1
|
Elhossini RM, El-Bassyouni HT, Ashaat EA, Ashour AM, Hamed K, Soliman DR, Hegazy I, Abdel-Hadi S, Elbendary HM, Mehrez M, Hassib NF, Al Kersh MA, Othman AI, Abdel-Salam GM, Abdel-Hamid MS, Aglan MS. Monoallelic variants in ACVR1 in a cohort of Egyptian individuals with fibrodysplasia ossificans progressiva. Clin Dysmorphol 2025; 34:15-24. [DOI: 10.1097/mcd.0000000000000515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Objectives
Fibrodysplasia ossificans progressiva (FOP) is a rare ectopic ossification disorder of connective tissue deposited in the muscles, fascia, tendons, and ligaments. The disease is an autosomal dominant pattern caused by pathogenic variants of ACVR1. Herein, we describe the largest number of affected individuals from the Middle East North Africa region who presented with FOP.
Methods
DNA extraction and molecular studies using Sanger sequencing was done for the nine affected individuals developing bony swellings of variable severity at different ages.
Results
Sanger sequencing identified the common ACVR1 variant (c.617G>A, p.Arg206His) in 7/9, whereas c.983G>A (p.Gly328Glu) in 2/9 affected individuals. Interestingly, the affected individuals harboring the p.Gly328Glu displayed atypical presentations involving micropenis, partial agenesis of the corpus callosum and dysmorphic brainstem, and reduction defects of fingers/toes. Moreover, they had a severe phenotype compared to affected individuals carrying the p.Arg206His variant.
Conclusions
Our study highlights the progressive nature of the disease and the importance of early diagnosis to avoid lethal complications such as locked jaw and airway obstructions that affect swallowing and breathing. An early accurate diagnosis gives an opportunity for the affected individuals in the future to be candidates for the agonist Palovarotene drug that prevents the complications arising from ectopic ossification.
Collapse
Affiliation(s)
- Rasha M. Elhossini
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Hala T. El-Bassyouni
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Engy A. Ashaat
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Adel M. Ashour
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Khaled Hamed
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Doaa R. Soliman
- Department of Pediatrics, Faculty of Medicine, Benha University, Benha
| | - Ibrahim Hegazy
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Sawsan Abdel-Hadi
- Department of Pediatric Neurology, Children’s Hospital, Cairo University
| | - Hasnaa M. Elbendary
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Mennat Mehrez
- Department of Orodental Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Nehal F. Hassib
- Department of Orodental Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo
- Dental Consultant, Dental Clinics, School of Dentistry, New Giza University, Giza
| | | | | | - Ghada M.H. Abdel-Salam
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| | - Mohamed S. Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mona S. Aglan
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo
| |
Collapse
|
2
|
Bhasker A, Veleri S. Fundamental origins of neural tube defects with a basis in genetics and nutrition. Exp Brain Res 2025; 243:79. [PMID: 40025180 DOI: 10.1007/s00221-025-07016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/30/2025] [Indexed: 03/04/2025]
Abstract
Neural tube defects (NTDs) are leading congenital malformations. Its global prevalence is one in 1000 pregnancies and it has high morbidity and mortality. It has multiple risk factors like genetic errors and environmental stressors like maternal malnutrition and in utero exposure to pollutants like chemicals. The genetic program determines neural tube development based on timely expression of many genes involved in developmental signaling pathways like BMP, PCP and SHH. BMP expression defines ectoderm. SOX represses BMP in ectoderm and convertes to the neuroectoderm. Subsequently, PCP molecules define the tissue patterning for convergent-extension, a critical step in neural tube genesis. Further, SHH sets spatial patterning of the neural tube. Nutrients are the essential major environmental input for embryogenesis. But it may also carry risk factors. Malnutrition, especially folate deficiency, during embryogenesis is a major cause for NTDs. Folate is integral in the One Carbon metabolic pathway. Its deficiency and error in the pathway are implicated in NTDs. Folate supplementation alone is insufficient to prevent NTDs. Thus, a comprehensive understanding of the various risk factors is necessary to strategize reduction of NTDs. We review the current knowledge of various risk factors, like genetic, metabolic, nutritional, and drugs causing NTDs and discuss the steps required to identify them in the early embryogenesis to avoid NTDs.
Collapse
Affiliation(s)
- Anjusha Bhasker
- Drug Safety Division, ICMR-National Institute of Nutrition, Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, Hyderabad, 500007, India
| | - Shobi Veleri
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Pan M, Zhang Y, Wright WC, Liu X, Passaia B, Currier D, Low J, Chapple RH, Steele JA, Connelly JP, Ju B, Plyler E, Lu M, Loughran AJ, Yang L, Abraham BJ, Pruett-Miller SM, Freeman B, Campbell GE, Dyer MA, Chen T, Stewart E, Koo S, Sheppard H, Easton J, Geeleher P. Bone morphogenetic protein (BMP) signaling determines neuroblastoma cell fate and sensitivity to retinoic acid. Nat Commun 2025; 16:2036. [PMID: 40021625 PMCID: PMC11871043 DOI: 10.1038/s41467-025-57185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025] Open
Abstract
Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo maintenance therapy-a discrepancy that has never been explained. To investigate this, we treat a large cohort of neuroblastoma cell lines with RA and observe that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation. We conduct genome-wide CRISPR knockout screens under RA treatment, which identify bone morphogenic protein (BMP) signaling as controlling the apoptosis/senescence vs differentiation cell fate decision and determining RA's overall potency. We then discover that BMP signaling activity is markedly higher in neuroblastoma patient samples at bone marrow metastatic sites, providing a plausible explanation for RA's ability to clear neuroblastoma cells specifically from the bone marrow, by seemingly mimicking interactions between BMP and RA during normal development.
Collapse
Affiliation(s)
- Min Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Yinwen Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - William C Wright
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Xueying Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Barbara Passaia
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Duane Currier
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathan Low
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Richard H Chapple
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jacob A Steele
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jon P Connelly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bensheng Ju
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Emily Plyler
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Meifen Lu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Allister J Loughran
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Burgess Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - George E Campbell
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Elizabeth Stewart
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Selene Koo
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Heather Sheppard
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| | - Paul Geeleher
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
4
|
DeSisto J, Balakrishnan I, Knox AJ, Link G, Venkataraman S, Vibhakar R, Green AL. PRMT5 Maintains Tumor Stem Cells to Promote Pediatric High-Grade Glioma Tumorigenesis. Mol Cancer Res 2025; 23:107-118. [PMID: 39422546 PMCID: PMC11799838 DOI: 10.1158/1541-7786.mcr-24-0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/02/2024] [Accepted: 10/16/2024] [Indexed: 10/19/2024]
Abstract
Pediatric high-grade gliomas (PHGG) are aggressive, undifferentiated central nervous system tumors with poor outcomes, for which no standard-of-care drug therapy currently exists. Through a knockdown (KD) screen for epigenetic regulators, we identified PRMT5 as essential for PHGG cell growth. We hypothesized that, similar to its effect in normal cells, PRMT5 promotes self-renewal of stem-like PHGG tumor-initiating cells essential for tumor growth. We conducted in vitro analyses, including limiting dilution studies of self-renewal, to determine the phenotypic effects of PRMT5 KD. We performed chromatin immunoprecipitation sequencing (ChIP-Seq) to identify PRMT5-mediated epigenetic changes and performed gene set enrichment analysis to identify pathways that PRMT5 regulates. Using an orthotopic xenograft model of PHGG, we tracked survival and histologic characteristics resulting from PRMT5 KD or administration of a PRMT5 inhibitor ± radiation therapy. In vitro, PRMT5 KD slowed cell-cycle progression, tumor growth and self-renewal, and altered chromatin occupancy at genes associated with differentiation, tumor formation, and growth. In vivo, PRMT5 KD increased survival and reduced tumor aggressiveness; however, pharmacologic inhibition of PRMT5 with or without radiation therapy did not improve survival. PRMT5 KD epigenetically reduced tumor-initiating cells' self-renewal, leading to increased survival in preclinical models. Pharmacologic inhibition of PRMT5 enzymatic activity may have failed in vivo due to insufficient reduction of PRMT5 activity by chemical inhibition, or this failure may suggest that nonenzymatic activities of PRMT5 are more relevant. Implications: PRMT5 maintains and promotes the growth of stem-like cells that initiate and drive tumorigenesis in PHGG.
Collapse
Affiliation(s)
- John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ilango Balakrishnan
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Aaron J. Knox
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Gabrielle Link
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sujatha Venkataraman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rajeev Vibhakar
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado
| | - Adam L. Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, Colorado
| |
Collapse
|
5
|
Radoszkiewicz K, Rybkowska P, Szymanska M, Krzesniak NE, Sarnowska A. The influence of biomimetic conditions on neurogenic and neuroprotective properties of dedifferentiated fat cells. Stem Cells 2025; 43:sxae066. [PMID: 39576128 PMCID: PMC11811640 DOI: 10.1093/stmcls/sxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/30/2024] [Indexed: 02/12/2025]
Abstract
In the era of a constantly growing number of reports on the therapeutic properties of dedifferentiated, ontogenetically rejuvenated cells and their use in the treatment of neurological diseases, the optimization of their derivation and long-term culture methods seem to be crucial. One of the solutions is seen in the use of dedifferentiated fat cells (DFATs) that are characterized by a greater homogeneity. Moreover, these cells seem to possess a higher expression of transcriptional factors necessary to maintain pluripotency (stemness-related transcriptional factors) as well as a greater ability to differentiate in vitro into 3 embryonic germ layers, and a high proliferative potential in comparison to adipose stem/stromal cells. However, the neurogenic and neuroprotective potential of DFATs is still insufficiently understood; hence, our research goal was to contribute to our current knowledge of the subject. To recreate the brain's physiological (biomimetic) conditions, the cells were cultured at 5% oxygen concentration. The neural differentiation capacity of DFATs was assessed in the presence of the N21 supplement containing the factors that are typically found in the natural environment of the neural cell niche or in the presence of cerebrospinal fluid and under various spatial conditions (microprinting). The neuroprotective properties of DFATs were assessed using the coculture method with the ischemically damaged nerve tissue.
