1
|
Liu Q, Tang X, Yang B, Hao T, Han S, Xu X, Zhao Z, Lai W, Li Y, Du J, Mai K, Ai Q. Autophagy and endoplasmic reticulum stress-related protein homeostasis links palmitic acid to hepatic lipotoxicity in zebrafish (Danio rerio), counteracted by linoleic acid. Free Radic Biol Med 2025; 233:148-161. [PMID: 40089081 DOI: 10.1016/j.freeradbiomed.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/24/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Saturated fatty acids (SFAs) are the primary contributors to hepatic lipotoxic injuries accompanied by the accumulation of hepatic insoluble protein inclusions that are composed of ubiquitinated proteins and p62, but the role of these inclusions in the SFA-induced hepatic lipotoxic injuries and their regulatory mechanisms are incompletely understood. In this study, we demonstrated that palmitic acid (PA), a dietary SFA, induced aberrant accumulation of hepatic insoluble protein inclusions, leading to hepatic lipotoxic injuries in zebrafish. Mechanistically, the accumulation of hepatic insoluble protein inclusions and the subsequent lipotoxic injuries induced by PA were attributed to reduced autophagy activity and increased endoplasmic reticulum (ER) stress. In addition, the upregulation of p62 by the ER stress response factor XBP1s and ATF4 further exacerbated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries. Importantly, the ω-6 PUFA linoleic acid (LA) attenuated PA-induced accumulation of hepatic insoluble protein inclusions and subsequent lipotoxic injuries by improving defective autophagy and reducing ER stress induced by PA. Overall, the present study provides new mechanisms by which SFAs and ω-6 PUFA influence hepatic lipotoxic injuries. These findings not only advance the understanding of hepatic lipotoxic injuries induced by SFAs, but also provide new insights for optimizing the rational substitution of fish oil by vegetable oils in aquaculture and the balance of fatty acid intake in human diets.
Collapse
Affiliation(s)
- Qiangde Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiao Tang
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Bingyuan Yang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Tingting Hao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Shangzhe Han
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Xiang Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Zengqi Zhao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Jianlong Du
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affairs) and Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, People's Republic of China.
| |
Collapse
|
2
|
Wang S, Qin L, Liu F, Zhang Z. Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies. Cell Commun Signal 2025; 23:171. [PMID: 40197235 PMCID: PMC11977922 DOI: 10.1186/s12964-025-02169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
The cGAS-STING signaling pathway serves as a critical link between DNA sensing and innate immunity, and has tremendous potential to improve anti-tumor immunity by generating type I interferons. However, STING agonists have shown decreasing biotherapeutic efficacy in clinical trials. Tumor metabolism, characterized by aberrant nutrient utilization and energy production, is a fundamental hallmark of tumorigenesis. And modulating metabolic pathways in tumor cells has been discovered as a therapeutic strategy for tumors. As research concerning STING progressed, emerging evidence highlights its role in metabolic reprogramming, independent its immune function, indicating metabolic targets as a strategy for STING activation in cancers. In this review, we delve into the interplay between STING and multiple metabolic pathways. We also synthesize current knowledge on the antitumor functions of STING, and the metabolic targets within the tumor microenvironment (TME) that could be exploited for STING activation. This review highlights the necessity for future research to dissect the complex metabolic interactions with STING in various cancer types, emphasizing the potential for personalized therapeutic strategies based on metabolic profiling.
Collapse
Affiliation(s)
- Siwei Wang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Lu Qin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Ministry of Education, Huazhong University of Science and Technology), Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
3
|
Wang J, Guo Y, Hu J, Peng J. STING Activation in Various Cell Types in Metabolic Dysfunction-Associated Steatotic Liver Disease. Liver Int 2025; 45:e70063. [PMID: 40116753 DOI: 10.1111/liv.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND During the hepatic histological progression in metabolic dysfunction-associated steatotic liver disease (MASLD), the immunological mechanisms play a the pivotal role, especially when progressing to metabolic dysfunction-associated steatohepatitis (MASH). The discovery of the stimulator of interferon genes (STING) marked a significant advancement in understanding the immune system. METHODS We searched literature on STING involved in MASLD in PubMed to summarise the role of intrahepatic or extrahepatic STING signal pathways and the potential agonists or inhibitors of STING in MASLD. RESULTS Besides inflammation and type I interferon response induced by STING activation in the intrahepatic or extrahepatic immune cells, STING activation in hepatocytes leads to protein aggregates and lipid deposition. STING activation in hepatic macrophages inhibits autophagy in hepatocytes and promotes hepatic stellate cells (HSCs) activation. STING activation in HSCs promotes HSC activation and exacerbates liver sinusoidal endothelial cells (LSECs) impairment. However, it was also reported that STING activation in hepatic macrophages promotes lipophagy in hepatocytes and STING activation in HSCs leads to HSC senescence. STING activation in LSEC, inhibits angiogenesis. For extrahepatic tissue, STING signalling participates in the regulation of the intestinal permeability, intestinal microecology and insulin action in adipocytes, which were all involved in the pathogenesis of MASLD. CONCLUSION There're plenty of STING ligands in MASLD. How STING activation affects the intercellular conversation in MASLD deserves thorough investigation.
Collapse
Affiliation(s)
- JingJing Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Guo
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Hu
- Department of Nephropathy, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jinghua Peng
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Shanghai University of Traditional Chinese Medicine), Ministry of Education, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
4
|
Choi MG, Lee NY, Koo JH. Stabilizing hepatic fatty acid oxidation: Editorial on "USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination". Clin Mol Hepatol 2025; 31:592-595. [PMID: 39501572 PMCID: PMC12016596 DOI: 10.3350/cmh.2024.0971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 04/18/2025] Open
Affiliation(s)
- Myeung Gi Choi
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Na Young Lee
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, Seoul, Korea
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
5
|
Mullin SM, Kelly AJ, Ní Chathail MB, Norris S, Shannon CE, Roche HM. Macronutrient Modulation in Metabolic Dysfunction-Associated Steatotic Liver Disease-the Molecular Role of Fatty Acids compared with Sugars in Human Metabolism and Disease Progression. Adv Nutr 2025; 16:100375. [PMID: 39842721 PMCID: PMC11849631 DOI: 10.1016/j.advnut.2025.100375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/24/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a significant public health concern, with its progression to metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis leading to severe outcomes including cirrhosis, hepatocellular carcinoma, and liver failure. Whereas obesity and excess energy intake are well-established contributors to the development and progression of MASLD, the distinct role of specific macronutrients is less clear. This review examines the mechanistic pathways through which dietary fatty acids and sugars contribute to the development of hepatic inflammation and fibrosis, offering a nuanced understanding of their respective roles in MASLD progression. In terms of addressing potential therapeutic options, human intervention studies that investigate whether modifying the intake of dietary fats and carbohydrates affects MASLD progression are reviewed. By integrating this evidence, this review seeks to bridge the gap in the understanding between the mechanisms of macronutrient-driven MASLD progression and the effect of altering the intake of these nutrients in the clinical setting and presents a foundation for future research into targeted dietary strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Sinéad M Mullin
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Aidan J Kelly
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Méabh B Ní Chathail
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Suzanne Norris
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christopher E Shannon
- Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Helen M Roche
- School of Public Health, Physiotherapy and Sport Science, and Institute of Food and Health, University College Dublin, Belfield, Dublin, Ireland; Nutrigenomics Research Group, UCD Conway Institute, University College Dublin, Belfield, Dublin, Ireland; Institute for Global Food Security, Queen's University Belfast, Northern Ireland.
| |
Collapse
|
6
|
Lin S, Qiu X, Fu X, Zhang S, Tang C, Kuang J, Guan H, Lai S. SNRK modulates mTOR-autophagy pathway for liver lipid homeostasis in MAFLD. Mol Ther 2025; 33:279-296. [PMID: 39521960 PMCID: PMC11764968 DOI: 10.1016/j.ymthe.2024.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is associated with abnormal fat accumulation in the liver. The exact mechanism underlying the occurrence and development of MAFLD remains to be elucidated. Here, we discovered that the expression of sucrose non-fermenting-related kinase (SNRK) is elevated in the liver of the MAFLD population. Mice deficient in SNRK exhibited damage to fatty acid oxidation and persistent accumulation of lipids in the liver. Pharmacological inhibition of the mTOR pathway in SNRK-deficient mice restored autophagy and improved lipid accumulation. In terms of mechanism, we observed that SNRK binds to the raptor component of mTOR complex 1, promoting fatty acid oxidation in the liver by activating autophagy. Overexpression of SNRK in high-fat diet-induced obese mice restored autophagy and ameliorated lipid accumulation. Notably, we also demonstrated that overexpression of SNRK significantly enhanced fatty acid oxidation in the mouse liver. We further confirmed that SNRK is essential for the liver to regulate autophagy and fatty acid oxidation. These findings underscore the importance of the potential of SNRK in the treatment of MAFLD.
Collapse
Affiliation(s)
- Shan Lin
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Xiaoying Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Shuting Zhang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Road, Guangzhou 510630, Guangdong Province, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, China.
| |
Collapse
|
7
|
Yang P, Gao S, Shen J, Liu T, Lu K, Han X, Wang J, Ni HM, Ding WX, Li H, Pan JA, Peng K, Zong WX. TRIM21-mediated ubiquitination of SQSTM1/p62 abolishes its Ser403 phosphorylation and enhances palmitic acid cytotoxicity. Autophagy 2025; 21:178-190. [PMID: 39172027 PMCID: PMC11702951 DOI: 10.1080/15548627.2024.2394308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024] Open
Abstract
Long-chain free fatty acids (FFAs) accumulation and oxidative toxicity is a major cause for several pathological conditions. The mechanisms underlying FFA cytotoxicity remain elusive. Here we show that palmitic acid (PA), the most abundant FFA in the circulation, induces S403 phosphorylation of SQSTM1/p62 (sequestosome 1) and its aggregation, which sequesters KEAP1 and activates the non-canonical SQSTM1-KEAP1-NFE2L2 antioxidant pathway. The PA-induced SQSTM1 S403 phosphorylation and aggregation are dependent on SQSTM1 K7-D69 hydrogen bond formation and dimerization in the Phox and Bem1 (PB1) domain, which facilitates the recruitment of TBK1 that phosphorylates SQSTM1 S403. The ubiquitin E3 ligase TRIM21 ubiquitinates SQSTM1 at the K7 residue and abolishes the PB1 dimerization, S403 phosphorylation, and SQSTM1 aggregation. TRIM21 is oxidized at C92, C111, and C114 to form disulfide bonds that lead to its oligomerization and decreased E3 activity. Mutagenizing the three C residues to S (3CS) abolishes TRIM21 oligomerization and increases its E3 activity. TRIM21 ablation leads to decreased SQSTM1 K7 ubiquitination, hence elevated SQSTM1 S403 phosphorylation and aggregation, which confers protection against PA-induced oxidative stress and cytotoxicity. Therefore, TRIM21 is a negative regulator of SQSTM1 phosphorylation, aggregation, and the antioxidant sequestration function. TRIM21 is oxidized to reduce its E3 activity that helps enhance the SQSTM1-KEAP1-NFE2L2 antioxidant pathway. Inhibition of TRIM21 May be a viable strategy to protect tissues from lipotoxicity resulting from long-chain FFAs.Abbreviations: ER: endoplasmic reticulum; FFA: free fatty acid; HMOX1/HO-1: heme oxygenase 1; IB: immunoblotting; IF: immunofluorescence; IP: immunoprecipitation; KEAP1: kelch like ECH associated protein 1; MASH: metabolic dysfunction-associated steatohepatitis; MEF: mouse embryonic fibroblast; NFE2L2/Nrf2: NFE2 like BZIP transcription factor 2; PA: palmitic acid; PB1: Phox and Bem 1; ROS: reactive oxygen species; SLD: steatotic liver disease; SQSTM1: sequestosome 1; TBK1: TANK-binding kinase 1; TRIM21: tripartite motif containing 21.
