1
|
Zhang Y, Pan C, Wang S, Zhou Y, Chen J, Yu X, Peng R, Zhang N, Yang H. Distinctive function of Tetraspanins: Implication in viral infections. Virulence 2025; 16:2474188. [PMID: 40053412 PMCID: PMC11901453 DOI: 10.1080/21505594.2025.2474188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/09/2025] Open
Abstract
Harboring four transmembrane domains in their structural hallmark, Tetraspanins (Tspans) are a family of glycoproteins with pivotal functions in a variety of biological and cellular processes. Through interacting laterally with each other or specific membrane proteins, Tspans organize tetraspanin-enriched microdomains (TEMs), modulating cellular signaling, adhesion, fusion, and proliferation. An abundance of evidence has identified the multiple functions in the progression of cancer as well as the underlying molecular mechanisms. Recently, plenty of studies have focused on the utilities of Tspans by pathogens for infection, especially the infection of viruses. The expression of Tspans correlates with the phase of viral infection, the type of virus, and targeted therapies. In particular, perturbations of Tspans in host cells can affect viral attachment, intracellular trafficking, translation, virus assembly, and release. In this review, we summarize and provide a historical overview of the discovery and characterization of various kinds of virus infection and highlight their diversity and complexity, along with the virus life cycle. Furthermore, we examined the current understanding of how various Tspans are involved in the regulatory mechanisms underlying viral infection. This review aims to offer a comprehensive understanding of the targeting of Tspans for therapeutic intervention in infections caused by diverse pathogens.
Collapse
Affiliation(s)
- Yuzhi Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Chengwei Pan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
| | - Sijie Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Yidan Zhou
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Jiawei Chen
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Xiaoyu Yu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Ruining Peng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Nu Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi, China
- Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment, Xi’an, China
- Research Center of Special Environmental Biomechanics & Medical Engineering, Northwestern Polytechnical University, Xi’an, Shaanxi, China
| |
Collapse
|
2
|
Ritter M, Canus L, Gautam A, Vallet T, Zhong L, Lalande A, Boson B, Gandhi A, Bodoirat S, Burlaud-Gaillard J, Freitas N, Roingeard P, Barr JN, Lotteau V, Legros V, Mathieu C, Cosset FL, Denolly S. The low-density lipoprotein receptor and apolipoprotein E associated with CCHFV particles mediate CCHFV entry into cells. Nat Commun 2024; 15:4542. [PMID: 38806525 PMCID: PMC11133370 DOI: 10.1038/s41467-024-48989-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is an emerging pathogen of the Orthonairovirus genus that can cause severe and often lethal hemorrhagic diseases in humans. CCHFV has a broad tropism and can infect a variety of species and tissues. Here, by using gene silencing, blocking antibodies or soluble receptor fragments, we identify the low-density lipoprotein receptor (LDL-R) as a CCHFV entry factor. The LDL-R facilitates binding of CCHFV particles but does not allow entry of Hazara virus (HAZV), another member of the genus. In addition, we show that apolipoprotein E (apoE), an exchangeable protein that mediates LDL/LDL-R interaction, is incorporated on CCHFV particles, though not on HAZV particles, and enhances their specific infectivity by promoting an LDL-R dependent entry. Finally, we show that molecules that decrease LDL-R from the surface of target cells could inhibit CCHFV infection. Our study highlights that CCHFV takes advantage of a lipoprotein receptor and recruits its natural ligand to promote entry into cells.
Collapse
Affiliation(s)
- Maureen Ritter
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Lola Canus
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Anupriya Gautam
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Thomas Vallet
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Li Zhong
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Alexandre Lalande
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Bertrand Boson
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Apoorv Gandhi
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Sergueï Bodoirat
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Julien Burlaud-Gaillard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - Natalia Freitas
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - Philippe Roingeard
- Inserm U1259, Morphogénèse et Antigénicité du VIH et des Virus des Hépatites (MAVIVH), Université de Tours and CHRU de Tours, 37032, Tours, France
- Université de Tours and CHRU de Tours, Plateforme IBiSA de Microscopie Electronique, Tours, France
| | - John N Barr
- Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Vincent Legros
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Lyon, Marcy-l'Etoile, France
| | - Cyrille Mathieu
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Solène Denolly
- CIRI - Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| |
Collapse
|
3
|
Huang S, Wu Z, Zhou B, Jiang X, Lavillette D, Fan G. Heat-Denatured Lysozyme is a Novel Potential Non-alcoholic Disinfectant Against Respiratory Virus. FOOD AND ENVIRONMENTAL VIROLOGY 2023; 15:212-223. [PMID: 37155116 PMCID: PMC10166042 DOI: 10.1007/s12560-023-09556-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/20/2023] [Indexed: 05/10/2023]
Abstract
Respiratory diseases are significant recurrent threats to global public health. Since the 1918 Spanish flu pandemic, seasonal influenza viruses continue to cause epidemics around the world each year. More recently, the COVID-19 global pandemic conducted a public health crisis with more than 6 million deaths and it also severely affected the global economy. Due to the phenomenon that people get infection from objects carrying viruses, it has aroused people's attention to home disinfection. As there is no ideal existing common domestic disinfectant, new and safer antiviral disinfectants are urgently needed. Lysozyme is a natural antibacterial agent widespread in nature and widely used in healthcare and food industry because of is recognized safety. Recently, it has been shown that thermally denatured lysozyme has the ability to kill murine norovirus and hepatitis A virus. In our study, we also demonstrated that heat-denatured lysozyme (HDLz) had an antiviral effect against H1N1 influenza A virus, and we optimized its antiviral activities by testing different heating denaturation conditions, to generalize this property, using pseudotype virus neutralization assay, we found that HDLz can also inhibit the entry of H5N1, H5N6, and H7N1 avian influenza viruses as well as SARS-CoV and SARS-CoV-2 particles in cell with IC50 at the ng/mL range. Finally, using western blot analysis, we provide evidence that HDLz polymerization correlates with antiviral effect, which may be a precious possible quality control test. Altogether, our data support HDLz as a powerful anti-respiratory virus disinfectant as a sole or additive of current disinfectants to reduce concentration of toxic component.
Collapse
Affiliation(s)
- Suqiong Huang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
- Department of Pharmacy, Sichuan Provincial People’s Hospital Qionglai Hospital, Medical Center Hospital of Qionglai City, No. 172 Xinglin Road, Qionglai City, Chengdu, Sichuan Province 611530 People’s Republic of China
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 People’s Republic of China
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Bingjie Zhou
- University of CAS, Beijing, 101408 China
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai, 200031 China
| | - Xinhui Jiang
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
| | - Dimitri Lavillette
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai CAS, 320 Yueyang Road, Shanghai, 200031 China
- Pasteurien College, Soochow University, Jiangsu, 215006 China
| | - Guorong Fan
- Chongqing Research Center for Pharmaceutical Engineering, School of Pharmacy, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016 People’s Republic of China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080 People’s Republic of China
| |
Collapse
|
4
|
Arandhara VL, McClure CP, Tarr AW, Chappell S, Morgan K, Baumert TF, Irving WL, Ball JK. Scavenger receptor class B type I genetic variants associated with disease severity in chronic hepatitis C virus infection. J Med Virol 2023; 95:e28331. [PMID: 36415047 PMCID: PMC10100136 DOI: 10.1002/jmv.28331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022]
Abstract
Analysis of host genetic polymorphisms is an increasingly important tool for understanding and predicting pathogenesis and treatment response of viral diseases. The gene locus of scavenger receptor class B type I (SR-BI), encoding a cell entry factor and receptor for hepatitis C virus (HCV), contains several genetic polymorphisms. We applied a probe extension assay to determine the frequency of six single nucleotide polymorphisms (SNPs) within the SR-BI gene locus in 374 individuals with history of HCV infection. In addition, SR-BI messenger RNA (mRNA) levels were analyzed in liver biopsy specimens of chronically infected HCV subjects. The rs5888 variant allele T was present at a higher frequency in subjects with advanced fibrosis (χ2 , p = 0.016) and after adjusting for age, duration of infection and alcohol intake as confounding factors. Haplotype analysis of SNP frequencies showed that a haplotype consisting of rs61932577 variant allele C and rs5888 variant allele T was associated with an increased risk of advanced liver fibrosis (defined by an Ishak score 4-6) (adjusted odds ratio 2.81; 95% confidence interval 1.06-7.46. p = 0.038). Carriers of the rs5888 variant allele T displayed reduced SR-BI mRNA expression in liver biopsy specimens. In conclusion the rs5888 polymorphism variant is associated with decreased SR-BI expression and an increased risk of development of advanced fibrosis in chronic HCV infection. These findings provide further evidence for a role of SR-BI in HCV pathogenesis and provides a genetic marker for prediction of those infected individuals at greater risk of developing severe disease.
Collapse
Affiliation(s)
- Victoria L Arandhara
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Charles Patrick McClure
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Sally Chappell
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Kevin Morgan
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Thomas F Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, Inserm, Strasbourg, France.,IHU Strasbourg, Pôle hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - William L Irving
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.,Wolfson Centre for Global Virus Research, The University of Nottingham, Queen's Medical Centre, Nottingha, UK.,NIHR Nottingham Biomedical Research Centre at the Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Chumbe A, Urbanowicz RA, Sliepen K, Koekkoek SM, Molenkamp R, Tarr AW, Ball JK, Schinkel J, van Gils MJ. Optimization of the pseudoparticle system for standardized assessments of neutralizing antibodies against hepatitis C virus. J Gen Virol 2022; 103. [PMID: 36399377 DOI: 10.1099/jgv.0.001801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A better understanding of the antibody response during natural infection and the effect on disease progression and reinfection is necessary for the development of a protective hepatitis C virus (HCV) vaccine. The HCV pseudoparticle (HCVpp) system enables the study of viral entry and inhibition by antibody neutralization. A robust and comparable neutralization assay is crucial for the development and evaluation of experimental vaccines.With the aim of optimizing the HCVpp-murine leukaemia virus (MLV) system, we tested the neutralization of HCVpp-harbouring E1E2 from 21 HCV isolates representing 6 different genotypes by several monoclonal antibodies (mAbs). HCVpps are generated by expressing functional envelope glycoproteins (E1E2) onto pseudoparticles derived from env-deleted MLV. Adjustments of E1E2, gag-pol and luciferase plasmid ratios resulted in increased yields for most HCVpps and recovery of one non-infectious HCVpp. We simplified and improved the protocol to achieve higher signal/noise ratios and minimized the amount of HCVpps and mAbs needed for the detection of neutralization. Using our optimized protocol, we demonstrated comparable results to previously reported data with both diluted and freeze-thawed HCVpps.In conclusion, we successfully established a simplified and reproducible HCVpp neutralization protocol for studying a wide range of HCV variants. This simplified protocol provides highly consistent results and could be easily adopted by others to evaluate precious biological material. This will contribute to a better understanding of the antibody response during natural infection and help evaluate experimental HCV vaccines.
Collapse
Affiliation(s)
- Ana Chumbe
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Richard A Urbanowicz
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK
| | - Kwinten Sliepen
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Sylvie M Koekkoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | | | - Alexander W Tarr
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences, Faculty of Medicine and Health Sciences, The University of Nottingham, Nottingham, UK
- Wolfson Centre for Global Virus Research, The University of Nottingham, Nottingham, UK
- National Institute for Health Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, Nottingham, UK
| | - Janke Schinkel
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Marit J van Gils
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| |
Collapse
|
6
|
Deng L, Liang P, Cui H. Pseudotyped lentiviral vectors: Ready for translation into targeted cancer gene therapy? Genes Dis 2022. [PMID: 37492721 PMCID: PMC10363566 DOI: 10.1016/j.gendis.2022.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Gene therapy holds great promise for curing cancer by editing the deleterious genes of tumor cells, but the lack of vector systems for efficient delivery of genetic material into specific tumor sites in vivo has limited its full therapeutic potential in cancer gene therapy. Over the past two decades, increasing studies have shown that lentiviral vectors (LVs) modified with different glycoproteins from a donating virus, a process referred to as pseudotyping, have altered tropism and display cell-type specificity in transduction, leading to selective tumor cell killing. This feature of LVs together with their ability to enable high efficient gene delivery in dividing and non-dividing mammalian cells in vivo make them to be attractive tools in future cancer gene therapy. This review is intended to summarize the status quo of some typical pseudotypings of LVs and their applications in basic anti-cancer studies across many malignancies. The opportunities of translating pseudotyped LVs into clinic use in cancer therapy have also been discussed.
