1
|
Lyu Y, Kim SJ, Humphrey ES, Nayak R, Guan Y, Liang Q, Kim KH, Tan Y, Dou J, Sun H, Song X, Nagarajan P, Gerner-Mauro KN, Jin K, Liu V, Hassan RH, Johnson ML, Deliu LP, You Y, Sharma A, Pasolli HA, Lu Y, Zhang J, Mohanty V, Chen K, Yang YJ, Chen T, Ge Y. Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration. Cell 2024; 187:7414-7432.e26. [PMID: 39476839 DOI: 10.1016/j.cell.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/14/2024] [Accepted: 10/04/2024] [Indexed: 12/29/2024]
Abstract
Mammalian retrotransposons constitute 40% of the genome. During tissue regeneration, adult stem cells coordinately repress retrotransposons and activate lineage genes, but how this coordination is controlled is poorly understood. Here, we observed that dynamic expression of histone methyltransferase SETDB1 (a retrotransposon repressor) closely mirrors stem cell activities in murine skin. SETDB1 ablation leads to the reactivation of endogenous retroviruses (ERVs, a type of retrotransposon) and the assembly of viral-like particles, resulting in hair loss and stem cell exhaustion that is reversible by antiviral drugs. Mechanistically, at least two molecularly and spatially distinct pathways are responsible: antiviral defense mediated by hair follicle stem cells and progenitors and antiviral-independent response due to replication stress in transient amplifying cells. ERV reactivation is promoted by DNA demethylase ten-eleven translocation (TET)-mediated hydroxymethylation and recapitulated by ablating cell fate transcription factors. Together, we demonstrated ERV silencing is coupled with stem cell activity and essential for adult hair regeneration.
Collapse
Affiliation(s)
- Ying Lyu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soo Jin Kim
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Ericka S Humphrey
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Richa Nayak
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yinglu Guan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qingnan Liang
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kun Hee Kim
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Yukun Tan
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jinzhuang Dou
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Huandong Sun
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | - Kamryn N Gerner-Mauro
- Department of Pulmonary Medicine, UT MD Anderson Cancer Center, Houston, TX, USA; Development, Disease Models, and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Kevin Jin
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Virginia Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Wiess School of Natural Sciences, Rice University, Houston, TX, USA
| | - Rehman H Hassan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miranda L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa P Deliu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yun You
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anurag Sharma
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genome Medicine, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Vakul Mohanty
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Youn Joo Yang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA
| | - Yejing Ge
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center UTHealth Houston, Houston, TX, USA.
| |
Collapse
|
2
|
Strobl K, Klufa J, Jin R, Artner-Gent L, Krauß D, Novoszel P, Strobl J, Stary G, Vujic I, Griss J, Holcmann M, Farlik M, Homey B, Sibilia M, Bauer T. JAK-STAT1 as therapeutic target for EGFR deficiency-associated inflammation and scarring alopecia. EMBO Mol Med 2024; 16:3142-3168. [PMID: 39521937 PMCID: PMC11628629 DOI: 10.1038/s44321-024-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The hair follicle stem cell niche is an immune-privileged microenvironment, characterized by reduced antigen presentation, thus shielding against permanent immune-mediated tissue damage. In this study, we demonstrated the protective role of hair follicle-specific epidermal growth factor receptor (EGFR) against scarring hair follicle destruction. Mechanistically, disruption of EGFR signaling generated a cell-intrinsic hypersensitivity within the JAK-STAT1 pathway, which, synergistically with interferon gamma expressing CD8 T-cell and NK-cell-mediated inflammation, compromised the stem cell niche. Hair follicle-specific genetic depletion of either JAK1/2 or STAT1 or therapeutic inhibition of JAK1/2 ameliorated the inflammation, restored skin barrier function and activated the residual stem cells to resume hair growth in mouse models of epidermal and hair follicle-specific EGFR deletion. Skin biopsies from EGFR inhibitor-treated and cicatricial alopecia patients revealed an active JAK-STAT1 signaling signature along with upregulation of antigen presentation and downregulation of key components of the EGFR pathway. Our findings offer molecular insights and highlight a mechanism-based therapeutic strategy for addressing chronic folliculitis associated with EGFR-inhibitor anti-cancer therapy and cicatricial alopecia.
Collapse
Affiliation(s)
- Karoline Strobl
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Jörg Klufa
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Regina Jin
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Lena Artner-Gent
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Dana Krauß
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Philipp Novoszel
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Igor Vujic
- Department of Dermatology, Venereology and Allergy, Clinical Center Landstrasse, Vienna, 1030, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Martin Holcmann
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria
| | - Matthias Farlik
- Department of Dermatology, Medical University of Vienna, Vienna, 1090, Austria
| | - Bernhard Homey
- Department of Dermatology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria.
| | - Thomas Bauer
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, Vienna, 1090, Austria.
| |
Collapse
|
3
|
Price FD, Matyas MN, Gehrke AR, Chen W, Wolin EA, Holton KM, Gibbs RM, Lee A, Singu PS, Sakakeeny JS, Poteracki JM, Goune K, Pfeiffer IT, Boswell SA, Sorger PK, Srivastava M, Pfaff KL, Gussoni E, Buchanan SM, Rubin LL. Organoid culture promotes dedifferentiation of mouse myoblasts into stem cells capable of complete muscle regeneration. Nat Biotechnol 2024:10.1038/s41587-024-02344-7. [PMID: 39261590 DOI: 10.1038/s41587-024-02344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2024] [Indexed: 09/13/2024]
Abstract
Experimental cell therapies for skeletal muscle conditions have shown little success, primarily because they use committed myogenic progenitors rather than true muscle stem cells, known as satellite cells. Here we present a method to generate in vitro-derived satellite cells (idSCs) from skeletal muscle tissue. When transplanted in small numbers into mouse muscle, mouse idSCs fuse into myofibers, repopulate the satellite cell niche, self-renew, support multiple rounds of muscle regeneration and improve force production on par with freshly isolated satellite cells in damaged skeletal muscle. We compared the epigenomic and transcriptional signatures between idSCs, myoblasts and satellite cells and used these signatures to identify core signaling pathways and genes that confer idSC functionality. Finally, from human muscle biopsies, we successfully generated satellite cell-like cells in vitro. After further development, idSCs may provide a scalable source of cells for the treatment of genetic muscle disorders, trauma-induced muscle damage and age-related muscle weakness.
Collapse
Affiliation(s)
- Feodor D Price
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Mark N Matyas
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Andrew R Gehrke
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - William Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Erica A Wolin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Kristina M Holton
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca M Gibbs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Alice Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Pooja S Singu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jeffrey S Sakakeeny
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - James M Poteracki
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Kelsey Goune
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Isabella T Pfeiffer
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sarah A Boswell
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter K Sorger
- Department of Systems Biology and Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Kathleen Lindahl Pfaff
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics and the Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sean M Buchanan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Miyachi K, Shiraishi T, Sanada A, Ishii Y, Hirose O, Yamada T, Igarashi T, Hasegawa S, Arima M, Iwata Y, Sugiura K, Akamatsu H. Development of a noninvasive and label-free imaging system for human interfollicular epidermal stem cells based on cell morphology. Skin Res Technol 2024; 30:e13887. [PMID: 39086159 PMCID: PMC11291864 DOI: 10.1111/srt.13887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Katsuma Miyachi
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
| | - Takeru Shiraishi
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
| | - Ayumi Sanada
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
- Department of Applied Cell and Regenerative MedicineFujita Health University School of MedicineToyoakeAichiJapan
| | - Yoshie Ishii
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
- Department of Applied Cell and Regenerative MedicineFujita Health University School of MedicineToyoakeAichiJapan
| | - Osamu Hirose
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
| | - Takaaki Yamada
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
- Department of Applied Cell and Regenerative MedicineFujita Health University School of MedicineToyoakeAichiJapan
- Department of DermatologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Toshio Igarashi
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
| | - Seiji Hasegawa
- Research LaboratoriesNippon MENARD Cosmetic Co., LtdNagoyaAichiJapan
- Department of DermatologyFujita Health University School of MedicineToyoakeAichiJapan
- Nagoya University‐MENARD Collaborative Research ChairNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Masaru Arima
- Department of DermatologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Yohei Iwata
- Department of DermatologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Kazumitsu Sugiura
- Department of DermatologyFujita Health University School of MedicineToyoakeAichiJapan
| | - Hirohiko Akamatsu
- Department of Applied Cell and Regenerative MedicineFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
5
|
Kwak S, Song CL, Lee J, Kim S, Nam S, Park YJ, Lee J. Development of pluripotent stem cell-derived epidermal organoids that generate effective extracellular vesicles in skin regeneration. Biomaterials 2024; 307:122522. [PMID: 38428092 DOI: 10.1016/j.biomaterials.2024.122522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Cellular skin substitutes such as epidermal constructs have been developed for various applications, including wound healing and skin regeneration. These cellular models are mostly derived from primary cells such as keratinocytes and fibroblasts in a two-dimensional (2D) state, and further development of three-dimensional (3D) cultured organoids is needed to provide insight into the in vivo epidermal phenotype and physiology. Here, we report the development of epidermal organoids (EpiOs) generated from induced pluripotent stem cells (iPSCs) as a novel epidermal construct and its application as a source of secreted biomolecules recovered by extracellular vesicles (EVs) that can be utilized for cell-free therapy of regenerative medicine. Differentiated iPSC-derived epidermal organoids (iEpiOs) are easily cultured and expanded through multiple organoid passages, while retaining molecular and functional features similar to in vivo epidermis. These mature iEpiOs contain epidermal stem cell populations and retain the ability to further differentiate into other skin compartment lineages, such as hair follicle stem cells. By closely recapitulating the epidermal structure, iEpiOs are expected to provide a more relevant microenvironment to influence cellular processes and therapeutic response. Indeed, iEpiOs can generate high-performance EVs containing high levels of the angiogenic growth factor VEGF and miRNAs predicted to regulate cellular processes such as proliferation, migration, differentiation, and angiogenesis. These EVs contribute to target cell proliferation, migration, and angiogenesis, providing a promising therapeutic tool for in vivo wound healing. Overall, the newly developed iEpiOs strategy as an organoid-based approach provides a powerful model for studying basic and translational skin research and may also lead to future therapeutic applications using iEpiOs-secreted EVs.
