1
|
Sacco JL, Vaneman ZT, Self A, Sumner E, Kibinda S, Sankhe CS, Gomez EW. Chemomechanical regulation of EZH2 localization controls epithelial-mesenchymal transition. J Cell Sci 2024; 137:jcs262190. [PMID: 39450433 DOI: 10.1242/jcs.262190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
The methyltransferase enhancer of zeste homolog 2 (EZH2) regulates gene expression, and aberrant EZH2 expression and signaling can drive fibrosis and cancer. However, it is not clear how chemical and mechanical signals are integrated to regulate EZH2 and gene expression. We show that culture of cells on stiff matrices in concert with transforming growth factor (TGF)-β1 promotes nuclear localization of EZH2 and an increase in the levels of the corresponding histone modification, H3K27me3, thereby regulating gene expression. EZH2 activity and expression are required for TGFβ1- and stiffness-induced increases in H3K27me3 levels as well as for morphological and gene expression changes associated with epithelial-mesenchymal transition (EMT). Inhibition of Rho associated kinase (ROCK) proteins or myosin II signaling attenuates TGFβ1-induced nuclear localization of EZH2 and decreases H3K27me3 levels in cells cultured on stiff substrata, suggesting that cellular contractility, in concert with a major cancer signaling regulator TGFβ1, modulates EZH2 subcellular localization. These findings provide a contractility-dependent mechanism by which matrix stiffness and TGFβ1 together mediate EZH2 signaling to promote EMT.
Collapse
Affiliation(s)
- Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zachary T Vaneman
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ava Self
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elix Sumner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stella Kibinda
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chinmay S Sankhe
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Bae SY, Ling HH, Chen Y, Chen H, Kumar D, Zhang J, Viny AD, DePinho RA, Giancotti FG. Mediator Subunit Med4 Enforces Metastatic Dormancy in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.18.566087. [PMID: 38014033 PMCID: PMC10680920 DOI: 10.1101/2023.11.18.566087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Long term survival of breast cancer patients is limited due to recurrence from metastatic dormant cancer cells. However, the mechanisms by which these dormant breast cancer cells survive and awaken remain poorly understood. Our unbiased genome-scale genetic screen in mice identified Med4 as a novel cancer-cell intrinsic gatekeeper in metastatic reactivation. MED4 haploinsufficiency is prevalent in metastatic breast cancer patients and correlates with poorer prognosis. Syngeneic xenograft models revealed that Med4 enforces breast cancer dormancy. Contrary to the canonical function of the Mediator complex in activating gene expression, Med4 maintains 3D chromatin compaction and enhancer landscape, by preventing enhancer priming or activation through the suppression of H3K4me1 deposition. Med4 haploinsufficiency disrupts enhancer poise and reprograms the enhancer dynamics to facilitate extracellular matrix (ECM) gene expression and integrin-mediated mechano-transduction, driving metastatic growth. Our findings establish Med4 as a key regulator of cellular dormancy and a potential biomarker for high-risk metastatic relapse.
Collapse
Affiliation(s)
- Seong-Yeon Bae
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hsiang-Hsi Ling
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Yi Chen
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Hong Chen
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Dhiraj Kumar
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jiankang Zhang
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Aaron D. Viny
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Columbia Stem Cell Initiative, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Ronald A. DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Filippo G. Giancotti
- Cancer Metastasis Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York 10032, USA
| |
Collapse
|
3
|
Sacco JL, Gomez EW. Epithelial-Mesenchymal Plasticity and Epigenetic Heterogeneity in Cancer. Cancers (Basel) 2024; 16:3289. [PMID: 39409910 PMCID: PMC11475326 DOI: 10.3390/cancers16193289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The tumor microenvironment comprises various cell types and experiences dynamic alterations in physical and mechanical properties as cancer progresses. Intratumoral heterogeneity is associated with poor prognosis and poses therapeutic challenges, and recent studies have begun to identify the cellular mechanisms that contribute to phenotypic diversity within tumors. This review will describe epithelial-mesenchymal (E/M) plasticity and its contribution to phenotypic heterogeneity in tumors as well as how epigenetic factors, such as histone modifications, histone modifying enzymes, DNA methylation, and chromatin remodeling, regulate and maintain E/M phenotypes. This review will also report how mechanical properties vary across tumors and regulate epigenetic modifications and E/M plasticity. Finally, it highlights how intratumoral heterogeneity impacts therapeutic efficacy and provides potential therapeutic targets to improve cancer treatments.
Collapse
Affiliation(s)
- Jessica L. Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Esther W. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA;
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Sankhe CS, Sacco JL, Lawton J, Fair RA, Soares DVR, Aldahdooh MKR, Gomez ED, Gomez EW. Breast Cancer Cells Exhibit Mesenchymal-Epithelial Plasticity Following Dynamic Modulation of Matrix Stiffness. Adv Biol (Weinh) 2024; 8:e2400087. [PMID: 38977422 DOI: 10.1002/adbi.202400087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Mesenchymal-epithelial transition (MET) is essential for tissue and organ development and is thought to contribute to cancer by enabling the establishment of metastatic lesions. Despite its importance in both health and disease, there is a lack of in vitro platforms to study MET and little is known about the regulation of MET by mechanical cues. Here, hyaluronic acid-based hydrogels with dynamic and tunable stiffnesses mimicking that of normal and tumorigenic mammary tissue are synthesized. The platform is then utilized to examine the response of mammary epithelial cells and breast cancer cells to dynamic modulation of matrix stiffness. Gradual softening of the hydrogels reduces proliferation and increases apoptosis of breast cancer cells. Moreover, breast cancer cells exhibit temporal changes in cell morphology, cytoskeletal organization, and gene expression that are consistent with mesenchymal-epithelial plasticity as the stiffness of the matrix is reduced. A reduction in matrix stiffness attenuates the expression of integrin-linked kinase, and inhibition of integrin-linked kinase impacts proliferation, apoptosis, and gene expression in cells cultured on stiff and dynamic hydrogels. Overall, these findings reveal intermediate epithelial/mesenchymal states as cells move along a matrix stiffness-mediated MET trajectory and suggest an important role for matrix mechanics in regulating mesenchymal-epithelial plasticity.
Collapse
Affiliation(s)
- Chinmay S Sankhe
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jacob Lawton
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ryan A Fair
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Mohammed K R Aldahdooh
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Enrique D Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Sacco JL, Vaneman ZT, Gomez EW. Extracellular matrix viscoelasticity regulates TGFβ1-induced epithelial-mesenchymal transition and apoptosis via integrin linked kinase. J Cell Physiol 2024; 239:e31165. [PMID: 38149820 DOI: 10.1002/jcp.31165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/06/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023]
Abstract
Transforming growth factor (TGF)-β1 is a multifunctional cytokine that plays important roles in health and disease. Previous studies have revealed that TGFβ1 activation, signaling, and downstream cell responses including epithelial-mesenchymal transition (EMT) and apoptosis are regulated by the elasticity or stiffness of the extracellular matrix. However, tissues within the body are not purely elastic, rather they are viscoelastic. How matrix viscoelasticity impacts cell fate decisions downstream of TGFβ1 remains unknown. Here, we synthesized polyacrylamide hydrogels that mimic the viscoelastic properties of breast tumor tissue. We found that increasing matrix viscous dissipation reduces TGFβ1-induced cell spreading, F-actin stress fiber formation, and EMT-associated gene expression changes, and promotes TGFβ1-induced apoptosis in mammary epithelial cells. Furthermore, TGFβ1-induced expression of integrin linked kinase (ILK) and colocalization of ILK with vinculin at cell adhesions is attenuated in mammary epithelial cells cultured on viscoelastic substrata in comparison to cells cultured on nearly elastic substrata. Overexpression of ILK promotes TGFβ1-induced EMT and reduces apoptosis in cells cultured on viscoelastic substrata, suggesting that ILK plays an important role in regulating cell fate downstream of TGFβ1 in response to matrix viscoelasticity.
Collapse
Affiliation(s)
- Jessica L Sacco
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Zachary T Vaneman
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
6
|
Melcher ML, Block I, Kropf K, Singh AK, Posern G. Interplay of the transcription factor MRTF-A and matrix stiffness controls mammary acinar structure and protrusion formation. Cell Commun Signal 2022; 20:158. [PMID: 36229824 PMCID: PMC9563482 DOI: 10.1186/s12964-022-00977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/18/2022] [Indexed: 11/12/2022] Open
Abstract
Background Ongoing differentiation processes characterize the mammary gland during sexual development and reproduction. In contrast, defective remodelling is assumed to be causal for breast tumorigenesis. We have shown recently that the myocardin-related transcription factor A (MRTF-A) is essential for forming regular hollow acinar structures. Moreover, MRTF-A activity is known to depend on the biochemical and physical properties of the surrounding extracellular matrix. In this study we analysed the mutual interaction of different matrix stiffnesses and MRTF-A activities on formation and maintenance of mammary acini. Methods Human MCF10A acini and primary mature organoids isolated from murine mammary glands were cultivated in 3D on soft and stiff matrices (200–4000 Pa) in conjunction with the Rho/MRTF/SRF pathway inhibitor CCG-203971 and genetic activation of MRTF-A. Results Three-dimensional growth on stiff collagen matrices (> 3000 Pa) was accompanied by increased MRTF-A activity and formation of invasive protrusions in acini cultures of human mammary MCF10A cells. Differential coating and synthetic hydrogels indicated that protrusion formation was attributable to stiffness but not the biochemical constitution of the matrix. Stiffness-induced protrusion formation was also observed in preformed acini isolated from murine mammary glands. Acinar outgrowth in both the MCF10A acini and the primary organoids was partially reverted by treatment with the Rho/MRTF/SRF pathway inhibitor CCG-203971. However, genetic activation of MRTF-A in the mature primary acini also reduced protrusion formation on stiff matrices, whilst it strongly promoted luminal filling matrix-independently. Conclusion Our results suggest an intricate crosstalk between matrix stiffness and MRTF-A, whose activity is required for protrusion formation and sufficient for luminal filling of mammary acini. Video Abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00977-2. Formation of mammary acini depends on crosstalk between matrix stiffness and MRTF-A
Increased matrix stiffness elevates MRTF-A activity and protrusion formation Protrusion formation of MCF10A-derived and primary murine acini is MRTF-dependent
Genetic MRTF-A activation in primary organoids is sufficient for luminal filling
Collapse
Affiliation(s)
- Marie-Luise Melcher
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Ines Block
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Karolin Kropf
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Anurag Kumar Singh
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, 06114, Halle (Saale), Germany.