Collapse
|
7
|
McKay LGA, Thomas J, Albalawi W, Fattaccioli A, Dieu M, Ruggiero A, McKeating JA, Ball JK, Tarr AW, Renard P, Pollakis G, Paxton WA. The HCV Envelope Glycoprotein Down-Modulates NF-κB Signalling and Associates With Stimulation of the Host Endoplasmic Reticulum Stress Pathway. Front Immunol 2022; 13:831695. [PMID: 35371105 PMCID: PMC8964954 DOI: 10.3389/fimmu.2022.831695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Following acute HCV infection, the virus establishes a chronic disease in the majority of patients whilst few individuals clear the infection spontaneously. The precise mechanisms that determine chronic HCV infection or spontaneous clearance are not completely understood but are proposed to be driven by host and viral genetic factors as well as HCV encoded immunomodulatory proteins. Using the HIV-1 LTR as a tool to measure NF-κB activity, we identified that the HCV E1E2 glycoproteins and more so the E2 protein down-modulates HIV-1 LTR activation in 293T, TZM-bl and the more physiologically relevant Huh7 liver derived cell line. We demonstrate this effect is specifically mediated through inhibiting NF-κB binding to the LTR and show that this effect was conserved for all HCV genotypes tested. Transcriptomic analysis of 293T cells expressing the HCV glycoproteins identified E1E2 mediated stimulation of the endoplasmic reticulum (ER) stress response pathway and upregulation of stress response genes such as ATF3. Through shRNA mediated inhibition of ATF3, one of the components, we observed that E1E2 mediated inhibitory effects on HIV-1 LTR activity was alleviated. Our in vitro studies demonstrate that HCV Env glycoprotein activates host ER Stress Pathways known to inhibit NF-κB activity. This has potential implications for understanding HCV induced immune activation as well as oncogenesis.
Collapse
Affiliation(s)
- Lindsay G. A. McKay
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jordan Thomas
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Wejdan Albalawi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Antoine Fattaccioli
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium
| | - Marc Dieu
- MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Alessandra Ruggiero
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane A. McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jonathan K. Ball
- Wolfson Centre for Global Virus Research and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexander W. Tarr
- Wolfson Centre for Global Virus Research and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur, Belgium,MaSUN, Mass Spectrometry Facility, University of Namur (UNamur), Namur, Belgium
| | - Georgios Pollakis
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - William A. Paxton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom,*Correspondence: William A. Paxton,
| |
Collapse
|
8
|
Leumi S, El Kassas M, Zhong J. Hepatitis C virus genotype 4: A poorly characterized endemic genotype. J Med Virol 2021; 93:6079-6088. [PMID: 34185316 DOI: 10.1002/jmv.27165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/26/2021] [Indexed: 12/16/2022]
Abstract
Globally, 13% of all hepatitis C virus (HCV) infections are caused by genotype 4 (GT4), which consists of 17 subtypes with various levels of susceptibility to anti-HCV therapy. This genotype is endemic in the Middle East and Africa and has considerably spread to Europe lately. The molecular features of HCV-GT4 infection, as well as its appropriate therapeutics, are poorly characterized as it has not been the subject of widespread basic research. As such, in this review, we aim to gather the current state of knowledge of this genotype with a particular emphasis on its heterogeneity, sequence signatures, resistance-associated substitutions, and available in vivo and in vitro models used for its study. We urge developing more cell-culture models based on different GT4 subtypes to better understand the virology and therapeutic response of this particular genotype. This review may raise more awareness about this genotype and trigger more basic research work to develop its research tools. This will be critical to design better therapeutics and help to provide adequate guidelines for physicians working with HCV-GT4 patients.
Collapse
Affiliation(s)
- Steve Leumi
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed El Kassas
- Department of Endemic Medicine, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Kalemera MD, Capella-Pujol J, Chumbe A, Underwood A, Bull RA, Schinkel J, Sliepen K, Grove J. Optimized cell systems for the investigation of hepatitis C virus E1E2 glycoproteins. J Gen Virol 2021; 102. [PMID: 33147126 PMCID: PMC8116788 DOI: 10.1099/jgv.0.001512] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Great strides have been made in understanding and treating hepatitis C virus (HCV) thanks to the development of various experimental systems including cell-culture-proficient HCV, the HCV pseudoparticle system and soluble envelope glycoproteins. The HCV pseudoparticle (HCVpp) system is a platform used extensively in studies of cell entry, screening of novel entry inhibitors, assessing the phenotypes of clinically observed E1 and E2 glycoproteins and, most pertinently, in characterizing neutralizing antibody breadth induced upon vaccination and natural infection in patients. Nonetheless, some patient-derived clones produce pseudoparticles that are either non-infectious or exhibit infectivity too low for meaningful phenotyping. The mechanisms governing whether any particular clone produces infectious pseudoparticles are poorly understood. Here we show that endogenous expression of CD81, an HCV receptor and a cognate-binding partner of E2, in producer HEK 293T cells is detrimental to the infectivity of recovered HCVpp for most strains. Many HCVpp clones exhibited increased infectivity or had their infectivity rescued when they were produced in 293T cells CRISPR/Cas9 engineered to ablate CD81 expression (293TCD81KO). Clones made in 293TCD81KO cells were antigenically very similar to their matched counterparts made parental cells and appear to honour the accepted HCV entry pathway. Deletion of CD81 did not appreciably increase the recovered titres of soluble E2 (sE2). However, we did, unexpectedly, find that monomeric sE2 made in 293T cells and Freestyle 293-F (293-F) cells exhibit important differences. We found that 293-F-produced sE2 harbours mostly complex-type glycans whilst 293T-produced sE2 displays a heterogeneous mixture of both complex-type glycans and high-mannose or hybrid-type glycans. Moreover, sE2 produced in 293T cells is antigenically superior; exhibiting increased binding to conformational antibodies and the large extracellular loop of CD81. In summary, this work describes an optimal cell line for the production of HCVpp and reveals that sE2 made in 293T and 293-F cells are not antigenic equals. Our findings have implications for functional studies of E1E2 and the production of candidate immunogens.
Collapse
Affiliation(s)
- Mphatso D Kalemera
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| | - Joan Capella-Pujol
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Ana Chumbe
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Janke Schinkel
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Kwinten Sliepen
- Department of Medical Microbiology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Joe Grove
- Institute of Immunity and Transplantation, Division of Infection and Immunity, The Royal Free Hospital, University College London, London, UK
| |
Collapse
|
10
|
Chen F, Tzarum N, Lin X, Giang E, Velázquez-Moctezuma R, Augestad EH, Nagy K, He L, Hernandez M, Fouch ME, Grinyó A, Chavez D, Doranz BJ, Prentoe J, Stanfield RL, Lanford R, Bukh J, Wilson IA, Zhu J, Law M. Functional convergence of a germline-encoded neutralizing antibody response in rhesus macaques immunized with HCV envelope glycoproteins. Immunity 2021; 54:781-796.e4. [PMID: 33675683 PMCID: PMC8046733 DOI: 10.1016/j.immuni.2021.02.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/14/2020] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Human IGHV1-69-encoded broadly neutralizing antibodies (bnAbs) that target the hepatitis C virus (HCV) envelope glycoprotein (Env) E2 are important for protection against HCV infection. An IGHV1-69 ortholog gene, VH1.36, is preferentially used for bnAbs isolated from HCV Env-immunized rhesus macaques (RMs). Here, we studied the genetic, structural, and functional properties of VH1.36-encoded bnAbs generated by vaccination, in comparison to IGHV1-69-encoded bnAbs from HCV patients. Global B cell repertoire analysis confirmed the expansion of VH1.36-derived B cells in immunized animals. Most E2-specific, VH1.36-encoded antibodies cross-neutralized HCV. Crystal structures of two RM bnAbs with E2 revealed that the RM bnAbs engaged conserved E2 epitopes using similar molecular features as human bnAbs but with a different binding mode. Longitudinal analyses of the RM antibody repertoire responses during immunization indicated rapid lineage development of VH1.36-encoded bnAbs with limited somatic hypermutation. Our findings suggest functional convergence of a germline-encoded bnAb response to HCV Env with implications for vaccination in humans.
Collapse
Affiliation(s)
- Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohe Lin
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Elias H Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | - Deborah Chavez
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX 788227, USA
| | | | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert Lanford
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, TX 788227, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Jiang Zhu
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Czarnota A, Offersgaard A, Pihl AF, Prentoe J, Bukh J, Gottwein JM, Bieńkowska-Szewczyk K, Grzyb K. Specific Antibodies Induced by Immunization with Hepatitis B Virus-Like Particles Carrying Hepatitis C Virus Envelope Glycoprotein 2 Epitopes Show Differential Neutralization Efficiency. Vaccines (Basel) 2020; 8:vaccines8020294. [PMID: 32532076 PMCID: PMC7350033 DOI: 10.3390/vaccines8020294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/30/2020] [Accepted: 06/06/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) infection with associated chronic liver diseases is a major health problem worldwide. Here, we designed hepatitis B virus (HBV) small surface antigen (sHBsAg) virus-like particles (VLPs) presenting different epitopes derived from the HCV E2 glycoprotein (residues 412-425, 434-446, 502-520, and 523-535 of isolate H77C). Epitopes were selected based on their amino acid sequence conservation and were previously reported as targets of HCV neutralizing antibodies. Chimeric VLPs obtained in the Leishmania tarentolae expression system, in combination with the adjuvant Addavax, were used to immunize mice. Although all VLPs induced strong humoral responses, only antibodies directed against HCV 412-425 and 523-535 epitopes were able to react with the native E1E2 glycoprotein complexes of different HCV genotypes in ELISA. Neutralization assays against genotype 1-6 cell culture infectious HCV (HCVcc), revealed that only VLPs carrying the 412-425 epitope induced efficient HCV cross-neutralizing antibodies, but with isolate specific variations in efficacy that could not necessarily be explained by differences in epitope sequences. In contrast, antibodies targeting 434-446, 502-520, and 523-535 epitopes were not neutralizing HCVcc, highlighting the importance of conformational antibodies for efficient virus neutralization. Thus, 412-425 remains the most promising linear E2 epitope for further bivalent, rationally designed vaccine research.
Collapse
Affiliation(s)
- Anna Czarnota
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Anna Offersgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Anne Finne Pihl
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Judith Margarete Gottwein
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, 2650 Hvidovre, Denmark; (A.O.); (A.F.P.); (J.P.); (J.B.); (J.M.G.)
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
| | - Katarzyna Grzyb
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk, 80-309 Gdańsk, Poland; (A.C.); (K.B.-S.)
- Correspondence:
| |
Collapse
|
12
|
Substitution of the CD81 Binding Site and β-Sandwich Area in E2 of HCV in Cambodia. Viruses 2020; 12:v12050551. [PMID: 32429467 PMCID: PMC7290788 DOI: 10.3390/v12050551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/14/2022] Open
Abstract
The high genetic variability of hepatitis C virus (HCV) is the main obstacle to developing a vaccine. E2 has attracted attention for vaccine development because targeting this protein could potentially overcome issues related to the genetic diversity of HCV. In this study, we analyzed HCV genes in the general population of Cambodia and investigated the E2 locus as a candidate for vaccine development. HCV sero-epidemiological surveys were conducted between the period 2010 and 2014, with an HCV RNA–positive rate of 1.3% (11/868). Follow-up blood samples were collected from four anti-HCV– and HCV RNA– positive patients (genotype 1b: 2 cases, 6e: 1 case, 6r: 1 case) after 4.12 years. Analysis of HCV full-length nucleotide sequences in paired specimens revealed that the mutation rates of HCV genotypes 1b and 6e/6r were 1.61–2.03 × 10−3 and 2.52–2.74 × 10−3 substitutions/site/year, respectively. Non-synonymous substitutions were detected in HVR1, the front layer of the CD81 binding site, and the β-sandwich, but not in the N-terminal region or adjacent to the CD81 binding site. Therefore, we conclude that the CD81 binding site is a promising locus for HCV vaccine development.