Collapse
Affiliation(s)
- Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Cho Lok Song
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jinhyuk Lee
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Sungyeon Kim
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Seungyoon Nam
- Department of Genome Medicine and Science, AI Convergence Center for Medical Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea; Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21999, Republic of Korea
| | - Young-Jun Park
- Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea; Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jungwoon Lee
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea; Department of Bioscience, KRIBB School, University of Science and Technology, Daejeon 34141, Republic of Korea.
| |
Collapse
|
6
|
Andelic M, Salvi E, Marcuzzo S, Marchi M, Lombardi R, Cartelli D, Cazzato D, Mehmeti E, Gelemanovic A, Paolini M, Pardo C, D’Amato I, Hoeijmakers JGJ, Dib-Hajj S, Waxman SG, Faber CG, Lauria G. Integrative miRNA-mRNA profiling of human epidermis: unique signature of SCN9A painful neuropathy. Brain 2023; 146:3049-3062. [PMID: 36730021 PMCID: PMC10316770 DOI: 10.1093/brain/awad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Personalized management of neuropathic pain is an unmet clinical need due to heterogeneity of the underlying aetiologies, incompletely understood pathophysiological mechanisms and limited efficacy of existing treatments. Recent studies on microRNA in pain preclinical models have begun to yield insights into pain-related mechanisms, identifying nociception-related species differences and pinpointing potential drug candidates. With the aim of bridging the translational gap towards the clinic, we generated a human pain-related integrative miRNA and mRNA molecular profile of the epidermis, the tissue hosting small nerve fibres, in a deeply phenotyped cohort of patients with sodium channel-related painful neuropathy not responding to currently available therapies. We identified four miRNAs strongly discriminating patients from healthy individuals, confirming their effect on differentially expressed gene targets driving peripheral sensory transduction, transmission, modulation and post-transcriptional modifications, with strong effects on gene targets including NEDD4. We identified a complex epidermal miRNA-mRNA network based on tissue-specific experimental data suggesting a cross-talk between epidermal cells and axons in neuropathy pain. Using immunofluorescence assay and confocal microscopy, we observed that Nav1.7 signal intensity in keratinocytes strongly inversely correlated with NEDD4 expression that was downregulated by miR-30 family, suggesting post-transcriptional fine tuning of pain-related protein expression. Our targeted molecular profiling advances the understanding of specific neuropathic pain fine signatures and may accelerate process towards personalized medicine in patients with neuropathic pain.
Collapse
Affiliation(s)
- Mirna Andelic
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Stefania Marcuzzo
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Margherita Marchi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cartelli
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Daniele Cazzato
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Andrea Gelemanovic
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), 21000 Split, Croatia
| | - Matilde Paolini
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Carlotta Pardo
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Ilaria D’Amato
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Janneke G J Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Sulayman Dib-Hajj
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Catharina G Faber
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Center+, 6229 ER Maastricht, The Netherlands
| | - Giuseppe Lauria
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| |
Collapse
|
7
|
Salavaty A, Azadian E, Naik SH, Currie PD. Clonal selection parallels between normal and cancer tissues. Trends Genet 2023; 39:358-380. [PMID: 36842901 DOI: 10.1016/j.tig.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/28/2023]
Abstract
Clonal selection and drift drive both normal tissue and cancer development. However, the biological mechanisms and environmental conditions underpinning these processes remain to be elucidated. Clonal selection models are centered in Darwinian evolutionary theory, where some clones with the fittest features are selected and populate the tissue or tumor. We suggest that different subclasses of stem cells, each of which is responsible for a distinct feature of the selection process, share common features between normal and cancer conditions. While active stem cells populate the tissue, dormant cells account for tissue replenishment/regeneration in both normal and cancerous tissues. We also discuss potential mechanisms that drive clonal drift, their interactions with clonal selection, and their similarities during normal and cancer tissue development.
Collapse
Affiliation(s)
- Adrian Salavaty
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; Systems Biology Institute Australia, Monash University, Clayton, VIC 3800, Australia.
| | - Esmaeel Azadian
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Shalin H Naik
- Immunology Division, Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia; EMBL Australia, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
8
|
Jay Sarkar T, Hermsmeier M, L. Ross J, Scott Herron G. Genetic and Epigenetic Influences on Cutaneous Cellular Senescence. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.101152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Skin is the largest human organ system, and its protective function is critical to survival. The epithelial, dermal, and subcutaneous compartments are heterogeneous mixtures of cell types, yet they all display age-related skin dysfunction through the accumulation of an altered phenotypic cellular state called senescence. Cellular senescence is triggered by complex and dynamic genetic and epigenetic processes. A senescence steady state is achieved in different cell types under various and overlapping conditions of chronological age, toxic injury, oxidative stress, replicative exhaustion, DNA damage, metabolic dysfunction, and chromosomal structural changes. These inputs lead to outputs of cell-cycle withdrawal and the appearance of a senescence-associated secretory phenotype, both of which accumulate as tissue pathology observed clinically in aged skin. This review details the influence of genetic and epigenetic factors that converge on normal cutaneous cellular processes to create the senescent state, thereby dictating the response of the skin to the forces of both intrinsic and extrinsic aging. From this work, it is clear that no single biomarker or process leads to senescence, but that it is a convergence of factors resulting in an overt aging phenotype.
Collapse
|
9
|
Lim CH, Ito M. Niche stiffness regulates stem cell aging. NATURE AGING 2022; 2:568-569. [PMID: 37117779 DOI: 10.1038/s43587-022-00259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Affiliation(s)
- Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology, New York University, School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University, School of Medicine, New York, NY, USA.
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology, New York University, School of Medicine, New York, NY, USA.
- Department of Cell Biology, New York University, School of Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Calabrese EJ, Calabrese V. Hormesis and Epidermal Stem Cells. Dose Response 2022; 20:15593258221119911. [PMID: 36158736 PMCID: PMC9500281 DOI: 10.1177/15593258221119911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
This paper provides an assessment of hormetic dose responses in epidermal stem cells (EpSCs) in animal models and humans, with emphasis on cell proliferation and differentiation and application to wound healing and aging processes. Hormetic dose responses were induced by several agents, including dietary supplements (eg, luteolin, quercetin), pharmaceuticals (eg, nitric oxide), endogenous agents (eg, growth/differentiation factor 5), and via diverse chemical means to sustain steaminess features to retard aging and disease onset. While hormetic dose responses have been extensively reported in a broad spectrum of stem cells, this area has only been explored to a limited extent in EpSCs, principally within the past 5 years. Nonetheless, these findings provide the first integrated assessment of hormesis and EpSC biology within the context of enhancing key functions such as cell proliferation and differentiation and resilience to inflammatory stresses. This paper assesses putative mechanisms of hormetic responses in EpSCs and potential therapeutic applications to prevent dermatological injury and disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Catania, Italy
| |
Collapse
|
11
|
Bacci S, Bani D. The Epidermis in Microgravity and Unloading Conditions and Their Effects on Wound Healing. Front Bioeng Biotechnol 2022; 10:666434. [PMID: 35392403 PMCID: PMC8980714 DOI: 10.3389/fbioe.2022.666434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2022] [Indexed: 01/06/2023] Open
Abstract
The future objectives of human space flight are changing from low-term permanence in the International Space Station to missions beyond low Earth orbit to explore other planets. This implies that astronauts would remain exposed for long time to a micro-gravity environment with limited medical support available. This has sparkled medical research to investigate how tissues may adapt to such conditions and how wound repair may be influenced. This mini-review is focused on the effects of microgravity and unloading conditions on the epidermis and its keratinocytes. Previous studies, originally aimed at improving the in vitro protocols to generate skin substitutes for plastic surgery purposes, showed that epidermal stem cells cultured in simulated microgravity underwent enhanced proliferation and viability and reduced terminal differentiation than under normal gravity. In the meantime, microgravity also triggered epithelial-mesenchymal transition of keratinocytes, promoting a migratory behavior. The molecular mechanisms, only partially understood, involve mechano-trasduction signals and pathways whereby specific target genes are activated, i.e., those presiding to circadian rhythms, migration, and immune suppression, or inhibited, i.e., those involved in stress responses. However, despite the above in vitro studies suggest that microgravity would accelerate keratinocyte growth rate and migration, in vivo findings on animals in experimental set-ups to simulate low gravity rather suggest that prolonged mechanical unloading contributes to delayed and impaired epidermal repair. This is in keeping with the finding that microgravity interferes at multiple levels with the regulatory signals which coordinate the different cell types involved in the repair process, thereby negatively influencing skin wound healing.
Collapse
Affiliation(s)
- Stefano Bacci
- Research Unit of Histology and Embryology, Florence, Italy
- Department Biology, Florence, Italy
- *Correspondence: Stefano Bacci,
| | - Daniele Bani
- Research Unit of Histology and Embryology, Florence, Italy
- Department, Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Abstract
A definite identification of epidermal stem cells is not known and the mechanism of epidermal differentiation is not fully understood. Toward both of these quests, considerable information is available from the research on lineage tracing and clonal growth analysis in the basal layer of the epidermis, on the hair follicle and the interfollicular epidermal stem cells, and on Wnt signaling along with its role in the developmental patterning and cell differentiation. In this paper, literature on the aforementioned research has been collated and analyzed. In addition, models of the basal layer cellular composition and the epidermal differentiation have been presented. Graphical Abstract.
