1
|
Zhang K, Zhang M, Luo Z, Wen Z, Yan X. The dichotomous role of TGF-β in controlling liver cancer cell survival and proliferation. J Genet Genomics 2020; 47:497-512. [PMID: 33339765 DOI: 10.1016/j.jgg.2020.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major form of primary liver cancer and one of the most prevalent and life-threatening malignancies globally. One of the hallmarks in HCC is the sustained cell survival and proliferative signals, which are determined by the balance between oncogenes and tumor suppressors. Transforming growth factor beta (TGF-β) is an effective growth inhibitor of epithelial cells including hepatocytes, through induction of cell cycle arrest, apoptosis, cellular senescence, or autophagy. The antitumorigenic effects of TGF-β are bypassed during liver tumorigenesis via multiple mechanisms. Furthermore, along with malignant progression, TGF-β switches to promote cancer cell survival and proliferation. This dichotomous nature of TGF-β is one of the barriers to therapeutic targeting in liver cancer. Thereafter, understanding the underlying molecular mechanisms is a prerequisite for discovering novel antitumor drugs that may specifically disable the growth-promoting branch of TGF-β signaling or restore its tumor-suppressive arm. This review summarizes how TGF-β inhibits or promotes liver cancer cell survival and proliferation, highlighting the functional switch mechanisms during the process.
Collapse
Affiliation(s)
- Kegui Zhang
- School of Biological Engineering, Huainan Normal University, Huainan, 232001, China
| | - Meiping Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China
| | - Zhijun Luo
- School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Xiaohua Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Institute of Biomedical Sciences, Nanchang University Medical College, Nanchang, 330031, China.
| |
Collapse
|
2
|
Li Z, Zhao F, Cao Y, Zhang J, Shi P, Sun X, Zhang F, Tong L. DHA attenuates hepatic ischemia reperfusion injury by inhibiting pyroptosis and activating PI3K/Akt pathway. Eur J Pharmacol 2018; 835:1-10. [PMID: 30075219 DOI: 10.1016/j.ejphar.2018.07.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 01/27/2023]
Abstract
Hepatic ischemia reperfusion (I/R) injury is very common in liver transplantation and major liver surgeries and may cause liver failure or even death. Docosahexaenoic acid (DHA) has displayed activities in reducing oxidative stress and inflammatory reaction in many disorders. In the present study, we investigated the protective effects of DHA against I/R-induced injury and the underlying mechanisms. Here, we show that DHA protected hepatic I/R injury by reducing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and decreasing the oxidative stress in liver tissues. The viability of Buffalo rat liver (BRL) cells was reduced by hypoxia/restoration (H/R) but restored by DHA. DHA significantly downregulated the expression of pyroptosis-related proteins including NLR pyrin domain containing 3 (NLRP3), apoptotic speck-like protein containing CARD (ASC) and cleaved caspase-1 and reduced the secretion of pro-inflammatory cytokines. The above results were supported by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. However, incubation with LY294002, a specific inhibitor of phosphatidylinositol-3-kinase (PI3K), abolished the effects of DHA, since it increased the expression of cleaved caspase-1 and the production of inflammatory cytokines. The present results have demonstrated that DHA ameliorated I/R-induced injury by inhibiting pyroptosis of hepatocytes induced in liver I/R injury in vivo and in vitro through the PI3K/Akt pathway, providing a potential therapeutic option to prevent liver injury by I/R.
Collapse
Affiliation(s)
- Ziyi Li
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Fazhang Zhao
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163391, Heilongjiang Province, China
| | - Jingyan Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China
| | - Pilong Shi
- Department of Pharmacology, Harbin Medical University-Daqing, Daqing 163391, Heilongjiang Province, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Feng Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China.
| | - Liquan Tong
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing 163316, Heilongjiang Province, China.
| |
Collapse
|
3
|
Arisaka Y, Kobayashi J, Ohashi K, Tatsumi K, Kim K, Akiyama Y, Yamato M, Okano T. A heparin-modified thermoresponsive surface with heparin-binding epidermal growth factor-like growth factor for maintaining hepatic functions in vitro and harvesting hepatocyte sheets. Regen Ther 2016; 3:97-106. [PMID: 31245479 PMCID: PMC6581876 DOI: 10.1016/j.reth.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/08/2016] [Accepted: 03/08/2016] [Indexed: 01/21/2023] Open
Abstract
A heparin-modified thermoresponsive surface bound with heparin-binding epidermal growth factor-like growth factor (HB-EGF) was designed to allow creation of transferrable and functional hepatocyte sheets. A heparin-modified thermoresponsive surface was prepared by covalently tethering heparin onto poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide)-grafted tissue culture polystyrene surfaces (Heparin-IC). HB-EGFs were able to stably bind to heparin-IC via affinity interaction. The survival of primary rat hepatocytes was maintained through HB-EGF-bound heparin-IC (HB-EGF/heparin-IC). Moreover, cultured rat primary hepatocytes on HB-EGF/heparin-IC exhibited higher albumin-secretion than hepatocytes cultured on PIPAAm-grafted and collagen-coated surfaces with soluble HB-EGF in the culture medium, regardless of whether soluble EGF was added. These results suggested that HB-EGF/heparin-IC is able to effectively maintain hepatic function via continuous signaling of HB-EGF. After a 4-day cultivation, the cultured hepatocytes on HB-EGF/heparin-IC detached as a cell sheet with fibronectin and HB-EGF only after the temperature was lowered to 20 °C. In addition, higher expression of hepatocyte-specific genes (albumin, hepatocyte nuclear factor 4 alpha, coagulation factor VII, and coagulation factor IX) in hepatocyte sheets was detected on HB-EGF/heparin-IC than on a PIPAAm surface with soluble HB-EGF, indicating that HB-EGF/heparin-IC suppressed the dedifferentiation of cultured hepatocytes. Hence, heparin-modified thermoresponsive surfaces bound with HB-EGF facilitate the fabrication of transferrable hepatocyte sheets with intact hepatic functions and have the potential to provide an in vitro culture system using functional hepatocyte sheet tissues, which may serve as an effective hepatocyte-based tissue engineering platform for liver disease treatments.
Collapse
Key Words
- Alb, albumin
- CIPAAm, 2-carboxyisopropylacrylamide
- DMEM, Dulbecco's modified Eagle's medium
- ECM, extracellular matrix
- EDC, 1-ethyl-3-(3-dimetylaminopropyl)-carbodiimide hydrochloride
- EDTA, trypsin/ethylenediaminetetraacetic acid
- EGF, epidermal growth factor
- ELISA, enzyme-linked immunosorbent assay
- F7, coagulation factor VII
- F9, coagulation factor IX
- FBS, fetal bovine serum
- HB-EGF, heparin-binding EGF-like growth factor
- HB-EGFX/heparin-IC, HB-EGF-bound heparin-IC
- Heparin
- Heparin-binding EGF-like growth factor
- Hepatocyte sheet
- Hnf4α, hepatocyte nuclear factor 4 alpha
- IC, poly(N-isopropylacrylamide-co-2-carboxyisopropylacrylamide) on TCPS
- IPAAm, N-isopropylacrylamide
- MES, morpholinoethanesulfonic acid monohydrate
- NHS, N-hydroxysuccinimide
- PBS, Dulbecco's phosphate buffered saline
- PIPAAm, poly(N-isopropylacrylamide) on TCPS
- PIPAAm + HB-EGFY, PIPAAm with soluble HB-EGF
- Poly(N-isopropylacrylamide)
- RT-PCR, reverse transcription polymerase chain reaction
- TCPS, tissue culture polystyrene dishe
- Thermoresponsive cell culture surface
- bFGF, basic fibroblast growth factor
- heparin-IC, heparin-modified IC
Collapse
Affiliation(s)
| | - Jun Kobayashi
- Institute of Advanced Biomedical Engineering and Science and Global Center of Excellence (COE) Program, Tokyo Women's Medical University (TWIns), 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science and Global Center of Excellence (COE) Program, Tokyo Women's Medical University (TWIns), 8-1 Kawadacho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
4
|
Dangi A, Huang C, Tandon A, Stolz D, Wu T, Gandhi CR. Endotoxin-stimulated Rat Hepatic Stellate Cells Induce Autophagy in Hepatocytes as a Survival Mechanism. J Cell Physiol 2016; 231:94-105. [PMID: 26031389 DOI: 10.1002/jcp.25055] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
Abstract
Bacterial lipopolysaccharide (LPS)-stimulated hepatic stellate cells (HSCs) produce many cytokines including IFNβ, TNFα, and IL6, strongly inhibit DNA synthesis, but induce apoptosis of a small number of hepatocytes. In vivo administration of LPS (up to 10 mg/mL) causes modest inflammation and weight loss in rats but not mortality. We determined whether LPS-stimulated HSCs instigate mechanisms of hepatocyte survival. Rats received 10 mg/kg LPS (i.p.) and determinations were made at 6 h. In vitro, HSCs were treated with 100 ng/mL LPS till 24 h. The medium was transferred to hepatocytes, and determinations were made at 0-12 h. Controls were HSC-conditioned medium or medium-containing LPS. LPS treatment of rats caused autophagy in hepatocytes, a physiological process for clearance of undesirable material including injured or damaged organelles. This was accompanied by activation of c-Jun NH2 terminal kinase (JNK) and apoptosis of ~4-5% of hepatocytes. In vitro, LPS-conditioned HSC medium (LPS/HSC) induced autophagy in hepatocytes but apoptosis of only ~10% of hepatocytes. While LPS/HSC stimulated activation of JNK (associated with cell death), it also activated NFkB and ERK1/2 (associated with cell survival). LPS-stimulated HSCs produced IFNβ, and LPS/HSC-induced autophagy in hepatocytes and their apoptosis were significantly inhibited by anti-IFNβ antibody. Blockade of autophagy, on the other hand, strongly augmented hepatocyte apoptosis. While LPS-stimulated HSCs cause apoptosis of a subpopulation of hepatocytes by producing IFNβ, they also induce cell survival mechanisms, which may be of critical importance in resistance to liver injury during endotoxemia.
Collapse
Affiliation(s)
- Anil Dangi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Cincinnati, and Cincinnati VA Medical Center, Cincinnati, Ohio.,Cincinnati VA Medical Center, Cincinnati, Ohio
| | - Chao Huang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ashish Tandon
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Cincinnati, and Cincinnati VA Medical Center, Cincinnati, Ohio
| | - Donna Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tong Wu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chandrashekhar R Gandhi
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, University of Cincinnati, and Cincinnati VA Medical Center, Cincinnati, Ohio.,Cincinnati VA Medical Center, Cincinnati, Ohio.,Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
5
|
Wang P, Yang AT, Cong M, Liu TH, Zhang D, Huang J, Tong XF, Zhu ST, Xu Y, Tang SZ, Wang BE, Ma H, Jia JD, You H. EGF Suppresses the Initiation and Drives the Reversion of TGF-β1-induced Transition in Hepatic Oval Cells Showing the Plasticity of Progenitor Cells. J Cell Physiol 2015; 230:2362-70. [PMID: 25739869 DOI: 10.1002/jcp.24962] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 02/17/2015] [Indexed: 12/15/2022]
Abstract
Transforming growth factor-β1 (TGF-β1) induces hepatic progenitors to tumor initiating cells through epithelial-mesenchymal transition (EMT), thus raising an important drawback for stem cell-based therapy. How to block and reverse TGF-β1-induced transition is crucial for progenitors' clinical application and carcinogenic prevention. Rat adult hepatic progenitors, hepatic oval cells, experienced E-cadherin to N-cadherin switch and changed to α-smooth muscle actin (α-SMA) positive cells after TGF-β1 incubation, indicating EMT. When TGF-β1 plus EGF were co-administrated to these cells, EGF dose-dependently suppressed the cadherin switch and α-SMA expression. Interestingly, if EGF was applied to TGF-β1-pretreated cells, the cells that have experienced EMT could return to their epithelial phenotype. Abruption of EGF receptor revealed that EGF exerted its blockage and reversal effects through phosphorylation of ERK1/2 and Akt. These findings suggest an important attribute of EGF on opposing and reversing TGF-β1 effects, indicating the plasticity of hepatic progenitors.