Collapse
|
13
|
Chen F, Nagy K, Chavez D, Willis S, McBride R, Giang E, Honda A, Bukh J, Ordoukhanian P, Zhu J, Frey S, Lanford R, Law M. Antibody Responses to Immunization With HCV Envelope Glycoproteins as a Baseline for B-Cell-Based Vaccine Development. Gastroenterology 2020; 158:1058-1071.e6. [PMID: 31809725 PMCID: PMC7371413 DOI: 10.1053/j.gastro.2019.11.282] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS We investigated antibody responses to hepatitis C virus (HCV) antigens E1 and E2 and the relevance of animal models for vaccine development. We compared antibody responses to vaccination with recombinant E1E2 complex in healthy volunteers, non-human primates (NHPs), and mice. METHODS We analyzed 519 serum samples from participants in a phase 1 vaccine trial (ClinicalTrials.gov identifier NCT00500747) and compared them with serum or plasma samples from C57BL/6J mice (n = 28) and rhesus macaques (n = 4) immunized with the same HCV E1E2 antigen. Blood samples were collected at different time points and analyzed for antibody binding, neutralizing activity, and epitope specificity. Monoclonal antibodies from the immunized NHPs were isolated from single plasmablasts and memory B cells, and their immunogenetic properties were characterized. RESULTS Antibody responses of the volunteers, NHPs, and mice to the non-neutralizing epitopes on the E1 N-terminus and E2 hypervariable region 1 did not differ significantly. Antibodies from volunteers and NHPs that neutralized heterologous strains of HCV primarily interacted with epitopes in the antigen region 3. However, the neutralizing antibodies were not produced in sufficient levels for broad neutralization of diverse HCV isolates. Broadly neutralizing antibodies similar to the human VH1-69 class antibody specific for antigen region 3 were produced in the immunized NHPs. CONCLUSIONS In an analysis of vaccinated volunteers, NHPs, and mice, we found that recombinant E1E2 vaccine antigen induces high-antibody titers that are insufficient to neutralize diverse HCV isolates. Antibodies from volunteers and NHPs bind to the same neutralizing epitopes for virus neutralization. NHPs can therefore be used as a preclinical model to develop HCV vaccines. These findings also provide useful baseline values for development of vaccines designed to induce production of neutralizing antibodies.
Collapse
Affiliation(s)
- Fang Chen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Kenna Nagy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Deborah Chavez
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Shelby Willis
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Ryan McBride
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew Honda
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Phillip Ordoukhanian
- NGS and Microarray Research Cores, The Scripps Research Institute, La Jolla, California, USA
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Sharon Frey
- Saint Louis University Center for Vaccine Development, St. Louis, Missouri, USA
| | - Robert Lanford
- Southwest National Primate Research Center at Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California.
| |
Collapse
|
14
|
Innovative particle standards and long-lived imaging for 2D and 3D dSTORM. Sci Rep 2019; 9:17967. [PMID: 31784555 PMCID: PMC6884466 DOI: 10.1038/s41598-019-53528-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
Direct stochastic optical reconstruction microscopy (dSTORM), developed in the last decade, has revolutionised optical microscopy by enabling scientists to visualise objects beyond the resolution provided by conventional microscopy (200 nm). We developed an innovative method based on blinking particle standards and conditions for long-lived imaging over several weeks. Stable localisation precisions within the 10 nm-range were achieved for single virions and in cellulo 2D imaging of centrosomes, as well as their reliable reconstruction in 3D dSTORM.
Collapse
|
15
|
Castro V, Calvo G, Ávila-Pérez G, Dreux M, Gastaminza P. Differential Roles of Lipin1 and Lipin2 in the Hepatitis C Virus Replication Cycle. Cells 2019; 8:cells8111456. [PMID: 31752156 PMCID: PMC6912735 DOI: 10.3390/cells8111456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Although their origin, nature and structure are not identical, a common feature of positive-strand RNA viruses is their ability to subvert host lipids and intracellular membranes to generate replication and assembly complexes. Recently, lipin1, a cellular enzyme that converts phosphatidic acid into diacylglycerol, has been implicated in the formation of the membranous web that hosts hepatitis C virus (HCV) replicase. In the liver, lipin1 cooperates with lipin2 to maintain glycerolipid homeostasis. We extended our previous study of the lipin family on HCV infection, by determining the impact of the lipin2 silencing on viral replication. Our data reveal that lipin2 silencing interferes with HCV virion secretion at late stages of the infection, without significantly affecting viral replication or assembly. Moreover, uninfected lipin2-, but not lipin1-deficient cells display alterations in mitochondrial and Golgi apparatus morphology, suggesting that lipin2 contributes to the maintenance of the overall organelle architecture. Finally, our data suggest a broader function of lipin2 for replication of HCV and other RNA viruses, in contrast with the specific impact of lipin1 silencing on HCV replication. Overall, this study reveals distinctive functions of lipin1 and lipin2 in cells of hepatic origin, a context in which they are often considered functionally redundant.
Collapse
Affiliation(s)
- Victoria Castro
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Gema Calvo
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Ginés Ávila-Pérez
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
| | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, Univ Lyon, F-69007 Lyon, France;
| | - Pablo Gastaminza
- Department of Cellular and Molecular Biology Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Centro Nacional de Biotecnología-C.S.I.C., Calle Darwin 3, 28049 Madrid, Spain; (V.C.); (G.C.); (G.Á.-P.)
- Correspondence: ; Tel.: +34-91-585-4678; Fax: +34-91-585-4506
| |
Collapse
|
16
|
Larouche A, Milton McSween KA, Calderon V, Fauteux-Daniel S, Boulais J, Ransy DG, Boucher M, Lamarre V, Lapointe N, Boucoiran I, Money DM, Krajden M, Le Campion A, Soudeyns H. Quasispecies Diversity Is a Major Risk Factor for Vertical Hepatitis C Virus Transmission. J Infect Dis 2019; 219:760-771. [PMID: 30365007 DOI: 10.1093/infdis/jiy581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vertical transmission is the major cause of pediatric hepatitis C virus (HCV) infection. The objective of this study was to better understand HCV pathogenesis in pregnant women and provide insights into risk factors and mechanisms involved in vertical transmission. METHODS Evolutionary dynamics of HCV variant spectra and HCV-specific neutralizing antibody responses were examined using high-throughput sequencing and pseudoparticle-based assays in pregnant women monoinfected with HCV (n = 17) or coinfected with HCV and human immunodeficiency virus (HIV)-1 (n = 15). RESULTS Overall, statistically significant associations were found between HCV quasispecies diversity, selective pressure exerted on the HCV E2 envelope protein, and neutralizing activity of maternal immunoglobulins. Women with low quasispecies diversity displayed significantly higher mean aspartate aminotransferase and alanine aminotransferase levels throughout pregnancy, but this difference was restricted to monoinfected participants. Low quasispecies diversity and inefficient neutralizing activity were also significantly associated with vertical transmission, but only in the monoinfected group. CONCLUSIONS These results indicate that maternal neutralizing antibody responses play a role in the prevention of vertical HCV transmission, but not in presence of HIV-1 coinfection, and suggest that the mechanism of vertical transmission may be different between monoinfected and coinfected women. These findings could inform management strategies for the prevention of vertical HCV transmission.
Collapse
Affiliation(s)
- Ariane Larouche
- Unité immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Canada
| | - Kimberly-Ann Milton McSween
- Unité immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Canada
| | - Virginie Calderon
- Unité immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada.,Department of Informatics and Operations Research, Université de Montréal, Canada
| | - Sébastien Fauteux-Daniel
- Unité immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Canada
| | - Jonathan Boulais
- Centre de recherche du CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Doris G Ransy
- Unité immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Canada
| | - Marc Boucher
- Centre maternel et infatile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec.,Departement of Obstetrics and Gynecology, Faculty of Medicine, Université de Montréal, Canada
| | - Valérie Lamarre
- Centre maternel et infatile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec.,Department of Pediatrics, Faculty of Medicine, Université de Montréal, Canada
| | - Normand Lapointe
- Centre maternel et infatile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec.,Department of Pediatrics, Faculty of Medicine, Université de Montréal, Canada
| | - Isabelle Boucoiran
- Centre maternel et infatile sur le SIDA, Centre de recherche du CHU Sainte-Justine, Montreal, Quebec.,Departement of Obstetrics and Gynecology, Faculty of Medicine, Université de Montréal, Canada
| | | | - Mel Krajden
- BC Center for Disease Control, Vancouver, Canada
| | - Armelle Le Campion
- Unité immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Canada
| | - Hugo Soudeyns
- Unité immunopathologie virale, Centre de recherche du Centre hospitalier universitaire (CHU) Sainte-Justine, Montreal, Quebec, Canada.,Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Canada.,Department of Pediatrics, Faculty of Medicine, Université de Montréal, Canada
| |
Collapse
|
17
|
Wrensch F, Ligat G, Heydmann L, Schuster C, Zeisel MB, Pessaux P, Habersetzer F, King BJ, Tarr AW, Ball JK, Winkler M, Pöhlmann S, Keck ZY, Foung SK, Baumert TF. Interferon-Induced Transmembrane Proteins Mediate Viral Evasion in Acute and Chronic Hepatitis C Virus Infection. Hepatology 2019; 70:1506-1520. [PMID: 31062385 PMCID: PMC6819197 DOI: 10.1002/hep.30699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Although adaptive immune responses against hepatitis C virus (HCV) infection have been studied in great detail, the role of innate immunity in protection against HCV infection and immune evasion is only partially understood. Interferon-induced transmembrane proteins (IFITMs) are innate effector proteins restricting host cell entry of many enveloped viruses, including HCV. However, the clinical impact of IFITMs on HCV immune escape remains to be determined. Here, we show that IFITMs promote viral escape from the neutralizing antibody (nAb) response in clinical cohorts of HCV-infected patients. Using pseudoparticles bearing HCV envelope proteins from acutely infected patients, we show that HCV variants isolated preseroconversion are more sensitive to the antiviral activity of IFITMs than variants from patients isolated during chronic infection postseroconversion. Furthermore, HCV variants escaping nAb responses during liver transplantation exhibited a significantly higher resistance to IFITMs than variants that were eliminated posttransplantation. Gain-of-function and mechanistic studies revealed that IFITMs markedly enhance the antiviral activity of nAbs and suggest a cooperative effect of human monoclonal antibodies and IFITMs for antibody-mediated neutralization driving the selection pressure in viral evasion. Perturbation studies with the IFITM antagonist amphotericin B revealed that modulation of membrane properties by IFITM proteins is responsible for the IFITM-mediated blockade of viral entry and enhancement of antibody-mediated neutralization. Conclusion: Our results indicate IFITM proteins as drivers of viral immune escape and antibody-mediated HCV neutralization in acute and chronic HCV infection. These findings are of clinical relevance for the design of urgently needed HCV B-cell vaccines and might help to increase the efficacy of future vaccine candidates.