Collapse
Affiliation(s)
- Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Magdalena Szymanska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| | - Natalia Ewa Krzesniak
- Department of Plastic and Reconstructive Surgery, Centre of Postgraduate Medical Education, Prof. W. Orlowski Memorial Hospital, 00‐416 Warsaw, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02‐106 Warsaw, Poland
| |
Collapse
|
6
|
Abuelrub A, Erol I, Nalbant Bingol N, Ozemri Sag S, Temel SG, Durdağı S. Computational Analysis of CC2D1A Missense Mutations: Insight into Protein Structure and Interaction Dynamics. ACS Chem Neurosci 2025. [PMID: 39791913 DOI: 10.1021/acschemneuro.4c00570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
CC2D1A is implicated in a range of conditions, including autism spectrum disorder, intellectual disability, seizures, autosomal recessive nonsyndromic intellectual disability, heterotaxy, and ciliary dysfunction. In order to understand the molecular mechanisms underlying these conditions, we focused on the structural and dynamic activity consequences of mutations within this gene. In this study, whole exome sequencing identified the c.1552G > A (GLU518LYS) missense mutation in the CC2D1A in an 18-year-old male, linking it to intellectual disability and autism. In addition to the GLU518LYS mutation, we conducted a comprehensive analysis of other predefined missense mutations (i.e., PRO192LEU, GLN506ARG, PRO532LEU, GLY781VAL, and GLY781GLU) found within the CC2D1A. Utilizing all-atom molecular dynamics (MD) simulations and neighborhood interaction analyses, we delve into the impact of these mutations on protein structure and function at an atomic level, aiming to shed light on their contribution to the pathogenesis of related diseases. The results suggest that GLU518LYS, GLY781VAL, and GLY781GLU mutations did not significantly alter overall global protein structure compared to the wild type, while PRO192LEU, GLN506ARG, and PRO532LEU exhibited slightly higher protein root-mean-square deviation (RMSD) values, which may indicate potential impacts on whole protein stability. Moreover, neighborhood interaction analysis indicated that ASP85 emerges as a unique interaction partner specifically associated with the GLU518LYS mutation, whereas LYS75, which interacts with the ASP85 in the mutated form, is absent in the wild type. This alteration signifies a crucial reconfiguration in the local interaction network at the site of the mutation.
Collapse
Affiliation(s)
- Anwar Abuelrub
- Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34734 Istanbul, Türkiye
- Graduate School of Natural and Applied Sciences, Artificial Intelligence Program, Bahçeşehir University, 34734 Istanbul, Turkey
| | - Ismail Erol
- Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye
- Department of Analytical Chemistry, School of Pharmacy, Bahçeşehir University, 34351 İstanbul, Türkiye
| | - Nurdeniz Nalbant Bingol
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
| | - Sehime G Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
| | - Serdar Durdağı
- Laboratory for Innovative Drugs (Lab4IND), Computational Drug Design Center (HITMER), Bahçeşehir University, 34734 İstanbul, Türkiye
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34734 Istanbul, Türkiye
- Molecular Therapy Laboratory, Department of Pharmaceutical Chemistry, School of Pharmacy, Bahçeşehir University, 34351 İstanbul, Türkiye
| |
Collapse
|
7
|
Zheng Y, Zhang F, Nie H, Li X, Xun J, Fu J, Wu L. Small molecule valproic acid enhances ventral patterning of human neural tube organoids by regulating Wnt and Shh signalling. Cell Prolif 2025; 58:e13737. [PMID: 39164046 PMCID: PMC11693559 DOI: 10.1111/cpr.13737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
Valproic acid (VPA), a clinically approved small molecule, has been reported to activate Wnt signalling that is critical for dorsal-ventral (DV) patterning of neural tube. However, little is known about the impact of VPA on DV patterning process. Here, we show that even though VPA has a negative impact on the early formation of human neural tube organoids (hNTOs), it significantly enhances the efficiency of ventrally patterned hNTOs, when VPA is added during the entire differentiation process. RNA sequencing and RT-qPCR analysis demonstrates VPA activates endogenous Wnt signalling in hNTOs. Surprisingly, transcriptome analysis also identifies upregulation of genes for degradation of GLI2 and GLI3 proteins, whose truncated fragment are transcriptional repressors of Shh signalling. The Western-blot analysis confirms the increase of GLI3R proteins after VPA treatment. Thus, VPA might enhance ventral patterning of hNTOs through both activating Wnt, which can antagonise Shh signalling by inducing GLI3 expression, and/or inhibiting Shh signalling by inducing GLI protein degradation. We further obtain results to show that VPA still increases patterning efficiency of hNTOs with a weak influence on their early formation when the initiation time of VPA is delayed and its duration is reduced. Taken together, this study demonstrates that VPA enhances the generation of more reproducible hNTOs with ventral patterning, opening the avenues for the applications of hNTOs in developmental biology and regenerative medicine.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Fangrong Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Haifeng Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Xinyu Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Jiali Xun
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| | - Jianping Fu
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Cell & Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institute of Physical Science and Information TechnologyAnhui UniversityHefeiChina
| |
Collapse
|
8
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
9
|
Ferguson KM, Blin C, Garcia-Diaz C, Bulstrode H, Bardini Bressan R, McCarten K, Pollard SM. Modelling quiescence exit of neural stem cells reveals a FOXG1-FOXO6 axis. Dis Model Mech 2024; 17:dmm052005. [PMID: 39499086 PMCID: PMC11625887 DOI: 10.1242/dmm.052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/30/2024] [Indexed: 11/07/2024] Open
Abstract
The molecular mechanisms controlling the balance of quiescence and proliferation in adult neural stem cells (NSCs) are often deregulated in brain cancers such as glioblastoma multiforme (GBM). Previously, we reported that FOXG1, a forebrain-restricted neurodevelopmental transcription factor, is frequently upregulated in glioblastoma stem cells (GSCs) and limits the effects of cytostatic pathways, in part by repression of the tumour suppressor Foxo3. Here, we show that increased FOXG1 upregulates Foxo6, a more recently discovered FOXO family member with potential oncogenic functions. Although genetic ablation of Foxo6 in proliferating NSCs had no effect on the cell cycle or entry into quiescence, we found that Foxo6-null NSCs could no longer efficiently exit quiescence following FOXG1 elevation. Increased Foxo6 resulted in the formation of large acidic vacuoles, reminiscent of Pak1-regulated macropinocytosis. Consistently, Pak1 expression was upregulated by FOXG1 overexpression and downregulated upon FOXO6 loss in proliferative NSCs. These data suggest a pro-oncogenic role for FOXO6, downstream of GBM-associated elevated FOXG1, in controlling quiescence exit, and shed light on the potential functions of this underexplored FOXO family member.
Collapse
Affiliation(s)
- Kirsty M. Ferguson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Carla Blin
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Claudia Garcia-Diaz
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Harry Bulstrode
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Raul Bardini Bressan
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Katrina McCarten
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Steven M. Pollard
- Centre for Regenerative Medicine, Institute for Regeneration and Repair and Edinburgh Cancer Research UK Centre, The University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
10
|
Moreira JF, Solá S. Dynamics of Neurogenic Signals as Biological Switchers of Brain Plasticity. Stem Cell Rev Rep 2024; 20:2032-2044. [PMID: 39259446 PMCID: PMC11554707 DOI: 10.1007/s12015-024-10788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
The discovery of adult neurogenesis in the middle of the past century is considered one of the most important breakthroughs in neuroscience. Despite its controversial nature, this discovery shaped our concept of neural plasticity, revolutionizing the way we look at our brains. In fact, after the discovery of adult neurogenesis, we started to consider the brain as something even more dynamic and highly adaptable. In neurogenic niches, adult neurogenesis is supported by neural stem cells (NSCs). These cells possess a unique set of characteristics such as being quiescent for long periods while actively sensing and reacting to their surroundings to influence a multitude of processes, including the generation of new neurons and glial cells. Therefore, NSCs can be viewed as sentinels to our brain's homeostasis, being able to replace damaged cells and simultaneously secrete numerous factors that restore regular brain function. In addition, it is becoming increasingly evident that NSCs play a central role in memory formation and consolidation. In this review, we will dissect how NSCs influence their surroundings through paracrine and autocrine types of action. We will also depict the mechanism of action of each factor. Finally, we will describe how NSCs integrate different and often opposing signals to guide their fate.
Collapse
Affiliation(s)
- João F Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.
| |
Collapse
|
11
|
Hawes J, Gonzalez-Manteiga A, Murphy KP, Sanchez-Petidier M, Moreno-Manzano V, Pathak B, Lampe K, Lin CY, Peiro JL, Oria M. Noggin-Loaded PLA/PCL Patch Inhibits BMP-Initiated Reactive Astrogliosis. Int J Mol Sci 2024; 25:11626. [PMID: 39519177 PMCID: PMC11545872 DOI: 10.3390/ijms252111626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Myelomeningocele (MMC) is a congenital birth defect of the spine and spinal cord, commonly treated clinically through prenatal or postnatal surgery by repairing the unclosed spinal canal. Having previously developed a PLA/PCL polymer smart patch for this condition, we aim to further expand the potential therapeutic options by providing additional cellular and biochemical support in addition to its mechanical properties. Bone morphogenetic proteins (BMPs) are a large class of secreted factors that serve as modulators of development in multiple organ systems, including the CNS. We hypothesize that our smart patch mitigates the astrogenesis induced, at least partly, by increased BMP activity during MMC. To test this hypothesis, neural stem or precursor cells were isolated from rat fetuses and cultured in the presence of Noggin, an endogenous antagonist of BMP action, with recombinant BMPs. We found that the developed PLA/PCL patch not only serves as a biocompatible material for developing neural stem cells but was also able to act as a carrier for BMP-Notch pathway inhibitor Noggin, effectively minimizing the effect of BMP2 or BMP4 on NPCs cultured with the Noggin-loaded patch.
Collapse
Affiliation(s)
- James Hawes
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Ana Gonzalez-Manteiga
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA;
| | - Kendall P. Murphy
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Marina Sanchez-Petidier
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, 46512 Valencia, Spain; (M.S.-P.); (V.M.-M.)
- Neuronal Circuits and Behaviour Group, Hospital Nacional de Parapléjicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Prince Felipe Research Institute, 46512 Valencia, Spain; (M.S.-P.); (V.M.-M.)
| | - Bedika Pathak
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Kristin Lampe
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
| | - Chia-Ying Lin
- Convergent Bioscience and Technology Institute, Department of Biomedical Engineering and Informatics, Indiana University, Indianapolis, IN 46202, USA;
| | - Jose L. Peiro
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Marc Oria
- Center for Fetal and Placental Research, Cincinnati Children’s Hospital Medical Center (CCHMC), Cincinnati, OH 45229, USA; (J.H.); (K.P.M.); (B.P.); (K.L.); (J.L.P.)
