1
|
Akhunzianov AA, Rozhina EV, Filina YV, Rizvanov AA, Miftakhova RR. Resistance to Radiotherapy in Cancer. Diseases 2025; 13:22. [PMID: 39851486 PMCID: PMC11764699 DOI: 10.3390/diseases13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Radiation therapy or radiotherapy is a medical treatment that uses high doses of ionizing radiation to eliminate cancer cells and shrink tumors. It works by targeting the DNA within the tumor cells restricting their proliferation. Radiotherapy has been used for treating cancer for more than 100 years. Along with surgery and chemotherapy, it is one of the three main and most common approaches used in cancer therapy. Nowadays, radiotherapy has become a standard treatment option for a wide range of cancers around the world, including lung, breast, cervical, and colorectal cancers. Around 50% of all patients will require radiotherapy, 60% of whom are treated with curative intent. Moreover, it is commonly used for palliative treatment. Radiotherapy provides 5-year local control and overall survival benefit in 10.4% and 2.4% of all cancer patients, respectively. The highest local control benefit is reported for cervical (33%), head and neck (32%), and prostate (26%) cancers. But no benefit is observed in pancreas, ovary, liver, kidney, and colon cancers. Such relatively low efficiency is related to the development of radiation resistance, which results in cancer recurrence, metastatic dissemination, and poor prognosis. The identification of radioresistance biomarkers allows for improving the treatment outcome. These biomarkers mainly include proteins involved in metabolism and cell signaling pathways.
Collapse
Affiliation(s)
- Almaz A. Akhunzianov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Elvira V. Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Yuliya V. Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Albert A. Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Division of Medical and Biological Sciences, Tatarstan Academy of Sciences, 420111 Kazan, Russia
| | - Regina R. Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
2
|
Li Z, Wu Y, Du J, Qian W, Wang S, Li F, Dong S, Jiao S. N-formylmethionine-leucyl-phenylalanine protects against irradiation-induced damage to hematopoiesis and intestines. Mol Med 2024; 30:145. [PMID: 39256638 PMCID: PMC11389335 DOI: 10.1186/s10020-024-00918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Ionizing radiation (IR), including radiotherapy, can exert lasting harm on living organisms. While liposaccharide (LPS) offers resistance to radiation damage, it also induces toxic responses. Thankfully, an LPS analogue called N-formylmethionine-leucyl-phenylalanine (fMLP) holds the potential to mitigate this toxicity, offering hope for radiation protection. METHODS Survival of C57BL/6 mice exposed to IR after administration with fMLP/LPS/WR-2721 or saline was recorded. Cell viability and apoptosis assay of bone marrow (BMC), spleen and small intestinal epithelial (HIECs) cells were tested by Cell Counting Kit-8 (CCK-8) and flow cytometry assay. Tissue damage was evaluated by Hematoxilin and Eosin (H&E), Ki-67, and TUNEL staining. RNA sequencing was performed to reveal potential mechanisms of fMLP-mediated radiation protection. Flow cytometry and western blot were performed to verify the radiation protection mechanism of fMLP on the cell cycle. RESULTS The survival rates of C57BL/6 mice exposed to ionizing radiation after administering fMLP increased. fMLP demonstrated low toxicity in vitro and in vivo, maintaining cell viability and mitigating radiation-induced apoptosis. Moreover, it protected against tissue damage in the hematopoietic and intestinal system. RNA sequencing shed light on fMLP's potential mechanism, suggesting its role in modulating innate immunity and cell cycling. This was evidenced by its ability to reverse radiation-induced G2/M phase arrests in HIECs. CONCLUSION fMLP serves as a promising radioprotective agent, preserving cells and radiosensitive tissues from IR. Through its influence on the cell cycle, particularly reversing radiation-induced arrest in G2/M phases, fMLP offers protection against IR's detrimental effects.
Collapse
Affiliation(s)
- Zhihua Li
- Chinese PLA Medical School, Beijing, 100853, China
| | - Yatong Wu
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, 100088, China
| | - Jicong Du
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wen Qian
- Department of Radiation Medicine, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Sinian Wang
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Fengsheng Li
- Department of Nuclear Radiation Injury and Monitoring, The PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China
| | - Suhe Dong
- PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| | - Shunchang Jiao
- Department of Oncology, the First Medical Centre, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
3
|
Batool A, Rashid W, Fatima K, Khan SU. Mechanisms of Cancer Resistance to Various Therapies. DRUG RESISTANCE IN CANCER: MECHANISMS AND STRATEGIES 2024:31-75. [DOI: 10.1007/978-981-97-1666-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Papadopoulou A, Kalodimou VE, Mavrogonatou E, Karamanou K, Yiacoumettis AM, Panagiotou PN, Pratsinis H, Kletsas D. Decreased differentiation capacity and altered expression of extracellular matrix components in irradiation-mediated senescent human breast adipose-derived stem cells. IUBMB Life 2022; 74:969-981. [PMID: 35833571 DOI: 10.1002/iub.2659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Radiotherapy is widely used for the treatment of breast cancer. However, we have shown that ionizing radiation can provoke premature senescence in breast stromal cells. In particular, breast stromal fibroblasts can become senescent after irradiation both in vitro and in vivo and they express an inflammatory phenotype and an altered profile of extracellular matrix components, thus facilitating tumor progression. Adipose-derived stem cells (ASCs) represent another major component of the breast tissue stroma. They are multipotent cells and due to their ability to differentiate in multiple cell lineages they play an important role in tissue maintenance and repair in normal and pathologic conditions. Here, we investigated the characteristics of human breast ASCs that became senescent prematurely after their exposure to ionizing radiation. We found decreased expression levels of the specific mesenchymal cell surface markers CD105, CD73, CD44, and CD90. In parallel, we demonstrated a significantly reduced expression of transcription factors regulating osteogenic (i.e., RUNX2), adipogenic (i.e., PPARγ), and chondrogenic (i.e., SOX9) differentiation; this was followed by an analogous reduction in their differentiation capacity. Furthermore, they overexpress inflammatory markers, that is, IL-6, IL-8, and ICAM-1, and a catabolic phenotype, marked by the reduction of collagen type I and the increase of MMP-1 and MMP-13 expression. Finally, we detected changes in proteoglycan expression, for example, the upregulation of syndecan 1 and syndecan 4 and the downregulation of decorin. Notably, all these alterations, when observed in the breast stroma, represent poor prognostic factors for tumor development. In conclusion, we showed that ionizing radiation-mediated prematurely senescent human breast ASCs have a decreased differentiation potential and express specific changes adding to the formation of a permissive environment for tumor growth.
Collapse
Affiliation(s)
- Adamantia Papadopoulou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Vasiliki E Kalodimou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Eleni Mavrogonatou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Konstantina Karamanou
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Andreas M Yiacoumettis
- Plastic and Reconstructive Surgery Department, Metropolitan General Hospital, Athens, Greece
| | - Petros N Panagiotou
- Department of Plastic Surgery and Burns Unit, KAT General Hospital of Athens, Athens, Greece
| | - Harris Pratsinis
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dimitris Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
5
|
Liu Y, Zheng C, Huang Y, He M, Xu WW, Li B. Molecular mechanisms of chemo- and radiotherapy resistance and the potential implications for cancer treatment. MedComm (Beijing) 2021; 2:315-340. [PMID: 34766149 PMCID: PMC8554658 DOI: 10.1002/mco2.55] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Surgery is the primary treatment approach for cancer, but the survival rate is very low due to the rapid progression of the disease and presence of local and distant metastasis at diagnosis. Adjuvant chemotherapy and radiotherapy are important components of the multidisciplinary approaches for cancer treatment. However, resistance to radiotherapy and chemotherapy may result in treatment failure or even cancer recurrence. Radioresistance in cancer is often caused by the repair response to radiation-induced DNA damage, cell cycle dysregulation, cancer stem cells (CSCs) resilience, and epithelial-mesenchymal transition (EMT). Understanding the molecular alterations that lead to radioresistance may provide new diagnostic markers and therapeutic targets to improve radiotherapy efficacy. Patients who develop resistance to chemotherapy drugs cannot benefit from the cytotoxicity induced by the prescribed drug and will likely have a poor outcome with these treatments. Chemotherapy often shows a low response rate due to various drug resistance mechanisms. This review focuses on the molecular mechanisms of radioresistance and chemoresistance in cancer and discusses recent developments in therapeutic strategies targeting chemoradiotherapy resistance to improve treatment outcomes.
Collapse
Affiliation(s)
- Ya‐Ping Liu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Can‐Can Zheng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| | - Yun‐Na Huang
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Ming‐Liang He
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering MedicineNational Engineering Research Center of Genetic MedicineInstitute of BiomedicineCollege of Life Science and TechnologyJinan UniversityGuangzhouP. R. China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education InstitutesInstitute of Life and Health EngineeringJinan UniversityGuangzhouP. R. China
| |
Collapse
|
6
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
7
|
Down-Regulation of the Proteoglycan Decorin Fills in the Tumor-Promoting Phenotype of Ionizing Radiation-Induced Senescent Human Breast Stromal Fibroblasts. Cancers (Basel) 2021; 13:cancers13081987. [PMID: 33924197 PMCID: PMC8074608 DOI: 10.3390/cancers13081987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Ionizing radiation (a typical remedy for breast cancer) results in the premature senescence of the adjacent to the neoplastic cells stromal fibroblasts. Here, we showed that these senescent fibroblasts are characterized by the down-regulation of the small leucine-rich proteoglycan decorin, a poor prognostic factor for the progression of the disease. Decorin down-regulation is mediated by secreted growth factors in an autocrine and paracrine (due to the interaction with breast cancer cells) manner, with bFGF and VEGF being the key players of this regulation in young and senescent breast stromal fibroblasts. Autophagy activation increases decorin mRNA levels, indicating that impaired autophagy is implicated in the reduction in decorin in this cell model. Decorin down-regulation acts additively to the already tumor-promoting phenotype of ionizing radiation-induced prematurely senescent human stromal fibroblasts, confirming that stromal senescence is a side-effect of radiotherapy that should be taken into account in the design of anticancer treatments. Abstract Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.