Collapse
Affiliation(s)
- Raghvendra Singh
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
13
|
Tan Y, Tey HL, Chong SZ, Ng LG. Skin-ny deeping: Uncovering immune cell behavior and function through imaging techniques. Immunol Rev 2021; 306:271-292. [PMID: 34859448 DOI: 10.1111/imr.13049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022]
Abstract
As the largest organ of the body, the skin is a key barrier tissue with specialized structures where ongoing immune surveillance is critical for protecting the body from external insults. The innate immune system acts as first-responders in a coordinated manner to react to injury or infections, and recent developments in intravital imaging techniques have made it possible to delineate dynamic immune cell responses in a spatiotemporal manner. We review here key studies involved in understanding neutrophil, dendritic cell and macrophage behavior in skin and further discuss how this knowledge collectively highlights the importance of interactions and cellular functions in a systems biology manner. Furthermore, we will review emerging imaging technologies such as high-content proteomic screening, spatial transcriptomics and three-dimensional volumetric imaging and how these techniques can be integrated to provide a systems overview of the immune system that will further our current knowledge and lead to potential exciting discoveries in the upcoming decades.
Collapse
Affiliation(s)
- Yingrou Tan
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, National Healthcare Group, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Lai Guan Ng
- Singapore Immunology Network, Singapore, Singapore.,National Skin Centre, National Healthcare Group, Singapore, Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
14
|
Krishnan M, Kumar S, Kangale LJ, Ghigo E, Abnave P. The Act of Controlling Adult Stem Cell Dynamics: Insights from Animal Models. Biomolecules 2021; 11:biom11050667. [PMID: 33946143 PMCID: PMC8144950 DOI: 10.3390/biom11050667] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Adult stem cells (ASCs) are the undifferentiated cells that possess self-renewal and differentiation abilities. They are present in all major organ systems of the body and are uniquely reserved there during development for tissue maintenance during homeostasis, injury, and infection. They do so by promptly modulating the dynamics of proliferation, differentiation, survival, and migration. Any imbalance in these processes may result in regeneration failure or developing cancer. Hence, the dynamics of these various behaviors of ASCs need to always be precisely controlled. Several genetic and epigenetic factors have been demonstrated to be involved in tightly regulating the proliferation, differentiation, and self-renewal of ASCs. Understanding these mechanisms is of great importance, given the role of stem cells in regenerative medicine. Investigations on various animal models have played a significant part in enriching our knowledge and giving In Vivo in-sight into such ASCs regulatory mechanisms. In this review, we have discussed the recent In Vivo studies demonstrating the role of various genetic factors in regulating dynamics of different ASCs viz. intestinal stem cells (ISCs), neural stem cells (NSCs), hematopoietic stem cells (HSCs), and epidermal stem cells (Ep-SCs).
Collapse
Affiliation(s)
- Meera Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Sahil Kumar
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
| | - Luis Johnson Kangale
- IRD, AP-HM, SSA, VITROME, Aix-Marseille University, 13385 Marseille, France;
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
| | - Eric Ghigo
- Institut Hospitalo Universitaire Méditerranée Infection, 13385 Marseille, France;
- TechnoJouvence, 13385 Marseille, France
| | - Prasad Abnave
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Gurgaon-Faridabad Ex-pressway, Faridabad 121001, India; (M.K.); (S.K.)
- Correspondence:
| |
Collapse
|
15
|
Flores A, Choi S, Hsu YC, Lowry WE. Inhibition of pyruvate oxidation as a versatile stimulator of the hair cycle in models of alopecia. Exp Dermatol 2021; 30:448-456. [PMID: 33739490 DOI: 10.1111/exd.14307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Hair follicle stem cells (HFSCs) are known to be responsible for the initiation of a new hair cycle, but typically remain quiescent for very long periods. In alopecia, or hair loss disorders, follicles can be refractory to activation for years or even permanently. Alopecia can be triggered by autoimmunity, age, chemotherapeutic treatment, stress, disrupted circadian rhythm or other environmental insults. We previously showed that hair follicle stem cells and the hair cycle can be manipulated by regulation of pyruvate entry into mitochondria for subsequent oxidation to fuel the TCA cycle in normal adult mice with typical hair cycling. Here, we present new data from our efforts to develop murine models of alopecia based on environmental triggers that have been shown to do the same in human skin. We found that inhibition of pyruvate transport into mitochondria can accelerate the hair cycle even during refractory hair cycling due to age, repeated chemotherapeutic treatment and stress. Hair cycle acceleration in these alopecia models led to the formation of histologically normal hair follicles within 30-40 days of treatment without any overt signs of toxicity or deleterious effects. Therefore, we propose inhibition of pyruvate entry into mitochondria as a versatile treatment strategy for alopecia in humans.
Collapse
Affiliation(s)
- Aimee Flores
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.,Pelage Pharmaceuticals, Inc., Los Angeles, CA, USA
| | - Sekyu Choi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ya-Chieh Hsu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - William E Lowry
- Department of Molecular Cell and Developmental Biology, UCLA, Los Angeles, CA, USA.,Pelage Pharmaceuticals, Inc., Los Angeles, CA, USA.,Division of Dermatology, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.,Molecular Biology Institute, UCLA, Los Angeles, CA, USA.,Broad Center for Regenerative Medicine, UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Figueres-Oñate M, Sánchez-González R, López-Mascaraque L. Deciphering neural heterogeneity through cell lineage tracing. Cell Mol Life Sci 2021; 78:1971-1982. [PMID: 33151389 PMCID: PMC7966193 DOI: 10.1007/s00018-020-03689-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/10/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Understanding how an adult brain reaches an appropriate size and cell composition from a pool of progenitors that proliferates and differentiates is a key question in Developmental Neurobiology. Not only the control of final size but also, the proper arrangement of cells of different embryonic origins is fundamental in this process. Each neural progenitor has to produce a precise number of sibling cells that establish clones, and all these clones will come together to form the functional adult nervous system. Lineage cell tracing is a complex and challenging process that aims to reconstruct the offspring that arise from a single progenitor cell. This tracing can be achieved through strategies based on genetically modified organisms, using either genetic tracers, transfected viral vectors or DNA constructs, and even single-cell sequencing. Combining different reporter proteins and the use of transgenic mice revolutionized clonal analysis more than a decade ago and now, the availability of novel genome editing tools and single-cell sequencing techniques has vastly improved the capacity of lineage tracing to decipher progenitor potential. This review brings together the strategies used to study cell lineages in the brain and the role they have played in our understanding of the functional clonal relationships among neural cells. In addition, future perspectives regarding the study of cell heterogeneity and the ontogeny of different cell lineages will also be addressed.
Collapse
Affiliation(s)
- María Figueres-Oñate
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
- Max Planck Research Unit for Neurogenetics, 60438, Frankfurt am Main, Germany
| | - Rebeca Sánchez-González
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain
| | - Laura López-Mascaraque
- Department of Molecular, Cellular and Development Neurobiology, Instituto Cajal-CSIC, 28002, Madrid, Spain.
| |
Collapse
|
17
|
Seldin L, Macara IG. DNA Damage Promotes Epithelial Hyperplasia and Fate Mis-specification via Fibroblast Inflammasome Activation. Dev Cell 2020; 55:558-573.e6. [PMID: 33058780 PMCID: PMC7725994 DOI: 10.1016/j.devcel.2020.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
DNA crosslinking agents are commonly used in cancer chemotherapy; however, responses of normal tissues to these agents have not been widely investigated. We reveal in mouse interfollicular epidermal, mammary and hair follicle epithelia that genotoxicity does not promote apoptosis but paradoxically induces hyperplasia and fate specification defects in quiescent stem cells. DNA damage to skin causes epithelial and dermal hyperplasia, tissue expansion, and proliferation-independent formation of abnormal K14/K10 dual-positive suprabasal cells. Unexpectedly, this behavior is epithelial cell non-autonomous and independent of an intact immune system. Instead, dermal fibroblasts are both necessary and sufficient to induce the epithelial response, which is mediated by activation of a fibroblast-specific NLRP3 inflammasome and subsequent IL-1β production. Thus, genotoxic agents that are used chemotherapeutically to promote cancer cell death can have the opposite effect on wild-type epithelia by inducing, via a non-autonomous IL-1β-driven mechanism, both hyperplasia and stem cell lineage defects.
Collapse
Affiliation(s)
- Lindsey Seldin
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Ian G Macara
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA.
| |
Collapse
|
18
|
de Oliveira NFP, de Souza BF, de Castro Coêlho M. UV Radiation and Its Relation to DNA Methylation in Epidermal Cells: A Review. EPIGENOMES 2020; 4:23. [PMID: 34968303 PMCID: PMC8594722 DOI: 10.3390/epigenomes4040023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
DNA methylation is the most studied epigenetic mark, and it can be altered by environmental factors. Among these factors, ultraviolet radiation (UV) is little explored within this context. While the relationship between UV radiation and DNA mutations is clear, little is known about the relationship between UV radiation and epimutations. The present study aimed to perform a literature review to determine the influence of artificial or natural (solar) UV radiation on the global and site-specific methylation profile of epidermal cells. A systematic review of the literature was carried out using the databases PubMed, Scopus, Cochrane, and Web of Science. Observational and intervention studies in cultured cells and animal or human models were included. Most studies showed a relationship between UV radiation and changes in the methylation profile, both global and site-specific. Hypermethylation and hypomethylation changes were detected, which varied according to the studied CpG site. In conclusion, UV radiation can alter the DNA methylation profile in epidermal cells derived from the skin. These data can be used as potential biomarkers for environmental exposure and skin diseases, in addition to being targets for treatments. On the other hand, UV radiation (phototherapy) can also be used as a tool to treat skin diseases. Thus, the data suggest that epigenetic homeostasis can be disrupted or restored by exposure to UV radiation according to the applied wavelength.
