gsx1 mutants have normal eye morphology, yet they exhibit impaired visual ability during prey capture. RGC axon volume in the gsx1 mutant Pr and TeO is reduced, and AF7 that is active during feeding is missing which is consistent with reduced hunting performance. Timed laser ablation of Tg(slc17a6b:DsRed)-positive cells reveals that they are necessary for AF7 formation. This work is the first to implicate gsx1 in establishing cell identity and functional neural circuits in the visual system.
Collapse
Affiliation(s)
- Alexandra R. Schmidt
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Haiden J. Placer
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Ishmael M. Muhammad
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Rebekah Shephard
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Regina L. Patrick
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Taylor Saurborn
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virgina, United States of America
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virgina, United States of America
| |
Collapse
|
13
|
Porcino C, Mhalhel K, Briglia M, Cometa M, Guerrera MC, Germanà PG, Montalbano G, Levanti M, Laurà R, Abbate F, Germanà A, Aragona M. Neurotrophins and Trk Neurotrophin Receptors in the Retina of Adult Killifish ( Nothobranchius guentheri). Int J Mol Sci 2024; 25:2732. [PMID: 38473977 DOI: 10.3390/ijms25052732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Specific subpopulations of neurons in nerve and sensory systems must be developed and maintained, and this is accomplished in significant part by neurotrophins (NTs) and the signaling receptors on which they act, called tyrosine protein kinase receptors (Trks). The neurotrophins-tyrosine protein kinase receptors (NTs/Trks) system is involved in sensory organ regulation, including the visual system. An NTs/Trks system alteration is associated with neurodegeneration related to aging and diseases, including retinal pathologies. An emergent model in the field of translational medicine, for instance, in aging study, is the annual killifish belonging to the Nothobranchius genus, thanks to its short lifespan. Members of this genus, such as Nothobranchius guentheri, and humans share a similar retinal stratigraphy. Nevertheless, according to the authors' knowledge, the occurrence and distribution of the NTs/Trks system in the retina of N. guentheri has never been investigated before. Therefore, the present study aimed to localize neurotrophin BDNF, NGF, and NT-3 and TrkA, TrkB, and TrkC receptors in the N. guentheri retina using the immunofluorescence method. The present investigation demonstrates, for the first time, the occurrence of the NTs/Trks system in N. guentheri retina and, consequently, the potential key role of these proteins in the biology and survival of the retinal cells.
Collapse
Affiliation(s)
- Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Kamel Mhalhel
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marilena Briglia
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Patrizia Germana Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
14
|
Volz SN, Poulsen R, Hansen M, Holbech H. Bisphenol A alters retinal morphology, visually guided behavior, and thyroid hormone levels in zebrafish larvae. CHEMOSPHERE 2024; 348:140776. [PMID: 38000552 DOI: 10.1016/j.chemosphere.2023.140776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Bisphenols are industrial chemicals that are produced in large quantities and have been detected in all parts of the environment as well as in a multitude of different organisms including humans and fish. Several bisphenols, such as bisphenol A (BPA) and bisphenol F, have been shown to disrupt endocrine systems thereby affecting development and reproduction. While numerous studies investigated the effect of bisphenols on estrogen signaling, their impact on the thyroid hormone system (THS), which is vital for neurodevelopment including sensory development, has been explored to a lesser extent. The present work selected BPA as a representative for structurally similar bisphenols and assessed its impact on the THS as well as sensory development and function in zebrafish. To this end, zebrafish were exposed to BPA until up to 8 days post fertilization (dpf) and thyroid hormone levels, eye morphology, and sensory-mediated behaviors were analyzed. Zebrafish larvae exposed to BPA showed altered retinal layering, decreased motility across varying light conditions, and a loss of responsiveness to red light. Furthermore, whole-body levels of the thyroid hormones thyroxine (T4) and 3,5-diiodothyronine (3,5-T2) were significantly decreased in 5 dpf zebrafish. Taken together, BPA disrupted THS homeostasis and compromised visual development and function, which is pivotal for the survival of fish larvae. This work underlines the necessity for ongoing research on BPA and its numerous substitutes, particularly concerning their effects on the THS and neurodevelopment, to ensure a high level of protection for the environment and human health.
Collapse
Affiliation(s)
- Sina N Volz
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Rikke Poulsen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Martin Hansen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
15
|
Xie J, Goodbourn P, Sztal T, Jusuf PR. Neural Endophenotype Assessment in Zebrafish Larvae Using Optomotor and ZebraBox Locomotion Assessment. Methods Mol Biol 2024; 2746:213-224. [PMID: 38070092 DOI: 10.1007/978-1-0716-3585-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Due to the highly conserved genetics across the central nervous system, the easily probed visual system can act as an endophenotype for assessing neurological function. Here, we describe a psychophysics approach to assess visually driven swimming behavior in the high-throughput zebrafish genetic model system. We use the optomotor response test together with general locomotion behavior to assess neural processing while excluding motor defects related to muscle function.
Collapse
Affiliation(s)
- Jiaheng Xie
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Patrick Goodbourn
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Tamar Sztal
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| | - Patricia R Jusuf
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
16
|
Lee HS, Jang S, Eom Y, Kim KT. Comparing Ocular Toxicity of Legacy and Alternative Per- and Polyfluoroalkyl Substances in Zebrafish Larvae. TOXICS 2023; 11:1021. [PMID: 38133422 PMCID: PMC10747198 DOI: 10.3390/toxics11121021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Studies comparing the ocular toxicity potential between legacy and alternative PFAS are lacking. To address this research gap, zebrafish larvae were exposed to both legacy PFAS (i.e., perfluorooctanesulfonic acid [PFOS] and perfluorooctanoic acid [PFOA]) and their corresponding alternatives (i.e., perfluorobutanesulfonic acid [PFBS] and perfluorobutanoic acid [PFBA]). Alterations in their visual behaviors, such as phototactic and optomotor responses (OMR), were assessed at sublethal concentrations. Gene expression variations in visual function-associated pathways were also measured. Visual behavioral assessment revealed that PFOS exposure resulted in concentration-dependent reductions in phototactic responses at 10-1000 μg/L, with PFOA exerting reduction effects only at 100 mg/L. However, their two alternatives had no effect at all tested concentrations. Following an improved contrast-OMR (C-OMR) assessment, PFOS decreased the OMR to a water flow stimulus at 10, 100, and 1000 μg/L. The gene expression analysis revealed that PFOS exposure markedly downregulated most genes involved in the opsins in the photoreceptor and phototransduction cascade, which explains the observed visual behavior changes well. Our findings indicate that PFOS is the most likely PFAS to cause visual toxicity, with PFOA present but less likely, and their substitutes, PFBS and PFBA, cannot be classified as visually toxic to zebrafish.
Collapse
Affiliation(s)
- Han-seul Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soogyeong Jang
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Youngsub Eom
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15355, Republic of Korea
- Department of Ophthalmology, Korea University Ansan Hospital, Ansan 15355, Republic of Korea
- Department of Ophthalmology, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Environmental Energy Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
17
|
Loiseau A, Raîche-Marcoux G, Maranda C, Bertrand N, Boisselier E. Animal Models in Eye Research: Focus on Corneal Pathologies. Int J Mol Sci 2023; 24:16661. [PMID: 38068983 PMCID: PMC10706114 DOI: 10.3390/ijms242316661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/27/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
The eye is a complex sensory organ that enables visual perception of the world. The dysfunction of any of these tissues can impair vision. Conduction studies on laboratory animals are essential to ensure the safety of therapeutic products directly applied or injected into the eye to treat ocular diseases before eventually proceeding to clinical trials. Among these tissues, the cornea has unique homeostatic and regenerative mechanisms for maintaining transparency and refraction of external light, which are essential for vision. However, being the outermost tissue of the eye and directly exposed to the external environment, the cornea is particularly susceptible to injury and diseases. This review highlights the evidence for selecting appropriate animals to better understand and treat corneal diseases, which rank as the fifth leading cause of blindness worldwide. The development of reliable and human-relevant animal models is, therefore, a valuable research tool for understanding and translating fundamental mechanistic findings, as well as for assessing therapeutic potential in humans. First, this review emphasizes the unique characteristics of animal models used in ocular research. Subsequently, it discusses current animal models associated with human corneal pathologies, their utility in understanding ocular disease mechanisms, and their role as translational models for patients.
