1
|
Hashemi V, Baradaran B, Naseri B, Masoumi J, Baghbani E, Alizadeh N, Haris RS, Hosseini A. The effect of immunomodulatory celecoxsib on the gene expression of inhibitory receptors in dendritic cells generated from monocyte cells. BMC Res Notes 2025; 18:164. [PMID: 40223111 PMCID: PMC11995585 DOI: 10.1186/s13104-025-07226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/31/2025] [Indexed: 04/15/2025] Open
Abstract
Autoimmune diseases are characterized by irregular immune responses that disrupt self-tolerance. This research explores the effects of the immunomodulatory drug celecoxib on the expression of immune checkpoint receptors in monocyte-derived dendritic cells (DCs). Key receptors, including CTLA-4, VISTA, BTLA, PDL-1, B7H7, and LAG3, play critical roles in initiating and regulating immune responses and maintaining self-tolerance. Previous studies have highlighted the significance of immune checkpoints in preventing autoimmune conditions, with animal research supporting their effectiveness in immunotherapy. Our findings demonstrate that the upregulation of immune checkpoint receptors can enhance the inhibitory functions of DCs, thereby promoting self-tolerance. As a result, tolerogenic DCs present a promising therapeutic avenue for treating autoimmune diseases. Although these results are promising, further trials are required to validate this approach before it can be applied clinically. This study underscores the potential of targeting immune checkpoint receptors as a therapeutic strategy for autoimmune disorders.
Collapse
Affiliation(s)
- Vida Hashemi
- Department of Laboratory Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Shiri Haris
- Department of Laboratory Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Arezoo Hosseini
- Department of Immunology and Genetics, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Parveen S, Konde DV, Paikray SK, Tripathy NS, Sahoo L, Samal HB, Dilnawaz F. Nanoimmunotherapy: the smart trooper for cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002308. [PMID: 40230883 PMCID: PMC11996242 DOI: 10.37349/etat.2025.1002308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Immunotherapy has gathered significant attention and is now a widely used cancer treatment that uses the body's immune system to fight cancer. Despite initial successes, its broader clinical application is hindered by limitations such as heterogeneity in patient response and challenges associated with the tumor immune microenvironment. Recent advancements in nanotechnology have offered innovative solutions to these barriers, providing significant enhancements to cancer immunotherapy. Nanotechnology-based approaches exhibit multifaceted mechanisms, including effective anti-tumor immune responses during tumorigenesis and overcoming immune suppression mechanisms to improve immune defense capacity. Nanomedicines, including nanoparticle-based vaccines, liposomes, immune modulators, and gene delivery systems, have demonstrated the ability to activate immune responses, modulate tumor microenvironments, and target specific immune cells. Success metrics in preclinical and early clinical studies, such as improved survival rates, enhanced tumor regression, and elevated immune activation indices, highlight the promise of these technologies. Despite these achievements, several challenges remain, including scaling up manufacturing, addressing off-target effects, and navigating regulatory complexities. The review emphasizes the need for interdisciplinary approaches to address these barriers, ensuring broader clinical adoption. It also provides insights into interdisciplinary approaches, advancements, and the transformative potential of nano-immunotherapy and promising results in checkpoint inhibitor delivery, nanoparticle-mediated photothermal therapy, immunomodulation as well as inhibition by nanoparticles and cancer vaccines.