| |
Collapse
|
7
|
Tian H, Shi H, Yu J, Ge S, Ruan J. Biophysics Role and Biomimetic Culture Systems of ECM Stiffness in Cancer EMT. GLOBAL CHALLENGES (HOBOKEN, NJ) 2022; 6:2100094. [PMID: 35712024 PMCID: PMC9189138 DOI: 10.1002/gch2.202100094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/14/2022] [Indexed: 06/15/2023]
Abstract
Oncological diseases have become the second leading cause of death from noncommunicable diseases worldwide and a major threat to human health. With the continuous progress in cancer research, the mechanical cues from the tumor microenvironment environment (TME) have been found to play an irreplaceable role in the progression of many cancers. As the main extracellular mechanical signal carrier, extracellular matrix (ECM) stiffness may influence cancer progression through biomechanical transduction to modify downstream gene expression, promote epithelial-mesenchymal transition (EMT), and regulate the stemness of cancer cells. EMT is an important mechanism that induces cancer cell metastasis and is closely influenced by ECM stiffness, either independently or in conjunction with other molecules. In this review, the unique role of ECM stiffness in EMT in different kinds of cancers is first summarized. By continually examining the significance of ECM stiffness in cancer progression, a biomimetic culture system based on 3D manufacturing and novel material technologies is developed to mimic ECM stiffness. The authors then look back on the novel development of the ECM stiffness biomimetic culture systems and finally provide new insights into ECM stiffness in cancer progression which can broaden the fields' horizons with a view toward developing new cancer diagnosis methods and therapies.
Collapse
Affiliation(s)
- Hao Tian
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Hanhan Shi
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jie Yu
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Shengfang Ge
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| | - Jing Ruan
- Department of OphthalmologyShanghai Key Laboratory of Orbital Diseases and Ocular OncologyNinth People's HospitalShanghai JiaoTong University School of MedicineShanghaiP. R. China
| |
Collapse
|
8
|
Dupont S, Wickström SA. Mechanical regulation of chromatin and transcription. Nat Rev Genet 2022; 23:624-643. [DOI: 10.1038/s41576-022-00493-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/14/2023]
|
9
|
Nalluri SM, Sankhe CS, O'Connor JW, Blanchard PL, Khouri JN, Phan SH, Virgi G, Gomez EW. Crosstalk between ERK and MRTF‐A signaling regulates TGFβ1‐induced epithelial‐mesenchymal transition. J Cell Physiol 2022; 237:2503-2515. [DOI: 10.1002/jcp.30705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Sandeep M. Nalluri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Chinmay S. Sankhe
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joseph W. O'Connor
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Paul L. Blanchard
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Joelle N. Khouri
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Steven H. Phan
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Gage Virgi
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
| | - Esther W. Gomez
- Department of Chemical Engineering The Pennsylvania State University University Park Pennsylvania USA
- Department of Biomedical Engineering The Pennsylvania State University University Park Pennsylvania USA
| |
Collapse
|
10
|
Xu Y, Koya R, Ask K, Zhao R. Engineered microenvironment for the study of myofibroblast mechanobiology. Wound Repair Regen 2021; 29:588-596. [PMID: 34118169 PMCID: PMC8254796 DOI: 10.1111/wrr.12955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Myofibroblasts are mechanosensitive cells and a variety of their behaviours including differentiation, migration, force production and biosynthesis are regulated by the surrounding microenvironment. Engineered cell culture models have been developed to examine the effect of microenvironmental factors such as the substrate stiffness, the topography and strain of the extracellular matrix (ECM) and the shear stress on myofibroblast biology. These engineered models provide well-mimicked, pathophysiologically relevant experimental conditions that are superior to those enabled by the conventional two-dimensional (2D) culture models. In this perspective, we will review the recent advances in the development of engineered cell culture models for myofibroblasts and outline the findings on the myofibroblast mechanobiology under various microenvironmental conditions. These studies have demonstrated the power and utility of the engineered models for the study of microenvironment-regulated cellular behaviours. The findings derived using these models contribute to a greater understanding of how myofibroblast behaviour is regulated in tissue repair and pathological scar formation.
Collapse
Affiliation(s)
- Ying Xu
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - Richard Koya
- Department of Obstetrics and Gynecology, University of Chicago Comprehensive Cancer Center, Biological Sciences Division, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Kjetil Ask
- Department of Medicine, Div. Respirology, McMaster University, Hamilton, ON, Canada L8N 4A6
- The Research Institute of St. Joe’s Hamilton, Firestone Institute for Respiratory Health, Hamilton, ON, Canada L8N 4A6
| | - Ruogang Zhao
- Department of Biomedical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
11
|
Miranda MZ, Lichner Z, Szászi K, Kapus A. MRTF: Basic Biology and Role in Kidney Disease. Int J Mol Sci 2021; 22:ijms22116040. [PMID: 34204945 PMCID: PMC8199744 DOI: 10.3390/ijms22116040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/21/2021] [Accepted: 05/30/2021] [Indexed: 12/23/2022] Open
Abstract
A lesser known but crucially important downstream effect of Rho family GTPases is the regulation of gene expression. This major role is mediated via the cytoskeleton, the organization of which dictates the nucleocytoplasmic shuttling of a set of transcription factors. Central among these is myocardin-related transcription factor (MRTF), which upon actin polymerization translocates to the nucleus and binds to its cognate partner, serum response factor (SRF). The MRTF/SRF complex then drives a large cohort of genes involved in cytoskeleton remodeling, contractility, extracellular matrix organization and many other processes. Accordingly, MRTF, activated by a variety of mechanical and chemical stimuli, affects a plethora of functions with physiological and pathological relevance. These include cell motility, development, metabolism and thus metastasis formation, inflammatory responses and—predominantly-organ fibrosis. The aim of this review is twofold: to provide an up-to-date summary about the basic biology and regulation of this versatile transcriptional coactivator; and to highlight its principal involvement in the pathobiology of kidney disease. Acting through both direct transcriptional and epigenetic mechanisms, MRTF plays a key (yet not fully appreciated) role in the induction of a profibrotic epithelial phenotype (PEP) as well as in fibroblast-myofibroblast transition, prime pathomechanisms in chronic kidney disease and renal fibrosis.
Collapse
Affiliation(s)
- Maria Zena Miranda
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Zsuzsanna Lichner
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - András Kapus
- Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (M.Z.M.); (Z.L.); (K.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| |
Collapse
|
12
|
Veerasubramanian PK, Trinh A, Akhtar N, Liu WF, Downing TL. Biophysical and epigenetic regulation of cancer stemness, invasiveness and immune action. CURRENT TISSUE MICROENVIRONMENT REPORTS 2020; 1:277-300. [PMID: 33817661 PMCID: PMC8015331 DOI: 10.1007/s43152-020-00021-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The tumor microenvironment (TME) is an amalgam of multiple dysregulated biophysical cues that can alter cellular behavior through mechanotransductive signaling and epigenetic modifications. Through this review, we seek to characterize the extent of biophysical and epigenetic regulation of cancer stemness and tumor-associated immune cells in order to identify ideal targets for cancer therapy. RECENT FINDINGS Recent studies have identified cancer stemness and immune action as significant contributors to neoplastic disease, due to their susceptibility to microenvironmental influences. Matrix stiffening, altered vasculature, and resultant hypoxia within the TME can influence cancer stem cell (CSC) and immune cell behavior, as well as alter the epigenetic landscapes involved in cancer development. SUMMARY This review highlights the importance of aberrant biophysical cues in driving cancer progression through altered behavior of CSCs and immune cells, which in turn sustains further biophysical dysregulation. We examine current and potential therapeutic approaches that break this self-sustaining cycle of disease progression by targeting the presented biophysical and epigenetic signatures of cancer. We also summarize strategies including the normalization of the TME, targeted drug delivery, and inhibition of cancer-enabling epigenetic players.
Collapse
Affiliation(s)
- Praveen Krishna Veerasubramanian
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Annie Trinh
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
| | - Navied Akhtar
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
| | - Wendy F. Liu
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA, USA
| | - Timothy L. Downing
- Department of Biomedical Engineering, University of California-Irvine, Irvine, CA, USA
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California-Irvine, Irvine, CA, USA
- Department of Microbiology and Molecular Genetics, University of California-Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, CA, USA
| |
Collapse
|
13
|
Ichikawa K, Tanaka SI, Miyajima M, Okada Y, Saika S. Inhibition of Rho kinase suppresses capsular contraction following lens injury in mice. Taiwan J Ophthalmol 2020; 10:100-105. [PMID: 32874837 PMCID: PMC7442104 DOI: 10.4103/tjo.tjo_80_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE: We investigated the effect of systemic fasudil hydrochloride and an inhibitor of nuclear translocation of myocardin-related transcription factor-A (MRTF-A) on capsular contraction in a puncture-injured lens in mice. MATERIALS AND METHODS: Lens injury of an anterior capsular break was achieved in male adult C57Bl/6 mice under general and topical anesthesia at 1 h after systemic fasudil hydrochloride (intraperitoneal, 10 mg/kg body weight) or vehicle administration. The mice were allowed to heal after instillation of ofloxacin ointment, for 5 and 10 days with daily administration of fasudil hydrochloride or vehicle. In another series of experiment, we examined the effect of systemic administration of an MRTF-A inhibitor (CCG-203971, 100 mg/kg twice a day) on fibrogenic reaction and tissue contraction in an injured lens on day 5 or 10. The eye was processed for histology and immunohistochemistry for SM22, proliferating cell nuclear antigen (PCNA), or MRTF-A. In hematoxylin and eosin - stained samples, the distance between each edge of the break of the anterior capsule was measured and statistically analyzed. RESULTS: A cluster of lens cell accumulation was formed adjacent to the edge of the capsular break on day 5. It contained cells labeled for SM22 and PCNA. The size of the cell cluster was larger in fasudil group of mice than in control mice on day 5. Systemic fasudil or CCG-203971 suppressed an excess contraction of the capsular break at certain time points. CONCLUSION: Systemic administration of fasudil hydrochloride could be a treatment strategy of postoperative capsular contraction following cataract-intraocular lens surgery.
