1
|
Liu Q, Xue Y, Guo J, Tao L, Zhu Y. Citrate: a key signalling molecule and therapeutic target for bone remodeling disorder. Front Endocrinol (Lausanne) 2025; 15:1512398. [PMID: 39886032 PMCID: PMC11779597 DOI: 10.3389/fendo.2024.1512398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/20/2024] [Indexed: 02/01/2025] Open
Abstract
Bone remodeling is a continuous cyclic process that maintains and regulates bone structure and strength. The disturbance of bone remodeling leads to a series of bone metabolic diseases. Recent studies have shown that citrate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, plays an important role in bone remodeling. But the exact mechanism is still unclear. In this study, we focused on the systemic regulatory mechanism of citrate on bone remodeling, and found that citrate is involved in bone remodeling in multiple ways. The participation of citrate in oxidative phosphorylation (OXPHOS) facilitates the generation of ATP, thereby providing substantial energy for bone formation and resorption. Osteoclast-mediated bone resorption releases citrate from bone mineral salts, which is subsequently released as an energy source to activate the osteogenic differentiation of stem cells. Finally, the differentiated osteoblasts secrete into the bone matrix and participate in bone mineral salts formation. As a substrate of histone acetylation, citrate regulates the expression of genes related to bone formation and bone reabsorption. Citrate is also a key intermediate in the metabolism and synthesis of glucose, fatty acids and amino acids, which are three major nutrients in the organism. Citrate can also be used as a biomarker to monitor bone mass transformation and plays an important role in the diagnosis and therapeutic evaluation of bone remodeling disorders. Citrate imbalance due to citrate transporter could result in the supression of osteoblast/OC function through histone acetylation, thereby contributing to disorders in bone remodeling. Therefore, designing drugs targeting citrate-related proteins to regulate bone citrate content provides a new direction for the drug treatment of diseases related to bone remodeling disorders.
Collapse
Affiliation(s)
| | | | | | - Lin Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Hua Y, Wang H, Chen T, Zhou Y, Chen Z, Zhao X, Mo S, Mao H, Li M, Wang L, Hong M. Antioxidant 1,2,3,4,6-Penta- O-galloyl-β-D-glucose Alleviating Apoptosis and Promoting Bone Formation Is Associated with Estrogen Receptors. Molecules 2024; 29:5110. [PMID: 39519751 PMCID: PMC11547736 DOI: 10.3390/molecules29215110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG) is the main phenolic active ingredient in Paeoniae Radix Alba, which is commonly used for the treatment of osteoporosis (OP). PGG is a potent natural antioxidant, and its effects on OP remain unknown. This study aimed to investigate the effects of PGG on promoting bone formation and explore its estrogen receptor (ER)-related mechanisms. A hydrogen peroxide-induced osteoblast apoptosis model was established in MC3T3-E1 cells. The effects of PGG were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry, alkaline phosphatase (ALP) staining, RT-qPCR, and Western blot methods. Furthermore, a prednisolone-induced zebrafish OP model was employed to study the effects in vivo. ER inhibitors and molecular docking methods were used further to investigate the interactions between PGG and ERs. The results showed that PGG significantly enhanced cell viability and decreased cell apoptosis by restoring mitochondrial function, attenuating reactive oxygen species levels, decreasing the mitochondrial membrane potential, and enhancing ATP production. PGG enhanced ALP expression and activity and elevated osteogenic differentiation. PGG also promoted bone formation in the zebrafish model, and these effects were reversed by ICI182780. These results provide evidence that the effects of PGG in alleviating apoptosis and promoting bone formation may depend on ERs. As such, PGG is considered a valuable candidate for treating OP.
Collapse
Affiliation(s)
- Yongqing Hua
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haili Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingting Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yeru Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhiyuan Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xinyue Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shaoqin Mo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Hongyun Mao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Miao Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Linxia Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Hong
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
3
|
Cohen DJ, Dennis CD, Deng J, Boyan BD, Schwartz Z. Estradiol induces bone osteolysis in triple-negative breast cancer via its membrane-associated receptor ERα36. JBMR Plus 2024; 8:ziae041. [PMID: 38644978 PMCID: PMC11032217 DOI: 10.1093/jbmrpl/ziae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/27/2024] [Indexed: 04/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is thought to be an estradiol-independent, hormone therapy-resistant cancer because of lack of estrogen receptor alpha 66 (ERα66). We identified a membrane-bound splice variant, ERα36, in TNBC cells that responds to estrogen (E2) and may contribute to bone osteolysis. We demonstrated that the MDA-MB-231 TNBC cell line, which expresses ERα36 similarly to MCF7 cells, is responsive to E2, forming osteolytic tumors in vivo. MDA-MB-231 cells activate osteoclasts in a paracrine manner. Conditioned media (CM) from MDA-MB-231 cells treated with bovine serum albumin-bound E2 (E2-BSA) increased activation of human osteoclast precursor cells; this was blocked by addition of anti-ERα36 antibody to the MDA-MB-231 cultures. Osteoclast activation and bone resorption genes were elevated in RAW 264.7 murine macrophages following treatment with E2-BSA-stimulated MDA-MB-231 CM. E2 and E2-BSA increased phospholipase C (PLC) and protein kinase C (PKC) activity in MDA-MB-231 cells. To examine the role of ERα36 signaling in bone osteolysis in TNBC, we used our bone-cancer interface mouse model in female athymic homozygous Foxn1nu mice. Mice with MDA-MB-231 tumors and treated with tamoxifen (TAM), E2, or TAM/E2 exhibited increased osteolysis, cortical bone breakdown, pathologic fracture, and tumor volume; the combined E2/TAM group also had reduced bone volume. These results suggest that E2 increased osteolytic lesions in TNBC through a membrane-mediated PLC/PKC pathway involving ERα36, which was enhanced by TAM, demonstrating the role of ERα36 and its membrane-associated signaling pathway in bone tumors. This work suggests that ERα36 may be a potential therapeutic target in patients with TNBC.
Collapse
Affiliation(s)
- D Joshua Cohen
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Cydney D Dennis
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Jingyao Deng
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, United States
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229United States
| |
Collapse
|
4
|
Wong KY, Kong TH, Poon CCW, Yu W, Zhou L, Wong MS. Icariin, a phytoestrogen, exerts rapid estrogenic actions through crosstalk of estrogen receptors in osteoblasts. Phytother Res 2023; 37:4706-4721. [PMID: 37421324 DOI: 10.1002/ptr.7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/10/2023]
Abstract
Icariin, a flavonoid glycoside derived from Epimedium brevicornum Maxim, exerts bone protective effects via estrogen receptors (ERs). This study aimed to investigate the role of ER-α66, ER-α36, and GPER in bone metabolism in osteoblasts following treatment with icariin. Human osteoblastic MG-63 cells and osteoblast-specific ER-α66 knockout mice were employed. The ERs crosstalk in the estrogenic action of icariin was evaluated in ER-α66-negative human embryonic kidney HEK293 cells. Icariin, like E2, regulated ER-α36 and GPER protein expression in osteoblasts by downregulating them and upregulating ER-α66. ER-α36 and GPER suppressed the actions of icariin and E2 in bone metabolism. However, the in vivo administration of E2 (2 mg/kg/day) or icariin (300 mg/kg/day) restored bone conditions in KO osteoblasts. ER-α36 and GPER expression increased significantly and rapidly activated and translocated in KO osteoblasts after treatment with E2 or icariin. ER-α36 overexpression in KO osteoblasts further promoted the OPG/RANKL ratio induced by E2 or icariin treatment. This study showed icariin and E2 elicit rapid estrogenic responses in bone through recruiting ER-α66, ER-α36, and GPER. Notably, in osteoblasts lacking ER-α66, ER-α36, and GPER mediate the estrogenic effects of icariin and E2, while in intact osteoblasts, ER-α36 and GPER act as negative regulators of ER-α66.
Collapse
Affiliation(s)
- Ka-Ying Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Tsz-Hung Kong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Christina Chui-Wa Poon
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Wenxuan Yu
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Liping Zhou
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
| | - Man-Sau Wong
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- Research Centre for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, People's Republic of China
- State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation), The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
5
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Sesamol improves bone mass in ovary intact growing and adult rats but accelerates bone deterioration in the ovariectomized rats. J Nutr Biochem 2023:109384. [PMID: 37209954 DOI: 10.1016/j.jnutbio.2023.109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sesamol, an active component in sesame seeds, is known for its health benefits. However, its effect on bone metabolism remains unexplored. The present study aims to investigate the effect of sesamol on growing, adult and osteoporotic skeleton and its mechanism of action. Sesamol at various doses were administered orally to growing, ovariectomized, and ovary-intact rats. Alterations in bone parameters were examined using micro-CT and histological studies. Western blot and mRNA expression from long bones were performed. We further evaluated the effect of sesamol on osteoblast and osteoclast function and its mode of action in the cell culture system. These data showed that sesamol was able to promote peak bone mass in growing rats. However, sesamol had the opposite effect in ovariectomized rats, evident from gross deterioration of trabecular and cortical microarchitecture. Concurrently, it improved the bone mass in adult rats. In vitro results revealed that sesamol enhances the bone formation by stimulating osteoblast differentiation through MAPK, AKT, and BMP-2 signaling. In contrast, it enhances osteoclast differentiation and expression of osteoclast-specific genes in osteoclast differentiation medium. Interestingly, in presence of estrogen, the effect reversed and sesamol decreased osteoclast differentiation, in vitro. Sesamol improves bone microarchitecture in growing and ovary-intact rats, whereas it enhances the bone deterioration in ovariectomized rats. While sesamol promotes bone formation, its opposing effect on the skeleton can be attributed to its dual effect on osteoclastogenesis in presence and absence of estrogen. These findings in the preclinical context suggests a special attention towards the detrimental effect of sesamol in postmenopausal women.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Estrogen Receptor Alpha Splice Variants, Post-Translational Modifications, and Their Physiological Functions. Cells 2023; 12:cells12060895. [PMID: 36980236 PMCID: PMC10047206 DOI: 10.3390/cells12060895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
The importance of estrogenic signaling for a broad spectrum of biological processes, including reproduction, cancer development, energy metabolism, memory and learning, and so on, has been well documented. Among reported estrogen receptors, estrogen receptor alpha (ERα) has been known to be a major mediator of cellular estrogenic signaling. Accumulating evidence has shown that the regulations of ERα gene transcription, splicing, and expression across the tissues are highly complex. The ERα promoter region is composed of multiple leader exons and 5′-untranslated region (5′-UTR) exons. Differential splicing results in multiple ERα proteins with different molecular weights and functional domains. Furthermore, various post-translational modifications (PTMs) further impact ERα cellular localization, ligand affinity, and therefore functionality. These splicing isoforms and PTMs are differentially expressed in a tissue-specific manner, mediate certain aspects of ERα signaling, and may work even antagonistically against the full-length ERα. The fundamental understanding of the ERα splicing isoforms in normal physiology is limited and association studies of the splicing isoforms and the PTMs are scarce. This review aims to summarize the functional diversity of these ERα variants and the PTMs in normal physiological processes, particularly as studied in transgenic mouse models.
Collapse
|
7
|
Wang Z, Li X, Yang J, Gong Y, Zhang H, Qiu X, Liu Y, Zhou C, Chen Y, Greenbaum J, Cheng L, Hu Y, Xie J, Yang X, Li Y, Schiller MR, Chen Y, Tan L, Tang SY, Shen H, Xiao HM, Deng HW. Single-cell RNA sequencing deconvolutes the in vivo heterogeneity of human bone marrow-derived mesenchymal stem cells. Int J Biol Sci 2021; 17:4192-4206. [PMID: 34803492 PMCID: PMC8579438 DOI: 10.7150/ijbs.61950] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are multipotent stromal cells that have a critical role in the maintenance of skeletal tissues such as bone, cartilage, and the fat in bone marrow. In addition to providing microenvironmental support for hematopoietic processes, BM-MSCs can differentiate into various mesodermal lineages including osteoblast/osteocyte, chondrocyte, and adipocyte that are crucial for bone metabolism. While BM-MSCs have high cell-to-cell heterogeneity in gene expression, the cell subtypes that contribute to this heterogeneity in vivo in humans have not been characterized. To investigate the transcriptional diversity of BM-MSCs, we applied single-cell RNA sequencing (scRNA-seq) on freshly isolated CD271+ BM-derived mononuclear cells (BM-MNCs) from two human subjects. We successfully identified LEPRhiCD45low BM-MSCs within the CD271+ BM-MNC population, and further codified the BM-MSCs into distinct subpopulations corresponding to the osteogenic, chondrogenic, and adipogenic differentiation trajectories, as well as terminal-stage quiescent cells. Biological functional annotations of the transcriptomes suggest that osteoblast precursors induce angiogenesis coupled with osteogenesis, and chondrocyte precursors have the potential to differentiate into myocytes. We also discovered transcripts for several clusters of differentiation (CD) markers that were either highly expressed (e.g., CD167b, CD91, CD130 and CD118) or absent (e.g., CD74, CD217, CD148 and CD68) in BM-MSCs, representing potential novel markers for human BM-MSC purification. This study is the first systematic in vivo dissection of human BM-MSCs cell subtypes at the single-cell resolution, revealing an insight into the extent of their cellular heterogeneity and roles in maintaining bone homeostasis.