Collapse
Affiliation(s)
- Alexis Loiseau
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Gabrielle Raîche-Marcoux
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Cloé Maranda
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| | - Nicolas Bertrand
- Faculty of Pharmacy, CHU de Quebec Research Center, Université Laval, Québec, QC G1V 4G2, Canada;
| | - Elodie Boisselier
- Faculty of Medicine, Department of Ophthalmology and Otolaryngology—Head and Neck Surgery, CHU de Québec Research Center, Université Laval, Québec, QC G1S 4L8, Canada; (G.R.-M.); (C.M.)
| |
Collapse
|
18
|
Zhang Y, Chen C, Chen K. Combined exposure to microplastics and amitriptyline induced abnormal behavioral responses and oxidative stress in the eyes of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109717. [PMID: 37586580 DOI: 10.1016/j.cbpc.2023.109717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Many studies have demonstrated that microplastics (MPs) can combine with various coexisting chemical pollutants, increasing their bioavailability and changing the combined toxicity to organisms. However, information on the combined effects of MPs and amitriptyline (AMI, a widely used tricyclic antidepressant) on aquatic species is still limited. In this study, we exposed zebrafish to MPs (2-μm polystyrene beads, 0.44 mg/L), AMI (2.5 μg/L), and their mixture for 7 days and investigated the alternation in their behaviors and ocular oxidative stress. As a result, combined exposure to MPs and AMI could significantly elevate locomotor activity, increase the frequency and duration of shoaling behavior in zebrafish, and alter their post-stimulation behaviors. Although combined exposure to MPs and AMI exhibited stronger behavioral toxicity than individual exposure, no significant interactive effects on the behavioral traits were detected, suggesting that the combined behavioral toxicity appeared to be an additive effect. However, their combined exposure to MPs or AMI significantly decreased the ocular levels of SOD, CAT, and GSH in zebrafish, with significant interaction effects on the CAT activity and GSH content. Significant correlations between some post-stimulation behavioral traits and ocular levels of SOD, CAT, and GSH in zebrafish were detected, suggesting that ocular oxidative stress induced by combined exposure to MPs and AMI may play an important role in their behavioral toxicity.
Collapse
Affiliation(s)
- Yi Zhang
- College of Ecology and Environment, Xinjiang University, Urumqi 830046, China
| | - Chen Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kun Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
19
|
Castellini ME, Spagnolli G, Poggi L, Biasini E, Casarosa S, Messina A. Identification of the zebrafish homologues of IMPG2, a retinal proteoglycan. Cell Tissue Res 2023; 394:93-105. [PMID: 37470839 PMCID: PMC10558372 DOI: 10.1007/s00441-023-03808-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Photoreceptor outer segments are surrounded by a carbohydrate-rich matrix, the interphotoreceptor matrix, necessary for physiological retinal function. Few roles for molecules characterizing the interphotoreceptor matrix have been clearly defined. Recent studies have found the presence of nonsense mutations in the interphotoreceptor matrix proteoglycan 2 (IMPG2) gene in patients affected by retinal dystrophies. IMPG2 encodes for a proteoglycan synthesized by photoreceptors and secreted in the interphotoreceptor matrix. Little is known about the structure and function of this protein, we thus decided to characterize zebrafish impg2. In zebrafish there are two Impg2 proteins, Impg2a and Impg2b. We generated a phylogenetic tree based on IMPG2 protein sequence similarity among vertebrates, showing a significant similarity between humans and teleosts. The human and zebrafish proteins share conserved domains, as also shown by homology models. Expression analyses of impg2a and impg2b show a continued expression in the photoreceptor layer starting from developmental stages and continuing through adulthood. Between 1 and 6 months post-fertilization, there is a significant shift of Impg2 expression toward the outer segment region, suggesting an increase in secretion. This raises intriguing hypotheses about its possible role(s) during retinal maturation, laying the groundwork for the generation of most needed models for the study of IMPG2-related inherited retinal dystrophies.
Collapse
Affiliation(s)
- M E Castellini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
| | - G Spagnolli
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Sibylla Biotech S.R.L, Piazzetta Chiavica 2 - 37121, Verona, VR, Italy
| | - L Poggi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy
| | - E Biasini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy
| | - S Casarosa
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy.
- Centre for Medical Sciences (CISMed), University of Trento, Via S. Maria Maddalena, 1, 38122, Trento, TN, Italy.
| | - A Messina
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Via Sommarive, 9, 38123, Povo, TN, Italy
- Centre for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068, Rovereto, TN, Italy
| |
Collapse
|
20
|
Soucy JR, Aguzzi EA, Cho J, Gilhooley MJ, Keuthan C, Luo Z, Monavarfeshani A, Saleem MA, Wang XW, Wohlschlegel J, Baranov P, Di Polo A, Fortune B, Gokoffski KK, Goldberg JL, Guido W, Kolodkin AL, Mason CA, Ou Y, Reh TA, Ross AG, Samuels BC, Welsbie D, Zack DJ, Johnson TV. Retinal ganglion cell repopulation for vision restoration in optic neuropathy: a roadmap from the RReSTORe Consortium. Mol Neurodegener 2023; 18:64. [PMID: 37735444 PMCID: PMC10514988 DOI: 10.1186/s13024-023-00655-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Retinal ganglion cell (RGC) death in glaucoma and other optic neuropathies results in irreversible vision loss due to the mammalian central nervous system's limited regenerative capacity. RGC repopulation is a promising therapeutic approach to reverse vision loss from optic neuropathies if the newly introduced neurons can reestablish functional retinal and thalamic circuits. In theory, RGCs might be repopulated through the transplantation of stem cell-derived neurons or via the induction of endogenous transdifferentiation. The RGC Repopulation, Stem Cell Transplantation, and Optic Nerve Regeneration (RReSTORe) Consortium was established to address the challenges associated with the therapeutic repair of the visual pathway in optic neuropathy. In 2022, the RReSTORe Consortium initiated ongoing international collaborative discussions to advance the RGC repopulation field and has identified five critical areas of focus: (1) RGC development and differentiation, (2) Transplantation methods and models, (3) RGC survival, maturation, and host interactions, (4) Inner retinal wiring, and (5) Eye-to-brain connectivity. Here, we discuss the most pertinent questions and challenges that exist on the path to clinical translation and suggest experimental directions to propel this work going forward. Using these five subtopic discussion groups (SDGs) as a framework, we suggest multidisciplinary approaches to restore the diseased visual pathway by leveraging groundbreaking insights from developmental neuroscience, stem cell biology, molecular biology, optical imaging, animal models of optic neuropathy, immunology & immunotolerance, neuropathology & neuroprotection, materials science & biomedical engineering, and regenerative neuroscience. While significant hurdles remain, the RReSTORe Consortium's efforts provide a comprehensive roadmap for advancing the RGC repopulation field and hold potential for transformative progress in restoring vision in patients suffering from optic neuropathies.