Collapse
Affiliation(s)
- Peng Yang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shenglan Gao
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jianliang Shen
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Tong Liu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Kevin Lu
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Xinlu Han
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Medicinal Chemistry, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hong Li
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University - New Jersey Medical School, Newark, NJ, USA
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Kesong Peng
- Center for Metabolism Research, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, Zhejiang322000, China
| | - Wei-Xing Zong
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers-The State University of New Jersey, Piscataway, NJ, USA
- Rutgers Cancer Institute, New Brunswick, NJ, USA
| |
Collapse
|
8
|
Kwak H, Lee E, Karki R. DNA sensors in metabolic and cardiovascular diseases: Molecular mechanisms and therapeutic prospects. Immunol Rev 2025; 329:e13382. [PMID: 39158380 PMCID: PMC11744256 DOI: 10.1111/imr.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
DNA sensors generally initiate innate immune responses through the production of type I interferons. While extensively studied for host defense against invading pathogens, emerging evidence highlights the involvement of DNA sensors in metabolic and cardiovascular diseases. Elevated levels of modified, damaged, or ectopically localized self-DNA and non-self-DNA have been observed in patients and animal models with obesity, diabetes, fatty liver disease, and cardiovascular disease. The accumulation of cytosolic DNA aberrantly activates DNA signaling pathways, driving the pathological progression of these disorders. This review highlights the roles of specific DNA sensors, such as cyclic AMP-GMP synthase and stimulator of interferon genes (cGAS-STING), absent in melanoma 2 (AIM2), toll-like receptor 9 (TLR9), interferon gamma-inducible protein 16 (IFI16), DNA-dependent protein kinase (DNA-PK), and DEAD-box helicase 41 (DDX41) in various metabolic disorders. We explore how DNA signaling pathways in both immune and non-immune cells contribute to the development of these diseases. Furthermore, we discuss the intricate interplay between metabolic stress and immune responses, offering insights into potential therapeutic targets for managing metabolic and cardiovascular disorders. Understanding the mechanisms of DNA sensor signaling in these contexts provides a foundation for developing novel interventions aimed at mitigating the impact of these pervasive health issues.
Collapse
Affiliation(s)
- Hyosang Kwak
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
| | - Ein Lee
- Department of Biomedical Sciences, College of MedicineSeoul National UniversitySeoulSouth Korea
| | - Rajendra Karki
- Department of Biological Sciences, College of Natural ScienceSeoul National UniversitySeoulSouth Korea
- Nexus Institute of Research and Innovation (NIRI)KathmanduNepal
| |
Collapse
|
9
|
Katsaros I, Sotiropoulou M, Vailas M, Papachristou F, Papakyriakopoulou P, Grigoriou M, Kostomitsopoulos N, Giatromanolaki A, Valsami G, Tsaroucha A, Schizas D. The Effect of Quercetin on Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Beclin1, P62, and LC3: An Experimental Study. Nutrients 2024; 16:4282. [PMID: 39770904 PMCID: PMC11678826 DOI: 10.3390/nu16244282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Non-alcoholic fatty liver disease (NAFLD) is a major metabolic disorder with no established pharmacotherapy. Quercetin, a polyphenolic flavonoid, demonstrates potential hepatoprotective effects but has limited bioavailability. This study evaluates the impact of quercetin on NAFLD and assesses the roles of autophagy-related proteins in disease progression. Methods: Forty-seven male C57BL/6J mice were fed a high-fat diet (HFD) for 12 weeks to induce NAFLD, followed by quercetin treatment for 4 weeks. Mice were divided into baseline, control, and two quercetin groups, receiving low (10 mg/kg) and high (50 mg/kg) doses. Liver histology was scored using the NAFLD Activity Score (NAS). Immunohistochemistry and immunoblotting were performed to analyze autophagy markers. Results: Quercetin-treated groups showed significant reductions in NAS compared to controls (p = 0.011), mainly in steatosis and steatohepatitis. Immunohistochemistry indicated increased expression of autophagy markers LCA and p62 in quercetin groups. Western blot analysis revealed significant elevations in LC3A in the treated groups, suggesting improved autophagic activity and lipid degradation. Conclusions: Quercetin effectively reduces NAFLD severity and modulates autophagy-related proteins. These findings suggest that quercetin enhances autophagic flux, supporting its therapeutic potential for NAFLD. Additional research is needed to clarify the molecular mechanisms of quercetin and to determine the optimal dosing for clinical application.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| | - Fotini Papachristou
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Paraskevi Papakyriakopoulou
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Marirena Grigoriou
- Laboratory of Molecular Developmental Biology & Molecular Neurobiology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupoli, Greece;
| | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Alexandra Giatromanolaki
- Department of Pathology, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15774 Athens, Greece; (P.P.); (G.V.)
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (F.P.); (A.T.)
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 11527 Athens, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
10
|
Corbalan JJ, Jagadeesan P, Frietze KK, Taylor R, Gao GL, Gallagher G, Nickels JT. Humanized monoacylglycerol acyltransferase 2 mice develop metabolic dysfunction-associated steatohepatitis. J Lipid Res 2024; 65:100695. [PMID: 39505262 DOI: 10.1016/j.jlr.2024.100695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/01/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Mice lacking monoacylglycerol acyltransferase 2 (mMGAT21) are resistant to diet-induced fatty liver, suggesting hMOGAT2 inhibition is a viable option for treating metabolic dysfunction-associated steatotic liver disease (MASLD)/metabolic dysfunction-associated steatohepatitis (MASH). We generated humanized hMOGAT2 mice (HuMgat2) for use in pre-clinical studies testing the efficacy of hMOGAT2 inhibitors for treating MASLD/MASH. HuMgat2 mice developed MASH when fed a steatotic diet. Computer-aided histology revealed the presence of hepatocyte cell ballooning, immune cell infiltration, and fibrosis. Hepatocytes accumulated Mallory-Denk bodies containing phosphorylated p62/sequestosome-1-ubiquitinated protein aggregates likely caused by defects in autophagy. Metainflammation and apoptotic cell death were seen in the livers of HuMgat2 mice. Treating HuMgat2 mice with elafibranor reduced several MASH phenotypes. RNASeq analysis predicted changes in bile acid transporter expression that correlated with altered bile acid metabolism indicative of cholestasis. Our results suggest that HuMgat2 mice will serve as a pre-clinical model for testing hMOGAT2 inhibitor efficacy and toxicity and allow for the study of hMOGAT2 in the context of MASH.
Collapse
Affiliation(s)
- J Jose Corbalan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Pranavi Jagadeesan
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Karla K Frietze
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Rulaiha Taylor
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Grace L Gao
- Department of Pharmacology and Toxicology, Earnest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - Grant Gallagher
- Oncoveda, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA
| | - Joseph T Nickels
- The Institute of Metabolic Disorders, Genesis Research and Development Institute, Genesis Biotechnology Group, Hamilton, NJ, USA; Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
11
|
Zhang X, He B, Lu J, Bao Q, Wang J, Yang Y. The crucial roles and research advances of cGAS‑STING pathway in liver diseases. Ann Med 2024; 56:2394588. [PMID: 39183465 PMCID: PMC11348815 DOI: 10.1080/07853890.2024.2394588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Inflammation responses have identified as a key mediator of in various liver diseases with high morbidity and mortality. cGAS-STING signalling is essential in innate immunity since it triggers release of type I interferons and various of proinflammatory cytokines. The potential connection between cGAS-STING pathway and liver inflammatory diseases has recently been reported widely. In our review, the impact of cGAS-STING on liver inflammation and regulatory mechanism are summarized. Furthermore, many inhibitors of cGAS-STING signalling as promising agents to cure liver inflammation are also explored in detail. A comprehensive knowledge of molecular mechanisms of cGAS-STING signalling in liver inflammation is vital for exploring novel treatments and providing recommendations and perspectives for future utilization.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiongling Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yida Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Su J, Cheng F, Yuan W. Unraveling the cGAS/STING signaling mechanism: impact on glycerolipid metabolism and diseases. Front Med (Lausanne) 2024; 11:1512916. [PMID: 39669992 PMCID: PMC11634591 DOI: 10.3389/fmed.2024.1512916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS) and its downstream effector, the stimulator of interferon genes (STING), are crucial components of the innate immune response, traditionally recognized for their role in detecting cytosolic DNA from pathogens and damaged host cells. However, recent research indicates that the cGAS-STING pathway also significantly impacts metabolic processes, particularly glycerolipid metabolism. Glycerolipids are essential for energy storage and cellular membrane integrity, and their dysregulation is linked to metabolic disorders such as obesity, insulin resistance, and non-alcoholic fatty liver disease (NAFLD). Both cGAS and STING are expressed in various metabolic tissues, suggesting a potential role in lipid homeostasis. Chronic activation of the cGAS-STING pathway may promote inflammatory states that exacerbate insulin resistance and lipid accumulation, forming a feedback loop of metabolic dysfunction. This review explores the emerging relationship between cGAS/STING signaling and glycerolipid metabolism, discussing the mechanisms through which this pathway influences lipid regulation and the potential for therapeutic interventions. By integrating insights from immunology and metabolism, we aim to provide a comprehensive understanding of how the cGAS-STING axis may serve as a novel target for addressing metabolic disorders and enhancing metabolic health outcomes.
Collapse
Affiliation(s)
- Jie Su
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- The British Heart Foundation Centre of Excellence, St Thomas’ Hospital, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, The Rayne Institute, London, United Kingdom
| | - Fuyu Cheng
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
- School of Engineering and Material Sciences, Digital Environment Research Institute, Queen Mary University of London, London, United Kingdom
| | - Wei Yuan
- Department of Cardiology, Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
13
|
Katsaros I, Sotiropoulou M, Vailas M, Kapetanakis EI, Valsami G, Tsaroucha A, Schizas D. Quercetin's Potential in MASLD: Investigating the Role of Autophagy and Key Molecular Pathways in Liver Steatosis and Inflammation. Nutrients 2024; 16:3789. [PMID: 39599578 PMCID: PMC11597035 DOI: 10.3390/nu16223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/27/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a widespread liver disorder characterized by excessive fat accumulation in the liver, commonly associated with metabolic syndrome components such as obesity, diabetes, and dyslipidemia. With a global prevalence of up to 30%, MASLD is projected to affect over 100 million people in the U.S. and 20 million in Europe by 2030. The disease ranges from Steatotic Lived Disease (SLD) to more severe forms like metabolic dysfunction-associated steatohepatitis (MASH), which can progress to cirrhosis and hepatocellular carcinoma. Autophagy, a cellular process crucial for lipid metabolism and homeostasis, is often impaired in MASLD, leading to increased hepatic lipid accumulation and inflammation. Key autophagy-related proteins, such as Beclin1, LC3A, SQSTM1 (p62), CD36, and Perilipin 3, play significant roles in regulating this process. Disruption in these proteins contributes to the pathogenesis of MASLD. Quercetin, a natural polyphenolic flavonoid with antioxidant and anti-inflammatory properties, has promising results in mitigating MASLD. It may reduce hepatic lipid accumulation, improve mitochondrial function, and enhance autophagy. However, further research is needed to elucidate its mechanisms and validate its therapeutic potential in clinical settings. This underscores the need for continued investigation into autophagy and novel treatments for MASLD.