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA;
- University of Cincinnati Cancer Center (UCCC), Cincinnati, OH 45219, USA
- University of Cincinnati Brain Tumor Center (BTC), Cincinnati, OH 45219, USA
| |
Collapse
|
12
|
Frazer NB, Kaas GA, Firmin CG, Gamazon ER, Hatzopoulos AK. BMP Antagonist Gremlin 2 Regulates Hippocampal Neurogenesis and Is Associated with Seizure Susceptibility and Anxiety. eNeuro 2024; 11:ENEURO.0213-23.2024. [PMID: 39349059 PMCID: PMC11493175 DOI: 10.1523/eneuro.0213-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 10/02/2024] Open
Abstract
The Bone Morphogenetic Protein (BMP) signaling pathway is vital in neural progenitor cell proliferation, specification, and differentiation. The BMP signaling antagonist Gremlin 2 (Grem2) is the most potent natural inhibitor of BMP expressed in the adult brain; however its function remains unknown. To address this knowledge gap, we have analyzed mice lacking Grem2 via homologous recombination (Grem2-/- ). Histological analysis of brain sections revealed significant scattering of CA3 pyramidal cells within the dentate hilus in the hippocampus of Grem2-/- mice. Furthermore, the number of proliferating neural stem cells and neuroblasts was significantly decreased in the subgranular zone of Grem2-/- mice compared with that of wild-type (WT) controls. Due to the role of hippocampal neurogenesis in neurological disorders, we tested mice on a battery of neurobehavioral tests. Grem2-/- mice exhibited increased anxiety on the elevated zero maze in response to acute and chronic stress. Specifically, male Grem2-/- mice showed increased anxiogenesis following chronic stress, and this was correlated with higher levels of BMP signaling and decreased proliferation in the dentate gyrus. Additionally, when chemically challenged with kainic acid, Grem2-/- mice displayed a higher susceptibility to and increased severity of seizures compared with WTs. Together, our data indicate that Grem2 regulates BMP signaling and is vital in maintaining homeostasis in adult hippocampal neurogenesis and structure. Furthermore, the lack of Grem2 contributes to the development and progression of neurogenesis-related disorders such as anxiety and epilepsy.
Collapse
Affiliation(s)
- Nicolette B Frazer
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
| | - Garrett A Kaas
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Caroline G Firmin
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Eric R Gamazon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Antonis K Hatzopoulos
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37232
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| |
Collapse
|
13
|
Hamazaki N, Yang W, Kubo CA, Qiu C, Martin BK, Garge RK, Regalado SG, Nichols EK, Pendyala S, Bradley N, Fowler DM, Lee C, Daza RM, Srivatsan S, Shendure J. Retinoic acid induces human gastruloids with posterior embryo-like structures. Nat Cell Biol 2024; 26:1790-1803. [PMID: 39164488 PMCID: PMC11469962 DOI: 10.1038/s41556-024-01487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024]
Abstract
Gastruloids are a powerful in vitro model of early human development. However, although elongated and composed of all three germ layers, human gastruloids do not morphologically resemble post-implantation human embryos. Here we show that an early pulse of retinoic acid (RA), together with later Matrigel, robustly induces human gastruloids with posterior embryo-like morphological structures, including a neural tube flanked by segmented somites and diverse cell types, including neural crest, neural progenitors, renal progenitors and myocytes. Through in silico staging based on single-cell RNA sequencing, we find that human RA-gastruloids progress further than other human or mouse embryo models, aligning to E9.5 mouse and CS11 cynomolgus monkey embryos. We leverage chemical and genetic perturbations of RA-gastruloids to confirm that WNT and BMP signalling regulate somite formation and neural tube length in the human context, while transcription factors TBX6 and PAX3 underpin presomitic mesoderm and neural crest, respectively. Looking forward, RA-gastruloids are a robust, scalable model for decoding early human embryogenesis.
Collapse
Affiliation(s)
- Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Connor A Kubo
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Beth K Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
| | - Samuel G Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Eva K Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sriram Pendyala
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Nicholas Bradley
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Riza M Daza
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
14
|
Meza-Sosa KF, Valle-Garcia D, González-Conchillos H, Blanco-Ayala T, Salazar A, Flores I, Gómez-Manzo S, González Esquivel DF, Pérez de la Cruz G, Pineda B, Pérez de la Cruz V. Molecular Mimicry between Toxoplasma gondii B-Cell Epitopes and Neurodevelopmental Proteins: An Immunoinformatic Approach. Biomolecules 2024; 14:933. [PMID: 39199321 PMCID: PMC11352964 DOI: 10.3390/biom14080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a rat model, we demonstrated that the progeny of mothers immunized with T. gondii lysates before gestation had behavioral and social impairments during adulthood. Therefore, we suggested that T. gondii infection can trigger autoreactivity by molecularly mimicking host brain proteins. Here, we aimed to identify the occurrence of antigenic mimicry between T. gondii epitopes and host brain proteins. Using a bioinformatic approach, we predicted T. gondii RH-88 B cell epitopes and compared them to human cell-surface proteins involved in brain development and differentiation (BrainS). Five different algorithms for B-cell-epitope prediction were used and compared, resulting in 8584 T. gondii epitopes. We then compared T. gondii predicted epitopes to BrainS proteins by local sequence alignments using BLASTP. T. gondii immunogenic epitopes significantly overlapped with 42 BrainS proteins. Among these overlapping proteins essential for brain development and differentiation, we identified HSP90 and NOTCH receptors as the proteins most likely to be targeted by the maternally generated pathogenic antibodies due to their topological overlap at the extracellular region of their sequence. This analysis highlights the relevance of pregestational clinical surveillance and screening for potential pathogenic anti-T. gondii antibodies. It also identifies potential targets for the design of vaccines that could prevent behavioral and cognitive impairments associated with pre-gestational T. gondii exposure.
Collapse
Affiliation(s)
- Karla F. Meza-Sosa
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - David Valle-Garcia
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Hugo González-Conchillos
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Tonali Blanco-Ayala
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Mexico City 11350, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Dinora Fabiola González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| |
Collapse
|
15
|
Methi A, Islam MR, Kaurani L, Sakib MS, Krüger DM, Pena T, Burkhardt S, Liebetanz D, Fischer A. A Single-Cell Transcriptomic Analysis of the Mouse Hippocampus After Voluntary Exercise. Mol Neurobiol 2024; 61:5628-5645. [PMID: 38217668 PMCID: PMC11249425 DOI: 10.1007/s12035-023-03869-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024]
Abstract
Exercise has been recognized as a beneficial factor for cognitive health, particularly in relation to the hippocampus, a vital brain region responsible for learning and memory. Previous research has demonstrated that exercise-mediated improvement of learning and memory in humans and rodents correlates with increased adult neurogenesis and processes related to enhanced synaptic plasticity. Nevertheless, the underlying molecular mechanisms are not fully understood. With the aim to further elucidate these mechanisms, we provide a comprehensive dataset of the mouse hippocampal transcriptome at the single-cell level after 4 weeks of voluntary wheel-running. Our analysis provides a number of interesting observations. For example, the results suggest that exercise affects adult neurogenesis by accelerating the maturation of a subpopulation of Prdm16-expressing neurons. Moreover, we uncover the existence of an intricate crosstalk among multiple vital signaling pathways such as NF-κB, Wnt/β-catenin, Notch, and retinoic acid (RA) pathways altered upon exercise in a specific cluster of excitatory neurons within the Cornu Ammonis (CA) region of the hippocampus. In conclusion, our study provides an important resource dataset and sheds further light on the molecular changes induced by exercise in the hippocampus. These findings have implications for developing targeted interventions aimed at optimizing cognitive health and preventing age-related cognitive decline.
Collapse
Affiliation(s)
- Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - M Sadman Sakib
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - David Liebetanz
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany.
- Department for Psychiatry and Psychotherapy, University Medical Center of Göttingen, Georg-August University, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany.
| |
Collapse
|
16
|
González M, Maurelia F, Aguayo J, Amigo R, Arrué R, Gutiérrez JL, Torrejón M, Farkas C, Caprile T. Uncovering the role of the subcommissural organ in early brain development through transcriptomic analysis. Biol Res 2024; 57:49. [PMID: 39068496 PMCID: PMC11282827 DOI: 10.1186/s40659-024-00524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND The significant role of embryonic cerebrospinal fluid (eCSF) in the initial stages of brain development has been thoroughly studied. This fluid contains crucial molecules for proper brain development such as members of the Wnt and FGF families, apolipoproteins, and retinol binding protein. Nevertheless, the source of these molecules remains uncertain since they are present before the formation of the choroid plexus, which is conventionally known as the primary producer of cerebrospinal fluid. The subcommissural organ (SCO) is a highly conserved gland located in the diencephalon and is one of the earliest differentiating brain structures. The SCO secretes molecules into the eCSF, prior to the differentiation of the choroid plexus, playing a pivotal role in the homeostasis and dynamics of this fluid. One of the key molecules secreted by the SCO is SCO-spondin, a protein involved in maintenance of the normal ventricle size, straight spinal axis, neurogenesis, and axonal guidance. Furthermore, SCO secretes transthyretin and basic fibroblast growth factor 2, while other identified molecules in the eCSF could potentially be secreted by the SCO. Additionally, various transcription factors have been identified in the SCO. However, the precise mechanisms involved in the early SCO development are not fully understood. RESULTS To uncover key molecular players and signaling pathways involved in the role of the SCO during brain development, we conducted a transcriptomic analysis comparing the embryonic chick SCO at HH23 and HH30 stages (4 and 7 days respectively). Additionally, a public transcriptomic data from HH30 entire chick brain was used to compare expression levels between SCO and whole brain transcriptome. These analyses revealed that, at both stages, the SCO differentially expresses several members of bone morphogenic proteins, Wnt and fibroblast growth factors families, diverse proteins involved in axonal guidance, neurogenic and differentiative molecules, cell receptors and transcription factors. The secretory pathway is particularly upregulated at stage HH30 while the proliferative pathway is increased at stage HH23. CONCLUSION The results suggest that the SCO has the capacity to secrete several morphogenic molecules to the eCSF prior to the development of other structures, such as the choroid plexus.
Collapse
Affiliation(s)
- Maryori González
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Felipe Maurelia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jaime Aguayo
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Amigo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Rodrigo Arrué
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - José Leonardo Gutiérrez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carlos Farkas
- Departamento de Ciencias Básicas y Morfología, Facultad de Medicina, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
17
|
Su L, Zhang M, Ji F, Zhao J, Wang Y, Wang W, Zhang S, Ma H, Wang Y, Jiao J. Microglia homeostasis mediated by epigenetic ARID1A regulates neural progenitor cells response and leads to autism-like behaviors. Mol Psychiatry 2024; 29:1595-1609. [PMID: 35858990 DOI: 10.1038/s41380-022-01703-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023]
Abstract
Microglia are resident macrophages of the central nervous system that selectively emerge in embryonic cortical proliferative zones and regulate neurogenesis by altering molecular and phenotypic states. Despite their important roles in inflammatory phagocytosis and neurodegenerative diseases, microglial homeostasis during early brain development has not been fully elucidated. Here, we demonstrate a notable interplay between microglial homeostasis and neural progenitor cell signal transduction during embryonic neurogenesis. ARID1A, an epigenetic subunit of the SWI/SNF chromatin-remodeling complex, disrupts genome-wide H3K9me3 occupancy in microglia and changes the epigenetic chromatin landscape of regulatory elements that influence the switching of microglial states. Perturbation of microglial homeostasis impairs the release of PRG3, which regulates neural progenitor cell self-renewal and differentiation during embryonic development. Furthermore, the loss of microglia-driven PRG3 alters the downstream cascade of the Wnt/β-catenin signaling pathway through its interaction with the neural progenitor receptor LRP6, which leads to misplaced regulation in neuronal development and causes autism-like behaviors at later stages. Thus, during early fetal brain development, microglia progress toward a more homeostatic competent phenotype, which might render neural progenitor cells respond to environmental cross-talk perturbations.