Collapse
Affiliation(s)
- Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China.,Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing, China
| | - Ai-Ting Yang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tian-Hui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Dong Zhang
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jian Huang
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiao-Fei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Sheng-Tao Zhu
- Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yong Xu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shu-Zhen Tang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bao-En Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong Ma
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Ji-Dong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Translational Medicine in Liver Cirrhosis & National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
6
|
Zabala V, Tong M, Yu R, Ramirez T, Yalcin EB, Balbo S, Silbermann E, Deochand C, Nunez K, Hecht S, de la Monte SM. Potential contributions of the tobacco nicotine-derived nitrosamine ketone (NNK) in the pathogenesis of steatohepatitis in a chronic plus binge rat model of alcoholic liver disease. Alcohol Alcohol 2015; 50:118-31. [PMID: 25618784 PMCID: PMC4327341 DOI: 10.1093/alcalc/agu083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 12/16/2022] Open
Abstract
AIMS Alcoholic liver disease (ALD) is linked to binge drinking and cigarette smoking. Heavy chronic ± binge alcohol, or low-level exposures to dietary nitrosamines cause steatohepatitis with insulin resistance and oxidative stress in animal models. This study examines hepatotoxic effects of sub-mutagenic exposures to tobacco-specific nitrosamine (NNK) in relation to ALD. METHODS Long Evans rats were fed liquid diets containing 0 or 26% (caloric) ethanol (EtOH) for 8 weeks. In Weeks 3 through 8, rats were treated with NNK (2 mg/kg) or saline by i.p. injection, 3×/week, and in Weeks 7 and 8, EtOH-fed rats were binge-administered 2 g/kg EtOH 3×/week; controls were given saline. RESULTS EtOH ± NNK caused steatohepatitis with necrosis, disruption of the hepatic cord architecture, ballooning degeneration, early fibrosis, mitochondrial cytopathy and ER disruption. Severity of lesions was highest in the EtOH+NNK group. EtOH and NNK inhibited insulin/IGF signaling through Akt and activated pro-inflammatory cytokines, while EtOH promoted lipid peroxidation, and NNK increased apoptosis. O(6)-methyl-Guanine adducts were only detected in NNK-exposed livers. CONCLUSION Both alcohol and NNK exposures contribute to ALD pathogenesis, including insulin/IGF resistance and inflammation. The differential effects of EtOH and NNK on adduct formation are critical to ALD progression among alcoholics who smoke.
Collapse
MESH Headings
- Alcoholism
- Animals
- Binge Drinking
- Carcinogens/pharmacology
- Central Nervous System Depressants/pharmacology
- Central Nervous System Depressants/toxicity
- Disease Models, Animal
- Endoplasmic Reticulum/drug effects
- Endoplasmic Reticulum/metabolism
- Ethanol/pharmacology
- Ethanol/toxicity
- Fatty Liver, Alcoholic/etiology
- Fatty Liver, Alcoholic/metabolism
- Fatty Liver, Alcoholic/pathology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Insulin/metabolism
- Insulin Resistance
- Insulin-Like Growth Factor I/metabolism
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Diseases, Alcoholic/metabolism
- Liver Diseases, Alcoholic/pathology
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/metabolism
- Necrosis
- Nitrosamines/pharmacology
- Rats
- Rats, Long-Evans
- Receptor, IGF Type 1/metabolism
- Receptor, Insulin/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Valerie Zabala
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Rosa Yu
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Teresa Ramirez
- Department of Molecular Pharmacology and Physiology, Brown University, Providence, RI, USA
| | - Emine B Yalcin
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | | | - Chetram Deochand
- Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Kavin Nunez
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Stephen Hecht
- Masonic Cancer Center, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th Street SE, Minneapolis, MN 55455, USA
| | - Suzanne M de la Monte
- Department of Medicine, Division of Gastroenterology, and The Liver Research Center, Rhode Island Hospital, Providence, RI, USA Warren Alpert Medical School of Brown University, Providence, RI, USA Departments of Pathology and Neurology, and the Division of Neuropathology, Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
7
|
Suo L, Kang K, Wang X, Cao Y, Zhao H, Sun X, Tong L, Zhang F. Carvacrol alleviates ischemia reperfusion injury by regulating the PI3K-Akt pathway in rats. PLoS One 2014; 9:e104043. [PMID: 25083879 PMCID: PMC4118998 DOI: 10.1371/journal.pone.0104043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/09/2014] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Liver ischemia reperfusion (I/R) injury is a common pathophysiological process in many clinical settings. Carvacrol, a food additive commonly used in essential oils, has displayed antimicrobials, antitumor and antidepressant-like activities. In the present study, we investigated the protective effects of carvacrol on I/R injury in the Wistar rat livers and an in vitro hypoxia/restoration (H/R) model. METHODS The hepatoportal vein, hepatic arterial and hepatic duct of Wistar rats were isolated and clamped for 30 min, followed by a 2 h reperfusion. Buffalo rat liver (BRL) cells were incubated under hypoxia for 4 h, followed normoxic conditions for 10 h to establish the H/R model in vitro. Liver injury was evaluated by measuring serum levels of alanine aminotransferase (ALT) and aspatate aminotransferase (AST), and hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondiadehyde (MDA), and hepatic histology and TUNEL staining. MTT assay, flow cytometric analysis and Hoechst 33258 staining were used to evaluate the proliferation and apoptosis of BRL cells in vitro. Protein expression was examined by Western Blot analysis. RESULTS Carvacrol protected against I/R-induced liver damage, evidenced by significantly reducing the serum levels of ALT and AST, histological alterations and apoptosis of liver cells in I/R rats. Carvacrol exhibited anti-oxidative activity in the I/R rats, reflected by significantly reducing the activity of SOD and the content of MDA, and restoring the activity of CAT and the content of GSH, in I/R rats. In the in vitro assays, carvacrol restored the viability and inhibited the apoptosis of BRL cells, which were subjected to a mimic I/R injury induced by hypoxia. In the investigation on molecular mechanisms, carvacrol downregulated the expression of Bax and upregulated the expression of Bcl-2, thus inhibited the activation of caspase-3. Carvacrol was also shown to enhance the phosphorylation of Akt. CONCLUSION The results suggest that carvacrol could alleviate I/R-induced liver injury by its anti-oxidative and anti-apoptotic activities, and warrant a further investigation for using carvacrol to protect I/R injury in clinic.
Collapse
Affiliation(s)
- Lida Suo
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Kai Kang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Xun Wang
- Department of General Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Yonggang Cao
- Department of Pharmacology, Daqing Campus of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Haifeng Zhao
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Xueying Sun
- The Hepatosplenic Surgery Center, Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Liquan Tong
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Feng Zhang
- Department of General Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| |
Collapse
|
8
|
Tong M, Longato L, Ramirez T, Zabala V, Wands JR, de la Monte SM. Therapeutic reversal of chronic alcohol-related steatohepatitis with the ceramide inhibitor myriocin. Int J Exp Pathol 2013; 95:49-63. [PMID: 24456332 DOI: 10.1111/iep.12052] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 08/18/2013] [Indexed: 12/13/2022] Open
Abstract
Alcohol-related liver disease (ALD) is associated with steatohepatitis and insulin resistance. Insulin resistance impairs growth and disrupts lipid metabolism in hepatocytes. Dysregulated lipid metabolism promotes ceramide accumulation and oxidative stress, leading to lipotoxic states that activate endoplasmic reticulum (ER) stress pathways and worsen inflammation and insulin resistance. In a rat model of chronic alcohol feeding, we characterized the effects of a ceramide inhibitor, myriocin, on the histopathological and ultrastructural features of steatohepatitis, and the biochemical and molecular indices of hepatic steatosis, insulin resistance and ER stress. Myriocin reduced the severity of alcohol-related steatohepatitis including the abundance and sizes of lipid droplets and mitochondria, inflammation and architectural disruption of the ER. In addition, myriocin-mediated reductions in hepatic lipid and ceramide levels were associated with constitutive enhancement of insulin signalling through the insulin receptor and IRS-2, reduced hepatic oxidative stress and modulation of ER stress signalling mechanisms. In conclusion, ceramide accumulation in liver mediates tissue injury, insulin resistance and lipotoxicity in ALD. Reducing hepatic ceramide levels can help restore the structural and functional integrity of the liver in chronic ALD due to amelioration of insulin resistance and ER stress. However, additional measures are needed to protect the liver from alcohol-induced necroinflammatory responses vis-à-vis continued alcohol abuse.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | | | | | | |
Collapse
|
9
|
Lizarazo D, Zabala V, Tong M, Longato L, de la Monte SM. Ceramide inhibitor myriocin restores insulin/insulin growth factor signaling for liver remodeling in experimental alcohol-related steatohepatitis. J Gastroenterol Hepatol 2013; 28:1660-8. [PMID: 23802886 PMCID: PMC4551508 DOI: 10.1111/jgh.12291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Alcohol-related liver disease (ALD) is mediated in part by insulin resistance. Attendant dysregulation of lipid metabolism increases accumulation of hepatic ceramides that worsen insulin resistance and compromise the structural and functional integrity of the liver. Insulin and insulin growth factor (IGF) stimulate aspartyl-asparaginyl-β-hydroxylase (AAH), which promotes cell motility needed for structural maintenance and remodeling of the liver. AAH mediates its effects by activating Notch, and in ALD, insulin/IGF signaling, AAH, and Notch are inhibited. METHOD To test the hypothesis that in ALD, hepatic ceramide load contributes to impairments in insulin, AAH, and Notch signaling, control and chronic ethanol-fed adult Long-Evans rats were treated with myriocin, an inhibitor of serine palmitoyl transferase. Livers were used to assess steatohepatitis, insulin/IGF pathway activation, and expression of AAH-Notch signaling molecules. RESULTS Chronic ethanol-fed rats had steatohepatitis with increased ceramide levels; impairments in signaling through the insulin receptor, insulin receptor substrate, and Akt; and decreased expression of AAH, Notch, Jagged, Hairy-Enhancer of Split-1, hypoxia-inducible factor 1α, and proliferating cell nuclear antigen. Myriocin abrogated many of these adverse effects of ethanol, particularly hepatic ceramide accumulation, steatohepatitis, and impairments of insulin signaling through Akt, AAH, and Notch. CONCLUSIONS In ALD, the histopathology and impairments in insulin/IGF responsiveness can be substantially resolved by ceramide inhibitor treatments, even in the context of continued chronic ethanol exposure.
Collapse
Affiliation(s)
- Diana Lizarazo
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Valerie Zabala
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ming Tong
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Lisa Longato
- Liver Research Center, Division of Gastroenterology and Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Liver Research Center, Divisions of Gastroenterology and Neuropathology and Departments of Medicine, Pathology, Neurology, and Neurosurgery, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Svejda B, Kidd M, Timberlake A, Harry K, Kazberouk A, Schimmack S, Lawrence B, Pfragner R, Modlin IM. Serotonin and the 5-HT7 receptor: the link between hepatocytes, IGF-1 and small intestinal neuroendocrine tumors. Cancer Sci 2013; 104:844-55. [PMID: 23578138 DOI: 10.1111/cas.12174] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/26/2013] [Accepted: 03/30/2013] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived serotonin (5-HT) is involved in liver regeneration. The liver is also the metastatic site for malignant enterochromaffin (EC) cell "carcinoid" (neuroendocrine) neoplasms, the principal cellular source of 5-HT. We hypothesized that 5-HT produced by metastatic EC cells played a role in the hepatic tumor-microenvironment principally via 5-HT₇ receptor-mediated activation of hepatocyte IGF-1 synthesis and secretion. Using isolated rat hepatocytes, we evaluated 5-HT₇ receptor expression (using PCR, sequencing and western blot). ELISA, cell transfection and western blots delineated 5-HT-mediated signaling pathways (pCREB, AKT and ERK). IGF-1 synthesis/secretion was evaluated using QPCR and ELISA. IGF-1 was tested on small intestinal neuroendocrine neoplasm proliferation, while IGF-1 production and 5-HT₇ expression were examined in an in vivo SCID metastasis model. Our results demonstrated evidence for a functional 5-HT₇ receptor. 5-HT activated cAMP/PKA activity, pCREB (130-205%, P < 0.05) and pERK/pAKT (1.2-1.75, P < 0.05). Signaling was reversed by the 5-HT₇ receptor antagonist SB269970. IGF-1 significantly stimulated proliferation of two small intestinal neuroendocrine neoplasm cell lines (EC₅₀: 7-70 pg/mL) and could be reversed by the small molecule inhibitor BMS-754807. IGF-1 and 5-HT were elevated (40-300×) in peri-tumoral hepatic tissue in nude mice, while 5-HT₇ was increased fourfold compared to sham-operated animals. We conclude that hepatocytes express a cAMP-coupled 5-HT₇ receptor, which, at elevated 5-HT concentrations that occur in liver metastases, signals via CREB/AKT and is linked to IGF-1 synthesis and secretion. Because IGF-1 regulates NEN proliferation, identification of a role for 5-HT₇ in the hepatic metastatic tumor microenvironment suggests the potential for novel therapeutic strategies for amine-producing mid-gut tumors.