Collapse
|
8
|
Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: the role of TGF-β. Aging (Albany NY) 2017; 8:1650-69. [PMID: 27434331 PMCID: PMC5032688 DOI: 10.18632/aging.100989] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/26/2016] [Indexed: 12/12/2022]
Abstract
The cell surface proteoglycan syndecan 1 (SDC1) is overexpressed in the malignant breast stromal fibroblasts, creating a favorable milieu for tumor cell growth. In the present study, we found that ionizing radiation, a well-established treatment in human breast cancer, provokes premature senescence of human breast stromal fibroblasts in vitro, as well as in the breast tissue in vivo. These senescent cells were found to overexpress SDC1 both in vitro and in vivo. By using a series of specific inhibitors and siRNA approaches, we showed that this SDC1 overexpression in senescent cells is the result of an autocrine action of Transforming Growth Factor-β (TGF-β) through the Smad pathway and the transcription factor Sp1, while the classical senescence pathways of p53 or p38 MAPK - NF-kB are not involved. In addition, the highly invasive human breast cancer cells MDA-MB-231 (in contrast to the low-invasive MCF-7) can also enhance SDC1 expression, both in early-passage and senescent fibroblasts via a paracrine action of TGF-β. The above suggest that radiation-mediated premature senescence and invasive tumor cells, alone or in combination, enhance SDC1 expression in breast stromal fibroblasts, a poor prognostic factor for cancer growth, and that TGF-β plays a crucial role in this process.
Collapse
|
9
|
Wang S, Ma Y, Wang P, Song Z, Liu B, Sun X, Zhang H, Yu J. Knockdown of PKM2 Enhances Radiosensitivity of Non-small cell Lung Cancer. Cell Biochem Biophys 2015; 73:21-6. [DOI: 10.1007/s12013-015-0567-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Shen CJ, Sharma A, Vuong DV, Erler JT, Pruschy M, Broggini-Tenzer A. Ionizing radiation induces tumor cell lysyl oxidase secretion. BMC Cancer 2014; 14:532. [PMID: 25052686 PMCID: PMC4223762 DOI: 10.1186/1471-2407-14-532] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 11/15/2022] Open
Abstract
Background Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. Methods LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. Results LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. Conclusions These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in sublethally-irradiated tumor cells and tumor progression.
Collapse
Affiliation(s)
| | | | | | | | - Martin Pruschy
- Laboratory for Molecular Radiobiology, University Hospital Zurich, 8091 Zürich, Switzerland.
| | | |
Collapse
|
11
|
Gravina GL, Marampon F, Sherris D, Vittorini F, Di Cesare E, Tombolini V, Lenzi A, Jannini EA, Festuccia C. Torc1/Torc2 inhibitor, Palomid 529, enhances radiation response modulating CRM1-mediated survivin function and delaying DNA repair in prostate cancer models. Prostate 2014; 74:852-68. [PMID: 24715588 DOI: 10.1002/pros.22804] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND P529, a Torc1/Torc2 inhibitor, has demonstrated its potential as a radiosensitizer. However the molecular mechanisms underlying this phenomenon still need to be elucidated. Aim of this study is to dissect molecular mechanisms regulating the radiosensitizing properties of P529 in a wide panel of prostate cancer models. METHODS Six tumor cell lines and xenograft models were used for in vitro and in vivo studies. Clonogenic survival, apoptotic, autophagic, and senescence assays were used to examine the effects of ionizing radiation (IR) alone and in combination with P529. CRM1, survivin, GSK-3β, and DNA-DSBs expression and modulation, upon P529 and RT, were monitored by western blot. In vivo treatment response upon P529, irradiation or combination of P529 with IR was monitored by tumor volume, time to progression (TTP), and immunohistochemical analysis. RESULTS P529 treatment induced significantly more apoptosis and DNA double-strand break (DSB) when combined with radiotherapy resulting in cellular radiosensitization and growth delay of irradiated tumor xenografts. Upon P529 treatment Rad51, DNA-PKcs, and Ku70 protein expression was downregulated, indicating delayed DNA double-strand damage repair. The radiosensitizing properties of P529 were partially linked to GSK-3β, cyclin-D1, and c-myc modulation with associated inhibition of CRM1-mediated nuclear export of survivin. Importantly, autophagy and tumor senescence were involved in the enhanced P529 radioresponse. CONCLUSIONS Impaired DNA double-strand damage repair, inhibition of CRM1-mediated nuclear export of survivin, modulation of cyclin-D1 and c-myc with associated pro-apoptotic and autophagic and senescent events explain the radiosensitizing properties of P529 in preclinical models of prostate cancer.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- Division of Radiation Oncology, Department of Clinical and Applied Sciences and Biotechnologies, University of L'Aquila, L'Aquila, Italy; Department of Clinical and Applied Sciences and Biotechnologies, Laboratory of Radiobiology, University of L'Aquila, L'Aquila, Italy; Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy; Department of Clinical and Applied Sciences and Biotechnologies, School of Sexology, University of L'Aquila, L'Aquila, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zheng DJ, Yu GH, Gao JF, Gu JD. Concomitant EGFR inhibitors combined with radiation for treatment of non-small cell lung carcinoma. Asian Pac J Cancer Prev 2014; 14:4485-94. [PMID: 24083690 DOI: 10.7314/apjcp.2013.14.8.4485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) is considered to be one of the key driver genes in non-small cell lung cancer (NSCLC). Several clinical trials have shown great promise of EGFR tyrosine kinase inhibitors (TKIs) in the first-line treatment of NSCLC. Many advances have been made in the understanding of EGFR signal transduction network and the interaction between EGFR and tumor microenvironment in mediating cancer survival and development. The concomitant targeted therapy and radiation is a new strategy in the treatment of NSCLC. A number of preclinical studies have demonstrated synergistic anti-tumor activity in the combination of EGFR inhibitors and radiotherapy in vitro and in vivo. In the present review, we discuss the rationale of the combination of EGFR inhibitors and radiotherapy in the treatment of NSCLC.
Collapse
Affiliation(s)
- De-Jie Zheng
- Department of Clinical Oncology, Weifang People's Hospital, Weifang, China E-mail :
| | | | | | | |
Collapse
|
13
|
Abstract
The notch signalling pathway is involved in differentiation, proliferation, angiogenesis, vascular remodelling, and apoptosis. Deregulated expression of notch receptors, ligands, and targets is observed in many solid tumours, including prostate cancer. Hypoxia is a common feature of prostate tumours, leading to increased gene instability, reduced treatment response, and increased tumour aggressiveness. The notch signalling pathway is known to regulate vascular cell fate and is responsive to hypoxia-inducible factors. Evidence to date suggests similar, therapeutically exploitable, behaviour of notch-activated and hypoxic prostate cancer cells.
Collapse
|
14
|
A phase I trial of the HIV protease inhibitor nelfinavir with concurrent chemoradiotherapy for unresectable stage IIIA/IIIB non-small cell lung cancer: a report of toxicities and clinical response. J Thorac Oncol 2012; 7:709-15. [PMID: 22425919 DOI: 10.1097/jto.0b013e3182435aa6] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The objective of this phase I trial was to determine dose-limiting toxicities (DLT) and the maximally tolerated dose of the radiosensitizer Nelfinavir in combination with concurrent chemoradiotherapy in locally advanced non-small cell lung cancer (NSCLC). METHODS Nelfinavir (dose level 1: 625 mg orally [PO] twice a day; dose level 2: 1250 mg PO twice a day) was administered for 7 to 14 days before and concurrently with concurrent chemoradiotherapy to patients with biopsy confirmed IIIA or IIIB unresectable NSCLC. Five patients were treated at dose level 1; eight patients were treated at dose level 2. Patients were treated with concurrent chemoradiotherapy to a dose of 66.6 Gy. DLTs were defined as any treatment-related grade 4 hematologic toxicity requiring a break in therapy or nonhematologic grade 3 or higher toxicity except esophagitis and pneumonitis. RESULTS Sixteen patients were enrolled and 13 patients received at least one dose of nelfinavir. Twelve patients were treated with nelfinavir and concurrent chemoradiotherapy. No DLTs have been observed at either dose level. The maximum tolerated dose of nelfinavir was therefore 1250 mg PO twice a day. Six patients experienced grade 4 leukopenia. One patient experienced grade 4 thromobcytopenia. Median follow-up for all 12 response-evaluable patients was 31.6 months and for survivors is 23.5 months. Nine of the 12 patients had evaluable posttreatment positron emission tomography/computed tomography with metabolic response as follows: overall response: 9/9 (100%); complete response: 5/9 (56%); and partial response: 4/9 (44%). CONCLUSION Nelfinavir administered with concurrent chemoradiotherapy is associated with acceptable toxicity in stage IIIA/IIIB NSCLC. The metabolic response and tumor response data suggest that nelfinavir has promising activity in this disease.