Collapse
Affiliation(s)
- Libo Su
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Mengtian Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Fen Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jinyue Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuanyuan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Shukui Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hongyan Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
18
|
Pan M, Zhang Y, Wright WC, Liu X, Passaia B, Currier D, Low J, Chapple RH, Steele JA, Connelly JP, Lu M, Lee HM, Loughran AJ, Yang L, Abraham BJ, Pruett-Miller SM, Freeman B, Campbell GE, Dyer MA, Chen T, Stewart E, Koo S, Sheppard H, Easton J, Geeleher P. Bone morphogenetic protein (BMP) signaling determines neuroblastoma cell fate and sensitivity to retinoic acid. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593394. [PMID: 38798584 PMCID: PMC11118433 DOI: 10.1101/2024.05.09.593394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo consolidation therapy-a discrepancy that has never been explained. To investigate this, we treated a large cohort of neuroblastoma cell lines with RA and observed that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation. We conducted genome-wide CRISPR knockout screens under RA treatment, which identified BMP signaling as controlling the apoptosis/senescence vs differentiation cell fate decision and determining RA's overall potency. We then discovered that BMP signaling activity is markedly higher in neuroblastoma patient samples at bone marrow metastatic sites, providing a plausible explanation for RA's ability to clear neuroblastoma cells specifically from the bone marrow, seemingly mimicking interactions between BMP and RA during normal development.
Collapse
|
19
|
Webster NB, Meyer NP. Capitella teleta gets left out: possible evolutionary shift causes loss of left tissues rather than increased neural tissue from dominant-negative BMPR1. Neural Dev 2024; 19:4. [PMID: 38698415 PMCID: PMC11067212 DOI: 10.1186/s13064-024-00181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region. From an evolutionary-developmental perspective, the best way to understand a system is to explore it in a wide range of organisms to create a full picture. METHODS Here, we expand our understanding of BMP signaling in Spiralia, the third major clade of bilaterians, by examining phenotypes after expression of a dominant-negative BMP Receptor 1 and after knock-down of the putative BMP antagonist Chordin-like using CRISPR/Cas9 gene editing in the annelid Capitella teleta (Pleistoannelida). RESULTS Ectopic expression of the dominant-negative Ct-BMPR1 did not increase CNS tissue or alter overall D-V axis formation in the trunk. Instead, we observed a unique asymmetrical phenotype: a distinct loss of left tissues, including the left eye, brain, foregut, and trunk mesoderm. Adding ectopic BMP4 early during cleavage stages reversed the dominant-negative Ct-BMPR1 phenotype, leading to a similar loss or reduction of right tissues instead. Surprisingly, a similar asymmetrical loss of left tissues was evident from CRISPR knock-down of Ct-Chordin-like but concentrated in the trunk rather than the episphere. CONCLUSIONS Our data highlight a novel asymmetrical phenotype, giving us further insight into the complicated story of BMP's developmental role. We further solidify the hypothesis that the function of BMP signaling during the establishment of the D-V axis and CNS is fundamentally different in at least Pleistoannelida, possibly in Spiralia, and is not required for nervous system delimitation in this group.
Collapse
Affiliation(s)
- Nicole B Webster
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA
- Biology Department, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - Néva P Meyer
- Biology Department, Clark University, 950 Main Street, Worcester, MA, 01610, USA.
| |
Collapse
|
20
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
21
|
Li MY, Yang XL, Chung CC, Lai YJ, Tsai JC, Kuo YL, Yu JY, Wang TW. TRIP6 promotes neural stem cell maintenance through YAP-mediated Sonic Hedgehog activation. FASEB J 2024; 38:e23501. [PMID: 38411462 DOI: 10.1096/fj.202301805rrr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/28/2024]
Abstract
In the adult mammalian brain, new neurons are continuously generated from neural stem cells (NSCs) in the subventricular zone (SVZ)-olfactory bulb (OB) pathway. YAP, a transcriptional co-activator of the Hippo pathway, promotes cell proliferation and inhibits differentiation in embryonic neural progenitors. However, the role of YAP in postnatal NSCs remains unclear. Here, we showed that YAP was present in NSCs of the postnatal mouse SVZ. Forced expression of Yap promoted NSC maintenance and inhibited differentiation, whereas depletion of Yap by RNA interference or conditional knockout led to the decline of NSC maintenance, premature neuronal differentiation, and collapse of neurogenesis. For the molecular mechanism, thyroid hormone receptor-interacting protein 6 (TRIP6) recruited protein phosphatase PP1A to dephosphorylate LATS1/2, therefore inducing YAP nuclear localization and activation. Moreover, TRIP6 promoted NSC maintenance, cell proliferation, and inhibited differentiation through YAP. In addition, YAP regulated the expression of the Sonic Hedgehog (SHH) pathway effector Gli2 and Gli1/2 mediated the effect of YAP on NSC maintenance. Together, our findings demonstrate a novel TRIP6-YAP-SHH axis, which is critical for regulating postnatal neurogenesis in the SVZ-OB pathway.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Xiu-Li Yang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Chia-Chi Chung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Cheng Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Lin Kuo
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jenn-Yah Yu
- Department of Life Sciences, Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tsu-Wei Wang
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
22
|
Berthelot C, Huchedé P, Bertrand-Chapel A, Beuriat PA, Leblond P, Castets M. Bone Morphogenic Proteins in Pediatric Diffuse Midline Gliomas: How to Make New Out of Old? Int J Mol Sci 2024; 25:3361. [PMID: 38542334 PMCID: PMC10969837 DOI: 10.3390/ijms25063361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 11/11/2024] Open
Abstract
The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.
Collapse
Affiliation(s)
- Clément Berthelot
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
| | - Paul Huchedé
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
| | - Adrien Bertrand-Chapel
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
| | - Pierre-Aurélien Beuriat
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
- Multisite Institute of Pathology, Groupement Hospitalier Est du CHU de Lyon, Hopital Femme-Mère-Enfant, 69677 Bron, France
| | - Pierre Leblond
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
- Department of Pediatric Oncology, Institut d’Hématologie et d’Oncologie Pédiatrique, Centre Léon Bérard, 69008 Lyon, France
| | - Marie Castets
- Childhood Cancer & Cell Death Team (C3 Team), LabEx DEVweCAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon (CRCL), Centre Léon Bérard, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, 69008 Lyon, France; (C.B.); (P.H.); (A.B.-C.); (P.L.); (M.C.)
- South-ROCK Pediatric Cancer Research Center, 69008 Lyon, France
- Department of Translational Research in Pediatric Oncology PROSPECT, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
23
|
Hamazaki N, Yang W, Kubo C, Qiu C, Martin BK, Garge RK, Regalado SG, Nichols E, Lee C, Daza RM, Srivatsan S, Shendure J. Induction and in silico staging of human gastruloids with neural tube, segmented somites & advanced cell types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579769. [PMID: 38405970 PMCID: PMC10888963 DOI: 10.1101/2024.02.10.579769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Embryonic organoids are emerging as powerful models for studying early mammalian development. For example, stem cell-derived 'gastruloids' form elongating structures containing all three germ layers1-4. However, although elongated, human gastruloids do not morphologically resemble post-implantation embryos. Here we show that a specific, discontinuous regimen of retinoic acid (RA) robustly induces human gastruloids with embryo-like morphological structures, including a neural tube and segmented somites. Single cell RNA-seq (sc-RNA-seq) further reveals that these human 'RA-gastruloids' contain more advanced cell types than conventional gastruloids, including neural crest cells, renal progenitor cells, skeletal muscle cells, and, rarely, neural progenitor cells. We apply a new approach to computationally stage human RA-gastruloids relative to somite-resolved mouse embryos, early human embryos and other gastruloid models, and find that the developmental stage of human RA-gastruloids is comparable to that of E9.5 mouse embryos, although some cell types show greater or lesser progression. We chemically perturb WNT and BMP signaling in human RA-gastruloids and find that these signaling pathways regulate somite patterning and neural tube length, respectively, while genetic perturbation of the transcription factors PAX3 and TBX6 markedly compromises the formation of neural crest and somites/renal cells, respectively. Human RA-gastruloids complement other embryonic organoids in serving as a simple, robust and screenable model for decoding early human embryogenesis.
Collapse
Affiliation(s)
- Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Connor Kubo
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beth K. Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Samuel G. Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, 98195, USA
| | - Eva Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Sanjay Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Du Q, Gao C, Tsoi B, Wu M, Shen J. Niuhuang Qingxin Wan ameliorates depressive-like behaviors and improves hippocampal neurogenesis through modulating TrkB/ERK/CREB signaling pathway in chronic restraint stress or corticosterone challenge mice. Front Pharmacol 2024; 14:1274343. [PMID: 38273824 PMCID: PMC10808638 DOI: 10.3389/fphar.2023.1274343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Chronic stress-associated hormonal imbalance impairs hippocampal neurogenesis, contributing to depressive and anxiety behaviors. Targeting neurogenesis is thus a promising antidepressant therapeutic strategy. Niuhuang Qingxin Wan (NHQXW) is an herbal formula for mental disorders in Traditional Chinese Medicine (TCM) practice, but its anti-depressant efficacies and mechanisms remain unverified. Methods: In the present study, we tested the hypothesis that NHQXW could ameliorate depressive-like behaviors and improve hippocampal neurogenesis by modulating the TrkB/ERK/CREB signaling pathway by utilizing two depression mouse models including a chronic restraint stress (CRS) mouse model and a chronic corticosterone (CORT) stress (CCS) induced mouse model. The depression-like mouse models were orally treated with NHQXW whereas fluoxetine was used as the positive control group. We evaluated the effects of NHQXW on depressive- and anxiety-like behaviors and determined the effects of NHQXW on inducing hippocampal neurogenesis. Results: NHQXW treatment significantly ameliorated depressive-like behaviors in those chronic stress mouse models. NHQXW significantly improved hippocampal neurogenesis in the CRS mice and CCS mice. The potential neurogenic mechanism of NHQXW was identified by regulating the expression levels of BDNF, TrkB, p-ERK (T202/T204), p-MEK1/2 (S217/221), and p-CREB (S133) in the hippocampus area of the CCS mice. NHQXW revealed its antidepressant and neurogenic effects that were similar to fluoxetine. Moreover, NHQXW treatment revealed long-term effects on preventing withdrawal-associated rebound symptoms in the CCS mice. Furthermore, in a bioactivity-guided quality control study, liquiritin was identified as one of the bioactive compounds of NHQXW with the bioactivities of neurogenesis-promoting effects. Discussion: Taken together, NHQXW could be a promising TCM formula to attenuate depressive- and anxiety-like behaviors against chronic stress and depression. The underlying anti-depressant mechanisms could be correlated with its neurogenic activities by stimulating the TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chong Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Meiling Wu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
25
|
Ruggiero C, Baroni M, Xenos D, Parretti L, Macchione IG, Bubba V, Laudisio A, Pedone C, Ferracci M, Magierski R, Boccardi V, Antonelli-Incalzi R, Mecocci P. Dementia, osteoporosis and fragility fractures: Intricate epidemiological relationships, plausible biological connections, and twisted clinical practices. Ageing Res Rev 2024; 93:102130. [PMID: 38030092 DOI: 10.1016/j.arr.2023.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Dementia, osteoporosis, and fragility fractures are chronic diseases, often co-existing in older adults. These conditions pose severe morbidity, long-term disability, and mortality, with relevant socioeconomic implications. While in the research arena, the discussion remains on whether dementia is the cause or the consequence of fragility fractures, healthcare professionals need a better understanding of the interplay between such conditions from epidemiological and physiological standpoints. With this review, we summarized the available literature surrounding the relationship between cognitive impairment, dementia, and both low bone mineral density (BMD) and fragility fractures. Given the strength of the bi-directional associations and their impact on the quality of life, we shed light on the biological connections between brain and bone systems, presenting the main mediators, including gut microbioma, and pathological pathways leading to the dysregulation of bone and brain metabolism. Ultimately, we synthesized the evidence about the impact of available pharmacological treatments for the prevention of fragility fractures on cognitive functions and individuals' outcomes when dementia coexists. Vice versa, the effects of symptomatic treatments for dementia on the risk of falls and fragility fractures are explored. Combining evidence alongside clinical practice, we discuss challenges and opportunities related to the management of older adults affected by cognitive impairment or dementia and at high risk for fragility fracture prevention, which leads to not only an improvement in patient health-related outcomes and survival but also a reduction in healthcare cost and socio-economic burden.