Collapse
Affiliation(s)
- Jonathan R Soucy
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Erika A Aguzzi
- The Institute of Ophthalmology, University College London, London, England, UK
| | - Julie Cho
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Michael James Gilhooley
- The Institute of Ophthalmology, University College London, London, England, UK
- Moorfields Eye Hospital, London, England, UK
| | - Casey Keuthan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Aboozar Monavarfeshani
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Meher A Saleem
- Bascom Palmer Eye Institute, University of Miami Health System, Miami, FL, USA
| | - Xue-Wei Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Petr Baranov
- Department of Ophthalmology, Schepens Eye Research Institute of Mass. Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Health, Portland, OR, USA
| | - Kimberly K Gokoffski
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - William Guido
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY, USA
| | - Alex L Kolodkin
- The Solomon H Snyder, Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Carol A Mason
- Departments of Pathology and Cell Biology, Neuroscience, and Ophthalmology, College of Physicians and Surgeons, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Yvonne Ou
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Ahmara G Ross
- Departments of Ophthalmology and Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian C Samuels
- Department of Ophthalmology and Visual Sciences, Callahan Eye Hospital, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Derek Welsbie
- Shiley Eye Institute and Viterbi Family Department of Ophthalmology, University of California, San Diego, CA, USA
| | - Donald J Zack
- Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas V Johnson
- Departments of Neuroscience, Molecular Biology & Genetics, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cellular & Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, 21287 MD, USA.
| |
Collapse
|
21
|
Guru A, Rady A, Darwish NM, Malafaia G, Arokiyaraj S, Arockiaraj J. Synergetic effects of polyethylene microplastic and abamectin pesticides on the eyes of zebrafish larvae and adults through activation of apoptosis signaling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104215. [PMID: 37423395 DOI: 10.1016/j.etap.2023.104215] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Although the toxicity of microplastics (MPs) and pesticides has recently been described, the possible effects of combining these pollutants are poorly understood. Thus, we evaluated the potential impact of exposure to polyethylene MP (PE-MP) and abamectin (ABM) (alone and combined) in zebrafish. After five days, the combined exposure to MP and ABM decreased the survival rate compared to exposures to individual pollutants. A significant increase in reactive oxygen species (ROS), lipid peroxidation, apoptosis, and impairment in antioxidant response was observed in zebrafish larvae. Morphological changes in the eyes of zebrafish significantly increased in the combined exposure group than in the individual exposure. Furthermore, the bax and p53 expression (specific apoptotic genes) was significantly upregulated after the combined exposure to PE-MP and ABM. So, the synergetic effect of MP and ABM cannot be ignored, and further research on other higher models is required to confirm its consequences.
Collapse
Affiliation(s)
- Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Noura M Darwish
- Faculty of Science Ain Shams University, Biochemistry Department, Abbasaya, P.O. Box. 11566, Cairo, Egypt
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil. Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil. 16 Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Brazilian Academy of Young Scientists, ABJC, Brazil.
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, the Republic of Korea
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur Chengalpattu District, 603203 Tamil Nadu, India.
| |
Collapse
|
22
|
Vöcking O, Famulski JK. Single cell transcriptome analyses of the developing zebrafish eye- perspectives and applications. Front Cell Dev Biol 2023; 11:1213382. [PMID: 37457291 PMCID: PMC10346855 DOI: 10.3389/fcell.2023.1213382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Within a relatively short period of time, single cell transcriptome analyses (SCT) have become increasingly ubiquitous with transcriptomic research, uncovering plentiful details that boost our molecular understanding of various biological processes. Stemming from SCT analyses, the ever-growing number of newly assigned genetic markers increases our understanding of general function and development, while providing opportunities for identifying genes associated with disease. SCT analyses have been carried out using tissue from numerous organisms. However, despite the great potential of zebrafish as a model organism, other models are still preferably used. In this mini review, we focus on eye research as an example of the advantages in using zebrafish, particularly its usefulness for single cell transcriptome analyses of developmental processes. As studies have already shown, the unique opportunities offered by zebrafish, including similarities to the human eye, in combination with the possibility to analyze and extract specific cells at distinct developmental time points makes the model a uniquely powerful one. Particularly the practicality of collecting large numbers of embryos and therefore isolation of sufficient numbers of developing cells is a distinct advantage compared to other model organisms. Lastly, the advent of highly efficient genetic knockouts methods offers opportunities to characterize target gene function in a more cost-efficient way. In conclusion, we argue that the use of zebrafish for SCT approaches has great potential to further deepen our molecular understanding of not only eye development, but also many other organ systems.
Collapse
Affiliation(s)
| | - Jakub K. Famulski
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
23
|
Huang W, Wu T, Wu R, Peng J, Zhang Q, Shi X, Wu K. Fish to learn: insights into the effects of environmental chemicals on eye development and visual function in zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27629-3. [PMID: 37195602 DOI: 10.1007/s11356-023-27629-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023]
Abstract
Vision is the most essential sense system for the human being. Congenital visual impairment affects millions of people globally. It is increasingly realized that visual system development is an impressionable target of environmental chemicals. However, due to inaccessibility and ethical issues, the use of humans and other placental mammals is constrained, which limits our better understanding of environmental factors on ocular development and visual function in the embryonic stage. Therefore, as complementing laboratory rodents, zebrafish has been the most frequently employed to understand the effects of environmental chemicals on eye development and visual function. One of the major reasons for the increasing use of zebrafish is their polychromatic vision. Zebrafish retinas are morphologically and functionally analogous to those of mammalian, as well as evolutionary conservation among vertebrate eye. This review provides an update on harmful effects from exposure to environmental chemicals, involving metallic elements (ions), metal-derived nanoparticles, microplastics, nanoplastics, persistent organic pollutants, pesticides, and pharmaceutical pollutants on the eye development and visual function in zebrafish embryos. The collected data provide a comprehensive understanding of environmental factors on ocular development and visual function. This report highlights that zebrafish is promising as a model to identify hazardous toxicants toward eye development and is hopeful for developing preventative or postnatal therapies for human congenital visual impairment.
Collapse
Affiliation(s)
- Wenlong Huang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Tianjie Wu
- Department of Anaesthesiology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-Sen University, Shantou, 515041, Guangdong, China
| | - Ruotong Wu
- School of Life Science, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiajun Peng
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Qiong Zhang
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Xiaoling Shi
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China
| | - Kusheng Wu
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Department of Preventive Medicine, Shantou University Medical College, Xinling Rd., No. 22, Shantou, 515041, Guangdong, China.
| |
Collapse
|
24
|
Vöcking O, Famulski JK. A temporal single cell transcriptome atlas of zebrafish anterior segment development. Sci Rep 2023; 13:5656. [PMID: 37024546 PMCID: PMC10079958 DOI: 10.1038/s41598-023-32212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Anterior segment dysgenesis (ASD), resulting in vision impairment, stems from maldevelopment of anterior segment (AS) tissues. Incidence of ASD has been linked to malfunction of periocular mesenchyme cells (POM). POM cells specify into anterior segment mesenchyme (ASM) cells which colonize and produce AS tissues. In this study we uncover ASM developmental trajectories associated with formation of the AS. Using a transgenic line of zebrafish that fluorescently labels the ASM throughout development, Tg[foxc1b:GFP], we isolated GFP+ ASM cells at several developmental timepoints (48-144 hpf) and performed single cell RNA sequencing. Clustering analysis indicates subdifferentiation of ASM as early as 48 hpf and subsequent diversification into corneal epithelium/endothelium/stroma, or annular ligament (AL) lineages. Tracking individual clusters reveals common developmental pathways, up to 72 hpf, for the AL and corneal endothelium/stroma and distinct pathways for corneal epithelium starting at 48 hpf. Spatiotemporal validation of over 80 genes found associated with AS development demonstrates a high degree of conservation with mammalian trabecular meshwork and corneal tissues. In addition, we characterize thirteen novel genes associated with annular ligament and seven with corneal development. Overall, the data provide a molecular verification of the long-standing hypothesis that POM derived ASM give rise to AS tissues and highlight the high degree of conservation between zebrafish and mammals.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, USA
| | - J K Famulski
- Department of Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
25
|
Quint WH, van Buuren R, Kokke NCCJ, Meester-Smoor MA, Willemsen R, Broersma R, Iglesias AI, Lucassen M, Klaver CCW. Exposure to cyan or red light inhibits the axial growth of zebrafish eyes. Exp Eye Res 2023; 230:109437. [PMID: 36924981 DOI: 10.1016/j.exer.2023.109437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Myopia, or nearsightedness, is the most common type of refractive error and is characterized by a mismatch between the optical power and ocular axial length. Light, and more specifically the spectral composition of light, has been known to influence myopic axial growth. In this pilot study, we exposed zebrafish to illuminations that vary in spectral composition and screened for changes in axial length. The illumination spectra included narrow band ultra-violet A (UVA) (peak wavelength 369 nm), violet (425 nm), cyan (483 nm), green/yellow (557 nm), and red (633 nm) light, as well as broad band white light (2700 K and 6500 K), dim white light and broad spectrum (day) light. We found that rearing zebrafish in cyan or red light leads to a reduction of the ocular axial length. The results of this pilot study may contribute to new perspectives on the role of light and lighting as an intervention strategy for myopia control.