Collapse
|
15
|
Reconstitution of the cellular response to DNA damage in vitro using damage-activated extracts from mammalian cells. Exp Cell Res 2012; 318:527-38. [PMID: 22197705 DOI: 10.1016/j.yexcr.2011.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 12/02/2011] [Accepted: 12/08/2011] [Indexed: 11/24/2022]
Abstract
In proliferating mammalian cells, DNA damage is detected by sensors that elicit a cellular response which arrests the cell cycle and repairs the damage. As part of the DNA damage response, DNA replication is inhibited and, within seconds, histone H2AX is phosphorylated. Here we describe a cell-free system that reconstitutes the cellular response to DNA double strand breaks using damage-activated cell extracts and naïve nuclei. Using this system the effect of damage signalling on nuclei that do not contain DNA lesions can be studied, thereby uncoupling signalling and repair. Soluble extracts from G1/S phase cells that were treated with etoposide before isolation, or pre-incubated with nuclei from etoposide-treated cells during an in vitro activation reaction, restrain both initiation and elongation of DNA replication in naïve nuclei. At the same time, H2AX is phosphorylated in naïve nuclei in a manner that is dependent upon the phosphatidylinositol 3-kinase-like protein kinases. Notably, phosphorylated H2AX is not focal in naïve nuclei, but is evident throughout the nucleus suggesting that in the absence of DNA lesions the signal is not amplified such that discrete foci can be detected. This system offers a novel screening approach for inhibitors of DNA damage response kinases, which we demonstrate using the inhibitors wortmannin and LY294002.
Collapse
|
16
|
Mendonca MS, Chin-Sinex H, Dhaemers R, Mead LE, Yoder MC, Ingram DA. Differential mechanisms of x-ray-induced cell death in human endothelial progenitor cells isolated from cord blood and adults. Radiat Res 2011; 176:208-16. [PMID: 21663393 DOI: 10.1667/rr2427.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endothelial colony-forming cells (ECFCs) are endothelial progenitor cells that circulate at low concentration in human umbilical cord and adult peripheral blood and are largely resident in blood vessels. ECFCs not only appear to be critical for normal vascular homeostasis and repair but may also contribute to tumor angiogenesis and response to therapy. To begin to characterize the potential role of ECFCs during the treatment of tumors in children and adults with radiation, we characterized the X-ray sensitivity of cord and adult blood-derived ECFCs. We found both cord blood and adult ECFCs to be highly radiation sensitive (3 Gy resulted in >90% killing without induction of apoptosis). The X-ray survival curves suggested reduced potential for repair capacity, but X-ray fractionation studies demonstrated that all the ECFCs exhibited repair when the radiation was fractionated. Finally, the mechanisms of X-ray-induced cell death for cord blood and adult ECFCs were different at low and high dose. At low dose, all ECFCs appear to die by mitotic death/catastrophe. However, at high radiation doses (≥ 10 Gy) cord blood ECFCs underwent p53 stabilization and Bax-dependent apoptosis as well as p21-dependent G₁ and G₂/M cell cycle checkpoints. By contrast, after 10 Gy adult ECFCs undergo only large-scale radiation-induced senescence, which is a cellular phenotype linked to premature development of atherosclerosis and vasculopathies. These data demonstrate that the ECFC response to radiation is dose-dependent and developmentally regulated and may provide potential mechanistic insight into their role in tumor and normal tissue response after ionizing radiation treatment.
Collapse
Affiliation(s)
- Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Sugiyasu K, Nanno K, Tamai N, Hashimoto N, Kishida Y, Yoshikawa H, Myoui A. Radio-sensitization of the murine osteosarcoma cell line LM8 with parthenolide, a natural inhibitor of NF-κB. Oncol Lett 2011; 2:407-412. [PMID: 22866095 DOI: 10.3892/ol.2011.277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/24/2011] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor (NF)-κB has been shown to be associated with cancer resistance to radiotherapy (RT), and is constitutively active in the murine osteosarcoma cell line, LM8. Parthenolide has been reported to show antitumor activity through inhibition of the NF-κB pathway. In this study, we investigated the radio-sensitizing activity of parthenolide. We established Luc-LM8, a stable transfectant reporter construct of NF-κB transcriptional activity into LM8. Luc-LM8 maintained the malignancy observed with LM8. In vitro, Luc-LM8 cells were cultured with or without parthenolide treatment, irradiated, and subjected to cell viability and apoptosis assays. In vivo, to investigate whether parthenolide enhances radio-sensitivity of tumors, a tumor growth assay was conducted. Parthenolide enhanced the growth inhibitory effect of RT and induced the apoptosis of Luc-LM8 cells with RT in vitro. The in vivo tumor growth was significantly suppressed in the mice treated with parthenolide and RT. The present study suggests that parthenolide sensitizes Luc-LM8 cells to irradiation. Thus, parthenolide is a potential candidate for use as a potent radio-sensitizing drug for use in cancer RT.
Collapse
Affiliation(s)
- Kenjiro Sugiyasu
- Department of Orthopaedics, Osaka University Graduate School of Medicine, Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Xu D, Allsop SA, Witherspoon SM, Snider JL, Yeh JJ, Fiordalisi JJ, White CD, Williams D, Cox AD, Baines AT. The oncogenic kinase Pim-1 is modulated by K-Ras signaling and mediates transformed growth and radioresistance in human pancreatic ductal adenocarcinoma cells. Carcinogenesis 2011; 32:488-95. [PMID: 21262926 DOI: 10.1093/carcin/bgr007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Oncogenic Pim-1 kinase is upregulated in multiple solid cancers, including human pancreatic ductal adenocarcinoma (PDAC), a highly lethal disease with few useful treatment options. Pim-1 is also transcriptionally induced upon oncogenic K-Ras-mediated transformation of the human pancreatic ductal epithelial (HPDE) cell model of PDAC. Given the near ubiquitous presence of mutant K-Ras in PDAC and its critical role in this disease, we wished to study the effects of oncogenic K-Ras signaling on Pim-1 expression, as well as the role of Pim-1 in growth transformation of PDAC cells. Pim-1 protein levels were upregulated in both PDAC cell lines and patient tumor tissues. Furthermore, ectopic oncogenic K-Ras increased Pim-1 expression in human pancreatic nestin-expressing (HPNE) cells, a distinct immortalized cell model of PDAC. Conversely, shRNA-mediated suppression of oncogenic K-Ras decreased Pim-1 protein in PDAC cell lines. These results indicate that oncogenic K-Ras regulates Pim-1 expression. The kinase activity of Pim-1 is constitutively active. Accordingly, shRNA-mediated suppression of Pim-1 in K-Ras-dependent PDAC cell lines decreased Pim-1 activity, as measured by decreased phosphorylation of the pro-apoptotic protein Bad and increased expression of the cyclin-dependent kinase inhibitor p27Kip1. Biological consequences of inhibiting Pim-1 expression included decreases in both anchorage-dependent and -independent cell growth, invasion through Matrigel and radioresistance as measured by standard clonogenic assays. These results indicate that Pim-1 is required for PDAC cell growth, invasion and radioresistance downstream of oncogenic K-Ras. Overall, our studies help to elucidate the role of Pim-1 in PDAC growth transformation and validate Pim-1 kinase as a potential molecular marker for mutated K-Ras activity.
Collapse
Affiliation(s)
- Dapeng Xu
- Department of Biology, Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu Y, Cui B, Qiao Y, Zhang Y, Tian Y, Jiang J, Ma D, Kong B. Phosphoinositide-3-kinase inhibition enhances radiosensitization of cervical cancer in vivo. Int J Gynecol Cancer 2011; 21:100-5. [PMID: 21330835 DOI: 10.1097/igc.0b013e3182021bfd] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Phosphoinositide-3-kinase (PI3K)/Akt pathway is downregulated in several human cancers, and PI3K inhibition can sensitize these cancer cells to radiation. However, no research on cervical cancer in vivo has been reported. The present study further investigated whether PI3K inhibition could sensitize cervical cancer to radiation in vivo. METHODS HeLa cells with sustained PI3K activity and Akt phosphorylation were injected subcutaneously into BALB/C nude mice to establish tumor cell xenograft, which were randomly assigned to control, PI3K inhibitor LY294002 alone, radiation alone, or combined LY294002 and radiation group. Akt phosphorylation was detected by Western blotting to evaluate the blocking efficiency on PI3K activity. The radiosensitization of PI3K inhibition was measured by clonogenic assays, apoptosis analysis, and tumor regrowth assays. RESULTS The combination of LY294002 and radiation resulted in significant and synergistic suppression of cervical cancer cells in a dose-dependent manner in clonogenic assays (P < 0.05), higher ratio of apoptosis cells, and more remarkable reduction of Akt phosphorylation. Tumor regrowth delay curve showed the lowest increase of tumor volume in the combined group (37 days in average) (P = 0.003). Besides, LY294002 (100 mg/kg) alone decreased cell survival and produced xenograft regrowth delay. CONCLUSIONS Phosphoinositide-3-kinase inhibition by LY294002 can synergistically enhance radiation efficacy via dephosphorylation of Akt in cervical cancer, and PI3K inhibition alone can also suppress tumor regrowth. This may provide novel therapeutic opportunities to enhance the effect of radiotherapy against cervical cancer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sharma D, Sandur SK, Rashmi R, Maurya D, Suryavanshi S, Checker R, Krishnan S, Sainis K. Differential activation of NF-κB and nitric oxide in lymphocytes regulates in vitro and in vivo radiosensitivity. Mutat Res 2010; 703:149-57. [PMID: 20732448 PMCID: PMC3071568 DOI: 10.1016/j.mrgentox.2010.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 07/19/2010] [Accepted: 08/15/2010] [Indexed: 11/22/2022]
Abstract
Lymphocytes are more sensitive to radiation in vivo than in vitro. However, the mechanism of this differential response is poorly understood. In the present study, it was found that the lipid peroxidation and cell death were significantly higher in lymphocytes following whole body irradiation (WBI) as compared to lymphocytes exposed to radiation in vitro. EL-4 cells transplanted in mice were also more sensitive to radiation than EL-4 cells irradiated in vitro. DNA repair, as assessed by comet assay, was significantly faster in lymphocytes exposed to 4Gy radiation in vitro as compared to that in lymphocytes obtained from whole body irradiated mice exposed to the same dose of radiation. This was associated with increased NF-κB activation in response to genotoxic stress and lesser activation of caspase in lymphocytes in vitro compared to in vivo. To explain the differential radiosensitivity, we postulated a role of nitric oxide, an extrinsic diffusible mediator of radiosensitivity that has also been implicated in DNA repair inhibition. Nitric oxide levels were significantly elevated in the plasma of whole body irradiated mice but not in the supernatant of cells irradiated in vitro. Addition of sodium nitroprusside (SNP), a nitric oxide donor to cells irradiated in vitro inhibited the repair of DNA damage and enhanced apoptosis (increased Bax to Bcl-2 ratio). Administration of l-NAME, a nitric oxide synthase inhibitor, to mice significantly protected lymphocytes against WBI-induced DNA damage and inhibited in vivo radiation-induced production of nitric oxide. These results confirm that the observed differential radiosensitivity of lymphocytes was due to slow repair of DNA due to nitric oxide production in vivo.