Collapse
Affiliation(s)
- Florian Wrensch
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Gaëtan Ligat
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Laura Heydmann
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Catherine Schuster
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France
| | - Mirjam B. Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), 69373 Lyon, France
| | - Patrick Pessaux
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - François Habersetzer
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Barnabas J. King
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham NG7 2UH, UK,NIHR Nottingham BRC, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Michael Winkler
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center–Leibniz Institute for Primate Research, 37077 Göttingen, Germany,Faculty of Biology and Psychology, University of Göttingen, 37073 Göttingen, Germany
| | - Zhen-yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Steven K.H. Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France,Université de Strasbourg, 67000 Strasbourg, France,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
18
|
Walker MR, Leung P, Eltahla AA, Underwood A, Abayasingam A, Brasher NA, Li H, Wu BR, Maher L, Luciani F, Lloyd AR, Bull RA. Clearance of hepatitis C virus is associated with early and potent but narrowly-directed, Envelope-specific antibodies. Sci Rep 2019; 9:13300. [PMID: 31527718 PMCID: PMC6746763 DOI: 10.1038/s41598-019-49454-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/13/2022] Open
Abstract
Hepatitis C virus (HCV) is one of very few viruses that are either naturally cleared, or alternatively persist to cause chronic disease. Viral diversity and escape, as well as host adaptive immune factors, are believed to control the outcome. To date, there is limited understanding of the critical, early host-pathogen interactions. The asymptomatic nature of early HCV infection generally prevents identification of the transmitted/founder (T/F) virus, and thus the study of host responses directed against the autologous T/F strain. In this study, 14 rare subjects identified from very early in infection (4–45 days) with varied disease outcomes (n = 7 clearers) were examined in regard to the timing, breadth, and magnitude of the neutralizing antibody (nAb) response, as well as evolution of the T/F strain. Clearance was associated with earlier onset and more potent nAb responses appearing at a mean of 71 days post-infection (DPI), but these responses were narrowly directed against the autologous T/F virus or closely related variants. In contrast, a delayed onset of nAbs (mean 425 DPI) was observed in chronic progressors that appear to have targeted longitudinal variants rather than the T/F strain. The nAb responses in the chronic progressors mapped to known CD81 binding epitopes, and were associated with rapid emergence of new viral variants with reduced CD81 binding. We propose that the prolonged period of viremia in the absence of nAbs in these subjects was associated with an increase in viral diversity, affording the virus greater options to escape nAb pressure once it emerged. These findings indicate that timing of the nAb response is essential for clearance. Further investigation of the specificities of the early nAbs and the factors regulating early induction of protective nAbs is needed.
Collapse
Affiliation(s)
- Melanie R Walker
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Auda A Eltahla
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Alexander Underwood
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Arunasingam Abayasingam
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Nicholas A Brasher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Hui Li
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Bing-Ru Wu
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Lisa Maher
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Fabio Luciani
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia
| | - Rowena A Bull
- Viral Immunology Systems Program, The Kirby Institute, Sydney, Australia. .,School of Medical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
19
|
Differential interaction strategies of hepatitis c virus genotypes during entry - An in silico investigation of envelope glycoprotein E2 - CD81 interaction. INFECTION GENETICS AND EVOLUTION 2019; 69:48-60. [PMID: 30639544 DOI: 10.1016/j.meegid.2019.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C Virus is a blood borne pathogen responsible for chronic hepatitis in more than 71 million people. Wide variations across strains and genotypes are one of the major hurdles in therapeutic development. While genotype 1 remains the most extensively studied and abundant strain, genotype 3 is more virulent and second most prevalent. This study aimed to compare differences in the glycoprotein E2 across HCV genotypes at nucleotide, protein and structural levels. Nucleotide sequences of E2 from 29 strains across genotypes 1a, 1b, 3a and 3b revealed a stark preference for C-richness which was attributed to a distinct bias for C-rich codons in genotype 1. Genotype 3 exhibited a similar preference to a lesser extent. Amino acid level comparison revealed majority of the changes at the C-terminal half of the proteins leaving the N-terminal region conspicuously conserved apart from the two hyper variable regions. Amino acid changes across genotypes were mostly polar-nonpolar alterations. In silico models of E2 glycoproteins and docking analysis with the energy minimized PDB-CD81 model revealed unique interacting residues in both E2 and CD81. While several CD81 binding residues were common for all four genotypes, number and composition of interacting residues varied. The interacting residues of E2 were however unique for each genotype. E2 of genotype 3a and CD81 had the strongest interaction. In conclusion this is the first comprehensive study comparing E2 sequences across genotypes 1a, 1b, 3a and 3b revealing stark genotype-specific differences which requires more extensive investigation.
Collapse
|
20
|
Tzarum N, Giang E, Kong L, He L, Prentoe J, Augestad E, Hua Y, Castillo S, Lauer GM, Bukh J, Zhu J, Wilson IA, Law M. Genetic and structural insights into broad neutralization of hepatitis C virus by human V H1-69 antibodies. SCIENCE ADVANCES 2019; 5:eaav1882. [PMID: 30613781 PMCID: PMC6314831 DOI: 10.1126/sciadv.aav1882] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/27/2018] [Indexed: 05/19/2023]
Abstract
An effective vaccine to the antigenically diverse hepatitis C virus (HCV) must target conserved immune epitopes. Here, we investigate cross-neutralization of HCV genotypes by broadly neutralizing antibodies (bNAbs) encoded by the relatively abundant human gene family V H 1-69. We have deciphered the molecular requirements for cross-neutralization by this unique class of human antibodies from crystal structures of HCV E2 in complex with bNAbs. An unusually high binding affinity is found for germ line-reverted versions of VH1-69 precursor antibodies, and neutralization breadth is acquired during affinity maturation. Deep sequencing analysis of an HCV-immune B cell repertoire further demonstrates the importance of the V H 1-69 gene family in the generation of HCV bNAbs. This study therefore provides critical insights into immune recognition of HCV with important implications for rational vaccine design.
Collapse
Affiliation(s)
- Netanel Tzarum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erick Giang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Leopold Kong
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Linling He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elias Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shaun Castillo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Georg M. Lauer
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital, and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jiang Zhu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mansun Law
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Abstract
Experimental characterization of the properties of authentic viruses circulating in infected individuals presents a problem when investigating RNA viruses with error-prone polymerases. The hepatitis C virus provides an extreme example of RNA virus genetic variability, as the nucleotide composition of HCV genomes can vary by more than 30% between strains. The envelope glycoproteins E1 and E2 in particular are able to tolerate a particularly high level of variation. They are under continual selection pressure from the host antibody response during chronic infection and can tolerate adaptive mutations, leading to great diversity in a single host. The diversity of E1/E2 in circulating viruses has hindered investigations of their function and development of a vaccine that will generate antibodies able to potently neutralize entry of genetically distinct strains.Here we describe methods used in our laboratory to overcome the limitations of investigating the properties of the envelope glycoproteins representing only small numbers of HCV variants. Using a high-fidelity, limiting dilution ("endpoint") PCR approach to amplify single E1/E2 cDNA templates, which can then generate recombinant model viral particles using retrovirus packaging/reporter constructs. These retroviral pseudoparticles (pseudotypes) facilitate investigation of the properties of authentic E1/E2 glycoproteins in a single-round infection assay. We also describe optimized methods for generation of infectious pseudoparticles from patient-isolated E1/E2 and methods for performing neutralization assays with both anti-virus and anti-host antibodies.
Collapse
|
22
|
Sodroski C, Lowey B, Hertz L, Jake Liang T, Li Q. MicroRNA-135a Modulates Hepatitis C Virus Genome Replication through Downregulation of Host Antiviral Factors. Virol Sin 2018; 34:197-210. [PMID: 30456659 PMCID: PMC6513812 DOI: 10.1007/s12250-018-0055-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/13/2018] [Indexed: 12/12/2022] Open
Abstract
Cellular microRNAs (miRNAs) have been shown to modulate HCV infection via directly acting on the viral genome or indirectly through targeting the virus-associated host factors. Recently we generated a comprehensive map of HCV–miRNA interactions through genome-wide miRNA functional screens and transcriptomics analyses. Many previously unappreciated cellular miRNAs were identified to be involved in HCV infection, including miR-135a, a human cancer-related miRNA. In the present study, we investigated the role of miR-135a in regulating HCV life cycle and showed that it preferentially enhances viral genome replication. Bioinformatics-based integrative analyses and subsequent functional assays revealed three antiviral host factors, including receptor interacting serine/threonine kinase 2 (RIPK2), myeloid differentiation primary response 88 (MYD88), and C-X-C motif chemokine ligand 12 (CXCL12), as bona fide targets of miR-135a. These genes have been shown to inhibit HCV infection at the RNA replication stage. Our data demonstrated that repression of key host restriction factors mediated the proviral effect of miR-135a on HCV propagation. In addition, miR-135a hepatic abundance is upregulated by HCV infection in both cultured hepatocytes and human liver, likely mediating a more favorable environment for viral replication and possibly contributing to HCV-induced liver malignancy. These results provide novel insights into HCV–host interactions and unveil molecular pathways linking miRNA biology to HCV pathogenesis.
Collapse
Affiliation(s)
- Catherine Sodroski
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA
| | - Brianna Lowey
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA
| | - Laura Hertz
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA.
| | - Qisheng Li
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, 20892, USA.
| |
Collapse
|
23
|
Moustafa RI, Haddad JG, Linna L, Hanoulle X, Descamps V, Mesalam AA, Baumert TF, Duverlie G, Meuleman P, Dubuisson J, Lavie M. Functional Study of the C-Terminal Part of the Hepatitis C Virus E1 Ectodomain. J Virol 2018; 92:e00939-18. [PMID: 30068644 PMCID: PMC6158422 DOI: 10.1128/jvi.00939-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Abstract
In the hepatitis C virus (HCV) envelope glycoproteins E1 and E2, which form a heterodimer, E2 is the receptor binding protein and the major target of neutralizing antibodies, whereas the function of E1 remains less characterized. To investigate E1 functions, we generated a series of mutants in the conserved residues of the C-terminal region of the E1 ectodomain in the context of an infectious clone. We focused our analyses on two regions of interest. The first region is located in the middle of the E1 glycoprotein (between amino acid [aa] 270 and aa 291), which contains a conserved hydrophobic sequence and was proposed to constitute a putative fusion peptide. The second series of mutants was generated in the region from aa 314 to aa 342 (the aa314-342 region), which has been shown to contain two α helices (α2 and α3) by nuclear magnetic resonance studies. Of the 22 generated mutants, 20 were either attenuated or noninfectious. Several mutations modulated the virus's dependence on claudin-1 and the scavenger receptor BI coreceptors for entry. Most of the mutations in the putative fusion peptide region affected virus assembly. Conversely, mutations in the α-helix aa 315 to 324 (315-324) residues M318, W320, D321, and M322 resulted in a complete loss of infectivity without any impact on E1E2 folding and on viral assembly. Further characterization of the W320A mutant in the HCVpp model indicated that the loss of infectivity was due to a defect in viral entry. Together, these results support a role for E1 in modulating HCV interaction with its coreceptors and in HCV assembly. They also highlight the involvement of α-helix 315-324 in a late step of HCV entry.IMPORTANCE HCV is a major public health problem worldwide. The virion harbors two envelope proteins, E1 and E2, which are involved at different steps of the viral life cycle. Whereas E2 has been extensively characterized, the function of E1 remains poorly defined. We characterized here the function of the putative fusion peptide and the region containing α helices of the E1 ectodomain, which had been previously suggested to be important for virus entry. We could confirm the importance of these regions for the virus infectivity. Interestingly, we found several residues modulating the virus's dependence on several HCV receptors, thus highlighting the role of E1 in the interaction of the virus with cellular receptors. Whereas mutations in the putative fusion peptide affected HCV infectivity and morphogenesis, several mutations in the α2-helix region led to a loss of infectivity with no effect on assembly, indicating a role of this region in virus entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo, Egypt
| | - Juliano G Haddad
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement, Ecole Doctorale en Sciences et Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Lydia Linna
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Véronique Descamps
- Equipe AGIR EA4294, Laboratoire de Virologie du Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, Egypt
- Research Group Immune- and Bio-markers for Infection, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Thomas F Baumert
- INSERM, U1110, University of Strasbourg, Pôle Hépato-digestif-Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gilles Duverlie
- Equipe AGIR EA4294, Laboratoire de Virologie du Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Jean Dubuisson
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Muriel Lavie
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
24
|
Tarr AW, Backx M, Hamed MR, Urbanowicz RA, McClure CP, Brown RJP, Ball JK. Immunization with a synthetic consensus hepatitis C virus E2 glycoprotein ectodomain elicits virus-neutralizing antibodies. Antiviral Res 2018; 160:25-37. [PMID: 30217650 DOI: 10.1016/j.antiviral.2018.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 09/10/2018] [Indexed: 01/06/2023]
Abstract
Global eradication of hepatitis C virus (HCV) infection will require an efficacious vaccine capable of eliciting protective immunity against genetically diverse HCV strains. Natural spontaneous resolution of HCV infection is associated with production of broadly-neutralizing antibodies targeting the HCV glycoproteins E1 and E2. As such, production of cross-neutralizing antibodies is an important endpoint for experimental vaccine trials. Varying success generating cross-neutralizing antibodies has been achieved with immunogens derived from naturally-occurring HCV strains. In this study the challenge of minimising the genetic diversity between the vaccine strain and circulating HCV isolates was addressed. Two novel synthetic E2 glycoprotein immunogens (NotC1 and NotC2) were derived from consensus nucleotide sequences deduced from samples of circulating genotype 1 HCV strains. These two synthetic sequences differed in their relative positions in the overall genotype 1a/1b phylogeny. Expression of these constructs in Drosophila melanogaster S2 cells resulted in high yields of correctly-folded, monomeric E2 protein, which were recognised by broadly neutralizing monoclonal antibodies. Immunization of guinea pigs with either of these consensus immunogens, or a comparable protein representing a circulating genotype 1a strain resulted in high titres of cross-reactive anti-E2 antibodies. All immunogens generated antibodies capable of neutralizing the H77 strain, but NotC1 elicited antibodies that more potently neutralized virus entry. These vaccine-induced antibodies neutralized some viruses representing genotype 1, but not strains representing genotype 2 or genotype 3. Thus, while this approach to vaccine design resulted in correctly folded, immunogenic protein, cross-neutralizing epitopes were not preferentially targeted by the host immune response generated by this immunogen. Greater immunofocussing of vaccines to common epitopes is necessary to successfully elicit broadly neutralizing antibodies.