Collapse
Affiliation(s)
- Naila Francis Paulo de Oliveira
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
- Programa de Pós Graduação em Odontologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
| | - Beatriz Fernandes de Souza
- Departamento de Biologia Molecular, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
| | - Marina de Castro Coêlho
- Programa de Pós Graduação em Odontologia, Centro de Ciências da Saúde, Universidade Federal da Paraíba—UFPB, João Pessoa 58051-900, Brazil;
| |
Collapse
|
19
|
Alibardi L. Immunostaining of telomerase in embryonic and juvenile feather follicle of the chick labels proliferating cells for feather formation. ZOOLOGY 2020; 146:125846. [PMID: 33813250 DOI: 10.1016/j.zool.2020.125846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/05/2020] [Accepted: 09/16/2020] [Indexed: 11/26/2022]
Abstract
Feathers regenerate through proliferation of cells derived from follicle stem cells. Immunoloblotting for telomerase in chick embryonic and juvenile feathers shows immunopositive bands around 100 kDa, 75 and 60 kDa only in embryonic feathers, indicating fragmentation of the protein due to physiological processing or artifacts derived from protein extraction. Immunolabeling for telomerase is present in the cytoplasm and nuclei of cells of the collar epithelium and bulge located in the follicle, and in sparse cells of the dermal papilla. PCNA-immunolabeling indicates that the collar and dermal papilla contain numerous proliferating cells, including the ramogenic zone where barb ridges are formed. Ultrastructural labeling indicates that a telomerase-like protein or its fragment is localized in nucleoli and in sparse nuclear clumps, likely representing Cajal bodies. The cytoplasm shows sparse immune-gold particles, also associated to mitochondria and sparse keratin filaments. An intense labeling is present in some areas of condensing chromosomes in dividing cells. Since telomerase positive cells are also seen in suprabasal layers of the collar epithelium and in the ramogenic zone, it is suggested that they represent dividing cells, most likely transit amplifying cells that give rise to the corneocytes of feathers. The significance of telomerase localization in chromatin is unknown.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova and Department of Biology, University of Bologna, Bologna, Italy.
| |
Collapse
|
20
|
Eberlin S, Silva MSD, Facchini G, Silva GHD, Pinheiro ALTA, Eberlin S, Pinheiro ADS. The Ex Vivo Skin Model as an Alternative Tool for the Efficacy and Safety Evaluation of Topical Products. Altern Lab Anim 2020; 48:10-22. [DOI: 10.1177/0261192920914193] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The development of alternative approaches for safety and efficacy testing that avoid the use of animals is a worldwide trend, which relies on the improvement of current models and tools so that they better reproduce human biology. Human skin from elective plastic surgery is a promising experimental model to test the effects of topically applied products. As the structure of native skin is maintained, including cell population (keratinocytes, melanocytes, Langerhans cells and fibroblasts) and dermal matrix (containing collagen, elastin, glycosaminoglycans, etc.), it most closely matches the effects of substances on in vivo human skin. In this review, we present a collection of results that our group has generated over the last years, involving the use of human skin and scalp explants, demonstrating the feasibility of this model. The development of a test system with ex vivo skin explants, of standard size and thickness, and cultured at the air–liquid interface, can provide an important tool for understanding the mechanisms involved in several cutaneous disorders.
Collapse
|
21
|
Vollono L, Falconi M, Gaziano R, Iacovelli F, Dika E, Terracciano C, Bianchi L, Campione E. Potential of Curcumin in Skin Disorders. Nutrients 2019; 11:E2169. [PMID: 31509968 PMCID: PMC6770633 DOI: 10.3390/nu11092169] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a compound isolated from turmeric, a plant known for its medicinal use. Recently, there is a growing interest in the medical community in identifying novel, low-cost, safe molecules that may be used in the treatment of inflammatory and neoplastic diseases. An increasing amount of evidence suggests that curcumin may represent an effective agent in the treatment of several skin conditions. We examined the most relevant in vitro and in vivo studies published to date regarding the use of curcumin in inflammatory, neoplastic, and infectious skin diseases, providing information on its bioavailability and safety profile. Moreover, we performed a computational analysis about curcumin's interaction towards the major enzymatic targets identified in the literature. Our results suggest that curcumin may represent a low-cost, well-tolerated, effective agent in the treatment of skin diseases. However, bypass of limitations of its in vivo use (low oral bioavailability, metabolism) is essential in order to conduct larger clinical trials that could confirm these observations. The possible use of curcumin in combination with traditional drugs and the formulations of novel delivery systems represent a very promising field for future applicative research.
Collapse
Affiliation(s)
- Laura Vollono
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Emi Dika
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Via Massarenti, 1-40138 Bologna, Italy
| | - Chiara Terracciano
- Neurology Unit, Guglielmo de Saliceto Hospital, 29121-29122 Piacenza, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy.
| |
Collapse
|
22
|
Lu Y, Lu Q, Liu H, Yu J, Xin C, Liu Y, Liu Y, Fan L. Time-Series Expression Analysis of Epidermal Stem Cells from High Fat Diet Mice. J Comput Biol 2019; 27:769-778. [PMID: 31502860 DOI: 10.1089/cmb.2019.0172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We aimed to identify differentially expressed genes (DEGs) in epidermal stem cells (epiSCs) in response to high fat diet (HFD). DEGs were identified by time-series analysis of the gene expression profile (GSE84510) in Gene Expression Omnibus (GEO) database. Functions and pathways affected by HFD were identified by functional annotation of DEGs. Key factors responding to HFD was identified by protein-protein interaction (PPI) network analysis. Two groups of genes with the same tendency in response to HFD were identified. ECM-related processes and PI3K pathway were altered in the early stage of obesity. A PPI network was constructed to delineate the interactions among proteins encoded by DEGs and ICAM1 and RELA were key epiSC factors respond to HFD. Our studies may provide valuable insights into the molecular mechanisms underlying how obesity affects the functions of epiSC.
Collapse
Affiliation(s)
- Ying Lu
- Department of Endocrinology, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Qixiu Lu
- Department of Ultrasonography, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Houlin Liu
- Department of Neurology, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Jixiang Yu
- Department of Vascular Surgery, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Chunlei Xin
- Department of Hematology, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Yingping Liu
- Department of Gastroenterology, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Yanfang Liu
- Department of Cardio-Thoracic Surgery, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| | - Linlin Fan
- Department of Endocrinology, Jining No. 1 People's Hospital; Affiliated Jining No. 1 People's Hospital of Jining Medical University, Jining Medical University, Jining, Shandong Province, China
| |
Collapse
|
23
|
Köhler F, Rodríguez-Paredes M. DNA Methylation in Epidermal Differentiation, Aging, and Cancer. J Invest Dermatol 2019; 140:38-47. [PMID: 31427190 DOI: 10.1016/j.jid.2019.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/24/2019] [Accepted: 05/17/2019] [Indexed: 12/22/2022]
Abstract
The formation and maintenance of the epidermis depend on epidermal stem cell differentiation and must be tightly regulated. Epigenetic mechanisms such as DNA methylation allow the precise gene expression cascade needed during cellular differentiation. However, these mechanisms become deregulated during aging and tumorigenesis, where cellular function and identity become compromised. Here we provide a review of this rapidly developing field. We discuss recent discoveries related to epidermal homeostasis, aging, and cancer, including the functional role of DNA methyltransferases, the methylation clock, and the determination of tumor cells-of-origin. Finally, we focus on future advances, greatly influenced by single-cell sequencing technologies.
Collapse
Affiliation(s)
- Florian Köhler
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Manuel Rodríguez-Paredes
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
24
|
Tan ST, Dosan R. Lessons From Epithelialization: The Reason Behind Moist Wound Environment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874372201913010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing consists of multiple structured mechanism and is influenced by various factors. Epithelialization is one of the major aspect in wound healing and inhibition of this mechanism will greatly impair wound healing. Epithelialization is a process where epithelial cells migrate upwards and repair the wounded area. This process is the most essential part in wound healing and occurs in proliferative phase of wound healing. Skin stem cells which reside in several locations of epidermis contribute in the re-epithelialization when the skin is damaged. Epithelialization process is activated by inflammatory signal and then keratinocyte migrate, differentiate and stratify to close the defect in the skin. Several theories of epithelialization model in wound healing have been proposed for decades and have shown the mechanism of epidermal cell migration during epithelialization even though the exact mechanism is still controversial. This process is known to be influenced by the wound environment where moist wound environment is preferred rather than dry wound environment. In dry wound environment, epithelialization is known to be inhibited because of scab or crust which is formed from dehydrated and dead cells. Moist wound environment enhances the epithelialization process by easier migration of epidermal cells, faster epithelialization, and prolonged presence of proteinases and growth factors. This article focuses on the epithelialization process in wound healing, epithelialization models, effects of wound environment on epithelialization and epithelialization as the basis for products that enhance wound healing.