Collapse
Affiliation(s)
- Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Santosh K. Sandur
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - R. Rashmi
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - D.K. Maurya
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Shweta Suryavanshi
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Rahul Checker
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| | - Sunil Krishnan
- Division of Radiation Oncology, Univ. of Texas M. D. Anderson Cancer Center, Houston, TX 77030 USA
| | - K.B. Sainis
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai, Maharashtra 400 085, India
| |
Collapse
|
21
|
Kidd AR, Snider JL, Martin TD, Graboski SF, Der CJ, Cox AD. Ras-related small GTPases RalA and RalB regulate cellular survival after ionizing radiation. Int J Radiat Oncol Biol Phys 2010; 78:205-12. [PMID: 20619549 PMCID: PMC2922474 DOI: 10.1016/j.ijrobp.2010.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 03/05/2010] [Accepted: 03/10/2010] [Indexed: 01/25/2023]
Abstract
PURPOSE Oncogenic activation of Ras renders cancer cells resistant to ionizing radiation (IR), but the mechanisms have not been fully characterized. The Ras-like small GTPases RalA and RalB are downstream effectors of Ras function and are critical for both tumor growth and survival. The Ral effector RalBP1/RLIP76 mediates survival of mice after whole-body irradiation, but the role of the Ral GTPases themselves in response to IR is unknown. We have investigated the role of RalA and RalB in cellular responses to IR. METHODS AND MATERIALS RalA, RalB, and their major effectors RalBP1 and Sec5 were knocked down by stable expression of short hairpin RNAs in the K-Ras-dependent pancreatic cancer-derived cell line MIA PaCa-2. Radiation responses were measured by standard clonogenic survival assays for reproductive survival, gammaH2AX expression for double-strand DNA breaks (DSBs), and poly(ADP-ribose)polymerase (PARP) cleavage for apoptosis. RESULTS Knockdown of K-Ras, RalA, or RalB reduced colony-forming ability post-IR, and knockdown of either Ral isoform decreased the rate of DSB repair post-IR. However, knockdown of RalB, but not RalA, increased cell death. Surprisingly, neither RalBP1 nor Sec5 suppression affected colony formation post-IR. CONCLUSIONS Both RalA and RalB contribute to K-Ras-dependent IR resistance of MIA PaCa-2 cells. Sensitization due to suppressed Ral expression is likely due in part to decreased efficiency of DNA repair (RalA and RalB) and increased susceptibility to apoptosis (RalB). Ral-mediated radioresistance does not depend on either the RalBP1 or the exocyst complex, the two best-characterized Ral effectors, and instead may utilize an atypical or novel effector.
Collapse
Affiliation(s)
- Ambrose R. Kidd
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jared L. Snider
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Timothy D. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Sarah F. Graboski
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Adrienne D. Cox
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
22
|
Zhang Y, Chen LH, Wang L, Wang HM, Zhang YW, Shi YS. Radiation-inducible PTEN expression radiosensitises hepatocellular carcinoma cells. Int J Radiat Biol 2010; 86:964-74. [DOI: 10.3109/09553002.2010.496032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Hamilton J, Bernhard EJ. Cell signalling and radiation survival: the impact of protein phosphatases. Int J Radiat Biol 2009; 85:937-42. [PMID: 19895270 DOI: 10.3109/09553000903232827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE This review will examine the role of phosphatases in cancer cell signalling and also outline emerging findings regarding the influence of phosphatases on tumor cell survival after ionising radiation. CONCLUSION The exposure of tumour cells to clinically relevant doses of ionising radiation causes DNA damage and rapidly activates a series of signaling cascades involved in cell survival (reviewed in (Valerie et al. 2007 )). The role of kinases in this signalling has been extensively studied, but the role of phosphatases is less well defined. There is an abundance of literature implicating phosphatases in cell cycle control, cell growth and survival but there has been much less reported on the involvement of these enzymes as determinants of radiosensitivity. Recent studies, however, suggest that phosphatases may modulate tumor cell radiosensitivity and may be targets for the enhancement of radiotherapy.
Collapse
Affiliation(s)
- Julie Hamilton
- Oxford University, Gray Institute for Radiation Oncology & Biology, Oxford, UK
| | | |
Collapse
|
24
|
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
25
|
Diaz R, Nguewa PA, Diaz-Gonzalez JA, Hamel E, Gonzalez-Moreno O, Catena R, Serrano D, Redrado M, Sherris D, Calvo A. The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. Br J Cancer 2009; 100:932-40. [PMID: 19240717 PMCID: PMC2661786 DOI: 10.1038/sj.bjc.6604938] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/20/2009] [Accepted: 01/22/2009] [Indexed: 12/03/2022] Open
Abstract
Radiotherapy (RT) is a common treatment for localised prostate cancer, but can cause important side effects. The therapeutic efficacy of RT can be enhanced by pharmacological compounds that target specific pathways involved in cell survival. This would elicit a similar therapeutic response using lower doses of RT and, in turn, reducing side effects. This study describes the antitumour activity of the novel Akt inhibitor 8-(1-Hydroxy-ethyl)-2-methoxy-3-(4-methoxy-benzyloxy)-benzo[c]chromen-6-one (Palomid 529 or P529) as well as its ability to decrease radiation-activated phospho-Akt (p-Akt) signalling in a prostate cancer model. P529 showed a potent antiproliferative activity in the NCI-60 cell lines panel, with growth inhibitory 50 (GI50) <35 microM. In addition, P529 significantly enhanced the antiproliferative effect of radiation in prostate cancer cells (PC-3). Analysis of signalling pathways targeted by P529 exhibited a decrease in p-Akt, VEGF, MMP-2, MMP-9, and Id-1 levels after radiation treatment. Moreover, the Bcl-2/Bax ratio was also reduced. Treatment of PC-3 tumour-bearing mice with 20 mg kg(-1) P529 or 6 Gy radiation dose decreased tumour size by 42.9 and 53%, respectively. Combination of both treatments resulted in 77.4% tumour shrinkage. Decreased tumour growth was due to reduced proliferation and increased apoptosis (as assessed by PCNA and caspase-3 immunostaining). Our results show the antitumour efficacy of P529 alone, and as a radiosensitiser, and suggest that this compound could be used in the future to treat human prostate cancer.
Collapse
Affiliation(s)
- R Diaz
- Division of Oncology, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| | - P A Nguewa
- Division of Oncology, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| | - J A Diaz-Gonzalez
- Department of Oncology, Clinica Universitaria, University of Navarra, Pamplona, Spain
| | - E Hamel
- Division of Cancer Treatment and Diagnosis, Toxicology and Pharmacology Branch, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - O Gonzalez-Moreno
- Division of Oncology, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| | - R Catena
- Division of Oncology, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| | - D Serrano
- Division of Oncology, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| | - M Redrado
- Division of Oncology, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| | - D Sherris
- Paloma Pharmaceuticals, Jamaica Plain, MA, USA
| | - A Calvo
- Division of Oncology, Center for Applied Medical Research (CIMA). University of Navarra, Pamplona, Spain
| |
Collapse
|
26
|
Kammasud N, Boonyarat C, Sanphanya K, Utsintong M, Tsunoda S, Sakurai H, Saiki I, André I, Grierson DS, Vajragupta O. 5-Substituted pyrido[2,3-d]pyrimidine, an inhibitor against three receptor tyrosine kinases. Bioorg Med Chem Lett 2009; 19:745-50. [DOI: 10.1016/j.bmcl.2008.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
|
27
|
Marignol L, Coffey M, Lawler M, Hollywood D. Hypoxia in prostate cancer: A powerful shield against tumour destruction? Cancer Treat Rev 2008; 34:313-27. [DOI: 10.1016/j.ctrv.2008.01.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 12/17/2007] [Accepted: 01/12/2008] [Indexed: 01/23/2023]
|
28
|
Mendonca MS, Chin-Sinex H, Gomez-Millan J, Datzman N, Hardacre M, Comerford K, Nakshatri H, Nye M, Benjamin L, Mehta S, Patino F, Sweeney C. Parthenolide sensitizes cells to X-ray-induced cell killing through inhibition of NF-kappaB and split-dose repair. Radiat Res 2008; 168:689-97. [PMID: 18088190 DOI: 10.1667/rr1128.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 08/24/2007] [Indexed: 11/03/2022]
Abstract
Human cancers have multiple alterations in cell signaling pathways that promote resistance to cytotoxic therapy such as X rays. Parthenolide is a sesquiterpene lactone that has been shown to inhibit several pro-survival cell signaling pathways, induce apoptosis, and enhance chemotherapy-induced cell killing. We investigated whether parthenolide would enhance X-ray-induced cell killing in radiation resistant, NF-kappaB-activated CGL1 cells. Treatment with 5 microM parthenolide for 48 to 72 h inhibited constitutive NF-kappaB binding and cell growth, reduced plating efficiency, and induced apoptosis through stabilization of p53 (TP53), induction of the pro-apoptosis protein BAX, and phosphorylation of BID. Parthenolide also enhanced radiation-induced cell killing, increasing the X-ray sensitivity of CGL1 cells by a dose modification factor of 1.6. Flow cytometry revealed that parthenolide reduced the percentage of X-ray-resistant S-phase cells due to induction of p21 waf1/cip1 (CDKN1A) and the onset of G1/S and G2/M blocks, but depletion of radioresistant S-phase cells does not explain the observed X-ray sensitization. Further studies demonstrated that the enhancement of X-ray-induced cell killing by parthenolide is due to inhibition of split-dose repair.