Collapse
Affiliation(s)
- Alexander W Tarr
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Matthijs Backx
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Mohamed R Hamed
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK; Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Richard A Urbanowicz
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - C Patrick McClure
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Richard J P Brown
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Jonathan K Ball
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, UK; School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
25
|
Kinchen VJ, Bailey JR. Defining Breadth of Hepatitis C Virus Neutralization. Front Immunol 2018; 9:1703. [PMID: 30116237 PMCID: PMC6082923 DOI: 10.3389/fimmu.2018.01703] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022] Open
Abstract
Extraordinary genetic diversity is a hallmark of hepatitis C virus (HCV). Therefore, accurate measurement of the breadth of antibody neutralizing activity across diverse HCV isolates is key to defining correlates of immune protection against the virus, and essential to guide vaccine development. Panels of HCV pseudoparticle (HCVpp) or replication-competent cell culture viruses (HCVcc) can be used to measure neutralizing breadth of antibodies. These in vitro assays have been used to define neutralizing breadth of antibodies in serum, to characterize broadly neutralizing monoclonal antibodies, and to identify mechanisms of HCV resistance to antibody neutralization. Recently, larger and more diverse panels of both HCVpp and HCVcc have been described that better represent the diversity of circulating HCV strains, but further work is needed to expand and standardize these neutralization panels.
Collapse
Affiliation(s)
- Valerie J Kinchen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
26
|
Ramirez S, Bukh J. Current status and future development of infectious cell-culture models for the major genotypes of hepatitis C virus: Essential tools in testing of antivirals and emerging vaccine strategies. Antiviral Res 2018; 158:264-287. [PMID: 30059723 DOI: 10.1016/j.antiviral.2018.07.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 02/08/2023]
Abstract
In this review, we summarize the relevant scientific advances that led to the development of infectious cell culture systems for hepatitis C virus (HCV) with the corresponding challenges and successes. We also provide an overview of how these systems have contributed to the study of antiviral compounds and their relevance for the development of a much-needed vaccine against this major human pathogen. An efficient infectious system to study HCV in vitro, using human hepatoma derived cells, has only been available since 2005, and was limited to a single isolate, named JFH1, until 2012. Successive developments have been slow and cumbersome, as each available system has been the result of a systematic effort for discovering adaptive mutations conferring culture replication and propagation to patient consensus clones that are inherently non-viable in vitro. High genetic heterogeneity is a paramount characteristic of this virus, and as such, it should preferably be reflected in basic, translational, and clinical studies. The limited number of efficient viral culture systems, in the context of the vast genetic diversity of HCV, continues to represent a major hindrance for the study of this virus, posing a significant barrier towards studies of antivirals (particularly of resistance) and for advancing vaccine development. Intensive research efforts, driven by isolate-specific culture adaptation, have only led to efficient full-length infectious culture systems for a few strains of HCV genotypes 1, 2, 3, and 6. Hence research aimed at identifying novel strategies that will permit universal culture of HCV will be needed to further our understanding of this unique virus causing 400 thousand deaths annually.
Collapse
Affiliation(s)
- Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
27
|
CD81 Receptor Regions outside the Large Extracellular Loop Determine Hepatitis C Virus Entry into Hepatoma Cells. Viruses 2018; 10:v10040207. [PMID: 29677132 PMCID: PMC5923501 DOI: 10.3390/v10040207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 04/14/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) enters human hepatocytes using four essential entry factors, one of which is human CD81 (hCD81). The tetraspanin hCD81 contains a large extracellular loop (LEL), which interacts with the E2 glycoprotein of HCV. The role of the non-LEL regions of hCD81 (intracellular tails, four transmembrane domains, small extracellular loop and intracellular loop) is poorly understood. Here, we studied the contribution of these domains to HCV susceptibility of hepatoma cells by generating chimeras of related tetraspanins with the hCD81 LEL. Our results show that non-LEL regions in addition to the LEL determine susceptibility of cells to HCV. While closely related tetraspanins (X. tropicalis CD81 and D. rerio CD81) functionally complement hCD81 non-LEL regions, distantly related tetraspanins (C. elegans TSP9 amd D. melanogaster TSP96F) do not and tetraspanins with intermediate homology (hCD9) show an intermediate phenotype. Tetraspanin homology and susceptibility to HCV correlate positively. For some chimeras, infectivity correlates with surface expression. In contrast, the hCD9 chimera is fully surface expressed, binds HCV E2 glycoprotein but is impaired in HCV receptor function. We demonstrate that a cholesterol-coordinating glutamate residue in CD81, which hCD9 lacks, promotes HCV infection. This work highlights the hCD81 non-LEL regions as additional HCV susceptibility-determining factors.
Collapse
|
28
|
Krapchev VB, Rychłowska M, Chmielewska A, Zimmer K, Patel AH, Bieńkowska-Szewczyk K. Recombinant Flag-tagged E1E2 glycoproteins from three hepatitis C virus genotypes are biologically functional and elicit cross-reactive neutralizing antibodies in mice. Virology 2018; 519:33-41. [PMID: 29631174 PMCID: PMC5998380 DOI: 10.1016/j.virol.2018.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/13/2023]
Abstract
Hepatitis C virus (HCV) is a globally disseminated human pathogen for which no vaccine is currently available. HCV is highly diverse genetically and can be classified into 7 genotypes and multiple sub-types. Due to this antigenic variation, the induction of cross-reactive and at the same time neutralizing antibodies is a challenge in vaccine production. Here we report the analysis of immunogenicity of recombinant HCV envelope glycoproteins from genotypes 1a, 1b and 2a, with a Flag tag inserted in the hypervariable region 1 of E2. This modification did not affect protein expression or conformation or its capacity to bind the crucial virus entry factor, CD81. Importantly, in immunogenicity studies on mice, the purified E2-Flag mutants elicited high-titer, cross-reactive antibodies that were able to neutralize HCV infectious particles from two genotypes tested (1a and 2a). These findings indicate that E1E2-Flag envelope glycoproteins could be important immunogen candidates for vaccine aiming to induce broad HCV-neutralizing responses.
Collapse
Affiliation(s)
- Vasil B Krapchev
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Malgorzata Rychłowska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Alicja Chmielewska
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Karolina Zimmer
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Sir Michael Stoker Building, Garscube Campus, 464 Bearsden Road, Glasgow G61 1QH, Scotland (UK)
| | - Krystyna Bieńkowska-Szewczyk
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology of UG and MUG, University of Gdansk, 58 Abrahama str., 80-307 Gdansk, Poland.
| |
Collapse
|
29
|
Fusogenic properties of the Ectodomain of HCV E2 envelope protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:728-736. [DOI: 10.1016/j.bbamem.2017.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/05/2017] [Accepted: 12/18/2017] [Indexed: 01/04/2023]
|
30
|
Cellular microRNA networks regulate host dependency of hepatitis C virus infection. Nat Commun 2017; 8:1789. [PMID: 29176620 PMCID: PMC5702611 DOI: 10.1038/s41467-017-01954-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023] Open
Abstract
Cellular microRNAs (miRNAs) have been shown to regulate hepatitis C virus (HCV) replication, yet a systematic interrogation of the repertoire of miRNAs impacting HCV life cycle is lacking. Here we apply integrative functional genomics strategies to elucidate global HCV–miRNA interactions. Through genome-wide miRNA mimic and hairpin inhibitor phenotypic screens, and miRNA–mRNA transcriptomics analyses, we identify three proviral and nine antiviral miRNAs that interact with HCV. These miRNAs are functionally linked to particular steps of HCV life cycle and related viral host dependencies. Further mechanistic studies demonstrate that miR-25, let-7, and miR-130 families repress essential HCV co-factors, thus restricting viral infection at multiple stages. HCV subverts the antiviral actions of these miRNAs by dampening their expression in cell culture models and HCV-infected human livers. This comprehensive HCV–miRNA interaction map provides fundamental insights into HCV-mediated pathogenesis and unveils molecular pathways linking RNA biology to viral infections. Using genome-wide miRNA mimic and hairpin inhibitor screens, Li et al. identify 31 miRNAs that either inhibit or promote hepatitis C virus (HCV) replication at different steps of the viral life cycle. Furthermore, human liver biopsies show that HCV down-regulates identified miRNAs with antiviral function.
Collapse
|
31
|
Vertical Transmission of Hepatitis C Virus: Variable Transmission Bottleneck and Evidence of Midgestation In Utero Infection. J Virol 2017; 91:JVI.01372-17. [PMID: 28931691 DOI: 10.1128/jvi.01372-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) can be transmitted from mother to child during pregnancy and childbirth. However, the timing and precise biological mechanisms that are involved in this process are incompletely understood, as are the determinants that influence transmission of particular HCV variants. Here we report results of a longitudinal assessment of HCV quasispecies diversity and composition in 5 cases of vertical HCV transmission, including 3 women coinfected with human immunodeficiency virus type 1 (HIV-1). The population structure of HCV variant spectra based on E2 envelope gene sequences (nucleotide positions 1491 to 1787), including hypervariable regions 1 and 2, was characterized using next-generation sequencing and median-joining network analysis. Compatible with a loose transmission bottleneck, larger numbers of shared HCV variants were observed in the presence of maternal coinfection. Coalescent Bayesian Markov chain Monte Carlo simulations revealed median times of transmission between 24.9 weeks and 36.1 weeks of gestation, with some confidence intervals ranging into the 1st trimester, considerably earlier than previously thought. Using recombinant autologous HCV pseudoparticles, differences were uncovered in HCV-specific antibody responses between coinfected mothers and mothers infected with HCV alone, in whom generalized absence of neutralization was observed. Finally, shifts in HCV quasispecies composition were seen in children around 1 year of age, compatible with the disappearance of passively transferred maternal immunoglobulins and/or the development of HCV-specific humoral immunity. Taken together, these results provide insights into the timing, dynamics, and biologic mechanisms involved in vertical HCV transmission and inform preventative strategies.IMPORTANCE Although it is well established that hepatitis C virus (HCV) can be transmitted from mother to child, the manner and the moment at which transmission operates have been the subject of conjecture. By carrying out a detailed examination of viral sequences, we showed that transmission could take place comparatively early in pregnancy. In addition, we showed that when the mother also carried human immunodeficiency virus type 1 (HIV-1), many more HCV variants were shared between her and her child, suggesting that the mechanism and/or the route of transmission of HCV differed in the presence of coinfection with HIV-1. These results could explain why cesarean section is ineffective in preventing vertical HCV transmission and guide the development of interventions to avert pediatric HCV infection.