Collapse
Affiliation(s)
- Bernhard Svejda
- Gastrointestinal Pathobiology Research Group, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Consumption of a high-fat diet during pregnancy decreases the activity of cytochrome P450 3a in the livers of offspring. Eur J Pharm Sci 2012; 47:108-16. [DOI: 10.1016/j.ejps.2012.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/13/2012] [Indexed: 12/31/2022]
|
12
|
Martinović V, Grigorov I, Bogojević D, Petrović A, Jovanović S, Ilić M, Ivanović Matić S. Activation level of JNK and Akt/ERK signaling pathways determinates extent of DNA damage in the liver of diabetic rats. Cell Physiol Biochem 2012; 30:723-34. [PMID: 22854746 DOI: 10.1159/000341452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2012] [Indexed: 01/11/2023] Open
Abstract
AIMS Diabetes-related oxidative stress conditions lead to progressive tissue damage and disfunctionality. Mechanisms underlying liver pathophysiology during diabetes are not fully understood. The aim of this study was to find relationship between diabetes-related DNA damage in the rat liver and activities of prosurvival signaling pathways. METHODS Effect of diabetes was analyzed two (development stage) and eight weeks (stable diabetes) after single intraperitoneal injection of streptozotocin. Extent of DNA damage, analysed by comet assay, was corelated with oxidative status (plasma level of ROS, liver antioxidant capacity) and activity/abundance of kinases (Akt, p38, ERK1, JNK, JAK) and transcription factors NF-κB p65 and STAT3. RESULTS Significant DNA damage in development stage is accompanied by elevated plasma levels of O(2)(-) and H(2)O(2), decreased activities of CAT, MnSOD, and GST in the liver and increased activation of proapoptotic JNK signal pathway. Lower DNA damage in stable diabetes, is accompanied by elevated plasma level of O(2)(-), restored antioxidative liver enzyme activity, decreased activation of JNK and increased activation of prosurvival Akt and ERK signal pathways. CONCLUSION These findings indicate that level of DNA damage in diabetic liver depends on the extent of oxidative stress, antioxidant activity and balance between JNK and Akt/ERK signal pathways activation .
Collapse
Affiliation(s)
- Vesna Martinović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | | | |
Collapse
|
13
|
Rusyn I, Corton JC. Mechanistic considerations for human relevance of cancer hazard of di(2-ethylhexyl) phthalate. Mutat Res 2011; 750:141-158. [PMID: 22198209 DOI: 10.1016/j.mrrev.2011.12.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/28/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a peroxisome proliferator agent that is widely used as a plasticizer to soften polyvinylchloride plastics and non-polymers. Both occupational (e.g., by inhalation during its manufacture and use as a plasticizer of polyvinylchloride) and environmental (medical devices, contamination of food, or intake from air, water and soil) routes of exposure to DEHP are of concern for human health. There is sufficient evidence for carcinogenicity of DEHP in the liver in both rats and mice; however, there is little epidemiological evidence on possible associations between exposure to DEHP and liver cancer in humans. Data are available to suggest that liver is not the only target tissue for DEHP-associated toxicity and carcinogenicity in both humans and rodents. The debate regarding human relevance of the findings in rats or mice has been informed by studies on the mechanisms of carcinogenesis of the peroxisome proliferator class of chemicals, including DEHP. Important additional mechanistic information became available in the past decade, including, but not limited to, sub-acute, sub-chronic and chronic studies with DEHP in peroxisome proliferator-activated receptor (PPAR) α-null mice, as well as experiments utilizing several transgenic mouse lines. Activation of PPARα and the subsequent downstream events mediated by this transcription factor represent an important mechanism of action for DEHP in rats and mice. However, additional data from animal models and studies in humans exposed to DEHP from the environment suggest that multiple molecular signals and pathways in several cell types in the liver, rather than a single molecular event, contribute to the cancer in rats and mice. In addition, the toxic and carcinogenic effects of DEHP are not limited to liver. The International Agency for Research on Cancer working group concluded that the human relevance of the molecular events leading to cancer elicited by DEHP in several target tissues (e.g., liver and testis) in rats and mice can not be ruled out and DEHP was classified as possibly carcinogenic to humans (Group 2B).
Collapse
Affiliation(s)
- Ivan Rusyn
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | - J Christopher Corton
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
14
|
Iwayama H, Sakamoto T, Nawa A, Ueda N. Crosstalk between Smad and Mitogen-Activated Protein Kinases for the Regulation of Apoptosis in Cyclosporine A- Induced Renal Tubular Injury. NEPHRON EXTRA 2011; 1:178-89. [PMID: 22470391 PMCID: PMC3290860 DOI: 10.1159/000333014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background/Aims It remains elusive whether there is a crosstalk between Smad and mitogen-activated protein kinases (MAPKs) and whether it regulates cyclosporine A (CyA)-induced apoptosis in renal proximal tubular cells (RPTCs). Methods The effect of CyA on nuclear translocation of Smad2/3 and MAPKs (measured by Western blotting or immunofluorescence) and apoptosis (determined by Hoechst 33258 staining) was examined in HK-2 cells. Results CyA induced apoptosis at 24 h and nuclear translocation of phosphorylated (p)-Smad2/3 at 3 h, which was continued till 24 h. CyA enhanced the expression of p-ERK at 1 h, which was continued till 24 h, and of p-p38MAPK at 1–6 h, which returned to control level at 12 h. CyA did not affect JNK. An inhibitor of ERK, PD98059, prevented CyA-induced nuclear translocation of Smad2/3 and apoptosis. An inhibitor of p38MAPK, SB202190, deteriorated CyA-induced nuclear translocation of p-Smad2/3. Epidermal growth factor (EGF) activated ERK and p38MAPK but not JNK. EGF-induced activation of MAPKs ameliorated CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Inhibition of p38MAPK but not of ERK abolished the protective effect of EGF on CyA-induced nuclear translocation of p-Smad2/3 and apoptosis. Conclusion Crosstalk between R-Smad and p38MAPK/ERK, but not JNK differentially regulates apoptosis in CyA-induced RPTC injury.
Collapse
Affiliation(s)
- Hideyuki Iwayama
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | |
Collapse
|
15
|
Ramírez I, Soley M. Submandibular salivary glands: influence on growth rate and life span in mice. J Physiol Biochem 2010; 67:225-33. [PMID: 21191684 DOI: 10.1007/s13105-010-0067-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/10/2010] [Indexed: 12/11/2022]
Abstract
Submandibular glands accumulate a variety of growth factors, especially in male mice. Surgical excision of these glands (sialoadenectomy) results in alterations in several organs and systems including the liver, skin and reproductive system. We studied the life-long consequences of sialoadenectomy in male mice. Animals were operated at the age of 10 weeks. Thereafter, body weight and food and water intake were controlled until death. Few weeks after surgery, body weight was lower in sialoadenectomized than in control mice. The difference remained stable until the age of 80 weeks. In spite of the lower body weight, food intake was higher in sialoadenectomized mice than in controls. The first death of sialoadenectomized mice occurred 10 weeks earlier than that of the first control, and the initial death rate in sialoadenectomized mice was almost twice the rate in controls. After 100 weeks of life, the death rate increased in control mice, but suddenly decreased in sialoadenectomized mice. The consequence was that the mean life span of the last 25% surviving animals was 10 weeks longer in sialoadenectomized than in control mice. Autopsy examination suggests that the effect of sialoadenectomy on death rate may be the consequence of a contrasting effect on tumour growth. Our results indicate that submandibular glands, or rather the factors derived from these glands, have contrasting roles in tumour growth. At early ages they may be survival factors and protect tissues, whereas at later ages they may stimulate the growth of transformed cells.
Collapse
Affiliation(s)
- Ignasi Ramírez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain.
| | | |
Collapse
|
16
|
Luo Y, Cheng Z, Dixon CJ, Hall JF, Taylor E, Boarder MR. Endosomal signalling of epidermal growth factor receptors contributes to EGF-stimulated cell cycle progression in primary hepatocytes. Eur J Pharmacol 2010; 654:173-80. [PMID: 21172338 DOI: 10.1016/j.ejphar.2010.11.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/09/2010] [Accepted: 11/15/2010] [Indexed: 12/11/2022]
Abstract
Agonist-induced internalisation of receptors may lead to the formation of signalling endosomes. There is little evidence relating to whether this occurs to native receptors in non-transformed cells, and no previous studies asking whether this endosomal signalling can promote cell cycle progression in non-transformed cells. We investigated the hypothesis that in primary hepatocytes clathrin-dependent epidermal growth factor (EGF)-induced internalisation of the EGF receptor leads to signalling from endosomal EGF-EGF receptor complexes which may support EGF-stimulated cell cycle progression. We used EGF-stimulation of rat hepatocytes followed by confocal microscopy, and Western blots for phosphoproteins. [(3)H]thymidine incorporation into DNA was used as a indicator of progression to S-phase. Confocal microscopy demonstrated co-internalisation of EGF, EGF receptors and transferrin into endosomes. Internalisation of EGF/EGF receptor/transferrin was blocked by expression of dominant-negative dynamin, but not by the tyrosine kinase inhibitor AG 1478. Dominant-negative dynamin expression reduced EGF-stimulated extracellular signal-related kinase and Akt signalling, but increased tyrosine phosphorylated EGF receptor. EGF-stimulated cell cycle progression requires stimulation of EGF receptors during an initial period (e.g. 1h) and also later during a 24h incubation. EGF receptor internalisation in the presence of AG 1478 followed by removal of the inhibitor resulted in signalling from internalised EGF receptors that is sufficient for the initial stimulation to provide progression to S-phase of the cell cycle. These observations on hepatocytes characterise, for the first time in non-transformed cells, endosomal signalling from internalised EGF receptors, and provide evidence that this endosomal signalling may support the early phase of EGF-stimulated cell cycle progression.
Collapse
Affiliation(s)
- Yi Luo
- The Cell Signalling Laboratory, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, England, United Kingdom
| | | | | | | | | | | |
Collapse
|
17
|
de la Monte SM, Longato L, Tong M, DeNucci S, Wands JR. The liver-brain axis of alcohol-mediated neurodegeneration: role of toxic lipids. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:2055-75. [PMID: 19742171 PMCID: PMC2738898 DOI: 10.3390/ijerph6072055] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/16/2009] [Indexed: 12/12/2022]
Abstract
Alcohol abuse causes progressive toxicity and degeneration in liver and brain due to insulin resistance, which exacerbates oxidative stress and pro-inflammatory cytokine activation. Alcohol-induced steatohepatitis promotes synthesis and accumulation of ceramides and other toxic lipids that cause insulin resistance. Ceramides can readily cross the blood-brain barrier, and ceramide exposure causes neurodegeneration with insulin resistance and oxidative stress, similar to the effects of alcohol. Therefore, in addition to its direct neurotoxic effects, alcohol misuse establishes a liver-brain axis of neurodegeneration mediated by toxic lipid trafficking across the blood-brain barrier, leading to progressive white matter degeneration and cognitive impairment.
Collapse
|
18
|
Longato L, de la Monte S, Califano S, Wands JR. Synergistic premalignant effects of chronic ethanol exposure and insulin receptor substrate-1 overexpression in liver. Hepatol Res 2008; 38:940-53. [PMID: 18336544 PMCID: PMC9986887 DOI: 10.1111/j.1872-034x.2008.00336.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
AIM Insulin receptor substrate, type 1 (IRS-1) transmits growth and survival signals, and is overexpressed in more than 90% of hepatocellular carcinomas (HCCs). However, experimental overexpression of IRS-1 in the liver was found not to be sufficient to cause HCC. Since chronic alcohol abuse is a risk factor for HCC, we evaluated potential interactions between IRS-1 overexpression and chronic ethanol exposure by assessing premalignant alterations in gene expression. METHODS Wild-type (wt) or IRS-1 transgenic (Tg) mice, constitutively overexpressing the human (h) transgene in the liver, were pair-fed isocaloric liquid diets containing 0% or 24% ethanol for 8 weeks. The livers were used for histopathologic study and gene expression analysis, focusing on insulin, insulin-like growth factor (IGF) and wingless (WNT)-Frizzled (FZD) pathways, given their known roles in HCC. RESULTS In wt mice, chronic ethanol exposure caused hepatocellular microsteatosis with focal chronic inflammation, reduced expression of proliferating cell nuclear antigen (PCNA) and increased expression of IGF-I and IGF-I receptor. In hIRS-1 Tg mice, chronic ethanol exposure caused hepatic micro- and macrosteatosis, focal chronic inflammation, apoptosis and disordered lobular architecture. These effects of ethanol in hIRS-1 Tg mice were associated with significantly increased expression of IGF-II, insulin, IRS-4, aspartyl-asparaginyl beta hydroxylase (AAH), WNT-1 and FZD 7, as occurs in HCC. CONCLUSION In otherwise normal liver, chronic ethanol exposure mainly causes liver injury and inflammation with impaired DNA synthesis. In contrast, in the context of hIRS-1 overexpression, chronic ethanol exposure may serve as a cofactor in the pathogenesis of HCC by promoting expression of growth factors, receptors and signaling molecules known to be associated with hepatocellular transformation.