Collapse
Affiliation(s)
- Marc S Mendonca
- Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dynan W, Takeda Y, Roth D, Bao G. Understanding and re-engineering nucleoprotein machines to cure human disease. Nanomedicine (Lond) 2008; 3:93-105. [PMID: 18393669 PMCID: PMC2766608 DOI: 10.2217/17435889.3.1.93] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mammalian nucleus is filled with self-organizing, nanometer-scale nucleoprotein machines that carry out DNA replication, RNA biogenesis and DNA repair. We discuss, as a model, the nonhomologous end-joining (NHEJ) machine, which repairs DNA double-strand breaks. The NHEJ machine consists of six core polypeptides and 10-20 ancillary polypeptides. A full understanding of its design principles will require measuring the behavior of single NHEJ complexes in living cells, using a Nano Toolbox that includes bright, stable, biocompatible fluorophores, efficient protein and nucleic acid-tagging strategies, and sensitive, high-resolution imaging methods. Taking inspiration from natural examples, it might be possible to adapt and redesign the NHEJ machine to precisely correct mutations responsible for common human diseases, such as K-ras in lung cancer or human papillomavirus E6 and E7 genes in cervical and oral cancers.
Collapse
Affiliation(s)
- William Dynan
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | - Yoshihiko Takeda
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | - David Roth
- The Kimmel Center for Biology and Medicine of the Skirball Institute of Biomolecular Medicine and Department of Pathology, New York University School of Medicine, New York, NY 10016 USA
| | - Gang Bao
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
30
|
Bisphosphonate treatment and radiotherapy in metastatic breast cancer. Med Oncol 2008; 25:350-5. [PMID: 18202925 DOI: 10.1007/s12032-008-9044-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Patients with advanced breast cancer frequently develop metastasis to bone. Bone metastasis results in intractable pain and high risk of pathologic fractures due to osteolysis. The treatment of breast cancer patients with bone metastases requires a multidisciplinary approach. Radiotherapy is an established treatment for metastatic bone pain. It may be delivered either as a localized low dose treatment for localized bone pain or systemically for more widespread symptoms. Bisphosphonates have been shown to reduce morbidity and bone pain from bone metastases when given to patients with metastatic bone disease. In vivo studies indicate that early bisphosphonates administration in combination with radiotherapy improves remineralization and restabilization of osteolytic bone metastases in animal tumor models. This review focused on a brief discussion about biology of bone metastases, the effects of radiotherapy and bisphosphonate therapy, and possible mechanisms of combination therapy in metastatic breast cancer patients.
Collapse
|
31
|
Ural AU, Avcu F. Therapeutic Role of Bisphosphonate and Radiation Combination in the Management of Myeloma Bone Disease. Clin Cancer Res 2007; 13:3432. [PMID: 17545554 DOI: 10.1158/1078-0432.ccr-07-0079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Ural AU, Avcu F, Candir M, Guden M, Ozcan MA. In vitro synergistic cytoreductive effects of zoledronic acid and radiation on breast cancer cells. Breast Cancer Res 2007; 8:R52. [PMID: 16925824 PMCID: PMC1779467 DOI: 10.1186/bcr1543] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 08/04/2006] [Accepted: 08/22/2006] [Indexed: 11/10/2022] Open
Abstract
Introduction Bisphosphonates are mostly used in the treatment of bone metastases. They have been shown to act synergistically with other chemotherapeutic agents. It is not known, however, whether similar synergistic effects exist with radiation on breast cancer cells. Methods Human MCF-7 breast cancer cells were treated with up to 100 μM zoledronic acid, were irradiated with up to 800 cGy or were exposed to combinations of both treatments to determine the antiproliferative effects of zoledronic acid and radiation. Results Zoledronic acid and radiation caused a dose-dependent and time-dependent decrease in cell viability (approximate 50% growth inhibition values were 48 μM and 20 μM for 24 hours and 72 hours, respectively, for zoledronic acid and 500 cGy for radiation). A synergistic cytotoxic effect of the combination of zoledronic acid and radiation was confirmed by isobologram analysis. Conclusion These data constitute the first in vitro evidence for synergistic effects between zoledronic acid and radiation. This combination therapy might thus be expected to be more effective than either treatment alone in patients with metastatic breast carcinoma.
Collapse
Affiliation(s)
- A Ugur Ural
- Department of Hematology, Gulhane Military Medical Faculty, Ankara, Turkey
- Department of Medical and Cancer Research Center, Gulhane Military Medical Faculty, Ankara, Turkey
| | - Ferit Avcu
- Department of Hematology, Gulhane Military Medical Faculty, Ankara, Turkey
- Department of Medical and Cancer Research Center, Gulhane Military Medical Faculty, Ankara, Turkey
| | - Muhammed Candir
- Department of Internal Medicine, Gulhane Military Medical Faculty, Ankara, Turkey
| | - Metin Guden
- Department of Radiation Oncology, Gulhane Military Medical Faculty, Ankara, Turkey
| | - M Ali Ozcan
- Department of Hematology, Medical Faculty of Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
33
|
Khan T, Hixon JA, Stauffer JK, Lincoln E, Back TC, Brenner J, Lockett S, Nagashima K, Powell D, Wigginton JM. Therapeutic Modulation of Akt Activity and Antitumor Efficacy of Interleukin-12 Against Orthotopic Murine Neuroblastoma. ACTA ACUST UNITED AC 2006; 98:190-202. [PMID: 16449679 DOI: 10.1093/jnci/djj021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Patients with advanced neuroblastoma have a poor prognosis. The antiapoptotic protein Akt has been implicated as a possible mediator of the resistance of human neuroblastoma cells to apoptosis; the proapoptotic protein Bid, is inhibited by activated Akt. Neuroblastoma has demonstrated responsiveness to immunotherapeutic approaches in preclinical studies, prompting investigation of new therapeutic strategies based on potentiation of the host immune response, including the use of systemic cytokines. METHODS We examined the antitumor efficacy and mechanisms of action of the central immunoregulatory cytokine interleukin-12 (IL-12) in mice bearing established orthotopic neuroblastoma tumors derived from murine TBJ and Neuro-2a cells. Cohorts of mice (10 mice/group) bearing established orthotopic neuroblastoma tumors were injected intraperitoneally with IL-12 or vehicle and monitored for survival. IL-12-induced apoptosis within the tumor microenvironment was investigated using ribonuclease protection assays, nuclear staining, and electron microscopy. Protein expression was determined via Western blot analysis and enzyme-linked immunosorbent assays. Confocal microscopy was used to examine the distribution of overexpressed Bid-enhanced green fluorescent protein fusion protein (Bid-EGFP) in TBJ cells. All statistical tests were two-sided. RESULTS IL-12 induced complete tumor regression and long-term survival of 8 (80%) of 10 mice bearing established neuroblastoma tumors compared with 1 (10%) of 10 control mice (P = .0055) and profound tumor cell apoptosis in vivo despite the fact that TBJ and Neuro-2a cells were resistant to receptor-mediated apoptosis in vitro. These cells expressed high levels of phosphorylated Akt, a key prosurvival molecule, and Akt inhibitors sensitized neuroblastoma cells to apoptosis mediated by IL-12-inducible cytokines including tumor necrosis factor-alpha and interferon-gamma in vitro. IL-12 increased the expression of proapoptotic genes and decreased Akt phosphorylation within established TBJ tumors in conjunction with activation and subcellular translocation of Bid. CONCLUSIONS Our results suggest that IL-12 overcomes a potentially critical mechanism of tumor self-defense in vivo by inhibiting Akt activity and imply that IL-12 may possess unique therapeutic activity against tumors that express high levels of activated Akt.