Collapse
Affiliation(s)
- Kana Ichikawa
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Sai-Ichi Tanaka
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Masayasu Miyajima
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University School of Medicine, 811-1 Kimiidera, Wakayama, 641-0012, Japan
| |
Collapse
|
14
|
da Silva Madaleno C, Jatzlau J, Knaus P. BMP signalling in a mechanical context - Implications for bone biology. Bone 2020; 137:115416. [PMID: 32422297 DOI: 10.1016/j.bone.2020.115416] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/12/2023]
Abstract
Bone Morphogenetic Proteins (BMPs) are extracellular multifunctional signalling cytokines and members of the TGFβ super family. These pleiotropic growth factors crucially promote bone formation, remodeling and healing after injury. Additionally, bone homeostasis is systematically regulated by mechanical inputs from the environment, which are incorporated into the bone cells' biochemical response. These inputs range from compression and tension induced by the movement of neighboring muscle, to fluid shear stress induced by interstitial fluid flow in the canaliculi and in the vascular system. Although BMPs are widely applied in a clinic context to promote fracture healing, it is still elusive how mechanical inputs modulate this signalling pathway, hindering an efficient and side-effect free application of these ligands in bone healing. This review aims to summarize the current understanding in how mechanical cues (tension, compression, shear force and hydrostatic pressure) and substrate stiffness modulate BMP signalling. We highlight the time-dependent effects in modulating immediate early up to long-term effects of mechano-BMP crosstalk during bone formation and remodeling, considering the interplay with other already established mechanosensitive pathways, such as MRTF/SRF and Hippo signalling.
Collapse
Affiliation(s)
- Carolina da Silva Madaleno
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Jerome Jatzlau
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
15
|
Sharma S, Ma L, Rahaman SO. Role of TRPV4 in matrix stiffness-induced expression of EMT-specific LncRNA. Mol Cell Biochem 2020; 474:189-197. [PMID: 32734537 DOI: 10.1007/s11010-020-03844-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (LncRNAs) are long (> 200 bases), non-coding, single-stranded RNAs that have emerged as major regulators of gene expression, cell differentiation, development, and oncogenesis. In view of the fact that matrix stiffness plays a role in cellular functions associated with these processes, it is important to ask what role matrix stiffness plays in regulating expression of LncRNAs. In this report, we show that (i) matrix stiffness causes differential expression of epithelial-mesenchymal transition (EMT)-related LncRNAs and mRNAs in primary mouse normal epidermal keratinocytes, (ii) differential expression of EMT-related LncRNAs and mRNAs occurs in response to combined stimulation of transforming growth factor β1 and matrix stiffness, and (iii) transient receptor potential (TRP) channel of the vanilloid subfamily, TRPV4, a matrix stiffness-sensitive ion channel, plays a role in differential expression of EMT-related LncRNAs and mRNAs in response to combined stimulation by TGFβ1 and matrix stiffness. These data identify TRPV4 as a candidate plasma membrane mechanosensor that transmits matrix-sensing signals essential to LncRNA expression. Our results also show that we have established and validated an assay system capable of discovering novel LncRNAs and mRNAs sensitive to matrix stiffening.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Lu JT, Tan CC, Wu XR, He R, Zhang X, Wang QS, Li XQ, Zhang R, Feng YM. FOXF2 deficiency accelerates the visceral metastasis of basal-like breast cancer by unrestrictedly increasing TGF-β and miR-182-5p. Cell Death Differ 2020; 27:2973-2987. [PMID: 32424142 DOI: 10.1038/s41418-020-0555-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
The mesenchymal transcription factor forkhead box F2 (FOXF2) is a critical regulator of embryogenesis and tissue homeostasis. Our previous studies demonstrated that FOXF2 is ectopically expressed in basal-like breast cancer (BLBC) cells and that FOXF2 deficiency promotes the epithelial-mesenchymal transition and aggressiveness of BLBC cells. In this study, we found that FOXF2 controls transforming growth factor-beta (TGF-β)/SMAD signaling pathway activation through transrepression of TGF-β-coding genes in BLBC cells. FOXF2-deficient BLBC cells adopt a myofibroblast-/cancer-associated fibroblast (CAF)-like phenotype, and tend to metastasize to visceral organs by increasing autocrine TGF-β signaling and conferring aggressiveness to neighboring cells by increasing paracrine TGF-β signaling. In turn, TGF-β silences FOXF2 expression through upregulating miR-182-5p, a posttranscriptional regulator of FOXF2 and inducer of metastasis. In addition to mediating a reciprocal repression loop between FOXF2 and TGF-β through direct transrepression by SMAD3, miR-182-5p forms a reciprocal repression loop with FOXF2 that directly transrepresses MIR182 expression. Therefore, FOXF2 deficiency accelerates the visceral metastasis of BLBC through unrestricted increases in autocrine and paracrine TGF-β signaling, and miR-182-5p expression. Our findings provide novel mechanisms underlying the roles of TGF-β, miR-182-5p, and FOXF2 in accelerating BLBC dissemination and metastasis, and may facilitate the development of therapeutic strategies for aggressive BLBC.
Collapse
Affiliation(s)
- Jun-Tao Lu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Cong-Cong Tan
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiao-Ran Wu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Rui He
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Qing-Shan Wang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Xiao-Qing Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Rui Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China
| | - Yu-Mei Feng
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Treatment of the Ministry of Education, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin, 300060, China.
| |
Collapse
|
17
|
MYOCD and SMAD3/SMAD4 form a positive feedback loop and drive TGF-β-induced epithelial-mesenchymal transition in non-small cell lung cancer. Oncogene 2020; 39:2890-2904. [PMID: 32029901 DOI: 10.1038/s41388-020-1189-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 11/08/2022]
Abstract
Myocardin (MYOCD) promotes Smad3-mediated transforming growth factor-β (TGF-β) signaling in mouse fibroblast cells. Our previous studies show that TGF-β/SMADs signaling activation enhances epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer (NSCLC) cells. However, whether and how MYOCD contributes to TGF-β-induced EMT of NSCLC cells are poorly elucidated. Here, we found that TGF-β-induced EMT was accompanied by increased MYOCD expression. Interestingly, MYOCD overexpression augmented EMT and invasion of NSCLC cells induced by TGF-β, whereas knockdown of MYOCD expression attenuated these effects. Overexpression and knockdown of MYOCD resulted in the upregulation and downregulation of TGF-β-induced Snail mRNA, respectively. Moreover, MYOCD overexpression promoted TGF-β-stimulated NSCLC cell metastasis in vivo. MYOCD was highly expressed and positively correlated with Snail in metastatic NSCLC tissues. Mechanistically, MYOCD directly interacted with SMAD3 and sustained the formation of TGF-β-induced nuclear SMAD3/SMAD4 complex, facilitating TGF-β/SMAD3-induced transactivation of Snail. Importantly, MYOCD was transcriptionally activated by TGF-β-induced SMAD3/SMAD4 complex and CRISPR/Cas9-mediated silencing of SMAD3/SMAD4 led to a reduction in MYOCD mRNA expression. Taken together, our findings indicate that MYOCD promotes TGF-β-induced EMT and metastasis of NSCLC and identify a positive feedback loop between MYOCD and SMAD3/SMAD4 driving TGF-β-induced EMT.
Collapse
|
18
|
Scott LE, Weinberg SH, Lemmon CA. Mechanochemical Signaling of the Extracellular Matrix in Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2019; 7:135. [PMID: 31380370 PMCID: PMC6658819 DOI: 10.3389/fcell.2019.00135] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/04/2019] [Indexed: 12/20/2022] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a critical process in embryonic development in which epithelial cells undergo a transdifferentiation into mesenchymal cells. This process is essential for tissue patterning and organization, and it has also been implicated in a wide array of pathologies. While the intracellular signaling pathways that regulate EMT are well-understood, there is increasing evidence that the mechanical properties and composition of the extracellular matrix (ECM) also play a key role in regulating EMT. In turn, EMT drives changes in the mechanics and composition of the ECM, creating a feedback loop that is tightly regulated in healthy tissues, but is often dysregulated in disease. Here we present a review that summarizes our understanding of how ECM mechanics and composition regulate EMT, and how in turn EMT alters ECM mechanics and composition.
Collapse
Affiliation(s)
| | | | - Christopher A. Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
19
|
Targeting Fibrotic Signaling: A Review of Current Literature and Identification of Future Therapeutic Targets to Improve Wound Healing. Ann Plast Surg 2019; 83:e92-e95. [PMID: 31246672 DOI: 10.1097/sap.0000000000001955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fibrosis is a consequence of aberrant wound healing processes that can be debilitating for patients and often are associated with highly morbid disease processes. Myofibroblasts play an important role in determining an appropriate physiologic response to tissue injury or an excessive response leading to fibrosis. Specifically, "supermature" focal adhesions, α-smooth muscle actin, and the myocardin-related transcription factor/serum response factor pathway likely play a significant role in the differentiation and survival of myofibroblasts in fibrotic lesions. Thus, targeting each of these and disrupting their functioning could lead to the development of therapeutic options for patients suffering from fibrosis and other sequelae of dysregulated wound healing. In this paper, we review the current literature concerning the roles of these three constituents of fibrotic signaling pathways, work already done in attempting to regulate these processes, and discuss the potential of these biomolecular constituents as therapeutic targets in future translational research.