Collapse
Affiliation(s)
- Ioannis Katsaros
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Maria Sotiropoulou
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Michail Vailas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| | - Emmanouil Ioannis Kapetanakis
- Department of Thoracic Surgery, National and Kapodistrian University of Athens, Attikon University Hospital, Athens12462, Greece;
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens 15774, Greece;
| | - Alexandra Tsaroucha
- Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis 68100, Greece;
| | - Dimitrios Schizas
- First Department of Surgery, National and Kapodistrian University of Athens, Laikon General Hospital, 17 AgiouThoma Str., Athens 11527, Greece; (M.S.); (M.V.); (D.S.)
| |
Collapse
|
14
|
Sinha RA. Thyroid Hormone-Mediated Selective Autophagy and Its Implications in Countering Metabolic Dysfunction-Associated Steatotic Liver Disease. Endocrinol Metab (Seoul) 2024; 39:686-692. [PMID: 39397515 PMCID: PMC11525703 DOI: 10.3803/enm.2024.2068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 10/15/2024] Open
Abstract
The influence of thyroid hormone (TH) on liver metabolism has attracted the attention of pharmacologists seeking new treatments for metabolic dysfunction-associated steatotic liver disease (MASLD), an increasingly common metabolic disorder. In this context, the selective induction of autophagy by TH in preclinical models has been identified as a promising mechanism. In this process, TH clears intrahepatic fat through lipophagy while protecting against inflammation and mitochondrial damage in hepatocytes via mitophagy. Furthermore, TH-induced aggrephagy may represent a protective mechanism to mitigate the development of MASLD-associated hepatocellular carcinoma. Considering the defects in autophagy observed during the progression of human MASLD, the induction of autophagy by TH, its metabolites, and its analogs represent a novel strategy to combat hepatic damage across the MASLD spectrum.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
15
|
Green CD, Brown RDR, Uranbileg B, Weigel C, Saha S, Kurano M, Yatomi Y, Spiegel S. Sphingosine kinase 2 and p62 regulation are determinants of sexual dimorphism in hepatocellular carcinoma. Mol Metab 2024; 86:101971. [PMID: 38925249 PMCID: PMC11261290 DOI: 10.1016/j.molmet.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality, and its incidence is increasing due to endemic obesity. HCC is sexually dimorphic in both humans and rodents with higher incidence in males, although the mechanisms contributing to these correlations remain unclear. Here, we examined the role of sphingosine kinase 2 (SphK2), the enzyme that regulates the balance of bioactive sphingolipid metabolites, sphingosine-1-phosphate (S1P) and ceramide, in gender specific MASH-driven HCC. METHODS Male and female mice were fed a high fat diet with sugar water, a clinically relevant model that recapitulates MASH-driven HCC in humans followed by physiological, biochemical cellular and molecular analyses. In addition, correlations with increased risk of HCC recurrence were determined in patients. RESULTS Here, we report that deletion of SphK2 protects both male and female mice from Western diet-induced weight gain and metabolic dysfunction without affecting hepatic lipid accumulation or fibrosis. However, SphK2 deficiency decreases chronic diet-induced hepatocyte proliferation in males but increases it in females. Remarkably, SphK2 deficiency reverses the sexual dimorphism of HCC, as SphK2-/- male mice are protected whereas the females develop liver cancer. Only in male mice, chronic western diet induced accumulation of the autophagy receptor p62 and its downstream mediators, the antioxidant response target NQO1, and the oncogene c-Myc. SphK2 deletion repressed these known drivers of HCC development. Moreover, high p62 expression correlates with poor survival in male HCC patients but not in females. In hepatocytes, lipotoxicity-induced p62 accumulation is regulated by sex hormones and prevented by SphK2 deletion. Importantly, high SphK2 expression in male but not female HCC patients is associated with a more aggressive HCC differentiation status and increased risk of cancer recurrence. CONCLUSIONS This work identifies SphK2 as a potential regulator of HCC sexual dimorphism and suggests SphK2 inhibitors now in clinical trials could have opposing, gender-specific effects in patients.
Collapse
Affiliation(s)
- Christopher D Green
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| | - Ryan D R Brown
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Baasanjav Uranbileg
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sumit Saha
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; CREST, JST, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan; CREST, JST, Japan
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| |
Collapse
|
16
|
Wang L, Zhang Z, Zhang H, Zhou M, Huang C, Xia W, Li J, You H. The effects of cGAS-STING inhibition in liver disease, kidney disease, and cellular senescence. Front Immunol 2024; 15:1346446. [PMID: 39114669 PMCID: PMC11303230 DOI: 10.3389/fimmu.2024.1346446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway is one of the fundamental mechanisms of the body's defense, which responds to the abnormal presence of double-stranded DNA in the cytoplasm to establish an effective natural immune response. In addition to detecting microbial infections, the cGAS pathway may be triggered by any cytoplasmic DNA, which is absent from the normal cytoplasm, and only conditions such as senescence and mitochondrial stress can lead to its leakage and cause sterile inflammation. A growing body of research has shown that the cGAS-STING pathway is strongly associated with sterile inflammation. In this study, we reviewed the regulatory mechanisms and biological functions of the cGAS-STING pathway through its involvement in aseptic inflammation in liver disease, kidney disease, and cellular senescence.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Zhengwei Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Haichao Zhang
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Minmin Zhou
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Wenjiang Xia
- Department of Pharmacy, Shangyu People’s Hospital of Shaoxing, Shaoxing, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hongmei You
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, China
| |
Collapse
|
17
|
Li XJY, Qu JR, Zhang YH, Liu RP. The dual function of cGAS-STING signaling axis in liver diseases. Acta Pharmacol Sin 2024; 45:1115-1129. [PMID: 38233527 PMCID: PMC11130165 DOI: 10.1038/s41401-023-01220-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Numerous liver diseases, such as nonalcoholic fatty liver disease, hepatitis, hepatocellular carcinoma, and hepatic ischemia-reperfusion injury, have been increasingly prevalent, posing significant threats to global health. In recent decades, there has been increasing evidence linking the dysregulation of cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING)-related immune signaling to liver disorders. Both hyperactivation and deletion of STING can disrupt the immune microenvironment dysfunction, exacerbating liver disorders. Consequently, there has been a surge in research investigating medical agents or mediators targeting cGAS-STING signaling. Interestingly, therapeutic manipulation of the cGAS-STING pathway has yielded inconsistent and even contradictory effects on different liver diseases due to the distinct physiological characteristics of intrahepatic cells that express and respond to STING. In this review, we comprehensively summarize recent advancements in understanding the dual roles of the STING pathway, highlighting that the benefits of targeting STING signaling depend on the specific types of target cells and stages of liver injury. Additionally, we offer a novel perspective on the suitability of STING agonists and antagonists for clinical assessment. In conclusion, STING signaling remains a highly promising therapeutic target, and the development of STING pathway modulators holds great potential for the treatment of liver diseases.
Collapse
Affiliation(s)
- Xiao-Jiao-Yang Li
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| | - Jiao-Rong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Yin-Hao Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Run-Ping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China.
| |
Collapse
|
18
|
Lv T, Lou Y, Yan Q, Nie L, Cheng Z, Zhou X. Phosphorylation: new star of pathogenesis and treatment in steatotic liver disease. Lipids Health Dis 2024; 23:50. [PMID: 38368351 PMCID: PMC10873984 DOI: 10.1186/s12944-024-02037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024] Open
Abstract
Steatotic liver disease poses a serious threat to human health and has emerged as one of the most significant burdens of chronic liver disease worldwide. Currently, the research mechanism is not clear, and there is no specific targeted drug for direct treatment. Phosphorylation is widely regarded as the most common type of protein modification, closely linked to steatotic liver disease in previous studies. However, there is no systematic review to clarify the relationship and investigate from the perspective of phosphorylation. Phosphorylation has been found to mainly regulate molecule stability, affect localization, transform molecular function, and cooperate with other protein modifications. Among them, adenosine 5'-monophosphate-activated protein kinase (AMPK), serine/threonine kinase (AKT), and nuclear factor kappa-B (NF-kB) are considered the core mechanisms in steatotic liver disease. As to treatment, lifestyle changes, prescription drugs, and herbal ingredients can alleviate symptoms by influencing phosphorylation. It demonstrates the significant role of phosphorylation as a mechanism occurrence and a therapeutic target in steatotic liver disease, which could be a new star for future exploration.
Collapse
Affiliation(s)
- Tiansu Lv
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qianhua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijuan Nie
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhe Cheng
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
19
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
20
|
Wang Y, Zheng J, Long Y, Wu W, Zhu Y. Direct degradation and stabilization of proteins: New horizons in treatment of nonalcoholic steatohepatitis. Biochem Pharmacol 2024; 220:115989. [PMID: 38122854 DOI: 10.1016/j.bcp.2023.115989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is featured with excessive hepatic lipid accumulation and its global prevalence is soaring. Nonalcoholic steatohepatitis (NASH), the severe systemic inflammatory subtype of NAFLD, is tightly associated with metabolic comorbidities, and the hepatocytes manifest severe inflammation and ballooning. Currently the therapeutic options for treating NASH are limited. Potent small molecules specifically intervene with the signaling pathways that promote pathogenesis of NASH. Nevertheless they have obvious adverse effects and show long-term ineffectiveness in clinical trials. It poses the fundamental question to efficiently and safely inhibit the pathogenic processes. Targeted protein degradation (TPD) belongs to the direct degradation strategies and is a burgeoning strategy. It utilizes the small molecules to bind to the target proteins and recruit the endogenous proteasome, lysosome and autophagosome-mediated degradation machineries. They effectively and specifically degrade the target proteins. It has exhibited promising therapeutic effects in treatment of cancer, neurodegenerative diseases and other diseases in a catalytic manner at low doses. We critically discuss the principles of multiple direct degradation strategies, especially PROTAC and ATTEC. We extensively analyze their emerging application in degradation of excessive pathogenic proteins and lipid droplets, which promote the progression of NASH. Moreover, we discuss the opposite strategy that utilizes the small molecules to recruit deubiquinases to stabilize the NASH/MASH-suppressing proteins. Their advantages, limitations, as well as the solutions to address the limitations have been analyzed. In summary, the innovative direct degradation strategies provide new insights into design of next-generation therapeutics to combat NASH with optimal safety paradigm and efficiency.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, PR China.
| | - Jianan Zheng
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yun Long
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, PR China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, PR China
| |
Collapse
|
21
|
Ortega-Prieto P, Parlati L, Benhamed F, Regnier M, Cavalcante I, Montabord M, Onifarasoaniaina R, Favier M, Pavlovic N, Magusto J, Cauzac M, Pagesy P, Gautheron J, Desdouets C, Guilmeau S, Issad T, Postic C. O-GlcNAc transferase acts as a critical nutritional node for the control of liver homeostasis. JHEP Rep 2024; 6:100878. [PMID: 38298740 PMCID: PMC10827605 DOI: 10.1016/j.jhepr.2023.100878] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 02/02/2024] Open
Abstract
Background & Aims O-GlcNAcylation is a reversible post-translational modification controlled by the activity of two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). In the liver, O-GlcNAcylation has emerged as an important regulatory mechanism underlying normal liver physiology and metabolic disease. Methods To address whether OGT acts as a critical hepatic nutritional node, mice with a constitutive hepatocyte-specific deletion of OGT (OGTLKO) were generated and challenged with different carbohydrate- and lipid-containing diets. Results Analyses of 4-week-old OGTLKO mice revealed significant oxidative and endoplasmic reticulum stress, and DNA damage, together with inflammation and fibrosis, in the liver. Susceptibility to oxidative and endoplasmic reticulum stress-induced apoptosis was also elevated in OGTLKO hepatocytes. Although OGT expression was partially recovered in the liver of 8-week-old OGTLKO mice, hepatic injury and fibrosis were not rescued but rather worsened with time. Interestingly, weaning of OGTLKO mice on a ketogenic diet (low carbohydrate, high fat) fully prevented the hepatic alterations induced by OGT deletion, indicating that reduced carbohydrate intake protects an OGT-deficient liver. Conclusions These findings pinpoint OGT as a key mediator of hepatocyte homeostasis and survival upon carbohydrate intake and validate OGTLKO mice as a valuable model for assessing therapeutical approaches of advanced liver fibrosis. Impact and Implications Our study shows that hepatocyte-specific deletion of O-GlcNAc transferase (OGT) leads to severe liver injury, reinforcing the importance of O-GlcNAcylation and OGT for hepatocyte homeostasis and survival. Our study also validates the Ogt liver-deficient mouse as a valuable model for the study of advanced liver fibrosis. Importantly, as the severe hepatic fibrosis of Ogt liver-deficient mice could be fully prevented upon feeding on a ketogenic diet (i.e. very-low-carbohydrate, high-fat diet) this work underlines the potential interest of nutritional intervention as antifibrogenic strategies.