Collapse
|
25
|
Ekman AK, Bivik Eding C, Rundquist I, Enerbäck C. IL-17 and IL-22 Promote Keratinocyte Stemness in the Germinative Compartment in Psoriasis. J Invest Dermatol 2019; 139:1564-1573.e8. [PMID: 30684548 DOI: 10.1016/j.jid.2019.01.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 12/22/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
Abstract
Psoriasis is an inflammatory skin disorder characterized by the hyperproliferation of basal epidermal cells. It is regarded as T-cell mediated, but the role of keratinocytes (KCs) in the disease pathogenesis has reemerged, with genetic studies identifying KC-associated genes. We applied flow cytometry on KCs from lesional and nonlesional epidermis to characterize the phenotype in the germinative compartment in psoriasis, and we observed an overall increase in the stemness markers CD29 (2.4-fold), CD44 (2.9-fold), CD49f (2.8-fold), and p63 (1.4-fold). We found a reduced percentage of cells positive for the early differentiation marker cytokeratin 10 and a greater fraction of CD29+ and involucrin+ cells in the psoriasis KCs than in nonlesional KCs. The up-regulation of stemness markers was more pronounced in the K10+ cells. Furthermore, the psoriasis cells were smaller, indicating increased proliferation. Treatment with IL-17 and IL-22 induced a similar expression pattern of an up-regulation of p63, CD44, and CD29 in normal KCs and increased the colony-forming efficiency and long-term proliferative capacity, reflecting increased stem cell-like characteristics in the KC population. These data suggest that IL-17 and IL-22 link the inflammatory response to the immature differentiation and epithelial regeneration by acting directly on KCs to promote cell stemness.
Collapse
Affiliation(s)
- Anna-Karin Ekman
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden
| | - Cecilia Bivik Eding
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden
| | - Ingemar Rundquist
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden
| | - Charlotta Enerbäck
- Ingrid Asp Psoriasis Research Center, Department of Clinical and Experimental Medicine, Division of Dermatology, Linköping University, Linköping, Sweden.
| |
Collapse
|
26
|
Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proc Natl Acad Sci U S A 2019; 116:14630-14638. [PMID: 31253707 DOI: 10.1073/pnas.1715272116] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mammalian epidermal stem cells maintain homeostasis of the skin epidermis and contribute to its regeneration throughout adult life. While 2D mouse epidermal stem cell cultures have been established decades ago, a long-term, feeder cell- and serum-free culture system recapitulating murine epidermal architecture has not been available. Here we describe an epidermal organoid culture system that allows long-term, genetically stable expansion of adult epidermal stem cells. Our epidermal expansion media combines atypically high calcium concentrations, activation of cAMP, FGF, and R-spondin signaling with inhibition of bone morphogenetic protein (BMP) signaling. Organoids are established robustly from adult mouse skin and expand over at least 6 mo, while maintaining the basal-apical organization of the mouse interfollicular epidermis. The system represents a powerful tool to study epidermal homeostasis and disease in vitro.
Collapse
|
27
|
Vandamme N, Berx G. From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cell Mol Life Sci 2019; 76:1919-1934. [PMID: 30830237 PMCID: PMC11105195 DOI: 10.1007/s00018-019-03049-w] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/25/2019] [Accepted: 02/18/2019] [Indexed: 01/07/2023]
Abstract
Here, we review melanocyte development and how the embryonic melanoblast, although specified to become a melanocyte, is prone to cellular plasticity and is not fully committed to the melanocyte lineage. Even fully differentiated and pigment-producing melanocytes do not always have a stable phenotype. The gradual lineage restriction of neural crest cells toward the melanocyte lineage is determined by both cell-intrinsic and extracellular signals in which differentiation and pathfinding ability reciprocally influence each other. These signals are leveraged by subtle differences in timing and axial positioning. The most extensively studied migration route is the dorsolateral path between the dermomyotome and the prospective epidermis, restricted to melanoblasts. In addition, the embryonic origin of the skin dermis through which neural crest derivatives migrate may also affect the segregation between melanogenic and neurogenic cells in embryos. It is widely accepted that, irrespective of the model organism studied, the immediate precursor of both melanoblast and neurogenic populations is a glial-melanogenic bipotent progenitor. Upon exposure to different conditions, melanoblasts may differentiate into other neural crest-derived lineages such as neuronal cells and vice versa. Key factors that regulate melanoblast migration and patterning will regulate melanocyte homeostasis during different stages of hair cycling in postnatal hair follicles.
Collapse
Affiliation(s)
- Niels Vandamme
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- DAMBI, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
28
|
Expression of Potential Dermal Progenitor Cell Markers in the Tumour and Stroma of Skin Adnexal Malignant and Benign Tumours. Stem Cells Int 2019; 2019:9320701. [PMID: 31065284 PMCID: PMC6466859 DOI: 10.1155/2019/9320701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/31/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Stem cells are multipotent cells that maintain the skin epidermis including skin appendages such as hair follicle, sebaceous glands, and sweat glands. There is evidence that reciprocal signalling between the epidermis and the dermis plays an important role in skin development, homeostasis, wound repair, and skin cancer. The origin of skin cancer that derive from skin appendages is still controversial, including basal cell carcinoma and even more of rare tumours such as sebaceous carcinomas and whether those tumours originate from resident tissue stem cells. To investigate whether markers reported to label dermal progenitor cells are preserved in the tumour including the tumour stroma of skin adnexal tumours, we tested 45 human basal cell carcinomas, including superficial, nodular, adenoid, infiltrating, and sclerosing types, and further 38 human tumours of skin appendages including 13 sebaceous adenomas and carcinomas, 20 eccrine sweat gland tumours, and 5 pilomatricomas, syringomas, and hair follicle tumours for the expression of the potential dermal and epidermal cell markers CRABP1, Nestin, and Ephrin B2 and compared these findings with healthy, age-related human epidermis. We detected that CRABP1, Nestin, and Ephrin B2 are expressed in the intratumoural stroma as well as the tumour invasive front of skin tumours of appendages and BCCs.
Collapse
|
29
|
Tripurani SK, Wang Y, Fan YX, Rahimi M, Wong L, Lee MH, Starost MF, Rubin JS, Johnson GR. Suppression of Wnt/β-catenin signaling by EGF receptor is required for hair follicle development. Mol Biol Cell 2018; 29:2784-2799. [PMID: 30188763 PMCID: PMC6249831 DOI: 10.1091/mbc.e18-08-0488] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mice that lack the epidermal growth factor receptor (EGFR) fail to develop a hair coat, but the mechanism responsible for this deficit is not completely understood. Here, we show that EGFR plays a critical role to attenuate wingless-type MMTV integration site family member (Wnt)/β-catenin signaling during postnatal hair follicle development. Genetic ablation of EGFR in mice resulted in increased mitotic activity in matrix cells, apoptosis in hair follicles, and impaired differentiation of epithelial lineages that form hair. EGFR is activated in wild-type hair follicle stem cells marked with SOX9 or NFATc1 and is essential to restrain proliferation and support stem cell numbers and their quiescence. We observed elevated levels of Wnt4, 6, 7b, 10a, 10b, and 16 transcripts and hyperactivation of the β-catenin pathway in EGFR knockout follicles. Using primary keratinocytes, we linked ligand-induced EGFR activation to suppression of nascent mRNA synthesis of Wnt genes. Overexpression of the Wnt antagonist sFRP1 in mice lacking EGFR demonstrated that elevated Wnts are a major cause for the hair follicle defects. Colocalization of transforming growth factor α and Wnts regulated by EGFR in stem cells and progeny indicates that EGFR autocrine loops control Wnts. Our findings define a novel mechanism that integrates EGFR and Wnt/β-catenin pathways to coordinate the delicate balance between proliferation and differentiation during development.
Collapse
Affiliation(s)
- Swamy K Tripurani
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Yan Wang
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Ying-Xin Fan
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Massod Rahimi
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Lily Wong
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Min-Hyung Lee
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| | - Matthew F Starost
- Diagnostic and Research Services Branch, Office of the Director, National Institutes of Health, Bethesda, MD 20892
| | - Jeffrey S Rubin
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892
| | - Gibbes R Johnson
- Division of Biotechnology Review and Research IV, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993
| |
Collapse
|
30
|
Singh K, Camera E, Krug L, Basu A, Pandey RK, Munir S, Wlaschek M, Kochanek S, Schorpp-Kistner M, Picardo M, Angel P, Niemann C, Maity P, Scharffetter-Kochanek K. JunB defines functional and structural integrity of the epidermo-pilosebaceous unit in the skin. Nat Commun 2018; 9:3425. [PMID: 30143626 PMCID: PMC6109099 DOI: 10.1038/s41467-018-05726-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Transcription factors ensure skin homeostasis via tight regulation of distinct resident stem cells. Here we report that JunB, a member of the AP-1 transcription factor family, regulates epidermal stem cells and sebaceous glands through balancing proliferation and differentiation of progenitors and by suppressing lineage infidelity. JunB deficiency in basal progenitors results in a dermatitis-like syndrome resembling seborrheic dermatitis harboring structurally and functionally impaired sebaceous glands with a globally altered lipid profile. A fate switch occurs in a subset of JunB deficient epidermal progenitors during wound healing resulting in de novo formation of sebaceous glands. Dysregulated Notch signaling is identified to be causal for this phenotype. In fact, pharmacological inhibition of Notch signaling can efficiently restore the lineage drift, impaired epidermal differentiation and disrupted barrier function in JunB conditional knockout mice. These findings define an unprecedented role for JunB in epidermal-pilosebaceous stem cell homeostasis and its pathology. Epidermal homeostasis is maintained by the activity of stem cells. Here, the authors show that deficiency of the transcription factor JunB leads to altered Notch signaling in stem cells, resulting in a cell fate switch and de novo formation of aberrant sebaceous glands, altered epidermal differentiation and impaired barrier function.
Collapse
Affiliation(s)
- Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Emanuela Camera
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics, San Gallicano Dermatologic Institute (IRCCS), Rome, 00144, Italy
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Abhijit Basu
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Rajeev Kumar Pandey
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Saira Munir
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany.,Aging Research Center (ARC), Ulm, 89081, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, Ulm, 89081, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics, San Gallicano Dermatologic Institute (IRCCS), Rome, 00144, Italy
| | - Peter Angel
- Division of Signal Transduction and Growth Control, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Catherin Niemann
- Institute for Biochemistry II, University of Cologne, Cologne, 50931, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50931, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany. .,Aging Research Center (ARC), Ulm, 89081, Germany.