Collapse
Affiliation(s)
- Lisa Longato
- Liver Research Center and Departments of Medicine and Pathology, Rhode Island Hospital and the Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | | | | | | |
Collapse
|
19
|
Abdel Aziz MT, El-Miligy D, Amin MA, El Ansari A, Ahmed HH, Marzouk S, Sabry D. Molecular evaluation of apoptotic versus antiapoptotic angiogenic markers in hepatocellular carcinoma. Clin Biochem 2008; 41:1008-1014. [PMID: 18339319 DOI: 10.1016/j.clinbiochem.2008.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 01/27/2008] [Accepted: 02/07/2008] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess the role of HO-1 in HCC progression and to study the expression of apoptotic factors represented by TNF-alpha, and Fas-L versus antiapoptotic and angiogenic factors represented by HO-1, TGF-beta, HGF, and VEGF in HCC compared to non cancerous cirrhotic liver. DESIGN AND METHODS Liver biopsies were taken from twelve patients with grade II HCC confined to the liver and twelve patients with non cancerous liver cirrhosis (served as control). RT-PCR of previous genes was evaluated. RESULTS HO-1, VEGF, HGF, and TNF-alpha genes were significantly increased (P<0.05) in HCC compared to control. Fas-L showed a significant decrease (P<0.05) in HCC compared to control. TGF-beta was higher in HCC than control but the difference was not statistically significant (P>0.05). HGF showed significant positive correlation with HO-1 (r=0.8217, P=0.001). CONCLUSION HCC is associated with increased expression of VEGF, HGF, and TGF-beta, and with suppression of Fas-L. In addition, HO-1 is highly significantly expressed in HCC. The significant positive correlation between HO-1 and HGF was first reported in Egyptian human liver biopsies, and this suggests that it may play a role in the progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mohamed T Abdel Aziz
- Unit of Medical Biochemistry and Molecular Biology, Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | | | | | | | | |
Collapse
|
20
|
de la Monte SM, Yeon JE, Tong M, Longato L, Chaudhry R, Pang MY, Duan K, Wands JR. Insulin resistance in experimental alcohol-induced liver disease. J Gastroenterol Hepatol 2008; 23:e477-86. [PMID: 18505416 PMCID: PMC10012390 DOI: 10.1111/j.1440-1746.2008.05339.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM Chronic ethanol consumption impairs liver regeneration due, in part, to inhibition of insulin signaling. This study characterizes the mechanisms and consequences of ethanol-impaired insulin signaling in relation to oxidative injury and altered gene expression. METHODS Long-Evans rats were fed for 8 weeks with isocaloric liquid diets containing 0% (control) or 37% ethanol (caloric content). Livers were used to examine histopathology, indices of oxidative stress, gene expression required for insulin and insulin-like growth factor (IGF) signaling, insulin-responsive gene expression, i.e. glyceraldehydes-3-phosphate dehydrogenase (GAPDH) and aspartyl-asparaginyl-beta-hydroxylase (AAH), and competitive equilibrium binding to the insulin, IGF-I, and IGF-II receptors. RESULTS Chronic ethanol exposure caused liver injury with increased hepatocellular steatosis, inflammation, apoptosis, and increased immunoreactivity for activated caspase-3, 8-hydroxy-2'-deoxyguanosine, and 4-hydroxy-2,3-nonenol. These effects were associated with increased expression of IGF-I receptor, IGF-II, and IGF-II receptor, and expression of IGF-I, AAH, and GAPDH, which mediate energy metabolism and cell motility/remodeling, and reduced binding to the insulin receptor. CONCLUSIONS Chronic ethanol-induced liver injury causes insulin resistance with inhibition of insulin-responsive genes needed for metabolism, remodeling, and regeneration. In contrast, the IGF-I and IGF-II signaling mechanisms remain relatively preserved, suggesting that insulin-regulated hepatic functions may be selectively vulnerable to the toxic effects of ethanol.
Collapse
Affiliation(s)
- Suzanne M de la Monte
- Departments of Medicine, Liver Research Center, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sánchez O, Almagro A, Viladrich M, Ramírez I, Soley M. Sialoadenectomy enhances hepatic injury induced by lipopolysaccharide/galactosamine in mice. Liver Int 2008; 28:878-88. [PMID: 18346130 DOI: 10.1111/j.1478-3231.2008.01713.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND Submandibular salivary glands (SMGs) synthesize, accumulate and secrete a large amount of epidermal growth factor (EGF) in mice. It is known that surgical removal of SMG (sialoadenectomy) alters cell turnover in the liver and exacerbates liver injury induced by lipopolysaccharide/galactosamine (LPS/GalN). RESULTS Here we show that such increased hepatotoxicity is not the consequence of the lack of EGF production from SMG. On the contrary, it appears to be the consequence of an inadequate cytokine production by the liver of sialoadenectomized mice. Thus, we found that the increase of plasma tumour necrosis factor-alpha and interleukin-6 was slower in sialoadenectomized than in sham-operated mice. This is because of a decreased rate of production of both cytokines by the liver. We found that the increase of plasma corticosterone (CS) concentration is lower in sialoadenectomized than that in sham-operated mice. Adrenalectomy exacerbated liver injury induced by LPS/GalN. In these animals, sialoadenectomy did not further increase the effect of LPS/GalN. CONCLUSIONS Our results suggest that the effect of sialoadenectomy on LPS/GalN-induced liver toxicity may be the consequence of an altered cytokine production by the liver and a reduced CS release from adrenal glands.
Collapse
Affiliation(s)
- Olga Sánchez
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
22
|
Rosseland CM, Wierød L, Flinder LI, Oksvold MP, Skarpen E, Huitfeldt HS. Distinct functions of H-Ras and K-Ras in proliferation and survival of primary hepatocytes due to selective activation of ERK and PI3K. J Cell Physiol 2008; 215:818-26. [PMID: 18163378 DOI: 10.1002/jcp.21367] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ras proteins mediate signals both via extracellular signal-regulated kinase 1 and 2 (ERK), and phosphoinositide 3-kinase (PI3K). These signals are key events in cell protection and compensatory cell growth after exposure to cell damaging and pro-apoptotic stimuli, thus maintaining homeostasis. By transfection techniques, we found that both H-Ras and K-Ras were expressed and appeared functionally active in primary hepatocytes. We compared the ability of H-Ras and K-Ras homologues to preferentially activate one of the two pathways, thereby differentially controlling cell survival and growth. We found that ectopic expression of dominant negative (DN) H-RasN17, but not DN K-RasN17, efficiently inhibited both phosphorylation and translocation of ERK to the nuclear compartment, which are prerequisites for cell cycle progression. Furthermore, ectopic expression of constitutive active (CA) H-RasV12, but not CA K-RasV12, potentiated EGF-induced proliferation. We also found that expression of CA mutants of either H-Ras or K-Ras protected hepatocytes from transforming growth factor-beta1 (TGF-beta1)-induced apoptosis. However, H-Ras-induced survival was mediated by ERK/RSK as well as by PI3K, whereas K-Ras-induced survival was mediated by PI3K only. In conclusion, H-Ras and K-Ras had differential functions in proliferation and survival of primary hepatocytes. H-Ras was the major mediator of ERK-induced proliferation and survival, whereas H-Ras and K-Ras both mediated PI3K-induced survival.
Collapse
Affiliation(s)
- Carola M Rosseland
- Laboratory for Toxicopathology, Institute of Pathology, Rikshospitalet-Radiumhospitalet Medical Centre, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
23
|
Sancho-Bru P, Bataller R, Fernandez-Varo G, Moreno M, Ramalho LN, Colmenero J, Marí M, Clària J, Jiménez W, Arroyo V, Brenner DA, Ginès P. Bradykinin attenuates hepatocellular damage and fibrosis in rats with chronic liver injury. Gastroenterology 2007; 133:2019-28. [PMID: 18054572 DOI: 10.1053/j.gastro.2007.09.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 09/06/2007] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Recent studies have suggested that the kallikrein-kinin system regulates tissue fibrogenesis. We hypothesize that bradykinin (BK), the main effector peptide of this system, regulates hepatic fibrogenesis. METHODS Kallikrein-kinin system components were studied by quantitative reverse-transcription polymerase chain reaction analysis, immunohistochemistry, and Western blotting. The effect of bradykinin on liver injury was studied by infusing saline or bradykinin (1 and 100 ng/kg/min) through a subcutaneous pump into carbon tetrachloride-treated rats and mice treated with Fas-stimulating antibody. Bradykinin effects were studied in cultured hepatic stellate cells (HSCs) and hepatocytes. RESULTS Bradykinin receptors and kallikrein-1 were detected in both normal and fibrotic human livers and HSCs. BK receptors were up-regulated in fibrotic livers and activated HSCs. Bradykinin infusion reduced liver damage, as indicated by decreased aminotransferase serum levels and reduced histologic necroinflammatory score without inducing changes in arterial pressure. Moreover, bradykinin attenuated hepatic fibrosis, as indicated by reduced collagen accumulation, smooth muscle alpha-actin content, as well as decreased pro-collagen-alpha1(I) and transforming growth factor-beta1 gene expression. Bradykinin infusion reduced hepatocellular apoptosis induced by anti-Fas-receptor antibody. HSCs responded to bradykinin with intracellular calcium mobilization. Bradykinin reduced procollagen-alpha1(I) and transforming growth factor-beta1 gene expression and induced matrix metalloproteinase-2 activation. Finally, BK induced prosurvival and proliferative intracellular signaling in primary hepatocytes. CONCLUSIONS Bradykinin attenuates liver damage and fibrosis development in a rat model of chronic liver injury. Therefore, activation of the kallikrein-kinin system may be a new therapeutic approach to the management of chronic liver disease.
Collapse
Affiliation(s)
- Pau Sancho-Bru
- Liver Unit, Institut Clínic de Malalties Digestives i Metabòliques, Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lin SJ, Chang C, Ng AK, Wang SH, Li JJ, Hu CP. Prevention of TGF-beta-induced apoptosis by interlukin-4 through Akt activation and p70S6K survival signaling pathways. Apoptosis 2007; 12:1659-70. [PMID: 17624592 DOI: 10.1007/s10495-007-0085-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we demonstrate that interleukin-4 (IL-4) protects human hepatocellular carcinoma (HCC) cell line Hep3B from apoptosis induced by transforming growth factor-beta (TGF-beta). Further investigation of IL-4-transduced signaling pathways revealed that both insulin response substrate 1 and 2 (IRS-1/-2) and extracellular signal-regulated kinase (ERK) pathways were activated after IL-4 stimulation. The IRS-1/-2 activation was accompanied by the activation of phosphotidylinositol-3-kinase (PI3K), leading to Akt and p70 ribosomal protein S6 kinase (p70S6K). Interestingly, a protein kinase C (PKC) inhibitor, Gö6976, inhibited the phosphorylation of Akt, suggesting that the Akt activation was PKC-dependent. Using specific inhibitors for PI3K or ERK, we demonstrated that the PI3K pathway, but not the ERK pathway, was required for protection. The constitutively active form of PI3K almost completely rescued TGF-beta-induced apoptosis, further supporting the importance of the PI3K pathway in the protective effect of IL-4. Furthermore, a dominant negative Akt and/or Gö6976 only partially blocked the anti-apoptotic effect of IL-4. Similarly, rapamycin, which interrupted the activation of p70S6K, also only partially blocked the protective effect of IL-4. However, in the presence of both rapamycin and dominant negative Akt with or without Gö6976, IL-4 almost completely lost the anti-apoptotic effect, suggesting that both Akt and p70S6K pathways were required for the protective effect of IL-4 against TGF-beta-induced apoptosis.