Collapse
Affiliation(s)
- Zun Wang
- Xiangya School of Nursing, Central South University, Changsha, 410013, China; Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, 70112, USA
| | - Xiaohua Li
- Xiangya School of Nursing, Central South University, Changsha, 410013, China; Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, 70112, USA
| | - Huixi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
| | - Xiang Qiu
- School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, 70112, USA
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Xucheng Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine and School of Life Science, 4505 S. Maryland Pkwy, Las Vegas, NV 89154-4004, USA
| | - Yiping Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70112, USA
| | - Lijun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
| | - Si-Yuan Tang
- Xiangya School of Nursing, Central South University, Changsha, 410013, China; Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha, 410081, China
- Hunan Women's Research Association, Changsha, 410011, China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, 70112, USA
| | - Hong-Mei Xiao
- School of Basic Medical Science, Central South University, Changsha, 410008, China
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, 70112, USA
- School of Basic Medical Science, Central South University, Changsha, 410008, China
| |
Collapse
|
8
|
Gong Y, Yang J, Li X, Zhou C, Chen Y, Wang Z, Qiu X, Liu Y, Zhang H, Greenbaum J, Cheng L, Hu Y, Xie J, Yang X, Li Y, Bai Y, Wang YP, Chen Y, Tan LJ, Shen H, Xiao HM, Deng HW. A systematic dissection of human primary osteoblasts in vivo at single-cell resolution. Aging (Albany NY) 2021; 13:20629-20650. [PMID: 34428745 PMCID: PMC8436943 DOI: 10.18632/aging.203452] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
Human osteoblasts are multifunctional bone cells, which play essential roles in bone formation, angiogenesis regulation, as well as maintenance of hematopoiesis. However, the categorization of primary osteoblast subtypes in vivo in humans has not yet been achieved. Here, we used single-cell RNA sequencing (scRNA-seq) to perform a systematic cellular taxonomy dissection of freshly isolated human osteoblasts from one 31-year-old male with osteoarthritis and osteopenia after hip replacement. Based on the gene expression patterns and cell lineage reconstruction, we identified three distinct cell clusters including preosteoblasts, mature osteoblasts, and an undetermined rare osteoblast subpopulation. This novel subtype was found to be the major source of the nuclear receptor subfamily 4 group A member 1 and 2 (NR4A1 and NR4A2) in primary osteoblasts, and the expression of NR4A1 was confirmed by immunofluorescence staining on mouse osteoblasts in vivo. Trajectory inference analysis suggested that the undetermined cluster, together with the preosteoblasts, are involved in the regulation of osteoblastogenesis and also give rise to mature osteoblasts. Investigation of the biological processes and signaling pathways enriched in each subpopulation revealed that in addition to bone formation, preosteoblasts and undetermined osteoblasts may also regulate both angiogenesis and hemopoiesis. Finally, we demonstrated that there are systematic differences between the transcriptional profiles of human and mouse osteoblasts, highlighting the necessity for studying bone physiological processes in humans rather than solely relying on mouse models. Our findings provide novel insights into the cellular heterogeneity and potential biological functions of human primary osteoblasts at the single-cell level.
Collapse
MESH Headings
- Adult
- Animals
- Cell Differentiation
- Cells, Cultured
- Humans
- Male
- Mice
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Osteoblasts/cytology
- Osteoblasts/metabolism
- Sequence Analysis, RNA
- Single-Cell Analysis
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaohua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Xiang Qiu
- School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Huixi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Jonathan Greenbaum
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xuecheng Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuntong Bai
- Tulane Center for Bioinformatics and Genomics, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70112, USA
| | - Yu-Ping Wang
- Tulane Center for Bioinformatics and Genomics, Department of Biomedical Engineering, Tulane University, New Orleans, LA 70112, USA
| | - Yiping Chen
- Department of Cell and Molecular Biology, School of Science and Engineering, Tulane University, New Orleans, LA 70112, USA
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hong-Mei Xiao
- Center of Reproductive Health, System Biology and Data Information, Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha 410081, China
- School of Basic Medical Science, Central South University, Changsha 410008, China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- School of Basic Medical Science, Central South University, Changsha 410008, China
| |
Collapse
|
9
|
Qiu X, Liu Y, Shen H, Wang Z, Gong Y, Yang J, Li X, Zhang H, Chen Y, Zhou C, Lv W, Cheng L, Hu Y, Li B, Shen W, Zhu X, Tan LJ, Xiao HM, Deng HW. Single-cell RNA sequencing of human femoral head in vivo. Aging (Albany NY) 2021; 13:15595-15619. [PMID: 34111027 PMCID: PMC8221309 DOI: 10.18632/aging.203124] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/13/2021] [Indexed: 11/25/2022]
Abstract
The homeostasis of bone metabolism depends on the coupling and precise regulation of various types of cells in bone tissue. However, the communication and interaction between bone tissue cells at the single-cell level remains poorly understood. Thus, we performed single-cell RNA sequencing (scRNA-seq) on the primary human femoral head tissue cells (FHTCs). Nine cell types were identified in 26,574 primary human FHTCs, including granulocytes, T cells, monocytes, B cells, red blood cells, osteoblastic lineage cells, endothelial cells, endothelial progenitor cells (EPCs) and plasmacytoid dendritic cells. We identified serine protease 23 (PRSS23) and matrix remodeling associated protein 8 (MXRA8) as novel bone metabolism-related genes. Additionally, we found that several subtypes of monocytes, T cells and B cells were related to bone metabolism. Cell-cell communication analysis showed that collagen, chemokine, transforming growth factor and their ligands have significant roles in the crosstalks between FHTCs. In particular, EPCs communicated with osteoblastic lineage cells closely via the "COL2A1-ITGB1" interaction pair. Collectively, this study provided an initial characterization of the cellular composition of the human FHTCs and the complex crosstalks between them at the single-cell level. It is a unique starting resource for in-depth insights into bone metabolism.
Collapse
Affiliation(s)
- Xiang Qiu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Ying Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Zun Wang
- Xiangya Nursing School, Central South University, Changsha 410013, China
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Junxiao Yang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaohua Li
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Huixi Zhang
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Yu Chen
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Cui Zhou
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Wanqiang Lv
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Liang Cheng
- Department of Orthopedics and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Boyang Li
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Wendi Shen
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Xuezhen Zhu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Li-Jun Tan
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Human Normal University, Changsha 410081, China
| | - Hong-Mei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
| | - Hong-Wen Deng
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Yuelu, Changsha 410013, China
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Mahboobifard F, Dargahi L, Jorjani M, Ramezani Tehrani F, Pourgholami MH. The role of ERα36 in cell type-specific functions of estrogen and cancer development. Pharmacol Res 2021; 163:105307. [PMID: 33246174 DOI: 10.1016/j.phrs.2020.105307] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
|
11
|
Quast A, Martian V, Bohnsack A, Batschkus S, Meyer-Marcotty P, Miosge N. Donor variation and sex hormone receptors in periodontal ligament cells. Arch Oral Biol 2020; 122:105026. [PMID: 33348207 DOI: 10.1016/j.archoralbio.2020.105026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/28/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study evaluated the gene expression and protein synthesis of sex hormone receptors in human periodontal ligament cells (PDLCs) in relation to donor- and tooth-specific factors with the aim to clarify the debate about sex hormone receptors in PDLCs. DESIGN The expression patterns of estrogen receptors (genes: ESR1 and ESR2; proteins: ERα and ERβ), androgen receptor (AR) and progesterone receptor (PR) were investigated in the context of immortalization status, previous orthodontic tooth movement (OTM), donor age, sex and hormonal stimulation in PDLCs from 14 healthy donors (male: n = 8, female: n = 6; adolescents: n = 8, adults: n = 6) using quantitative real-time polymerase chain reaction, Western blot and immunocytochemistry. RESULTS For ERβ, the full-length isoform ERβ1 and truncated variants were detected. For ERα, the expected isoform ERα66 was not observed, but a novel isoform ERα36 was detected. Immortalization status, previous OTM and donor age had no impact on ESR1 and ESR2 expression. Estradiol stimulation for 24 h doubled the ratio of ESR2/ESR1 in PDLCs from female but not male donors, indicating sex-specific patterns of receptor expression. AR and PR demonstrated insufficient protein synthesis in PDLCs. CONCLUSIONS The data revealed a pivotal role for and complex interplay between ERα and ERβ in human PDLCs regardless of variable donor characteristics. Therefore, PDLC biology might be altered in patients of each age group and both sexes due to hormonal changes. This should be kept in mind during periodontic and orthodontic treatment of patients with special hormonal status.
Collapse
Affiliation(s)
- Anja Quast
- Department of Orthodontics, University Medical Center, Goettingen, Germany.
| | - Viktor Martian
- Tissue Regeneration Group, Department of Orthodontics, University Medical Center, Goettingen, Germany
| | - Annegret Bohnsack
- Department of Orthodontics, University Medical Center, Goettingen, Germany
| | - Sarah Batschkus
- Department of Orthodontics, University Medical Center, Goettingen, Germany
| | | | - Nicolai Miosge
- Tissue Regeneration Group, Department of Orthodontics, University Medical Center, Goettingen, Germany
| |
Collapse
|
12
|
Thiebaut C, Konan HP, Guerquin MJ, Chesnel A, Livera G, Le Romancer M, Dumond H. The Role of ERα36 in Development and Tumor Malignancy. Int J Mol Sci 2020; 21:E4116. [PMID: 32526980 PMCID: PMC7312586 DOI: 10.3390/ijms21114116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Estrogen nuclear receptors, represented by the canonical forms ERα66 and ERβ1, are the main mediators of the estrogen-dependent pathophysiology in mammals. However, numerous isoforms have been identified, stimulating unconventional estrogen response pathways leading to complex cellular and tissue responses. The estrogen receptor variant, ERα36, was cloned in 2005 and is mainly described in the literature to be involved in the progression of mammary tumors and in the acquired resistance to anti-estrogen drugs, such as tamoxifen. In this review, we will first specify the place that ERα36 currently occupies within the diversity of nuclear and membrane estrogen receptors. We will then report recent data on the impact of ERα36 expression and/or activity in normal breast and testicular cells, but also in different types of tumors including mammary tumors, highlighting why ERα36 can now be considered as a marker of malignancy. Finally, we will explain how studying the regulation of ERα36 expression could provide new clues to counteract resistance to cancer treatments in hormone-sensitive tumors.
Collapse
Affiliation(s)
- Charlène Thiebaut
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Henri-Philippe Konan
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Marie-Justine Guerquin
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Amand Chesnel
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| | - Gabriel Livera
- Laboratory of Development of the Gonads, UMRE008 Genetic Stability Stem Cells and Radiation, Université de Paris, Université Paris Saclay, CEA, F-92265 Fontenay aux Roses, France; (M.-J.G.); (G.L.)
| | - Muriel Le Romancer
- Université de Lyon, F-69000 Lyon, France; (H.-P.K.); (M.L.R.)
- INSERM U1052, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
- CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France
| | - Hélène Dumond
- Université de Lorraine, CNRS, CRAN, F-54000 Nancy, France; (C.T.); (A.C.)
| |
Collapse
|
13
|
Yuan Y, Yang L, Liu T, Zhang H, Lu Q. Osteoclastogenesis inhibition by mutated IGSF23 results in human osteopetrosis. Cell Prolif 2019; 52:e12693. [PMID: 31560140 PMCID: PMC6869366 DOI: 10.1111/cpr.12693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/27/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Osteopetrosis is a rare inherited skeletal disease characterized by increased bone mineral density due to the loss of osteoclast function or differentiation potential. MATERIALS AND METHODS The study involved a Chinese patient with osteopetrosis (the proband) and her immediate family members and 180 controls without osteopetrosis. Bone density of the femoral neck, lumbar spine and total body was measured using dual-energy x-ray absorptiometry. Osteoclast differentiation by the participants' peripheral blood mononuclear cells (PBMCs) was investigated using tartrate-resistant acid phosphatase (TRAP) staining. Osteoblast differentiation was examined with Alizarin Red S staining. Reverse transcription-quantitative PCR was used to amplify immunoglobulin superfamily member 23 (IGSF23), c-FOS and nuclear factor of activated T cells 1 (NFATC1). RESULTS We found a homozygous mutation (c.295C>T) in the IGSF23 gene in two osteopetrosis samples. The mutation led to the formation of a stop codon, causing loss of the immunoglobulin-like domain and the whole transmembrane domain. PBMCs from the proband (IGSF23-/- ) exhibited poor ability for differentiating into mature osteoclasts in vitro. Overexpression of IGSF23 rescued the ability of IGSF23-/- PBMCs to differentiate into osteoclasts. Moreover, knockdown of IGSF23 reversed the bone loss in OVX mice by injecting AAV-shIGSF23 into mice femoral bone marrow cavity. Furthermore, we also found that the IGSF23 mutation led to decreased c-Fos and NFATC1 expression levels by inhibiting the mitogen-activated protein kinase signalling pathways. CONCLUSIONS IGSF23-mediated osteoclast differentiation of PBMCs may serve as a potential target in osteoporosis therapy.