Collapse
Affiliation(s)
- Tahira Khan
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kaliski A, Maggiorella L, Cengel KA, Mathe D, Rouffiac V, Opolon P, Lassau N, Bourhis J, Deutsch E. Angiogenesis and tumor growth inhibition by a matrix metalloproteinase inhibitor targeting radiation-induced invasion. Mol Cancer Ther 2006; 4:1717-28. [PMID: 16275993 DOI: 10.1158/1535-7163.mct-05-0179] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we have evaluated the interactions between ionizing radiation and a matrix metalloproteinase (MMP) inhibitor. Using Matrigel invasion assays, we show that ionizing radiation induced a dose-dependent increase in the invasive phenotype of cultured B16 melanoma cells and that conditioned medium from these irradiated B16 cells promoted endothelial cell [human microvascular endothelial cells (HMEC)] invasiveness. To determine whether the radiation-induced changes in invasive phenotype could be due to changes in MMP activation, we have tested the ability of the MMP inhibitor Metastat to modulate the ionizing radiation-induced invasive phenotype using both an in vitro melanoma model and a mouse s.c. tumor model. In these studies, Metastat inhibited the ionizing radiation-induced invasive phenotype in cultured B16 cells and similarly inhibited the increase in HMEC invasion induced by conditioned medium from irradiated B16 cells. Conversely, ionizing radiation increased B16 MMP-2 activity and the conditioned medium from irradiated B16 induced HMEC MMP-2 activity. To further investigate the interaction between ionizing radiation and MMP activation, we then studied the effects of ionizing radiation on downstream effectors of the MMP system. We found that ionizing radiation induced vascular endothelial growth factor (VEGF) secretion by B16 melanoma cells and that this secretion was inhibited by Metastat. Similarly, conditioned medium from irradiated B16 was also able to increase VEGF secretion in HMECs. Moreover, ionizing radiation-induced melanoma cell invasiveness was partially inhibited by an anti-VEGF monoclonal antibody. In vivo, ionizing radiation plus concomitant Metastat yielded the greatest growth inhibition of melanoma s.c. tumors and this effect correlated with inhibition of angiogenesis as measured by both Doppler ultrasonography and platelet/endothelial cell adhesion molecule-1 staining. Finally, ionizing radiation modulated MMP-2, VEGF, and VEGF receptor expression in these tumor samples using immunohistochemistry. Taken together, these results suggest that there is an ionizing radiation-induced tumor survival pathway and a possible paracrine ionizing radiation-induced stimulatory pathway emanating from tumor cells toward the endothelial bed that is impeded when Metastat is given simultaneously. This model could provide in vivo evidence of the antitumor efficacy of combining a MMP inhibitor with ionizing radiation to target radiation-induced invasion and angiogenesis.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/chemistry
- Antineoplastic Agents/pharmacology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Collagen/chemistry
- Collagen/pharmacology
- Culture Media, Conditioned/pharmacology
- Dose-Response Relationship, Radiation
- Drug Combinations
- Endothelium, Vascular/pathology
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Humans
- Immunohistochemistry
- Laminin/chemistry
- Laminin/pharmacology
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/metabolism
- Matrix Metalloproteinase Inhibitors
- Melanoma, Experimental/drug therapy
- Mice
- Neoplasm Invasiveness
- Neoplasm Transplantation
- Neoplasms, Radiation-Induced/pathology
- Neovascularization, Pathologic
- Phenotype
- Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis
- Proteoglycans/chemistry
- Proteoglycans/pharmacology
- Radiation, Ionizing
- Time Factors
- Ultrasonography
- Ultrasonography, Doppler
- Vascular Endothelial Growth Factor A/immunology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Alexandre Kaliski
- Unité Propre de Recherche de l'Enseignement Supérieur-Equipe d'Accueil 27-10, Villejuif, France
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shi Y, Liu X, Han EK, Guan R, Shoemaker AR, Oleksijew A, Woods KW, Fisher JP, Klinghofer V, Lasko L, McGonigal T, Li Q, Rosenberg SH, Giranda VL, Luo Y. Optimal classes of chemotherapeutic agents sensitized by specific small-molecule inhibitors of akt in vitro and in vivo. Neoplasia 2006; 7:992-1000. [PMID: 16331885 PMCID: PMC1502019 DOI: 10.1593/neo.05355] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 08/19/2005] [Accepted: 08/19/2005] [Indexed: 01/30/2023] Open
Abstract
Akt is a serine/threonine kinase that transduces survival signals from survival/growth factors. Deregulation and signal imbalance in cancer cells make them prone to apoptosis. Upregulation or activation of Akt to aid the survival of cancer cells is a common theme in human malignancies. We have developed small-molecule Akt inhibitors that are potent and specific. These Akt inhibitors can inhibit Akt activity and block phosphorylation by Akt on multiple downstream targets in cells. Synergy in apoptosis induction was observed when Akt inhibitors were combined with doxorubicin or camptothecin. Akt inhibitor-induced enhancement of topoisomerase inhibitor cytotoxicity was also evident in long-term cell survival assay. Synergy with paclitaxel in apoptosis induction was evident in cells pretreated with paclitaxel, and enhancement of tumor delay by paclitaxel was demonstrated through cotreatment with Akt inhibitor Compound A (A-443654). Combination with other classes of chemotherapeutic agents did not yield any enhancement of cytotoxicity. These findings provide important guidance in selecting appropriate classes of chemotherapeutic agents for combination with Akt inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Yan Shi
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Xuesong Liu
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Edward K. Han
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Ran Guan
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Alexander R. Shoemaker
- Department of R4N2 Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA, and
| | - Anatol Oleksijew
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Keith W. Woods
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - John P. Fisher
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Vered Klinghofer
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Loren Lasko
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Thomas McGonigal
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Qun Li
- Department of R460 Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Saul H. Rosenberg
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Vincent L. Giranda
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| | - Yan Luo
- Department of R47S Cancer Research, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064, USA
| |
Collapse
|
36
|
Ural AU, Avcu F. Zoledronic acid sensitizes tumor cells to radiation: in response to Algur et al. (Int J Radiat Oncol Biol Phys 2005;61:535-542). Int J Radiat Oncol Biol Phys 2005; 63:970. [PMID: 16199329 DOI: 10.1016/j.ijrobp.2005.07.300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 07/06/2005] [Indexed: 11/26/2022]
|
37
|
Garg AK, Buchholz TA, Aggarwal BB. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 2005; 7:1630-47. [PMID: 16356126 DOI: 10.1089/ars.2005.7.1630] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The treatment of cancer with chemotherapeutic agents and radiation has two major problems: time-dependent development of tumor resistance to therapy (chemoresistance and radioresistance) and nonspecific toxicity toward normal cells. Many plant-derived polyphenols have been studied intently for their potential chemopreventive properties and are pharmacologically safe. These compounds include genistein, curcumin, resveratrol, silymarin, caffeic acid phenethyl ester, flavopiridol, emodin, green tea polyphenols, piperine, oleandrin, ursolic acid, and betulinic acid. Recent research has suggested that these plant polyphenols might be used to sensitize tumor cells to chemotherapeutic agents and radiation therapy by inhibiting pathways that lead to treatment resistance. These agents have also been found to be protective from therapy-associated toxicities. How these polyphenols protect normal cells and sensitize tumor cells to treatment is discussed in this review.
Collapse
Affiliation(s)
- Amit K Garg
- Department of Radiation Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
38
|
Ural AU, Avcu F. Bisphosphonates may potentiate radiation effects: A new approach in cancer treatment? Biochem Biophys Res Commun 2005; 336:373-4. [PMID: 16098478 DOI: 10.1016/j.bbrc.2005.07.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 07/11/2005] [Indexed: 11/30/2022]
Affiliation(s)
- A Ugur Ural
- Department of Hematology, Gulhane Military Medical Academy, Ankara, Turkey.
| | | |
Collapse
|
39
|
Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. THE JOURNAL OF IMMUNOLOGY 2005; 174:7516-23. [PMID: 15944250 DOI: 10.4049/jimmunol.174.12.7516] [Citation(s) in RCA: 749] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Immunotherapy of cancer is attractive because of its potential for specificity and limited side effects. The efficacy of this approach may be improved by providing adjuvant signals and an inflammatory environment for immune cell activation. We evaluated antitumor immune responses in mice after treatment of OVA-expressing B16-F0 tumors with single (15 Gy) or fractionated (5 x 3 Gy) doses of localized ionizing radiation. Irradiated mice had cells with greater capability to present tumor Ags and specific T cells that secreted IFN-gamma upon peptide stimulation within tumor-draining lymph nodes than nonirradiated mice. Immune activation in tumor-draining lymph nodes correlated with an increase in the number of CD45(+) cells infiltrating single dose irradiated tumors compared with nonirradiated mice. Similarly, irradiated mice had increased numbers of tumor-infiltrating lymphocytes that secreted IFN-gamma and lysed tumor cell targets. Peptide-specific IFN-gamma responses were directed against both the class I and class II MHC-restricted OVA peptides OVA(257-264) and OVA(323-339), respectively, as well as the endogenous class I MHC-restricted B16 tumor peptide tyrosinase-related protein 2(180-188). Adoptive transfer studies indicated that the increased numbers of tumor Ag-specific immune cells within irradiated tumors were most likely due to enhanced trafficking of these cells to the tumor site. Together these results suggest that localized radiation can increase both the generation of antitumor immune effector cells and their trafficking to the tumor site.