Collapse
Affiliation(s)
- Sue-Jane Lin
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Pan Q, Zhang ZB, Zhang X, Shi J, Chen YX, Han ZG, Xie WF. Gene expression profile analysis of the spontaneous reversal of rat hepatic fibrosis by cDNA microarray. Dig Dis Sci 2007; 52:2591-600. [PMID: 17805973 DOI: 10.1007/s10620-006-9676-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Accepted: 11/07/2006] [Indexed: 01/28/2023]
Abstract
Our aim was to gain insight into the gene expression profile during hepatic fibrosis autoreversal. Spontaneous recovery from hepatic fibrosis was created in SD rats by CCl(4) exposure for 8 weeks and then withdrawal for 6 weeks. Then differentially expressed genes during regression of fibrosis were analyzed using cDNA microarray. Results obtained were further subjected to hierarchical clustering and validated by semiquantitative RT-PCR. Expression of Mapk1 and Rps6ka1, which are critical members of the mitogen-activated protein kinase (MAPK) signaling pathway, was also investigated by Northern blot and immunohistochemistry. Microarray hybridization identified 254 genes differentially expressed throughout resolution of fibrosis. Being verified by RT-PCR, up- or down-regulated genes were classified into various groups according to clustering and function: (1) metabolic enzymes, (2) facilitated diffusion proteins/transporters/symporters, (3) gastrointestinal hormones/receptors, (4) lipoproteins/fatty acid binding proteins, (5) transcription factors/nuclear factors, and (6) the MAPK signaling pathway. The mRNA level of Mapk1 increased greatly as hepatic fibrosis reversed. Meanwhile Mapk1 and Rps6ka1 were proven to be expressed in hepatocytes and absent from mesenchymal cells. Six groups of genes exhibit a close relation to the recovery of CCl(4)-induced hepatic fibrosis. The MAPK signaling-dependent pathway, representing one of the gene groups, may contribute to the reversal of hepatic fibrosis.
Collapse
Affiliation(s)
- Qin Pan
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, PRC
| | | | | | | | | | | | | |
Collapse
|
26
|
Sánchez O, Viladrich M, Ramírez I, Soley M. Liver injury after an aggressive encounter in male mice. Am J Physiol Regul Integr Comp Physiol 2007; 293:R1908-16. [PMID: 17761516 DOI: 10.1152/ajpregu.00113.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute and intense psychological stressors induce cell damage in several organs, including the heart and the liver. Much less is known about social stress. In male mice, aggressive behavior is the most common social stressor. It is remarkable that upon fighting, submandibular salivary glands release a number of peptides into the bloodstream including epidermal growth factor (EGF). We showed previously that released EGF protects the heart from cell damage in this particular stressful situation. Here, we studied the effect of an aggressive encounter on the liver and whether EGF has a similar effect on this organ. An aggressive encounter in male mice caused inflammatory response and a transient increase in plasma alanine and aspartate transaminase activities. At 3 h, focal infiltration of neutrophils was observed in liver parenchyma. These cells accumulate on eosinophilic hepatocytes, which may correspond to dying cells. A few hours later, evidence of necrotic lesion was observed. Surgical excision of submandibular glands, sialoadenectomy, did not prevent the rise in plasma EGF concentration and did not affect the increase in plasma transaminase activities. Neither did the administration of tyrphostin AG-1478 (inhibitor of EGF receptor kinase) alter the increase in plasma alanine transaminase activity. However, it did enhance the rise in both aspartate transaminase and creatine kinase activity, suggesting heart damage. We conclude that an aggressive encounter causes mild liver damage and that released EGF does not protect this organ, in contrast to its effect on the heart.
Collapse
Affiliation(s)
- Olga Sánchez
- Dept. de Bioquímica i Biologia Molecular, Facultat de Barcelona, Universitat de Barcelona, Avda. Diagonal 645, 08028-Barcelona, Spain
| | | | | | | |
Collapse
|
27
|
Luo Y, Dixon CJ, Hall JF, White PJ, Boarder MR. A role for Akt in epidermal growth factor-stimulated cell cycle progression in cultured hepatocytes: generation of a hyperproliferative window after adenoviral expression of constitutively active Akt. J Pharmacol Exp Ther 2007; 321:884-91. [PMID: 17371807 DOI: 10.1124/jpet.107.121061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Epidermal growth factor (EGF) stimulation of cell cycle progression in cultured primary hepatocytes has previously been reported to be dependent on the mammalian target of rapamycin (mTOR) elements of the phosphoinositide 3-kinase (PI3K) signaling cascade and not the Akt pathway. Here we have established conditions of combined treatment of rat hepatocytes with insulin and EGF that favor cell cycle progression. The resulting cell population expresses albumin and retains receptor regulation of the signaling pathways leading to glycogen phosphorylase activation. We then investigated the hypothesis that the Akt limb of the PI3K pathway plays a central role in this insulin/EGF enhancement of cell cycle progression. The phosphorylation of Akt, central to the PI3K pathway, was increased by both insulin (sustained) and EGF (transient). The stimulation of Akt phosphorylation was inhibited in a concentration-dependent manner by the PI3K inhibitor, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). Cell cycle progression in these cultures was reduced, but not abolished, by this inhibitor. The mTOR inhibitor, rapamycin, also inhibited entry into S phase. The novel Akt inhibitor A-443654 [(S)-1-(1H-indol-3-ylmethyl)-2-[5-(3-methyl-1H-indazol-5-yl)-pyridin-3-yloxy]-ethylamine] blocked both EGF-stimulated cell cycle progression and phosphorylation of the Akt substrate glycogen synthase kinase-3. Infection of cells with an adenoviral vector expressing a constitutively active form of Akt but not a kinase-dead form increased hepatocyte proliferation probably through enhanced cell cycle progression and reduced apoptosis. These results show that the Akt element of the PI3K cascade is necessary for EGF-stimulated cell cycle progression and provide evidence that the sustained elevation of Akt alone generates a hyperproliferative window in hepatocyte cultures.
Collapse
Affiliation(s)
- Yi Luo
- The Cell Signaling Laboratory, The Hawthorn Building, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK
| | | | | | | | | |
Collapse
|
28
|
Villegas SN, Njaine B, Linden R, Carri NG. Glial-derived neurotrophic factor (GDNF) prevents ethanol (EtOH) induced B92 glial cell death by both PI3K/AKT and MEK/ERK signaling pathways. Brain Res Bull 2006; 71:116-26. [PMID: 17113937 DOI: 10.1016/j.brainresbull.2006.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2005] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 12/14/2022]
Abstract
We investigated the neuroprotective effect of glial-derived neurotrophic factor (GDNF) upon alcohol-exposed B92 cultures, as well as the role of the cytoskeleton and mitogen-activated protein kinase (MAPK) pathways in this effect. Ethanol (EtOH) was added to cultures, either alone or in combination with 30 ng/ml GDNF. Exposure to EtOH (86 and 172 mM; 60 and 120 min) increased the frequency of apoptotic cells identified by nuclear DNA staining with 4,6-diamidino-2-phenylindole (DAPI). Cultures treated with GDNF showed a decrease in ethanol-induced apoptosis. A jun N-terminal kinase (JNK) pathway is activated by EtOH and their pharmacological inhibition (by SP600125) neutralized ethanol-induced apoptosis, suggesting a role for JNK in EtOH neurotoxicity. Immunocytochemically detected phospho-JNK (p-JNK) showed an unusual filamental expression, and localized together with actin stress fibers. Examination of the cytoskeleton showed that EtOH depolymerized actin filaments, inducing p-JNK dissociation and translocation to the nucleus, which suggests that released p-JNK may contribute to glial cell death after EtOH exposure. Treatment with GDNF, in turn, may neutralize the ethanol-induced cell death pathway. Either a phosphatidylinositol 3-kinase (PI3K)/AKT pathway inhibitor (LY294002) or an inhibitor of the extracellular signal-regulated kinase (ERK) 1, 2 pathways (UO126) failed to neutralize GDNF protective effects. However, the simultaneous use of both inhibitors blocked the protective effect of GDNF, suggesting a role for both signaling cascades in the GDNF protection. These findings provide further insight into the mechanism involved in ethanol-induced apoptosis and the neurotrophic protection of glial cells.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Molecular Biology, IMBICE, Camino Belgrano y 526, CC 403, 1900 La Plata, Argentina; Instituto de Biofísica da UFRJ, CCS, Bloco G, Cidade Universitaria, 21949-900 Rio de Janeiro, Brazil.
| | | | | | | |
Collapse
|
29
|
Cursio R, Filippa N, Miele C, Van Obberghen E, Gugenheim J. Involvement of protein kinase B and mitogen-activated protein kinases in experimental normothermic liver ischaemia-reperfusion injury. Br J Surg 2006; 93:752-61. [PMID: 16671069 DOI: 10.1002/bjs.5329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND This study evaluated the role of protein kinase B (PKB), phosphatidylinositol 3-kinase (PI3-K), Bcl-2-associated death protein (BAD) and mitogen-activated protein kinases (MAPKs) in normothermic ischaemia-reperfusion (IR)-induced apoptosis in rat liver. METHODS Rats were divided into two groups that received either phosphate-buffered saline (control) or the caspase inhibitor Z-Asp-2,6-dichorobenzoyloxymethylketone (Z-Asp-cmk), injected intravenously 2 min before the induction of 120 min of normothermic liver ischaemia. Liver apoptosis was assessed by the terminal deoxyribonucleotidyltransferase-mediated dUTP nick end labelling (TUNEL) method. PI3-K, PKB, BAD and MAPK activities were measured in ischaemic and non-ischaemic lobes at various times after reperfusion. RESULTS The number of TUNEL-positive cells was significantly decreased after pretreatment with Z-Asp-cmk. In controls, PI3-K and PKB activities and BAD phosphorylation were inhibited in ischaemic liver lobes. The MAPKs (extracellular signal-regulated kinases, c-Jun N-terminal kinase and p38) showed different patterns of activation during IR. PKB activity was not modified by pretreatment with Z-Asp-cmk. CONCLUSION Induction of apoptosis during IR liver injury might be triggered by inactivation of the antiapoptotic PI3-K-PKB pathway and activation of the proapoptotic MAPKs.
Collapse
Affiliation(s)
- R Cursio
- Laboratoire de Recherches Chirurgicales, Faculté de Médecine, Université de Nice, 28 Avenue de Valombrose, 06107 Nice Cedex 2, France.
| | | | | | | | | |
Collapse
|
30
|
Khai NC, Takahashi T, Ushikoshi H, Nagano S, Yuge K, Esaki M, Kawai T, Goto K, Murofushi Y, Fujiwara T, Fujiwara H, Kosai KI. In vivo hepatic HB-EGF gene transduction inhibits Fas-induced liver injury and induces liver regeneration in mice: a comparative study to HGF. J Hepatol 2006; 44:1046-54. [PMID: 16466829 DOI: 10.1016/j.jhep.2005.10.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 09/20/2005] [Accepted: 10/10/2005] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS It is unknown whether heparin-binding EGF-like growth factor (HB-EGF) can be a therapeutic agent, although previous studies suggested that HB-EGF might be a hepatotrophic factor. This study explores the potential of hepatic HB-EGF gene therapy in comparison with HGF. METHODS Mice received an intraperitoneal injection of the agonistic anti-Fas antibody 72 h after an intravenous injection of either adenoviral vector (1x10(11) particles) expressing human HB-EGF (Ad.HB-EGF), human HGF (Ad.HGF) or no gene (Ad.dE1.3), and were sacrificed 24 or 36 h later to assess liver injury and regeneration. RESULTS Exogenous HB-EGF was predominantly localized on the membrane, suggesting the initial synthesis of proHB-EGF in hepatocytes. The control Ad.dE1.3-treated mice represented remarkable increases in serum ALT and AST levels and histopathologically severe liver injuries with numerous apoptosis, but a limited number of mitogenic hepatocytes. In contrast, the liver injuries and apoptotic changes were significantly inhibited, but the mitogenic hepatocytes remarkably increased, in both the Ad.HB-EGF- and Ad.HGF-treated mice. More mitogenic hepatocytes and milder injuries were observed in the Ad.HB-EGF-treated mice. CONCLUSIONS HB-EGF has more potent protective and mitogenic effects for hepatocytes than HGF, at least for the present conditions. In vivo hepatic HB-EGF gene transduction is therapeutic for Fas-induced liver injury.
Collapse
Affiliation(s)
- Ngin Cin Khai
- Department of Gene Therapy and Regenerative Medicine, Gifu University School of Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alexia C, Fourmatgeat P, Delautier D, Groyer A. Insulin-like growth factor-I stimulates H4II rat hepatoma cell proliferation: Dominant role of PI-3′K/Akt signaling. Exp Cell Res 2006; 312:1142-52. [PMID: 16487514 DOI: 10.1016/j.yexcr.2006.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2004] [Revised: 11/23/2005] [Accepted: 01/10/2006] [Indexed: 01/26/2023]
Abstract
Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H4II rat hepatoma cell proliferation, as estimated by 3H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H4II cells, stimulation being maximal 3 h after the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H4II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H4II cells. Altogether, these data support the notion that the stimulation of H4II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signaling.