Collapse
|
20
|
Sidorenko E, Vartiainen MK. Nucleoskeletal regulation of transcription: Actin on MRTF. Exp Biol Med (Maywood) 2019; 244:1372-1381. [PMID: 31142145 DOI: 10.1177/1535370219854669] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Myocardin-related transcription factor A (MRTF-A) and serum response factor (SRF) form an essential transcriptional complex that regulates the expression of many cytoskeletal genes in response to dynamic changes in the actin cytoskeleton. The nucleoskeleton, a “dynamic network of networks,” consists of numerous proteins that contribute to nuclear shape and to its various functions, including gene expression. In this review, we will discuss recent work that has identified many nucleoskeletal proteins, such as nuclear lamina and lamina-associated proteins, nuclear actin, and the linker of the cytoskeleton and nucleoskeleton complex as important regulators of MRTF-A/SRF transcriptional activity, especially in the context of mechanical control of transcription. Impact statement Regulation of gene expression is a fundamental cellular process that ensures the appropriate response of a cell to its surroundings. Alongside biochemical signals, mechanical cues, such as substrate rigidity, have been recognized as key regulators of gene expression. Nucleoskeletal components play an important role in mechanoresponsive transcription, particularly in controlling the activity of MRTF-A/SRF transcription factors. This ensures that the cell can balance the internal and external mechanical forces by fine-tuning the expression of cytoskeletal genes.
Collapse
Affiliation(s)
- Ekaterina Sidorenko
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
21
|
Stewart RM, Rodriguez EC, King MC. Ablation of SUN2-containing LINC complexes drives cardiac hypertrophy without interstitial fibrosis. Mol Biol Cell 2019; 30:1664-1675. [PMID: 31091167 PMCID: PMC6727752 DOI: 10.1091/mbc.e18-07-0438] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The cardiomyocyte cytoskeleton, including the sarcomeric contractile apparatus, forms a cohesive network with cellular adhesions at the plasma membrane and nuclear--cytoskeletal linkages (LINC complexes) at the nuclear envelope. Human cardiomyopathies are genetically linked to the LINC complex and A-type lamins, but a full understanding of disease etiology in these patients is lacking. Here we show that SUN2-null mice display cardiac hypertrophy coincident with enhanced AKT/MAPK signaling, as has been described previously for mice lacking A-type lamins. Surprisingly, in contrast to lamin A/C-null mice, SUN2-null mice fail to show coincident fibrosis or upregulation of pathological hypertrophy markers. Thus, cardiac hypertrophy is uncoupled from profibrotic signaling in this mouse model, which we tie to a requirement for the LINC complex in productive TGFβ signaling. In the absence of SUN2, we detect elevated levels of the integral inner nuclear membrane protein MAN1, an established negative regulator of TGFβ signaling, at the nuclear envelope. We suggest that A-type lamins and SUN2 play antagonistic roles in the modulation of profibrotic signaling through opposite effects on MAN1 levels at the nuclear lamina, suggesting a new perspective on disease etiology.
Collapse
Affiliation(s)
- Rachel M Stewart
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06520-8002
| |
Collapse
|
22
|
Tang RZ, Gu SS, Chen XT, He LJ, Wang KP, Liu XQ. Immobilized Transforming Growth Factor-Beta 1 in a Stiffness-Tunable Artificial Extracellular Matrix Enhances Mechanotransduction in the Epithelial Mesenchymal Transition of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14660-14671. [PMID: 30973698 DOI: 10.1021/acsami.9b03572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer progression is regulated by multiple factors of extracellular matrix (ECM). Understanding how cancer cells integrate multiple signaling pathways to achieve specific behaviors remains a challenge because of the lack of appropriate models to copresent and modulate ECM properties. Here we proposed a strategy to build a thin biomaterial matrix by poly(l-lysine) and hyaluronan as an artificial stiffness-tunable ECM. Transforming growth factor-beta 1 (TGF-β1) was used as a biochemical cue to present in an immobilized and spatially controlled manner, with a high loading efficiency of 90%. Either soft matrix with immobilized TGF-β1 (i-TGF) or bare stiff matrix could only promote HCC cells to form the epithelial phenotype, whereas stiff matrix with i-TGF was the only condition to induce the mesenchymal phenotype. Further investigation revealed that i-TGF increased the specific TGF-β1 receptor (TβRI) expression to activate PI3K pathway. i-TGF-TβRI interactions also promoted HCC cell adhesion to enlarge contact area for stiffness sensing, resulting in the raising expression of the mechano-sensor (β1 integrin). Mechanotransduction would then be enhanced by the β1 integrin/vinculin/p-FAK pathway, leading to a noble PI3K activation. Using our model, a novel mechanism was discovered to elucidate regulation of cell fates by coupling mechanotransduction and biochemical signaling.
Collapse
Affiliation(s)
| | | | | | - Li-Jie He
- Graphitene Ltd. , Flixborough , North Lincolnshire DN15 8SJ , United Kingdom
| | | | | |
Collapse
|
23
|
Hinz B, McCulloch CA, Coelho NM. Mechanical regulation of myofibroblast phenoconversion and collagen contraction. Exp Cell Res 2019; 379:119-128. [PMID: 30910400 DOI: 10.1016/j.yexcr.2019.03.027] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/17/2022]
Abstract
Activated fibroblasts promote physiological wound repair following tissue injury. However, dysregulation of fibroblast activation contributes to the development of fibrosis by enhanced production and contraction of collagen-rich extracellular matrix. At the peak of their activities, fibroblasts undergo phenotypic conversion into highly contractile myofibroblasts by developing muscle-like features, including formation of contractile actin-myosin bundles. The phenotype and function of fibroblasts and myofibroblasts are mechanically regulated by matrix stiffness using a feedback control system that is integrated with the progress of tissue remodelling. The actomyosin contraction machinery and cell-matrix adhesion receptors are critical elements that are needed for mechanosensing by fibroblasts and the translation of mechanical signals into biological responses. Here, we focus on mechanical and chemical regulation of collagen contraction by fibroblasts and the involvement of these factors in their phenotypic conversion to myofibroblasts.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Canada; Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada
| | | | - Nuno M Coelho
- Faculty of Dentistry, University of Toronto, Toronto, ON, M5G 1G6, Canada.
| |
Collapse
|
24
|
Imaizumi T, Kurosaka D, Tanaka U, Sakai D, Fukuda K, Sanbe A. Topical administration of a ROCK inhibitor prevents anterior subcapsular cataract induced by UV-B irradiation. Exp Eye Res 2019; 181:145-149. [PMID: 30690025 DOI: 10.1016/j.exer.2019.01.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/11/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
The deposition of extracellular matrix (ECM)-which is mainly composed of type I collagen-in anterior subcapsular cataracts (ASCs) during epithelial-to-mesenchymal transition (EMT) of lens epithelial cells (LECs) decreases visual function. Transforming growth factor (TGF)-β is a key factor in the induction of EMT in LECs. Although Rho kinase (ROCK) plays an important role in EMT induced by TGF-β, it is unknown whether ROCK inhibition affects type I collagen expression in TGF-β-stimulated LECs and ASC formation. This was investigated in the present study both in vitro using human lens epithelium (HLE)-B3 cells and in vivo using mice with ultraviolet radiation (UVR)-B-induced cataracts. We found that TGF-β2 increased type I collagen mRNA expression in HLE-B3 cells; this was inhibited in a dose-dependent manner by treatment with the ROCK inhibitor Y-27632. UVR-B exposure caused ASC formation in mice. A histopathological examination revealed that LECs in the anterior subcapsular area were flattened and multi-layered, and had a spindle shape in cross section. Immunohistochemical analysis revealed the presence of α-smooth muscle actin and type I collagen around these flattened LECs; these opacities were reduced by topical instillation of Y-27632. These findings suggest that suppression of TGF-β signaling in LECs by topical application of a ROCK inhibitor can prevent the formation of ASCs.
