1
|
Olmos-Ruiz R, Garcia-Gomez P, Carvajal M, Yepes-Molina L. Exploring membrane vesicles in citrus fruits: a comparative analysis of conventional and organic farming approaches. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:235-248. [PMID: 37596244 DOI: 10.1002/jsfa.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/03/2023] [Accepted: 08/19/2023] [Indexed: 08/20/2023]
Abstract
BACKGROUND Recently, vesicles derived from plant cell membranes have received attention for their potential use as active biomolecules and nanocarriers, and obtaining them from organic crops may be an interesting option because different farming systems can affect production, plant secondary metabolism and biochemistry of cell membranes. The present study aimed to determine how organic and conventional farming affects the mineral nutrition, gas exchange, CO2 fixation and biochemical composition of lemon fruits, which could have an impact on the different fractions of cell membranes in pulp and juice. RESULTS Organic trees had higher intrinsic water use efficiency (WUEi) but conventional trees had higher stomatal conductance (gs) and nitrogen use efficiency (NUtE). Also, organic lemons had significantly higher levels of some micronutrients (Ca, Cu, Fe and Zn). Second, the main differences in the membrane vesicles showed that organic pulp vesicles had a higher antioxidant activity and more oleic acid, whereas both types of vesicles from conventional lemons had more linoleic acid. CONCLUSION In conclusion, organic farming did not alter carbon fixation parameters but impacted nitrogen fixation and water uptake, and resulted in higher micronutrient levels in lemons. These mineral nutritional changes could be related to the higher production of membranes that showed suitable morphological traits and a high antioxidant activity, positively correlated with a high amount of oleic acid, which could have stronger cell protection characteristics. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Rafael Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Pablo Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
2
|
Rahman A, Baharlouei P, Koh EHY, Pirvu DG, Rehmani R, Arcos M, Puri S. A Comprehensive Analysis of Organic Food: Evaluating Nutritional Value and Impact on Human Health. Foods 2024; 13:208. [PMID: 38254509 PMCID: PMC10814746 DOI: 10.3390/foods13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/23/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, organic agriculture has gained more popularity, yet its approach to food production and its potential impact on consumers' health and various environmental aspects remain to be fully discovered. The goal of organic farming practices is to maintain soil health, sustain ecological systems, maintain fairness in its relationship with the environment and protect the environment in its entirety. Various health benefits have been associated with higher consumption of organic foods. This review identified some of these health benefits, including a reduction in obesity and body mass index (BMI), improvements in blood nutrient composition as well as reductions in maternal obesity and pregnancy-associated preeclampsia risks. Furthermore, organic food consumption can reduce the development of non-Hodgkin lymphoma (NHL) and colorectal cancers. Upon reviewing the existing literature regarding the nutritional value of organic foods, it was found that organic food contained higher levels of iron, magnesium and vitamin C. However, the evidence available to draw definitive causations remains limited due to study biases, short study durations and confounding variables; thus, it cannot be concluded that the organic diet provides any related health benefits. In this review, we provided essential insights and statistical analysis from the evidence available and consider study limitations to evaluate the potential of organic food consumption in positively impacting human health.
Collapse
Affiliation(s)
- Azizur Rahman
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Parnian Baharlouei
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- Physiology and Human Biology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Eleanor Hui Yan Koh
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Diana Gabby Pirvu
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Rameesha Rehmani
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Mateo Arcos
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| | - Simron Puri
- Centre for Climate Change Research, University of Toronto, ONRamp at UTE, Toronto, ON M5G 1L5, Canada; (P.B.); (E.H.Y.K.); (D.G.P.); (R.R.); (M.A.); (S.P.)
- A.R. Environmental Solutions, ICUBE-University of Toronto, Mississauga, ON L5L 1C6, Canada
| |
Collapse
|
3
|
Determinants of the willingness to buy products certified by omics technology: differences between regular and occasional consumers of organic food. Food Res Int 2023; 164:112324. [PMID: 36737917 DOI: 10.1016/j.foodres.2022.112324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Consumers' demand for organic food has increased in the last years, together with a growing request for food authentication and safety. Omics technologies represent a viable analytical strategy to respond to such needs, strengthen food safety information transmission between consumers and industry, and differentiate between organic and conventional products. However, little is known about consumers' perception of such a novel certification approach. The present research ought to provide insights into the perspectives of consumers, exploring the antecedents of their intention to purchase organic vegetables certified through omics technologies and differentiating between regular and occasional consumers of organic foods. Data were collected from a representative sample of 807 Italian respondents who completed a self-report questionnaire, and Structural Equation Modeling was performed to analyze the data. Results show that several factors influence consumers' approach to omics technology, among which trust in actors in the food industry, attitudes towards the technology and environmental food concerns. In addition, the study drew attention to the differential path impacting consumers with distinct eating habits. Indeed, the degree of importance attributed to food in one's life and the interest towards innovative food are significant predictors of the intention to adopt omics technology only for people consuming organic products with higher frequency. Also, trust in industry actors follows a different path for regular and occasional organic food consumers. The present study sheds light on consumers' perspective on omics technologies, a relatively unexplored topic. Moreover, it allowed to differentiate consumers based on their organic consumption habits, which has been rarely done in previous research. The evidence collected suggests the need for tailored communication programs to stimulate the adoption of omics technologies and foster consumers' confidence in novel food technologies.