Collapse
MESH Headings
- Animals
- Antigen Presentation/immunology
- Antigen Presentation/radiation effects
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/radiation effects
- Cell Line, Tumor
- Cell Movement/immunology
- Cell Movement/radiation effects
- Cell Proliferation/radiation effects
- Cytotoxicity Tests, Immunologic
- Dose-Response Relationship, Radiation
- Lymph Nodes/pathology
- Lymph Nodes/radiation effects
- Lymphocyte Activation/immunology
- Lymphocyte Activation/radiation effects
- Lymphocyte Count
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Lymphocytes, Tumor-Infiltrating/radiation effects
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/radiotherapy
- Mice
- Mice, Inbred A
- Mice, Inbred C57BL
- Mice, Transgenic
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/radiation effects
Collapse
Affiliation(s)
- Amit A Lugade
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | | | |
Collapse
|
40
|
Ural AU, Avcu F. Radiosensitizing effect of zoledronic acid in small cell lung cancer. Lung Cancer 2005; 50:271-2. [PMID: 16112774 DOI: 10.1016/j.lungcan.2005.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Accepted: 06/21/2005] [Indexed: 10/25/2022]
|
41
|
Rogers SJ, Harrington KJ, Rhys-Evans P, O-Charoenrat P, Eccles SA. Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer Metastasis Rev 2005; 24:47-69. [PMID: 15785872 DOI: 10.1007/s10555-005-5047-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) tends to run an aggressive course and the prognosis has remained virtually unchanged in recent decades. The development of novel therapeutic strategies to improve patient outcome centres on the biology of the disease, namely the pivotal c-erbB family of growth factor receptors. c-erbB1 (or epidermal growth factor receptor, EGFR), is key to the pathogenesis of SCCHN and plays a central role in a complex network of downstream integrated signalling pathways. EGFR overexpression, detected in up to 90% of SCCHN, correlates with an increased risk of locoregional tumour relapse following primary therapy and relative resistance to treatment. The biological sequelae of erbB receptor activation are not simply cell proliferation, but also inhibition of apoptosis, enhanced migration, invasion, angiogenesis and metastasis: the 'hallmarks of cancer' [1]. As EGFR overexpression is associated with a poor clinical outcome in SCCHN, this receptor is attractive as a therapeutic target and the successful development of targeted therapies represents a paradigm shift in the medical approach to head and neck cancer. However, the extensive cross talk between signalling pathways, the multiple molecular aberrations and genetic plasticity in SCCHN all contribute to inherent and acquired resistance to both conventional and novel therapies. Understanding the cancer cell biology, in particular the significance of co-expression of c-erbB (and other) receptors, and the cell survival stimuli from (for example) activation of the phosphoinositide 3-kinase (PI3-kinase) cascade is fundamental to overcome current limitations in biologically targeted therapies.
Collapse
Affiliation(s)
- Susanne J Rogers
- Tumour Biology and Metastasis Team, CRUK Centre for Cancer Therapeutics, McElwain Laboratories, Institute for Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | | | | | | |
Collapse
|
42
|
Huber PE, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Gröne HJ, Debus J, Lipson KE, Abdollahi A. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy. Cancer Res 2005; 65:3643-55. [PMID: 15867359 DOI: 10.1158/0008-5472.can-04-1668] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been suggested that chemotherapy and radiotherapy could favorably be combined with antiangiogenesis in dual anticancer strategy combinations. Here we investigate the effects of a trimodal strategy consisting of all three therapy approaches administered concurrently. We found that in vitro and in vivo, the antiendothelial and antitumor effects of the triple therapy combination consisting of SU11657 (a multitargeted small molecule inhibitor of vascular endothelial growth factor and platelet-derived growth factor receptor tyrosine kinases), Pemetrexed (a multitargeted folate antimetabolite), and ionizing radiation were superior to all single and dual combinations. The superior effects in human umbilical vein endothelial cells and tumor cells (A431) were evident in cell proliferation, migration, tube formation, clonogenic survival, and apoptosis assays (sub-G1 and caspase-3 assessment). Exploring potential effects on cell survival signaling, we found that radiation and chemotherapy induced endothelial cell Akt phosphorylation, but SU11657 could attenuate this process in vitro and in vivo in A431 human tumor xenografts growing s.c. on BALB/c nu/nu mice. Triple therapy further decreased tumor cell proliferation (Ki-67 index) and vessel count (CD31 staining), and induced greater tumor growth delay versus all other therapy regimens without increasing apparent toxicity. When testing different treatment schedules for the A431 tumor, we found that the regimen with radiotherapy (7.5 Gy single dose), given after the institution of SU11657 treatment, was more effective than radiotherapy preceding SU11657 treatment. Accordingly, we found that SU11657 markedly reduced intratumoral interstitial fluid pressure from 8.8 +/- 2.6 to 4.2 +/- 1.5 mm Hg after 1 day. Likewise, quantitative T2-weighed magnetic resonance imaging measurements showed that SU11657-treated mice had reduced intratumoral edema. Our data indicates that inhibition of Akt signaling by antiangiogenic treatment with SU11657 may result in: (a) normalization of tumor blood vessels that cause prerequisite physiologic conditions for subsequent radio/chemotherapy, and (b) direct resensitization of endothelial cells to radio/chemotherapy. We conclude that trimodal cancer therapy combining antiangiogenesis, chemotherapy, and radiotherapy has beneficial molecular and physiologic effects to emerge as a clinically relevant antitumor strategy.
Collapse
Affiliation(s)
- Peter E Huber
- Department of Radiation Oncology, German Cancer Research Center, University of Heidelberg Medical School, Heidelberg Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kumar P, Benedict R, Urzua F, Fischbach C, Mooney D, Polverini P. Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. J Transl Med 2005; 85:756-67. [PMID: 15864318 DOI: 10.1038/labinvest.3700272] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Radiotherapy is one of the most widely used cancer treatments, but it is often unsuccessful due to the development of radioresistance by tumor cells and endothelial cells (ECs) lining the tumor blood vessels. We have previously shown that ECs are protected against ionizing irradiation primarily via the activation of the phosphoinositide 3-kinase (PI3 K)-Akt-Bcl-2 survival pathway. Here we report that combination treatment with low doses of PI3 K inhibitor (LY294002), cisplatin and gamma-irradiation resulted in significantly higher (61%) EC death as compared to each agent used alone (17, 17 and 11%, respectively). This combination treatment was equally effective in inducing tumor cell death (72%). Combination treatment also significantly inhibited EC tube formation in Matrigel (75%) as compared to each of the agents used alone (8, 8 and 18% for LY294002, cisplatin and gamma-irradiation, respectively). In our in vivo severe combined immunodeficient mouse model of human tumor growth and angiogenesis, combination treatment with low doses of LY294002, cisplatin and irradiation significantly inhibited the growth of human oral squamous carcinoma (OSCC-3) as well as prostate cancer (LnCap). The combination therapy was also very effective in inhibiting tumor angiogenesis where it showed a greater than 90% decrease in neovascularization. In contrast, combination treatment showed only a 29% inhibition of physiological angiogenesis. Taken together, these results suggest a potentially novel strategy to overcome the resistance in ECs lining tumor blood vessels, thereby enhancing the effectiveness of the radiation and chemotherapy. Moreover, this strategy of using a combination of low doses of PI3K/Akt inhibitor, cisplatin and radiation has the potential of significantly decreasing untoward side effects associated with the maximum tolerated doses of radiation and chemotherapy while maintaining their therapeutic efficacy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Carcinoma, Squamous Cell/blood supply
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/radiotherapy
- Caspase 3
- Caspases/metabolism
- Cell Division
- Cell Line, Tumor
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/physiology
- Humans
- Mice
- Mice, SCID
- Mouth Neoplasms/blood supply
- Mouth Neoplasms/drug therapy
- Mouth Neoplasms/pathology
- Mouth Neoplasms/radiotherapy
- Neovascularization, Pathologic/pathology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Biological and Material Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Double-strand breaks (DSBs) arise endogenously during normal cellular processes and exogenously by genotoxic agents such as ionizing radiation (IR). DSBs are one of the most severe types of DNA damage, which if left unrepaired are lethal to the cell. Several different DNA repair pathways combat DSBs, with nonhomologous end-joining (NHEJ) being one of the most important in mammalian cells. Competent NHEJ catalyses repair of DSBs by joining together and ligating two free DNA ends of little homology (microhomology) or DNA ends of no homology. The core components of mammalian NHEJ are the catalytic subunit of DNA protein kinase (DNA-PK(cs)), Ku subunits Ku70 and Ku80, Artemis, XRCC4 and DNA ligase IV. DNA-PK is a nuclear serine/threonine protein kinase that comprises a catalytic subunit (DNA-PK(cs)), with the Ku subunits acting as the regulatory element. It has been proposed that DNA-PK is a molecular sensor for DNA damage that enhances the signal via phosphorylation of many downstream targets. The crucial role of DNA-PK in the repair of DSBs is highlighted by the hypersensitivity of DNA-PK(-/-) mice to IR and the high levels of unrepaired DSBs after genotoxic insult. Recently, DNA-PK has emerged as a suitable genetic target for molecular therapeutics such as siRNA, antisense and novel inhibitory small molecules. This review encompasses the recent literature regarding the role of DNA-PK in the protection of genomic stability and focuses on how this knowledge has aided the development of specific DNA-PK inhibitors, via both small molecule and directed molecular targeting techniques. This review promotes the inhibition of DNA-PK as a valid approach to enhance the tumor-cell-killing effects of treatments such as IR.
Collapse
Affiliation(s)
- Spencer J Collis
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA.
| | | | | | | |
Collapse
|
45
|
Rye PD, Stigbrand T. Interfering with cancer: a brief outline of advances in RNA interference in oncology. Tumour Biol 2005; 25:329-36. [PMID: 15627900 DOI: 10.1159/000081403] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 09/13/2004] [Indexed: 12/28/2022] Open
Abstract
RNA interference (RNAi) is a potent and ubiquitous gene-silencing mechanism that is generating considerable excitement in the fields of molecular biology and gene therapy. It is now in widespread use for loss-of-function analysis in many diseases including cancer. Nevertheless, RNAi is still in its infancy, with new discoveries appearing on a monthly basis. This article presents a brief outline of the history and recent advances in RNAi with a specific focus on its potential in oncology.