Collapse
Affiliation(s)
- Wim H Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Renee van Buuren
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Nina C C J Kokke
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rémy Broersma
- Signify Research, Signify, Eindhoven, the Netherlands
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland.
| |
Collapse
|
26
|
Kraft M, Gölz L, Rinderknecht M, Koegst J, Braunbeck T, Baumann L. Developmental exposure to triclosan and benzophenone-2 causes morphological alterations in zebrafish (Danio rerio) thyroid follicles and eyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:33711-33724. [PMID: 36495432 PMCID: PMC9736712 DOI: 10.1007/s11356-022-24531-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/31/2023]
Abstract
Thyroid hormones (THs) regulate a multitude of developmental and metabolic processes, which are responsible for vertebrate development, growth, and maintenance of homeostasis. THs also play a key role in neurogenesis of vertebrates and thus affect eye development, which is vital for foraging efficiency and for effective escape from predation. Currently, there are no validated test guidelines for the assessment of TH system-disrupting chemicals (THSDCs) in fish. Consequently, the present study was designed to demonstrate the suitability of novel thyroid-related endpoints in early life-stages of fish. Embryos of a transgenic zebrafish (Danio rerio) line expressing the reporter gene tg:mCherry in their thyrocytes were used to investigate the effects of the environmental THSDCs triclosan (TCS, antibacterial agent) and benzophenone-2 (BP-2, UV filter) on thyroid follicle and eye development. Both BP-2 and TCS caused thyroid follicle hyperplasia in transgenic zebrafish, thus confirming their role as THSDCs. The effect intensity on follicle size and fluorescence was comparable with a 1.7-fold increase for BP-2 and 1.6-fold for TCS. Alterations of the cellular structures of the retina indicate an impact of both substances on eye development, with a stronger impact of TCS. With respect to guideline development, results provide further evidence for the suitability of morphological changes in thyroid follicles and the eyes as novel endpoints for the sensitive assessment of THSD-related effects in fish.
Collapse
Affiliation(s)
- Maximilian Kraft
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Gölz
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Maximilian Rinderknecht
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Toxicology and Ecology Section, Centre of Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
27
|
Kugler E, Bravo I, Durmishi X, Marcotti S, Beqiri S, Carrington A, Stramer B, Mattar P, MacDonald RB. GliaMorph: a modular image analysis toolkit to quantify Müller glial cell morphology. Development 2023; 150:dev201008. [PMID: 36625162 PMCID: PMC10110500 DOI: 10.1242/dev.201008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cell morphology is crucial for all cell functions. This is particularly true for glial cells as they rely on complex shape to contact and support neurons. However, methods to quantify complex glial cell shape accurately and reproducibly are lacking. To address this, we developed the image analysis pipeline 'GliaMorph'. GliaMorph is a modular analysis toolkit developed to perform (1) image pre-processing, (2) semi-automatic region-of-interest selection, (3) apicobasal texture analysis, (4) glia segmentation, and (5) cell feature quantification. Müller glia (MG) have a stereotypic shape linked to their maturation and physiological status. Here, we characterized MG on three levels: (1) global image-level, (2) apicobasal texture, and (3) regional apicobasal vertical-to-horizontal alignment. Using GliaMorph, we quantified MG development on a global and single-cell level, showing increased feature elaboration and subcellular morphological rearrangement in the zebrafish retina. As proof of principle, we analysed expression changes in a mouse glaucoma model, identifying subcellular protein localization changes in MG. Together, these data demonstrate that GliaMorph enables an in-depth understanding of MG morphology in the developing and diseased retina.
Collapse
Affiliation(s)
- Elisabeth Kugler
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Isabel Bravo
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Xhuljana Durmishi
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Stefania Marcotti
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Sara Beqiri
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Alicia Carrington
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| | - Brian Stramer
- Randall Centre for Cell & Molecular Biophysics, King's College London, New Hunt's House, London SE1 1UL, UK
| | - Pierre Mattar
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Ottawa Hospital Research Institute (OHRI), Ottawa, ON, K1H 8L6, Canada
| | - Ryan B. MacDonald
- Institute of Ophthalmology, University College London, 11-43 Bath St, Greater London EC1V 9EL, UK
| |
Collapse
|
28
|
Quint WH, Tadema KCD, Kokke NCCJ, Meester-Smoor MA, Miller AC, Willemsen R, Klaver CCW, Iglesias AI. Post-GWAS screening of candidate genes for refractive error in mutant zebrafish models. Sci Rep 2023; 13:2017. [PMID: 36737489 PMCID: PMC9898536 DOI: 10.1038/s41598-023-28944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies (GWAS) have dissected numerous genetic factors underlying refractive errors (RE) such as myopia. Despite significant insights into understanding the genetic architecture of RE, few studies have validated and explored the functional role of candidate genes within these loci. To functionally follow-up on GWAS and characterize the potential role of candidate genes on the development of RE, we prioritized nine genes (TJP2, PDE11A, SHISA6, LAMA2, LRRC4C, KCNQ5, GNB3, RBFOX1, and GRIA4) based on biological and statistical evidence; and used CRISPR/cas9 to generate knock-out zebrafish mutants. These mutant fish were screened for abnormalities in axial length by spectral-domain optical coherence tomography and refractive status by eccentric photorefraction at the juvenile (2 months) and adult (4 months) developmental stage. We found a significantly increased axial length and myopic shift in refractive status in three of our studied mutants, indicating a potential involvement of the human orthologs (LAMA2, LRRC4C, and KCNQ5) in myopia development. Further, in-situ hybridization studies showed that all three genes are expressed throughout the zebrafish retina. Our zebrafish models provide evidence of a functional role of these three genes in refractive error development and offer opportunities to elucidate pathways driving the retina-to-sclera signaling cascade that leads to myopia.
Collapse
Affiliation(s)
- Wim H Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kirke C D Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nina C C J Kokke
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, USA
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
29
|
Ma X, Dai Y, Qiu T, Chen X, Xiao P, Li W. Effects of acute exposure to amisulbrom on retinal development in zebrafish (Danio rerio) embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46248-46256. [PMID: 36715803 DOI: 10.1007/s11356-023-25584-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 01/23/2023] [Indexed: 01/31/2023]
Abstract
Amisulbrom is an oomycete-specific fungicide that was developed by Nissan Chemical Industries Limited. The exposure of developing zebrafish embryo to amisulbrom caused disorders in the visual phototransduction system. However, the potential toxic mechanisms of amisulbrom on retinal development remains unclear. The research purpose of this study was to evaluate the adverse effects of amisulbrom on retinal development in a model organism, the zebrafish. Zebrafish embryos were treated with 0, 0.0075, 0.075, or 0.75 μM amisulbrom from 3 h post-fertilization (hpf) to 72 hpf. Compared with the control group, amisulbrom-treated zebrafish embryos displayed phenotypic microphthalmia, dysregulation of gene transcription levels (alcama, prox1a, sox2, vsx1, rho, bluops, rdops, uvops, and grops) related to the retinal cell layer differentiation, and increased retinal apoptosis. In addition, the content of glutathione and malondialdehyde increased significantly after exposure to amisulbrom. Overall, our data demonstrate the toxicity of amisulbrom to eye development, which will help to assess the potential ecotoxicological impacts posed by amisulbrom to aquatic species.