Collapse
|
4
|
Oliveira LFC, Tega DU, Duarte GHB, Barbosa LD, Ribeiro HC, Castello ACD, Sawaya ACHF, Sussulini A. Foodomics for agroecology: Differentiation of volatile profile in mint (Mentha × gracilis Sole) from permaculture, organic and conventional agricultural systems using HS-SPME/GC-MS. Food Res Int 2022; 155:111107. [PMID: 35400399 DOI: 10.1016/j.foodres.2022.111107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/04/2022]
Abstract
In the present study, foodomics approach was employed to investigate changes in the metabolism from the volatile terpenoids profile of mint(Mentha × gracillis Sole)from conventional, organic and permaculture (a type of agroecological agriculture system) farms using headspace solid-phase microextraction (HS-SPME) associated to gas chromatography coupled to mass spectrometry (GC-MS) and chemometric tools. The discrimination among the three types of mint was successfully achieved and demonstrated evidence of ecological interaction impact in the food metabolism. The agroecological mint presented as differential compounds: α-terpineol, bornyl formate, cis-carvyl propionate, cis-carveol, camphor, dihydrocarvyl acetate, dihydrocarveol, karahanaenone, nonanal, 3-octyl acetate, and trans-3-hexenyl-2 methylbutyrate. While organic and conventional mint presented as differential compounds: α-cedrene, β -pinene, γ-muurolene, δ-cadinene, germacrene, terpinolene, and elemol. The majority of differential metabolites from agroecological mint are oxygenated monoterpenes, which have more intense flavor and biological activities than hydrocarbons monoterpenes and sesquiterpenes found in organic and conventional mint. Furthermore, the discrimination between organic and conventional mint was effectively performed, which demonstrated different terpenoid profiles though without implying benefits for one or another agriculture system.
Collapse
Affiliation(s)
- Luan Felipe Campos Oliveira
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Yoko Civilization Research Centre, 05508-900 São Paulo, SP, Brazil
| | - David Ulisses Tega
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Gustavo Henrique Bueno Duarte
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Luidy Darllan Barbosa
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | - Henrique Caracho Ribeiro
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil
| | | | | | - Alessandra Sussulini
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, SP, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica (INCTBio), Institute of Chemistry, University of Campinas (UNICAMP), 13083-970 Campinas, SP, Brazil.
| |
Collapse
|
5
|
Xue G, Su S, Yan P, Shang J, Wang J, Yan C, Li J, Wang Q, Du Y, Cao L, Xu H. Quality control of Zingiberis Rhizoma and its processed products by UHPLC-Q-TOF/MS-based non-targeted metabonomics combining with SIBDV method. Food Res Int 2022; 154:111021. [PMID: 35337577 DOI: 10.1016/j.foodres.2022.111021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
Zingiberis Rhizoma (ZR) is a homologous plant with pungent tastes and aromas, which has unique nutritional value and tremendous application potentiality. Zingiberis Rhizoma Praeparatum (ZRP) and Carbonised Ginger (CG) are processed products of ZR through different processing methods, and they are commonly used ingredients in food supplements. This study used ZR, ZRP and CG from different batches to further understand composition differences after processing. Additionally, we performed non-targeted metabolomics-based profiling of gingerols by ultra-high-performance liquid chromatography coupled with hybrid triple quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) in combination with multivariate analysis and compounds identification. In which, we developed a comprehensive SWATH-IDA bi-directionally verified (SIBDV) method integrating the advantages of Sequential Windowed Acquisition of all Theoretical fragment ions (SWATHTM) and traditional information-dependent acquisition (IDA) mode for characterization of gingerols. Potential chemical markers were selected by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) of chemometrics methods. After that, the threshold variable importance in projection (VIP) value and P value were employed to screen the valuable MS features for discriminating ZR, ZRP and CG. In total, 59 gingerols in the different samples were structurally identified. Results allowed the selection of 33 gingerols, which are nominated as novel markers for materials authentication in ZR, ZRP and CG. The analysis of the study showed that the content of gingerols showed a downward trend after processing, but shogaols and gingerone compounds had an upward trend, resulting in differences in application and pharmacodynamic efficacy. These findings provide promising perspectives in the quality control of ZR, ZRP and CG, as well as for laying the foundation in food design and development.
Collapse
Affiliation(s)
- Guiren Xue
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Shanshan Su
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Pengfei Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiawei Shang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jianxin Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Chengye Yan
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Jiaxi Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Liang Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China
| | - Huijun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, PR China.
| |
Collapse
|
6
|
Bioactive Compounds, Sugars, and Sensory Attributes of Organic and Conventionally Produced Courgette ( Cucurbita pepo). Foods 2021; 10:foods10102475. [PMID: 34681524 PMCID: PMC8536166 DOI: 10.3390/foods10102475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Organic agriculture is considered one of the elements of sustainable food production and consumption, mainly due to its limited impact on the natural environment. At the same time, the quality features of organically produced foods, especially sensory attributes and health promoting values, are important factors determining consumers’ interest, and therefore play a key role in the organic sector’s development. The aim of this study was to investigate the sensory characteristics and concentrations of sugars and selected health-promoting bioactive compounds of organic courgette compared to conventionally grown courgette. In addition, untargeted metabolomic analysis of the courgette fruits was performed. The results of this study did not show a significant effect of the horticultural system (organic vs. conventional) on the concentrations of vitamin C, carotenoids, and chlorophylls in the courgette fruits. However, the fruits from the organic systems were significantly richer in sugars when compared to the conventionally cultivated ones (p = 0.038). Moreover, the organic fruits fertilized with manure contained significantly higher amounts of polyphenols, including gallic acid (p = 0.016), chlorogenic acid (p = 0.012), ferulic acid (p = 0.019), and quercetin-3-O-rutinoside (p = 0.020) compared to the conventional fruits. The untargeted analysis detected features significantly differentiating courgette fruits depending on the cultivar and horticultural system. Some significant differences in sensory values were also identified between fruits representing the two cultivars and coming from the horticultural systems compared in the study. Conventional courgettes were characterized by the most intensive peel color and aquosity, but at the same time were the least hard and firm compared to the fruits from the two organic systems. There was also a trend towards higher overall quality of the organically grown fruits. The presented study shows that the organic and conventional courgette fruits differ in a number of quality features which can influence consumers’ health and purchasing choices.