Collapse
Affiliation(s)
- Catherine Alexia
- Inserm U.481, Faculté de Médecine Xavier Bichat, 16, rue Henri Huchard, BP416, 75870 Paris Cedex 18, France
| | | | | | | |
Collapse
|
32
|
Docherty NG, O'Sullivan OE, Healy DA, Fitzpatrick JM, Watson RWG. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am J Physiol Renal Physiol 2006; 290:F4-13. [PMID: 16339963 DOI: 10.1152/ajprenal.00045.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ureteric obstruction is frequently encountered in primary care urology and can lead to damage to the ipsilateral kidney. Relief of all types of obstruction generally leads to the normalization of any deterioration in renal function noted at diagnosis. However, some evidence from animal models suggests that obstruction can cause progressive deleterious effects on renal function and blood pressure control, especially in the presence of preexisting pathologies such as essential hypertension. The last 10 years have seen a proliferation of studies in rodents wherein complete unilateral ureteric obstruction has been used as a model of renal fibrosis. However, the relevance of the findings to human obstructive uropathy has, in many cases, not been the primary aim. In this review, we outline the major events linking damage to the renal parenchyma and cell death to the evolution of fibrosis following obstruction. Special focus is given to the role of apoptosis as a major cause of cell death during and post-complete ureteric obstruction. Several interventions that reduce tubular apoptosis are discussed in terms of their ability to prevent subsequent progression to end-organ damage and fibrosis.
Collapse
Affiliation(s)
- Neil G Docherty
- Department of Surgery, Conway Institute of Biomolecular and Biomedical Sciences, Univ. College Dublin, Belfield, Dublin 4, Republic of Ireland
| | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Washington 98109, USA.
| |
Collapse
|
34
|
Berasain C, García-Trevijano ER, Castillo J, Erroba E, Santamaría M, Lee DC, Prieto J, Avila MA. Novel Role for Amphiregulin in Protection from Liver Injury. J Biol Chem 2005; 280:19012-20. [PMID: 15753092 DOI: 10.1074/jbc.m413344200] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clinically, the Fas and Fas ligand system plays a central role in the development of hepatocyte apoptosis, a process contributing to a broad spectrum of liver diseases. Therefore, the development of therapies aimed at the inhibition of hepatocyte apoptosis is a major issue. Activation of the epidermal growth factor receptor has been shown to convey survival signals to the hepatocyte. To learn about the endogenous response of epidermal growth factor receptor ligands during Fas-mediated liver injury we investigated the expression of epidermal growth factor, transforming growth factor alpha, heparin-binding epidermal growth factor-like growth factor, betacellulin, epiregulin, and amphiregulin in the liver of mice challenged with Fas-agonist antibody. Amphiregulin expression, barely detectable in healthy liver, was significantly up-regulated. Amphiregulin administration abrogated Fas-mediated liver injury in mice and showed direct anti-apoptotic effects in primary hepatocytes. Amphiregulin activated the Akt and signal transducer and activator of transcription-3 survival pathways, and up-regulated Bcl-xL expression. Amphiregulin knock-out mice showed signs of chronic liver damage in the absence of any noxious treatment, and died faster than wild type mice in response to lethal doses of Fas-agonist antibody. In contrast, these mice were more resistant against sublethal liver damage, supporting the hypothesis that chronic liver injury can precondition hepatocytes inducing resistance to subsequent cell death. These results show that amphiregulin is a protective factor induced in response to liver damage and that it may be therapeutic in liver diseases.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology and Gene Therapy, Centro de Investigación Médica Aplicada, Facultad de Medicina, Universidad de Navarra, Pío XII, 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Uzun H, Simsek G, Aydin S, Unal E, Karter Y, Yelmen NK, Vehid S, Curgunlu A, Kaya S. Potential effects of L-NAME on alcohol-induced oxidative stress. World J Gastroenterol 2005; 11:600-4. [PMID: 15641155 PMCID: PMC4250820 DOI: 10.3748/wjg.v11.i4.600] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: Nitric oxide (NO) is a highly reactive oxidant synthesized from L-arginine by nitric oxide synthase (NOS). NO may cause injury through the generation of potent radicals. Nw- nitro-L-arginine methyl ester (L-NAME) is a non-selective inhibitor of NOS. We aimed to evaluate whether L-NAME treatment had protective effects against oxidative stress in rats intragastrically fed with ethanol during a 4 wk-period.
METHODS: Thirty-six male Wistar rats were divided into 3 equal groups: group 1 (control group-isocaloric dextrose was given), group 2 (6 g/kg·d ethanol-induced group) and group 3 (both ethanol 6 g/kg·d and L-NAME 500 mg/L in drinking water-given group). Animals were sacrificed at the end of 4 wk-experimental period, and intracardiac blood and liver tissues were obtained. Biochemical measurements were performed both in plasma and in homogenized liver tissues. Alanine amino transferase (ALT), aspartate amino transferase (AST), malondialdehyde (MDA), NO, superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) levels were measured by spectrophotometry.
RESULTS: ALT and AST in group 2 (62 U/L and 128 U/L, respectively) were higher than those in group 1 (24 U/L and 38 U/L) and group 3 (37 U/L and 81 U/L) (P<0.001 for both). Plasma and tissue levels of MDA in group 2 (4.66 μmol/L and 0.55 nmol/mg protein) were higher than in group 1 (2.65 μmol/L and 0.34 nmol/mg protein) and group 3 (3.43 μmol/L and 0.36 nmol/mg protein) (P<0.001 for both). Plasma and liver tissue levels of NO in group 2 (54.67 μmol/L and 586.50 nmol/mg protein) were higher than in group 1 (34.67 μmol/L and 435.33 nmol/mg protein) and group 3 (27.50 μmol/L and 412.75 nmol/mg protein ) (P<0.001 for both). Plasma and liver tissue SOD activities in group 2 (15.25 U/mL and 5.38 U/ mg protein, respectively) were lower than in group 1 (20.00 U/mL and 8.13 U/ mg protein) and group 3 (19.00 U/mL and 6.93 U/ mg protein) (P<0.001 for both). Plasma and liver tissue CAT activities in group 2 (145 U/mL and 37 U/ mg protein, respectively) were lower than in group 1 (176 U/mL and 73 U/mg protein) and group 3 (167 U/mL and 61 U/mg protein) (P<0.001 for both). Meanwhile, erythrocytes and liver tissue levels of GSH in group 2 (4.12 mg/g Hb and 5.38 nmol/mg protein, respectively) were lower than in group 1 (5.52 mg/g Hb and 4.49 nmol/mg protein) and group 3 (5.64 mg/g Hb and 4.18 nmol/mg protein) (P<0.001 for both).
CONCLUSION: Our findings show that L-NAME may produce a restorative effect on ethanol-induced liver damage via decreasing oxidative stress and increasing antioxidant status.
Collapse
Affiliation(s)
- Hafize Uzun
- Department of Biochemistry, Istanbul University, Cerrahpata School of Medicine, Istanbul, Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hiramatsu K, Matsumoto Y, Miyazaki M, Tsubouchi H, Yamamoto I, Gohda E. Inhibition of Hepatocyte Growth Factor Production in Human Fibroblasts by Ursodeoxycholic Acid. Biol Pharm Bull 2005; 28:619-24. [PMID: 15802798 DOI: 10.1248/bpb.28.619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor (HGF) stimulates the proliferation of hepatocytes and biliary epithelial cells and protects hepatocytes from apoptosis induced by various stimuli. In view of HGF induction by interferons, substances used for the treatment of chronic hepatitis C, this study was conducted to determine whether ursodeoxycholic acid (UDCA), which is widely used for the treatment of cholestatic liver diseases, modulates HGF production. UDCA did not induce HGF production in human dermal fibroblasts, but it potently inhibited phorbol-12-myristate-13-acetate (PMA)- and cholera-toxin-induced HGF production without affecting cell viability. The inhibitory effects of UDCA were as potent as those of transforming growth factor-beta1 and dexamethasone. Up-regulations of HGF gene expression induced by PMA and cholera toxin were also inhibited by UDCA. Moreover, UDCA dose-dependently inhibited high constitutive HGF production by MRC-5 cells without decreasing cell viability. Deoxycholate, chenodeoxycholate, taurochenodeoxycholate and glycochenodeoxycholate also inhibited cholera-toxin-induced HGF production at non-cytotoxic doses. UDCA, however, had no apparent effect on PMA-induced phosphorylation of mitogen-activated protein kinase, which is crucial for HGF induction by PMA. These results indicate that non-cytotoxic doses of UDCA inhibited constitutive and induced HGF production and suggest that UDCA supplemented with HGF or HGF inducers could have a more potential therapeutic effect.
Collapse
Affiliation(s)
- Kaori Hiramatsu
- Department of Immunochemistry, Faculty of Pharmaceutical Sciences, Okayama University, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Valverde AM, Fabregat I, Burks DJ, White MF, Benito M. IRS-2 mediates the antiapoptotic effect of insulin in neonatal hepatocytes. Hepatology 2004; 40:1285-94. [PMID: 15565601 DOI: 10.1002/hep.20485] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the role of insulin action and inaction in the liver, immortalized hepatocyte cell lines have been generated from insulin receptor substrate (IRS)-2(-/-) and wild-type mice. Using this model, we have recently demonstrated that the lack of IRS-2 in neonatal hepatocytes resulted in insulin resistance. In the current study, we show that immortalized neonatal hepatocytes undergo apoptosis on serum withdrawal, with caspase-3 activation and DNA laddering occurring earlier in the absence of IRS-2. Insulin rescued wild-type hepatocytes from serum withdrawal-induced caspase-3 activation and DNA fragmentation in a dose-dependent manner, but it failed to rescue hepatocytes lacking IRS-2. In IRS-2(-/-) cells, insulin failed to phosphorylate Bad. Furthermore, in these cells, insulin was unable to translocate Foxo1 from the nucleus to the cytosol. Adenoviral infection of wild-type cells with constitutively active Foxo1 (ADA) induced caspase-8 and caspase-3 activities, proapoptotic gene expression, DNA laddering and apoptosis. Dominant negative Foxo1 regulated the whole pathway in an opposite manner. Prolonged insulin treatment (24 hours) increased expression of antiapoptotic genes (Bcl-xL), downregulated proapoptotic genes (Bim and nuclear Foxo1), and decreased caspase-3 activity in wild-type hepatocytes but not in IRS-2(-/-) cells. Infection of IRS-2(-/-) hepatocytes with adenovirus encoding IRS-2 reconstituted phosphatidylinositol 3-kinase (PI 3-kinase)/Akt/Foxo1 signaling, restored pro- and antiapoptotic gene expression, and decreased caspase-3 activity in response to insulin, thereby blocking apoptosis. In conclusion, IRS-2 signaling is specifically required through PIP3 generation to mediate the survival effects of insulin. Epidermal growth factor, via PIP3/Akt/Foxo1 phosphorylation, was able to rescue IRS-2(-/-) hepatocytes from serum withdrawal-induced apoptosis, modulating pro- and anti-apoptotic gene expression and downregulating caspase-3 activity.
Collapse
Affiliation(s)
- Angela M Valverde
- Instituto de Bioquímica/Departamento de Bioquímica y Biología Molecular II, Centro Mixto CSIC/UCM, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|
38
|
Wanke I, Schwarz M, Buchmann A. Insulin and dexamethasone inhibit TGF-beta-induced apoptosis of hepatoma cells upstream of the caspase activation cascade. Toxicology 2004; 204:141-54. [PMID: 15388240 DOI: 10.1016/j.tox.2004.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 12/11/2022]
Abstract
Insulin and dexamethasone are potent inhibitors of apoptosis induced by transforming growth factor-beta1 (TGF-beta) in hepatoma cells. Using FTO-2B rat hepatoma cells, we determined whether the anti-apoptotic effects of these agents result from interference within or upstream of the TGF-beta-induced caspase cascade. Activation of different initiator and effector caspases, Bax and Bcl-xL expression, mitochondrial cytochrome c release and activation of PKB/Akt were analyzed by use of synthetic caspase substrates and Western blotting, respectively. TGF-beta-induced apoptosis was characterized by release of cytochrome c from mitochondria and activation of caspases-3, -7, -8 and -9. These effects were observable as early as 8-12 h after start of treatment and increased with time of observation. Inhibition of TGF-beta-induced apoptosis by insulin and dexamethasone was paralleled by a strong reduction of caspase-3-like activity. Caspase-8 activation was almost completely suppressed by these agents, and caspase-9 activity was decreased to levels within or slightly above unstimulated control cells. In addition, cytochrome c release from mitochondria was efficiently repressed, which was associated with upregulation of Bcl-xL by dexamethasone and activation of PKB/Akt by insulin. Thus, both anti-apoptotic compounds exert their inhibitory effects through modulation of anti-apoptotic signalling pathways involved in regulation of cytochrome c release and activation of the caspase machinery.