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, Ulm University, Ulm, 89081, Germany. .,Aging Research Center (ARC), Ulm, 89081, Germany.
| |
Collapse
|
31
|
Zhai Q, Zhou F, Ibrahim MM, Zhao J, Liu X, Wu J, Chen L, Qi S. An immune-competent rat split thickness skin graft model: useful tools to develop new therapies to improve skin graft survival. Am J Transl Res 2018; 10:1600-1610. [PMID: 30018703 PMCID: PMC6038090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
Skin grafting is the routine standard of care to manage third degree burns and problematic skin defects. Several commercially available dermal substitutes and biologic skin equivalents are placed in the wound bed to facilitate the healing process of the skin grafts, as well as to provide mechanical support for the cells to grow and to delay the contracture. To study pathology and develop new therapies, an immune-competent rat model is required. We have created two different skin graft animal models to mimic the clinical skin grafting operation, the dorsum skin grafting (DG) and inguinal skin grafting (IG). To create a recipient site, a full-thickness, round excision wound was created on the dorsum between rats' scapular angles, covered with DG or IG. Graft contraction was quantified and tissue was harvested on predetermined time points for analysis. Histologic staining was performed to differentiate between DG and IG. Collagen deposition was assessed with Masson's trichrome staining. Mast cells were detected with Toluidine blue. Macrophages were stained with CD68 immune. Vascularity was assessed with functional vessels numbers. Cell proliferation was assessed with Ki67 immune. This model has all the advantages of murine models, such as an abundance of genetic variants and applicable tools, low cost, and practical housing techniques, all of which will promote the development of new therapies and testing new biologic skin equivalents and dermal substitutes.
Collapse
Affiliation(s)
- Qiyi Zhai
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Fei Zhou
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Mohamed M Ibrahim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical CenterDurham, NC, USA
| | - Jingling Zhao
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Xusheng Liu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Jun Wu
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Lei Chen
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| | - Shaohai Qi
- Department of Burns Surgery, First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou, Guangdong, China
| |
Collapse
|
32
|
Kwon E, Todorova K, Wang J, Horos R, Lee KK, Neel VA, Negri GL, Sorensen PH, Lee SW, Hentze MW, Mandinova A. The RNA-binding protein YBX1 regulates epidermal progenitors at a posttranscriptional level. Nat Commun 2018; 9:1734. [PMID: 29712925 PMCID: PMC5928080 DOI: 10.1038/s41467-018-04092-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 03/29/2018] [Indexed: 01/10/2023] Open
Abstract
The integrity of stratified epithelia depends on the ability of progenitor cells to maintain a balance between proliferation and differentiation. While much is known about the transcriptional pathways underlying progenitor cells’ behavior in the epidermis, the role of posttranscriptional regulation by mRNA binding proteins—a rate-limiting step in sculpting the proteome—remains poorly understood. Here we report that the RNA binding protein YBX1 (Y-box binding protein-1) is a critical effector of progenitors’ function in the epidermis. YBX1 expression is restricted to the cycling keratinocyte progenitors in vivo and its genetic ablation leads to defects in the architecture of the skin. We further demonstrate that YBX1 negatively controls epidermal progenitor senescence by regulating the translation of a senescence-associated subset of cytokine mRNAs via their 3′ untranslated regions. Our study establishes YBX1 as a posttranscriptional effector required for maintenance of epidermal homeostasis. The integrity of the stratified epithelia relies on controlled cell turnover but it is unclear how mRNA binding proteins regulates this. Here, the authors show that the RNA binding protein Y-box binding protein-1 translationally represses cytokines, so preventing senescence and maintaining epidermal homeostasis.
Collapse
Affiliation(s)
- Eunjeong Kwon
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Jun Wang
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Rastislav Horos
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Kevin K Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Victor A Neel
- Department of Dermatology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Gian Luca Negri
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V5Z 1L3, Canada.,Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA.,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, 02142, USA
| | - Matthias W Hentze
- European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA. .,Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA, 02142, USA. .,Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, Cambridge, MA, 02138, USA.
| |
Collapse
|
33
|
Philippeos C, Telerman SB, Oulès B, Pisco AO, Shaw TJ, Elgueta R, Lombardi G, Driskell RR, Soldin M, Lynch MD, Watt FM. Spatial and Single-Cell Transcriptional Profiling Identifies Functionally Distinct Human Dermal Fibroblast Subpopulations. J Invest Dermatol 2018; 138:811-825. [PMID: 29391249 PMCID: PMC5869055 DOI: 10.1016/j.jid.2018.01.016] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that mouse dermis is composed of functionally distinct fibroblast lineages. To explore the extent of fibroblast heterogeneity in human skin, we used a combination of comparative spatial transcriptional profiling of human and mouse dermis and single-cell transcriptional profiling of human dermal fibroblasts. We show that there are at least four distinct fibroblast populations in adult human skin, not all of which are spatially segregated. We define markers permitting their isolation and show that although marker expression is lost in culture, different fibroblast subpopulations retain distinct functionality in terms of Wnt signaling, responsiveness to IFN-γ, and ability to support human epidermal reconstitution when introduced into decellularized dermis. These findings suggest that ex vivo expansion or in vivo ablation of specific fibroblast subpopulations may have therapeutic applications in wound healing and diseases characterized by excessive fibrosis.
Collapse
Affiliation(s)
- Christina Philippeos
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Stephanie B Telerman
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Bénédicte Oulès
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Angela O Pisco
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK
| | - Tanya J Shaw
- King's College London Centre for Molecular and Cellular Biology of Inflammation, London, UK
| | - Raul Elgueta
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Giovanna Lombardi
- King's College London MRC Centre for Transplantation, Guy's Hospital, Great Maze Pond, London, UK
| | - Ryan R Driskell
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; School of Molecular Medicine, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mark Soldin
- Department of Plastic and Reconstructive Surgery, St. George's National Health Service Trust, London, UK
| | - Magnus D Lynch
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK; St. John's Institute of Dermatology, Tower Wing, Guy's Hospital, Great Maze Pond, London, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, Guy's Hospital, Great Maze Pond, London, UK.
| |
Collapse
|
34
|
Chermnykh E, Kalabusheva E, Vorotelyak E. Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. Int J Mol Sci 2018; 19:ijms19041003. [PMID: 29584689 PMCID: PMC5979429 DOI: 10.3390/ijms19041003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/15/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Epidermal stem cells reside within the specific anatomic location, called niche, which is a microenvironment that interacts with stem cells to regulate their fate. Regulation of many important processes, including maintenance of stem cell quiescence, self-renewal, and homeostasis, as well as the regulation of division and differentiation, are common functions of the stem cell niche. As it was shown in multiple studies, extracellular matrix (ECM) contributes a lot to stem cell niches in various tissues, including that of skin. In epidermis, ECM is represented, primarily, by a highly specialized ECM structure, basement membrane (BM), which separates the epidermal and dermal compartments. Epidermal stem cells contact with BM, but when they lose the contact and migrate to the overlying layers, they undergo terminal differentiation. When considering all of these factors, ECM is of fundamental importance in regulating epidermal stem cells maintenance, proper mobilization, and differentiation. Here, we summarize the remarkable progress that has recently been made in the research of ECM role in regulating epidermal stem cell fate, paying special attention to the hair follicle stem cell niche. We show that the destruction of ECM components impairs epidermal stem cell morphogenesis and homeostasis. A deep understanding of ECM molecular structure as well as the development of in vitro system for stem cell maintaining by ECM proteins may bring us to developing new approaches for regenerative medicine.
Collapse
Affiliation(s)
- Elina Chermnykh
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Kalabusheva
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| | - Ekaterina Vorotelyak
- Koltzov Institute of Developmental Biology Russian Academy of Sciences, Moscow 119334, Russia.
- Department of Regenerative Medicine, Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| |
Collapse
|
35
|
Abstract
Central to the classical hematopoietic stem cell (HSC) paradigm is the concept that the maintenance of blood cell numbers is exclusively executed by a discrete physical entity: the transplantable HSC. The HSC paradigm has served as a stereotypic template in stem cell biology, yet the search for rare, hardwired professional stem cells has remained futile in most other tissues. In a more open approach, the focus on the search for stem cells as a physical entity may need to be replaced by the search for stem cell function, operationally defined as the ability of an organ to replace lost cells. The nature of such a cell may be different under steady state conditions and during tissue repair. We discuss emerging examples including the renewal strategies of the skin, gut epithelium, liver, lung, and mammary gland in comparison with those of the hematopoietic system. While certain key housekeeping and developmental signaling pathways are shared between different stem cell systems, there may be no general, deeper principles underlying the renewal mechanisms of the various individual tissues.