Collapse
|
7
|
1H NMR spectroscopy, one-class classification and outlier diagnosis: A powerful combination for adulteration detection in paprika powder. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Kalogiouri NP, Kritikou E, Martakos IC, Lazarou C, Pentogennis M, Thomaidis NS. Characterization of the Phenolic Fingerprint of Kolovi Extra Virgin Olive Oils from Lesvos with Regard to Altitude and Farming System Analyzed by UHPLC-QTOF-MS. Molecules 2021; 26:5634. [PMID: 34577106 PMCID: PMC8471387 DOI: 10.3390/molecules26185634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 01/18/2023] Open
Abstract
Extra virgin olive oil (EVOO) is recognized for its nutritional virtues and the beneficial health effects deriving from its hydrophilic fraction (phenolic acids, phenolic alcohols, flavonoids, and secoiridoids). The phenolic compounds of EVOOs possess multiple biological properties such as antioxidant, antimicrobial, anticarcinogenic, and anti-inflammatory properties, among others. Considering that EVOOs produced in Greece are recognized as high-quality products due to their rich phenolic content, it is imperative to characterize Greek monovarietal EVOOs and ensure that their uniqueness is closely linked to their botanical and territorial origin. In this work, an ultra-high-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method combined with target and suspect screening was used to characterize monovarietal EVOOs of the Kolovi variety from Lesvos, and thereby establish their phenolic fingerprint. Overall, 25 phenols were determined, and the total quantification and semi-quantification results ranged between 251 and 1230 mg/kg, highlighting the high phenolic content of the Kolovi variety from the island of Lesvos in the North Aegean.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15771 Athens, Greece; (N.P.K.); (E.K.); (I.C.M.); (C.L.); (M.P.)
| |
Collapse
|
9
|
Mihailova A, Kelly SD, Chevallier OP, Elliott CT, Maestroni BM, Cannavan A. High-resolution mass spectrometry-based metabolomics for the discrimination between organic and conventional crops: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
The influence of the production system on the composition of phytochemicals in Prunus domestica L. fruit. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Ferone M, Gowen A, Fanning S, Scannell AGM. Microbial detection and identification methods: Bench top assays to omics approaches. Compr Rev Food Sci Food Saf 2020; 19:3106-3129. [PMID: 33337061 DOI: 10.1111/1541-4337.12618] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/26/2022]
Abstract
Rapid detection of foodborne pathogens, spoilage microbes, and other biological contaminants in complex food matrices is essential to maintain food quality and ensure consumer safety. Traditional methods involve culturing microbes using a range of nonselective and selective enrichment methods, followed by biochemical confirmation among others. The time-to-detection is a key limitation when testing foods, particularly those with short shelf lives, such as fresh meat, fish, dairy products, and vegetables. Some recent detection methods developed include the use of spectroscopic techniques, such as matrix-assisted laser desorption ionization-time of flight along with hyperspectral imaging protocols.This review presents a comprehensive overview comparing insights into the principles, characteristics, and applications of newer and emerging techniques methods applied to the detection and identification of microbes in food matrices, to more traditional benchtop approaches. The content has been developed to provide specialist scientists a broad view of bacterial identification methods available in terms of their benefits and limitations, which may be useful in the development of future experimental design. The case is also made for incorporating some of these emerging methods into the mainstream, for example, underutilized potential of spectroscopic techniques and hyperspectral imaging.
Collapse
Affiliation(s)
- Mariateresa Ferone
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Aoife Gowen
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD School of Biosystems and Food Engineering, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland
| | - Séamus Fanning
- UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland.,UCD School of Public Health, Physiotherapy and Sport Science University College Dublin, Dublin, Ireland
| | - Amalia G M Scannell
- UCD School of Agriculture and Food Science, Dublin, Ireland.,UCD Institute of Food and Health, Dublin, Ireland.,UCD-Centre for Food Safety, Dublin, Ireland
| |
Collapse
|
12
|
Romero-Estévez D, Yánez-Jácome GS, Simbaña-Farinango K, Vélez-Terreros PY, Navarrete H. Determination of cadmium and lead in tomato ( Solanum lycopersicum) and lettuce ( Lactuca sativa) consumed in Quito, Ecuador. Toxicol Rep 2020; 7:893-899. [PMID: 32742937 PMCID: PMC7388161 DOI: 10.1016/j.toxrep.2020.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 01/02/2023] Open
Abstract
Cadmium content was lower than 0.100 mg/kg (tomato) and 0.200 mg/kg (lettuce). Lead content above or close to 0.100 mg/kg was found in 25 % of tomato samples. Organic products had similar lead and cadmium content as nonorganic ones.