Collapse
Affiliation(s)
- Xueying Ma
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Yizhe Dai
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Tiantong Qiu
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Xin Chen
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, 325035, Wenzhou, People's Republic of China
| | - Wenhua Li
- Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Fujian Molecular Medicine, Key Laboratory of Xiamen Marine and Gene Drugs, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, People's Republic of China.
| |
Collapse
|
30
|
Kugler E, Breitenbach EM, MacDonald R. Glia Cell Morphology Analysis Using the Fiji GliaMorph Toolkit. Curr Protoc 2023; 3:e654. [PMID: 36688682 PMCID: PMC10108223 DOI: 10.1002/cpz1.654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glial cells are the support cells of the nervous system. Glial cells typically have elaborate morphologies that facilitate close contacts with neighboring neurons, synapses, and the vasculature. In the retina, Müller glia (MG) are the principal glial cell type that supports neuronal function by providing a myriad of supportive functions via intricate cell morphologies and precise contacts. Thus, complex glial morphology is critical for glial function, but remains challenging to resolve at a sub-cellular level or reproducibly quantify in complex tissues. To address this issue, we developed GliaMorph as a Fiji-based macro toolkit that allows 3D glial cell morphology analysis in the developing and mature retina. As GliaMorph is implemented in a modular fashion, here we present guides to (a) setup of GliaMorph, (b) data understanding in 3D, including z-axis intensity decay and signal-to-noise ratio, (c) pre-processing data to enhance image quality, (d) performing and examining image segmentation, and (e) 3D quantification of MG features, including apicobasal texture analysis. To allow easier application, GliaMorph tools are supported with graphical user interfaces where appropriate, and example data are publicly available to facilitate adoption. Further, GliaMorph can be modified to meet users' morphological analysis needs for other glial or neuronal shapes. Finally, this article provides users with an in-depth understanding of data requirements and the workflow of GliaMorph. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Download and installation of GliaMorph components including example data Basic Protocol 2: Understanding data properties and quality 3D-essential for subsequent analysis and capturing data property issues early Basic Protocol 3: Pre-processing AiryScan microscopy data for analysis Alternate Protocol: Pre-processing confocal microscopy data for analysis Basic Protocol 4: Segmentation of glial cells Basic Protocol 5: 3D quantification of glial cell morphology.
Collapse
Affiliation(s)
- Elisabeth Kugler
- Institute of Ophthalmology, University College London, Greater London, UK
| | | | - Ryan MacDonald
- Institute of Ophthalmology, University College London, Greater London, UK
| |
Collapse
|
31
|
Wu L, Zeeshan M, Dang Y, Liang LY, Gong YC, Li QQ, Tan YW, Fan YY, Lin LZ, Zhou Y, Liu RQ, Hu LW, Yang BY, Zeng XW, Yu Y, Dong GH. Environmentally relevant concentrations of F-53B induce eye development disorders-mediated locomotor behavior in zebrafish larvae. CHEMOSPHERE 2022; 308:136130. [PMID: 36049635 DOI: 10.1016/j.chemosphere.2022.136130] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/19/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The perfluorooctane sulfonate alternative, F-53B, induces multiple physiological defects but whether it can disrupt eye development is unknown. We exposed zebrafish to F-53B at four different concentrations (0, 0.15, 1.5, and 15 μg/L) for 120 h post-fertilization (hpf). Locomotor behavior, neurotransmitters content, histopathological alterations, morphological changes, cell apoptosis, and retinoic acid signaling were studied. Histology and morphological analyses showed that F-53B induced pathological changes in lens and retina of larvae and eye size were significantly reduced as compared to control. Acridine orange (AO) staining revealed a dose-dependent increase in early apoptosis, accompanied by upregulation of p53, casp-9 and casp-3 genes. Genes related to retinoic acid signaling (aldh1a2), lens developmental (cryaa, crybb, crygn, and mipa) and retinal development (pax6, rx1, gant1, rho, opn1sw and opn1lw) were significantly downregulated. In addition, behavioral responses (swimming speed) were significantly increased, while no significant changes in the neurotransmitters (dopamine and acetylcholine) level were observed. Therefore, in this study we observed that exposure to F-53B inflicted histological and morphological changes in zebrafish larvae eye, induced visual motor dysfunctions, perturbed retinoid signaling and retinal development and ultimately triggering apoptosis.
Collapse
Affiliation(s)
- Luyin Wu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mohammed Zeeshan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Li-Ya Liang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Chen Gong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Qing Li
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya-Wen Tan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuan-Yuan Fan
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Zi Lin
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhou
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ru-Qing Liu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Wen Hu
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bo-Yi Yang
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Guang-Hui Dong
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
32
|
Maricic N, Schwermer M, Schramm A, Morosan-Puopolo G, Ketteler P, Brand-Saberi B. Zebrafish as an Orthotopic Tumor Model for Retinoblastoma Mimicking Routes of Human Metastasis. Cancers (Basel) 2022; 14:cancers14235814. [PMID: 36497295 PMCID: PMC9736091 DOI: 10.3390/cancers14235814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Retinoblastoma (RB) is the most common eye cancer in children that has a high mortality rate when left untreated. Mouse models for retinoblastoma have been established but are time- and cost-intensive. The aim of this work was to evaluate an orthotopic transplantation model of retinoblastoma in zebrafish that also allows for tracking migratory routes and to explore advantages and disadvantages with respect to drug testing. METHODS Three fluorescence-labeled retinoblastoma cell lines (RB355, WERI-RB-1, Y79) were injected into the left eye of two-day-old zebrafish, while the un-injected right eye served as control. The migratory trajectories of injected retinoblastoma cells were observed until 8 days post injection (dpi), both in lateral and dorsal view, and measuring fluorescence intensity of injected cells was done for RB355 cells. RESULTS Time until the onset of migration and routes for all three retinoblastoma cell lines were comparable and resulted in migration into the brain and ventricles of the forebrain, midbrain and hindbrain. Involvement of the optic nerve was observed in 10% of injections with the RB355 cell line, 15% with Y79 cells and 5% with WERI-RB-1 cells. Fluorescence intensity of injected RB355 cells showed an initial increase until five dpi, but then decreased with high variability until the end of observation. CONCLUSION The zebrafish eye is well suited for the analysis of migratory routes in retinoblastoma and closely mirrors patterns of retinoblastoma metastases in humans.
Collapse
Affiliation(s)
- Nenad Maricic
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, D-44801 Bochum, Germany
- Institute of Anatomy and Molecular Neurobiology, Westfälische-Wilhelms University, D-48149 Münster, Germany
| | - Melanie Schwermer
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, D-45147 Essen, Germany
| | - Alexander Schramm
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, D-45147 Essen, Germany
| | - Gabriela Morosan-Puopolo
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, D-44801 Bochum, Germany
| | - Petra Ketteler
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, D-45147 Essen, Germany
- Correspondence: (P.K.); (B.B.-S.); Tel.: +49-(0)201-72-32003 (P.K.); +49-(0)234-32-27780 (B.B.-S.)