Collapse
Affiliation(s)
- Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, 3584CT Utrecht, The Netherlands;
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London SE1 9RT, United Kingdom;
| |
Collapse
|
36
|
Picard F, Hersant B, Niddam J, Meningaud JP. Injections of platelet-rich plasma for androgenic alopecia: A systematic review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2017; 118:291-297. [DOI: 10.1016/j.jormas.2017.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/25/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
37
|
Secretory phospholipase A 2-IIA overexpressing mice exhibit cyclic alopecia mediated through aberrant hair shaft differentiation and impaired wound healing response. Sci Rep 2017; 7:11619. [PMID: 28912581 PMCID: PMC5599634 DOI: 10.1038/s41598-017-11830-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/10/2017] [Indexed: 12/17/2022] Open
Abstract
Secretory phospholipase A2 Group-IIA (sPLA2-IIA) is involved in lipid catabolism and growth promoting activity. sPLA2-IIA is deregulated in many pathological conditions including various cancers. Here, we have studied the role of sPLA2-IIA in the development of cyclic alopecia and wound healing response in relation to complete loss of hair follicle stem cells (HFSCs). Our data showed that overexpression of sPLA2-IIA in homozygous mice results in hyperproliferation and terminal epidermal differentiation followed by hair follicle cycle being halted at anagen like stage. In addition, sPLA2-IIA induced hyperproliferation leads to complete exhaustion of hair follicle stem cell pool at PD28 (Postnatal day). Importantly, sPLA2-IIA overexpression affects the hair shaft differentiation leading to development of cyclic alopecia. Molecular investigation study showed aberrant expression of Sox21, Msx2 and signalling modulators necessary for proper differentiation of inner root sheath (IRS) and hair shaft formation. Further, full-thickness skin wounding on dorsal skin of K14-sPLA2-IIA homozygous mice displayed impaired initial healing response. Our results showed the involvement of sPLA2-IIA in regulation of matrix cells differentiation, hair shaft formation and complete loss of HFSCs mediated impaired wound healing response. These novel functions of sPLA2-IIA may have clinical implications in alopecia, cancer development and ageing.
Collapse
|
38
|
Shin JW, Choi HR, Nam KM, Lee HS, Kim SA, Joe HJ, Kazumi T, Park KC. The Co-Expression Pattern of p63 and HDAC1: A Potential Way to Disclose Stem Cells in Interfollicular Epidermis. Int J Mol Sci 2017; 18:ijms18071360. [PMID: 28672879 PMCID: PMC5535853 DOI: 10.3390/ijms18071360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/06/2023] Open
Abstract
Stem cell markers of interfollicular epidermis (IEF) have not been established thus far. The aim of this study is to suggest a new way to disclose IFE-stem cells by combining the expression of histone deacetylases (HDAC) 1 and p63. Immunohistochemical staining of HDAC1 and p63 was performed in six normal human samples. Moreover, a skin equivalent (SE) model was treated with suberoylanilohydroxamic acid (SAHA, an HDAC inhibitor) to elucidate the role of HDAC1. Finally, rapidly adhering (RA) keratinocytes to a type IV collagen, which have been identified to represent epidermal stem cells, were subjected to Western blot analysis with antibodies against HDAC1. In normal samples, there was a minor subpopulation comprised of p63-positive and HDAC1-negative cells in the basal layers. The proportion of this subpopulation was decreased with age. In the SE model, SAHA treatment increased the epidermal thickness and number of p63-positive cells in a dose dependent manner. After SAHA treatment, the expression of differentiation markers was decreased, while that of basement membrane markers was increased. In a Western blot analysis, HDAC1 was not expressed in RA cells. In conclusion, the combination of p63-positive and HDAC1-negative expressions can be a potential new way for distinguishing epidermal stem cells.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Kyung-Mi Nam
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Hyun-Sun Lee
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| | - Sung-Ae Kim
- Department of Dermatology, Keimyung University School of Medicine, 56 Dalseong-Ro, Jung-Gu, Daegu 41931, Korea.
| | - Hyun-Jae Joe
- Department of Dermatology, Keimyung University School of Medicine, 56 Dalseong-Ro, Jung-Gu, Daegu 41931, Korea.
| | | | - Kyoung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, 166 Gumi-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Korea.
| |
Collapse
|
39
|
Moestrup KS, Andersen MS, Jensen KB. Isolation and In Vitro Characterization of Epidermal Stem Cells. Methods Mol Biol 2017; 1553:67-83. [PMID: 28229408 DOI: 10.1007/978-1-4939-6756-8_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Colony-forming assays represent prospective methods, where cells isolated from enzymatically dissociated tissues or from tissue cultures are assessed for their proliferative capacity in vitro. Complex tissues such as the epithelial component of the skin (the epidermis) are characterized by a substantial cellular heterogeneity. Analysis of bulk populations of cells by colony-forming assays can consequently be convoluted by a number of factors that are not controlled for in population wide studies. It is therefore advantageous to refine in vitro growth assays by sub-fractionation of cells using flow cytometry. Using markers that define the spatial origin of epidermal cells, it is possible to interrogate the specific characteristics of subpopulations of cells based on their in vivo credentials. Here, we describe how to isolate, culture, and characterize keratinocytes from murine back and tail skin sorted by surface antigens associated with adult stem cell characteristics.
Collapse
Affiliation(s)
- Kasper S Moestrup
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Marianne S Andersen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark
| | - Kim B Jensen
- Biotech Research and Innovation Centre, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaloes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
40
|
|
41
|
|
42
|
Qiu K, Wang LF, Shen J, Yousif AAM, He P, Shao DD, Zhang XM, Kirunda JB, Jia Y. A van der Waals-like Transition Between Normal and Cancerous Phases in Cell Populations Dynamics of Colorectal Cancer. Sci Rep 2016; 6:36620. [PMID: 27857154 PMCID: PMC5114675 DOI: 10.1038/srep36620] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/17/2016] [Indexed: 12/03/2022] Open
Abstract
Based on a deterministic continuous model of cell populations dynamics in the colonic crypt and in colorectal cancer, we propose four combinations of feedback mechanisms in the differentiations from stem cells (SCs) to transit cells (TCs) and then to differentiated cells (DCs), the four combinations include the double linear (LL), the linear and saturating (LS), the saturating and linear (SL), and the double saturating (SS) feedbacks, respectively. The relative fluctuations of the population of SCs, TCs, and DCs around equilibrium states with four feedback mechanisms are studied by using the Langevin method. With the increasing of net growth rate of TCs, it is found that the Fano factors of TCs and DCs go to a peak in a transient phase, and then increase again to infinity in the cases of LS and SS feedbacks. The “up-down-up” characteristic on the Fano factor (like the van der Waals loop) demonstrates that there exists a transient phase between the normal and cancerous phases, our novel findings suggest that the mathematical model with LS or SS feedback might be better to elucidate the dynamics of a normal and abnormal (cancerous) phases.
Collapse
Affiliation(s)
- Kang Qiu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China.,Department of Mathematics and Physics, Xuzhou Medical University, Xuzhou 221004, China
| | - Li-Fang Wang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jian Shen
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Alssadig A M Yousif
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Peng He
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Dan-Dan Shao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Xiao-Min Zhang
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - John B Kirunda
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Ya Jia
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
43
|
Stahl M, Kim TK, Zeidan AM. Update on acute myeloid leukemia stem cells: New discoveries and therapeutic opportunities. World J Stem Cells 2016; 8:316-331. [PMID: 27822339 PMCID: PMC5080639 DOI: 10.4252/wjsc.v8.i10.316] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/11/2016] [Accepted: 08/29/2016] [Indexed: 02/06/2023] Open
Abstract
The existence of cancer stem cells has been well established in acute myeloid leukemia. Initial proof of the existence of leukemia stem cells (LSCs) was accomplished by functional studies in xenograft models making use of the key features shared with normal hematopoietic stem cells (HSCs) such as the capacity of self-renewal and the ability to initiate and sustain growth of progenitors in vivo. Significant progress has also been made in identifying the phenotype and signaling pathways specific for LSCs. Therapeutically, a multitude of drugs targeting LSCs are in different phases of preclinical and clinical development. This review focuses on recent discoveries which have advanced our understanding of LSC biology and provided rational targets for development of novel therapeutic agents. One of the major challenges is how to target the self-renewal pathways of LSCs without affecting normal HSCs significantly therefore providing an acceptable therapeutic window. Important issues pertinent to the successful design and conduct of clinical trials evaluating drugs targeting LSCs will be discussed as well.
Collapse
|
44
|
Niwa O, Barcellos-Hoff MH, Globus RK, Harrison JD, Hendry JH, Jacob P, Martin MT, Seed TM, Shay JW, Story MD, Suzuki K, Yamashita S. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection. Ann ICRP 2016; 44:7-357. [PMID: 26637346 DOI: 10.1177/0146645315595585] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells; (c) retention of the DNA parental template strand during divisions in some tissue systems, so that mutations are passed to the daughter differentiating cells and not retained in the parental cell; and (d) stem cell competition, whereby undamaged stem cells outcompete damaged stem cells for residence in the niche. DNA repair mainly occurs within a few days of irradiation, while stem cell competition requires weeks or many months depending on the tissue type. The aforementioned processes may contribute to the differences in carcinogenic radiation risk values between tissues, and may help to explain why a rapidly replicating tissue such as small intestine is less prone to such risk. The processes also provide a mechanistic insight relevant to the LNT model, and the relative and absolute risk models. The radiobiological knowledge also provides a scientific insight into discussions of the dose and dose-rate effectiveness factor currently used in radiological protection guidelines. In addition, the biological information contributes potential reasons for the age-dependent sensitivity to radiation carcinogenesis, including the effects of in-utero exposure.
Collapse
|
45
|
Martin MT, Vulin A, Hendry JH. Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 770:349-368. [PMID: 27919341 DOI: 10.1016/j.mrrev.2016.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/12/2016] [Accepted: 08/13/2016] [Indexed: 02/06/2023]
Abstract
In human skin, keratinopoiesis is based on a functional hierarchy among keratinocytes, with rare slow-cycling stem cells responsible for the long-term maintenance of the tissue through their self-renewal potential, and more differentiated daughter progenitor cells actively cycling to permit epidermal renewal and turn-over every month. Skin is a radio-responsive tissue, developing all types of radiation damage and pathologies, including early tissue reactions such as dysplasia and denudation in epidermis, and later fibrosis in the dermis and acanthosis in epidermis, with the TGF-beta 1 pathway as a known master switch. Also there is a risk of basal cell carcinoma, which arises from epidermal keratinocytes, notably after oncogenic events in PTCH1 or TP53 genes. This review will cover the mechanisms of adverse human skin reactions and carcinogenesis after various types of exposures to ionizing radiation, with comparison with animal data when necessary, and will discuss the possible role of stem cells and their progeny in the development of these disorders. The main endpoints presented are basal cell intrinsic radiosensitivity, genomic stability, individual factors of risk, dose specific responses, major molecular pathways involved and the cellular origin of skin reactions and cancer. Although major advances have been obtained in recent years, the precise implications of epidermal stem cells and their progeny in these processes are not yet fully characterized.