Collapse
Affiliation(s)
- Toshiyasu Imaizumi
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daijiro Kurosaka
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan.
| | - Umi Tanaka
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Daisuke Sakai
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Kazuhiro Fukuda
- Department of Ophthalmology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Atsushi Sanbe
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, Shiwa-gun, Japan
| |
Collapse
|
25
|
Sharma S, Goswami R, Rahaman SO. The TRPV4-TAZ mechanotransduction signaling axis in matrix stiffness- and TGFβ1-induced epithelial-mesenchymal transition. Cell Mol Bioeng 2018; 12:139-152. [PMID: 31681446 DOI: 10.1007/s12195-018-00565-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction The implantation of biomaterials into soft tissue leads to the development of foreign body response, a non-specific inflammatory condition that is characterized by the presence of fibrotic tissue. Epithelial-mesenchymal transition (EMT) is a key event in development, fibrosis, and oncogenesis. Emerging data support a role for both a mechanical signal and a biochemical signal in EMT. We hypothesized that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is a mediator of EMT. Methods Normal human primary epidermal keratinocytes (NHEKs) were seeded on collagen-coated plastic plates or varied stiffness polyacrylamide gels in the presence or absence of TGFβ1, Immunofluorescence, immunoblot, and polymerase chain reaction analysis were performed to determine expression level of EMT markers and signaling proteins. Knock-down of TRPV4 function was achieved by siRNA transfection or by GSK2193874 treatment. Results We found that knock-down of TRPV4 blocked both matrix stiffness- and TGFβ1-induced EMT in NHEKs. In a murine skin fibrosis model, TRPV4 deletion resulted in decreased expression of the mesenchymal marker, α-SMA, and increased expression of epithelial marker, E-cadherin. Mechanistically, our data showed that: i) TRPV4 was essential for the nuclear translocation of TAZ in response to matrix stiffness and TGFβ1; ii) Antagonism of TRPV4 inhibited both matrix stiffness-induced and TGFβ1-induced expression of TAZ proteins; and iii) TRPV4 antagonism suppressed both matrix stiffness-induced and TGFβ1-induced activation of Smad2/3, but not of AKT. Conclusions These data identify a novel role for TRPV4-TAZ mechanotransduction signaling axis in regulating EMT in NHEKs in response to both matrix stiffness and TGFβ1.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
26
|
Sharma S, Goswami R, Zhang DX, Rahaman SO. TRPV4 regulates matrix stiffness and TGFβ1-induced epithelial-mesenchymal transition. J Cell Mol Med 2018; 23:761-774. [PMID: 30450767 PMCID: PMC6349341 DOI: 10.1111/jcmm.13972] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022] Open
Abstract
Substrate stiffness (or rigidity) of the extracellular matrix has important functions in numerous pathophysiological processes including fibrosis. Emerging data support a role for both a mechanical signal, for example, matrix stiffness, and a biochemical signal, for example, transforming growth factor β1 (TGFβ1), in epithelial‐mesenchymal transition (EMT), a process critically involved in fibrosis. Here, we report evidence showing that transient receptor potential vanilloid 4 (TRPV4), a mechanosensitive channel, is the likely mediator of EMT in response to both TGFβ1 and matrix stiffness. Specifically, we found that: (a) genetic ablation or pharmacological inhibition of TRPV4 blocked matrix stiffness and TGFβ1‐induced EMT in normal mouse primary epidermal keratinocytes (NMEKs) as determined by changes in morphology, adhesion, migration and alterations of expression of EMT markers including E‐cadherin, N‐cadherin (NCAD) and α‐smooth muscle actin (α‐SMA), and (b) TRPV4 deficiency prevented matrix stiffness‐induced EMT in NMEKs over a pathophysiological range. Intriguingly, TRPV4 deletion in mice suppressed expression of mesenchymal markers, NCAD and α‐SMA, in a bleomycin‐induced murine skin fibrosis model. Mechanistically, we found that: (a) TRPV4 was essential for the nuclear translocation of YAP/TAZ (yes‐associated protein/transcriptional coactivator with PDZ‐binding motif) in response to matrix stiffness and TGFβ1, (b) TRPV4 deletion inhibited both matrix stiffness‐ and TGFβ1‐induced expression of YAP/TAZ proteins and (c) TRPV4 deletion abrogated both matrix stiffness‐ and TGFβ1‐induced activation of AKT, but not Smad2/3, suggesting a mechanism by which TRPV4 activity regulates EMT in NMEKs. Altogether, these data identify a novel role for TRPV4 in regulating EMT.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - Rishov Goswami
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| | - David X Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland
| |
Collapse
|
27
|
Xu Y, Luo Y, Liang C, Xing W, Zhang T. A regulation loop between Nrf1α and MRTF-A controls migration and invasion in MDA-MB-231 breast cancer cells. Int J Mol Med 2018; 42:2459-2468. [PMID: 30106093 PMCID: PMC6192731 DOI: 10.3892/ijmm.2018.3816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 08/16/2018] [Indexed: 01/06/2023] Open
Abstract
As a strong transactivator of promoters containing CarG boxes, myocardin‑related transcription factor A (MRTF‑A) is critical for the process of metastasis in tumor cells. Nuclear factor erythroid 2‑like 1 (Nrf1) is well known as an important regulator of oxidative stress, which exists in multiple splicing forms with many unknown functions. The present study demonstrated a novel regulation loop between Nrf1α (the longest splicing form of Nrf1) and MRTF‑A that regulated the migration and invasion of breast cancer MDA‑MB‑231 cells. The underlying mechanism of this regulation look was further investigated. In particular, Nrf1α inhibited migration and invasion of breast cancer cells through inhibiting the expression of MRTF‑A via miR‑219. The current results revealed that miR‑219 could bind to the MRTF‑A 3'‑UTR to directly regulate its expression. However, MRTF‑A could reverse activate the Nrf1α expression through binding to the CarG box in the Nrf1α promoter. It can be speculated that this regulation loop may be a homeostasis mechanism in cells against tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Weibing Xing
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| | - Tongcun Zhang
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
28
|
Dai J, Qin L, Chen Y, Wang H, Lin G, Li X, Liao H, Fang H. Matrix stiffness regulates epithelial-mesenchymal transition via cytoskeletal remodeling and MRTF-A translocation in osteosarcoma cells. J Mech Behav Biomed Mater 2018; 90:226-238. [PMID: 30384218 DOI: 10.1016/j.jmbbm.2018.10.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Matrix stiffness is known to alter cellular behaviors in various biological contexts. Previous investigations have shown that epithelial-mesenchymal transition (EMT) promotes the progression and invasion of tumor. Mechanical signaling is identified as a regulator of EMT. However, the molecular mechanisms underlying the influence exerted by matrix stiffness on EMT in osteosarcoma remains largely unknown. Using polyacrylamide hydrogel model, we investigate the effects of matrix stiffness on EMT and migration in osteosarcoma. Our data indicates that high matrix stiffness regulates cell morphology and promotes EMT and migration in osteosarcoma MG63 cell line in vitro. Notably, matrix stiffness promotes polymerization of actin and nuclear accumulation of myocardin-related transcription factor A (MRTF-A). Furthermore, inhibiting MRTF-A by CCG 203971 significantly reduces EMT and migration on rigid gels. These data suggest that matrix stiffness of the tumor microenvironment actively regulate osteosarcoma EMT and migration through cytoskeletal remodeling and translocation of MRTF-A, which may contribute to cancer progression.
Collapse
Affiliation(s)
- Jun Dai
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Liang Qin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Yan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Huan Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Guanlin Lin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Xiao Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China
| | - Hui Liao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China.
| | - Huang Fang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan 430030, China.
| |
Collapse
|
29
|
Walker JL, Bleaken BM, Romisher AR, Alnwibit AA, Menko AS. In wound repair vimentin mediates the transition of mesenchymal leader cells to a myofibroblast phenotype. Mol Biol Cell 2018; 29:1555-1570. [PMID: 29718762 PMCID: PMC6080657 DOI: 10.1091/mbc.e17-06-0364] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Following injury, mesenchymal repair cells are activated to function as leader cells that modulate wound healing. These cells have the potential to differentiate to myofibroblasts, resulting in fibrosis and scarring. The signals underlying these differing pathways are complex and incompletely understood. The ex vivo mock cataract surgery cultures are an attractive model with which to address this question. With this model we study, concurrently, the mechanisms that control mesenchymal leader cell function in injury repair within their native microenvironment and the signals that induce this same cell population to acquire a myofibroblast phenotype when these cells encounter the environment of the adjacent tissue culture platform. Here we show that on injury, the cytoskeletal protein vimentin is released into the extracellular space, binds to the cell surface of the mesenchymal leader cells located at the wound edge in the native matrix environment, and supports wound closure. In profibrotic environments, the extracellular vimentin pool also links specifically to the mesenchymal leader cells and has an essential role in signaling their fate change to a myofibroblast. These findings suggest a novel role for extracellular, cell-surface–associated vimentin in mediating repair-cell function in wound repair and in transitioning these cells to a myofibroblast phenotype.
Collapse
Affiliation(s)
- J L Walker
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - B M Bleaken
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A R Romisher
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A A Alnwibit
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - A S Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| |
Collapse
|
30
|
Nalluri SM, O'Connor JW, Virgi GA, Stewart SE, Ye D, Gomez EW. TGFβ1-induced expression of caldesmon mediates epithelial-mesenchymal transition. Cytoskeleton (Hoboken) 2018; 75:201-212. [PMID: 29466836 DOI: 10.1002/cm.21437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 02/13/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is an important process that mediates organ development and wound healing, and in pathological contexts, it can contribute to the progression of fibrosis and cancer. During EMT, cells exhibit marked changes in cytoskeletal organization and increased expression of a variety of actin associated proteins. Here, we sought to determine the role of caldesmon in mediating EMT in response to transforming growth factor (TGF)-β1. We find that the expression level and phosphorylation state of caldesmon increase as a function of time following induction of EMT by TGFβ1 and these changes in caldesmon correlate with increased focal adhesion number and size and increased cell contractility. Knockdown and forced expression of caldesmon in epithelial cells reveals that caldesmon expression plays an important role in regulating the expression of the myofibroblast marker alpha smooth muscle actin. Results from these studies provide insight into the role of cytoskeletal associated proteins in the regulation of EMT and may suggest ways to target the cell cytoskeleton for regulating EMT processes.