Collapse
Affiliation(s)
- Ines Wanke
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen, Wilhelmstr. 56, 72074 Tübingen, Germany
| | | | | |
Collapse
|
39
|
Zhang H, Ozaki I, Mizuta T, Yoshimura T, Matsuhashi S, Eguchi Y, Yasutake T, Hisatomi A, Sakai T, Yamamoto K. Transforming growth factor-beta 1-induced apoptosis is blocked by beta 1-integrin-mediated mitogen-activated protein kinase activation in human hepatoma cells. Cancer Sci 2004; 95:878-86. [PMID: 15546505 PMCID: PMC11158769 DOI: 10.1111/j.1349-7006.2004.tb02197.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2004] [Revised: 08/05/2004] [Accepted: 09/02/2004] [Indexed: 12/22/2022] Open
Abstract
Growth factors and extracellular matrices cooperatively regulate cellular behavior. However, the interactions between transforming growth factor-beta 1 (TGF-beta 1) and integrins in hepatic cells are not fully understood. We investigated the effects of beta 1-integrin on TGF-beta 1-regulated growth of hepatoma cells. Human hepatoma cell lines HepG2, Huh7, and Hep3B were stably transfected with beta 1-integrin, and the parental, and mock- and beta 1-integrin-transfected hepatoma cells were treated with TGF-beta 1. Modulation of apoptosis and pathways involved in the process were investigated. TGF-beta 1 suppressed the growth of hepatoma cells, and apoptosis was observed in Hep3B and Huh7. Hepatoma cells transfected with beta 1-integrin were protected from TGF-beta 1-induced apoptosis. Mitogen-activated protein (MAP) kinase inhibitors, PD98059, SB203580, and SP600125, abolished this protective effect of beta 1-integrin, but herbimycin A and wortmannin were ineffective. Hepatoma cells overexpressing beta 1-integrin showed increased activities of MAP kinases, and TGF-beta 1 induced sustained activation of MAP kinases in these cells, but only transient activation in mock-transfected cells. These data suggest that MAP kinases activated by beta 1-integrin provide a strong anti-apoptotic signal during TGF-beta 1-induced apoptosis in human hepatoma cells. Therefore beta 1-integrin-mediated signals may contribute to the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hepatology and Metabolism, Department of Internal Medicine, Saga Medical School, Saga University, Saga 849-8501
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li HM, Gao X, Yang ML, Mei JJ, Zhang LT, Qiu XF. Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-beta1 expression in nuclei of arcuate hypothalamus of monosodium glutamate -liver regeneration rats. World J Gastroenterol 2004. [PMID: 15334678 DOI: 10.11842/wst.2013.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM To inquire into the effects and mechanism of Zuogui Wan (Pills for Kidney Yin) on neurocyte apoptosis in nuclei of arcuate hypothalamus (ARN) of monosodium glutamate (MSG)-liver regeneration rats, and the mechanism of liver regeneration by using optic microscope, electron microscope and in situ end labeling technology to adjust nerve-endocrine-immunity network. METHODS Neurocyte apoptosis in ARN of the experiment rats was observed by using optic microscope, electron microscope and in situ end labeling technology. Expression of TGF-beta1 in ARN was observed by using immunohistochemistry method. RESULTS The expression of TGF-beta1 in rats of model group was increased with the increase of ARN neurocyte apoptosis index (AI) (t = 8.3097, 12.9884, P<0.01). As compared with the rats of model group, the expression of TGF-beta1 in rats of Zuogui Wan treatment group was decreased with the significant decrease of ARN neurocyte apoptosis (t = 4.5624, 11.1420, P<0.01). CONCLUSION Brain neurocyte calcium ion overexertion and TGF-beta1 protein participate in the adjustment and control of ARN neurocyte apoptosis in MSG-liver regeneration-rats. Zuogui Wan can prevent ARN neurocyte apoptosis of MSG-liver regeneration in rats by down-regulating the expression of TGF-beta1, and influence liver regeneration through adjusting nerve-endocrine-immune network.
Collapse
Affiliation(s)
- Han-Min Li
- Hepatopathy Institute, Affiliated Hospital of Hubei Traditional Chinese Medicine College, Wuhan 430061, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
41
|
Li HM, Gao X, Yang ML, Mei JJ, Zhang LT, Qiu XF. Effects of Zuogui Wan on neurocyte apoptosis and down-regulation of TGF-β 1 expression in nuclei of arcuate hypothalamus of monosodium glutamate -liver regeneration rats. World J Gastroenterol 2004; 10:2823-6. [PMID: 15334678 PMCID: PMC4572110 DOI: 10.3748/wjg.v10.i19.2823] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: To inquire into the effects and mechanism of Zuogui Wan (Pills for Kidney Yin) on neurocyte apoptosis in nuclei of arcuate hypothalamus (ARN) of monosodium glutamate (MSG)-liver regeneration rats, and the mechanism of liver regeneration by using optic microscope, electron microscope and in situ end labeling technology to adjust nerve-endocrine-immunity network.
METHODS: Neurocyte apoptosis in ARN of the experiment rats was observed by using optic microscope, electron microscope and in situ end labeling technology. Expression of TGF-β1 in ARN was observed by using immunohistochemistry method.
RESULTS: The expression of TGF-β1 in rats of model group was increased with the increase of ARN neurocyte apoptosis index (AI) (t = 8.3097, 12.9884, P < 0.01). As compared with the rats of model group, the expression of TGF-β1 in rats of Zuogui Wan treatment group was decreased with the significant decrease of ARN neurocyte apoptosis (t = 4.5624, 11.1420, P < 0.01).
CONCLUSION: Brain neurocyte calcium ion overexertion and TGF-β1 protein participate in the adjustment and control of ARN neurocyte apoptosis in MSG-liver regeneration-rats. Zuogui Wan can prevent ARN neurocyte apoptosis of MSG-liver regeneration in rats by down-regulating the expression of TGF-β1, and influence liver regeneration through adjusting nerve-endocrine-immune network.
Collapse
Affiliation(s)
- Han-Min Li
- Hepatopathy Institute, Affiliated Hospital of Hubei Traditional Chinese Medicine College, Wuhan 430061, Hubei Province, China
| | | | | | | | | | | |
Collapse
|
42
|
Gilbert S, Loranger A, Marceau N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol Cell Biol 2004; 24:7072-81. [PMID: 15282307 PMCID: PMC479742 DOI: 10.1128/mcb.24.16.7072-7081.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Among the large family of intermediate filament proteins, the keratin 8 and 18 (K8/K18) pair constitutes a hallmark for all simple epithelial cells, such as hepatocytes and mammary cells. Functional studies with different cell models have suggested that K8/K18 are involved in simple epithelial cell resistance to several forms of stress that may lead to cell death. We have reported recently that K8/K18-deprived hepatocytes from K8-null mice are more sensitive to Fas-mediated apoptosis. Here we show that upon Fas, tumor necrosis factor alpha receptor, or tumor necrosis factor alpha-related apoptosis-inducing ligand receptor stimulation, an inhibition of extracellular signal-regulated kinase 1 and 2 (ERK1/2) activation sensitizes wild-type but not K8-null mouse hepatocytes to apoptosis and that a much weaker ERK1/2 activation occurs in K8-null hepatocytes. In turn, this impaired ERK1/2 activation in K8-null hepatocytes is associated with a drastic reduction in c-Flip protein, an event that also holds in a K8-null mouse mammary cell line. c-Flip, along with Raf-1, is part of a K8/K18-immunoisolated complex from wild-type hepatocytes, and Fas stimulation leads to further c-Flip and Raf-1 recruitment in the complex. This points to a new regulatory role of simple epithelium keratins in the c-Flip/ERK1/2 antiapoptotic signaling pathway.
Collapse
Affiliation(s)
- Stéphane Gilbert
- Centre de Recherche en Cancérologie et Département de Médecine, Université Laval, and Centre de Recherche de L'Hôtel-Dieu de Québec, Quebec G1R 2J6, Canada
| | | | | |
Collapse
|
43
|
Cullen KA, McCool J, Anwer MS, Webster CRL. Activation of cAMP-guanine exchange factor confers PKA-independent protection from hepatocyte apoptosis. Am J Physiol Gastrointest Liver Physiol 2004; 287:G334-43. [PMID: 15044179 DOI: 10.1152/ajpgi.00517.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
cAMP has previously been shown to promote cell survival in a variety of cell types, but the downstream signaling pathway(s) of this antiapoptotic effect is unclear. Thus the role of cAMP signaling through PKA and cAMP-regulated guanine nucleotide exchange factors (cAMP-GEFs) in cAMP's antiapoptotic action was investigated in the present study. cAMP's protective effect against bile acid-, Fas ligand-, and TNF-alpha-induced apoptosis in rat hepatocytes was largely unaffected by the selective PKA inhibitor, Rp-8-(4-chlorophenylthio)-cAMP (Rp-cAMP). In contrast, a novel cAMP analog, 8-(4-chlorophenylthio)-2'-O-methyl (CPT-2-Me)-cAMP, which activated cAMP-GEFs in hepatocytes without activating PKA, protected hepatocytes against apoptosis induced by bile acids, Fas ligand, and TNF-alpha. The role of cAMP-GEF and PKA on activation of Akt, a kinase implicated in cAMP survival signaling, was investigated. Inhibition of PKA with RP-cAMP had no effect on cAMP-mediated Akt phosphorylation, whereas CPT-2-Me-cAMP, which did not activate PKA, induced phosphatidylinositol 3-kinase (PI3-kinase)-dependent activation of Akt. Pretreatment of hepatocytes with the PI3-kinase inhibitor, Ly-294002, prevented CPT-2-Me-cAMP's protective effect against bile acid and Fas ligand, but not TNF-alpha-mediated apoptosis. Glucagon, CPT-cAMP, and CPT-2-Me-cAMP all activated Rap 1, a downstream effector of cAMP-GEF. These results suggest that a PKA-independent cAMP/cAMP-GEF/Rap pathway exists in hepatocytes and that activation of cAMP-GEFs promotes Akt phosphorylation and hepatocyte survival. Thus a cAMP/cAMP-GEF/Rap/PI3-kinase/Akt signaling pathway may confer protection against bile acid- and Fas-induced apoptosis in hepatocytes.
Collapse
Affiliation(s)
- Kimberly A Cullen
- Tufts Univ. School of Veterinary Medicine, 200 Westboro Rd., Grafton, MA 01536, USA
| | | | | | | |
Collapse
|
44
|
Schoemaker MH, Moshage H. Defying death: the hepatocyte's survival kit. Clin Sci (Lond) 2004; 107:13-25. [PMID: 15104533 DOI: 10.1042/cs20040090] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Accepted: 04/23/2004] [Indexed: 01/18/2023]
Abstract
Acute liver injury can develop as a consequence of viral hepatitis, drug- or toxin-induced toxicity or rejection after liver transplantation, whereas chronic liver injury can be due to long-term exposure to alcohol, chemicals, chronic viral hepatitis, metabolic or cholestatic disorders. During liver injury, liver cells are exposed to increased levels of cytokines, bile acids and oxidative stress. This results in death of hepatocytes. In contrast, stellate cells become active and are resistant against cell death. Eventually, acute and chronic liver injury is followed by loss of liver function for which no effective therapies are available. Hepatocytes are well equipped with protective mechanisms to prevent cell death. As long as these protective mechanisms can be activated, the balance will be in favour of cell survival. However, the balance between cell survival and cell death is delicate and can be easily tipped towards cell death during liver injury. Therefore understanding the cellular mechanisms controlling death of liver cells is of clinical and scientific importance and can lead to the identification of novel intervention targets. This review describes some of the mechanisms that determine the balance between cell death and cell survival during liver diseases. The strict regulation of apoptotic cell death allows therapeutic intervention strategies. In this light, receptor-mediated apoptosis and mitochondria-mediated cell death are discussed and strategies are provided to selectively interfere with these processes.