Collapse
Affiliation(s)
| | - Lucia Parlati
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Fadila Benhamed
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marion Regnier
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Isadora Cavalcante
- Team Genomics and Signaling of Endocrine Tumors, Institut Cochin, CNRS, INSERM, Université Paris Cité, Paris, France
| | | | | | - Maryline Favier
- HistIM Platform, Institut Cochin, CNRS, INSERM, Université de Paris Cité, Paris, France
| | - Natasa Pavlovic
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Julie Magusto
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Michèle Cauzac
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Patrick Pagesy
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Jérémie Gautheron
- Centre de Recherche Saint-Antoine, Sorbonne Université, Inserm, Paris, France
| | - Chantal Desdouets
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris Cité, Paris, France
| | - Sandra Guilmeau
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Tarik Issad
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| | - Catherine Postic
- Université Paris Cité, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
22
|
Liu W, Zhang Chen Z, Yang C, Fan Y, Qiao L, Xie S, Cao L. Update on the STING Signaling Pathway in Developing Nonalcoholic Fatty Liver Disease. J Clin Transl Hepatol 2024; 12:91-99. [PMID: 38250469 PMCID: PMC10794270 DOI: 10.14218/jcth.2023.00197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 01/23/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent chronic liver condition with limited treatment options. Inflammation caused by metabolic disturbances plays a significant role in NAFLD development. Stimulator of interferon gene (STING), a critical regulator of innate immunity, induces the production of interferons and other pro-inflammatory factors by recognizing cytoplasmic DNA to defend against pathogen infection. The STING-mediated signaling pathway appears to play a vital role in hepatic inflammation, metabolic disorders, and even carcinogenesis. Promisingly, pharmacological interventions targeting STING have shown improvements in the pathological state of NAFLD. Macrophages, dendritic cells, natural killer cells, and T cell pathways regulated by STING present potential novel druggable targets for NAFLD treatment. Further research and development in this area may offer new therapeutic options for managing NAFLD effectively.
Collapse
Affiliation(s)
- Wei Liu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhili Zhang Chen
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chenhui Yang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yaofu Fan
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Liang Qiao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shaofeng Xie
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Cao
- Department of Endocrinology and Metabolism, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Engin A. Protein Kinases in Obesity, and the Kinase-Targeted Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:199-229. [PMID: 39287853 DOI: 10.1007/978-3-031-63657-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-β activation. Activated PKC-β induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
24
|
Yazıcı D, Demir SÇ, Sezer H. Insulin Resistance, Obesity, and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:391-430. [PMID: 39287860 DOI: 10.1007/978-3-031-63657-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lipotoxicity, originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas, and muscle. Ectopic lipid accumulation in the kidneys, liver, and heart has important clinical counterparts like diabetic nephropathy in type 2 diabetes mellitus, obesity-related glomerulopathy, nonalcoholic fatty liver disease, and cardiomyopathy. Insulin resistance due to lipotoxicity indirectly lead to reproductive system disorders, like polycystic ovary syndrome. Lipotoxicity has roles in insulin resistance and pancreatic beta-cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway, are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays an important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk, and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
Affiliation(s)
- Dilek Yazıcı
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey.
| | - Selin Çakmak Demir
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| | - Havva Sezer
- Koç University Medical School, Section of Endocrinology and Metabolism, Koç University Hospital, Topkapi, Istanbul, Turkey
| |
Collapse
|
25
|
Gong J, Gao X, Ge S, Li H, Wang R, Zhao L. The Role of cGAS-STING Signalling in Metabolic Diseases: from Signalling Networks to Targeted Intervention. Int J Biol Sci 2024; 20:152-174. [PMID: 38164186 PMCID: PMC10750282 DOI: 10.7150/ijbs.84890] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/17/2023] [Indexed: 01/03/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) is a crucial innate defence mechanism against viral infection in the innate immune system, as it principally induces the production of type I interferons. Immune responses and metabolic control are inextricably linked, and chronic low-grade inflammation promotes the development of metabolic diseases. The cGAS-STING pathway activated by double-stranded DNA (dsDNA), cyclic dinucleotides (CDNs), endoplasmic reticulum stress (ER stress), mitochondrial stress, and energy imbalance in metabolic cells and immune cells triggers proinflammatory responses and metabolic disorders. Abnormal overactivation of the pathway is closely associated with metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), insulin resistance and cardiovascular diseases (CVDs). The interaction of cGAS-STING with other pathways, such as the nuclear factor-kappa B (NF-κB), Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), autophagy, pyroptosis and insulin signalling pathways, is considered an important mechanism by which cGAS-STING regulates inflammation and metabolism. This review focuses on the link between immune responses related to the cGAS-STING pathway and metabolic diseases and cGAS-STING interaction with other pathways for mediating signal input and affecting output. Moreover, potential inhibitors of the cGAS-STING pathway and therapeutic prospects against metabolic diseases are discussed. This review provides a comprehensive perspective on the involvement of STING in immune-related metabolic diseases.
Collapse
Affiliation(s)
- Jiahui Gong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xilong Gao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Shaoyang Ge
- Hebei Engineering Research Center of Animal Product, Sanhe 065200, China
| | - Hongliang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot 011517, China
| | - Ran Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Research Center for Probiotics, China Agricultural University, Sanhe 065200, China
| | - Liang Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
26
|
Hu MM, Shu HB. Mitochondrial DNA-triggered innate immune response: mechanisms and diseases. Cell Mol Immunol 2023; 20:1403-1412. [PMID: 37932533 PMCID: PMC10687031 DOI: 10.1038/s41423-023-01086-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/12/2023] [Indexed: 11/08/2023] Open
Abstract
Various cellular stress conditions trigger mitochondrial DNA (mtDNA) release from mitochondria into the cytosol. The released mtDNA is sensed by the cGAS-MITA/STING pathway, resulting in the induced expression of type I interferon and other effector genes. These processes contribute to the innate immune response to viral infection and other stress factors. The deregulation of these processes causes autoimmune diseases, inflammatory metabolic disorders and cancer. Therefore, the cGAS-MITA/STING pathway is a potential target for intervention in infectious, inflammatory and autoimmune diseases as well as cancer. In this review, we focus on the mechanisms underlying the mtDNA-triggered activation of the cGAS-MITA/STING pathway, the effects of the pathway under various physiological and pathological conditions, and advances in the development of drugs that target cGAS and MITA/STING.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Medical Research Institute, Zhongnan Hospital of Wuhan University, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, College of Life Sciences, Wuhan University, Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, 430072, China.
| |
Collapse
|
27
|
Han D, Kim D, Kim H, Lee J, Lyu J, Kim JS, Shin J, Kim JS, Kim DK, Park HW. Methylsulfonylmethane ameliorates metabolic-associated fatty liver disease by restoring autophagy flux via AMPK/mTOR/ULK1 signaling pathway. Front Pharmacol 2023; 14:1302227. [PMID: 38099147 PMCID: PMC10720622 DOI: 10.3389/fphar.2023.1302227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction: Metabolism-associated fatty liver disease (MAFLD) is a global health concern because of its association with obesity, insulin resistance, and other metabolic abnormalities. Methylsulfonylmethane (MSM), an organic sulfur compound found in various plants and animals, exerts antioxidant and anti-inflammatory effects. Here, we aimed to assess the anti-obesity activity and autophagy-related mechanisms of Methylsulfonylmethane. Method: Human hepatoma (HepG2) cells treated with palmitic acid (PA) were used to examine the effects of MSM on autophagic clearance. To evaluate the anti-obesity effect of MSM, male C57/BL6 mice were fed a high-fat diet (HFD; 60% calories) and administered an oral dose of MSM (200 or 400 mg/kg/day). Moreover, we investigated the AMP-activated protein kinase (AMPK)/mechanistic target of rapamycin complex 1 (mTORC1)/UNC-51-like autophagy-activating kinase 1 (ULK1) signaling pathway to further determine the underlying action mechanism of MSM. Results: Methylsulfonylmethane treatment significantly mitigated PA-induced protein aggregation in human hepatoma HepG2 cells. Additionally, Methylsulfonylmethane treatment reversed the PA-induced impairment of autophagic flux. Methylsulfonylmethane also enhanced the insulin sensitivity and significantly suppressed the HFD-induced obesity and hepatic steatosis in mice. Western blotting revealed that Methylsulfonylmethane improved ubiquitinated protein clearance in HFD-induced fatty liver. Remarkably, Methylsulfonylmethane promoted the activation of AMPK and ULK1 and inhibited mTOR activity. Conclusion: Our study suggests that MSM ameliorates hepatic steatosis by enhancing the autophagic flux via an AMPK/mTOR/ULK1-dependent signaling pathway. These findings highlight the therapeutic potential of MSM for obesity-related MAFLD treatment.
Collapse
Affiliation(s)
- Daewon Han
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Deokryong Kim
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Haeil Kim
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jeonga Lee
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jungmook Lyu
- Department of Medical Science, Konyang University, Daejeon, Republic of Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Jeong Sig Kim
- Department of Obstetrics and Gynecology, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Do Kyung Kim
- Department of Anatomy, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
28
|
Lin Z, Yang P, Hu Y, Xu H, Duan J, He F, Dou K, Wang L. RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways. Nat Commun 2023; 14:6635. [PMID: 37857628 PMCID: PMC10587083 DOI: 10.1038/s41467-023-42420-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disorder worldwide. Recent studies show that innate immunity-related signaling pathways fuel NAFLD progression. This study aims to identify potent regulators of innate immunity during NAFLD progression. To this end, a phenotype-based high-content screening is performed, and RING finger protein 13 (RNF13) is identified as an effective inhibitor of lipid accumulation in vitro. In vivo gain- and loss-of-function assays are conducted to investigate the role of RNF13 in NAFLD. Transcriptome sequencing and immunoprecipitation-mass spectrometry are performed to explore the underlying mechanisms. We reveal that RNF13 protein is upregulated in the liver of individuals with NASH. Rnf13 knockout in hepatocytes exacerbate insulin resistance, steatosis, inflammation, cell injury and fibrosis in the liver of diet-induced mice, which can be alleviated by Rnf13 overexpression. Mechanically, RNF13 facilitates the proteasomal degradation of stimulator of interferon genes protein (STING) in a ubiquitination-dependent way. This study provides a promising innate immunity-related target for NAFLD treatment.