Collapse
Affiliation(s)
- Ying Yuan
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Yang
- Department of Endocrinology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Ting Liu
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Zhang
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
14
|
Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 2019; 52:e12688. [PMID: 31557368 PMCID: PMC6869834 DOI: 10.1111/cpr.12688] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives With age, bone marrow mesenchymal stem cells (BMSC) have reduced ability of differentiating into osteoblasts but have increased ability of differentiating into adipocytes which leads to age‐related bone loss. MicroRNAs (miRNAs) play major roles in regulating BMSC differentiation. This paper explored the role of miRNAs in regulating BMSC differentiation swift fate in age‐related osteoporosis. Material and methods Mice and human BMSC were isolated from bone marrow, whose miR‐130a level was measured. The abilities of BMSC differentiate into osteoblast or fat cell under the transfected with agomiR‐130a or antagomiR‐130a were analysed by the level of ALP, osteocalcin, Runx2, osterix or peroxisome proliferator‐activated receptorγ (PPARγ), Fabp4. Related mechanism was verified via qT‐PCR, Western blotting (WB) and siRNA transfection. Animal phenotype intravenous injection with agomiR‐130a or agomiR‐NC was explored by Micro‐CT, immunochemistry and calcein double‐labelling. Results MiR‐130a was dramatically decreased in BMSC of advanced subjects. Overexpression of miR‐130a increased osteogenic differentiation of BMSC and attenuated adipogenic differentiation in BMSC, conversely, Inhibition of miR‐130a reduced osteogenic differentiation and facilitated lipid droplet formation. Consistently, overexpression of miR‐130a in elderly mice dropped off the bone loss. Furthermore, the protein levels of Smad regulatory factors 2 (Smurf2) and PPARγ were regulated by miR‐130a with an negative effect through directly combining the 3'UTR of Smurf2 and PPARγ. Conclusions The results indicated that miR‐130a promotes osteoblastic differentiation of BMSC by negatively regulating Smurf2 expression and suppresses adipogenic differentiation of BMSC by targeting the PPARγ, and supply a new target for clinical therapy of age‐related bone loss.
Collapse
Affiliation(s)
- Zhangyuan Lin
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
15
|
Sachdeva G, Desouza J, Gadkar S, Jagtap D. Size, site, and signaling: Three attributes of estrogen receptors. BIOMEDICAL RESEARCH JOURNAL 2019. [DOI: 10.4103/bmrj.bmrj_24_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Zhu L, Zou J, Zhao Y, Jiang X, Wang Y, Wang X, Chen B. ER-α36 mediates cisplatin resistance in breast cancer cells through EGFR/HER-2/ERK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:123. [PMID: 29940998 PMCID: PMC6019204 DOI: 10.1186/s13046-018-0798-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/15/2018] [Indexed: 11/26/2022]
Abstract
Background ER-α36, a novel ER-α66 variant, has been demonstrated to promote tamoxifen resistance in breast cancer cells. However, the role and mechanisms of ER-α36 in cisplatin resistance of breast cancer cells remain unclear. This study investigates the expression and role of ER-α36 in cisplatin resistance of breast cancer cells and elucidates its underlying mechanisms. Methods The expression of ER-α36 and the proteins involved in nongenomic estrogen signaling was evaluated by western blot analysis. Cisplatin sensitivity was explored by CCK-8 assay, monolayer colony formation assay and apoptosis assays, respectively. ER-α36 siRNAs/shRNAs and overexpression vector were transfected into cells to down-regulate or up-regulate ER-α36 expression. Loss-and gain-of function assays were performed to investigate the role of ER-α36 in cisplatin sensitivity. The interaction between ER-α36 and EGFR/HER-2 were detected using CoIP. A mouse xenograft model of breast cancer was established to verify the role of ER-α36 in vivo. Results ER-α36 is expressed at higher levels in cisplatin-resistant breast cancer cells compared to cisplatin sensitive cells. Cisplatin induced up-regulation of ER-α36 in a dose-dependent manner in breast cancer cells. Overexpression of ER-α36 leaded to cell resistant to cisplatin and knockdown of ER-α36 in cisplatin-resistant breast cancer cells restored cisplatin sensitivity. The up-regulation of ER-α36 resulted in increased activation of nongenomic estrogen signaling, which was responsible for cisplatin resistance. Disruption of ER-α36-mediated nongenomic estrogen signaling with kinase inhibitors significantly inhibited cisplatin-induced expression of ER-α36 and increased cisplatin sensitivity. The in vivo experiment also confirmed that up-regulation of ER-α36 attenuated cisplatin sensitivity in a mouse xenograft model of breast cancer. Conclusions The results for the first time demonstrated that ER-α36 mediates cisplatin resistance in breast cancer cells through nongenomic estrogen signaling, suggesting that ER-α36 may serve as a novel target for cisplatin resistance and a potential indicator of cisplatin sensitivity in breast cancer treatment.
Collapse
Affiliation(s)
- Linlin Zhu
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Jiao Zou
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yuanyin Zhao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaomei Jiang
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China
| | - Yang Wang
- Department of Clinical Laboratory, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400038, China
| | - Xiangwei Wang
- Department of Urology, Shenzhen University General Hospital, Shenzhen, 518060, Guangdong, China
| | - Bin Chen
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
17
|
Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, He HB, Jiang TJ, Lei MX, Wan M, Cao X, Luo XH. MiR-497∼195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun 2017; 8:16003. [PMID: 28685750 PMCID: PMC5504303 DOI: 10.1038/ncomms16003] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
A specific bone vessel subtype, strongly positive for CD31 and endomucin (CD31hiEmcnhi), is identified as coupling angiogenesis and osteogenesis. The abundance of type CD31hiEmcnhi vessels decrease during ageing. Here we show that expression of the miR-497∼195 cluster is high in CD31hiEmcnhi endothelium but gradually decreases during ageing. Mice with depletion of miR-497∼195 in endothelial cells show fewer CD31hiEmcnhi vessels and lower bone mass. Conversely, transgenic overexpression of miR-497∼195 in murine endothelium alleviates age-related reduction of type CD31hiEmcnhi vessels and bone loss. miR-497∼195 cluster maintains the endothelial Notch activity and HIF-1α stability via targeting F-box and WD-40 domain protein (Fbxw7) and Prolyl 4-hydroxylase possessing a transmembrane domain (P4HTM) respectively. Notably, endothelialium-specific activation of miR-195 by intravenous injection of aptamer-agomiR-195 stimulates CD31hiEmcnhi vessel and bone formation in aged mice. Together, our study indicates that miR-497∼195 regulates angiogenesis coupled with osteogenesis and may represent a potential therapeutic target for age-related osteoporosis. H-type endothelium, defined by the high expression of CD31 and endomucin, is found in the bone where it promotes angiogenesis and osteogensis. Here Yang et al. show that the miR-497∼195 cluster regulates the generation and maintenance of the H-type endothelium by controlling the levels of Notch regulator Fbxw7 and the HIF regulator P4HTM.
Collapse
Affiliation(s)
- Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Xi Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Man-Li Tu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China.,Department of Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qiong Lu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong-Bo He
- Department of Orthopedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Min-Xiang Lei
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
18
|
Li X, Jie Q, Zhang H, Zhao Y, Lin Y, Du J, Shi J, Wang L, Guo K, Li Y, Wang C, Gao B, Huang Q, Liu J, Yang L, Luo Z. Disturbed MEK/ERK signaling increases osteoclast activity via the Hedgehog-Gli pathway in postmenopausal osteoporosis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:101-111. [DOI: 10.1016/j.pbiomolbio.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
|
19
|
Kang WB, Deng YT, Wang DS, Feng D, Liu Q, Wang XS, Ru JY, Cong Y, Zhao JN, Zhao MG, Liu G. Osteoprotective effects of estrogen membrane receptor GPR30 in ovariectomized rats. J Steroid Biochem Mol Biol 2015; 154:237-44. [PMID: 26187146 DOI: 10.1016/j.jsbmb.2015.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/21/2022]
Abstract
G protein-coupled estrogen receptor 30 (GPR30) is expressed in bone tissue. However, little is known regarding the function of GPR30 in postmenopausal osteoporosis. In this study, we examined the effects of GPR30 on ovariectomy (OVX)-induced osteoporosis in rats, including the effects on proliferation, differentiation, and expression of proteins in osteoblasts. Administration of G1 (35 μg/kg, ip, 3 times/week for 6 weeks), a specific agonist of GPR30, prevented OVX-induced increase in bone turnover rate, decrease in bone mineral content and bone mineral density, damage to bone structure, and aggravation of bone biomechanical properties. In addition, G1 did not affect uterine weight in the OVX rats. Osteoblasts isolated from calvarias from newborn rats were used to explore the underlying mechanisms. G1 (150 pM) promoted proliferation and differentiation of osteoblasts through a positive feedback of GPR30, which then activated the PI3K-Akt, ERK, and CREB pathways. G15 (750 pM), a specific antagonist of GPR30, reversed the above effects initiated by G1 treatment. In conclusion, activation of GPR30 protected bones against osteoporosis in OVX rats and exerted no untoward effect on the uterus. We suggest that GPR30 can be used as an effective therapeutic target for the prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Wen-bo Kang
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Ya-ting Deng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Dong-sheng Wang
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Dan Feng
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xi'an 7l0038, China
| | - Qian Liu
- Department of Orthodontic, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Xin-shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Jiang-ying Ru
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Yu Cong
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China
| | - Jian-ning Zhao
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China.
| | - Ming-gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China.
| | - Gang Liu
- Jinling Hospital, Department of Orthopedics, Nanjing University, School of Medicine, Nanjing 210002, China.
| |
Collapse
|
20
|
Sołtysik K, Czekaj P. ERα36--Another piece of the estrogen puzzle. Eur J Cell Biol 2015; 94:611-25. [PMID: 26522827 DOI: 10.1016/j.ejcb.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/03/2015] [Accepted: 10/09/2015] [Indexed: 12/22/2022] Open
Abstract
Although the nuclear action of estrogen receptors (ER) is a well-known fact, evidence supporting membrane estrogen receptors is steadily accumulating. New ER variants of unrecognized function have been discovered. ERα is a product of the ESR1 gene. It serves not only as a template for the full-length 66kDa protein, but also for smaller isoforms which exist as independent receptors. The recently discovered ERα36 (36kDa), consisting of 310 amino acids of total 595 ERα66 protein residues, is an example of that group. The transcription initiation site is identified in the first intron of the ESR1 gene. C-Terminal 27 amino acids are encoded by previously unknown exon 9. The presence of this unique C-terminal sequence creates an opportunity for the production of selective antibodies. ERα36 has been shown to have a high affinity to the cell membrane and as much as 90% of the protein can be bound with it. Post-translational palmitoylation is suspected to play a crucial role in ERα36 anchoring to the cell membrane. In silico analysis suggests the existence of a potential transmembrane domain in ERα36. ERα36 was found in most cells of animals at various ages, but its exact physiological function remains to be fully elucidated. It seems that cells traditionally considered as being deprived of ER are able to respond to hormonal stimulation via the ERα36 receptor. Moreover, ERα36 displays unique pharmacological properties and its action may be behind antiestrogen resistance. The use of ERα36 in cancer diagnosis gives rise to great expectations.