Collapse
Affiliation(s)
- Marieke H Schoemaker
- Center for Liver, Digestive and Metabolic Diseases, University Hospital Groningen, PO Box 30001, 9700 RB, Groningen, The Netherlands.
| | | |
Collapse
|
45
|
Manna PP, Frazier WA. CD47 mediates killing of breast tumor cells via Gi-dependent inhibition of protein kinase A. Cancer Res 2004; 64:1026-36. [PMID: 14871834 DOI: 10.1158/0008-5472.can-03-1708] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombospondins (TSPs) have been implicated as antitumor and antimetastasis factors in breast cancer. Although this effect has been attributed to the antiangiogenic activity of TSPs, recent observations suggest other mechanisms may be at work. The TSP receptor CD47 (integrin-associated protein) has recently been reported to mediate a novel form of apoptosis. Here, we have studied the response of breast cancer cells to CD47 ligands TSP-1, the CD47 agonist peptide 4N1K derived from TSP-1, and the anti-CD47 monoclonal antibody 1F7. All of these ligands killed four different breast cancer cell lines. This CD47-mediated cell death did not require active caspases or Bcl-2 degradation and did not cause DNA laddering or cytochrome c release. Pertussis toxin (PTX) prevented CD47-mediated death, indicating the involvement of Gi alpha. 4N1K dramatically reduced intracellular cAMP levels, an effect reversed with PTX. Forskolin, 8-bromo cAMP, and isobutylmethylxanthine (IBMX) all prevented CD47-mediated apoptosis, indicating the involvement of cAMP. H89 and protein kinase A (PKA) inhibitor peptide prevented rescue of breast cancer cells by PTX, 8-Br-cAMP, and forskolin, suggesting that the effects of cAMP are mediated via PKA-dependent phosphorylation events. Epidermal growth factor also inhibited CD47-induced apoptosis via a PKC-dependent but ERK-independent pathway. Thus, CD47-mediated killing of breast cancer cells occurs by a novel pathway involving regulation of cAMP levels by heterotrimeric Gi with subsequent effects mediated by PKA.
Collapse
Affiliation(s)
- Partha Pratim Manna
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
46
|
Abstract
Chronic ethanol abuse is associated with liver injury, neurotoxicity, hypertension, cardiomyopathy, modulation of immune responses and increased risk for cancer, whereas moderate alcohol consumption exerts protective effect on coronary heart disease. However, the signal transduction mechanisms underlying these processes are not well understood. Emerging evidences highlight a central role for mitogen activated protein kinase (MAPK) family in several of these effects of ethanol. MAPK signaling cascade plays an essential role in the initiation of cellular processes such as proliferation, differentiation, development, apoptosis, stress and inflammatory responses. Modulation of MAPK signaling pathway by ethanol is distinctive, depending on the cell type; acute or chronic; normal or transformed cell phenotype and on the type of agonist stimulating the MAPK. Acute exposure to ethanol results in modest activation of p42/44 MAPK in hepatocytes, astrocytes, and vascular smooth muscle cells. Acute ethanol exposure also results in potentiation or prolonged activation of p42/44MAPK in an agonist selective manner. Acute ethanol treatment also inhibits serum stimulated p42/44 MAPK activation and DNA synthesis in vascular smooth muscle cells. Chronic ethanol treatment causes decreased activation of p42/44 MAPK and inhibition of growth factor stimulated p42/44 MAPK activation and these effects of ethanol are correlated to suppression of DNA synthesis, impaired synaptic plasticity and neurotoxicity. In contrast, chronic ethanol treatment causes potentiation of endotoxin stimulated p42/44 MAPK and p38 MAPK signaling in Kupffer cells leading to increased synthesis of tumor necrosis factor. Acute exposure to ethanol activates pro-apoptotic JNK pathway and anti-apoptotic p42/44 MAPK pathway. Apoptosis caused by chronic ethanol treatment may be due to ethanol potentiation of TNF induced activation of p38 MAPK. Ethanol induced activation of MAPK signaling is also involved in collagen expression in stellate cells. Ethanol did not potentiate serum stimulated or Gi-protein dependent activation of p42/44 MAPK in normal hepatocytes but did so in embryonic liver cells and transformed hepatocytes leading to enhanced DNA synthesis. Ethanol has a 'triangular effect' on MAPK that involve direct effects of ethanol, its metabolically derived mediators and oxidative stress. Acetaldehyde, phosphatidylethanol, fatty acid ethyl ester and oxidative stress, mediate some of the effects seen after ethanol alone whereas ethanol modulation of agonist stimulated MAPK signaling appears to be mediated by phosphatidylethanol. Nuclear MAPKs are also affected by ethanol. Ethanol modulation of nuclear p42/44 MAPK occurs by both nuclear translocation of p42/44 MAPK and its activation in the nucleus. Of interest is the observation that ethanol caused selective acetylation of Lys 9 of histone 3 in the hepatocyte nucleus. It is plausible that ethanol modulation of cross talk between phosphorylation and acetylations of histone may regulate chromatin remodeling. Taken together, these recent developments place MAPK in a pivotal position in relation to cellular actions of ethanol. Furthermore, they offer promising insights into the specificity of ethanol effects and pharmacological modulation of MAPK signaling. Such molecular signaling approaches have the potential to provide mechanism-based therapy for the management of deleterious effects of ethanol or for exploiting its beneficial effects.
Collapse
Affiliation(s)
- Annayya R Aroor
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| | | |
Collapse
|
47
|
Tfelt-Hansen J, Chattopadhyay N, Yano S, Kanuparthi D, Rooney P, Schwarz P, Brown EM. Calcium-sensing receptor induces proliferation through p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase but not extracellularly regulated kinase in a model of humoral hypercalcemia of malignancy. Endocrinology 2004; 145:1211-7. [PMID: 14645111 DOI: 10.1210/en.2003-0749] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Using H-500 rat Leydig cancer cells as a model of humoral hypercalcemia of malignancy (HHM), we previously showed that high Ca(2+) induces PTH-related peptide (PTHrP) secretion via the calcium-sensing receptor (CaR) and mitogen- and stress-activated kinases, e.g. MAPK kinase 1 (MEK1), p38 MAPK, and stress-activated protein kinase 1/c-Jun N-terminal kinase. Because cellular proliferation is a hallmark of malignancy, we studied the role of the CaR in regulating the proliferation of H-500 cells. Elevated Ca(2+) has a mitogenic effect on these cells that is mediated by the CaR, because the calcimimetic NPS R-467 also induced proliferation. Inhibition of phosphatidylinositol 3-kinase (PI3K) and p38 MAPK but not MEK1 abolished the mitogenic effect. Activation of PI3K by elevated Ca(2+) was documented by phosphorylation of its downstream kinase, protein kinase B. Because protein kinase B activation promotes cell survival, we speculated that elevated Ca(2+) might protect H-500 cells against apoptosis. Using terminal uridine deoxynucleotidyl nick end labeling staining, we demonstrated that high Ca(2+) (7.5 mM) and NPS R-467 indeed protect cells against apoptosis induced by serum withdrawal compared with low Ca(2+) (0.5 mM). Because the CaR induces PTHrP secretion, it is possible that the mitogenic and antiapoptotic effects of elevated Ca(2+) could be indirect and mediated via PTHrP. However, blocking the type 1 PTH receptor with PTH (7-34) peptide did not alter either high Ca(2+)-induced proliferation or protection against apoptosis. Taken together, our data show that activation of PI3K and p38 MAPK but not of MEK1/ERK by the CaR promotes proliferation of H-500 cells as well as affords protection against apoptosis. These effects are likely direct without the involvement of PTHrP in an autocrine mode.
Collapse
Affiliation(s)
- J Tfelt-Hansen
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine and Membrane Biology Program, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Yao P, Zhan Y, Xu W, Li C, Yue P, Xu C, Hu D, Qu CK, Qu C, Yang X. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-kappaB. J Hepatol 2004; 40:391-8. [PMID: 15123351 DOI: 10.1016/j.jhep.2003.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 09/12/2003] [Accepted: 11/03/2003] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-kappaB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-kappaB in HGF-mediated cellular proliferation responses in a rat liver-derived hepatic stem-like cell line WB-F344. METHODS Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IkappaBalpha by HGF stimulation was detected by Western blotting. NF-kappaB activation was determined by electrophoretic mobility shift assay and NF-kappaB-mediated SEAP reporter assay. NF-kappaB activation was inhibited by treatment with an IkappaBalpha dominant-negative vector or inhibitor BAY-11-7082. RESULTS We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-alpha. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-kappaB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-kappaB activity. Furthermore, it was demonstrated that IkappaB mutant that suppressed NF-kappaB activity completely blocked HGF-induced cell proliferation. CONCLUSIONS NF-kappaB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.
Collapse
Affiliation(s)
- Peng Yao
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Schulze-Bergkamen H, Brenner D, Krueger A, Suess D, Fas SC, Frey CR, Dax A, Zink D, Büchler P, Müller M, Krammer PH. Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt. Hepatology 2004; 39:645-54. [PMID: 14999683 DOI: 10.1002/hep.20138] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CD95 (APO-1/Fas)-mediated apoptosis of hepatocytes plays a central role in the pathophysiology of various human liver diseases. Hepatocyte growth factor (HGF) was shown to exert antiapoptotic functions in rodent hepatocytes. We previously showed that primary human hepatocytes (PHH) are a valuable tool for the investigation of apoptotic processes in liver cells. In this study, we analyzed the influence of HGF on CD95-mediated apoptosis of PHH and its molecular determinants. HGF significantly inhibited CD95-mediated apoptosis of PHH as well as cleavage of caspase-8 and poly (ADP-ribose)polymerase. HGF transcriptionally induced the expression of the anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1). In contrary, HGF did not alter the expression levels of Bcl-2 or Bcl-x(L). HGF activated survival pathways such as the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK and the signal transducer and activator of transcription 3 (STAT3) pathway. Notably, HGF triggered serine(727)--but not tyrosine(705)--phosphorylation of STAT3. Pretreatment of PHH with the PI3K inhibitor LY294002 as well as adenoviral transduction of dominant negative Akt1 prevented HGF-mediated Mcl-1 induction and reversed the antiapoptotic effects of HGF. In conclusion, HGF confers survival of PHH by activation of the PI3K/Akt pathway. PI3K/Akt activation by HGF results in the induction of antiapoptotic proteins such as Mcl-1. Thus, application of HGF may be a therapeutic approach to prevent CD95-mediated hepatocellular damage in human liver diseases.
Collapse
Affiliation(s)
- Henning Schulze-Bergkamen
- Tumor Immunology Program, Division of Immunogenetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang L, Pelech S, Uitto VJ. Long-term effect of heat shock protein 60 from Actinobacillus actinomycetemcomitans on epithelial cell viability and mitogen-activated protein kinases. Infect Immun 2004; 72:38-45. [PMID: 14688078 PMCID: PMC343954 DOI: 10.1128/iai.72.1.38-45.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Our previous studies showed that bacterial heat shock protein 60 (hsp60) induces cultured epithelial cell proliferation within 24 h. Here we investigated the long-term effects of heat shock protein 60 isolated from Actinobacillus actinomycetemcomitans on skin keratinocyte (HaCaT cell line) viability and the cell signaling involved. Prolonged incubation in the presence of hsp60 increased the rate of epithelial cell death. The number of viable cells in hsp60-treated culture was 37% higher than the number in the control at 24 h but 27% lower at 144 h. A kinetics study of the effect of hsp60 on the phosphorylation of mitogen-activated protein kinases (MAPKs) involving Western blotting with phospho-specific antibodies showed that in addition to a transient early increase in p38 levels, a second peak appeared in keratinocytes 24 h after the addition of hsp60. In contrast, prolonged incubation with hsp60 caused a decrease in the level of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) compared with that in the controls, possibly as a result of protein phosphatase activity. We found that hsp60 increased the levels of several phosphatases, including MAP-2, which strongly dephosphorylates ERK1/2. Moreover, hsp60 increased the level of tumor necrosis factor alpha (TNF-alpha) in culture medium in a dose-dependent manner. TNF-alpha added to culture showed a cytotoxic effect on epithelial cells, particularly with longer incubation periods. TNF-alpha also induced the phosphorylation of p38. Finally, our results show that bacterial hsp60 inhibited stress-induced synthesis of cellular hsp60. Therefore, several cell behavior changes caused by long-term exposure to bacterial hsp60 may lead to impaired epithelial cell viability.
Collapse
Affiliation(s)
- Liangxuan Zhang
- Department of Oral Biological and Medical Sciences, University of British Columbia, British Columbia, Canada
| | | | | |
Collapse
|