Collapse
Affiliation(s)
- C Ruggiero
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy.
| | - M Baroni
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - D Xenos
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - L Parretti
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - I G Macchione
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - V Bubba
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - A Laudisio
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - C Pedone
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - M Ferracci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Magierski
- Department of Old Age Psychiatry and Psychotic Disorders, Medical University of Lodz, Lodz, Poland
| | - V Boccardi
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| | - R Antonelli-Incalzi
- Department of Medicine, Unit of Geriatrics, Campus Bio-Medico di Roma University, Rome, Italy
| | - P Mecocci
- Department of Medicine, Section of Gerontology and Geriatrics, University of Perugia, Italy
| |
Collapse
|
26
|
Changmeng Z, Hongfei W, Cheung MCH, Chan YS, Shea GKH. Revealing the developmental origin and lineage predilection of neural progenitors within human bone marrow via single-cell analysis: implications for regenerative medicine. Genome Med 2023; 15:66. [PMID: 37667405 PMCID: PMC10476295 DOI: 10.1186/s13073-023-01224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Human bone marrow stromal cells (BMSCs) are an easily accessible and expandable progenitor population with the capacity to generate neural cell types in addition to mesoderm. Lineage tracing studies in transgenic animals have indicated Nestin + BMSCs to be descended from the truncal neural crest. Single-cell analysis provides a means to identify the developmental origin and identity of human BMSC-derived neural progenitors when lineage tracing remains infeasible. This is a prerequisite towards translational application. METHODS We attained transcriptomic profiles of embryonic long bone, adult human bone marrow, cultured BMSCs and BMSC-derived neurospheres. Integrated scRNAseq analysis was supplemented by characterization of cells during culture expansion and following provision of growth factors and signalling agonists to bias lineage. RESULTS Reconstructed pseudotime upon the integrated dataset indicated distinct neural and osteogenic differentiation trajectories. The starting state towards the neural differentiation trajectory consisted of Nestin + /MKI67 + BMSCs, which could also be diverted towards the osteogenic trajectory via a branch point. Nestin + /PDGFRA + BMSCs responded to neurosphere culture conditions to generate a subpopulation of cells with a neuronal phenotype according to marker expression and gene ontogeny analysis that occupied the end state along the neural differentiation trajectory. Reconstructed pseudotime also revealed an upregulation of BMP4 expression during culture of BMSC-neurospheres. This provided the rationale for culture supplementation with the BMP signalling agonist SB4, which directed progenitors to upregulate Pax6 and downregulate Nestin. CONCLUSIONS This study suggested BMSCs originating from truncal neural crest to be the source of cells within long bone marrow possessing neural differentiation potential. Unravelling the transcriptomic dynamics of BMSC-derived neural progenitors promises to enhance differentiation efficiency and safety towards clinical application in cell therapy and disease modelling.
Collapse
Affiliation(s)
- Zhang Changmeng
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wang Hongfei
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Martin Chi-Hang Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Graham Ka-Hon Shea
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
| |
Collapse
|
27
|
Zheng Q, Liu H, Yu W, Dong Y, Zhou L, Deng W, Hua F. Mechanical properties of the brain: Focus on the essential role of Piezo1-mediated mechanotransduction in the CNS. Brain Behav 2023; 13:e3136. [PMID: 37366640 PMCID: PMC10498085 DOI: 10.1002/brb3.3136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND The brain is a highly mechanosensitive organ, and changes in the mechanical properties of brain tissue influence many physiological and pathological processes. Piezo type mechanosensitive ion channel component 1 (Piezo1), a protein found in metazoans, is highly expressed in the brain and involved in sensing changes of the mechanical microenvironment. Numerous studies have shown that Piezo1-mediated mechanotransduction is closely related to glial cell activation and neuronal function. However, the precise role of Piezo1 in the brain requires further elucidation. OBJECTIVE This review first discusses the roles of Piezo1-mediated mechanotransduction in regulating the functions of a variety of brain cells, and then briefly assesses the impact of Piezo1-mediated mechanotransduction on the progression of brain dysfunctional disorders. CONCLUSIONS Mechanical signaling contributes significantly to brain function. Piezo1-mediated mechanotransduction regulates processes such as neuronal differentiation, cell migration, axon guidance, neural regeneration, and oligodendrocyte axon myelination. Additionally, Piezo1-mediated mechanotransduction plays significant roles in normal aging and brain injury, as well as the development of various brain diseases, including demyelinating diseases, Alzheimer's disease, and brain tumors. Investigating the pathophysiological mechanisms through which Piezo1-mediated mechanotransduction affects brain function will give us a novel entry point for the diagnosis and treatment of numerous brain diseases.
Collapse
Affiliation(s)
- Qingcui Zheng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Hailin Liu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wen Yu
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Yao Dong
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Lanqian Zhou
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Jiangxi Province Key Laboratory of Molecular MedicineThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Wenze Deng
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| | - Fuzhou Hua
- Department of Anesthesiologythe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
- Key Laboratory of Anesthesiology of Jiangxi ProvinceThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiP. R. China
| |
Collapse
|
28
|
Schartz ND, Liang HY, Carvalho K, Chu SH, Mendoza-Arvilla A, Petrisko TJ, Gomez-Arboledas A, Mortazavi A, Tenner AJ. C5aR1 antagonism suppresses inflammatory glial gene expression and alters cellular signaling in an aggressive Alzheimer's model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.22.554306. [PMID: 37662399 PMCID: PMC10473603 DOI: 10.1101/2023.08.22.554306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, and the need for effective, sustainable therapeutic targets is imperative. Pharmacologic inhibition of C5aR1 reduces plaque load, gliosis and memory deficits in animal models. However, the cellular basis underlying this neuroprotection and which processes were the consequence of amyloid reduction vs alteration of the response to amyloid were unclear. In the Arctic model, the C5aR1 antagonist PMX205 did not reduce plaque load, but deficits in short-term memory in female mice were prevented. Hippocampal single cell and single nucleus RNA-seq clusters revealed C5aR1 dependent and independent gene expression and cell-cell communication. Microglial clusters containing neurotoxic disease-associated microglial genes were robustly upregulated in Arctic mice and drastically reduced with PMX205 treatment, while genes in microglia clusters that were overrepresented in the Arctic-PMX205 vs Arctic group were associated with synapse organization and transmission and learning. PMX205 treatment also reduced some A-1 astrocyte genes. In spite of changes in transcript levels, overall protein levels of some reactive glial markers were relatively unchanged by C5aR1 antagonism, as were clusters associated with protective responses to injury. C5aR1 inhibition promoted signaling pathways associated with cell growth and repair, such as TGFβ and FGF, in Arctic mice, while suppressing inflammatory pathways including PROS, Pecam1, and EPHA. In conclusion, pharmacologic C5aR1 inhibition prevents cognitive loss, limits microglial polarization to a detrimental inflammatory state and permits neuroprotective responses, as well as leaving protective functions of complement intact, making C5aR1 antagonism an attractive therapeutic strategy for individuals with AD.
Collapse
Affiliation(s)
- Nicole D. Schartz
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Heidi Y. Liang
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Klebea Carvalho
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Shu-Hui Chu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Adrian Mendoza-Arvilla
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Tiffany J. Petrisko
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Angela Gomez-Arboledas
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
| | - Ali Mortazavi
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA 92697
| | - Andrea J. Tenner
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA 92697
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697
- Department of Pathology and Laboratory Medicine, University of California, Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
29
|
Coronel R, Bernabeu-Zornoza A, Palmer C, González-Sastre R, Rosca A, Mateos-Martínez P, López-Alonso V, Liste I. Amyloid Precursor Protein (APP) Regulates Gliogenesis and Neurogenesis of Human Neural Stem Cells by Several Signaling Pathways. Int J Mol Sci 2023; 24:12964. [PMID: 37629148 PMCID: PMC10455174 DOI: 10.3390/ijms241612964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to β-amyloid (Aβ) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| |
Collapse
|
30
|
Krylov A, Yu S, Veen K, Newton A, Ye A, Qin H, He J, Jusuf PR. Heterogeneity in quiescent Müller glia in the uninjured zebrafish retina drive differential responses following photoreceptor ablation. Front Mol Neurosci 2023; 16:1087136. [PMID: 37575968 PMCID: PMC10413128 DOI: 10.3389/fnmol.2023.1087136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Loss of neurons in the neural retina is a leading cause of vision loss. While humans do not possess the capacity for retinal regeneration, zebrafish can achieve this through activation of resident Müller glia. Remarkably, despite the presence of Müller glia in humans and other mammalian vertebrates, these cells lack an intrinsic ability to contribute to regeneration. Upon activation, zebrafish Müller glia can adopt a stem cell-like state, undergo proliferation and generate new neurons. However, the underlying molecular mechanisms of this activation subsequent retinal regeneration remains unclear. Methods/Results To address this, we performed single-cell RNA sequencing (scRNA-seq) and report remarkable heterogeneity in gene expression within quiescent Müller glia across distinct dorsal, central and ventral retina pools of such cells. Next, we utilized a genetically driven, chemically inducible nitroreductase approach to study Müller glia activation following selective ablation of three distinct photoreceptor subtypes: long wavelength sensitive cones, short wavelength sensitive cones, and rods. There, our data revealed that a region-specific bias in activation of Müller glia exists in the zebrafish retina, and this is independent of the distribution of the ablated cell type across retinal regions. Notably, gene ontology analysis revealed that injury-responsive dorsal and central Müller glia express genes related to dorsal/ventral pattern formation, growth factor activity, and regulation of developmental process. Through scRNA-seq analysis, we identify a shared genetic program underlying initial Müller glia activation and cell cycle entry, followed by differences that drive the fate of regenerating neurons. We observed an initial expression of AP-1 and injury-responsive transcription factors, followed by genes involved in Notch signaling, ribosome biogenesis and gliogenesis, and finally expression of cell cycle, chromatin remodeling and microtubule-associated genes. Discussion Taken together, our findings document the regional specificity of gene expression within quiescent Müller glia and demonstrate unique Müller glia activation and regeneration features following neural ablation. These findings will improve our understanding of the molecular pathways relevant to neural regeneration in the retina.