Collapse
Affiliation(s)
- Kamil Sołtysik
- Students Scientific Society, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
21
|
Zou W, Fang C, Ji X, Liang X, Liu Y, Han C, Huang L, Zhang Q, Li H, Zhang Y, Liu J, Liu J. Estrogen Receptor (ER)-α36 Is Involved in Estrogen- and Tamoxifen-Induced Neuroprotective Effects in Ischemic Stroke Models. PLoS One 2015; 10:e0140660. [PMID: 26484775 PMCID: PMC4618921 DOI: 10.1371/journal.pone.0140660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/29/2015] [Indexed: 11/19/2022] Open
Abstract
The neuroprotection by estrogen (E2) and tamoxifen is well documented in experimental stroke models; however, the exact mechanism is unclear. A membrane-based estrogen receptor, ER-α36, has been identified. Postmenopausal-levels of E2 act through ER-α36 to induce osteoclast apoptosis due to a prolonged activation of the mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK) signaling. We hypothesized that ER-α36 may play a role in the neuroprotective activities of estrogen and tamoxifen. Here, we studied ER-α36 expression in the brain, as well as its neuroprotective effects against oxygen and glucose deprivation (OGD) in PC12 cells. We found that ER-α36 was expressed in both rat and human brain. In addition, OGD-induced cell death was prevented by l nmol/L 17β-estradiol (E2β). E2β activates the MAPK/ERK signaling pathway in PC12 cells under basal and OGD conditions by interacting with ER-α36 and also induces ER-α36 expression. Low-dose of tamoxifen up-regulated ER-α36 expression and enhanced neuronal survival in an ovariectomized ischemic stroke model. Furthermore, low-dose of tamoxifen enhanced neuroprotective effects by modulating activates or suppress ER-α36. Our results thus demonstrated that ER-α36 is involved in neuroprotective activities mediated by both estrogen and tamoxifen.
Collapse
Affiliation(s)
- Wei Zou
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian, 116081, China
| | - Chen Fang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Xiaofei Ji
- Regenerative Medicine Centre, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xiaofeng Liang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Yang Liu
- College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Chao Han
- Regenerative Medicine Centre, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
- College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Liang Huang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Qiqi Zhang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
| | - Hongyan Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian, 116081, China
| | - Yejun Zhang
- College of Life Science, Liaoning Normal University, Dalian 116081, China
- Liaoning Key Laboratories of Biotechnology and Molecular Drug Research and Development, Dalian, 116081, China
| | - Jinqiu Liu
- Department of Cardiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jing Liu
- Regenerative Medicine Centre, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
22
|
Han S, Zhao B, Pan X, Song Z, Liu J, Gong Y, Wang M. Estrogen receptor variant ER-α36 is involved in estrogen neuroprotection against oxidative toxicity. Neuroscience 2015; 310:224-41. [PMID: 26383254 DOI: 10.1016/j.neuroscience.2015.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/05/2015] [Accepted: 09/09/2015] [Indexed: 10/23/2022]
Abstract
It is well known that estrogen exerts neuroprotective effect against various neuronal damages. However, the estrogen receptor (ER) that mediates estrogen neuroprotection has not been well established. In this study, we investigated the potential receptor that mediates estrogen neuroprotection and the underlying molecular mechanisms. Hydrogen peroxide (H2O2) was chosen as an agent in our study to mimic free radicals that are often involved in the pathogenesis of many degenerative diseases. We found that in human SY5Y and IMR-32 cells, the estrogen neuroprotection against H2O2 toxicity was abrogated by knockdown of a variant of estrogen receptor-α, ER-α36. We also studied the rapid estrogen signaling mediated by ER-α36 in neuroprotective effect and found the PI3K/AKT and MAPK/ERK1/2 signaling mediated by ER-α36 is involved in estrogen neuroprotection. We also found that GPER, an orphan G protein-coupled receptor, is not involved in ER-α36-mediated rapid estrogen response. Our study thus demonstrates that ER-α36-mediated rapid estrogen signaling is involved in the neuroprotection activity of estrogen against oxidative toxicity.
Collapse
Affiliation(s)
- S Han
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - B Zhao
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - X Pan
- Department of Breast and Thyroid Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, China.
| | - Z Song
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - J Liu
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - Y Gong
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| | - M Wang
- Department of Genetics and Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
23
|
Runx2/miR-3960/miR-2861 Positive Feedback Loop Is Responsible for Osteogenic Transdifferentiation of Vascular Smooth Muscle Cells. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26221600 PMCID: PMC4499372 DOI: 10.1155/2015/624037] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously reported that Runx2/miR-3960/miR-2861 regulatory feedback loop stimulates osteoblast differentiation. However, the effect of this feedback loop on the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) remains unclear. Our recent study showed that miR-2861 and miR-3960 expression increases significantly during β-glycerophosphate-induced osteogenic transdifferentiation of VSMCs. Overexpression of miR-2861 or miR-3960 in VSMCs enhances β-glycerophosphate-induced osteoblastogenesis, whereas inhibition of miR-2861 or miR-3960 expression attenuates it. MiR-2861 or miR-3960 promotes osteogenic transdifferentiation of VSMCs by targeting histone deacetylase 5 or Homeobox A2, respectively, resulting in increased runt-related transcription factor 2 (Runx2) protein production. Furthermore, overexpression of Runx2 induces miR-2861 and miR-3960 transcription, and knockdown of Runx2 attenuates β-glycerophosphate-induced miR-2861 and miR-3960 transcription in VSMCs. Thus, our data show that Runx2/miR-3960/miR-2861 positive feedback loop plays an important role in osteogenic transdifferentiation of VSMCs and contributes to vascular calcification.
Collapse
|
24
|
Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015; 125:1509-22. [PMID: 25751060 DOI: 10.1172/jci77716] [Citation(s) in RCA: 418] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/15/2015] [Indexed: 12/22/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra-bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.
Collapse
|
25
|
Hu HJ, Shi ZY, Lin XL, Chen SM, Wang QY, Tang SY. Upregulation of Sestrin2 expression protects against macrophage apoptosis induced by oxidized low-density lipoprotein. DNA Cell Biol 2015; 34:296-302. [PMID: 25692450 DOI: 10.1089/dna.2014.2627] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sestrin2 is involved in a different cellular response to stress conditions. However, the function of Sestrin2 in the cardiovascular system remains unknown. In the present study, we tested whether Sestrin2 has a beneficial effect on macrophage cell apoptosis induced by oxidized low-density lipoprotein (oxLDL). We found that oxLDL induces expression of Sestrin2 in RAW264.7 cells in a time-dependent and dose-dependent manner. We also found that knockdown of Sestrin2 using small RNA interference promotes cell apoptosis and reactive oxygen species production induced by oxLDL. In addition, our results show that the c-Jun NH(2)-terminal kinase (JNK)/c-Jun pathway is activated by oxLDL. Inhibiting the activity of the JNK pathway abolishes the increase of Sestrin2 induced by oxLDL. These findings suggest that the inductive effect of Sestrin2 is mediated by the JNK/c-Jun pathway. Our results indicate that the induction of Sestrin2 acts as a compensatory response to oxLDL for survival, implying that stimulating expression of Sestrin2 might be an effective pharmacological target for the treatment of lipid-related cardiovascular diseases.
Collapse
Affiliation(s)
- Hong-Juan Hu
- 1 School of Nursing, Central South University , Changsha City, Hunan Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Ajdžanović V, Medigović I, Živanović J, Mojić M, Milošević V. Membrane steroid receptor-mediated action of soy isoflavones: tip of the iceberg. J Membr Biol 2015; 248:1-6. [PMID: 25362531 DOI: 10.1007/s00232-014-9745-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 10/23/2014] [Indexed: 01/20/2023]
Abstract
Soy isoflavone's (genistein and daidzein in particular) biological significance has been thoroughly studied for decades, so we started from the premise that refreshed investigation approach in this field should consider identification of their new molecular targets. In addition to recently described epigenetic aspects of polyphenole action, the cell membrane constituents-mediated effects of soy isoflavones are worthy of special attention. Accordingly, the expanding concept of membrane steroid receptors and rapid signaling from the cell surface may include the prominent role of these steroid-like compounds. It was observed that daidzein strongly interacts with membrane estrogen receptors in adrenal medullary cells. At low doses, daidzein was found to stimulate catecholamine synthesis through extracellular signal-regulated kinase 1/2 or protein kinase A pathways, but at high doses, it inhibited catecholamine synthesis and secretion induced by acetylcholine. Keeping in mind that catecholamine excess can contribute to the cardiovascular pathologies and that catecholamine lack may lead to depression, daidzein application promises to have a wide range of therapeutic effects. On the other hand, it was shown in vitro that genistein inhibits LNCaP prostate cancer cells invasiveness by decreasing the membrane fluidity along with immobilization of the androgen receptor containing membrane lipid rafts, with down regulation of the androgen receptors and Akt signaling. These data are promising in development of the molecular pharmacotherapy pertinent to balanced soy isoflavone treatment of cardiovascular, psychiatric, and steroid-related malignant diseases.
Collapse
Affiliation(s)
- Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Despot Stefan Blvd. 142, 11060, Belgrade, Serbia,
| | | | | | | | | |
Collapse
|
27
|
Song L, Xie XB, Peng LK, Yu SJ, Peng YT. Mechanism and Treatment Strategy of Osteoporosis after Transplantation. Int J Endocrinol 2015; 2015:280164. [PMID: 26273295 PMCID: PMC4530234 DOI: 10.1155/2015/280164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/27/2014] [Indexed: 12/22/2022] Open
Abstract
Osteoporosis (OP) has emerged as a frequent and devastating complication of organ solid transplantation process. Bone loss after organ transplant is related to adverse effects of immunosuppressants on bone remodeling and bone quality. Many factors contribute to the pathogenesis of OP in transplanted patients. Many mechanisms of OP have been deeply approached. Drugs for OP can be generally divided into "bone resorption inhibitors" and "bone formation accelerators," the former hindering bone resorption by osteoclasts and the latter increasing bone formation by osteoblasts. Currently, bisphosphonates, which are bone resorption inhibitors drugs, are more commonly used clinically than others. Using the signaling pathway or implantation bone marrow stem cell provides a novel direction for the treatment of OP, especially OP after transplantation. This review addresses the mechanism of OP and its correlation with organ transplantation, lists prevention and management of bone loss in the transplant recipient, and discusses the recipients of different age and gender.
Collapse
Affiliation(s)
- Lei Song
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Xu-Biao Xie
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
- *Xu-Biao Xie:
| | - Long-Kai Peng
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Shao-Jie Yu
- Center of Organ Transplantation, Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Ya-Ting Peng
- Department of Respiratory Medicine, Second Xiangya Hospital of Central South University, Changsha 410011, China
| |
Collapse
|
28
|
The temporal expression of estrogen receptor alpha-36 and runx2 in human bone marrow derived stromal cells during osteogenesis. Biochem Biophys Res Commun 2014; 453:552-6. [PMID: 25281901 DOI: 10.1016/j.bbrc.2014.09.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 09/26/2014] [Indexed: 01/30/2023]
Abstract
During bone maintenance in vivo, estrogen signals through estrogen receptor (ER)-α. The objectives of this study were to investigate the temporal expression of ERα36 and ascertain its functional relevance during osteogenesis in human bone marrow derived stromal cells (BMSC). This was assessed in relation to runt-related transcription factor-2 (runx2), a main modulatory protein involved in bone formation. ERα36 and runx2 subcellular localisation was assessed using immunocytochemistry, and their mRNA expression levels by real time PCR throughout the process of osteogenesis. The osteogenically induced BMSCs demonstrated a rise in ERα36 mRNA during proliferation followed by a decline in expression at day 10, which represents a change in dynamics within the culture between the proliferative stage and the differentiative stage. The mRNA expression profile of runx2 mirrored that of ERα36 and showed a degree subcellular co-localisation with ERα36. This study suggests that ERα36 is involved in the process of osteogenesis in BMSCs, which has implications in estrogen deficient environments.
Collapse
|
29
|
Su X, Xu X, Li G, Lin B, Cao J, Teng L. ER-α36: a novel biomarker and potential therapeutic target in breast cancer. Onco Targets Ther 2014; 7:1525-33. [PMID: 25210466 PMCID: PMC4155893 DOI: 10.2147/ott.s65345] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Estrogen receptor-alpha36 (ER-α36) is a 36-kDa variant of estrogen receptor-alpha (ER-α) firstly identified and cloned by Wang et al in 2005. It lacks both transactivation domains (activation function 1 and activation function 2) and has different biological characteristics compared to traditional ER-α (ER-α66). ER-α36 primarily locates on plasma membrane and cytoplasm and functions as a mediator in the rapid membrane-initiated non-genomic signaling pathway. Additionally, it inhibits the traditional genomic signaling pathway mediated by ER-α66 in a dominant-negative pattern. Accumulating evidence has demonstrated that ER-α36 regulates the physiological function of various tissues. Thus, dysregulation of ER-α36 is closely associated with plenty of diseases including cancers. ER-α36 is recognized as a molecular abnormality which solidly correlates to carcinogenesis, aggressiveness, and therapeutic response of breast cancer. Additionally, special attention has been paid to the role of ER-α36 in endocrine therapy resistance. Therefore, ER-α36 provides a novel biomarker of great value for diagnosis, prognosis, and treatment of breast cancer. It may also be a potential therapeutic target for breast cancer patients, especially for those who are resistant to endocrine therapy. In this review, we will overview and update the biological characteristics, underlying mechanism, and function of ER-α36, focusing on its biological function in breast cancer and endocrine therapy resistance. We will evaluate its application value in clinical practice.