Collapse
|
32
|
Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology 2017; 514:30-41. [PMID: 29128754 DOI: 10.1016/j.virol.2017.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 12/23/2022]
Abstract
Monoclonal antibodies (mAbs) targeting the hepatitis C virus (HCV) envelope have been raised mainly against envelope protein 2 (E2), while the antigenic epitopes of envelope protein 1 (E1) are not fully identified. Here we describe the detailed characterization of a human mAb, designated A6, generated from an HCV genotype 1b infected patient. ELISA results showed reactivity of mAb A6 to full-length HCV E1E2 of genotypes 1a, 1b and 2a. Epitope mapping identified a region spanning amino acids 230-239 within the N-terminal region of E1 as critical for binding. Antibody binding to this epitope was not conformation dependent. Neutralization assays showed that mAb A6 lacks neutralizing capacity and does not interfere with the activity of known neutralizing antibodies. In summary, mAb A6 is an important tool to study the structure and function of E1 within the viral envelope, a crucial step in the development of an effective prophylactic HCV vaccine.
Collapse
|
33
|
King B, Tarr AW. How have retrovirus pseudotypes contributed to our understanding of viral entry? Future Virol 2017. [DOI: 10.2217/fvl-2017-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Study of virus entry into host cells is important for understanding viral tropism and pathogenesis. Studying the entry of in vitro cultured viruses is not always practicable. Study of highly pathogenic viruses, viruses that do not grow in culture, and viruses that rapidly change phenotype in vitro can all benefit from alternative models of entry. Retrovirus particles can be engineered to display the envelope proteins of heterologous enveloped viruses. This approach, broadly termed ‘pseudotyping’, is an important technique for interrogating virus entry. In this perspective we consider how retrovirus pseudotypes have addressed these challenges and improved our understanding of the entry pathways of diverse virus species, including Ebolavirus, human immunodeficiency virus and hepatitis C virus.
Collapse
Affiliation(s)
- Barnabas King
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| | - Alexander W Tarr
- National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust & the University of Nottingham, Nottingham, UK
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
34
|
Merat SJ, van de Berg D, Bru C, Yasuda E, Breij E, Kootstra N, Prins M, Molenkamp R, Bakker AQ, de Jong MD, Spits H, Schinkel J, Beaumont T. Multiplex flow cytometry-based assay to study the breadth of antibody responses against E1E2 glycoproteins of hepatitis C virus. J Immunol Methods 2017; 454:15-26. [PMID: 28855105 DOI: 10.1016/j.jim.2017.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 11/30/2022]
Abstract
Hepatitis C virus (HCV) infection is a major global public health problem. Early induction of cross-reactive neutralizing antibodies during acute infection correlates with the spontaneous clearance of HCV. Understanding the antibody response in multiple subjects in large-scale studies would greatly benefit vaccine development. To determine the breadth of a polyclonal-serum antibody response, and or, the monoclonal antibodies against the different HCV E1E2 genotypes, we developed a quick and high throughput flow cytometry assay using fluorescent cell barcoding to distinguish cells transfected with different E1E2 sequences in a single measurement. HCV-specific antibodies recognizing conformational epitopes were tested for binding to cells transfected with E1E2 from six genotypes. In this assay, 1500 samples can be analyzed for specific binding to 6 different HCV E1E2 sequences within 8h. Plasma of HCV infected subjects were tested in our assay allowing us to determine the breadth of their antibody response. In summary, we developed a quick and high throughput assay to study the specificity of an antibody response against multiple HCV E1E2 sequences simultaneously. This assay can also be used to facilitate the discovery of novel antibodies, and because other flavi- and picornaviruses have similar intracellular assembly mechanisms, this approach can be used to study the antibody response against such viruses.
Collapse
Affiliation(s)
- Sabrina J Merat
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Camille Bru
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Etsuko Yasuda
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Esther Breij
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Neeltje Kootstra
- Department of Experimental Immunology, Sanquin Research, Landsteiner Laboratory, Amsterdam, The Netherlands; Center for Infectious Diseases and Immunity Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
| | - Maria Prins
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, The Netherlands; Department of infectious diseases, Academic Medical Center, Amsterdam, The Netherlands
| | - Richard Molenkamp
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Arjen Q Bakker
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hergen Spits
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands
| | - Janke Schinkel
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Castelli M, Clementi N, Pfaff J, Sautto GA, Diotti RA, Burioni R, Doranz BJ, Dal Peraro M, Clementi M, Mancini N. A Biologically-validated HCV E1E2 Heterodimer Structural Model. Sci Rep 2017; 7:214. [PMID: 28303031 PMCID: PMC5428263 DOI: 10.1038/s41598-017-00320-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/21/2017] [Indexed: 12/14/2022] Open
Abstract
The design of vaccine strategies and the development of drugs targeting the early stages of Hepatitis C virus (HCV) infection are hampered by the lack of structural information about its surface glycoproteins E1 and E2, the two constituents of HCV entry machinery. Despite the recent crystal resolution of limited versions of both proteins in truncated form, a complete picture of the E1E2 complex is still missing. Here we combined deep computational analysis of E1E2 secondary, tertiary and quaternary structure with functional and immunological mutational analysis across E1E2 in order to propose an in silico model for the ectodomain of the E1E2 heterodimer. Our model describes E1-E2 ectodomain dimerization interfaces, provides a structural explanation of E1 and E2 immunogenicity and sheds light on the molecular processes and disulfide bridges isomerization underlying the conformational changes required for fusion. Comprehensive alanine mutational analysis across 553 residues of E1E2 also resulted in identifying the epitope maps of diverse mAbs and the disulfide connectivity underlying E1E2 native conformation. The predicted structure unveils E1 and E2 structures in complex, thus representing a step towards the rational design of immunogens and drugs inhibiting HCV entry.
Collapse
Affiliation(s)
- Matteo Castelli
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Nicola Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Jennifer Pfaff
- Integral Molecular, 3711 Market St #900, Philadelphia, PA, 19104, USA
| | - Giuseppe A Sautto
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Roberta A Diotti
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Roberto Burioni
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Benjamin J Doranz
- Integral Molecular, 3711 Market St #900, Philadelphia, PA, 19104, USA
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Route Cantonale, 1015, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Massimo Clementi
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy
| | - Nicasio Mancini
- Laboratory of Microbiology and Virology, Università "Vita-Salute" San Raffaele, Via Olgettina 58, 20132, Milano, Italy.
| |
Collapse
|
36
|
Boson B, Denolly S, Turlure F, Chamot C, Dreux M, Cosset FL. Daclatasvir Prevents Hepatitis C Virus Infectivity by Blocking Transfer of the Viral Genome to Assembly Sites. Gastroenterology 2017; 152:895-907.e14. [PMID: 27932311 DOI: 10.1053/j.gastro.2016.11.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Daclatasvir is a direct-acting antiviral agent and potent inhibitor of NS5A, which is involved in replication of the hepatitis C virus (HCV) genome, presumably via membranous web shaping, and assembly of new virions, likely via transfer of the HCV RNA genome to viral particle assembly sites. Daclatasvir inhibits the formation of new membranous web structures and, ultimately, of replication complex vesicles, but also inhibits an early assembly step. We investigated the relationship between daclatasvir-induced clustering of HCV proteins, intracellular localization of viral RNAs, and inhibition of viral particle assembly. METHODS Cell-culture-derived HCV particles were produced from Huh7.5 hepatocarcinoma cells in presence of daclatasvir for short time periods. Infectivity and production of physical particles were quantified and producer cells were subjected to subcellular fractionation. Intracellular colocalization between core, E2, NS5A, NS4B proteins, and viral RNAs was quantitatively analyzed by confocal microscopy and by structured illumination microscopy. RESULTS Short exposure of HCV-infected cells to daclatasvir reduced viral assembly and induced clustering of structural proteins with non-structural HCV proteins, including core, E2, NS4B, and NS5A. These clustered structures appeared to be inactive assembly platforms, likely owing to loss of functional connection with replication complexes. Daclatasvir greatly reduced delivery of viral genomes to these core clusters without altering HCV RNA colocalization with NS5A. In contrast, daclatasvir neither induced clustered structures nor inhibited HCV assembly in cells infected with a daclatasvir-resistant mutant (NS5A-Y93H), indicating that daclatasvir targets a mutual, specific function of NS5A inhibiting both processes. CONCLUSIONS In addition to inhibiting replication complex biogenesis, daclatasvir prevents viral assembly by blocking transfer of the viral genome to assembly sites. This leads to clustering of HCV proteins because viral particles and replication complex vesicles cannot form or egress. This dual mode of action of daclatasvir could explain its efficacy in blocking HCV replication in cultured cells and in treatment of patients with HCV infection.
Collapse
Affiliation(s)
- Bertrand Boson
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Solène Denolly
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Fanny Turlure
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - Christophe Chamot
- Plateau Technique Imagerie/Microcopie, Lyon Bio Image, SFR-BioSciences, ENS de Lyon, Inserm US8, CNRS UMS3444, UCBL, France
| | - Marlène Dreux
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France
| | - François-Loïc Cosset
- CIRI - International Center for Infectiology Research, Team EVIR, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, F-69007, Lyon, France.
| |
Collapse
|
37
|
Tawar RG, Heydmann L, Bach C, Schüttrumpf J, Chavan S, King BJ, McClure CP, Ball JK, Pessaux P, Habersetzer F, Bartenschlager R, Zeisel MB, Baumert TF. Broad neutralization of hepatitis C virus-resistant variants by Civacir hepatitis C immunoglobulin. Hepatology 2016; 64:1495-1506. [PMID: 27531416 PMCID: PMC7615276 DOI: 10.1002/hep.28767] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 07/19/2016] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV)-induced end-stage liver disease is the major indication for liver transplantation (LT). However, reinfection of the liver graft is still common, especially in patients with detectable viral load at the time of LT. Limited data are available on direct-acting antivirals in the transplant setting for prevention of graft infection. The human hepatitis C immunoglobulin (HCIG) Civacir is an investigational drug that is currently being developed in an ongoing phase 3 clinical trial assessing its safety and efficacy at preventing HCV recurrence after liver transplantation (LT) in the United States. Using well-characterized patient-derived HCV variants selected during LT, we studied the molecular mechanism of action of Civacir. Inhibition of HCV infection was studied using infectious HCV models including HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) containing patient-derived viral envelope glycoproteins from 22 HCV variants isolated from patients before and after LT. The human hepatitis C immune globulin Civacir is an investigational drug that is currently being developed in an ongoing phase 3 clinical trial assessing safety and efficacy to prevent HCV recurrence after LT in the United States. Using well-characterized patient-derived HCV variants selected during LT, we studied the molecular mechanism of action of Civacir. Inhibition of HCV infection was studied using infectious HCV models including HCV pseudoparticles and cell culture-derived HCV containing patient-derived viral envelope glycoproteins from 22 HCV variants isolated from patients before and after liver transplantation. Additionally, we studied neutralization of different HCV genotypes and of direct-acting antiviral-resistant viruses. Our results indicate that Civacir potently, broadly, and dose-dependently neutralizes all tested patient variants in HCV pseudoparticles and cell culture-derived HCV assays including variants displaying resistance to host neutralizing antibodies and antiviral monoclonal antibodies. The half-maximal inhibitory concentrations were independent of the phenotype of the viral variant, indicating that virus neutralization by Civacir is not affected by viral selection. Furthermore, Civacir is equally active against tested direct-acting antiviral-resistant HCV isolates in cell culture. CONCLUSION Collectively, these results demonstrate broad neutralizing activity of Civacir against resistant viruses, likely due to synergy between anti-HCV antibodies derived from different plasma donors, and support its further clinical development for prevention of liver graft infection. (Hepatology 2016;64:1495-1506).
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Laura Heydmann
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Charlotte Bach
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | | | | | - Barnabas J King
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - C Patrick McClure
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences and the NIHR Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - Patrick Pessaux
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - François Habersetzer
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg University, Heidelberg, Germany
| | - Mirjam B Zeisel
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.