Vegetables are one of the most important components in the human diet, but despite their multiple nutritional components, studies have demonstrated the presence of trace metals in their edible parts. In Ecuador, two of the most consumed crops are tomato (Solanum lycopersicum) and lettuce (Lactuca sativa). The importance of these two crops in the Ecuadorian diet, especially in large and touristic locations like the Metropolitan District of Quito, implies food safety-related concerns for locals and visitors. However, no previous studies have quantified the cadmium and lead levels in these two vegetables using samples from Quito markets. Thus, the aim of this study was to determine the cadmium and lead content in both tomato and lettuce products from main nonorganic and organic markets in Quito using a graphite furnace atomic absorption spectrophotometer. The results showed that the cadmium levels were lower than 0.058 in tomatoes and 0.034 mg/kg in lettuce, which are under the respective threshold values (0.100 and 0.200 mg/kg). Regarding lead, levels lower than 0.066 mg/kg were detected in lettuce, which did not exceed the CXS 193–1995 threshold value, while levels in tomatoes were near or exceeded the threshold value (0.100 mg/kg) from four markets (0.209, 0.162, 0.110, 0.099 mg/kg), suggesting a possible risk from tomato consumption. In addition, most vegetables marketed as organic had higher metal content than those coming from nonorganic markets. Based on these results, local health and commercial control authorities should monitor contaminants in food products sold in Quito and other places in Ecuador to ensure their safety.
Collapse
Key Words
- AOAC, Association of Official Analytical Chemists
- Atomic absorption spectrophotometry
- CXS, General Standard for Contaminants and Toxins in Food and Feed Codex
- DMQ, Metropolitan District of Quito
- DNA, deoxyribonucleic acid
- EPA, Environmental Protection Agency
- FAO, Food and Agriculture Organization
- Fairs
- HQ, hazard quotients
- INEN, Ecuadorian Standardization Service
- Markets
- NTE, Ecuadorian Technical Standard
- Nonorganic crops
- Organic crops
- RSD, relative standard deviation
- TM, trace metal
- Trace metals
- WHO, World Health Organization
Collapse
Affiliation(s)
- David Romero-Estévez
- Centro de Estudios Aplicados en Química CESAQ-PUCE, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, 17012184, Ecuador
| | - Gabriela S Yánez-Jácome
- Centro de Estudios Aplicados en Química CESAQ-PUCE, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, 17012184, Ecuador
| | - Karina Simbaña-Farinango
- Centro de Estudios Aplicados en Química CESAQ-PUCE, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, 17012184, Ecuador
| | - Pamela Y Vélez-Terreros
- Centro de Estudios Aplicados en Química CESAQ-PUCE, Pontificia Universidad Católica del Ecuador, Av. 12 de Octubre 1076 y Roca, Quito, 17012184, Ecuador
| | - Hugo Navarrete
- Herbario QCA, Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito. Av. 12 de Octubre 1076 y Roca, Quito, 17012184, Ecuador
| |
Collapse
|
13
|
Kalogiouri NP, Aalizadeh R, Dasenaki ME, Thomaidis NS. Authentication of Greek PDO Kalamata Table Olives: A Novel Non-Target High Resolution Mass Spectrometric Approach. Molecules 2020; 25:molecules25122919. [PMID: 32599950 PMCID: PMC7355929 DOI: 10.3390/molecules25122919] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 01/15/2023] Open
Abstract
Food science continually requires the development of novel analytical methods to prevent fraudulent actions and guarantee food authenticity. Greek table olives, one of the most emblematic and valuable Greek national products, are often subjected to economically motivated fraud. In this work, a novel ultra-high-performance liquid chromatography–quadrupole time of flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method was developed to detect the mislabeling of Greek PDO Kalamata table olives, and thereby establish their authenticity. A non-targeted screening workflow was applied, coupled to advanced chemometric techniques such as Principal Component Analysis (PCA) and Partial Least Square Discriminant Analysis (PLS-DA) in order to fingerprint and accurately discriminate PDO Greek Kalamata olives from Kalamata (or Kalamon) type olives from Egypt and Chile. The method performance was evaluated using a target set of phenolic compounds and several validation parameters were calculated. Overall, 65 table olive samples from Greece, Egypt, and Chile were analyzed and processed for the model development and its accuracy was validated. The robustness of the chemometric model was tested using 11 Greek Kalamon olive samples that were produced during the following crop year, 2018, and they were successfully classified as Greek Kalamon olives from Kalamata. Twenty-six characteristic authenticity markers were indicated to be responsible for the discrimination of Kalamon olives of different geographical origins.
Collapse
|
14
|
Creydt M, Fischer M. Food authentication in real life: How to link nontargeted approaches with routine analytics? Electrophoresis 2020; 41:1665-1679. [PMID: 32249434 DOI: 10.1002/elps.202000030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Abstract
In times of increasing globalization and the resulting complexity of trade flows, securing food quality is an increasing challenge. The development of analytical methods for checking the integrity and, thus, the safety of food is one of the central questions for actors from science, politics, and industry. Targeted methods, for the detection of a few selected analytes, still play the most important role in routine analysis. In the past 5 years, nontargeted methods that do not aim at individual analytes but on analyte profiles that are as comprehensive as possible have increasingly come into focus. Instead of investigating individual chemical structures, data patterns are collected, evaluated and, depending on the problem, fed into databases that can be used for further nontargeted approaches. Alternatively, individual markers can be extracted and transferred to targeted methods. Such an approach requires (i) the availability of authentic reference material, (ii) the corresponding high-resolution laboratory infrastructure, and (iii) extensive expertise in processing and storing very large amounts of data. Probably due to the requirements mentioned above, only a few methods have really established themselves in routine analysis. This review article focuses on the establishment of nontargeted methods in routine laboratories. Challenges are summarized and possible solutions are presented.