Collapse
Affiliation(s)
- P D Rye
- Axis Shield ASA, Ulvenveien 87, NO-0581 Oslo, Norway.
| | | |
Collapse
|
46
|
Nichol AM, Warde P, Bristow RG. Optimal treatment of intermediate-risk prostate carcinoma with radiotherapy. Cancer 2005; 104:891-905. [PMID: 16007687 DOI: 10.1002/cncr.21257] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The clinical heterogeneity of intermediate-risk prostate carcinoma presents a challenge to urologic oncology in terms of prognosis and management. There is controversy regarding whether patients with intermediate-risk prostate carcinoma should be treated with dose-escalated external beam radiotherapy (EBRT) (e.g., doses > 74 gray [Gy]), or conventional-dose EBRT (e.g., doses < 74 Gy) combined with androgen deprivation (AD). Data for this review were identified through searches for articles in MEDLINE and in conference proceedings, indexed from 1966 to 2004. Currently, the intermediate-risk prostate carcinoma grouping is defined on the basis of prostate-specific antigen (PSA), tumor classification (T classification), and Gleason score. Emerging evidence suggests that additional prognostic information may be derived from the percentage of positive core needle biopsies at the time of diagnosis and/or from the pretreatment PSA doubling time. Novel prognostic biomarkers include protein expression relating to cell cycle control, cell death, DNA repair, and intracellular signal transduction. Preclinical data support dose escalation or combined AD with radiation as a means to increase prostate carcinoma cell kill. There is Level I evidence that patients with intermediate-risk prostate carcinoma benefit from dose-escalated EBRT or AD plus conventional-dose EBRT. However, clinical evidence is lacking to support the uniform use of AD plus dose-escalated EBRT. Patients in the intermediate-risk group should be entered into well designed, randomized clinical trials of dose-escalated EBRT and AD with sufficient power to address biochemical failure and cause-specific survival endpoints. These studies should be stratified by novel prognostic markers and accompanied by strong translational endpoints to address clinical heterogeneity and to allow for individualized treatment.
Collapse
Affiliation(s)
- Alan M Nichol
- Department of Radiation Oncology, University of Toronto and the Princess Margaret Hospital-University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
47
|
Lee C, Kim JS, Waldman T. PTEN gene targeting reveals a radiation-induced size checkpoint in human cancer cells. Cancer Res 2004; 64:6906-14. [PMID: 15466180 PMCID: PMC4384184 DOI: 10.1158/0008-5472.can-04-1767] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Following DNA damage, human cells arrest primarily in the G(1) and G(2) phases of the cell cycle. Here, we show that after irradiation, human cancer cells with targeted deletion of PTEN or naturally occurring PTEN mutations can exert G(1) and G(2) arrests but are unable to arrest in size. Pharmacological inhibition of phosphoinositol-3-kinase or mTOR in PTEN(-/-) cells restored the size arrest, whereas siRNA-mediated depletion of TSC2 in PTEN(+/+) cells attenuated the size arrest. Radiation treatment potentiated Akt activation in PTEN(-/-) but not PTEN(+/+) cells. Finally, abrogation of the size arrest via PTEN deletion conferred radiosensitivity both in vitro and in vivo. These results identify a new tumor suppressor gene-regulated, DNA damage-inducible arrest that occurs simultaneously with the G(1) and G(2) arrests but is genetically separable from them. We suggest that aberrant regulation of cell size during cell cycle arrest may be important in human cancer pathogenesis.
Collapse
Affiliation(s)
- Carolyn Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia
- Tumor Biology Training Program, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia
| | - Jung-Sik Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia
| | - Todd Waldman
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine, Washington, District of Columbia
| |
Collapse
|
48
|
McBride WH, Chiang CS, Olson JL, Wang CC, Hong JH, Pajonk F, Dougherty GJ, Iwamoto KS, Pervan M, Liao YP. A Sense of Danger from Radiation1. Radiat Res 2004; 162:1-19. [PMID: 15222781 DOI: 10.1667/rr3196] [Citation(s) in RCA: 242] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tissue damage caused by exposure to pathogens, chemicals and physical agents such as ionizing radiation triggers production of generic "danger" signals that mobilize the innate and acquired immune system to deal with the intrusion and effect tissue repair with the goal of maintaining the integrity of the tissue and the body. Ionizing radiation appears to do the same, but less is known about the role of "danger" signals in tissue responses to this agent. This review deals with the nature of putative "danger" signals that may be generated by exposure to ionizing radiation and their significance. There are a number of potential consequences of "danger" signaling in response to radiation exposure. "Danger" signals could mediate the pathogenesis of, or recovery from, radiation damage. They could alter intrinsic cellular radiosensitivity or initiate radioadaptive responses to subsequent exposure. They may spread outside the locally damaged site and mediate bystander or "out-of-field" radiation effects. Finally, an important aspect of classical "danger" signals is that they link initial nonspecific immune responses in a pathological site to the development of specific adaptive immunity. Interestingly, in the case of radiation, there is little evidence that "danger" signals efficiently translate radiation-induced tumor cell death into the generation of tumor-specific immunity or normal tissue damage into autoimmunity. The suggestion is that radiation-induced "danger" signals may be inadequate in this respect or that radiation interferes with the generation of specific immunity. There are many issues that need to be resolved regarding "danger" signaling after exposure to ionizing radiation. Evidence of their importance is, in some areas, scant, but the issues are worthy of consideration, if for no other reason than that manipulation of these pathways has the potential to improve the therapeutic benefit of radiation therapy. This article focuses on how normal tissues and tumors sense and respond to danger from ionizing radiation, on the nature of the signals that are sent, and on the impact on the eventual consequences of exposure.
Collapse
Affiliation(s)
- William H McBride
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1714, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Noble MEM, Endicott JA, Johnson LN. Protein kinase inhibitors: insights into drug design from structure. Science 2004; 303:1800-5. [PMID: 15031492 DOI: 10.1126/science.1095920] [Citation(s) in RCA: 888] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Protein kinases are targets for treatment of a number of diseases. This review focuses on kinase inhibitors that are in the clinic or in clinical trials and for which structural information is available. Structures have informed drug design and have illuminated the mechanism of inhibition. We review progress with the receptor tyrosine kinases (growth factor receptors EGFR, VEGFR, and FGFR) and nonreceptor tyrosine kinases (Bcr-Abl), where advances have been made with cancer therapeutic agents such as Herceptin and Gleevec. Among the serine-threonine kinases, p38, Rho-kinase, cyclin-dependent kinases, and Chk1 have been targeted with productive results for inflammation and cancer. Structures have provided insights into targeting the inactive or active form of the kinase, for targeting the global constellation of residues at the ATP site or less conserved additional pockets or single residues, and into targeting noncatalytic domains.
Collapse
Affiliation(s)
- Martin E M Noble
- Laboratory of Molecular Biophysics, Department of Biochemistry, Rex Richards Building, University of Oxford, Oxford 3X2 3QU, UK
| | | | | |
Collapse
|
50
|
Sunavala-Dossabhoy G, Fowler M, De Benedetti A. Translation of the radioresistance kinase TLK1B is induced by gamma-irradiation through activation of mTOR and phosphorylation of 4E-BP1. BMC Mol Biol 2004; 5:1. [PMID: 15070431 PMCID: PMC406498 DOI: 10.1186/1471-2199-5-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 04/07/2004] [Indexed: 11/12/2022] Open
Abstract
Background The mammalian protein kinase TLK1 is a homologue of Tousled, a gene involved in flower development in Arabidopsis thaliana. The function of TLK1 is not well known, although knockout of the gene in Drosophila, or expression of a dominant negative mutant in mouse cells causes loss of nuclear divisions and chromosome missegregation probably due to alterations in chromatin remodeling capacity. Overexpression of TLK1B, a spliced variant of the TLK1 mRNA, in a model mouse cell line increases their resistance to ionizing radiation, also likely through changes in chromatin remodeling. The TLK1B mRNA is translationally repressed by its 5'UTR and is regulated by the availability of eIF4E. We now report that radiation or doxorubicin result in an increase in the translation of TLK1B, and we have uncovered the likely mechanism for this effect. Results Radiation causes a shift in the polysomal distribution of TLK1B mRNA, from the untranslated region and small polysomes to the large polysomes, concomitant with an increase in the expression of TLK1B protein. This change is preceded by an increase in phosphorylation of the eIF4E inhibitory protein 4E-BP1, which releases eIF4E when it is phosphorylated. The phosphorylation of 4E-BP1 depends on mTOR, since rapamycin blocked the increase in phosphorylation induced by radiation, and prevented the increase in TLK1B protein expression. The activation of mTOR was likely due to the rapid activation of Akt following radiation. The activation of Akt could be inhibited with wortmannin, an inhibitor of PI3 kinase, hence placing PI3 kinase upstream of Akt as a very early event following radiation. Wortmannin also inhibited translation of TLK1B mRNA following activation by IR. This was shown both by western blot and by measuring the initiation capacity of the mRNA, as indicated by its distribution on polysomes. Conclusions The translational upregulation of TLK1B elicited by DNA double strand breaks represents an interesting mechanism of translational regulation of a protein involved in radioprotection and highlights a novel mechanism of the stress response following radiation.
Collapse
Affiliation(s)
- Gulshan Sunavala-Dossabhoy
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center. 1501 Kings Highway. Shreveport, LA 71130-3932, USA
| | - Marcie Fowler
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center. 1501 Kings Highway. Shreveport, LA 71130-3932, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology and the Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center. 1501 Kings Highway. Shreveport, LA 71130-3932, USA
| |
Collapse
|