Collapse
Affiliation(s)
- Xingyun Su
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xin Xu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Guangliang Li
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China ; Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People's Republic of China
| | - Bingyi Lin
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, People's Republic of China
| | - Jiang Cao
- Clinical Research Center, The 2nd Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lisong Teng
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
30
|
Estrogen receptor-alpha 36 mediates the anti-apoptotic effect of estradiol in triple negative breast cancer cells via a membrane-associated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2796-806. [PMID: 25108195 DOI: 10.1016/j.bbamcr.2014.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022]
Abstract
17β-Estradiol can promote the growth and development of several estrogen receptor (ER)-negative breast cancers. The effects are rapid and non-genomic, suggesting that a membrane-associated ER is involved. ERα36 has been shown to mediate rapid, non-genomic, membrane-associated effects of 17β-estradiol in several cancer cell lines, including triple negative HCC38 breast cancer cells. Moreover, the effect is anti-apoptotic. The aim of this study was to determine if ERα36 mediates this anti-apoptotic effect, and to elucidate the mechanism involved. Taxol was used to induce apoptosis in HCC38 cells, and the effect of 17β-estradiol pre-treatment was determined. Antibodies to ERα36, signal pathway inhibitors, ERα36 deletion mutants, and ERα36-silencing were used prior to these treatments to determine the role of ERα36 in these effects and to determine which signaling molecules were involved. We found that the anti-apoptotic effect of 17β-estradiol in HCC38 breast cancer cells is in fact mediated by membrane-associated ERα36. We also showed that this signaling occurs through a pathway that requires PLD, LPA, and PI3K; Gαs and calcium signaling may also be involved. In addition, dynamic palmitoylation is required for the membrane-associated effect of 17β-estradiol. Exon 9 of ERα36, a unique exon to ERα36 not found in other identified splice variants of ERα with previously unknown function, is necessary for these effects. This study provides a working model for a mechanism by which estradiol promotes anti-apoptosis through membrane-associated ERα36, suggesting that ERα36 may be a potential membrane target for drug design against breast cancer, particularly triple negative breast cancer.
Collapse
|
31
|
Zheng M, Ge Y, Li H, Yan M, Zhou J, Zhang Y. Bergapten prevents lipopolysaccharide mediated osteoclast formation, bone resorption and osteoclast survival. INTERNATIONAL ORTHOPAEDICS 2013; 38:627-34. [PMID: 24305787 DOI: 10.1007/s00264-013-2184-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/03/2013] [Indexed: 11/26/2022]
Abstract
PURPOSE This study was designed to investigate the potential effect of bergapten on lipopolysaccharide (LPS)-mediated osteoclast formation, bone resorption and osteoclast survival in vitro. METHODS After osteoclast precursor RAW264.7 cells were treated with bergapten (5, 20, 40 μmol/L) for 72 hours in the presence of LPS (100 ng/ml), osteoclastogenesis was identified by tartrate-resistant acid phosphatase (TRAP) staining, and the number of TRAP-positive multinucleated cells [TRAP(+)MNCs] per well were counted. To investigate the effect of bergapten on osteoclastic bone resorption, RAW264.7 cells were treated with bergapten for six days in the presence of LPS, and the area of bone resorption was analyzed with Image Pro-Plus. Next, we examined apoptosis of RAW264.7 cells after bergapten incubation for 48 hours by flow cytometer using annexin V/propidium iodide (PI) double labeling. Finally, osteoclast survival was observed by Hoechst 33342 labeling and Western blotting after bergapten treatment for 24 hours. RESULTS Data showed that bergapten (5-40 μmol/L) dose-dependently inhibited LPS-induced osteoclast formation and bone resorption. Treatment with bergapten triggered apoptotic death of osteoclast precursor RAW264.7 cells in a dose-dependent manner. Furthermore, bergapten significantly reduced the survival of mature osteoclast, as demonstrated by emergence of apoptotic nuclei and activation of apoptotic protein caspase 3/9. CONCLUSIONS These findings suggest that bergapten effectively prevents LPS-induced osteoclastogenesis, bone resorption and survival via apoptotic response of osteoclasts and their precursors. The study identifies bergapten as an inhibitor of osteoclast formation and bone resorption and provides evidence that bergapten might be beneficial as an alternative for prevention and treatment of inflammatory bone loss.
Collapse
Affiliation(s)
- Mingxia Zheng
- College of Medicine, Shaoxing University, Huancheng West Road 508, 312000, Shaoxing, China
| | | | | | | | | | | |
Collapse
|
32
|
Estrogen receptors' roles in the control of mechanically adaptive bone (re)modeling. BONEKEY REPORTS 2013; 2:413. [PMID: 24422120 DOI: 10.1038/bonekey.2013.147] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 01/17/2023]
Abstract
The discovery that estrogen receptors (ERs) are involved in bone cells' responses to mechanical strain offered the prospect of establishing the link between declining levels of circulating estrogen and the progressive failure of the mechanically adaptive mechanisms that should maintain structurally appropriate levels of bone mass in age-related and post-menopausal osteoporosis. Such clarification remains elusive but studies have confirmed ligand-independent involvement of ERs as facilitators in a number of the pathways by which mechanical strain stimulates osteoblast proliferation and bone formation. The presence of α and β forms of ER that oppose, supplement or replace one another has complicated interpretation of studies to identify their individual roles when both are present in normal amounts. However, it appears that, in mice at least, ERα promotes cortical bone mass in both males and females through its effects in early members of the osteoblast lineage, but enhances loading-related cortical bone gain only in females. In addition to its role as a potential replacement for ERα, and modifier of ERα activity, the less well-studied ERβ appears to facilitate rapid early effects of strain including activation of extracellular signal-regulated kinase and downregulation of Sost in well-differentiated cells of the osteoblast lineage including osteocytes. If these different roles are substantiated by further studies, it would appear that under normal circumstances ERα contributes primarily to the size and extent of bones' osteogenic response to load bearing through facilitating anabolic influences in osteoblasts and osteoblast progenitors, whereas ERβ is more involved in the strain-related responses generated within resident cells including osteocytes.
Collapse
|
33
|
Pei J, Li F, Wang B. Single nucleotide polymorphism 6q25.1 rs2046210 and increased risk of breast cancer. Tumour Biol 2013; 34:4073-9. [PMID: 23888322 DOI: 10.1007/s13277-013-0997-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 07/02/2013] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The onset and development of breast cancer (BC) are influenced by many factors, including the single nucleotide polymorphism (SNP) rs2046210 at 6q25.1. However, studies of the potential association between rs2046210 at 6q25.1 and risk of BC have given inconsistent results. We performed a meta-analysis to address this controversy. PubMed, EMBASE, and Web of Science were systematically searched to identify relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to assess the strength of the association between this SNP and risk of BC. A total of 14 studies are included in the meta-analysis, involving 123,085 cases and 120,761 controls. The A-allele, AA/GA, and AA genotypes were significantly associated with increased risk of BC (A-allele vs. G-allele: OR = 1.20, 95%CI = 1.15-1.25, P for heterogeneity < 0.0001; AA/GA vs. GG: OR = 1.22, 95%CI = 1.16-1.28, P for heterogeneity < 0.0001; AA vs. GA/GG OR = 1.18, 95%CI = 1.13-1.24, P for heterogeneity = 0.064). In further stratified analysis by ethnicity, the elevated risks were found in Europeans and Asians, while there was no significant association detected in African population. In the subgroup analysis based on sample size and source of control, significant results were observed in all the subgroups. There was evidence of heterogeneity (P < 0.10), which largely disappeared after stratification by ethnicity. In summary, this meta-analysis suggests the participation of rs2046210 at 6q25.1 in the susceptibility for BC, especially in Europeans and Asians.
Collapse
Affiliation(s)
- Jing Pei
- The Department of Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, Anhui, China
| | | | | |
Collapse
|
34
|
Zhang X, Wang ZY. Estrogen receptor-α variant, ER-α36, is involved in tamoxifen resistance and estrogen hypersensitivity. Endocrinology 2013; 154:1990-8. [PMID: 23546601 DOI: 10.1210/en.2013-1116] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Antiestrogens such as tamoxifen (TAM) provided a successful treatment for estrogen receptor (ER)-positive breast cancer for the past four decades. However, most breast tumors are eventually resistant to TAM therapy. The molecular mechanisms underlying TAM resistance have not been well established. Recently, we reported that breast cancer patients with tumors expressing high concentrations of ER-α36, a variant of ER-α, benefited less from TAM therapy than those with low concentrations of ER-α36, suggesting that increased ER-α36 concentration is one of the underlying mechanisms of TAM resistance. Here, we investigated the function and underlying mechanism of ER-α36 in TAM resistance. We found that TAM increased ER-α36 concentrations, and TAM-resistant MCF7 cells expressed high concentrations of ER-α36. In addition, MCF7 cells with forced expression of recombinant ER-α36 and H3396 cells expressing high concentrations of endogenous ER-α36 were resistant to TAM. ER-α36 down-regulation in TAM-resistant cells with the short hairpinRNA method restored TAM sensitivity. We also found that TAM acted as a potent agonist by activating phosphorylation of the AKT kinase in ER-α36-expressing cells. Finally, we found that cells with high concentration of ER-α36 protein were hypersensitive to estrogen, activating ERK phosphorylation at picomolar range. Our results thus demonstrated that elevated ER-α36 concentration is one of the mechanisms by which ER-positive breast cancer cells escape TAM therapy and provided a rational to develop novel therapeutic approaches for TAM-resistant patients by targeting ER-α36.
Collapse
Affiliation(s)
- Xiantian Zhang
- Department of Medical Microbiology, Creighton University Medical School, Criss III, Room 352, 2500 California Plaza, Omaha, Nebraska 68178, USA.
| | | |
Collapse
|
35
|
Sapir-Koren R, Livshits G. Is interaction between age-dependent decline in mechanical stimulation and osteocyte-estrogen receptor levels the culprit for postmenopausal-impaired bone formation? Osteoporos Int 2013; 24:1771-89. [PMID: 23229466 DOI: 10.1007/s00198-012-2208-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 10/02/2012] [Indexed: 12/19/2022]
Abstract
Declining estrogen levels during menopause are widely considered to be a major cause of age-dependent bone loss, which is primarily manifested by increased bone resorption by osteoclasts. We present accumulating evidence supporting another aspect of metabolic bone loss, suggesting that the combined interaction between age-dependent factors, namely, estrogen deficiency and reduced day-by-day activity/mechanical stimulation, directly leads to a reduction in anabolic processes. Such decreased bone formation results in diminished bone strength and failure to maintain the load-bearing competence of a healthy skeleton and to postmenopausal osteoporosis disorder. Estrogen receptors (ERs), as mediators of estrogenic actions, are essential components of bone osteocyte and osteoblast mechano-adaptive responses. ER expression appears to be upregulated by adequate circulating estrogen levels. ERα signaling pathways participate in the mechanotransduction response through obligatory "non-genomic" actions that occur independently of estrogen binding to ER and by a potentially "genomic", estrogen-dependent mode. The experimental data indicate that cross talk between the ERα-"non-genomic" and Wnt/β-catenin signaling pathways constitutes the major regulatory mechanism. This interaction uses mechanically and ER-induced prostaglandin E2 as a mediator for the downregulation of osteocyte production of sclerostin. Sclerostin suppression, in turn, is a central prerequisite for load-induced formation and mineralization of the bone matrix. It is therefore plausible that future strategies for preventing and treating postmenopausal osteoporosis may use estrogenic compounds (such as selective estrogen receptor modulators or phytoestrogens) with physical activity, to complement antiresorptive therapy, aimed at stopping further bone loss and possibly even reversing it by stimulation of bone gain.
Collapse
Affiliation(s)
- R Sapir-Koren
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | |
Collapse
|
36
|
Rodriguez-Acevedo AJ, Maher BH, Lea RA, Benton M, Griffiths LR. Association of oestrogen-receptor gene (ESR1) polymorphisms with migraine in the large Norfolk Island pedigree. Cephalalgia 2013; 33:1139-47. [DOI: 10.1177/0333102413486321] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Oestrogen receptor 1 ( ESR1) is located in region 6q25.1 and encodes a ligand-activated transcription factor composed of several domains important for hormone binding and transcription activation. Progesterone receptor ( PGR) is located in 11q22-23 and mediates the role of progesterone interacting with different transcriptional co-regulators. ESR1 and PGR have previously been implicated in migraine susceptibility. Here, we report the results of an association study of these genes in a migraine pedigree from the genetic isolate of Norfolk Island, a population descended from a small number of Isle of Man “Bounty Mutineer” and Tahitian founders. Methods A significant number of molecular markers in the ESR1 (143) and PGR (43) genes were evaluated in a sample of 285 related individuals (135 males; 150 females). A pedigree-based analysis in the GenABEL package was used to analyse the results. Results and conclusions A total of 10 markers in the ESR1 gene showed association with migraine ( p < 0.05) in the Norfolk Island population. No association was detected with PGR. Three haplotypes in ESR1 were found to be associated with migraine ( p = 0.004, 0.03, 0.005). Future genetic studies in larger populations and expression analysis are required to clarify the role of ESR1 in migraine susceptibility.