Collapse
Affiliation(s)
- Marina Creydt
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Hamburg, Germany
| |
Collapse
|
15
|
Escobar-Avello D, Olmo-Cunillera A, Lozano-Castellón J, Marhuenda-Muñoz M, Vallverdú-Queralt A. A Targeted Approach by High Resolution Mass Spectrometry to Reveal New Compounds in Raisins. Molecules 2020; 25:molecules25061281. [PMID: 32178240 PMCID: PMC7143986 DOI: 10.3390/molecules25061281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 01/18/2023] Open
Abstract
Raisins are dried grapes mostly obtained from cultivars of Vitis vinifera L. and are extensively consumed worldwide. They are rich in bioactive compounds such as polyphenols, which are associated with a broad range of health benefits. The aim of the present study was to compare the phenolic profiles of three different raisin varieties (Thompson seedless, Muscat, and sultanas). Total polyphenols (TPs) were evaluated by the Folin–Ciocalteu (F–C) assay and significant differences were observed among all raisin varieties. Furthermore, liquid chromatography coupled with electrospray ionization hybrid linear ion trap quadrupole-Orbitrap-mass spectrometry (LC/ESI-LTQ-Orbitrap-MS) was employed for the comprehensive identification of phenolic constituents. A total of 45 compounds were identified, including hydroxybenzoic and hydroxycinnamic acids, flavanoids, flavonoids, flavonols, flavones, and stilbenoids. The three varieties of raisins showed a similar phenolic profile, although the highest number of phenolic compounds was identified in Muscat raisins owing to the proanthocyanidins extracted from their seeds, while stilbenoids were not detected in the Thompson variety.
Collapse
Affiliation(s)
- Danilo Escobar-Avello
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (D.E.-A.)
| | - Alexandra Olmo-Cunillera
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (D.E.-A.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Julián Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (D.E.-A.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Marhuenda-Muñoz
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (D.E.-A.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy, School of Pharmacy and Food Sciences and XaRTA, Institute of Nutrition and Food Safety (INSA-UB), University of Barcelona, 08921 Santa Coloma de Gramenet, Spain; (D.E.-A.)
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y la Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934034843
| |
Collapse
|
16
|
Sinkovič L, Nečemer M, Ogrinc N, Žnidarčič D, Stopar D, Vidrih R, Meglič V. Parameters for discrimination between organic and conventional production: A case study for chicory plants (Cichorium intybus L.). Food Chem Toxicol 2020; 136:111109. [PMID: 31904471 DOI: 10.1016/j.fct.2019.111109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/16/2022]
Abstract
Organic crop production has become a highly attractive way of production over the world and thus the need for robust analytical techniques for their authentication. The main aim of this study is to identify appropriate biomarkers to discriminate between organic and conventionally grown chicory. Chicory is an appreciated leafy vegetable among producers and consumers, especially due to its undemanding cultivation and content of bioactive substances. Six different fertility management practices (control, two organic, two mineral, and a combination of organic and mineral fertilizers) were used to produce five chicory cultivars in a glasshouse pot experiment. Analysis of bioactive compounds, nitrogen assimilation, multi-elemental profiling and stable isotope ratio determination of carbon (C), nitrogen (N) and sulphur (S) were performed to differentiate between organic and conventional production. In this study, nitrogen isotopes are found to be an excellent way of identifying organically produced chicory of a different variety with the highest δ15N values. Conversely, the same samples had the lowest δ34S values indicating that also stable isotopes of S could be used as a marker for the authentication of organic production.
Collapse
Affiliation(s)
- Lovro Sinkovič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, SI-1000, Ljubljana, Slovenia.
| | - Marijan Nečemer
- Department of Low and Medium Energy Physics, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Nives Ogrinc
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, SI-1000, Ljubljana, Slovenia
| | - Dragan Žnidarčič
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - David Stopar
- Laboratory of Microbiology, Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Večna Pot 111, SI-1000, Ljubljana, Slovenia
| | - Rajko Vidrih
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
| | - Vladimir Meglič
- Crop Science Department, Agricultural Institute of Slovenia, Hacquetova Ulica 17, SI-1000, Ljubljana, Slovenia
| |
Collapse
|
17
|
Montero L, Herrero M. Two-dimensional liquid chromatography approaches in Foodomics – A review. Anal Chim Acta 2019; 1083:1-18. [DOI: 10.1016/j.aca.2019.07.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023]
|
18
|
Hurtado-Barroso S, Quifer-Rada P, Marhuenda-Muñoz M, Rinaldi de Alvarenga JF, Tresserra-Rimbau A, Lamuela-Raventós RM. Increase of 4-Hydroxybenzoic, a Bioactive Phenolic Compound, after an Organic Intervention Diet. Antioxidants (Basel) 2019; 8:antiox8090340. [PMID: 31450569 PMCID: PMC6769758 DOI: 10.3390/antiox8090340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
Consumption of organic products is increasing yearly due to perceived health-promoting qualities. Several studies have shown higher amounts of phytochemicals such as polyphenols and carotenoids in foods produced by this type of agriculture than in conventional foods, but whether this increase has an impact on humans still needs to be assessed. A randomized, controlled and crossover study was carried out in nineteen healthy subjects aged 18-40 years, who all followed an organic and conventional healthy diet, both for a 4-week period. Analysis of biological samples revealed a significant increase on the excretion of 4-hydroxybenzoic acid (4-HBA), a phenolic metabolite with biological activity, after the organic intervention. However, no changes were observed in the other variables analyzed.
Collapse
Affiliation(s)
- Sara Hurtado-Barroso
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08028 Barcelona, Spain
| | - Paola Quifer-Rada
- Department of Endocrinology & Nutrition, CIBER of Diabetes and Associated Metabolic Diseases, Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain
| | - María Marhuenda-Muñoz
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08028 Barcelona, Spain
| | - Jose Fernando Rinaldi de Alvarenga
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08028 Barcelona, Spain
| | - Anna Tresserra-Rimbau
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Unitat de Nutrició Humana, Hospital Universitari Sant Joan de Reus, Departament de Bioquímica i Biotecnologia, Institut d'Investigació Pere Virgili (IISPV), Universitat Rovira i Virgili, 43007 Reus, Spain
| | - Rosa M Lamuela-Raventós
- Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain.
- INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona, 08028 Barcelona, Spain.
| |
Collapse
|
19
|
García-Casarrubias A, Winkler R, Tiessen A. Mass Fingerprints of Tomatoes Fertilized with Different Nitrogen Sources Reveal Potential Biomarkers of Organic Farming. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:247-254. [PMID: 31054112 DOI: 10.1007/s11130-019-00726-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Direct-injection electron spray ionization mass spectrometry (DIESI-MS) can be used to quantify the whole set of positive and negative ions in complex biological samples. A cherry tomato cultivar was grown inside a greenhouse in soil pots supplemented with different nitrogen sources. Organic cultivation increased fruit dry matter while conventional chemical fertilizers increased yield due to higher water content. While soluble sugars were unaltered, secondary metabolism of tomato fruit was highly sensitive to compost soil supplied to the roots. From a total of ~1647 DIESI-MS signals, 725 revealed significant differences between treatments. Heatmap biclustering showed that ionomic differences were robustly maintained in independent experiments carried out during three consecutive years. The ionomic fingerprints allowed reproducible sample classification, reflecting the effect of organic farming on tomato fruit quality. Specific biomarker ions could be identified for various nitrogen sources. We propose DIESI-MS as an up-front strategy for plant food characterization aiming to identify the ions with the most significant differences across genotypes or agronomic conditions.
Collapse
Affiliation(s)
| | - Robert Winkler
- Departamento de Bioquímica y Biotecnología, CINVESTAV, 36824, Irapuato, Guanajuato, Mexico
- Mass Spectrometry Group, Beutenberg Campus, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745, Jena, Germany
| | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV, 36824, Irapuato, Guanajuato, Mexico.
- Laboratorio Nacional PlanTECC, CINVESTAV, 36824, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
20
|
López-Yerena A, Lozano-Castellón J, Olmo-Cunillera A, Tresserra-Rimbau A, Quifer-Rada P, Jiménez B, Pérez M, Vallverdú-Queralt A. Effects of Organic and Conventional Growing Systems on the Phenolic Profile of Extra-Virgin Olive Oil. Molecules 2019; 24:E1986. [PMID: 31126122 PMCID: PMC6572524 DOI: 10.3390/molecules24101986] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/14/2019] [Accepted: 05/18/2019] [Indexed: 11/26/2022] Open
Abstract
Extra-virgin olive oil (EVOO) is largely appreciated for its proven nutritional properties. Additionally, organic foods are perceived as healthier by consumers. In this context, the aim of the present study was to compare the phenolic profiles of EVOO from olives of the Hojiblanca variety, cultivated under organic and conventional systems. The quantification and identification of individual polyphenols was carried out by liquid chromatography coupled to mass spectrometry in tandem mode (LC-MS/MS). Significantly higher levels (p < 0.05) of phenolic compounds were found in organic EVOOs. The methodology used was able to detect previously unreported differences in bioactive components between organic and conventional EVOOs.
Collapse
Affiliation(s)
- Anallely López-Yerena
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Julián Lozano-Castellón
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| | - Alexandra Olmo-Cunillera
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Anna Tresserra-Rimbau
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
- Human Nutrition Unit, University Hospital of Sant Joan de Reus, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Center, Universitat Rovira i Virgili, 43002 Reus, Spain.
| | - Paola Quifer-Rada
- Department of Endocrinology & Nutrition, CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM), Biomedical Research Institute Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain.
| | - Brígida Jiménez
- Instituto Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción Ecológica, Centro de Cabra, Antigua Ctra, Cabra-Doña Mencía, Km. 2.5, 14940 Córdoba, Spain.
| | - Maria Pérez
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- Laboratory of Organic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
| | - Anna Vallverdú-Queralt
- Department of Nutrition, Food Science and Gastronomy XaRTA, Institute of Nutrition and Food Safety (INSA-UB), Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
21
|
Martinović T, Šrajer Gajdošik M, Josić D. Sample preparation in foodomic analyses. Electrophoresis 2018; 39:1527-1542. [DOI: 10.1002/elps.201800029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Djuro Josić
- Department of Biotechnology; University of Rijeka; Rijeka Croatia
- Department of Medicine; Brown Medical School; Brown University; Providence RI USA
| |
Collapse
|
22
|
|
23
|
Ramsey NB, Tuano KTS, Davis CM, Dillard K, Hanson C. Annatto seed hypersensitivity in a pediatric patient. Ann Allergy Asthma Immunol 2017; 117:331-3. [PMID: 27613468 DOI: 10.1016/j.anai.2016.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Nicole B Ramsey
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | | | - Carla M Davis
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kristin Dillard
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Celine Hanson
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
24
|
Hurtado-Barroso S, Tresserra-Rimbau A, Vallverdú-Queralt A, Lamuela-Raventós RM. Organic food and the impact on human health. Crit Rev Food Sci Nutr 2017; 59:704-714. [PMID: 29190113 DOI: 10.1080/10408398.2017.1394815] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the last decade, the production and consumption of organic food have increased steadily worldwide, despite the lower productivity of organic crops. Indeed, the population attributes healthier properties to organic food. Although scientific evidence is still scarce, organic agriculture seems to contribute to maintaining an optimal health status and decreases the risk of developing chronic diseases. This may be due to the higher content of bioactive compounds and lower content of unhealthy substances such as cadmium and synthetic fertilizers and pesticides in organic foods of plant origin compared to conventional agricultural products. Thus, large long-term intervention studies are needed to determine whether an organic diet is healthier than a diet including conventionally grown food products. This review provides an update of the present knowledge of the impact of an organic versus a conventional food diet on health.