Collapse
Affiliation(s)
- Aaron Krylov
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Shuguang Yu
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Kellie Veen
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Axel Newton
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huiwen Qin
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jie He
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Patricia R. Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Kasakura N, Murata Y, Shindo A, Kitaoka S, Furuyashiki T, Suzuki K, Segi-Nishida E. Overexpression of NT-3 in the hippocampus suppresses the early phase of the adult neurogenic process. Front Neurosci 2023; 17:1178555. [PMID: 37575306 PMCID: PMC10413268 DOI: 10.3389/fnins.2023.1178555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus regulates stress-related emotional behaviors and ensures neurogenesis throughout life. Neurotrophin-3 (NT-3) is a neurotrophic factor that regulates neuronal differentiation, survival, and synaptic formation in both the peripheral and central nervous systems. NT-3 is expressed in the adult DG of the hippocampus; several chronic stress conditions enhance NT-3 expression in rodents. However, functional modulation of the adult DG by NT-3 signaling remains unclear. To directly investigate the impact of NT-3 on DG function, NT-3 was overexpressed in the hippocampal ventral DG by an adeno-associated virus carrying NT-3 (AAV-NT-3). Four weeks following the AAV-NT-3 injection, high NT-3 expression was observed in the ventral DG. We examined the influence of NT-3 overexpression on the neuronal responses and neurogenic processes in the ventral DG. NT-3 overexpression significantly increased the expression of the mature DG neuronal marker calbindin and immediate early genes, such as Fos and Fosb, thereby suggesting DG neuronal activation. During neurogenesis, the number of proliferating cells and immature neurons in the subgranular zone of the DG significantly decreased in the AAV-NT-3 group. Among the neurogenesis-related factors, Vegfd, Lgr6, Bmp7, and Drd1 expression significantly decreased. These results demonstrated that high NT-3 levels in the hippocampus regulate the activation of mature DG neurons and suppress the early phase of neurogenic processes, suggesting a possible role of NT-3 in the regulation of adult hippocampal function under stress conditions.
Collapse
Affiliation(s)
- Nanami Kasakura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Yuka Murata
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Asuka Shindo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Shiho Kitaoka
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kanzo Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Eri Segi-Nishida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
32
|
Neofytou C, Backlund A, Blomgren K, Hermanson O. Irradiation and lithium treatment alter the global DNA methylation pattern and gene expression underlying a shift from gliogenesis towards neurogenesis in human neural progenitors. Transl Psychiatry 2023; 13:258. [PMID: 37443041 DOI: 10.1038/s41398-023-02560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/01/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Central nervous system (CNS) tumors account for almost a third of pediatric cancers and are the largest contributor to cancer-related death in children. Cranial radiation therapy (CRT) is, often in combination with chemotherapy and surgery, effective in the treatment of high-grade childhood brain cancers, but it has been associated with late complications in 50-90% of survivors, such as decline in cognition and mood, decreased social competence, and fatigue. A leading hypothesis to explain the decline in cognition, at least partially, is injury to the neural stem and progenitor cells (NSPCs), which leads to apoptosis and altered fate choice, favoring gliogenesis over neurogenesis. Hence, treatments harnessing neurogenesis are of great relevance in this context. Lithium, a well-known mood stabilizer, has neuroprotective and antitumor effects and has been found to reverse irradiation-induced damage in rodents, at least in part by regulating the expression of the glutamate decarboxylase 2 gene (Gad2) via promoter demethylation in rat NSPCs. Additionally, lithium was shown to rescue irradiation-induced cognitive defects in mice. Here, we show that irradiation (IR) alone or in combination with lithium chloride (LiCl) caused major changes in gene expression and global DNA methylation in iPSC-derived human NSPCs (hNSPCs) compared to untreated cells, as well as LiCl-only-treated cells. The pattern of DNA methylation changes after IR-treatment alone was stochastic and observed across many different gene groups, whereas differences in DNA methylation after LiCl-treatment of irradiated cells were more directed to specific promoters of genes, including genes associated with neurogenesis, for example GAD2. Interestingly, IR and IR + LiCl treatment affected the promoter methylation and expression of several genes encoding factors involved in BMP signaling, including the BMP antagonist gremlin1. We propose that lithium in addition to promoting neuronal differentiation, also represses glial differentiation in hNSPCs with DNA methylation regulation being a key mechanism of action.
Collapse
Affiliation(s)
- Christina Neofytou
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Alexandra Backlund
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health, 171 77, Stockholm, Sweden
- Pediatric Oncology, Karolinska University Hospital, 171 64, Stockholm, Sweden
| | - Ola Hermanson
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.
| |
Collapse
|
33
|
Hong H, Yoon SB, Park JE, Lee JI, Kim HY, Nam HJ, Cho H. MeCP2 dysfunction prevents proper BMP signaling and neural progenitor expansion in brain organoid. Ann Clin Transl Neurol 2023. [PMID: 37302988 DOI: 10.1002/acn3.51799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
OBJECTIVES Sporadic mutations in MeCP2 are a hallmark of Rett syndrome (RTT). Many RTT brain organoid models have exhibited pathogenic phenotypes such as decreased spine density and small size of soma with altered electrophysiological signals. However, previous models are mainly focused on the phenotypes observed in the late phase and rarely provide clues for the defect of neural progenitors which generate different types of neurons and glial cells. METHODS We newly established the RTT brain organoid model derived from MeCP2-truncated iPS cells which were genetically engineered by CRISPR/Cas9 technology. By immunofluorescence imaging, we studied the development of NPC pool and its fate specification into glutamatergic neurons or astrocytes in RTT organoids. By total RNA sequencing, we investigated which signaling pathways were altered during the early brain development in RTT organoids. RESULTS Dysfunction of MeCP2 caused the defect of neural rosette formation in the early phase of cortical development. In total transcriptome analysis, BMP pathway-related genes are highly associated with MeCP2 depletion. Moreover, levels of pSMAD1/5 and BMP target genes are excessively increased, and treatment of BMP inhibitors partially rescues the cell cycle progression of neural progenitors. Subsequently, MeCP2 dysfunction reduced the glutamatergic neurogenesis and induced overproduction of astrocytes. Nevertheless, early inhibition of BMP pathway rescued VGLUT1 expression and suppressed astrocyte maturation. INTERPRETATION Our results demonstrate that MeCP2 is required for the expansion of neural progenitor cells by modulating BMP pathway at early stages of development, and this influence persists during neurogenesis and gliogenesis at later stages of brain organoid development.
Collapse
Affiliation(s)
- Hyowon Hong
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Sae-Bom Yoon
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung Eun Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jung In Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyun Young Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hye Jin Nam
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
34
|
Melo US, Jatzlau J, Prada-Medina CA, Flex E, Hartmann S, Ali S, Schöpflin R, Bernardini L, Ciolfi A, Moeinzadeh MH, Klever MK, Altay A, Vallecillo-García P, Carpentieri G, Delledonne M, Ort MJ, Schwestka M, Ferrero GB, Tartaglia M, Brusco A, Gossen M, Strunk D, Geißler S, Mundlos S, Stricker S, Knaus P, Giorgio E, Spielmann M. Enhancer hijacking at the ARHGAP36 locus is associated with connective tissue to bone transformation. Nat Commun 2023; 14:2034. [PMID: 37041138 PMCID: PMC10090176 DOI: 10.1038/s41467-023-37585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Heterotopic ossification is a disorder caused by abnormal mineralization of soft tissues in which signaling pathways such as BMP, TGFβ and WNT are known key players in driving ectopic bone formation. Identifying novel genes and pathways related to the mineralization process are important steps for future gene therapy in bone disorders. In this study, we detect an inter-chromosomal insertional duplication in a female proband disrupting a topologically associating domain and causing an ultra-rare progressive form of heterotopic ossification. This structural variant lead to enhancer hijacking and misexpression of ARHGAP36 in fibroblasts, validated here by orthogonal in vitro studies. In addition, ARHGAP36 overexpression inhibits TGFβ, and activates hedgehog signaling and genes/proteins related to extracellular matrix production. Our work on the genetic cause of this heterotopic ossification case has revealed that ARHGAP36 plays a role in bone formation and metabolism, outlining first details of this gene contributing to bone-formation and -disease.
Collapse
Affiliation(s)
- Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany.
| | - Jerome Jatzlau
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Elisabetta Flex
- Istituto Superiore di Sanità, Department of Oncology and Molecular Medicine, 00161, Rome, Italy
| | - Sunhild Hartmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Salaheddine Ali
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
| | - Laura Bernardini
- Cytogenetics Unit, Casa Sollievo della Sofferenza Foundation, IRCCS, 71013, San Giovanni Rotondo, Foggia, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - M-Hossein Moeinzadeh
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | - Marius-Konstantin Klever
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Aybuge Altay
- Max Planck Institute for Molecular Genetics, Department of Computational Molecular Biology, 14195, Berlin, Germany
| | | | - Giovanna Carpentieri
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | | | - Melanie-Jasmin Ort
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Marko Schwestka
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù, IRCCS, 00146, Rome, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, 10126, Torino, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino, 10126, Italy
| | - Manfred Gossen
- Institute of Active Polymers, Helmholtz-Zentrum Hereon, 14513, Teltow, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020, Salzburg, Austria
| | - Sven Geißler
- Julius Wolff Institute (JWI), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 13353, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), 13353, Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, 13353, Berlin, Germany
| | - Sigmar Stricker
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, 14195, Berlin, Germany
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
- Medical Genetics Unit, IRCCS Mondino Foundation, 27100, Pavia, Italy.
| | - Malte Spielmann
- Max Planck Institute for Molecular Genetics, Development and Disease Group, 14195, Berlin, Germany.
- Institute of Human Genetics, University Hospitals Schleswig-Holstein, University of Lübeck and University of Kiel, Lübeck, 23562, Germany.