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University of Bochum, D-44801 Bochum, Germany
- Correspondence: (P.K.); (B.B.-S.); Tel.: +49-(0)201-72-32003 (P.K.); +49-(0)234-32-27780 (B.B.-S.)
| |
Collapse
|
33
|
Peña JS, Vazquez M. Harnessing the Neuroprotective Behaviors of Müller Glia for Retinal Repair. FRONT BIOSCI-LANDMRK 2022; 27:169. [PMID: 35748245 PMCID: PMC9639582 DOI: 10.31083/j.fbl2706169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.
Collapse
Affiliation(s)
- Juan S. Peña
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| | - Maribel Vazquez
- Department of Biomedical Engineering, Rutgers, The State
University of New Jersey, Piscataway (08854), New Jersey, USA
| |
Collapse
|
34
|
Yoon B, Yeung P, Santistevan N, Bluhm LE, Kawasaki K, Kueper J, Dubielzig R, VanOudenhove J, Cotney J, Liao EC, Grinblat Y. Zebrafish models of alx-linked frontonasal dysplasia reveal a role for Alx1 and Alx3 in the anterior segment and vasculature of the developing eye. Biol Open 2022; 11:bio059189. [PMID: 35142342 PMCID: PMC9167625 DOI: 10.1242/bio.059189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
The cellular and genetic mechanisms that coordinate formation of facial sensory structures with surrounding skeletal and soft tissue elements remain poorly understood. Alx1, a homeobox transcription factor, is a key regulator of midfacial morphogenesis. ALX1 mutations in humans are linked to severe congenital anomalies of the facial skeleton (frontonasal dysplasia, FND) with malformation or absence of eyes and orbital contents (micro- and anophthalmia). Zebrafish with loss-of-function alx1 mutations develop with craniofacial and ocular defects of variable penetrance, likely due to compensatory upregulation in expression of a paralogous gene, alx3. Here we show that zebrafish alx1;alx3 mutants develop with highly penetrant cranial and ocular defects that resemble human ALX1-linked FND. alx1 and alx3 are expressed in anterior cranial neural crest (aCNC), which gives rise to the anterior neurocranium (ANC), anterior segment structures of the eye and vascular pericytes. Consistent with a functional requirement for alx genes in aCNC, alx1; alx3 mutants develop with nearly absent ANC and grossly aberrant hyaloid vasculature and ocular anterior segment, but normal retina. In vivo lineage labeling identified a requirement for alx1 and alx3 during aCNC migration, and transcriptomic analysis suggested oxidative stress response as a key target mechanism of this function. Oxidative stress is a hallmark of fetal alcohol toxicity, and we found increased penetrance of facial and ocular malformations in alx1 mutants exposed to ethanol, consistent with a protective role for alx1 against ethanol toxicity. Collectively, these data demonstrate a conserved role for zebrafish alx genes in controlling ocular and facial development, and a novel role in protecting these key midfacial structures from ethanol toxicity during embryogenesis. These data also reveal novel roles for alx genes in ocular anterior segment formation and vascular development and suggest that retinal deficits in alx mutants may be secondary to aberrant ocular vascularization and anterior segment defects. This study establishes robust zebrafish models for interrogating conserved genetic mechanisms that coordinate facial and ocular development, and for exploring gene--environment interactions relevant to fetal alcohol syndrome.
Collapse
Affiliation(s)
- Baul Yoon
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Pan Yeung
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Nicholas Santistevan
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| | - Lauren E. Bluhm
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
| | - Kenta Kawasaki
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Janina Kueper
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
- Institute of Human Genetics, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Richard Dubielzig
- Comparative Ocular Pathology Laboratory of Wisconsin (COPLOW), University of Wisconsin, Madison, WI 53706, USA
| | - Jennifer VanOudenhove
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Justin Cotney
- University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, CT 06030, USA
| | - Eric C. Liao
- Center for Regenerative Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospital for Children, Boston, 02114, USA
| | - Yevgenya Grinblat
- Departments of Integrative Biology and Neuroscience, University of Wisconsin, Madison, WI 53706, USA
- Genetics Ph.D. Training Program, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
35
|
Henry D, Joselevitch C, Matthews GG, Wollmuth LP. Expression and distribution of synaptotagmin family members in the zebrafish retina. J Comp Neurol 2022; 530:705-728. [PMID: 34468021 PMCID: PMC8792163 DOI: 10.1002/cne.25238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/10/2022]
Abstract
Synaptotagmins belong to a large family of proteins. Although various synaptotagmins have been implicated as Ca2+ sensors for vesicle replenishment and release at conventional synapses, their roles at retinal ribbon synapses remain incompletely understood. Zebrafish is a widely used experimental model for retinal research. We therefore investigated the homology between human, rat, mouse, and zebrafish synaptotagmins 1-10 using a bioinformatics approach. We also characterized the expression and distribution of various synaptotagmin (syt) genes in the zebrafish retina using RT-PCR, qPCR, and in situhybridization, focusing on the family members whose products likely underlie Ca2+ -dependent exocytosis in the central nervous system (synaptotagmins 1, 2, 5, and 7). Most zebrafish synaptotagmins are well conserved and can be grouped in the same classes as mammalian synaptotagmins, based on crucial amino acid residues needed for coordinating Ca2+ binding and determining phospholipid binding affinity. The only exception is synaptotagmin 1b, which lacks 34 amino acid residues in the C2B domain and is therefore unlikely to bind Ca2+ there. Additionally, the products of zebrafish syt5a and syt5b genes share identity with mammalian class 1 and 5 synaptotagmins. Zebrafish syt1, syt2, syt5, and syt7 paralogues are found in the zebrafish brain, eye, and retina, excepting syt1b, which is only present in the brain. The complementary expression pattern of the remaining paralogues in the retina suggests that syt1a and syt5a may underlie synchronous release and syt7a and syt7b may mediate asynchronous release or other Ca2+ -dependent processes in different retinal neurons.
Collapse
Affiliation(s)
- Diane Henry
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Christina Joselevitch
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Gary G. Matthews
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| | - Lonnie P. Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY 11794-5230,Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794-5230,Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY 11794-5230
| |
Collapse
|
36
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
37
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
38
|
Gatto E, Bruzzone M, Lucon-Xiccato T. Innate visual discrimination abilities of zebrafish larvae. Behav Processes 2021; 193:104534. [PMID: 34755638 DOI: 10.1016/j.beproc.2021.104534] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022]
Abstract
The ability to discriminate between objects visually plays a key role in animals' interactions with their environment because it enables them to recognise companions, prey, and predators. In the zebrafish, Danio rerio, hatching occurs early on during development (48-72 h post fertilisation), and the larvae must forage and evade predators despite their immature sensory and cognitive systems. Using a preference paradigm, we investigated whether larval zebrafish are nonetheless capable of discriminating between visual stimuli. We found that larvae discriminated not only between figures with different colours or different shapes, but also between two identical figures with different orientations and between sets of figures with different numerosities. By manipulating larvae's exposure to objects before the test, we demonstrated that their discrimination abilities are innate and do not depend upon experience. This study highlighted that zebrafish possess relatively sophisticated visual discrimination abilities even at the larval stage. These abilities likely improve larval survival via the recognition of biologically relevant stimuli.