Collapse
Affiliation(s)
- Sara Hurtado-Barroso
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain.,c INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona , Barcelona , Spain
| | - Anna Tresserra-Rimbau
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain.,c INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona , Barcelona , Spain
| | - Anna Vallverdú-Queralt
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain
| | - Rosa María Lamuela-Raventós
- a Department of Nutrition, Food Sciences and Gastronomy, School of Pharmacy and Food Sciences , University of Barcelona , Barcelona , Spain.,b CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Institute of Health Carlos III , Spain.,c INSA-UB, Nutrition and Food Safety Research Institute, University of Barcelona , Barcelona , Spain
| |
Collapse
|
25
|
|
26
|
|
27
|
Álvarez G, Montero L, Llorens L, Castro-Puyana M, Cifuentes A. Recent advances in the application of capillary electromigration methods for food analysis and Foodomics. Electrophoresis 2017; 39:136-159. [PMID: 28975648 DOI: 10.1002/elps.201700321] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
This review work presents and discusses the main applications of capillary electromigration methods in food analysis and Foodomics. Papers that were published during the period February 2015-February 2017 are included following the previous review by Acunha et al. (Electrophoresis 2016, 37, 111-141). The paper shows the large variety of food related molecules that have been analyzed by CE including amino acids, biogenic amines, carbohydrates, chiral compounds, contaminants, DNAs, food additives, heterocyclic amines, lipids, peptides, pesticides, phenols, pigments, polyphenols, proteins, residues, toxins, vitamins, small organic and inorganic compounds, as well as other minor compounds. This work describes the last results on food quality and safety, nutritional value, storage, bioactivity, as well as uses of CE for monitoring food interactions and food processing including recent microchips developments and new applications of CE in Foodomics.
Collapse
Affiliation(s)
| | | | | | - María Castro-Puyana
- Departamento de Química Analítica, Química Física e Ingeniería Química, Universidad de Alcalá, Madrid, Spain
| | | |
Collapse
|
28
|
Llano SM, Muñoz-Jiménez AM, Jiménez-Cartagena C, Londoño-Londoño J, Medina S. Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits. Food Chem 2017; 244:120-127. [PMID: 29120759 DOI: 10.1016/j.foodchem.2017.10.026] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/23/2017] [Accepted: 10/06/2017] [Indexed: 01/15/2023]
Abstract
The agronomic production systems may affect the levels of food metabolites. Metabolomics approaches have been applied as useful tool for the characterization of fruit metabolome. In this study, metabolomics techniques were used to assess the differences in phytochemical composition between goldenberry samples produced by organic and conventional systems. To verify that the organic samples were free of pesticides, individual pesticides were analyzed. Principal component analysis showed a clear separation of goldenberry samples from two different farming systems. Via targeted metabolomics assays, whereby carotenoids and ascorbic acid were analyzed, not statistical differences between both crops were found. Conversely, untargeted metabolomics allowed us to identify two withanolides and one fatty acyl glycoside as tentative metabolites to differentiate goldenberry fruits, recording organic fruits higher amounts of these compounds than conventional samples. Hence, untargeted metabolomics technology could be suitable to research differences on phytochemicals under different agricultural management practices and to authenticate organic products.
Collapse
Affiliation(s)
- Sandra M Llano
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas-Antioquia, Colombia
| | - Ana M Muñoz-Jiménez
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas-Antioquia, Colombia
| | - Claudio Jiménez-Cartagena
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas-Antioquia, Colombia
| | - Julián Londoño-Londoño
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas-Antioquia, Colombia
| | - Sonia Medina
- Faculty of Engineering, Food Engineering Program, Corporación Universitaria Lasallista, Caldas-Antioquia, Colombia.
| |
Collapse
|
29
|
Lin YR, Huang MF, Wu YY, Liu MC, Huang JH, Chen Z, Shiue YL, Wu CE, Liang SS. Reductive amination derivatization for the quantification of garlic components by isotope dilution analysis. Food Chem 2017; 230:1-5. [PMID: 28407889 DOI: 10.1016/j.foodchem.2017.02.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/13/2017] [Accepted: 02/23/2017] [Indexed: 12/11/2022]
Abstract
In this work, we synthesized internal standards for four garlic organosulfur compounds (OSCs) by reductive amination with 13C, D2-formaldehyde, and developed an isotope dilution analysis method to quantitate these organosulfur components in garlic samples. Internal standards were synthesized for internal absolute quantification of S-allylcysteine (SAC), S-allylcysteine sulfoxide (alliin), S-methylcysteine (SMC), and S-ethylcysteine (SEC). We used a multiple reaction monitoring (MRM) to detect 13C, D2-formaldehyde-modified OSCs by ultrahigh-performance liquid phase chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and obtained MS spectra showing different ratios of 13C, D2-formaldehyde-modified and H2-formaldehyde-modified compounds. The resulting labeled and unlabeled OSCs were exhibited correlation coefficient (R2) ranged from 0.9989 to 0.9994, respectively. The average recoveries for four OSCs at three concentration levels ranged from 89% to 105%. By 13C, D2-formaldehyde and sodium cyanoborohydride, the reductive amination-based method can be utilized to generate novel internal standard for isotope dilution and to extend the quantitative application.