- DZHK (German Centre for Cardiovascular Research) Germany, partner site Hamburg, Lübeck, Kiel, Lübeck, 23562, Germany.
| |
Collapse
|
35
|
Murtaj V, Butti E, Martino G, Panina-Bordignon P. Endogenous neural stem cells characterization using omics approaches: Current knowledge in health and disease. Front Cell Neurosci 2023; 17:1125785. [PMID: 37091923 PMCID: PMC10113633 DOI: 10.3389/fncel.2023.1125785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/03/2023] [Indexed: 04/08/2023] Open
Abstract
Neural stem cells (NSCs), an invaluable source of neuronal and glial progeny, have been widely interrogated in the last twenty years, mainly to understand their therapeutic potential. Most of the studies were performed with cells derived from pluripotent stem cells of either rodents or humans, and have mainly focused on their potential in regenerative medicine. High-throughput omics technologies, such as transcriptomics, epigenetics, proteomics, and metabolomics, which exploded in the past decade, represent a powerful tool to investigate the molecular mechanisms characterizing the heterogeneity of endogenous NSCs. The transition from bulk studies to single cell approaches brought significant insights by revealing complex system phenotypes, from the molecular to the organism level. Here, we will discuss the current literature that has been greatly enriched in the “omics era”, successfully exploring the nature and function of endogenous NSCs and the process of neurogenesis. Overall, the information obtained from omics studies of endogenous NSCs provides a sharper picture of NSCs function during neurodevelopment in healthy and in perturbed environments.
Collapse
Affiliation(s)
- Valentina Murtaj
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Erica Butti
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Gianvito Martino
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Panina-Bordignon
- Division of Neuroscience, San Raffaele Vita-Salute University, Milan, Italy
- Neuroimmunology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
- *Correspondence: Paola Panina-Bordignon
| |
Collapse
|
36
|
Humphries A, Simcox K, Howell B. A review of the literature: How does prenatal opioid exposure impact placental health and fetal brain development? Dev Psychobiol 2023; 65:e22378. [PMID: 36946682 DOI: 10.1002/dev.22378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/07/2022] [Accepted: 01/05/2023] [Indexed: 03/06/2023]
Abstract
In recent years, there has been a sixfold increase in the number of pregnant people with opioid use disorder (OUD). Rates of neonatal opioid withdrawal syndrome (NOWS), previously known as neonatal abstinence syndrome (NAS), have significantly increased in virtually every state and demographic group (Healthcare Cost Utilization Project, HCUP, 2010). NOWS is a condition resulting from chronic exposure to either therapeutic opioid use (e.g., medication for OUD, chronic pain conditions) or nonprescribed opioid use. To date, there is no known prenatal treatment to help decrease the risk of infants developing NOWS and subsequent neurodevelopmental outcomes. Given the increasing support for how placental signaling, or placental programming, may play a role in downstream pathology, prospective research investigating how the placenta is affected by chronic opioid exposure morphologically, histologically, and at the cellular level may open up potential treatment opportunities in this field. In this review, we discuss literature exploring the physiological roles of nitric oxide and dopamine not only in the vascular development of the placenta, but also in fetal cerebral blood flow, neurogenesis, neuronal differentiation, and neuronal activity. We also discuss histological preclinical studies that suggest chronic opioid exposure to induce some combination of placental dysfunction and hypoxia in a manner similar to other well-known placental pathologies, as denoted by the compensatory neovascularization and increased utilization of the placenta's supply of trophoblast cells, which play an essential role in placental angiogenesis. Overall, we found that the current literature, while limited, suggests chronic opioid exposure negatively impacts placental function and fetal brain development on a cellular and histopathological level. We conclude that it is worthwhile to consider the placenta as a therapeutic target with the ultimate goal of decreasing the incidence of NOWS and the long-term impacts of prenatal opioid exposure.
Collapse
Affiliation(s)
- Audrey Humphries
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
| | - Kim Simcox
- Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States
- Department of Obstetrics and Gynecology, Carilion Clinic, Roanoke, Virginia, USA
| | - Brittany Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA
- Department of Human Development and Family Science, Virginia Tech, Roanoke, Virginia, USA
- Pediatrics, Virginia Tech Carilion School of Medicine, Roanoke, Virginia, United States
| |
Collapse
|
37
|
Abstract
During embryo development, cell proliferation, cell fate specification and tissue patterning are coordinated and tightly regulated by a handful of evolutionarily conserved signaling pathways activated by secreted growth factor families including fibroblast growth factor (FGF), Nodal/bone morphogenetic protein (BMP), Hedgehog and Wnt. The spatial and temporal activation of these signaling pathways elicit context-specific cellular responses that ultimately shape the different tissues of the embryo. Extensive efforts have been dedicated to identifying the molecular mechanisms underlying these signaling pathways during embryo development, adult tissue homeostasis and regeneration. In this review, we first describe the role of the Wnt/β-catenin signaling pathway during early embryo development, axis specification and cell differentiation as a prelude to highlight how this knowledge is being leveraged to manipulate Wnt/β-catenin signaling activity with small molecules and biologics for the directed differentiation of pluripotent stem cells into various cell lineages that are physiologically relevant for stem cell therapy and regenerative medicine.
Collapse
|
38
|
Bonds JA, Tunc-Ozcan E, Dunlop SR, Rawat R, Peng CY, Kessler JA. Why Some Mice Are Smarter than Others: The Impact of Bone Morphogenetic Protein Signaling on Cognition. eNeuro 2023; 10:ENEURO.0213-22.2022. [PMID: 36596594 PMCID: PMC9833048 DOI: 10.1523/eneuro.0213-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023] Open
Abstract
Inbred mice (C57Bl/6) display wide variability in performance on hippocampal-dependent cognitive tasks. Examination of microdissected dentate gyrus (DG) after cognitive testing showed a highly significant negative correlation between levels of bone morphogenetic protein (BMP) signaling and recognition memory. Cognitive performance decline during the aging process, and the degree of cognitive decline is strongly correlated with aging-related increases in BMP signaling. Further, cognitive performance was impaired when the BMP inhibitor, noggin, was knocked down in the DG. Infusion of noggin into the lateral ventricles enhanced DG-dependent cognition while BMP4 infusion led to significant impairments. Embryonic overexpression of noggin resulted in lifelong enhancement of recognition and spatial memory while overexpression of BMP4 resulted in lifelong impairment, substantiating the importance of differences in BMP signaling in wild-type mice. These findings indicate that performance in DG-dependent cognitive tasks is largely determined by differences in levels BMP signaling in the dentate gyrus.
Collapse
Affiliation(s)
- Jacqueline A Bonds
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161
| | - Elif Tunc-Ozcan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sara R Dunlop
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Radhika Rawat
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
39
|
Zhang C, Xue P, Zhang H, Tan C, Zhao S, Li X, Sun L, Zheng H, Wang J, Zhang B, Lang W. Gut brain interaction theory reveals gut microbiota mediated neurogenesis and traditional Chinese medicine research strategies. Front Cell Infect Microbiol 2022; 12:1072341. [PMID: 36569198 PMCID: PMC9772886 DOI: 10.3389/fcimb.2022.1072341] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis is the process of differentiation of neural stem cells (NSCs) into neurons and glial cells in certain areas of the adult brain. Defects in neurogenesis can lead to neurodegenerative diseases, mental disorders, and other maladies. This process is directionally regulated by transcription factors, the Wnt and Notch pathway, the extracellular matrix, and various growth factors. External factors like stress, physical exercise, diet, medications, etc., affect neurogenesis and the gut microbiota. The gut microbiota may affect NSCs through vagal, immune and chemical pathways, and other pathways. Traditional Chinese medicine (TCM) has been proven to affect NSCs proliferation and differentiation and can regulate the abundance and metabolites produced by intestinal microorganisms. However, the underlying mechanisms by which these factors regulate neurogenesis through the gut microbiota are not fully understood. In this review, we describe the recent evidence on the role of the gut microbiota in neurogenesis. Moreover, we hypothesize on the characteristics of the microbiota-gut-brain axis based on bacterial phyla, including microbiota's metabolites, and neuronal and immune pathways while providing an outlook on TCM's potential effects on adult neurogenesis by regulating gut microbiota.
Collapse
Affiliation(s)
- Chenxi Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Peng Xue
- Medical School of Nantong University, Nantong University, Nantong, China
| | - Haiyan Zhang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Chenxi Tan
- Department of Infection Control, The Second Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Shiyao Zhao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, China
| | - Xudong Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lihui Sun
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Huihui Zheng
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Jun Wang
- The Academic Affairs Office, Qiqihar Medical University, Qiqihar, China
| | - Baoling Zhang
- Department of Operating Room, Qiqihar First Hospital, Qiqihar, China
| | - Weiya Lang
- Basic Medical Science College, Qiqihar Medical University, Qiqihar, China,*Correspondence: Weiya Lang,
| |
Collapse
|
40
|
K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat Genet 2022; 54:1865-1880. [PMID: 36471070 PMCID: PMC9742294 DOI: 10.1038/s41588-022-01205-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.
Collapse
|
41
|
BMP/Smad Pathway Is Involved in Lithium Carbonate-Induced Neural-Tube Defects in Mice and Neural Stem Cells. Int J Mol Sci 2022; 23:ijms232314831. [PMID: 36499158 PMCID: PMC9735442 DOI: 10.3390/ijms232314831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/03/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Neural-tube defects (NTDs) are one type of the most serious birth defects. Studies have shown that inositol deficiency is closely related to the occurrence of NTDs. Bone morphogenetic protein (BMP)-mediated Smad signaling pathways have been implicated in neurogenesis and neural-tube closure. However, the role of the BMP/Smad pathway in inositol-deficiency-induced NTDs remains unclear. Inositol-deficiency models in C57 mice and mouse neural stem cells (mNSCs) were induced with Li2CO3 treatment or inositol withdrawal. The role of the BMP/Smad pathway in the regulation of cell proliferation and the development of NTDs was determined utilizing qRT-PCR, HE staining, Western blot, immunostaining, MTT assay, EdU staining, and flow cytometry. The intraperitoneal injection of Li2CO3 at Embryonic Day 7.5 induced the occurrence of NTDs. The mRNA levels of Bmp2, Bmp4, Smad1, Smad5, Smad8 and Runx2, the phosphorylation of Smad1/5/8, and the nuclear translocation of Runx2 were significantly increased in NTD embryonic brain tissues and mNSCs exposed to Li2CO3 or an inositol-free medium, which were suppressed by BMP receptor selective inhibitor LDN-193189. The Li2CO3-induced phosphorylation of Smad1/5/8 was inhibited by inositol supplementation. Cell proliferation was significantly promoted by Li2CO3 exposure or the absence of inositol in mNSCs, which was reversed by LDN-193189. These results suggest that the activation of the BMP/Smad signaling pathway might play an important role in the development of NTDs induced by maternal Li2CO3 exposure via inositol deficiency.
Collapse
|
42
|
Kearney BE, Lanius RA. The brain-body disconnect: A somatic sensory basis for trauma-related disorders. Front Neurosci 2022; 16:1015749. [PMID: 36478879 PMCID: PMC9720153 DOI: 10.3389/fnins.2022.1015749] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 08/16/2023] Open
Abstract
Although the manifestation of trauma in the body is a phenomenon well-endorsed by clinicians and traumatized individuals, the neurobiological underpinnings of this manifestation remain unclear. The notion of somatic sensory processing, which encompasses vestibular and somatosensory processing and relates to the sensory systems concerned with how the physical body exists in and relates to physical space, is introduced as a major contributor to overall regulatory, social-emotional, and self-referential functioning. From a phylogenetically and ontogenetically informed perspective, trauma-related symptomology is conceptualized to be grounded in brainstem-level somatic sensory processing dysfunction and its cascading influences on physiological arousal modulation, affect regulation, and higher-order capacities. Lastly, we introduce a novel hierarchical model bridging somatic sensory processes with limbic and neocortical mechanisms regulating an individual's emotional experience and sense of a relational, agentive self. This model provides a working framework for the neurobiologically informed assessment and treatment of trauma-related conditions from a somatic sensory processing perspective.