Collapse
Affiliation(s)
- Sandeep M Nalluri
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Gage A Virgi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Samantha E Stewart
- Department of Biomedical Engineering, University of South Carolina, Columbia, South Carolina 29208
| | - Dan Ye
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
31
|
Foster CT, Gualdrini F, Treisman R. Mutual dependence of the MRTF-SRF and YAP-TEAD pathways in cancer-associated fibroblasts is indirect and mediated by cytoskeletal dynamics. Genes Dev 2018; 31:2361-2375. [PMID: 29317486 PMCID: PMC5795783 DOI: 10.1101/gad.304501.117] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023]
Abstract
In this study, Foster et al. demonstrate that activation of the MRTF–SRF signaling pathway occurs in cancer-associated fibroblasts (CAFs) and is required for their proinvasive and contractile activity. The investigators also identify shared and specific direct genomic targets for MRTF–SRF and YAP–TEAD and show that MRTF and YAP are independently regulated by cytoskeletal dynamics and that this is the basis for their mutual dependence. Both the MRTF–SRF and the YAP–TEAD transcriptional regulatory networks respond to extracellular signals and mechanical stimuli. We show that the MRTF–SRF pathway is activated in cancer-associated fibroblasts (CAFs). The MRTFs are required in addition to the YAP pathway for CAF contractile and proinvasive properties. We compared MRTF–SRF and YAP–TEAD target gene sets and identified genes directly regulated by one pathway, the other, or both. Nevertheless, the two pathways exhibit mutual dependence. In CAFs, expression of direct MRTF–SRF genomic targets is also dependent on YAP–TEAD activity, and, conversely, YAP–TEAD target gene expression is also dependent on MRTF–SRF signaling. In normal fibroblasts, expression of activated MRTF derivatives activates YAP, while activated YAP derivatives activate MRTF. Cross-talk between the pathways requires recruitment of MRTF and YAP to DNA via their respective DNA-binding partners (SRF and TEAD) and is therefore indirect, arising as a consequence of activation of their target genes. In both CAFs and normal fibroblasts, we found that YAP–TEAD activity is sensitive to MRTF–SRF-induced contractility, while MRTF–SRF signaling responds to YAP–TEAD-dependent TGFβ signaling. Thus, the MRF–SRF and YAP–TEAD pathways interact indirectly through their ability to control cytoskeletal dynamics.
Collapse
Affiliation(s)
- Charles T Foster
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Francesco Gualdrini
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Richard Treisman
- Signalling and Transcription Group, Francis Crick Institute, London NW1 1AT, United Kingdom
| |
Collapse
|
32
|
Jonchère V, Alqadri N, Herbert J, Dodgson L, Mason D, Messina G, Falciani F, Bennett D. Transcriptional responses to hyperplastic MRL signalling in Drosophila. Open Biol 2017; 7:rsob.160306. [PMID: 28148822 PMCID: PMC5356444 DOI: 10.1098/rsob.160306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
Recent work has implicated the actin cytoskeleton in tissue size control and tumourigenesis, but how changes in actin dynamics contribute to hyperplastic growth is still unclear. Overexpression of Pico, the only Drosophila Mig-10/RIAM/Lamellipodin adapter protein family member, has been linked to tissue overgrowth via its effect on the myocardin-related transcription factor (Mrtf), an F-actin sensor capable of activating serum response factor (SRF). Transcriptional changes induced by acute Mrtf/SRF signalling have been largely linked to actin biosynthesis and cytoskeletal regulation. However, by RNA profiling, we find that the common response to chronic mrtf and pico overexpression in wing discs was upregulation of ribosome protein and mitochondrial genes, which are conserved targets for Mrtf/SRF and are known growth drivers. Consistent with their ability to induce a common transcriptional response and activate SRF signalling in vitro, we found that both pico and mrtf stimulate expression of an SRF-responsive reporter gene in wing discs. In a functional genetic screen, we also identified deterin, which encodes Drosophila Survivin, as a putative Mrtf/SRF target that is necessary for pico-mediated tissue overgrowth by suppressing proliferation-associated cell death. Taken together, our findings raise the possibility that distinct targets of Mrtf/SRF may be transcriptionally induced depending on the duration of upstream signalling.
Collapse
Affiliation(s)
- Vincent Jonchère
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Nada Alqadri
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - John Herbert
- Centre for Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Lauren Dodgson
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - David Mason
- Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Giovanni Messina
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Francesco Falciani
- Centre for Computational Biology and Modelling (CCBM), Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - Daimark Bennett
- Department of Biochemistry, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK .,Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
33
|
Ridge LA, Mitchell K, Al-Anbaki A, Shaikh Qureshi WM, Stephen LA, Tenin G, Lu Y, Lupu IE, Clowes C, Robertson A, Barnes E, Wright JA, Keavney B, Ehler E, Lovell SC, Kadler KE, Hentges KE. Non-muscle myosin IIB (Myh10) is required for epicardial function and coronary vessel formation during mammalian development. PLoS Genet 2017; 13:e1007068. [PMID: 29084269 PMCID: PMC5697871 DOI: 10.1371/journal.pgen.1007068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/21/2017] [Accepted: 10/11/2017] [Indexed: 01/01/2023] Open
Abstract
The coronary vasculature is an essential vessel network providing the blood supply to the heart. Disruptions in coronary blood flow contribute to cardiac disease, a major cause of premature death worldwide. The generation of treatments for cardiovascular disease will be aided by a deeper understanding of the developmental processes that underpin coronary vessel formation. From an ENU mutagenesis screen, we have isolated a mouse mutant displaying embryonic hydrocephalus and cardiac defects (EHC). Positional cloning and candidate gene analysis revealed that the EHC phenotype results from a point mutation in a splice donor site of the Myh10 gene, which encodes NMHC IIB. Complementation testing confirmed that the Myh10 mutation causes the EHC phenotype. Characterisation of the EHC cardiac defects revealed abnormalities in myocardial development, consistent with observations from previously generated NMHC IIB null mouse lines. Analysis of the EHC mutant hearts also identified defects in the formation of the coronary vasculature. We attribute the coronary vessel abnormalities to defective epicardial cell function, as the EHC epicardium displays an abnormal cell morphology, reduced capacity to undergo epithelial-mesenchymal transition (EMT), and impaired migration of epicardial-derived cells (EPDCs) into the myocardium. Our studies on the EHC mutant demonstrate a requirement for NMHC IIB in epicardial function and coronary vessel formation, highlighting the importance of this protein in cardiac development and ultimately, embryonic survival.
Collapse
Affiliation(s)
- Liam A. Ridge
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karen Mitchell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Ali Al-Anbaki
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Louise A. Stephen
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Gennadiy Tenin
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Irina-Elena Lupu
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Christopher Clowes
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Abigail Robertson
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Emma Barnes
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Jayne A. Wright
- Syngenta Ltd, Jealott’s Hill International Research Centre, Bracknell, United Kingdom
| | - Bernard Keavney
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester, United Kingdom
| | - Elisabeth Ehler
- The Randall Division of Cell and Molecular Biophysics and the Cardiovascular Division, Kings College London, London, United Kingdom
| | - Simon C. Lovell
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Karl E. Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Kathryn E. Hentges
- Division of Evolution and Genome Sciences, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Dettman RW, Simon HG. Rebooting the collagen gel: Artificial hydrogels for the study of epithelial mesenchymal transformation. Dev Dyn 2017; 247:332-339. [PMID: 28786157 DOI: 10.1002/dvdy.24560] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/11/2022] Open
Abstract
The collagen gel has been used to study epithelial-mesenchymal transformation (EMT) for over 30 years. With advances in the field of materials sciences, new options are available to design optically clear, three-dimensional nature-inspired matrix mimetics to study EMT. Here, we review the history of the collagen gel assay, discuss its current use and how newer artificial matrices can be built to simulate in vivo extracellular environments and investigate important current questions in the EMT field. We suggest that further collaborations between materials scientists and biologists will be critical to move the field of EMT forward. Developmental Dynamics 247:332-339, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert W Dettman
- Department of Urology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Chicago, Illinois
| |
Collapse
|
35
|
Gasparics Á, Sebe A. MRTFs- master regulators of EMT. Dev Dyn 2017; 247:396-404. [PMID: 28681541 DOI: 10.1002/dvdy.24544] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022] Open
Abstract
Recent evidence implicates the myocardin-related transcription factors (MRTFs) as key mediators of the phenotypic plasticity leading to the conversion of various cell types into myofibroblasts. This review highlights the function of MRTFs during development, fibrosis and cancer, and the role of MRTFs during epithelial-mesenchymal transitions (EMTs) underlying these processes. EMT is a sequentially orchestrated process where cells undergo a rearrangement of their cell contacts and activate a fibrogenic and myogenic expression program. MRTFs interact with and regulate the major signaling pathways and the expression of key markers and transcription factors involved in EMT. These functions indicate a central role for MRTFs in controlling the process of EMT. Developmental Dynamics 247:396-404, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ákos Gasparics
- Semmelweis University, Department of Pathophysiology, Budapest, Hungary.,Semmelweis University, 1st Department of Obstetrics and Gynecology, Budapest, Hungary
| | - Attila Sebe
- Semmelweis University, Department of Pathophysiology, Budapest, Hungary.,Paul Ehrlich Institute, Division of Medical Biotechnology, Langen, Germany
| |
Collapse
|
36
|
Willer MK, Carroll CW. Substrate stiffness-dependent regulation of the SRF-Mkl1 co-activator complex requires the inner nuclear membrane protein Emerin. J Cell Sci 2017; 130:2111-2118. [PMID: 28576971 DOI: 10.1242/jcs.197517] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/13/2017] [Indexed: 01/05/2023] Open
Abstract
The complex comprising serum response factor (SRF) and megakaryoblastic leukemia 1 protein (Mkl1) promotes myofibroblast differentiation during wound healing. SRF-Mkl1 is sensitive to the mechanical properties of the extracellular environment; but how cells sense and transduce mechanical cues to modulate SRF-Mkl1-dependent gene expression is not well understood. Here, we demonstrate that the nuclear lamina-associated inner nuclear membrane protein Emerin stimulates SRF-Mkl1-dependent gene activity in a substrate stiffness-dependent manner. Specifically, Emerin was required for Mkl1 nuclear accumulation and maximal SRF-Mkl1-dependent gene expression in response to serum stimulation of cells grown on stiff substrates but was dispensable on more compliant substrates. Focal adhesion area was also reduced in cells lacking Emerin, consistent with a role for Emerin in sensing substrate stiffness. Expression of a constitutively active form of Mkl1 bypassed the requirement for Emerin in SRF-Mkl1-dependent gene expression and reversed the focal adhesion defects evident in EmdKO fibroblasts. Together, these data indicate that Emerin, a conserved nuclear lamina protein, couples extracellular matrix mechanics and SRF-Mkl1-dependent transcription.