Collapse
Affiliation(s)
- Michèle T Martin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France.
| | - Adeline Vulin
- CEA/DRF/IRCM/LGRK, 91057 Evry, France; INSERM U967, 92265 Fontenay aux Roses, Cedex, France; Université Paris-Diderot, Paris 7, France; Université Paris-Saclay, Paris 11, France
| | - Jolyon H Hendry
- Christie Medical Physics and Engineering, Christie Hospital and University of Manchester, Manchester, United Kingdom
| |
Collapse
|
46
|
Quist SR, Eckardt M, Kriesche A, Gollnick HP. Expression of epidermal stem cell markers in skin and adnexal malignancies. Br J Dermatol 2016; 175:520-30. [PMID: 26914519 DOI: 10.1111/bjd.14494] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Epidermal stem cells are multipotent cells that maintain the skin epidermis. Potential markers for stem cells have been identified in mammalian skin from mouse experiments; however, it is unclear if stem cells also contribute to tumour formation in human skin. OBJECTIVES To investigate the expression of potential stem cell markers, such as leucine-rich repeat-containing G protein-coupled receptor (Lgr) 5, Lgr6, leucine-rich repeats and immunoglobulin-like domain protein 1 (Lrig1) and cytokeratin 15 (CK15) in basal cell carcinomas and tumours of the skin appendages. METHODS We tested 45 human basal cell carcinomas (BCCs), including superficial, nodular, adenoid, infiltrating and sclerosing types, and 38 human tumours of skin appendages, including 13 sebaceous adenomas and carcinomas, 20 eccrine sweat gland tumours and five pilomatricomas, for the expression of hair follicle stem cell markers such as Lgr5, Lrig1, CK15, β-catenin and SRY (sex determining region Y)-box 9 (SOX9), and compared these findings with those of healthy age-matched human epidermis. RESULTS We detected the expression of stem cell markers in all tumours tested. Regarding Lgr5, Lrig1, CK15 and SOX9, expression seemed to be lower in more aggressive tumour types, such as in the most advanced parts of infiltrating BCC, in sebaceous carcinoma and late-stage porocarcinoma, compared with less aggressive superficial or nodular BCC or early-stage porocarcinoma and sebaceous gland tumours. In aggressive, sclerosing BCC, Lrig1 and Lgr5 were downregulated but CK15, SOX9 and nuclear β-catenin were upregulated. CONCLUSIONS Expression of potential stem cell markers of the epidermis and hair follicles was observed in skin tumours of appendages and BCCs. However, during tumour progression, many of these markers seemed to be downregulated.
Collapse
Affiliation(s)
- S R Quist
- Department of Dermatology and Venereology, Otto-von-Guericke University, Leipziger Strasse, Magdeburg, 39120, Germany.
| | - M Eckardt
- Department of Dermatology and Venereology, Otto-von-Guericke University, Leipziger Strasse, Magdeburg, 39120, Germany
| | - A Kriesche
- Department of Dermatology and Venereology, Otto-von-Guericke University, Leipziger Strasse, Magdeburg, 39120, Germany
| | - H P Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke University, Leipziger Strasse, Magdeburg, 39120, Germany
| |
Collapse
|
47
|
Ali NJA, Dias Gomes M, Bauer R, Brodesser S, Niemann C, Iden S. Essential Role of Polarity Protein Par3 for Epidermal Homeostasis through Regulation of Barrier Function, Keratinocyte Differentiation, and Stem Cell Maintenance. J Invest Dermatol 2016; 136:2406-2416. [PMID: 27452221 DOI: 10.1016/j.jid.2016.07.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Partitioning-defective (Par) proteins contribute to multiprotein complexes that drive cell polarity and fate in invertebrates. Of these, the ternary Par3-atypical protein kinase C-Par6 polarity complex mediates asymmetry in various systems, whereas Par3 and aPKC/Par6 can also act independently. aPKC-λ has recently been implicated in epidermal differentiation and stem cell fate; however, whether Par3 contributes to the homeostasis of adult stratified epithelia is currently unknown. Here, we provide functional evidence that epidermal Par3 loss disturbed the inside-out skin barrier, coinciding with altered expression and localization of principle tight junction components, and that epidermal differentiation and thickness were increased. Moreover, Par3 inactivation caused an initial expansion and later decline of hair follicle bulge stem cells, accompanied by an enrichment of committed progenitors, formation of hypertrophic sebaceous glands, and increased epidermal differentiation, suggesting aberrant cell fate decisions. Importantly, and opposite to aPKCλ deletion, Par3 loss did not enhance perpendicular cell divisions. Instead, in Par3-deficient hair follicles, spindles were shifted toward planar orientation, indicating that abnormal differentiation after Par3 inactivation is unlikely to be attributed to increased perpendicular spindle orientation. Collectively, mammalian Par3 controls the epidermal barrier, differentiation, and stem cell maintenance in the pilosebaceous unit, which are all essential for the homeostasis of an important barrier-forming epithelium.
Collapse
Affiliation(s)
- Noelle J A Ali
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Martim Dias Gomes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Ronja Bauer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Catherin Niemann
- Center for Biochemistry, Medical Faculty, University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
48
|
Sarate RM, Chovatiya GL, Ravi V, Khade B, Gupta S, Waghmare SK. sPLA2 -IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation. Stem Cells 2016; 34:2407-17. [PMID: 27299855 DOI: 10.1002/stem.2418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/13/2016] [Accepted: 04/24/2016] [Indexed: 12/29/2022]
Abstract
Secretory phospholipase A2 Group-IIA (sPLA2 -IIA) catalyzes the hydrolysis of the sn-2 position of glycerophospholipids to yield fatty acids and lysophospholipids. sPLA2 -IIA is deregulated in various cancers; however, its role in hair follicle stem cell (HFSC) regulation is obscure. Here we report a transgenic mice overexpressing sPLA2 -IIA (K14-sPLA2 -IIA) showed depletion of HFSC pool. This was accompanied with increased differentiation, loss of ortho-parakeratotic organization and enlargement of sebaceous gland, infundibulum and junctional zone. The colony forming efficiency of keratinocytes was significantly reduced. Microarray profiling of HFSCs revealed enhanced level of epithelial mitogens and transcription factors, c-Jun and FosB that may be involved in proliferation and differentiation. Moreover, K14-sPLA2 -IIA keratinocytes showed enhanced activation of EGFR and JNK1/2 that led to c-Jun activation, which co-related with enhanced differentiation. Further, depletion of stem cells in bulge is associated with high levels of chromatin silencing mark, H3K27me3 and low levels of an activator mark, H3K9ac suggestive of alteration in gene expression contributing toward stem cells differentiation. Our results, first time uncovered that overexpression of sPLA2 -IIA lead to depletion of HFSCs and differentiation associated with altered histone modification. Thus involvement of sPLA2 -IIA in stem cells regulation and disease pathogenesis suggest its prospective clinical implications. Stem Cells 2016;34:2407-2417.
Collapse
Affiliation(s)
| | | | | | - Bharat Khade
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | - Sanjay Gupta
- Epigenetics and Chromatin Biology Group, Gupta Lab, Cancer Research Institute, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India
| | | |
Collapse
|
49
|
Bastakoty D, Young PP. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration. FASEB J 2016; 30:3271-3284. [PMID: 27335371 DOI: 10.1096/fj.201600502r] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved set of signals with critical roles in embryonic and neonatal development across species. In mammals the pathway is quiescent in many organs. It is reactivated in response to injury and is reported to play complex and contrasting roles in promoting regeneration and fibrosis. We review the current understanding of the role of the Wnt/β-catenin pathway in injury of various mammalian organs and discuss the current advances and potential of Wnt inhibitory therapeutics toward promoting tissue regeneration and reducing fibrosis.-Bastakoty, D., Young, P. P. Wnt/β-catenin pathway in tissue injury: roles in pathology and therapeutic opportunities for regeneration.
Collapse
Affiliation(s)
- Dikshya Bastakoty
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and
| | - Pampee P Young
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA; and Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
50
|
Yang GN, Kopecki Z, Cowin AJ. Role of Actin Cytoskeleton in the Regulation of Epithelial Cutaneous Stem Cells. Stem Cells Dev 2016; 25:749-59. [PMID: 27021878 DOI: 10.1089/scd.2016.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cutaneous stem cells (CSCs) orchestrate the homeostasis and regeneration of mammalian skin. Epithelial CSCs have been isolated and characterized from the skin and hold great potential for tissue engineering and clinical applications. The actin cytoskeleton is known to regulate cell adhesion and motility through its intricate participation in signal transduction and structural modifications. The dynamics of actin cytoskeleton can directly influence CSCs behaviors including tissue morphogenesis, homeostasis, niche maintenance, activation, and wound repair. Various regulators of the actin cytoskeleton including kinases, actin-remodeling proteins, paracrine signals, and micro-RNAs collaborate and contribute to epithelial CSC proliferation, adhesion, and differentiation. This review brings together the latest mechanistic insights into how the actin cytoskeleton participates in the regulation of epithelial CSCs during development, homeostasis, and wound repair.
Collapse
Affiliation(s)
- Gink N Yang
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| |
Collapse
|