Collapse
Affiliation(s)
- Breanne E. Kearney
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ruth A. Lanius
- Department of Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
43
|
Rapid Progression of Heterotopic Ossification in Severe Variant of Fibrodysplasia Ossificans Progressiva with p.Arg258Gly in ACVR1: A Case Report and Review of Clinical Phenotypes. Case Rep Genet 2022; 2022:5021758. [PMID: 36060212 PMCID: PMC9436604 DOI: 10.1155/2022/5021758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare skeletal disorder characterized by congenital malformation of the great toes and progressive heterotopic ossification. Malformation of the great toes appears at birth, while heterotopic ossification generally occurs during childhood and rarely occurs during infancy. Classical FOP results from the heterozygous p.Arg206His variant of the ACVR1 gene, which encodes Activin A receptor type 1. Recently, some atypical FOP patients with other ACVR1 gene variants and clinical features that are not observed in classical FOP patients have been reported. Herein, we describe a girl with severe FOP and multiple anomalies, including syndactyly of the hands and feet, nail agenesis, mandibular hypoplasia, heterotopic ossification occurring from infancy, and congenital cardiac malformation. In our patient, we identified de novo occurrence of the heterozygous p.Arg258Gly variant of ACVR1, which has previously been reported in only two severe FOP patients. Heterotopic ossification occurred earlier and more frequently compared with classical FOP patients. We present the time-series changes in heterotopic ossification in our patient and compare her clinical features with those of the previously reported patients with p.Arg258Gly. Our report deepens understanding of the clinical features in severe FOP with p.Arg258Gly and of FOP as a systemic disorder.
Collapse
|
44
|
Kuznitsov-Yanovsky L, Shapira G, Gildin L, Shomron N, Ben-Yosef D. Transcriptomic Analysis of Human Fragile X Syndrome Neurons Reveals Neurite Outgrowth Modulation by the TGFβ/BMP Pathway. Int J Mol Sci 2022; 23:ijms23169278. [PMID: 36012539 PMCID: PMC9409179 DOI: 10.3390/ijms23169278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/25/2022] Open
Abstract
Fragile X Syndrome (FXS) is the main genetic reason for intellectual disability and is caused by the silencing of fragile X mental retardation protein (FMRP), an RNA-binding protein regulating the translation of many neuronal mRNAs. Neural differentiation of FX human embryonic stem cells (hESC) mimics the neurodevelopment of FXS fetuses and thus serves as a good model to explore the mechanisms underlining the development of FXS. Isogenic hESC clones with and without the FX mutation that share the same genetic background were in vitro differentiated into neurons, and their transcriptome was analyzed by RNA sequencing. FX neurons inactivating FMR1 expression presented delayed neuronal development and maturation, concomitant with dysregulation of the TGFβ/BMP signaling pathway, and genes related to the extracellular matrix. Migration assay showed decreased neurite outgrowth in FX neurons that was rescued by inhibition of the TGFβ/BMP signaling pathway. Our results provide new insights into the molecular pathway by which loss of FMRP affects neuronal network development. In FX neurons, the lack of FMRP dysregulates members of the BMP signaling pathway associated with ECM organization which, in a yet unknown mechanism, reduces the guidance of axonal growth cones, probably leading to the aberrant neuronal network function seen in FXS.
Collapse
Affiliation(s)
- Liron Kuznitsov-Yanovsky
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital Tel-Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Guy Shapira
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Lital Gildin
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital Tel-Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Dalit Ben-Yosef
- Wolfe PGD Stem Cell Lab, Racine IVF Unit, Lis Maternity Hospital Tel-Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
- Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv 69978, Israel
- Correspondence:
| |
Collapse
|
45
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
46
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
47
|
Yadav A, Verhaegen S, Filis P, Domanska D, Lyle R, Sundaram AYM, Leithaug M, Østby GC, Aleksandersen M, Berntsen HF, Zimmer KE, Fowler PA, Paulsen RE, Ropstad E. Exposure to a human relevant mixture of persistent organic pollutants or to perfluorooctane sulfonic acid alone dysregulates the developing cerebellum of chicken embryo. ENVIRONMENT INTERNATIONAL 2022; 166:107379. [PMID: 35792514 DOI: 10.1016/j.envint.2022.107379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/07/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Prenatal exposure to persistent organic pollutants (POPs) is associated with neurodevelopmental disorders. In the present study, we explored whether a human-relevant POP mixture affects the development of chicken embryo cerebellum. We used a defined mixture of 29 POPs, with chemical composition and concentrations based on blood levels in the Scandinavian population. We also evaluated exposure to a prominent compound in the mixture, perfluorooctane sulfonic acid (PFOS), alone. Embryos (n = 7-9 per exposure group) were exposed by injection directly into the allantois at embryonic day 13 (E13). Cerebella were isolated at E17 and subjected to morphological, RNA-seq and shot-gun proteomics analyses. There was a reduction in thickness of the molecular layer of cerebellar cortex in both exposure scenarios. Exposure to the POP mixture significantly affected expression of 65 of 13,800 transcripts, and 43 of 2,568 proteins, when compared to solvent control. PFOS alone affected expression of 80 of 13,859 transcripts, and 69 of 2,555 proteins. Twenty-five genes and 15 proteins were common for both exposure groups. These findings point to alterations in molecular events linked to retinoid X receptor (RXR) signalling, neuronal cell proliferation and migration, cellular stress responses including unfolded protein response, lipid metabolism, and myelination. Exposure to the POP mixture increased methionine oxidation, whereas PFOS decreased oxidation. Several of the altered genes and proteins are involved in a wide variety of neurological disorders. We conclude that POP exposure can interfere with fundamental aspects of neurodevelopment, altering molecular pathways that are associated with adverse neurocognitive and behavioural outcomes.
Collapse
Affiliation(s)
- Ajay Yadav
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Steven Verhaegen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Panagiotis Filis
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Diana Domanska
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
| | - Robert Lyle
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| | - Gunn Charlotte Østby
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Mona Aleksandersen
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Hanne Friis Berntsen
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway; National Institute of Occupational Health, P.O. Box 5330 Majorstuen, NO-0304, Oslo, Norway.
| | - Karin Elisabeth Zimmer
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| | - Paul A Fowler
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | - Ragnhild Elisabeth Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, P.O. Box 1068, Blindern, NO-0316 Oslo, Norway.
| | - Erik Ropstad
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, P.O. Box 5003, NO-1432 Ås, Norway.
| |
Collapse
|
48
|
Ahmed AKMA, Nakagawa H, Isaksen TJ, Yamashita T. The effects of Bone Morphogenetic Protein 4 on adult neural stem cell proliferation, differentiation and survival in an in vitro model of ischemic stroke. Neurosci Res 2022; 183:17-29. [PMID: 35870553 DOI: 10.1016/j.neures.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/28/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
The subventricular zone (SVZ) of the lateral ventricles represents a main region where neural stem cells (NSCs) of the mature central nervous system (CNS) reside. Bone Morphogenetic Proteins (BMPs) are the largest subclass of the transforming growth factor-β (TGF-β) superfamily of ligands. BMP4 is one such member and plays important roles in adult NSC differentiation. However, the exact effects of BMP4 on SVZ adult NSCs in CNS ischemia are still unknown. Using oxygen and glucose deprivation (OGD) as an in vitro model of ischemia, we examined the behavior of adult NSCs. We observed that anoxia resulted in reduced viability of adult NSCs, and that BMP4 treatment clearly rescued apoptotic cell death following anoxia. Furthermore, BMP4 treatment exhibited a strong inhibitory effect on cellular proliferation of the adult NSCs in normoxic conditions. Moreover, such inhibitory effects of BMP4 treatment were also found in OGD conditions, despite the enhanced cellular proliferation of the adult NSCs that was observed under such ischemic conditions. Increased neuronal and astroglial commitment of adult NSCs were found in the OGD conditions, whereas a reduction in differentiated neurons and an increase in differentiated astrocytes were observed following BMP4 treatment. The present data indicate that BMP4 modulates proliferation and differentiation of SVZ-derived adult NSCs and promotes cell survival in the in vitro model of ischemic stroke.
Collapse
Affiliation(s)
- Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Nakagawa
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toke Jost Isaksen
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka 565-0871, Japan; Graduate School of Frontier Bioscience, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
49
|
Endogenous Neural Stem Cell Mediated Oligodendrogenesis in the Adult Mammalian Brain. Cells 2022; 11:cells11132101. [PMID: 35805185 PMCID: PMC9265817 DOI: 10.3390/cells11132101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 02/08/2023] Open
Abstract
Oligodendrogenesis is essential for replacing worn-out oligodendrocytes, promoting myelin plasticity, and for myelin repair following a demyelinating injury in the adult mammalian brain. Neural stem cells are an important source of oligodendrocytes in the adult brain; however, there are considerable differences in oligodendrogenesis from neural stem cells residing in different areas of the adult brain. Amongst the distinct niches containing neural stem cells, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are considered the principle areas of adult neurogenesis. In addition to these areas, radial glia-like cells, which are the precursors of neural stem cells, are found in the lining of the third ventricle, where they are called tanycytes, and in the cerebellum, where they are called Bergmann glia. In this review, we will describe the contribution and regulation of each of these niches in adult oligodendrogenesis.
Collapse
|
50
|
Regent F, Batz Z, Kelley RA, Gieser L, Swaroop A, Chen HY, Li T. Nicotinamide Promotes Formation of Retinal Organoids From Human Pluripotent Stem Cells via Enhanced Neural Cell Fate Commitment. Front Cell Neurosci 2022; 16:878351. [PMID: 35783089 PMCID: PMC9247291 DOI: 10.3389/fncel.2022.878351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) recapitulate key features of retinogenesis and provide a promising platform to study retinal development and disease in a human context. Although multiple protocols are currently in use, hPSCs exhibit tremendous variability in differentiation efficiency, with some cell lines consistently yielding few or even no ROs, limiting their utility in research. We report here that early nicotinamide (NAM) treatment significantly improves RO yield across 8 hPSC lines from different donors, including some that would otherwise fail to generate a meaningful number of ROs. NAM treatment promotes neural commitment of hPSCs at the expense of non-neural ectodermal cell fate, which in turn increases eye field progenitor generation. Further analysis suggests that this effect is partially mediated through inhibition of BMP signaling. Our data encourage a broader use of human ROs for disease modeling applications that require the use of multiple patient-specific cell lines.
Collapse
|