Collapse
Affiliation(s)
- Margaret K Willer
- Dept. Of Cell Biology, Yale School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
37
|
Mihalko EP, Brown AC. Material Strategies for Modulating Epithelial to Mesenchymal Transitions. ACS Biomater Sci Eng 2017; 4:1149-1161. [PMID: 33418653 DOI: 10.1021/acsbiomaterials.6b00751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epithelial to mesenchymal transitions (EMT) involve the phenotypic change of epithelial cells into fibroblast-like cells. This process is accompanied by the loss of cell-cell contacts, increased extracellular matrix (ECM) production, stress fiber alignment, and an increase in cell mobility. While essential for development and wound repair, EMT has also been recognized as a contributing factor to fibrotic diseases and cancer. Both chemical and mechanical cues, such as tumor necrosis factor alpha, NF-κB, Wnt, Notch, interleukin-8, metalloproteinase-3, ECM proteins, and ECM stiffness can determine the degree and duration of EMT events. Additionally, transforming growth factor beta is a primary driver of EMT and, interestingly, can be activated through cell-mediated mechanoactivation. In this review, we highlight recent findings demonstrating the contribution of mechanical stimuli, such as tissue and material stiffness, in driving EMT. We then highlight material strategies for controlling EMT events. Finally, we discuss drivers of the similar process of endothelial to mesenchymal transition (EndoMT) and corresponding material strategies for controlling EndoMT.
Collapse
Affiliation(s)
- Emily P Mihalko
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina 27695, United States.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
38
|
Jehanno C, Flouriot G, Nicol-Benoît F, Le Page Y, Le Goff P, Michel D. Envisioning metastasis as a transdifferentiation phenomenon clarifies discordant results on cancer. Breast Dis 2017; 36:47-59. [PMID: 27177343 DOI: 10.3233/bd-150210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cancer is generally conceived as a dedifferentiation process in which quiescent post-mitotic differentiated cells acquire stem-like properties and the capacity to proliferate. This view holds for the initial stages of carcinogenesis but is more questionable for advanced stages when the cells can transdifferentiate into the contractile phenotype associated to migration and metastasis. Singularly from this perspective, the hallmark of the most aggressive cancers would correspond to a genuine differentiation status, even if it is different from the original one. This seeming paradox could help reconciling discrepancies in the literature about the pro- or anti-tumoral functions of candidate molecules involved in cancer and whose actual effects depend on the tumoral grade. These ambiguities which are likely to concern a myriad of molecules and pathways, are illustrated here with the selected examples of chromatin epigenetics and myocardin-related transcription factors, using the human MCF10A and MCF7 breast cancer cells. Self-renewing stem like cells are characterized by a loose chromatin with low levels of the H3K9 trimetylation, but high levels of this mark can also appear in cancer cells acquiring a contractile-type differentiation state associated to metastasis. Similarly, the myocardin-related transcription factor MRTF-A is involved in metastasis and epithelial-mesenchymal transition, whereas this factor is naturally enriched in the quiescent cells which are precisely the most resistant to cancer: cardiomyocytes. These seeming paradoxes reflect the bistable epigenetic landscape of cancer in which dedifferentiated self-renewing and differentiated migrating states are incompatible at the single cell level, though coexisting at the population level.
Collapse
|
39
|
Griggs LA, Hassan NT, Malik RS, Griffin BP, Martinez BA, Elmore LW, Lemmon CA. Fibronectin fibrils regulate TGF-β1-induced Epithelial-Mesenchymal Transition. Matrix Biol 2017; 60-61:157-175. [PMID: 28109697 DOI: 10.1016/j.matbio.2017.01.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/28/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023]
Abstract
Epithelial-Mesenchymal Transition (EMT) is a dynamic process through which epithelial cells transdifferentiate from an epithelial phenotype into a mesenchymal phenotype. Previous studies have demonstrated that both mechanical signaling and soluble growth factor signaling facilitate this process. One possible point of integration for mechanical and growth factor signaling is the extracellular matrix. Here we investigate the role of the extracellular matrix (ECM) protein fibronectin (FN) in this process. We demonstrate that inhibition of FN fibrillogenesis blocks activation of the Transforming Growth Factor-Beta (TGF-β) signaling pathway via Smad2 signaling, decreases cell migration and ultimately leads to inhibition of EMT. Results show that soluble FN, FN fibrils, or increased contractile forces are insufficient to independently induce EMT. We further demonstrate that inhibition of latent TGF-β1 binding to FN fibrils via either a monoclonal blocking antibody against the growth factor binding domain of FN or through use of a FN deletion mutant that lacks the growth factor binding domains of FN blocks EMT progression, indicating a novel role for FN in EMT in which the assembly of FN fibrils serves to localize TGF-β1 signaling to drive EMT.
Collapse
Affiliation(s)
- Lauren A Griggs
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Nadiah T Hassan
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Roshni S Malik
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Brian P Griffin
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Brittany A Martinez
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States.
| | - Lynne W Elmore
- Department of Pathology, Virginia Commonwealth University, 1101 E. Marshall St., Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, 101 W Franklin St., Richmond, VA 23220, United States.
| | - Christopher A Lemmon
- Department of Biomedical Engineering, Virginia Commonwealth University, 800 E. Leigh St., Richmond, VA 23298, United States; Massey Cancer Center, Virginia Commonwealth University, 101 W Franklin St., Richmond, VA 23220, United States.
| |
Collapse
|
40
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
41
|
MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes. Matrix Biol 2016; 62:3-14. [PMID: 27751947 DOI: 10.1016/j.matbio.2016.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022]
Abstract
Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.
Collapse
|
42
|
Biswas H, Longmore GD. Action of SNAIL1 in Cardiac Myofibroblasts Is Important for Cardiac Fibrosis following Hypoxic Injury. PLoS One 2016; 11:e0162636. [PMID: 27706205 PMCID: PMC5051686 DOI: 10.1371/journal.pone.0162636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/25/2016] [Indexed: 01/29/2023] Open
Abstract
Hypoxic injury to the heart results in cardiac fibrosis that leads to cardiac dysfunction and heart failure. SNAIL1 is a zinc finger transcription factor implicated in fibrosis following organ injury and cancer. To determine if the action of SNAIL1 contributed to cardiac fibrosis following hypoxic injury, we used an endogenous SNAIL1 bioluminescence reporter mice, and SNAIL1 knockout mouse models. Here we report that SNAIL1 expression is upregulated in the infarcted heart, especially in the myofibroblasts. Utilizing primary cardiac fibroblasts in ex vivo cultures we find that pro-fibrotic factors and collagen I increase SNAIL1 protein level. SNAIL1 is required in cardiac fibroblasts for the adoption of myofibroblast fate, collagen I expression and expression of fibrosis-related genes. Taken together this data suggests that SNAIL1 expression is induced in the cardiac fibroblasts after hypoxic injury and contributes to myofibroblast phenotype and a fibrotic scar formation. Resultant collagen deposition in the scar can maintain elevated SNAIL1 expression in the myofibroblasts and help propagate fibrosis.
Collapse
Affiliation(s)
- Hirak Biswas
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, 63110, United States of America
- ICCE Institute, Washington University, St. Louis, MO, 63110, United States of America
| | - Gregory D. Longmore
- Department of Medicine, Washington University, St. Louis, MO, 63110, United States of America
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, 63110, United States of America
- ICCE Institute, Washington University, St. Louis, MO, 63110, United States of America
- * E-mail:
| |
Collapse
|
43
|
Korol A, Taiyab A, West-Mays JA. RhoA/ROCK signaling regulates TGFβ-induced epithelial-mesenchymal transition of lens epithelial cells through MRTF-A. Mol Med 2016; 22:713-723. [PMID: 27704140 DOI: 10.2119/molmed.2016.00041] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-β-induced epithelial-mesenchymal transition (EMT) leads to the formation of ocular fibrotic pathologies, such as anterior subcapsular cataract and posterior capsule opacification. Remodeling of the actin cytoskeleton, mediated by the Rho family of GTPases, plays a key role in EMT, however, how actin dynamics affect downstream markers of EMT has not been fully determined. Our previous work suggests that myocardin related transcription factor A (MRTF-A), an actin-binding protein, might be an important mediator of TGFβ-induced EMT in lens epithelial cells. The aim of the current study was to determine the requirement of RhoA/ROCK signaling in mediating TGFβ-induced nuclear accumulation of MRTF-A, and ultimate expression of α-smooth muscle actin (αSMA), a marker of a contractile, myofibroblast phenotype. Using rat lens epithelial explants, we demonstrate that ROCK inhibition using Y-27632 prevents TGFβ-induced nuclear accumulation of MRTF-A, E-cadherin/β-catenin complex disassembly, and αSMA expression. Using a novel inhibitor specifically targeting MRTF-A signaling, CCG-203971, we further demonstrate the requirement of MRTF-A nuclear localization and activity in the induction of αSMA expression. Overall, our findings suggest that TGFβ-induced cytoskeletal reorganization through RhoA/ROCK/MRTF-A signaling is critical to EMT of lens epithelial cells.