Collapse
Affiliation(s)
- Zhibin Lin
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yufeng Hu
- Gannan Innovation and Transformation Medical Research Institute, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, 341000, China
| | - Hao Xu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Juanli Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Fei He
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
29
|
Liu J, Ji S, Liu Z, Guo M, Yang G, Chen L. Deletion of Cyclic GMP-AMP Synthase Aggravates Concanavalin A-Induced Acute Hepatic Injury by Facilitating Leukocyte Chemotaxis. Inflammation 2023; 46:1118-1130. [PMID: 37095260 DOI: 10.1007/s10753-023-01798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 04/26/2023]
Abstract
Growing evidence demonstrates that cyclic GMP-AMP synthase (cGAS), as a cytosolic DNA sensor, is essential for activating innate immunity and regulating inflammatory response against cellular damage. However, its role in immune-mediated hepatitis remains unclear. Here by challenging the cGAS knockout (KO) and their littermate wide-type (WT) mice with intravenous ConA injection to induce acute immune-mediated liver injury, we found that lack of cGAS drastically aggravated liver damage post ConA treatment for 24 h, reflected by increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and amplified hepatic necrosis. The number of apoptotic hepatocytes was also significantly increased in the KO mice. RNA-sequencing analysis revealed that leukocyte chemotaxis and migration-related genes were remarkably upregulated in the KO livers. Consistently, immunofluorescence assays illustrated that the infiltrating F4/80-positive macrophages, Ly6G-positive neutrophils, and CD3-positive T cells were all significantly increased in the KO liver sections. The hepatic expression of the pro-inflammatory genes was elevated as well. Supporting the in vivo findings, the knockdown of cGAS in cultured macrophages showed promoted migration potential and enhanced pro-inflammatory gene expression. These results collectively demonstrated that deletion of cGAS could aggravate ConA-induced acute liver injury, at least at the 24-h time point, and its mechanism might be related to facilitating leukocyte chemotaxis and promoting liver inflammatory response.
Collapse
Affiliation(s)
- Jiaxin Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Zhaiyi Liu
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Meina Guo
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
30
|
Alim Al-Bari A, Ito Y, Thomes PG, Menon MB, García-Macia M, Fadel R, Stadlin A, Peake N, Faris ME, Eid N, Klionsky DJ. Emerging mechanistic insights of selective autophagy in hepatic diseases. Front Pharmacol 2023; 14:1149809. [PMID: 37007026 PMCID: PMC10060854 DOI: 10.3389/fphar.2023.1149809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
Macroautophagy (hereafter referred to as autophagy), a highly conserved metabolic process, regulates cellular homeostasis by degrading dysfunctional cytosolic constituents and invading pathogens via the lysosomal system. In addition, autophagy selectively recycles specific organelles such as damaged mitochondria (via mitophagy), and lipid droplets (LDs; via lipophagy) or eliminates specialized intracellular pathogenic microorganisms such as hepatitis B virus (HBV) and coronaviruses (via virophagy). Selective autophagy, particularly mitophagy, plays a key role in the preservation of healthy liver physiology, and its dysfunction is connected to the pathogenesis of a wide variety of liver diseases. For example, lipophagy has emerged as a defensive mechanism against chronic liver diseases. There is a prominent role for mitophagy and lipophagy in hepatic pathologies including non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and drug-induced liver injury. Moreover, these selective autophagy pathways including virophagy are being investigated in the context of viral hepatitis and, more recently, the coronavirus disease 2019 (COVID-19)-associated hepatic pathologies. The interplay between diverse types of selective autophagy and its impact on liver diseases is briefly addressed. Thus, modulating selective autophagy (e.g., mitophagy) would seem to be effective in improving liver diseases. Considering the prominence of selective autophagy in liver physiology, this review summarizes the current understanding of the molecular mechanisms and functions of selective autophagy (mainly mitophagy and lipophagy) in liver physiology and pathophysiology. This may help in finding therapeutic interventions targeting hepatic diseases via manipulation of selective autophagy.
Collapse
Affiliation(s)
- Abdul Alim Al-Bari
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, Bangladesh
| | - Yuko Ito
- Department of General and Gastroenterological Surgery, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Paul G. Thomes
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Manoj B. Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Marina García-Macia
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca-CSIC, Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - Raouf Fadel
- Department of Anatomy, College of Medicine and Medical Sciences, Arabian Gulf University, Al Manama, Bahrain
| | - Alfreda Stadlin
- Basic Medical Sciences Department, College of Medicine, Ajman university, Ajman, United Arab Emirates
| | - Nicholas Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - MoezAlIslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of MI, Ann Arbor, MI, United States
| |
Collapse
|
31
|
Uomoto S, Takesue K, Shimizu S, Maeda N, Oshima K, Hara E, Kobayashi M, Takahashi Y, Shibutani M, Yoshida T. Phenobarbital, a hepatic metabolic enzyme inducer, inhibits preneoplastic hepatic lesions with expression of selective autophagy receptor p62 and ER-phagy receptor FAM134B in high-fat diet-fed rats through the inhibition of ER stress. Food Chem Toxicol 2023; 173:113607. [PMID: 36657701 DOI: 10.1016/j.fct.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
We investigated the role of endoplasmic reticulum (ER)-phagy in NAFLD-related hepatocarcinogenesis in high-fat diet (HFD)-fed and/or phenobarbital (PB)-treated rats by clustering the expression levels of the selective autophagy receptor p62 and the ER-phagy-specific receptor FAM134B in preneoplastic hepatic lesions. We obtained four clusters with variable expression levels of p62 and FAM134B in preneoplastic lesions, and a variable population of clusters in each group. PB administration increased the clusters with high expression levels of p62 while HFD feeding increased the clusters with high expression levels of both p62 and FAM134B. The areas of preneoplastic lesions of these clusters were significantly increased than those of other clusters with low expression levels of p62 and FAM134B. The combination of HFD feeding with PB counteracted the effects of each other, and the cluster composition was similar to that in the control group. The results were associated with decreased gene expression of ER stress, inflammatory cytokine, autophagy, and increased expression of antioxidant enzyme. The present study demonstrated that clustering analysis is useful for understanding the role of autophagy in each preneoplastic lesion, and that HFD feeding increased preneoplastic lesions through the inhibition of ER-phagy, which was cancelled with PB administration through the induction of ER-phagy.
Collapse
Affiliation(s)
- Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kanami Oshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
32
|
Tan CT, Soh NJH, Chang HC, Yu VC. p62/SQSTM1 in liver diseases: the usual suspect with multifarious identities. FEBS J 2023; 290:892-912. [PMID: 34882306 DOI: 10.1111/febs.16317] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/23/2021] [Accepted: 12/08/2021] [Indexed: 12/18/2022]
Abstract
p62/Sequestosome-1 (SQSTM1) is a selective autophagy receptor that recruits and delivers intracellular substrates for bulk clearance through the autophagy lysosomal pathway. Interestingly, p62 also serves as a signaling scaffold to participate in the regulation of multiple physiological processes, including oxidative stress response, metabolism, inflammation, and programmed cell death. Perturbation of p62 activity has been frequently found to be associated with the pathogenesis of many liver diseases. p62 has been identified as a critical component of protein aggregates in the forms of Mallory-Denk bodies (MDBs) or intracellular hyaline bodies (IHBs), which are known to be frequently detected in biopsy samples from alcoholic steatohepatitis (ASH), non-alcoholic steatohepatitis (NASH), and hepatocellular carcinoma (HCC) patients. Importantly, abundance of these p62 inclusion bodies is increasingly recognized as a biomarker for NASH and HCC. Although the level of p62 bodies seems to predict the progression and prognosis of these liver diseases, understanding of the underlying mechanisms by which p62 regulates and contributes to the development and progression of these diseases remains incomplete. In this review, we will focus on the function and regulation of p62, and its pathophysiological roles in the liver, by critically reviewing the findings from preclinical models that recapitulate the pathogenesis and manifestation of these liver diseases in humans. In addition, we will also explore the suitability of p62 as a predictive biomarker and a potential therapeutic target for the treatment of liver diseases, including NASH and HCC, as well as recent development of small-molecule compounds for targeting the p62 signaling axis.
Collapse
Affiliation(s)
- Chong Teik Tan
- Department of Pharmacy, National University of Singapore, Singapore
| | | | - Hao-Chun Chang
- Department of Pharmacy, National University of Singapore, Singapore
| | - Victor C Yu
- Department of Pharmacy, National University of Singapore, Singapore
| |
Collapse
|
33
|
Kim DK, Han D, Bae J, Kim H, Lee S, Kim JS, Jeong YG, Shin J, Park HW. Verapamil-loaded supramolecular hydrogel patch attenuates metabolic dysfunction-associated fatty liver disease via restoration of autophagic clearance of aggregated proteins and inhibition of NLRP3. Biomater Res 2023; 27:4. [PMID: 36670488 PMCID: PMC9854054 DOI: 10.1186/s40824-023-00342-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Obesity, a serious threat to public health, is linked to chronic metabolic complications including insulin resistance, type-2 diabetes, and metabolic dysfunction-associated fatty liver disease (MAFLD). Current obesity medications are challenged by poor effectiveness, poor patient compliance, and potential side effects. Verapamil is an inhibitor of L-type calcium channels, FDA-approved for the treatment of hypertension. We previously investigated the effect of verapamil on modulating autophagy to treat obesity-associated lipotoxicity. This study aims to develop a verapamil transdermal patch and to evaluate its anti-obesity effects. METHODS Verapamil is loaded in biomimetic vascular bundle-like carboxymethyl pullulan-based supramolecular hydrogel patches cross-linked with citric acid and glycerol linkages (CLCMP). The investigation was then carried out to determine the therapeutic effect of verapamil-loaded CLCMP (Vera@CLCMP) on diet-induced obese mice. RESULTS Vera@CLCMP hydrogel patches with hierarchically organized and anisotropic pore structures not only improved verapamil bioavailability without modifying its chemical structure but also enhanced verapamil release through the stratum corneum barrier. Vera@CLCMP patches exhibit low toxicity and high effectiveness at delivering verapamil into the systemic circulation through the dermis in a sustained manner. Specifically, transdermal administration of this patch into diet-induced obese mice drastically improved glucose tolerance and insulin sensitivity and alleviated metabolic derangements associated with MAFLD. Furthermore, we uncovered a distinct molecular mechanism underlying the anti-obesity effects associated with the hepatic NLR family pyrin domain-containing 3 (NLRP3) inflammasome and autophagic clearance by the vera@CLCMP hydrogel patches. CONCLUSION The current study provides promising drug delivery platforms for long-term family treatment of chronic diseases, including obesity and metabolic dysfunctions.
Collapse
Affiliation(s)
- Do Kyung Kim
- grid.411143.20000 0000 8674 9741Department of Anatomy, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Daewon Han
- grid.411143.20000 0000 8674 9741Department of Cell Biology, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Jeongyun Bae
- grid.411143.20000 0000 8674 9741Department of Cell Biology, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Haeil Kim
- grid.411143.20000 0000 8674 9741Department of Cell Biology, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Solji Lee
- grid.411143.20000 0000 8674 9741Department of Cell Biology, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Jong-Seok Kim
- grid.411143.20000 0000 8674 9741Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Young-Gil Jeong
- grid.411143.20000 0000 8674 9741Department of Anatomy, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Jongdae Shin
- grid.411143.20000 0000 8674 9741Department of Cell Biology, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea ,grid.411143.20000 0000 8674 9741Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| | - Hwan-Woo Park
- grid.411143.20000 0000 8674 9741Department of Cell Biology, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea ,grid.411143.20000 0000 8674 9741Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, 35365 Republic of Korea
| |
Collapse
|
34
|
Lv J, Xing C, Chen Y, Bian H, Lv N, Wang Z, Liu M, Su L. The STING in Non-Alcoholic Fatty Liver Diseases: Potential Therapeutic Targets in Inflammation-Carcinogenesis Pathway. Pharmaceuticals (Basel) 2022; 15:1241. [PMID: 36297353 PMCID: PMC9611148 DOI: 10.3390/ph15101241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/25/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), an important chronic disease, is one of the major causes of high mortality and creates a substantial financial burden worldwide. The various immune cells in the liver, including macrophages, NK cells, dendritic cells, and the neutrophils involved in the innate immune response, trigger inflammation after recognizing the damage signaled from infection or injured cells and tissues. The stimulator of interferon genes (STING) is a critical molecule that binds to the cyclic dinucleotides (CDNs) generated by the cyclic GMP-AMP synthase (cGAS) to initiate the innate immune response against infection. Previous studies have demonstrated that the cGAS-STING pathway plays a critical role in inflammatory, auto-immune, and anti-viral immune responses. Recently, studies have focused on the role of STING in liver diseases, the results implying that alterations in its activity may be involved in the pathogenesis of liver disorders. Here, we summarize the function of STING in the development of NAFLD and present the current inhibitors and agonists targeting STING.