Collapse
Affiliation(s)
| | - Bridget H Maher
- Genomics Research Centre, Griffith Health Institute, Griffith University, Australia
| | - Rodney A Lea
- Genomics Research Centre, Griffith Health Institute, Griffith University, Australia
| | - Miles Benton
- Genomics Research Centre, Griffith Health Institute, Griffith University, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Griffith Health Institute, Griffith University, Australia
| |
Collapse
|
37
|
Galea GL, Meakin LB, Sugiyama T, Zebda N, Sunters A, Taipaleenmaki H, Stein GS, van Wijnen AJ, Lanyon LE, Price JS. Estrogen receptor α mediates proliferation of osteoblastic cells stimulated by estrogen and mechanical strain, but their acute down-regulation of the Wnt antagonist Sost is mediated by estrogen receptor β. J Biol Chem 2013; 288:9035-48. [PMID: 23362266 PMCID: PMC3610976 DOI: 10.1074/jbc.m112.405456] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mechanical strain and estrogens both stimulate osteoblast proliferation through estrogen receptor (ER)-mediated effects, and both down-regulate the Wnt antagonist Sost/sclerostin. Here, we investigate the differential effects of ERα and -β in these processes in mouse long bone-derived osteoblastic cells and human Saos-2 cells. Recruitment to the cell cycle following strain or 17β-estradiol occurs within 30 min, as determined by Ki-67 staining, and is prevented by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1H-pyrazole dihydrochloride. ERβ inhibition with 4-[2-phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-β]pyrimidin-3-yl] phenol (PTHPP) increases basal proliferation similarly to strain or estradiol. Both strain and estradiol down-regulate Sost expression, as does in vitro inhibition or in vivo deletion of ERα. The ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and ERB041 also down-regulated Sost expression in vitro, whereas the ERα agonist 4,4′,4″-[4-propyl-(1H)-pyrazol-1,3,5-triyl]tris-phenol or the ERβ antagonist PTHPP has no effect. Tamoxifen, a nongenomic ERβ agonist, down-regulates Sost expression in vitro and in bones in vivo. Inhibition of both ERs with fulvestrant or selective antagonism of ERβ, but not ERα, prevents Sost down-regulation by strain or estradiol. Sost down-regulation by strain or ERβ activation is prevented by MEK/ERK blockade. Exogenous sclerostin has no effect on estradiol-induced proliferation but prevents that following strain. Thus, in osteoblastic cells the acute proliferative effects of both estradiol and strain are ERα-mediated. Basal Sost down-regulation follows decreased activity of ERα and increased activity of ERβ. Sost down-regulation by strain or increased estrogens is mediated by ERβ, not ERα. ER-targeting therapy may facilitate structurally appropriate bone formation by enhancing the distinct ligand-independent, strain-related contributions to proliferation of both ERα and ERβ.
Collapse
Affiliation(s)
- Gabriel L Galea
- School of Veterinary Sciences, University of Bristol, Bristol BS40 5DU, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hein R, Maranian M, Hopper JL, Kapuscinski MK, Southey MC, Park DJ, Schmidt MK, Broeks A, Hogervorst FBL, Bueno-de-Mesquit HB, Muir KR, Lophatananon A, Rattanamongkongul S, Puttawibul P, Fasching PA, Hein A, Ekici AB, Beckmann MW, Fletcher O, Johnson N, dos Santos Silva I, Peto J, Sawyer E, Tomlinson I, Kerin M, Miller N, Marmee F, Schneeweiss A, Sohn C, Burwinkel B, Guénel P, Cordina-Duverger E, Menegaux F, Truong T, Bojesen SE, Nordestgaard BG, Flyger H, Milne RL, Perez JIA, Zamora MP, Benítez J, Anton-Culver H, Ziogas A, Bernstein L, Clarke CA, Brenner H, Müller H, Arndt V, Stegmaier C, Rahman N, Seal S, Turnbull C, Renwick A, Meindl A, Schott S, Bartram CR, Schmutzler RK, Brauch H, Hamann U, Ko YD, The GENICA Network, Wang-Gohrke S, Dörk T, Schürmann P, Karstens JH, Hillemanns P, Nevanlinna H, Heikkinen T, Aittomäki K, Blomqvist C, Bogdanova NV, Zalutsky IV, Antonenkova NN, Bermisheva M, Prokovieva D, Farahtdinova A, Khusnutdinova E, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen J, Chen X, Beesley J, Investigators KC, AOCS Group, Lambrechts D, Zhao H, Neven P, Wildiers H, Nickels S, Flesch-Janys D, Radice P, Peterlongo P, Manoukian S, Barile M, Couch FJ, Olson JE, Wang X, et alHein R, Maranian M, Hopper JL, Kapuscinski MK, Southey MC, Park DJ, Schmidt MK, Broeks A, Hogervorst FBL, Bueno-de-Mesquit HB, Muir KR, Lophatananon A, Rattanamongkongul S, Puttawibul P, Fasching PA, Hein A, Ekici AB, Beckmann MW, Fletcher O, Johnson N, dos Santos Silva I, Peto J, Sawyer E, Tomlinson I, Kerin M, Miller N, Marmee F, Schneeweiss A, Sohn C, Burwinkel B, Guénel P, Cordina-Duverger E, Menegaux F, Truong T, Bojesen SE, Nordestgaard BG, Flyger H, Milne RL, Perez JIA, Zamora MP, Benítez J, Anton-Culver H, Ziogas A, Bernstein L, Clarke CA, Brenner H, Müller H, Arndt V, Stegmaier C, Rahman N, Seal S, Turnbull C, Renwick A, Meindl A, Schott S, Bartram CR, Schmutzler RK, Brauch H, Hamann U, Ko YD, The GENICA Network, Wang-Gohrke S, Dörk T, Schürmann P, Karstens JH, Hillemanns P, Nevanlinna H, Heikkinen T, Aittomäki K, Blomqvist C, Bogdanova NV, Zalutsky IV, Antonenkova NN, Bermisheva M, Prokovieva D, Farahtdinova A, Khusnutdinova E, Lindblom A, Margolin S, Mannermaa A, Kataja V, Kosma VM, Hartikainen J, Chen X, Beesley J, Investigators KC, AOCS Group, Lambrechts D, Zhao H, Neven P, Wildiers H, Nickels S, Flesch-Janys D, Radice P, Peterlongo P, Manoukian S, Barile M, Couch FJ, Olson JE, Wang X, Fredericksen Z, Giles GG, Baglietto L, McLean CA, Severi G, Offit K, Robson M, Gaudet MM, Vijai J, Alnæs GG, Kristensen V, Børresen-Dale AL, John EM, Miron A, Winqvist R, Pylkäs K, Jukkola-Vuorinen A, Grip M, Andrulis IL, Knight JA, Glendon G, Mulligan AM, Figueroa JD, García-Closas M, Lissowska J, Sherman ME, Hooning M, Martens JWM, Seynaeve C, Collée M, Hall P, Humpreys K, Czene K, Liu J, Cox A, Brock IW, Cross SS, Reed MWR, Ahmed S, Ghoussaini M, Pharoah PDP, Kang D, Yoo KY, Noh DY, Jakubowska A, Jaworska K, Durda K, Złowocka E, Sangrajrang S, Gaborieau V, Brennan P, McKay J, Shen CY, Yu JC, Hsu HM, Hou MF, Orr N, Schoemaker M, Ashworth A, Swerdlow A, Trentham-Dietz A, Newcomb PA, Titus L, Egan KM, Chenevix-Trench G, Antoniou AC, Humphreys MK, Morrison J, Chang-Claude J, Easton DF, Dunning AM. Comparison of 6q25 breast cancer hits from Asian and European Genome Wide Association Studies in the Breast Cancer Association Consortium (BCAC). PLoS One 2012; 7:e42380. [PMID: 22879957 PMCID: PMC3413660 DOI: 10.1371/journal.pone.0042380] [Show More Authors] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/04/2012] [Indexed: 11/18/2022] Open
Abstract
The 6q25.1 locus was first identified via a genome-wide association study (GWAS) in Chinese women and marked by single nucleotide polymorphism (SNP) rs2046210, approximately 180 Kb upstream of ESR1. There have been conflicting reports about the association of this locus with breast cancer in Europeans, and a GWAS in Europeans identified a different SNP, tagged here by rs12662670. We examined the associations of both SNPs in up to 61,689 cases and 58,822 controls from forty-four studies collaborating in the Breast Cancer Association Consortium, of which four studies were of Asian and 39 of European descent. Logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CI). Case-only analyses were used to compare SNP effects in Estrogen Receptor positive (ER+) versus negative (ER-) tumours. Models including both SNPs were fitted to investigate whether the SNP effects were independent. Both SNPs are significantly associated with breast cancer risk in both ethnic groups. Per-allele ORs are higher in Asian than in European studies [rs2046210: OR (A/G) = 1.36 (95% CI 1.26-1.48), p = 7.6 × 10(-14) in Asians and 1.09 (95% CI 1.07-1.11), p = 6.8 × 10(-18) in Europeans. rs12662670: OR (G/T) = 1.29 (95% CI 1.19-1.41), p = 1.2 × 10(-9) in Asians and 1.12 (95% CI 1.08-1.17), p = 3.8 × 10(-9) in Europeans]. SNP rs2046210 is associated with a significantly greater risk of ER- than ER+ tumours in Europeans [OR (ER-) = 1.20 (95% CI 1.15-1.25), p = 1.8 × 10(-17) versus OR (ER+) = 1.07 (95% CI 1.04-1.1), p = 1.3 × 10(-7), p(heterogeneity) = 5.1 × 10(-6)]. In these Asian studies, by contrast, there is no clear evidence of a differential association by tumour receptor status. Each SNP is associated with risk after adjustment for the other SNP. These results suggest the presence of two variants at 6q25.1 each independently associated with breast cancer risk in Asians and in Europeans. Of these two, the one tagged by rs2046210 is associated with a greater risk of ER- tumours.