Collapse
Affiliation(s)
- Anna Korol
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Rm 4H25, 1200 Main St. West. Hamilton, ON, L8N 3Z5, Canada
| | - Aftab Taiyab
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Rm 4H25, 1200 Main St. West. Hamilton, ON, L8N 3Z5, Canada
| | - Judith A West-Mays
- Department of Pathology and Molecular Medicine, McMaster University Health Science Centre, Rm 4H25, 1200 Main St. West. Hamilton, ON, L8N 3Z5, Canada
| |
Collapse
|
44
|
Nwosu ZC, Alborzinia H, Wölfl S, Dooley S, Liu Y. Evolving Insights on Metabolism, Autophagy, and Epigenetics in Liver Myofibroblasts. Front Physiol 2016; 7:191. [PMID: 27313533 PMCID: PMC4887492 DOI: 10.3389/fphys.2016.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 05/12/2016] [Indexed: 12/14/2022] Open
Abstract
Liver myofibroblasts (MFB) are crucial mediators of extracellular matrix (ECM) deposition in liver fibrosis. They arise mainly from hepatic stellate cells (HSCs) upon a process termed “activation.” To a lesser extent, and depending on the cause of liver damage, portal fibroblasts, mesothelial cells, and fibrocytes may also contribute to the MFB population. Targeting MFB to reduce liver fibrosis is currently an area of intense research. Unfortunately, a clog in the wheel of antifibrotic therapies is the fact that although MFB are known to mediate scar formation, and participate in liver inflammatory response, many of their molecular portraits are currently unknown. In this review, we discuss recent understanding of MFB in health and diseases, focusing specifically on three evolving research fields: metabolism, autophagy, and epigenetics. We have emphasized on therapeutic prospects where applicable and mentioned techniques for use in MFB studies. Subsequently, we highlighted uncharted territories in MFB research to help direct future efforts aimed at bridging gaps in current knowledge.
Collapse
Affiliation(s)
- Zeribe C Nwosu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Hamed Alborzinia
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Stefan Wölfl
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg Heidelberg, Germany
| | - Steven Dooley
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| | - Yan Liu
- Molecular Hepatology Section, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg Mannheim, Germany
| |
Collapse
|
45
|
Cell-cell contact and matrix adhesion promote αSMA expression during TGFβ1-induced epithelial-myofibroblast transition via Notch and MRTF-A. Sci Rep 2016; 6:26226. [PMID: 27194451 PMCID: PMC4872162 DOI: 10.1038/srep26226] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/29/2016] [Indexed: 01/07/2023] Open
Abstract
During epithelial-mesenchymal transition (EMT) epithelial cells lose cell-cell adhesion, exhibit morphological changes, and upregulate the expression of cytoskeletal proteins. Previous studies have demonstrated that complete disruption of cell-cell contact can promote transforming growth factor (TGF)-β1-induced EMT and the expression of the myofibroblast marker alpha smooth muscle actin (αSMA). Furthermore, increased cell spreading mediates TGFβ1-induced αSMA expression during EMT. Here, we sought to examine how the presence of partial cell-cell contacts impacts EMT. A microfabrication approach was employed to decouple the effects of cell-cell contact and cell-matrix adhesion in TGFβ1-induced EMT. When cell spreading is controlled, the presence of partial cell-cell contacts enhances expression of αSMA. Moreover, cell spreading and intercellular contacts together control the subcellular localization of activated Notch1 and myocardin related transcription factor (MRTF)-A. Knockdown of Notch1 or MRTF-A as well as pharmacological inhibition of these pathways abates the cell-cell contact mediated expression of αSMA. These data suggest that the interplay between cell-matrix adhesion and intercellular adhesion is an important determinant for some aspects of TGFβ1-induced EMT.
Collapse
|
46
|
Varney SD, Betts CB, Zheng R, Wu L, Hinz B, Zhou J, Van De Water L. Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent MRTF-A nuclear accumulation. J Cell Sci 2016; 129:774-87. [PMID: 26759173 DOI: 10.1242/jcs.170589] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/04/2016] [Indexed: 01/21/2023] Open
Abstract
How mechanical cues from the extracellular environment are translated biochemically to modulate the effects of TGF-β on myofibroblast differentiation remains a crucial area of investigation. We report here that the focal adhesion protein, Hic-5 (also known as TGFB1I1), is required for the mechanically dependent generation of stress fibers in response to TGF-β. Successful generation of stress fibers promotes the nuclear localization of the transcriptional co-factor MRTF-A (also known as MKL1), and this correlates with the mechanically dependent induction of α smooth muscle actin (α-SMA) and Hic-5 in response to TGF-β. As a consequence of regulating stress fiber assembly, Hic-5 is required for the nuclear accumulation of MRTF-A and the induction of α-SMA as well as cellular contractility, suggesting a crucial role for Hic-5 in myofibroblast differentiation. Indeed, the expression of Hic-5 was transient in acute wounds and persistent in pathogenic scars, and Hic-5 colocalized with α-SMA expression in vivo. Taken together, these data suggest that a mechanically dependent feed-forward loop, elaborated by the reciprocal regulation of MRTF-A localization by Hic-5 and Hic-5 expression by MRTF-A, plays a crucial role in myofibroblast differentiation in response to TGF-β.
Collapse
Affiliation(s)
- Scott D Varney
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Courtney B Betts
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Rui Zheng
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Lei Wu
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, Ontario, Canada M5S 3E2
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Georgia Regents University, CB-3628, 1459 Laney Walker Boulevard, Augusta, GA 30912, USA
| | - Livingston Van De Water
- Center for Cell Biology and Cancer Research (MC-165), Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| |
Collapse
|
47
|
Nalluri SM, O'Connor JW, Gomez EW. Cytoskeletal signaling in TGFβ-induced epithelial-mesenchymal transition. Cytoskeleton (Hoboken) 2015; 72:557-69. [PMID: 26543012 DOI: 10.1002/cm.21263] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a physiological process that plays an important role in embryonic development and wound healing and is appropriated during pathological conditions including fibrosis and cancer metastasis. EMT can be initiated by a variety of factors, including transforming growth factor (TGF)-β, and is characterized by loss of epithelial features including cell-cell contacts and apicobasal polarity and acquisition of a motile, mesenchymal phenotype. A key feature of EMT is reorganization of the cytoskeleton and recent studies have elucidated regulation mechanisms governing this process. This review describes changes in gene expression patterns of cytoskeletal associated proteins during TGFβ-induced EMT. It further reports TGFβ-induced intracellular signaling cascades that regulate cytoskeletal reorganization during EMT. Finally, it highlights how changes in cytoskeletal architecture during EMT can regulate gene expression, thus further promoting EMT progression.
Collapse
Affiliation(s)
- Sandeep M Nalluri
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Joseph W O'Connor
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| | - Esther W Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802.,Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802
| |
Collapse
|
48
|
van Putten S, Shafieyan Y, Hinz B. Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol 2015; 93:133-42. [PMID: 26620422 DOI: 10.1016/j.yjmcc.2015.11.025] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
Abstract
Fibroblasts produce and turn over collagenous extracellular matrix as part of the normal adaptive response to increased mechanical load in the heart, e.g. during prolonged exercise. However, chronic overload as a consequence of hypertension or myocardial injury trigger a repair program that culminates in the formation of myofibroblasts. Myofibroblasts are opportunistically activated from various precursor cells that all acquire a phenotype promoting excessive collagen secretion and contraction of the neo-matrix into stiff scar tissue. Stiff fibrotic tissue reduces heart distensibility, impedes pumping and valve function, contributes to diastolic and systolic dysfunction, and affects myocardial electrical transmission, potentially leading to arrhythmia and heart failure. Here, we discuss how mechanical factors, such as matrix stiffness and strain, are feeding back and cooperate with cytokine signals to drive myofibroblast activation. We elaborate on the importance of considering the mechanical boundary conditions in the heart to generate better cell culture models for mechanistic studies of cardiac fibroblast function. Elements of the force transmission and mechanoperception apparatus acting in myofibroblasts are presented as potential therapeutic targets to treat fibrosis.
Collapse
Affiliation(s)
- Sander van Putten
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yousef Shafieyan
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
49
|
Zheng QD, You Y, Cui JF. Extracellular matrix stiffness: An important regulatory factor in tumor invasion and metastasis. Shijie Huaren Xiaohua Zazhi 2015; 23:4778-4784. [DOI: 10.11569/wcjd.v23.i30.4778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It has been well documented that biochemical factors of tumor microenvironment like stromal cells, immune cells, cytokines, and chemokines contribute to the regulation of tumor invasion and metastasis. However, the roles of physical factors, especially matrix rigidity or elasticity resulting from abundant matrix protein deposition and cross-linking, remain largely unexplored. Lately, with the establishment of a series of cell culturing platforms mirroring matrix stiffness, a giant leap has been witnessed in the research into mechanisms of matrix stiffness-mediated effects on tumor invasion and metastasis. This article reviews the impact of matrix stiffness on epithelial-mesenchymal transition (EMT), motility, integrin, invasion and metastasis genes, and stemness in tumors, to illustrate that matrix stiffness is also an important factor in the regulation of tumor invasion and metastasis.
Collapse
|
50
|
Abstract
Myofibroblasts are activated in response to tissue injury with the primary task to repair lost or damaged extracellular matrix. Enhanced collagen secretion and subsequent contraction - scarring - are part of the normal wound healing response and crucial to restore tissue integrity. Due to myofibroblasts ability to repair but not regenerate, accumulation of scar tissue is always associated with reduced organ performance. This is a fair price to pay by the body for not falling apart. Whereas myofibroblasts typically vanish after successful repair, dysregulation of the normal repair process can lead to persistent myofibroblast activation, for instance by chronic inflammation or mechanical stress in the tissue. Excessive repair leads to the accumulation of stiff collagenous ECM contractures - fibrosis - with dramatic consequences for organ function. The clinical need to terminate detrimental myofibroblast activities has stimulated researchers to answer a number of essential questions: where do myofibroblasts come from, what are the factors leading to their activation, how do we discriminate myofibroblasts from other cells, what is the molecular basis for their contractile activity, and how can we stop or at least control them? This article reviews the current state of the myofibroblast literature by emphasizing their role in ocular repair and fibrosis. It appears that although the eye is quite an extraordinary organ, ocular myofibroblasts behave or misbehave just like their siblings in other organs.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, M5S 3E2 Ontario, Canada.
| |
Collapse
|