Collapse
Affiliation(s)
- Juan Lv
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Chunlei Xing
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Yuhong Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Huihui Bian
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Nanning Lv
- Lianyungang Second People’s Hospital, Lianyungang 222002, China
| | - Zhibin Wang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200020, China
- School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Mingming Liu
- Lianyungang Second People’s Hospital, Lianyungang 222002, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| |
Collapse
|
35
|
Choi SE, Hwang Y, Lee SJ, Jung H, Shin TH, Son Y, Park S, Han SJ, Kim HJ, Lee KW, Lee G, Kemper JK, Song HK, Kang Y. Mitochondrial protease ClpP supplementation ameliorates diet-induced NASH in mice. J Hepatol 2022; 77:735-747. [PMID: 35421426 DOI: 10.1016/j.jhep.2022.03.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND & AIMS Mitochondrial dysfunction is considered a pathogenic linker in the development of non-alcoholic steatohepatitis (NASH). Inappropriate mitochondrial protein-quality control, possibly induced by insufficiency of the mitochondrial matrix caseinolytic protease P (ClpP), can potentially cause mitochondrial dysfunction. Herein, we aimed to investigate hepatic ClpP levels in a diet-induced model of NASH and determine whether supplementation of ClpP can ameliorate diet-induced NASH. METHODS NASH was induced by a high-fat/high-fructose (HF/HFr) diet in C57BL/6J mice. Stress/inflammatory signals were induced in mouse primary hepatocytes (MPHs) by treatment with palmitate/oleate (PA/OA). ClpP levels in hepatocytes were reduced using the RNAi-mediated gene knockdown technique but increased through the viral transduction of ClpP. ClpP activation was induced by administering a chemical activator of ClpP. RESULTS Hepatic ClpP protein levels in C57BL/6J mice fed a HF/HFr diet were lower than the levels in those fed a normal chow diet. PA/OA treatment also decreased the ClpP protein levels in MPHs. Overexpression or activation of ClpP reversed PA/OA-induced mitochondrial dysfunction and stress/inflammatory signal activation in MPHs, whereas ClpP knockdown induced mitochondrial dysfunction and stress/inflammatory signals in these cells. On the other hand, ClpP overexpression or activation improved HF/HFr-induced NASH characteristics such as hepatic steatosis, inflammation, fibrosis, and injury in the C57BL/6J mice, whereas ClpP knockdown further augmented steatohepatitis in mice fed a HF/HFr diet. CONCLUSIONS Reduced ClpP expression and subsequent mitochondrial dysfunction are key to the development of diet-induced NASH. ClpP supplementation through viral transduction or chemical activation represents a potential therapeutic strategy to prevent diet-induced NASH. LAY SUMMARY Western diets, containing high fat and high fructose, often induce non-alcoholic steatohepatitis (NASH). Mitochondrial dysfunction is considered pathogenically linked to diet-induced NASH. We observed that the mitochondrial protease ClpP decreased in the livers of mice fed a western diet and supplementation of ClpP ameliorated western diet-induced NASH.
Collapse
Affiliation(s)
- Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Yoonjung Hwang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Soo-Jin Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Hyunkyung Jung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 61801
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Youngho Son
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Seokho Park
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749; Department of Biomedical Science, The Graduate School, Ajou University, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Seung Jin Han
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Hae Jin Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Kwan Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA 61801
| | - Hyun Kyu Song
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea 136-701
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon, Gyunggi-do, Republic of Korea 443-749.
| |
Collapse
|
36
|
Zhan Y, Xu D, Tian Y, Qu X, Sheng M, Lin Y, Ke M, Jiang L, Xia Q, Kaldas FM, Farmer DG, Ke B. Novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death. JHEP Rep 2022; 4:100532. [PMID: 36035360 PMCID: PMC9404660 DOI: 10.1016/j.jhepr.2022.100532] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/04/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background & Aims The stimulator of interferon genes (STING)/TANK-binding kinase 1 (TBK1) pathway is vital in mediating innate immune and inflammatory responses during oxidative/endoplasmic reticulum (ER) stress. However, it remains unknown whether macrophage thioredoxin-interacting protein (TXNIP) may regulate TBK1 function and cell death pathways during oxidative/ER stress. Methods A mouse model of hepatic ischaemia/reperfusion injury (IRI), the primary hepatocytes, and bone marrow-derived macrophages were used in the myeloid-specific TXNIP knockout (TXNIPM-KO) and TXNIP-proficient (TXNIPFL/FL) mice. Results The TXNIPM-KO mice were resistant to ischaemia/reperfusion (IR) stress-induced liver damage with reduced serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) levels, macrophage/neutrophil infiltration, and pro-inflammatory mediators compared with the TXNIPFL/FL controls. IR stress increased TXNIP, p-STING, and p-TBK1 expression in ischaemic livers. However, TXNIPM-KO inhibited STING, TBK1, interferon regulatory factor 3 (IRF3), and NF-κB activation with interferon-β (IFN-β) expression. Interestingly, TXNIPM-KO augmented nuclear factor (erythroid-derived 2)-like 2 (NRF2) activity, increased antioxidant gene expression, and reduced macrophage reactive oxygen species (ROS) production and hepatic apoptosis/necroptosis in IR-stressed livers. Mechanistically, macrophage TXNIP deficiency promoted cylindromatosis (CYLD), which colocalised and interacted with NADPH oxidase 4 (NOX4) to enhance NRF2 activity by deubiquitinating NOX4. Disruption of macrophage NRF2 or its target gene 2',5' oligoadenylate synthetase-like 1 (OASL1) enhanced Ras GTPase-activating protein-binding protein 1 (G3BP1) and TBK1-mediated inflammatory response. Notably, macrophage OASL1 deficiency induced hepatocyte apoptotic peptidase activating factor 1 (APAF1), cytochrome c, and caspase-9 activation, leading to increased caspase-3-initiated apoptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3)-mediated necroptosis. Conclusions Macrophage TXNIP deficiency enhances CYLD activity and activates the NRF2-OASL1 signalling, controlling IR stress-induced liver injury. The target gene OASL1 regulated by NRF2 is crucial for modulating STING-mediated TBK1 activation and Apaf1/cytochrome c/caspase-9-triggered apoptotic/necroptotic cell death pathway. Our findings underscore a novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death, implying the potential therapeutic targets in liver inflammatory diseases. Lay summary Liver inflammation and injury induced by ischaemia and reperfusion (the absence of blood flow to the liver tissue followed by the resupply of blood) is a significant cause of hepatic dysfunction and failure following liver transplantation, resection, and haemorrhagic shock. Herein, we uncover an underlying mechanism that contributes to liver inflammation and cell death in this setting and could be a therapeutic target in stress-induced liver inflammatory injury.
Collapse
Key Words
- ALT, alanine aminotransferase
- APAF1, apoptotic peptidase activating factor 1
- ASK1, apoptosis signal-regulating kinase 1
- AST, aspartate aminotransferase
- Apoptosis
- BMM, bone marrow-derived macrophage
- CXCL-10, C-X-C motif chemokine ligand 10
- CYLD, cyclindromatosis
- ChIP, chromatin immunoprecipitation
- DAMP, damage-associated molecular pattern
- DUB, deubiquitinating enzyme
- ER, endoplasmic reticulum
- ES, embryonic stem
- G3BP1
- G3BP1, Ras GTPase-activating protein-binding protein 1
- GCLC, glutamate-cysteine ligase catalytic subunit
- GCLM, glutamate-cysteine ligase regulatory subunit
- IHC, immunohistochemistry
- INF-β, interferon-β
- IR, ischaemia/reperfusion
- IRF3
- IRF3, interferon regulatory factor 3
- IRF7, IFN-regulating transcription factor 7
- IRI, ischaemia/reperfusion injury
- Innate immunity
- KO, knockout
- LPS, lipopolysaccharide
- Liver inflammation
- Lyz2, Lysozyme 2
- MCP-1, monocyte chemoattractant protein 1
- NOX2, NADPH oxidase 2
- NOX4, NADPH oxidase 4
- NQO1, NAD(P)H quinone dehydrogenase 1
- NRF2, nuclear factor (erythroid-derived 2)-like 2
- NS, non-specific
- Necroptosis
- OASL1, 2′,5′oligoadenylate synthetase-like 1
- PAMP, pathogen-derived molecular pattern
- RIPK3, receptor-interacting serine/threonine-protein kinase 3
- ROS, reactive oxygen species
- STING
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TLR4, Toll-like receptor 4
- TNF-α, tumour necrosis factor-alpha
- TRX, thioredoxin
- TSS, transcription start sites
- TXNIP, thioredoxin-interacting protein
- TXNIPFL/FL, floxed TXNIP
- TXNIPM-KO, myeloid-specific TXNIP KO
- UTR, untranslated region
- sALT, serum ALT
- sAST, serum AST
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Yongqiang Zhan
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Dongwei Xu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yizhu Tian
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Xiaoye Qu
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mingwei Sheng
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yuanbang Lin
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Longfeng Jiang
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fady M. Kaldas
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Douglas G. Farmer
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
37
|
Lactucin & Lactucopicrin ameliorates FFA-induced steatosis in HepG2 cells via modulating lipid metabolism. J Pharmacol Sci 2022; 150:110-122. [DOI: 10.1016/j.jphs.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/09/2022] [Accepted: 07/28/2022] [Indexed: 11/19/2022] Open
|
38
|
Deng KQ, Huang X, Lei F, Zhang XJ, Zhang P, She ZG, Cai J, Ji YX, Li H. Role of hepatic lipid species in the progression of nonalcoholic fatty liver disease. Am J Physiol Cell Physiol 2022; 323:C630-C639. [PMID: 35759443 DOI: 10.1152/ajpcell.00123.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease due to the global pandemic of metabolic diseases. Dysregulation of hepatic lipid metabolism plays a central role in the initiation and progression of NAFLD. With the advancement of lipidomics, an increasing number of lipid species and underlying mechanisms associating hepatic lipid components have been revealed. Therefore, the focus of this review is to highlight the links between hepatic lipid species and their mechanisms mediating the pathogenesis of NAFLD. We first summarized the interplay between NAFLD and hepatic lipid disturbances. Next, we focused on reviewing the role of saturated fatty acids, cholesterol, oxidized phospholipids, and their respective intermediates in the pathogenesis of NAFLD. The mechanisms by which monounsaturated fatty acids and other pro-resolving mediators exert protective effects are also addressed. Finally, we further discussed the implication of different analysis approaches in lipidomics. Evolving insights into the pathophysiology of NAFLD will provide the opportunity for drug development.