Collapse
Affiliation(s)
- Yi-Reng Lin
- Department of Biotechnology, School of Environment and Life Sciences, Fooyin University, Kaohsiung, Taiwan
| | - Mei-Fang Huang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Ying Wu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Chieh Liu
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jing-Heng Huang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ziyu Chen
- Department of Medicinal and Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chia-En Wu
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Shih-Shin Liang
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
30
|
Andjelković U, Šrajer Gajdošik M, Gašo-Sokač D, Martinović T, Josić D. Foodomics and Food Safety: Where We Are. Food Technol Biotechnol 2017; 55:290-307. [PMID: 29089845 PMCID: PMC5654429 DOI: 10.17113/ftb.55.03.17.5044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/31/2017] [Indexed: 12/21/2022] Open
Abstract
The power of foodomics as a discipline that is now broadly used for quality assurance of food products and adulteration identification, as well as for determining the safety of food, is presented. Concerning sample preparation and application, maintenance of highly sophisticated instruments for both high-performance and high-throughput techniques, and analysis and data interpretation, special attention has to be paid to the development of skilled analysts. The obtained data shall be integrated under a strong bioinformatics environment. Modern mass spectrometry is an extremely powerful analytical tool since it can provide direct qualitative and quantitative information about a molecule of interest from only a minute amount of sample. Quality of this information is influenced by the sample preparation procedure, the type of mass spectrometer used and the analyst's skills. Technical advances are bringing new instruments of increased sensitivity, resolution and speed to the market. Other methods presented here give additional information and can be used as complementary tools to mass spectrometry or for validation of obtained results. Genomics and transcriptomics, as well as affinity-based methods, still have a broad use in food analysis. Serious drawbacks of some of them, especially the affinity-based methods, are the cross-reactivity between similar molecules and the influence of complex food matrices. However, these techniques can be used for pre-screening in order to reduce the large number of samples. Great progress has been made in the application of bioinformatics in foodomics. These developments enabled processing of large amounts of generated data for both identification and quantification, and for corresponding modeling.
Collapse
Affiliation(s)
- Uroš Andjelković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, RS-11000 Belgrade, Serbia
| | - Martina Šrajer Gajdošik
- Department of Chemistry, J. J. Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Dajana Gašo-Sokač
- Faculty of Food Technology, J. J. Strossmayer University of Osijek, Franje Kuhača 20, HR-31000 Osijek, Croatia
| | - Tamara Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
- Warren Alpert Medical School, Brown University, 222 Richmond St, Providence, RI 02903, USA
| |
Collapse
|
31
|
Kalogiouri NP, Aalizadeh R, Thomaidis NS. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal Bioanal Chem 2017; 409:5413-5426. [PMID: 28540463 DOI: 10.1007/s00216-017-0395-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/27/2017] [Accepted: 05/03/2017] [Indexed: 11/26/2022]
Abstract
The discrimination of organic and conventional production has been a critical topic of public discussion and constitutes a scientific issue. It remains a challenge to establish a correlation between the agronomical practices and their effects on the composition of olive oils, especially the phenolic composition, since it defines their organoleptic and nutritional value. Thus, a liquid chromatography-electrospray ionization-quadrupole time of flight tandem mass spectrometric method was developed, using target and suspect screening workflows, coupled with advanced chemometrics for the identification of phenolic compounds and the discrimination between organic and conventional extra virgin olive oils. The method was optimized by one-factor design and response surface methodology to derive the optimal conditions of extraction (methanol/water (80:20, v/v), pure methanol, or acetonitrile) and to select the most appropriate internal standard (caffeic acid or syringaldehyde). The results revealed that extraction with methanol/water (80:20, v/v) was the optimum solvent system and syringaldehyde 1.30 mg L-1 was the appropriate internal standard. The proposed method demonstrated low limits of detection in the range of 0.002 (luteolin) to 0.028 (tyrosol) mg kg-1. Then, it was successfully applied in 52 olive oils of Kolovi variety. In total, 13 target and 24 suspect phenolic compounds were identified. Target compounds were quantified with commercially available standards. A novel semi-quantitation strategy, based on chemical similarity, was introduced for the semi-quantification of the identified suspects. Finally, ant colony optimization-random forest model selected luteolin as the only marker responsible for the discrimination, during a 2-year study. Graphical abstract Investigation of the organic and conventional production type of olive oil by LC-QTOF-MS.
Collapse
Affiliation(s)
- Natasa P Kalogiouri
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| |
Collapse
|
32
|
Josić D, Peršurić Ž, Rešetar D, Martinović T, Saftić L, Kraljević Pavelić S. Use of Foodomics for Control of Food Processing and Assessing of Food Safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2017; 81:187-229. [PMID: 28317605 DOI: 10.1016/bs.afnr.2016.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Food chain, food safety, and food-processing sectors face new challenges due to globalization of food chain and changes in the modern consumer preferences. In addition, gradually increasing microbial resistance, changes in climate, and human errors in food handling remain a pending barrier for the efficient global food safety management. Consequently, a need for development, validation, and implementation of rapid, sensitive, and accurate methods for assessment of food safety often termed as foodomics methods is required. Even though, the growing role of these high-throughput foodomic methods based on genomic, transcriptomic, proteomic, and metabolomic techniques has yet to be completely acknowledged by the regulatory agencies and bodies. The sensitivity and accuracy of these methods are superior to previously used standard analytical procedures and new methods are suitable to address a number of novel requirements posed by the food production sector and global food market.
Collapse
Affiliation(s)
- D Josić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia.
| | - Ž Peršurić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - D Rešetar
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - T Martinović
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - L Saftić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| | - S Kraljević Pavelić
- University of Rijeka, Centre for High-Throughput Technologies, Radmile Matejčić 2, Rijeka, Croatia
| |
Collapse
|