Collapse
Affiliation(s)
- Rebecca Hein
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- PMV (Primärmedizinische Versorgung) Research Group at the Department of Child and Adolescent Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Melanie Maranian
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - John L. Hopper
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Miroslaw K. Kapuscinski
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Melissa C. Southey
- Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Daniel J. Park
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Melbourne, Australia
| | - Marjanka K. Schmidt
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Annegien Broeks
- Netherlands Cancer Institute, Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands
| | - Frans B. L. Hogervorst
- Family Cancer Clinic, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Kenneth R. Muir
- Health Sciences Research Institute, Warwick Medical School, Warwick University, Coventry, Warwick, United Kingdom
| | - Artitaya Lophatananon
- Health Sciences Research Institute, Warwick Medical School, Warwick University, Coventry, Warwick, United Kingdom
| | - Suthee Rattanamongkongul
- Department of Preventive Medicine, Srinakhrainwirot University, Ongkharak, Nakhon Nayok, Thailand
| | - Puttisak Puttawibul
- Department of Surgery, Medical School, Prince Songkla University, Songkla, Thailand
| | - Peter A. Fasching
- University Breast Center, Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, California, United States of America
| | - Alexander Hein
- University Breast Center, Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, Friedrich Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Matthias W. Beckmann
- University Breast Center, Department of Gynecology and Obstetrics, University Hospital Erlangen, Erlangen, Germany
| | - Olivia Fletcher
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nichola Johnson
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Isabel dos Santos Silva
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elinor Sawyer
- Division of Cancer Studies, National Institute for Health Research Comprehensive Biomedical Research Centre, Guy’s & St. Thomas’ National Health Service Foundation Trust in partnership with King’s College London, London, United Kingdom
| | - Ian Tomlinson
- Welcome Trust Centre for Human Genetics and Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Oxford National Institute for Health Research Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | - Michael Kerin
- Clinical Science Institute. University Hospital Galway, Galway, Ireland
| | - Nicola Miller
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Frederick Marmee
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Christof Sohn
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Barbara Burwinkel
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
- Molecular Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pascal Guénel
- Environmental Epidemiology of Cancer, U1018, CESP (Center for Research in Epidemiology and Population Health), Inserm (National Institute of Health and Medical Research), Villejuif, France
- Unité mixte de recherche 1018, University Paris-Sud, Villejuif, France
| | - Emilie Cordina-Duverger
- Environmental Epidemiology of Cancer, U1018, CESP (Center for Research in Epidemiology and Population Health), Inserm (National Institute of Health and Medical Research), Villejuif, France
- Unité mixte de recherche 1018, University Paris-Sud, Villejuif, France
| | - Florence Menegaux
- Environmental Epidemiology of Cancer, U1018, CESP (Center for Research in Epidemiology and Population Health), Inserm (National Institute of Health and Medical Research), Villejuif, France
- Unité mixte de recherche 1018, University Paris-Sud, Villejuif, France
| | - Thérèse Truong
- Environmental Epidemiology of Cancer, U1018, CESP (Center for Research in Epidemiology and Population Health), Inserm (National Institute of Health and Medical Research), Villejuif, France
- Unité mixte de recherche 1018, University Paris-Sud, Villejuif, France
| | - Stig E. Bojesen
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Børge G. Nordestgaard
- Copenhagen General Population Study and Department of Clinical Biochemistry, Herlev University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Flyger
- Department of Breast Surgery, Herlev University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Roger L. Milne
- Genetic & Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - M. Pilar Zamora
- Servicio de Oncología Médica, Hospital Universitario La Paz, Madrid, Spain
| | - Javier Benítez
- Cancer Genetics Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Hoda Anton-Culver
- Department of Epidemiology, University of California Irvine, Irvine, California, United States of America
| | - Argyrios Ziogas
- Department of Epidemiology, University of California Irvine, Irvine, California, United States of America
| | - Leslie Bernstein
- Department of Population Sciences, City of Hope, Duarte, California, United States of America
| | - Christina A. Clarke
- Cancer Prevention Institute of California, Fremont, California, United States of America
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Heiko Müller
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | | | - Nazneen Rahman
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Sheila Seal
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Clare Turnbull
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Anthony Renwick
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Alfons Meindl
- Division of Gynecology and Obstetrics, Klinikum rechts der Isar at the Technical University Munich, Munich, Germany
| | - Sarah Schott
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany
| | - Claus R. Bartram
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Rita K. Schmutzler
- Center for Familial Breast and Ovarian Cancer and Center of Integrated Oncology (CIO), University Hospital, Cologne, Germany
| | - Hiltrud Brauch
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, University of Tübingen, Tübingen, Germany
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Yon-Dschun Ko
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
| | - The GENICA Network
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, University of Tübingen, Tübingen, Germany
- Molecular Genetics of Breast Cancer, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Internal Medicine, Evangelische Kliniken Bonn gGmbH, Johanniter Krankenhaus, Bonn, Germany
- Institute of Pathology, University of Bonn, Bonn, Germany
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance (IPA), Bochum, Germany
| | - Shan Wang-Gohrke
- Department of Obstetrics and Gynecology, University of Ulm, Ulm, Germany
| | - Thilo Dörk
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Peter Schürmann
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Johann H. Karstens
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Peter Hillemanns
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Tuomas Heikkinen
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Kristiina Aittomäki
- Department of Clinical Genetics, Helsinki University Central Hospital, Helsinki, Finland
| | - Carl Blomqvist
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| | - Natalia V. Bogdanova
- Clinics of Obstetrics and Gynaecology, Hannover Medical School, Hannover, Germany, Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
| | - Iosif V. Zalutsky
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, Minsk, Belarus
| | | | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Darya Prokovieva
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Albina Farahtdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Scientific Center of Russian Academy of Sciences, Ufa, Russia
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sara Margolin
- Department of Oncology Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Arto Mannermaa
- Clinics of Radiation Oncology, Hannover Medical School, Hannover, Germany
- Department of Oncology Pathology, Karolinska Institutet, Stockholm, Sweden
- Biocenter Kuopio, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Vesa Kataja
- Biocenter Kuopio, Kuopio University Hospital, Kuopio, Finland
- School of Medicine, Institute of Clinical Medicine, Oncology, University of Eastern Finland, Kuopio, Finland
- Department of Oncology, Kuopio University Hospital, Kuopio, Finland
| | - Veli-Matti Kosma
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Jaana Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland
- Biocenter Kuopio, Kuopio University Hospital, Kuopio, Finland
- Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland
| | - Xiaoqing Chen
- Cancer Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - Jonathan Beesley
- Cancer Division, Queensland Institute of Medical Research, Brisbane, Australia
| | - kConFab Investigators
- Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer [kConFab], Peter MacCallum Cancer Center, Melbourne, Australia
| | - AOCS Group
- Australian Ovarian Cancer Study [AOCS], Peter MacCallum Cancer Center, Melbourne, Australia
| | - Diether Lambrechts
- Vesalius Research Center (VRC), Vesalius Research Center, Leuven, Belgium; Vesalius Research Center (VRC), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Hui Zhao
- Vesalius Research Center (VRC), Vesalius Research Center, Leuven, Belgium; Vesalius Research Center (VRC), Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospital Gasthuisberg, Leuven, Belgium
| | - Hans Wildiers
- Multidisciplinary Breast Center, University Hospital Gasthuisberg, Leuven, Belgium
| | - Stefan Nickels
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dieter Flesch-Janys
- Department of Cancer Epidemiology/Clinical Cancer Registry and Institute for Medical Biometrics and Epidemiology, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy
- Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) Di Oncologia Molecolare (IFOM), Milan, Italy
| | - Paolo Peterlongo
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale Tumori (INT), Milan, Italy
- Fondazione Istituto FIRC (Fondazione Italiana per la Ricerca sul Cancro) Di Oncologia Molecolare (IFOM), Milan, Italy
| | - Siranoush Manoukian
- Unit of Medical Genetics, Department of Preventive and Predictive Medicine, Fondazione Instituto di Recuvero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale Tumori (INT), Milan, Italy
| | - Monica Barile
- Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), Milan, Italy
| | - Fergus J. Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Janet E. Olson
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Xianshu Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Zachary Fredericksen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Laura Baglietto
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Catriona A. McLean
- Department of Anatomical Pathology, The Alfred Hospital, Melbourne, Australia
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
- Centre for Molecular, Environmental, Genetic, and Analytic Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Kenneth Offit
- Clinical Genetics Service, Dept. of Medicine and Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Mark Robson
- Clinical Genetics Service, Dept. of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Mia M. Gaudet
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia, United States of America
| | - Joseph Vijai
- Clinical Genetics Service, Dept. of Medicine and Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Grethe Grenaker Alnæs
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
| | - Vessela Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
- Faculty of Medicine (Faculty Division Ahus), University of Oslo, Oslo, Norway
| | - Anne-Lise Børresen-Dale
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
- Faculty of Medicine (Faculty Division Ahus), University of Oslo, Oslo, Norway
| | - Esther M. John
- Department of Epidemiology, Cancer Prevention Institute of California, Fremont, California, United States of America
- Stanford University School of Medicine, Stanford, California, United States of America
| | - Alexander Miron
- Deptartment of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Robert Winqvist
- Laboratory of Cancer Genetics, Department of Clinical Genetics and Biocenter Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics, Department of Clinical Genetics and Biocenter Oulu, University of Oulu, Oulu University Hospital, Oulu, Finland
| | | | - Mervi Grip
- Department of Surgery, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Irene L. Andrulis
- Ontario Cancer Genetics Network, Cancer Care Ontario, Toronto, Ontario, Canada
- Fred A. Litwin Center for Cancer Genetics, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julia A. Knight
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Gord Glendon
- Ontario Cancer Genetics Network, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Anna Marie Mulligan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine, and the Keenan Research Centre of the Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
| | - Jonine D. Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
- Sections of Epidemiology and Genetics, Institute of Cancer Research and Breakthrough Breast Cancer Research Centre, London, United Kingdom
| | - Jolanta Lissowska
- Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland
| | - Mark E. Sherman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, United States of America
| | - Maartje Hooning
- Department of Medical Oncology, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - John W. M. Martens
- Department of Medical Oncology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Caroline Seynaeve
- Department of Medical Oncology, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Margriet Collée
- Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Keith Humpreys
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jianjun Liu
- Population Genetics, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Angela Cox
- Institute for Cancer Studies, Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Ian W. Brock
- Institute for Cancer Studies, Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Simon S. Cross
- Academic Unit of Pathology, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Malcolm W. R. Reed
- Academic Unit of Surgical Oncology, Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Shahana Ahmed
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Maya Ghoussaini
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Paul DP. Pharoah
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Daehee Kang
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Keun-Young Yoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Young Noh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Katarzyna Jaworska
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
- Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| | - Katarzyna Durda
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | - Elżbieta Złowocka
- Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | - Valerie Gaborieau
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Paul Brennan
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - James McKay
- Genetic Epidemiology Group, International Agency for Research on Cancer, Lyon, France
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan Biobank, Taipei, Taiwan
| | - Jyh-Cherng Yu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Huan-Ming Hsu
- Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Ming-Feng Hou
- Cancer Center and Department of Surgery, Kaohsiung Medical University Chung-Ho Memorial Hospital, Kaohsiung, Taiwan
| | - Nick Orr
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Minouk Schoemaker
- Section of Epidemiology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Anthony Swerdlow
- Section of Epidemiology, Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | - Amy Trentham-Dietz
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, United States of America
| | - Polly A. Newcomb
- University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, United States of America
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Linda Titus
- Department of Community & Family Medicine, Department of Pediatrics, Dartmouth Medical School, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, New Hampshire, United States of America
| | - Kathleen M. Egan
- Division of Population Sciences, Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| | | | - Antonis C. Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Manjeet K. Humphreys
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan Morrison
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Jenny Chang-Claude
- Unit of Genetic Epidemiology, Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Douglas F. Easton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Alison M. Dunning
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
39
|
Lim V, Li J, Gong Y, Yuan JM, Wu TS, Hammond G, Jin A, Koh WP, Yong E. Serum free estradiol and estrogen receptor-α mediated activity are related to decreased incident hip fractures in older women. Bone 2012; 50:1311-6. [PMID: 22445734 PMCID: PMC3353105 DOI: 10.1016/j.bone.2012.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/01/2012] [Accepted: 03/07/2012] [Indexed: 10/28/2022]
Abstract
There is paucity of data from Asian women on the association between serum estrogens and osteoporotic hip fracture risk. We conducted a case-control study nested within a population-based prospective cohort, The Singapore Chinese Health Study, to evaluate serum estrogens levels, ERα-mediated estrogenic activity and hip fracture risk in postmenopausal Asian women. Among 35,298 women who were recruited between 1993 and 1998, 15,410 women donated blood for research between 1999 and 2004. From this subcohort, we identified 140 cases who subsequently suffered hip fracture after blood donation, and 278 age-matched controls. Serum levels of total estrone, estradiol and sex hormone binding globulin levels were measured in a blinded fashion among cases and controls. ERα-mediated estrogenic activity of serum samples was quantified using a sensitive ERα-driven cell bioassay. Women with hip fracture had lower serum estrogens than control women. Compared to the lowest quintile, women in the highest quintile of free estradiol exhibited a statistically significant 57% reduction in risk of hip fracture (95% confidence interval (CI), 6-80%), with a dose-dependent relationship (p for trend=0.021). High levels of ERα-mediated estrogenic activity were also associated with decreased risk of hip fracture (p for trend=0.048). Overall, women with relatively high levels of both free estradiol and ERα-mediated estrogenic activity had a 55% reduction in hip fracture risk (95% CI, 17-76%) compared to women with low levels of both. High levels of free estradiol and ERα-mediated estrogen activity in sera were associated with reduced hip fracture risk in Chinese postmenopausal women.