Collapse
Affiliation(s)
- Ke-Qiong Deng
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China
- Huanggang Institute of Translation Medicine, Huanggang, China
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuewei Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Fang Lei
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Xiao-Jing Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Peng Zhang
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan-Xiao Ji
- Institute of Model Animal, Wuhan University, Wuhan, China
- School of Basic Medical Science, Wuhan University, Wuhan, China
| | - Hongliang Li
- Huanggang Institute of Translation Medicine, Huanggang, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Institute of Model Animal, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Mooli RGR, Mukhi D, Ramakrishnan SK. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases. Compr Physiol 2022; 12:3167-3192. [PMID: 35578969 PMCID: PMC10074426 DOI: 10.1002/cphy.c200021] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The increased production of derivatives of molecular oxygen and nitrogen in the form of reactive oxygen species (ROS) and reactive nitrogen species (RNS) lead to molecular damage called oxidative stress. Under normal physiological conditions, the ROS generation is tightly regulated in different cells and cellular compartments. Any disturbance in the balance between the cellular generation of ROS and antioxidant balance leads to oxidative stress. In this article, we discuss the sources of ROS (endogenous and exogenous) and antioxidant mechanisms. We also focus on the pathophysiological significance of oxidative stress in various cell types of the liver. Oxidative stress is implicated in the development and progression of various liver diseases. We narrate the master regulators of ROS-mediated signaling and their contribution to liver diseases. Nonalcoholic fatty liver diseases (NAFLD) are influenced by a "multiple parallel-hit model" in which oxidative stress plays a central role. We highlight the recent findings on the role of oxidative stress in the spectrum of NAFLD, including fibrosis and liver cancer. Finally, we provide a brief overview of oxidative stress biomarkers and their therapeutic applications in various liver-related disorders. Overall, the article sheds light on the significance of oxidative stress in the pathophysiology of the liver. © 2022 American Physiological Society. Compr Physiol 12:3167-3192, 2022.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dhanunjay Mukhi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sadeesh K Ramakrishnan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
40
|
Ye G, Liu H, Zhou Q, Liu X, Huang L, Weng C. A Tug of War: Pseudorabies Virus and Host Antiviral Innate Immunity. Viruses 2022; 14:v14030547. [PMID: 35336954 PMCID: PMC8949863 DOI: 10.3390/v14030547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/16/2022] Open
Abstract
The non-specific innate immunity can initiate host antiviral innate immune responses within minutes to hours after the invasion of pathogenic microorganisms. Therefore, the natural immune response is the first line of defense for the host to resist the invaders, including viruses, bacteria, fungi. Host pattern recognition receptors (PRRs) in the infected cells or bystander cells recognize pathogen-associated molecular patterns (PAMPs) of invading pathogens and initiate a series of signal cascades, resulting in the expression of type I interferons (IFN-I) and inflammatory cytokines to antagonize the infection of microorganisms. In contrast, the invading pathogens take a variety of mechanisms to inhibit the induction of IFN-I production from avoiding being cleared. Pseudorabies virus (PRV) belongs to the family Herpesviridae, subfamily Alphaherpesvirinae, genus Varicellovirus. PRV is the causative agent of Aujeszky’s disease (AD, pseudorabies). Although the natural host of PRV is swine, it can infect a wide variety of mammals, such as cattle, sheep, cats, and dogs. The disease is usually fatal to these hosts. PRV mainly infects the peripheral nervous system (PNS) in swine. For other species, PRV mainly invades the PNS first and then progresses to the central nervous system (CNS), which leads to acute death of the host with serious clinical and neurological symptoms. In recent years, new PRV variant strains have appeared in some areas, and sporadic cases of PRV infection in humans have also been reported, suggesting that PRV is still an important emerging and re-emerging infectious disease. This review summarizes the strategies of PRV evading host innate immunity and new targets for inhibition of PRV replication, which will provide more information for the development of effective inactivated vaccines and drugs for PRV.
Collapse
Affiliation(s)
- Guangqiang Ye
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Hongyang Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Qiongqiong Zhou
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Xiaohong Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
| | - Li Huang
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
| | - Changjiang Weng
- State Key Laboratory of Veterinary Biotechnology, Division of Fundamental Immunology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150069, China; (G.Y.); (H.L.); (Q.Z.); (X.L.); (L.H.)
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China
- Correspondence:
| |
Collapse
|
41
|
Chen M, Yao L, Zhou L, Yang P, Zou W, Xu L, Li S, Peng H. Toxoplasma gondii
ROP18
I
inhibits host innate immunity through cGAS‐STING signaling. FASEB J 2022; 36:e22171. [DOI: 10.1096/fj.202101347r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/19/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Min Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Lijie Yao
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Lijuan Zhou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Pei Yang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Weihao Zou
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Liqing Xu
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Shengmin Li
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| | - Hongjuan Peng
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health Southern Medical University Guangzhou P. R. China
| |
Collapse
|
42
|
Hepatocellular BChE as a therapeutic target to ameliorate hypercholesterolemia through PRMT5 selective degradation to restore LDL receptor transcription. Life Sci 2022; 293:120336. [PMID: 35065166 DOI: 10.1016/j.lfs.2022.120336] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 11/22/2022]
Abstract
AIMS Individuals with nonalcoholic hepatosteatosis (NAFLD) have a worse atherogenic lipoprotein profile and are susceptible to cardiovascular diseases. The MEK-ERK signaling cascades are central regulators of the levels of LDL receptor (LDLR), a major determinant of circulating cholesterol. It is elusive how hepatic steatosis contributes to dyslipidemia, especially hypercholesterolemia. MAIN METHODS The effects of BChE on signaling pathways were determined by immunoblotting in a BChE knockout hepatocyte cell line. DiI-LDL probe was used to explore the effect of BChE expression on LDL internalization. Co-immunoprecipitation and LC-MS were used to explore the interacting proteins with BChE. Finally, a hepatocyte-restricted BChE silencing mouse model was established by AAV8-Tbg-shRNA, and the hypercholesterolemia was induced by 65% kcal% high-fat, high-sucrose diet feeding. MAIN FINDINGS Here we demonstrate that butyrylcholinesterase (BChE) governs the LDL receptor levels and LDL uptake capacity through the MEK-ERK signaling cascades to promote Ldlr transcription. BChE interacts and co-localizes with PRMT5, a protein methylation modifier controlling the ERK signaling. PRMT5 regulates LDLR-dependent LDL uptake and is a substrate of chaperone-mediated autophagy (CMA). BChE deficiency induces the PRTM5 degradation dependent on CMA activity, possibly through facilitating the HSC70 (Heat shock cognate 71 kDa) recognition of PRMT5. Remarkably, in vivo hepatocyte-restricted BChE silencing reduces plasma cholesterol levels substantially. In contrast, the BChE knockout mice are predisposed to hypercholesterolemia. SIGNIFICANCE Taken together, these findings outline a regulatory role for the BChE-PRMT5-ERK-LDLR axis in hepatocyte cholesterol metabolism, and suggest that targeting liver BChE is an effective therapeutic strategy to treat hypercholesterolemia.
Collapse
|
43
|
The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy. Acta Pharm Sin B 2022; 12:50-75. [PMID: 35127372 PMCID: PMC8799861 DOI: 10.1016/j.apsb.2021.05.011] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.
Collapse
Key Words
- AA, amino acids
- AAD, aortic aneurysm and dissection
- AKT, protein kinase B
- AMPK, AMP-activated protein kinase
- ATP, adenosine triphosphate
- Ang II, angiotensin II
- CBD, C-binding domain
- CDG, c-di-GMP
- CDNs, cyclic dinucleotides
- CTD, C-terminal domain
- CTT, C-terminal tail
- CVDs, cardiovascular diseases
- Cardiovascular diseases
- Cys, cysteine
- DAMPs, danger-associated molecular patterns
- Damage-associated molecular patterns
- DsbA-L, disulfide-bond A oxidoreductase-like protein
- ER stress
- ER, endoplasmic reticulum
- GTP, guanosine triphosphate
- HAQ, R71H-G230A-R293Q
- HFD, high-fat diet
- ICAM-1, intracellular adhesion molecule 1
- IFN, interferon
- IFN-I, type 1 interferon
- IFNAR, interferon receptors
- IFNIC, interferon-inducible cells
- IKK, IκB kinase
- IL, interleukin
- IRF3, interferon regulatory factor 3
- ISGs, IRF-3-dependent interferon-stimulated genes
- Inflammation
- LBD, ligand-binding pocket
- LPS, lipopolysaccharides
- MI, myocardial infarction
- MLKL, mixed lineage kinase domain-like protein
- MST1, mammalian Ste20-like kinases 1
- Metabolic diseases
- Mitochondria
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NF-κB, nuclear factor-kappa B
- NLRP3, NOD-, LRR- and pyrin domain-containing protein 3
- NO2-FA, nitro-fatty acids
- NTase, nucleotidyltransferase
- PDE3B/4, phosphodiesterase-3B/4
- PKA, protein kinase A
- PPI, protein–protein interface
- Poly: I.C, polyinosinic-polycytidylic acid
- ROS, reactive oxygen species
- SAVI, STING-associated vasculopathy with onset in infancy
- SNPs, single nucleotide polymorphisms
- STIM1, stromal interaction molecule 1
- STING
- STING, stimulator of interferon genes
- Ser, serine
- TAK1, transforming growth factor β-activated kinase 1
- TBK1, TANK-binding kinase 1
- TFAM, mitochondrial transcription factor A
- TLR, Toll-like receptors
- TM, transmembrane
- TNFα, tumor necrosis factor-alpha
- TRAF6, tumor necrosis factor receptor-associated factor 6
- TREX1, three prime repair exonuclease 1
- YAP1, Yes-associated protein 1
- cGAMP, 2′,3′-cyclic GMP–AMP
- cGAS
- cGAS, cyclic GMP–AMP synthase
- dsDNA, double-stranded DNA
- hSTING, human stimulator of interferon genes
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
Collapse
|
44
|
The role of nursing care in the type 2 diabetes treatment associated with chronic liver diseases. Eur J Gastroenterol Hepatol 2022; 34:104-111. [PMID: 33852508 DOI: 10.1097/meg.0000000000002150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVE Diabetes is the fifth leading cause of death in the People's Republic of China. The aim of the article is to compare the effects of nursing care on the laboratory findings and ultrasound results of diabetic patients with chronic liver diseases (CLD) who were treated with antiglycemic drugs. METHODS Diabetic were patients treated with metformin hydrochloride in combination with gliclazide, pioglitazone hydrochloride, sitagliptin, exenatide or liraglutide. Non-alcoholic fatty liver disease (NAFLD) was evaluated by abdominal ultrasound, and fibrosis stages were evaluated at baseline and 8 months. All the patients were equally divided into two groups depending on the therapeutic approach. RESULTS The first group of patients additionally received nursing care, and the second group adhered to the prescribed therapy on their own. In total 90 patients, or 55.6%, had NAFLD at baseline, and its course was dependent upon changes in the weight (P = 0.009) and waist circumference (P = 0.012). The proportions of patients who demonstrated an ultrasonographic improvement in the control group were: 24 (56.8%) with gliclazide, 15 (41.3%) with pioglitazone hydrochloride, 28 (66.1%) with sitagliptin, 16 (79%) with exenatide and 15 (66.7%) with liraglutide (P = 0.2). For the group that received nursing care an ultrasonographic improvement was in: 29 (68.16%) with gliclazide, 18 (49.56%) with pioglitazone hydrochloride, 33 (79.32%) with sitagliptin, 19 (94.8%) with exenatide and 21 80.04% with liraglutide (P = 0.2). CONCLUSIONS Outcomes from the type 2 diabetes treatment paralleling of CLD were presented. Treatment of type 2 diabetes with pioglitazone hydrochloride, gliclazide, sitagliptin, liraglutide and exenatide was proven effective.
Collapse
|
45
|
Wu JT, He BW, Cao JL, Yan JB, Chen ZY. Involvement of STING signaling pathway in non-alcoholic fatty liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1396-1401. [DOI: 10.11569/wcjd.v29.i24.1396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the major chronic liver diseases worldwide, which seriously threatens human health and has become a major public health problem. Immune mechanism plays a key role in the occurrence and development of NAFLD. Interferon gene stimulating factor (STING) is a key connector protein of the immune system, and its related signaling pathway has become a recent hot research topic. This signaling pathway may be involved in the occurrence and development of NAFLD by mediating liver inflammation, lipid metabolism, apoptosis, and other processes that affect liver metabolic homeostasis. Combining relevant reports and the latest literature, this paper reviews NAFLD and immunity, the composition of STING signaling pathway, and the relationship between the STING signaling pathway and NAFLD, in order to provide ideas for further in-depth study of the complex relationship between the STING signaling pathway and NAFLD and the development of relevant targeted drugs.