Collapse
Affiliation(s)
- Elia Gatto
- Department of General Psychology, University of Padova, Padova, Italy.
| | - Matteo Bruzzone
- Department of General Psychology, University of Padova, Padova, Italy; Padua Neuroscience Center - PNC, University of Padova, Padova, Italy
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
39
|
Kugler EC, Greenwood J, MacDonald RB. The "Neuro-Glial-Vascular" Unit: The Role of Glia in Neurovascular Unit Formation and Dysfunction. Front Cell Dev Biol 2021; 9:732820. [PMID: 34646826 PMCID: PMC8502923 DOI: 10.3389/fcell.2021.732820] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
The neurovascular unit (NVU) is a complex multi-cellular structure consisting of endothelial cells (ECs), neurons, glia, smooth muscle cells (SMCs), and pericytes. Each component is closely linked to each other, establishing a structural and functional unit, regulating central nervous system (CNS) blood flow and energy metabolism as well as forming the blood-brain barrier (BBB) and inner blood-retina barrier (BRB). As the name suggests, the “neuro” and “vascular” components of the NVU are well recognized and neurovascular coupling is the key function of the NVU. However, the NVU consists of multiple cell types and its functionality goes beyond the resulting neurovascular coupling, with cross-component links of signaling, metabolism, and homeostasis. Within the NVU, glia cells have gained increased attention and it is increasingly clear that they fulfill various multi-level functions in the NVU. Glial dysfunctions were shown to precede neuronal and vascular pathologies suggesting central roles for glia in NVU functionality and pathogenesis of disease. In this review, we take a “glio-centric” view on NVU development and function in the retina and brain, how these change in disease, and how advancing experimental techniques will help us address unanswered questions.
Collapse
Affiliation(s)
- Elisabeth C Kugler
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - John Greenwood
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Ryan B MacDonald
- Institute of Ophthalmology, Faculty of Brain Sciences, University College London, London, United Kingdom
| |
Collapse
|
40
|
Katz SR, Yakovlev MA, Vanselow DJ, Ding Y, Lin AY, Parkinson DY, Wang Y, Canfield VA, Ang KC, Cheng KC. Whole-organism 3D quantitative characterization of zebrafish melanin by silver deposition micro-CT. eLife 2021; 10:e68920. [PMID: 34528510 PMCID: PMC8445617 DOI: 10.7554/elife.68920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023] Open
Abstract
We previously described X-ray histotomography, a high-resolution, non-destructive form of X-ray microtomography (micro-CT) imaging customized for three-dimensional (3D), digital histology, allowing quantitative, volumetric tissue and organismal phenotyping (Ding et al., 2019). Here, we have combined micro-CT with a novel application of ionic silver staining to characterize melanin distribution in whole zebrafish larvae. The resulting images enabled whole-body, computational analyses of regional melanin content and morphology. Normalized micro-CT reconstructions of silver-stained fish consistently reproduced pigment patterns seen by light microscopy, and further allowed direct quantitative comparisons of melanin content across wild-type and mutant samples, including subtle phenotypes not previously noticed. Silver staining of melanin for micro-CT provides proof-of-principle for whole-body, 3D computational phenomic analysis of a specific cell type at cellular resolution, with potential applications in other model organisms and melanocytic neoplasms. Advances such as this in whole-organism, high-resolution phenotyping provide superior context for studying the phenotypic effects of genetic, disease, and environmental variables.
Collapse
Affiliation(s)
- Spencer R Katz
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Medical Scientist Training Program, Penn State College of MedicineHersheyUnited States
| | - Maksim A Yakovlev
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Daniel J Vanselow
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Yifu Ding
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Medical Scientist Training Program, Penn State College of MedicineHersheyUnited States
| | - Alex Y Lin
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | | | - Yuxin Wang
- Mobile Imaging Innovations, IncPalatineUnited States
| | - Victor A Canfield
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
| | - Khai C Ang
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Zebrafish Functional Genomics Core, Penn State College of MedicineHersheyUnited States
| | - Keith C Cheng
- Division of Experimental Pathology, Department of Pathology, Pennsylvania State University College of MedicineHersheyUnited States
- The Jake Gittlen Laboratories for Cancer Research, Penn State College of MedicineHersheyUnited States
- Zebrafish Functional Genomics Core, Penn State College of MedicineHersheyUnited States
| |
Collapse
|
41
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
42
|
Acid-Sensing Ion Channels in Zebrafish. Animals (Basel) 2021; 11:ani11082471. [PMID: 34438928 PMCID: PMC8388743 DOI: 10.3390/ani11082471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The present review collects data regarding the presence of ASICs (acid-sensing ion channels) in zebrafish, which have become, over several years, an important experimental model for the study of various diseases. ASICs are a family of ion channels involved in the perception of different types of stimuli. They are excitatory receptors for extracellular H+ involved in synaptic transmission, the peripheral perception of pain and in chemical or mechanosensation. Abstract The ASICs, in mammals as in fish, control deviations from the physiological values of extracellular pH, and are involved in mechanoreception, nociception, or taste receptions. They are widely expressed in the central and peripheral nervous system. In this review, we summarized the data about the presence and localization of ASICs in different organs of zebrafish that represent one of the most used experimental models for the study of several diseases. In particular, we analyzed the data obtained by immunohistochemical and molecular biology techniques concerning the presence and expression of ASICs in the sensory organs, such as the olfactory rosette, lateral line, inner ear, taste buds, and in the gut and brain of zebrafish.
Collapse
|
43
|
Casey MA, Lusk S, Kwan KM. Build me up optic cup: Intrinsic and extrinsic mechanisms of vertebrate eye morphogenesis. Dev Biol 2021; 476:128-136. [PMID: 33811855 PMCID: PMC8848517 DOI: 10.1016/j.ydbio.2021.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/16/2022]
Abstract
The basic structure of the eye, which is crucial for visual function, is established during the embryonic process of optic cup morphogenesis. Molecular pathways of specification and patterning are integrated with spatially distinct cell and tissue shape changes to generate the eye, with discrete domains and structural features: retina and retinal pigment epithelium enwrap the lens, and the optic fissure occupies the ventral surface of the eye and optic stalk. Interest in the underlying cell biology of eye morphogenesis has led to a growing body of work, combining molecular genetics and imaging to quantify cellular processes such as adhesion and actomyosin activity. These studies reveal that intrinsic machinery and spatiotemporally specific extrinsic inputs collaborate to control dynamics of cell movements and morphologies. Here we consider recent advances in our understanding of eye morphogenesis, with a focus on the mechanics of eye formation throughout vertebrate systems, including insights and potential opportunities using organoids, which may provide a tractable system to test hypotheses from embryonic models.
Collapse
Affiliation(s)
- Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Sarah Lusk
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
44
|
Hong Y, Luo Y. Zebrafish Model in Ophthalmology to Study Disease Mechanism and Drug Discovery. Pharmaceuticals (Basel) 2021; 14:ph14080716. [PMID: 34451814 PMCID: PMC8400593 DOI: 10.3390/ph14080716] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/16/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Visual impairment and blindness are common and seriously affect people’s work and quality of life in the world. Therefore, the effective therapies for eye diseases are of high priority. Zebrafish (Danio rerio) is an alternative vertebrate model as a useful tool for the mechanism elucidation and drug discovery of various eye disorders, such as cataracts, glaucoma, diabetic retinopathy, age-related macular degeneration, photoreceptor degeneration, etc. The genetic and embryonic accessibility of zebrafish in combination with a behavioral assessment of visual function has made it a very popular model in ophthalmology. Zebrafish has also been widely used in ocular drug discovery, such as the screening of new anti-angiogenic compounds or neuroprotective drugs, and the oculotoxicity test. In this review, we summarized the applications of zebrafish as the models of eye disorders to study disease mechanism and investigate novel drug treatments.