- University of Strasbourg, Strasbourg, France.
- Institut Hospitalo-universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
38
|
Merat SJ, Molenkamp R, Wagner K, Koekkoek SM, van de Berg D, Yasuda E, Böhne M, Claassen YB, Grady BP, Prins M, Bakker AQ, de Jong MD, Spits H, Schinkel J, Beaumont T. Hepatitis C virus Broadly Neutralizing Monoclonal Antibodies Isolated 25 Years after Spontaneous Clearance. PLoS One 2016; 11:e0165047. [PMID: 27776169 PMCID: PMC5077102 DOI: 10.1371/journal.pone.0165047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/24/2016] [Indexed: 01/18/2023] Open
Abstract
Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality. No vaccine is available to prevent HCV infection. To design an effective vaccine, understanding immunity against HCV is necessary. The memory B cell repertoire was characterized from an intravenous drug user who spontaneously cleared HCV infection 25 years ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immortalized B cells were used to study antibody-mediated immunity against the HCV E1E2 glycoproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epitope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized epitope II and domain B. These data show that a subject, who spontaneously cleared HCV infection 25 years ago, still has circulating memory B cells that are able to secrete broadly neutralizing antibodies. Presence of such memory B cells strengthens the argument for undertaking the development of an HCV vaccine.
Collapse
Affiliation(s)
| | - Richard Molenkamp
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | - Koen Wagner
- AIMM Therapeutics, Amsterdam, the Netherlands
| | - Sylvie M. Koekkoek
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | | | | | | | | | - Bart P. Grady
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Maria Prins
- Department of Infectious Diseases Research and Prevention, Cluster of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Department of infectious diseases, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Menno D. de Jong
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Janke Schinkel
- Department of Medical Microbiology, Section of Clinical Virology, Academic Medical Center, Amsterdam, the Netherlands
| | - Tim Beaumont
- AIMM Therapeutics, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
39
|
Ashraf NM, Bilal M, Mahmood MS, Hussain A, Mehboob MZ. In-silico analysis of putative HCV epitopes against Pakistani human leukocyte antigen background: An approach towards development of future vaccines for Pakistani population. INFECTION GENETICS AND EVOLUTION 2016; 43:58-66. [DOI: 10.1016/j.meegid.2016.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/26/2016] [Accepted: 05/04/2016] [Indexed: 10/21/2022]
|
40
|
Sepúlveda-Crespo D, Jiménez JL, Gómez R, De La Mata FJ, Majano PL, Muñoz-Fernández MÁ, Gastaminza P. Polyanionic carbosilane dendrimers prevent hepatitis C virus infection in cell culture. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:49-58. [PMID: 27562210 DOI: 10.1016/j.nano.2016.08.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/11/2016] [Accepted: 08/11/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a major biomedical problem worldwide. Although new direct antiviral agents (DAAs) have been developed for the treatment of chronic HCV infection, the potential emergence of resistant virus variants and the difficulties to implement their administration worldwide make the development of novel antiviral agents an urgent need. Moreover, no effective vaccine is available against HCV and transmission of the virus still occurs particularly when prophylactic measures are not taken. We used a cell-based system to screen a battery of polyanionic carbosilane dendrimers (PCDs) to identify compounds with antiviral activity against HCV and show that they inhibit effective virus adsorption of major HCV genotypes. Interestingly, one of the PCDs irreversibly destabilized infectious virions. This compound displays additive effect in combination with a clinically relevant DAA, sofosbuvir. Our results support further characterization of these molecules as nanotools for the control of hepatitis C virus spread.
Collapse
Affiliation(s)
- Daniel Sepúlveda-Crespo
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - José Luis Jiménez
- Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Gómez
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Javier De La Mata
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro L Majano
- Molecular Biology Unit, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Ma Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Spanish HIV-HGM BioBank, Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Plataforma de Laboratorio, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Gastaminza
- Centro Nacional De Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), Campus Cantoblanco, Madrid, Spain.
| |
Collapse
|
41
|
Lacour W, Adjili S, Blaising J, Favier A, Monier K, Mezhoud S, Ladavière C, Place C, Pécheur EI, Charreyre MT. Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses. Adv Healthc Mater 2016; 5:2032-44. [PMID: 27113918 PMCID: PMC7159338 DOI: 10.1002/adhm.201600091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/25/2016] [Indexed: 12/13/2022]
Abstract
Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses.
Collapse
Affiliation(s)
- William Lacour
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Salim Adjili
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Julie Blaising
- Université Lyon, Univ Claude Bernard, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), F-69424, Lyon, France
| | - Arnaud Favier
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Karine Monier
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
| | - Sarra Mezhoud
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Catherine Ladavière
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| | - Christophe Place
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, Ens de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - Eve-Isabelle Pécheur
- Université Lyon, Univ Claude Bernard, INSERM U1052, CNRS 5286, Centre de Recherche en Cancérologie de Lyon (CRCL), F-69424, Lyon, France
| | - Marie-Thérèse Charreyre
- Université Lyon, Ens de Lyon, CNRS, Laboratoire Joliot-Curie, F-69342, Lyon, France
- Université Lyon, INSA Lyon, Université Claude Bernard, CNRS, Laboratoire Ingénierie des Matériaux Polymères, F-69621, Villeurbanne, France
| |
Collapse
|
42
|
Urbanowicz RA, McClure CP, King B, Mason CP, Ball JK, Tarr AW. Novel functional hepatitis C virus glycoprotein isolates identified using an optimized viral pseudotype entry assay. J Gen Virol 2016; 97:2265-2279. [PMID: 27384448 PMCID: PMC5042129 DOI: 10.1099/jgv.0.000537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Retrovirus pseudotypes are a highly tractable model used to study the entry pathways of enveloped viruses. This model has been extensively applied to the study of the hepatitis C virus (HCV) entry pathway, preclinical screening of antiviral antibodies and for assessing the phenotype of patient-derived viruses using HCV pseudoparticles (HCVpp) possessing the HCV E1 and E2 glycoproteins. However, not all patient-isolated clones produce particles that are infectious in this model. This study investigated factors that might limit phenotyping of patient-isolated HCV glycoproteins. Genetically related HCV glycoproteins from quasispecies in individual patients were discovered to behave very differently in this entry model. Empirical optimization of the ratio of packaging construct and glycoprotein-encoding plasmid was required for successful HCVpp genesis for different clones. The selection of retroviral packaging construct also influenced the function of HCV pseudoparticles. Some glycoprotein constructs tolerated a wide range of assay parameters, while others were much more sensitive to alterations. Furthermore, glycoproteins previously characterized as unable to mediate entry were found to be functional. These findings were validated using chimeric cell-cultured HCV bearing these glycoproteins. Using the same empirical approach we demonstrated that generation of infectious ebolavirus pseudoviruses (EBOVpv) was also sensitive to the amount and ratio of plasmids used, and that protocols for optimal production of these pseudoviruses are dependent on the exact virus glycoprotein construct. These findings demonstrate that it is crucial for studies utilizing pseudoviruses to conduct empirical optimization of pseudotype production for each specific glycoprotein sequence to achieve optimal titres and facilitate accurate phenotyping.
Collapse
Affiliation(s)
- Richard A. Urbanowicz
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - C. Patrick McClure
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Barnabas King
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Christopher P. Mason
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jonathan K. Ball
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander W. Tarr
- School of Life Sciences, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
- Correspondence Alexander W. Tarr
| |
Collapse
|
43
|
McClure CP, Urbanowicz RA, King BJ, Cano-Crespo S, Tarr AW, Ball JK. Flexible and rapid construction of viral chimeras applied to hepatitis C virus. J Gen Virol 2016; 97:2187-2193. [PMID: 27329374 PMCID: PMC5042125 DOI: 10.1099/jgv.0.000530] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A novel and broadly applicable strategy combining site-directed mutagenesis and DNA assembly for constructing seamless viral chimeras is described using hepatitis C virus (HCV) as an exemplar. Full-length HCV genomic cloning cassettes, which contained flexibly situated restriction endonuclease sites, were prepared via a single, site-directed mutagenesis reaction and digested to receive PCR-amplified virus envelope genes by In-Fusion cloning. Using this method, we were able to construct gene-shuttle cassettes for generation of cell culture-infectious JFH-1-based chimeras containing genotype 1–3 E1E2 genes. Importantly, using this method we also show that E1E2 clones that were not able to support cell entry in the HCV pseudoparticle assay did confer entry when shuttled into the chimeric cell culture chimera system. This method can be easily applied to other genes of study and other viruses and, as such, will greatly simplify reverse genetics studies of variable viruses.
Collapse
Affiliation(s)
- C Patrick McClure
- School of Life Sciences and NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Richard A Urbanowicz
- School of Life Sciences and NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Barnabas J King
- School of Life Sciences and NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Sara Cano-Crespo
- School of Life Sciences and NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Alexander W Tarr
- School of Life Sciences and NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jonathan K Ball
- School of Life Sciences and NIHR Nottingham Digestive Diseases Biomedical Research Unit, The University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| |
Collapse
|
44
|
Hepatitis C virus depends on E-cadherin as an entry factor and regulates its expression in epithelial-to-mesenchymal transition. Proc Natl Acad Sci U S A 2016; 113:7620-5. [PMID: 27298373 DOI: 10.1073/pnas.1602701113] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C virus (HCV) enters the host cell through interactions with a cascade of cellular factors. Although significant progress has been made in understanding HCV entry, the precise mechanisms by which HCV exploits the receptor complex and host machinery to enter the cell remain unclear. This intricate process of viral entry likely depends on additional yet-to-be-defined cellular molecules. Recently, by applying integrative functional genomics approaches, we identified and interrogated distinct sets of host dependencies in the complete HCV life cycle. Viral entry assays using HCV pseudoparticles (HCVpps) of various genotypes uncovered multiple previously unappreciated host factors, including E-cadherin, that mediate HCV entry. E-cadherin silencing significantly inhibited HCV infection in Huh7.5.1 cells, HepG2/miR122/CD81 cells, and primary human hepatocytes at a postbinding entry step. Knockdown of E-cadherin, however, had no effect on HCV RNA replication or internal ribosomal entry site (IRES)-mediated translation. In addition, an E-cadherin monoclonal antibody effectively blocked HCV entry and infection in hepatocytes. Mechanistic studies demonstrated that E-cadherin is closely associated with claudin-1 (CLDN1) and occludin (OCLN) on the cell membrane. Depletion of E-cadherin drastically diminished the cell-surface distribution of these two tight junction proteins in various hepatic cell lines, indicating that E-cadherin plays an important regulatory role in CLDN1/OCLN localization on the cell surface. Furthermore, loss of E-cadherin expression in hepatocytes is associated with HCV-induced epithelial-to-mesenchymal transition (EMT), providing an important link between HCV infection and liver cancer. Our data indicate that a dynamic interplay among E-cadherin, tight junctions, and EMT exists and mediates an important function in HCV entry.