Collapse
Affiliation(s)
- Jin-Ting Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Bo-Wu He
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Jie-Lu Cao
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Jun-Bin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| | - Zhi-Yun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou Command, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
46
|
Bao T, Liu J, Leng J, Cai L. The cGAS-STING pathway: more than fighting against viruses and cancer. Cell Biosci 2021; 11:209. [PMID: 34906241 PMCID: PMC8670263 DOI: 10.1186/s13578-021-00724-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023] Open
Abstract
In the classic Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway, downstream signals can control the production of type I interferon and nuclear factor kappa-light-chain-enhancer of activated B cells to promote the activation of pro-inflammatory molecules, which are mainly induced during antiviral responses. However, with progress in this area of research, studies focused on autoimmune diseases and chronic inflammatory conditions that may be relevant to cGAS-STING pathways have been conducted. This review mainly highlights the functions of the cGAS-STING pathway in chronic inflammatory diseases. Importantly, the cGAS-STING pathway has a major impact on lipid metabolism. Different research groups have confirmed that the cGAS-STING pathway plays an important role in the chronic inflammatory status in various organs. However, this pathway has not been studied in depth in diabetes and diabetes-related complications. Current research on the cGAS-STING pathway has shown that the targeted therapy of diseases that may be caused by inflammation via the cGAS-STING pathway has promising outcomes.
Collapse
Affiliation(s)
- Terigen Bao
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Jia Liu
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiyan Leng
- Department of Geriatrics, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Department of Pediatrics, The Pediatric Research Institute, The University of Louisville School of Medicine, Louisville, KY, 40292, USA
- Departments of Pharmacology and Toxicology, The University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
47
|
Lee S, Shin J, Kim JS, Shin J, Lee SK, Park HW. Targeting TBK1 Attenuates LPS-Induced NLRP3 Inflammasome Activation by Regulating of mTORC1 Pathways in Trophoblasts. Front Immunol 2021; 12:743700. [PMID: 34858401 PMCID: PMC8630692 DOI: 10.3389/fimmu.2021.743700] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Pathological maternal inflammation and abnormal placentation contribute to several pregnancy-related disorders, including preterm birth, intrauterine growth restriction, and preeclampsia. TANK-binding kinase 1 (TBK1), a serine/threonine kinase, has been implicated in the regulation of various physiological processes, including innate immune response, autophagy, and cell growth. However, the relevance of TBK1 in the placental pro-inflammatory environment has not been investigated. In this study, we assessed the effect of TBK1 inhibition on lipopolysaccharide (LPS)-induced NLRP3 inflammasome activation and its underlying mechanisms in human trophoblast cell lines and mouse placenta. TBK1 phosphorylation was upregulated in the trophoblasts and placenta in response to LPS. Pharmacological and genetic inhibition of TBK1 in trophoblasts ameliorated LPS-induced NLRP3 inflammasome activation, placental inflammation, and subsequent interleukin (IL)-1 production. Moreover, maternal administration of amlexanox, a TBK1 inhibitor, reversed LPS-induced adverse pregnancy outcomes. Notably, TBK1 inhibition prevented LPS-induced NLRP3 inflammasome activation by targeting the mammalian target of rapamycin complex 1 (mTORC1). Thus, this study provides evidence for the biological significance of TBK1 in placental inflammation, suggesting that amlexanox may be a potential therapeutic candidate for treating inflammation-associated pregnancy-related complications.
Collapse
Affiliation(s)
- Sohee Lee
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| | - Jiha Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea
| | - Jongdae Shin
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea.,Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea
| | - Sung Ki Lee
- Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, South Korea.,Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, South Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, South Korea
| |
Collapse
|
48
|
Chen R, Du J, Zhu H, Ling Q. The role of cGAS-STING signalling in liver diseases. JHEP Rep 2021; 3:100324. [PMID: 34381984 PMCID: PMC8340306 DOI: 10.1016/j.jhepr.2021.100324] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
The recently identified novel cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS) activates the downstream adaptor protein stimulator of interferon genes (STING) by catalysing the synthesis of cyclic GMP-AMP. This in turn initiates an innate immune response through the release of various cytokines, including type I interferon. Foreign DNA (microbial infection) or endogenous DNA (nuclear or mitochondrial leakage) can serve as cGAS ligands and lead to the activation of cGAS-STING signalling. Therefore, the cGAS-STING pathway plays essential roles in infectious diseases, sterile inflammation, tumours, and autoimmune diseases. In addition, cGAS-STING signalling affects the progression of liver inflammation through other mechanisms, such as autophagy and metabolism. In this review, we summarise recent advances in our understanding of the role of cGAS-STING signalling in the innate immune modulation of different liver diseases. Furthermore, we discuss the therapeutic potential of targeting the cGAS-STING pathway in the treatment of liver diseases.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALD, alcohol-related liver disease
- APCs, antigen-presenting cells
- CDNs, cyclic dinucleotides
- DAMPs, damage-associated molecular patterns
- DCs, dendritic cells
- ER, endoplasmic reticulum
- GVHD, graft-versus-host disease
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- IFN-I, type I interferon
- IL, interleukin
- IRF3, interferon regulatory factor 3
- IRI, ischaemia refusion injury
- KCs, Kupffer cells
- LSECs, liver sinusoidal endothelial cells
- MHC, major histocompatibility complex
- NAFLD, non-alcoholic fatty liver disease
- NK cells, natural killer cells
- NPCs, non-parenchymal cells
- PAMPs, pathogen-associated molecular patterns
- PD-1, programmed cell death protein-1
- PD-L1, programmed cell death protein ligand-1
- PPRs, pattern recognition receptors
- SAVI, STING-associated vasculopathy with onset in infancy
- STING, stimulator of interferon genes
- TBK1, TANK-binding kinase 1
- TGF-β1, transforming growth factor-β1
- TLR, Toll-like receptor
- TNF, tumour necrosis factor
- XRCC, X-ray repair cross complementing
- aHSCT, allogeneic haematopoietic stem cell transplantation
- cGAMP, cyclic guanosine monophosphate-adenosine monophosphate
- cGAS, cyclic guanosine monophosphate-adenosine monophosphate synthase
- cGAS-STING signalling
- dsDNA, double-strand DNA
- hepatocellular carcinoma
- innate immune response
- liver injury
- mTOR, mammalian target of rapamycin
- mtDNA, mitochondrial DNA
- nonalcoholic fatty liver disease
- siRNA, small interfering RNA
- ssRNA, single-stranded RNA
- viral hepatitis
Collapse
Affiliation(s)
- Ruihan Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiamin Du
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
49
|
Liu K, Qiu D, Liang X, Huang Y, Wang Y, Jia X, Li K, Zhao J, Du C, Qiu X, Cui J, Xiao Z, Qin Y, Zhang Q. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy 2021; 18:860-876. [PMID: 34382907 DOI: 10.1080/15548627.2021.1961072] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lipid accumulation often leads to lipotoxic injuries to hepatocytes, which can cause nonalcoholic steatohepatitis. The association of inflammation with lipid accumulation in liver tissue has been studied for decades; however, key mechanisms have been identified only recently. In particular, it is still unknown how hepatic inflammation regulates lipid metabolism in hepatocytes. Herein, we found that PA treatment or direct stimulation of STING1 promoted, whereas STING1 deficiency impaired, MTORC1 activation, suggesting that STING1 is involved in PA-induced MTORC1 activation. Mechanistic studies revealed that STING1 interacted with several components of the MTORC1 complex and played an important role in the complex formation of MTORC1 under PA treatment. The involvement of STING1 in MTORC1 activation was dependent on SQSTM1, a key regulator of the MTORC1 pathway. In SQSTM1-deficient cells, the interaction of STING1 with the components of MTORC1 was weak. Furthermore, the impaired activity of MTORC1 via rapamycin treatment or STING1 deficiency decreased the numbers of LDs in cells. PA treatment inhibited lipophagy, which was not observed in STING1-deficient cells or rapamycin-treated cells. Restoration of MTORC1 activity via treatment with amino acids blocked lipophagy and LDs degradation. Finally, increased MTORC1 activation concomitant with STING1 activation was observed in liver tissues of nonalcoholic fatty liver disease patients, which provided clinical evidence for the involvement of STING1 in MTORC1 activation. In summary, we identified a novel regulatory loop of STING1-MTORC1 and explain how hepatic inflammation regulates lipid accumulation. Our findings may facilitate the development of new strategies for clinical treatment of hepatic steatosis.Abbreviations: AA: amino acid; ACTB: actin beta; cGAMP: cyclic GMP-AMP; CGAS: cyclic GMP-AMP synthase; DEPTOR: DEP domain containing MTOR interacting protein; EIF4EBP1: eukaryotic translation initiation factor 4E binding protein 1; FFAs: free fatty acids; GFP: green fluorescent protein; HFD: high-fat diet; HT-DNA: herring testis DNA; IL1B: interleukin 1 beta; LAMP1: lysosomal associated membrane protein 1; LDs: lipid droplets; MAP1LC3: microtubule associated protein 1 light chain 3; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MLST8: MTOR associated protein, LST8 homolog; MT-ND1: mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1; mtDNA: mitochondrial DNA; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NAFL: nonalcoholic fatty liver; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NPCs: non-parenchymal cells; PA: palmitic acid; PLIN2: perilipin 2; RD: regular diet; RELA: RELA proto-oncogene, NF-kB subunit; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RPTOR: regulatory associated protein of MTOR complex 1; RRAGA: Ras related GTP binding A; RRAGC: Ras related GTP binding C; SQSTM1: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK binding kinase 1; TGs: triglycerides; TREX1: three prime repair exonuclease 1.
Collapse
Affiliation(s)
- Kunpeng Liu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongbo Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xue Liang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yingqi Huang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Jia
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing China
| | - Kun Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jingyuan Zhao
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cong Du
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhendong Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Yunfei Qin
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| | - Qi Zhang
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China
| |
Collapse
|
50
|
Abstract
STING (stimulator of interferon genes) also known as transmembrane protein 173 (TMEM173) is a cytoplasmic DNA sensor which can be activated by the upstream cyclic dinucleotides (CDNs). This activation produces cytokines such as interferons and pro-inflammatory factors via the downstream IRF3 and NF-κB pathways, triggering an innate immune response and adaptive immunity to maintain homeostasis. STING is mainly expressed and activated in non-parenchymal cells, thus exerting a corresponding effect to maintain the homeostasis of the liver. In viral hepatitis, interferons and pro-inflammatory factors produced after STING activation initiate the immune response to inhibit virus replication and assembly. In the case of metabolic diseases of the liver, the activation of STING in kupffer cells and hepatic stellate cells leads to inflammation, the proliferation of connective tissue, and metabolic disorders in the hepatocytes, promoting the occurrence and development of the disease. In hepatocellular carcinoma, STING has two contradictory roles. When STING is activated in dendritic cells and macrophages, a large number of cytokines can be produced to initiate innate immune effects directly and to exert adaptive immunity through the recruitment and activation of T cells; however, aberrant activation of the STING pathway leads to a weakening of immune function and promotes oncogenesis and metastasis. Here, we summarize the interactions between STING and liver disease that have currently been identified and how to achieve therapeutic goals by modulating the activity of the STING pathway.
Collapse
Affiliation(s)
- Can Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Rui-Xia Yang
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Hua-Guo Xu
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, 300 Guang Zhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|