Collapse
Affiliation(s)
| | - Yan Luo
- Correspondence: ; Tel.: +86-020-87335931
| |
Collapse
|
45
|
Affiliation(s)
- Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Strada le Grazie 8, I-37124, Verona, Italy
| | - Karl-Wilhelm Koch
- Department of Neuroscience, Division of Biochemistry, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26111, Oldenburg, Germany
| | - Giorgio Rispoli
- Department of Neuroscience and Rehabilitation, Section of Physiology, Via Borsari 46, I-44121, Ferrara, Italy.
| |
Collapse
|
46
|
Quint WH, Tadema KCD, de Vrieze E, Lukowicz RM, Broekman S, Winkelman BHJ, Hoevenaars M, de Gruiter HM, van Wijk E, Schaeffel F, Meester-Smoor M, Miller AC, Willemsen R, Klaver CCW, Iglesias AI. Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. Commun Biol 2021; 4:676. [PMID: 34083742 PMCID: PMC8175550 DOI: 10.1038/s42003-021-02185-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 12/20/2022] Open
Abstract
Myopia is the most common developmental disorder of juvenile eyes, and it has become an increasing cause of severe visual impairment. The GJD2 locus has been consistently associated with myopia in multiple independent genome-wide association studies. However, despite the strong genetic evidence, little is known about the functional role of GJD2 in refractive error development. Here, we find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish, cause changes in the biometry and refractive status of the eye. Our immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin and its depletion leads to hyperopia and electrophysiological changes in the retina. These findings support a role for Cx35.5 (gjd2a) in the regulation of ocular biometry. Cx35.1 (gjd2b) has previously been identified in the retina, however, we found an additional lenticular role. Lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. Our results provide functional evidence of a link between gjd2 and refractive error.
Collapse
Affiliation(s)
- Wim H Quint
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Kirke C D Tadema
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rachel M Lukowicz
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Sanne Broekman
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Beerend H J Winkelman
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cerebellar Coordination and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Melanie Hoevenaars
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Erwin van Wijk
- Department of Otorhinolaryngology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank Schaeffel
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
| | - Magda Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, United States
| | - Rob Willemsen
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adriana I Iglesias
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands.
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
47
|
Advancing Diabetic Retinopathy Research: Analysis of the Neurovascular Unit in Zebrafish. Cells 2021; 10:cells10061313. [PMID: 34070439 PMCID: PMC8228394 DOI: 10.3390/cells10061313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic retinopathy is one of the most important microvascular complications associated with diabetes mellitus, and a leading cause of vision loss or blindness worldwide. Hyperglycaemic conditions disrupt microvascular integrity at the level of the neurovascular unit. In recent years, zebrafish (Danio rerio) have come into focus as a model organism for various metabolic diseases such as diabetes. In both mammals and vertebrates, the anatomy and the function of the retina and the neurovascular unit have been highly conserved. In this review, we focus on the advances that have been made through studying pathologies associated with retinopathy in zebrafish models of diabetes. We discuss the different cell types that form the neurovascular unit, their role in diabetic retinopathy and how to study them in zebrafish. We then present new insights gained through zebrafish studies. The advantages of using zebrafish for diabetic retinopathy are summarised, including the fact that the zebrafish has, so far, provided the only animal model in which hyperglycaemia-induced retinal angiogenesis can be observed. Based on currently available data, we propose potential investigations that could advance the field further.
Collapse
|
48
|
Jaroszynska N, Harding P, Moosajee M. Metabolism in the Zebrafish Retina. J Dev Biol 2021; 9:10. [PMID: 33804189 PMCID: PMC8006245 DOI: 10.3390/jdb9010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Retinal photoreceptors are amongst the most metabolically active cells in the body, consuming more glucose as a metabolic substrate than even the brain. This ensures that there is sufficient energy to establish and maintain photoreceptor functions during and after their differentiation. Such high dependence on glucose metabolism is conserved across vertebrates, including zebrafish from early larval through to adult retinal stages. As the zebrafish retina develops rapidly, reaching an adult-like structure by 72 hours post fertilisation, zebrafish larvae can be used to study metabolism not only during retinogenesis, but also in functionally mature retinae. The interplay between rod and cone photoreceptors and the neighbouring retinal pigment epithelium (RPE) cells establishes a metabolic ecosystem that provides essential control of their individual functions, overall maintaining healthy vision. The RPE facilitates efficient supply of glucose from the choroidal vasculature to the photoreceptors, which produce metabolic products that in turn fuel RPE metabolism. Many inherited retinal diseases (IRDs) result in photoreceptor degeneration, either directly arising from photoreceptor-specific mutations or secondary to RPE loss, leading to sight loss. Evidence from a number of vertebrate studies suggests that the imbalance of the metabolic ecosystem in the outer retina contributes to metabolic failure and disease pathogenesis. The use of larval zebrafish mutants with disease-specific mutations that mirror those seen in human patients allows us to uncover mechanisms of such dysregulation and disease pathology with progression from embryonic to adult stages, as well as providing a means of testing novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Philippa Harding
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK
- Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
- The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
49
|
Neurodegeneration, Neuroprotection and Regeneration in the Zebrafish Retina. Cells 2021; 10:cells10030633. [PMID: 33809186 PMCID: PMC8000332 DOI: 10.3390/cells10030633] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
Neurodegenerative retinal diseases, such as glaucoma and diabetic retinopathy, involve a gradual loss of neurons in the retina as the disease progresses. Central nervous system neurons are not able to regenerate in mammals, therefore, an often sought after course of treatment for neuronal loss follows a neuroprotective or regenerative strategy. Neuroprotection is the process of preserving the structure and function of the neurons that have survived a harmful insult; while regenerative approaches aim to replace or rewire the neurons and synaptic connections that were lost, or induce regrowth of damaged axons or dendrites. In order to test the neuroprotective effectiveness or the regenerative capacity of a particular agent, a robust experimental model of retinal neuronal damage is essential. Zebrafish are being used more often in this type of study because their eye structure and development is well-conserved between zebrafish and mammals. Zebrafish are robust genetic tools and are relatively inexpensive to maintain. The large array of functional and behavioral tests available in zebrafish makes them an attractive model for neuroprotection studies. Some common insults used to model retinal disease and study neuroprotection in zebrafish include intense light, chemical toxicity and mechanical damage. This review covers the existing retinal neuroprotection and regeneration literature in the zebrafish and highlights their potential for future studies.
Collapse
|
50
|
Chaturvedi V, Murray MJ. Netrins: Evolutionarily Conserved Regulators of Epithelial Fusion and Closure in Development and Wound Healing. Cells Tissues Organs 2021; 211:193-211. [PMID: 33691313 DOI: 10.1159/000513880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 11/19/2022] Open
Abstract
Epithelial remodelling plays a crucial role during development. The ability of epithelial sheets to temporarily lose their integrity as they fuse with other epithelial sheets underpins events such as the closure of the neural tube and palate. During fusion, epithelial cells undergo some degree of epithelial-mesenchymal transition (EMT), whereby cells from opposing sheets dissolve existing cell-cell junctions, degrade the basement membrane, extend motile processes to contact each other, and then re-establish cell-cell junctions as they fuse. Similar events occur when an epithelium is wounded. Cells at the edge of the wound undergo a partial EMT and migrate towards each other to close the gap. In this review, we highlight the emerging role of Netrins in these processes, and provide insights into the possible signalling pathways involved. Netrins are secreted, laminin-like proteins that are evolutionarily conserved throughout the animal kingdom. Although best known as axonal chemotropic guidance molecules, Netrins also regulate epithelial cells. For example, Netrins regulate branching morphogenesis of the lung and mammary gland, and promote EMT during Drosophila wing eversion. Netrins also control epithelial fusion during optic fissure closure and inner ear formation, and are strongly implicated in neural tube closure and secondary palate closure. Netrins are also upregulated in response to organ damage and epithelial wounding, and can protect against ischemia-reperfusion injury and speed wound healing in cornea and skin. Since Netrins also have immunomodulatory properties, and can promote angiogenesis and re-innervation, they hold great promise as potential factors in future wound healing therapies.
Collapse
Affiliation(s)
- Vishal Chaturvedi
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J Murray
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia,
| |
Collapse
|