Collapse
|
45
|
Broad Anti-Hepatitis C Virus (HCV) Antibody Responses Are Associated with Improved Clinical Disease Parameters in Chronic HCV Infection. J Virol 2016; 90:4530-4543. [PMID: 26912610 PMCID: PMC4836347 DOI: 10.1128/jvi.02669-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/15/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED During hepatitis C virus (HCV) infection, broadly neutralizing antibody (bNAb) responses targeting E1E2 envelope glycoproteins are generated in many individuals. It is unclear if these antibodies play a protective or a pathogenic role during chronic infection. In this study, we investigated whether bNAb responses in individuals with chronic infection were associated with differences in clinical presentation. Patient-derived purified serum IgG was used to assess the breadth of HCV E1E2 binding and the neutralization activity of HCV pseudoparticles. The binding and neutralization activity results for two panels bearing viral envelope proteins representing either an intergenotype or an intragenotype 1 group were compared. We found that the HCV load was negatively associated with strong cross-genotypic E1E2 binding (P= 0.03). Overall, we observed only a modest correlation between total E1E2 binding and neutralization ability. The breadth of intergenotype neutralization did not correlate with any clinical parameters; however, analysis of individuals with genotype 1 (gt1) HCV infection (n= 20), using an intragenotype pseudoparticle panel, found a strong association between neutralization breadth and reduced liver fibrosis (P= 0.006). A broad bNAb response in our cohort with chronic infection was associated with a single nucleotide polymorphism (SNP) in theHLA-DQB1 gene (P= 0.038), as previously reported in a cohort with acute disease. Furthermore, the bNAbs in these individuals targeted more than one region of E2-neutralizing epitopes, as assessed through cross-competition of patient bNAbs with well-characterized E2 antibodies. We conclude that the bNAb responses in patients with chronic gt1 infection are associated with lower rates of fibrosis and host genetics may play a role in the ability to raise such responses. IMPORTANCE Globally, there are 130 million to 150 million people with chronic HCV infection. Typically, the disease is progressive and is a major cause of severe liver cirrhosis and hepatocellular carcinoma. While it is known that neutralizing antibodies have a role in spontaneous clearance during acute infection, little is known about their role in chronic infection. In the present work, we investigated the antibody response in a cohort of chronically infected individuals and found that a broadly neutralizing antibody response is protective and is associated with reduced levels of liver fibrosis and cirrhosis. We also found an association between SNPs in class II HLA genes and the presence of a broadly neutralizing response, indicating that antigen presentation may be important for the production of HCV-neutralizing antibodies.
Collapse
|
46
|
Ferns RB, Tarr AW, Hue S, Urbanowicz RA, McClure CP, Gilson R, Ball JK, Nastouli E, Garson JA, Pillay D. Hepatitis C virus quasispecies and pseudotype analysis from acute infection to chronicity in HIV-1 co-infected individuals. Virology 2016; 492:213-24. [PMID: 26971243 DOI: 10.1016/j.virol.2016.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/14/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
HIV-1 infected patients who acquire HCV infection have higher rates of chronicity and liver disease progression than patients with HCV mono-infection. Understanding early events in this pathogenic process is important. We applied single genome sequencing of the E1 to NS3 regions and viral pseudotype neutralization assays to explore the consequences of viral quasispecies evolution from pre-seroconversion to chronicity in four co-infected individuals (mean follow up 566 days). We observed that one to three founder viruses were transmitted. Relatively low viral sequence diversity, possibly related to an impaired immune response, due to HIV infection was observed in three patients. However, the fourth patient, after an early purifying selection displayed increasing E2 sequence evolution, possibly related to being on suppressive antiretroviral therapy. Viral pseudotypes generated from HCV variants showed relative resistance to neutralization by autologous plasma but not to plasma collected from later time points, confirming ongoing virus escape from antibody neutralization.
Collapse
Affiliation(s)
- R Bridget Ferns
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom; Clinical Microbiology & Virology, UCL Hospital NHS Foundation Trust, United Kingdom.
| | - Alexander W Tarr
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Stephane Hue
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom
| | - Richard A Urbanowicz
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - C Patrick McClure
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Richard Gilson
- Research Department of Infection and Population Health, University College London, United Kingdom
| | - Jonathan K Ball
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom
| | - Eleni Nastouli
- Clinical Microbiology & Virology, UCL Hospital NHS Foundation Trust, United Kingdom
| | - Jeremy A Garson
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom
| | - Deenan Pillay
- Division of Infection & Immunity, Faculty of Medical Sciences, University College London, United Kingdom; Wellcome Trust Africa Centre for Health and Population Sciences, University of KwaZulu, Natal, South Africa
| |
Collapse
|
47
|
Qian XJ, Zhu YZ, Zhao P, Qi ZT. Entry inhibitors: New advances in HCV treatment. Emerg Microbes Infect 2016; 5:e3. [PMID: 26733381 PMCID: PMC4735057 DOI: 10.1038/emi.2016.3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus (HCV) infection affects approximately 3% of the world's population and causes chronic liver diseases, including liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although current antiviral therapy comprising direct-acting antivirals (DAAs) can achieve a quite satisfying sustained virological response (SVR) rate, it is still limited by viral resistance, long treatment duration, combined adverse reactions, and high costs. Moreover, the currently marketed antivirals fail to prevent graft reinfections in HCV patients who receive liver transplantations, probably due to the cell-to-cell transmission of the virus, which is also one of the main reasons behind treatment failure. HCV entry is a highly orchestrated process involving initial attachment and binding, post-binding interactions with host cell factors, internalization, and fusion between the virion and the host cell membrane. Together, these processes provide multiple novel and promising targets for antiviral therapy. Most entry inhibitors target host cell components with high genetic barriers and eliminate viral infection from the very beginning of the viral life cycle. In future, the addition of entry inhibitors to a combination of treatment regimens might optimize and widen the prevention and treatment of HCV infection. This review summarizes the molecular mechanisms and prospects of the current preclinical and clinical development of antiviral agents targeting HCV entry.
Collapse
Affiliation(s)
- Xi-Jing Qian
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Yong-Zhe Zhu
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Ping Zhao
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| | - Zhong-Tian Qi
- Shanghai Key Laboratory of Medical Biodefense, Department of Microbiology, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
48
|
King B, Temperton NJ, Grehan K, Scott SD, Wright E, Tarr AW, Daly JM. Technical considerations for the generation of novel pseudotyped viruses. Future Virol 2016. [DOI: 10.2217/fvl.15.106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A pseudotyped virus (PV) is a virus particle with an envelope protein originating from a different virus. The ability to dictate which envelope proteins are expressed on the surface has made pseudotyping an important tool for basic virological studies such as determining the cellular targets of the envelope protein of the virus as well as identification of potential antiviral compounds and measuring specific antibody responses. In this review, we describe the common methodologies employed to generate PVs, with a focus on approaches to improve the efficacy of PV generation.
Collapse
Affiliation(s)
- Barnabas King
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nigel J Temperton
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Keith Grehan
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Simon D Scott
- Viral Pseudotype Unit (Medway), School of Pharmacy, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK
| | - Edward Wright
- Viral Pseudotype Unit (Fitzrovia), Faculty of Science & Technology, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| | - Alexander W Tarr
- School of Life Sciences & NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
- NIHR Biomedical Research Unit in Gastrointestinal & Liver Diseases, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Janet M Daly
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| |
Collapse
|
49
|
A Diverse Panel of Hepatitis C Virus Glycoproteins for Use in Vaccine Research Reveals Extremes of Monoclonal Antibody Neutralization Resistance. J Virol 2015; 90:3288-301. [PMID: 26699643 PMCID: PMC4794667 DOI: 10.1128/jvi.02700-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/11/2015] [Indexed: 02/07/2023] Open
Abstract
Despite significant advances in the treatment of hepatitis C virus (HCV) infection, the need to develop preventative vaccines remains. Identification of the best vaccine candidates and evaluation of their performance in preclinical and clinical development will require appropriate neutralization assays utilizing diverse HCV isolates. We aimed to generate and characterize a panel of HCV E1E2 glycoproteins suitable for subsequent use in vaccine and therapeutic antibody testing. Full-length E1E2 clones were PCR amplified from patient-derived serum samples, cloned into an expression vector, and used to generate viral pseudoparticles (HCVpp). In addition, some of these clones were used to generate cell culture infectious (HCVcc) clones. The infectivity and neutralization sensitivity of these viruses were then determined. Bioinformatic and HCVpp infectivity screening of approximately 900 E1E2 clones resulted in the assembly of a panel of 78 functional E1E2 proteins representing distinct HCV genotypes and different stages of infection. These HCV glycoproteins differed markedly in their sensitivity to neutralizing antibodies. We used this panel to predict antibody efficacy against circulating HCV strains, highlighting the likely reason why some monoclonal antibodies failed in previous clinical trials. This study provides the first objective categorization of cross-genotype patient-derived HCV E1E2 clones according to their sensitivity to antibody neutralization. It has shown that HCV isolates have clearly distinguishable neutralization-sensitive, -resistant, or -intermediate phenotypes, which are independent of genotype. The panel provides a systematic means for characterization of the neutralizing response elicited by candidate vaccines and for defining the therapeutic potential of monoclonal antibodies. IMPORTANCE Hepatitis C virus (HCV) has a global burden of more than 170 million people, many of whom cannot attain the new, expensive, direct-acting antiviral therapies. A safe and effective vaccine that generates both T cell responses and neutralizing antibodies is required to eradicate the disease. Regions within the HCV surface glycoproteins E1 and E2 are essential for virus entry and are targets for neutralizing antibodies. Screening of vaccine candidates requires suitable panels of glycoproteins that represent the breadth of neutralization resistance. Use of a standard reference panel for vaccine studies will ensure comparability of data sets, as has become routine for HIV-1. Here, we describe a large panel of patient-derived HCV glycoproteins with an assessment of their neutralization sensitivity to defined monoclonal antibodies, which has enabled us to predict their likely efficacy in the wider HCV-infected population. The panel could also be important for future selection of additional therapeutic antibodies and for vaccine design.
Collapse
|
50
|
Fénéant L, Ghosn J, Fouquet B, Helle F, Belouzard S, Vausselin T, Séron K, Delfraissy JF, Dubuisson J, Misrahi M, Cocquerel L. Claudin-6 and Occludin Natural Variants Found in a Patient Highly Exposed but Not Infected with Hepatitis C Virus (HCV) Do Not Confer HCV Resistance In Vitro. PLoS One 2015; 10:e0142539. [PMID: 26561856 PMCID: PMC4643007 DOI: 10.1371/journal.pone.0142539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022] Open
Abstract
The clinical course of Hepatitis C Virus (HCV) infection is highly variable between infected individual hosts: up to 80% of acutely HCV infected patients develop a chronic infection while 20% clear infection spontaneously. Spontaneous clearance of HCV infection can be predicted by several factors, including symptomatic acute infection, favorable IFNL3 polymorphisms and gender. In our study, we explored the possibility that variants in HCV cell entry factors might be involved in resistance to HCV infection. In a same case patient highly exposed but not infected by HCV, we previously identified one mutation in claudin-6 (CLDN6) and a rare variant in occludin (OCLN), two tight junction proteins involved in HCV entry into hepatocytes. Here, we conducted an extensive functional study to characterize the ability of these two natural variants to prevent HCV entry. We used lentiviral vectors to express Wildtype or mutated CLDN6 and OCLN in different cell lines and primary human hepatocytes. HCV infection was then investigated using cell culture produced HCV particles (HCVcc) as well as HCV pseudoparticles (HCVpp) expressing envelope proteins from different genotypes. Our results show that variants of CLDN6 and OCLN expressed separately or in combination did not affect HCV infection nor cell-to-cell transmission. Hence, our study highlights the complexity of HCV resistance mechanisms supporting the fact that this process probably not primarily involves HCV entry factors and that other unknown host factors may be implicated.
Collapse
Affiliation(s)
- Lucie Fénéant
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Jade Ghosn
- Assistance Publique—Hôpitaux de Paris, Unité Fonctionnelle de Thérapeutique en Immuno-Infectiologie, Hôpital Universitaire Hôtel Dieu, Paris, France
- Université Paris Descartes, EA 7327, Faculté de Médecine site Necker, Paris, France
| | - Baptiste Fouquet
- Univ Paris Sud, Faculté de Médecine, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre and Inserm-U1193, Hôpital Paul Brousse, F-94800 Villejuif, France
| | - François Helle
- Virology Department, Amiens University Hospital, Amiens, France
| | - Sandrine Belouzard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Thibaut Vausselin
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Karin Séron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Jean-François Delfraissy
- Assistance Publique—Hôpitaux de Paris, Service de Médecine Interne et Maladies Infectieuses, Centre Hospitalier Universitaire de Bicêtre, Le Kremlin-Bicêtre, France
| | - Jean Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Micheline Misrahi
- Univ Paris Sud, Faculté de Médecine, Hôpitaux Universitaires Paris Sud, Le Kremlin-Bicêtre and Inserm-U1193, Hôpital Paul Brousse, F-94800 Villejuif, France
| | - Laurence Cocquerel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019—UMR 8204—CIIL—Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- * E-mail:
| |
Collapse
|