Collapse
Affiliation(s)
- Vanessa Lim
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Jun Li
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Yinhan Gong
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, University of Pittsburgh Cancer Institute, and Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Tsung Sheng Wu
- Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, Canada
| | - Geoffrey Hammond
- Department of Obstetrics & Gynecology, University of British Columbia, Vancouver, Canada
| | - Aizhen Jin
- National Registry of Diseases Office, Ministry of Health, Singapore
| | - Woon-Puay Koh
- Saw Swee Hock School of Public Health, National University of Singapore
| | - E.L. Yong
- Department of Obstetrics & Gynecology, Yong Loo Lin School of Medicine, National University of Singapore
| |
Collapse
|
40
|
Tiong CT, Chen C, Zhang SJ, Li J, Soshilov A, Denison MS, Lee LSU, Tam VH, Wong SP, Xu H, Yong EL. A novel prenylflavone restricts breast cancer cell growth through AhR-mediated destabilization of ERα protein. Carcinogenesis 2012; 33:1089-97. [PMID: 22345291 PMCID: PMC3334513 DOI: 10.1093/carcin/bgs110] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/08/2012] [Accepted: 02/12/2012] [Indexed: 12/17/2022] Open
Abstract
There is concern that ingestion of dietary phytoestrogens may increase risk of estrogen receptor alpha (ERα)-positive breast cancer. The prenylflavone icaritin, a phytoestrogen consumed in East Asian societies for its perceived beneficial effects on bone health, stimulated the growth of breast cancer (MCF-7) cells at low concentrations. Although acting like an estrogenic ligand, icaritin exerted an unexpected suppressive effect on estrogen-stimulated breast cancer cell proliferation and gene expression at higher concentrations. Like estradiol, icaritin could dose-dependently destabilize ERα protein. However, destabilization of ERα by the estradiol/icaritin combination was profound and greater than that observed for either compound alone. Microarray gene expression analyses implicated aryl hydrocarbon receptor (AhR) signaling for this suppressive effect of icaritin. Indeed, icaritin was an AhR agonist that competitively reduced specific binding of a potent AhR agonist and increased expression of the AhR-regulated gene CYP1A1. When AhR was knocked down by small interfering RNA, the suppressive effect of icaritin on estradiol-stimulated breast cancer cell growth and gene expression was abolished, and ERα protein stability was partially restored. Similarly in an athymic nude mouse model, icaritin restricted estradiol-stimulated breast cancer xenograft growth and strongly reduced ERα protein levels. Overall, our data support the feasibility for the development of dual agonists like icaritin, which are estrogenic but yet, through activating AhR-signaling, can destabilize ERα protein to restrict ERα-positive breast cancer cell growth.
Collapse
Affiliation(s)
- Chi Tze Tiong
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, Lower Kent Ridge Road, 119074 Singapore
| | - Chen Chen
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, Lower Kent Ridge Road, 119074 Singapore
| | - Shi Jun Zhang
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, Lower Kent Ridge Road, 119074 Singapore
| | - Jun Li
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, Lower Kent Ridge Road, 119074 Singapore
| | - Anatoly Soshilov
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Michael S. Denison
- Department of Environmental Toxicology, University of California, Davis, CA, USA
| | | | - Vincent H. Tam
- Department of Medicine, Yong Loo Lin School of Medicine, Singapore
- Department of Clinical Sciences and Administration, University of Houston College of Pharmacy, Houston, TX, USA
| | - Shih Peng Wong
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, Lower Kent Ridge Road, 119074 Singapore
| | - H.Eric Xu
- Laboratory of Structural Sciences, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Eu-Leong Yong
- Department of Obstetrics and Gynecology, National University Hospital, Yong Loo Lin School of Medicine, Lower Kent Ridge Road, 119074 Singapore
| |
Collapse
|
41
|
Xie H, Xie PL, Luo XH, Wu XP, Zhou HD, Tang SY, Liao EY. Omentin-1 exerts bone-sparing effect in ovariectomized mice. Osteoporos Int 2012; 23:1425-36. [PMID: 21755404 DOI: 10.1007/s00198-011-1697-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/10/2011] [Indexed: 01/01/2023]
Abstract
UNLABELLED Omentin-1 inhibited osteoblast differentiation in vitro. In co-culture systems of osteoblasts and osteoclast precursors, omentin-1 reduced osteoclast formation by stimulating osteoprotegerin (OPG) and inhibiting receptor activator for nuclear factor κB ligand (RANKL) production in osteoblasts. In vivo, adenovirus-mediated overexpression of omentin-1 suppressed bone turnover and restored bone mineral density (BMD) and bone strength in ovariectomized mice. INTRODUCTION Omentin-1 (also intelectin-1) is a recently identified visceral adipose tissue-derived cytokine that is highly abundant in plasma. This study was undertaken to investigate the effects of omentin-1 on bone metabolism. METHODS Osteoblast differentiation was assessed by measuring alkaline phosphatase activity, osteocalcin production and matrix mineralization. OPG and RANKL protein expression and secretion in osteoblasts were detected by Western blot and ELISA, respectively. The effect of recombinant omentin-1 on osteoclast formation was examined in co-culture systems of osteoblasts and osteoclast precursors. The effects of intravenous administration of adenoviral-delivered omentin-1 on bone mass, bone strength, and bone turnover were also examined in ovariectomized mice. RESULTS In vitro, omentin-1 inhibited osteoblast differentiation, while it had no direct effect on osteoclast differentiation; it also reduced osteoclast formation in the co-culture systems through stimulating OPG and inhibiting RANKL production in osteoblasts. In vivo, adenovirus-mediated overexpression of omentin-1 partially restored BMD and bone strength in ovariectomized mice, accompanied by decreased levels of plasma osteocalcin and tartrate-resistant acid phosphatase-5b and lower serum RANKL/OPG ratios. CONCLUSION The present study suggests that omentin-1 ameliorates bone loss induced by estrogen deficiency via downregulating the RANKL/OPG ratio.
Collapse
Affiliation(s)
- H Xie
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital of Central South University, 139# Middle Renmin Road, Changsha, Hunan 410011, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Rao J, Jiang X, Wang Y, Chen B. Advances in the understanding of the structure and function of ER-α36,a novel variant of human estrogen receptor-alpha. J Steroid Biochem Mol Biol 2011; 127:231-7. [PMID: 21888973 DOI: 10.1016/j.jsbmb.2011.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 08/01/2011] [Accepted: 08/04/2011] [Indexed: 11/25/2022]
Abstract
Estrogen receptors (ERs) belong to the nuclear receptor superfamily, whose members include ER-α66, ER-α36, ER-α46 and ER-β. Each receptor performs specific functions through binding with a specific ligand, such as estrogen. Recently, ER-α36, a novel variant of human estrogen receptor-alpha (ER-α), was identified and cloned. ER-α36 inhibits, in a dominant-negative manner, the transactivation of both the wild-type ER-α (ER-α66) and ER-β. As a predominantly membrane-based ER, ER-α36 mediates nongenomic estrogen signaling and is involved in the resistance of breast cancer to endocrine therapy, i.e., tamoxifen. This review summarizes recent studies on the structure and function of ER-α36 and the relationship of ER-α36 with cancer, with special emphasis on its function in the resistance of breast cancer to endocrine therapy.
Collapse
Affiliation(s)
- Jun Rao
- Department of Biochemistry and Molecular Biology, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
43
|
Xie H, Xie PL, Wu XP, Chen SM, Zhou HD, Yuan LQ, Sheng ZF, Tang SY, Luo XH, Liao EY. Omentin-1 attenuates arterial calcification and bone loss in osteoprotegerin-deficient mice by inhibition of RANKL expression. Cardiovasc Res 2011; 92:296-306. [DOI: 10.1093/cvr/cvr200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
44
|
Zhang LY, Zhou YY, Chen F, Wang B, Li J, Deng YW, Liu WD, Wang ZG, Li YW, Li DZ, Lv GH, Yin BL. Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway. Braz J Med Biol Res 2011; 44:618-23. [DOI: 10.1590/s0100-879x2011007500078] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 06/01/2011] [Indexed: 01/17/2023] Open
|
45
|
Sowińska-Przepiera E, Andrysiak-Mamos E, Chełstowski K, Adler G, Friebe Z, Syrenicz A. Association between ER-α polymorphisms and bone mineral density in patients with Turner syndrome subjected to estroprogestagen treatment--a pilot study. J Bone Miner Metab 2011; 29:484-92. [PMID: 21271267 DOI: 10.1007/s00774-010-0247-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 11/10/2010] [Indexed: 11/29/2022]
Abstract
Reduced bone mineral density (BMD) is present in many women with Turner syndrome (TS), and hypo-estrogenism is known to play a vital role in bone mineralization disturbances. It has been suggested that genetic factors play an important role in the regulation of BMD. The aim of this study was to analyze the association between Pvu II and XbaI ER-α polymorphisms and BMD in TS patients subjected to estroprogestagen (EP) treatment. Thirty-two TS patients aged 17-38 (mean age 22.7 ± 8.2) along with 82 healthy controls were the subjects for this study. Baseline values of hormonal parameters, BMD and bone density markers were measured in the subjects. Subsequently, TS patients underwent 4 years of EP therapy. The results of laboratory parameters and BMD were analyzed in regard to PvuII and XbaI polymorphic variants of the ER-α gene. The increase in BMD of TS subjects was the highest in the 1st (7.5%, p = 0.013) and 2nd (6.6%, p = 0.008) years of treatment. Four years of EP therapy was reflected by a significant increase in BMD z-scores in patients with xx and Xx genotypes of the XbaI gene and in those with with the pp and Pp genotypes of PvuII. In patients with haplotypes other than XXPP, BMD z-scores were significantly higher compared to their baseline after 2 (p = 0.002), 3 (p < 0.001) and 4 (p < 0.001) years of treatment. In conclusion, genotypes xx and pp were shown to be prognostic markers of a good response to EP treatment, whereas the XXPP haplotype carriers were revealed to have the risk factors for insufficient responsiveness against EP treatment in BMD control.
Collapse
Affiliation(s)
- Elżbieta Sowińska-Przepiera
- Department of Endocrinology, Metabolic Diseases and Internal Diseases, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland.
| | | | | | | | | | | |
Collapse
|
46
|
Jia S, Zhang X, He DZZ, Segal M, Berro A, Gerson T, Wang Z, Casale TB. Expression and function of a novel variant of estrogen receptor-α36 in murine airways. Am J Respir Cell Mol Biol 2011; 45:1084-9. [PMID: 21642591 DOI: 10.1165/rcmb.2010-0268oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Evidence suggests that estrogen signaling is involved in sex differences in the prevalence rates and control of asthma, but the expression patterns of estrogen receptor variants and estrogen function in the lung are not well established. We investigated the expression of major estrogen receptor variants occurring naturally and after the development of allergen-induced airway hyperreactivity in a murine model of allergic asthma, along with the role of estrogen signaling in small-airway ciliary motion and smooth muscle contraction. Female BALB/c mice were sensitized with ovalbumin, and estrogen receptor expression patterns were examined by immunofluorescence and Western blot analysis. Time-lapse video and photodiode-based displacement measurement systems were used to assess the effects of estrogen signaling on airway ciliary beat frequency and smooth muscle contraction. We found that a novel variant of estrogen receptor (ER)-α, ER-α36, is expressed in airway epithelial and smooth muscle cells. ER-α36 was predominately localized on the plasma membranes of airway cells. After sensitization to allergen, the expression levels of ER-α36 increased significantly (P < 0.01), whereas the expression of ER-β and ER-α66 did not significantly change. Estrogen treatment in vitro resulted in a rapid increase in airway cilia motion in a dose-dependent fashion, but did not exert any effect on airway smooth muscle contraction. We speculate that the up-regulation of estrogen receptor expression associated with allergen-induced airway hyperresponsiveness may constitute a protective mechanism to facilitate the clearance of mucus. The identification and localization of specific estrogen receptor subtypes in the lung could lead to newer therapeutic avenues aimed at addressing sex differences of asthma susceptibility.
Collapse
Affiliation(s)
- Shuping Jia
- Department of Medicine, Creighton University Medical Center, Omaha, NE 68131, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Duan XY, Xie PL, Ma YL, Tang SY. Omentin inhibits osteoblastic differentiation of calcifying vascular smooth muscle cells through the PI3K/Akt pathway. Amino Acids 2010; 41:1223-31. [PMID: 21082206 DOI: 10.1007/s00726-010-0800-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 10/27/2010] [Indexed: 12/27/2022]
Abstract
Arterial calcification is positively associated with visceral adiposity, but the mechanisms remain unclear. Omentin is a novel adipokine that is selectively expressed in visceral adipose tissue. The levels of circulating omentin are decreased in obesity, and they correlate negatively with waist circumference. This study investigated the effects of omentin on the osteoblastic differentiation of calcifying vascular smooth muscle cells (CVSMCs), a subpopulation of aortic smooth muscle cells putatively involved in vascular calcification. Omentin inhibited mRNA expression of alkaline phosphatase (ALP) and osteocalcin; omentin also suppressed ALP activity, osteocalcin protein production, and the matrix mineralization. Furthermore, omentin selectively activated phosphatidylinositol 3-kinase (PI3K) downstream effector Akt. Moreover, inhibition of PI3K or Akt activation reversed the effects of omentin on ALP activity and the matrix mineralization. The present results demonstrate for the first time that omentin can inhibit osteoblastic differentiation of CVSMCs via PI3K/Akt signaling pathway, suggesting that the lower omentin levels in obese (specially visceral obese) subjects contribute to the development of arterial calcification, and omentin plays a protective role against arterial calcification.
Collapse
Affiliation(s)
- Xin-Yun Duan
- Department of Emergency, Affiliated Xiaolan Hospital of Southern Medical University, Zhongshan, Guangdong, China
| | | | | | | |
Collapse
|