Collapse
Affiliation(s)
- Suphiya Parveen
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Dhanshree Vikrant Konde
- Department of Biotechnology and Genetics, School of Sciences, Jain (Deemed-to-be-University), Bengaluru 560027, Karnataka, India
| | - Safal Kumar Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Himansu Bhusan Samal
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni 752050, Odisha, India
| |
Collapse
|
3
|
Morrison SA, Vinson AJ. Acute Allograft Rejection in Kidney Transplant Recipients Treated With Immune Checkpoint Inhibitors: An Educational Case Report. Can J Kidney Health Dis 2024; 11:20543581241289191. [PMID: 39444717 PMCID: PMC11497508 DOI: 10.1177/20543581241289191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/12/2024] [Indexed: 10/25/2024] Open
Abstract
Rationale Kidney transplant (KT) recipients have an increased risk of malignancy due to chronic immunosuppression. The emerging use of immune checkpoint inhibitors (ICIs) has been a promising development for the treatment of malignancy, but their use adds to the complexity of immunosuppression management for KT recipients. This case report describes 2 cases of acute rejection in KT recipients following ICI initiation and discusses the balance of malignancy treatment with adequate immunosuppression. Presenting Concerns of Patients The first patient is a 44-year-old male KT recipient with a diagnosis of metastatic renal cell carcinoma presenting with acute kidney injury 6 days following initiation of an ICI. The second patient is a 73-year-old male KT recipient with a diagnosis of squamous cell carcinoma presenting with acute kidney injury 2 weeks following initiation of an ICI. Diagnoses Both patients were diagnosed with acute rejection in the setting of reduced immunosuppression and initiation of an ICI. Interventions Both cases received an increased dose of steroid without improvement of graft function. The first patient subsequently underwent a delayed graft nephrectomy due to complications of acute rejection, whereas the second patient did not undergo nephrectomy. Outcomes The first patient experienced complications including perioperative bleeding requiring multiple operations, but ultimately stabilized on hemodialysis and showed a durable response to ICI. The second patient remained dialysis-dependent post-ICI treatment and was readmitted with allograft complications leading to his eventual death. Teaching Points This study underscores the complexity of managing KT recipients diagnosed with malignancy and receiving ICIs. The balance between immunosuppression reduction to treat malignancy and preventing allograft rejection presents a significant challenge. Key considerations include the risk of acute allograft rejection and patient-centered decision-making. These cases highlight the need for further research to develop evidence-based guidelines for managing this patient population. In addition, the patient perspective in this study highlights the importance of careful risk-benefit analysis and the impact of treatment decisions on patient-focused outcomes.
Collapse
Affiliation(s)
- Steven A. Morrison
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amanda J. Vinson
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Milutinovic S, Jancic P, Jokic V, Petrovic M, Dumic I, Rodriguez AM, Tanasijevic N, Begosh-Mayne D, Stanojevic D, Escarcega RO, Lopez-Mattei J, Cao X. Pembrolizumab-Associated Cardiotoxicity: A Retrospective Analysis of the FDA Adverse Events Reporting System. Pharmaceuticals (Basel) 2024; 17:1372. [PMID: 39459012 PMCID: PMC11510316 DOI: 10.3390/ph17101372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have been successfully used in the previous decade for the treatment of a variety of malignancies. Adverse events (AEs) can cause many symptoms, most notably cardiac. We analyzed the frequency of these adverse events, comparing pembrolizumab and other ICIs. METHODS Using the Food and Drug Administration (FDA) adverse event reporting database (FAERS), we searched for all adverse events of interest reported for every ICI included in this study. After obtaining the data, we conducted a disproportionality analysis using the reporting odds ratio (ROR) and the information component (IC). RESULTS A total of 6719 ICI-related cardiac adverse events of interest were reported in the database. Serious outcomes were reported in 100% of the cases, with 34.3% of the cases ending fatally. Compared with all other medications in the database, pembrolizumab use was more frequently associated with myocarditis, pericardial disease, heart failure, and atrial fibrillation. No difference was found in cardiotoxicity between different ICIs. CONCLUSIONS Although infrequent, cardiac AEs in pembrolizumab use are associated with serious outcomes and high mortality. Prospective studies are needed to further research the connection between ICI use and cardiotoxicity.
Collapse
Affiliation(s)
- Stefan Milutinovic
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
| | - Predrag Jancic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Vera Jokic
- Montefiore New Rochelle Hospital, New Rochelle, NY 10801, USA
| | - Marija Petrovic
- Cardiology Fellowship Program, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Igor Dumic
- Department of Hospital Medicine, Mayo Clinic Health System, Eau Claire, WI 54703, USA
| | - Ambar Morales Rodriguez
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
| | | | - Dustin Begosh-Mayne
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
| | - Dragana Stanojevic
- Clinic for Cardiology, University Clinical Center Nis, 18000 Nis, Serbia
| | - Ricardo O. Escarcega
- Internal Medicine Residency Program at Lee Health, Florida State University College of Medicine, Cape Coral, FL 33909, USA
- Lee Health Heart Institute, Fort Myers, FL 33908, USA
| | | | - Xiangkun Cao
- Lee Health Heart Institute, Fort Myers, FL 33908, USA
| |
Collapse
|
5
|
Ren X, Li L, Chen Y, Cui X, Wan R, Wang Y. Adverse reactions of immune checkpoint inhibitors combined with Proton pump inhibitors: a pharmacovigilance analysis of drug-drug interactions. BMC Cancer 2024; 24:1193. [PMID: 39334098 PMCID: PMC11438026 DOI: 10.1186/s12885-024-12947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Combining immune checkpoint and proton pump inhibitors is widely used in cancer treatment. However, the drug-drug interactions of these substances are currently unknown. This study aimed to explore drug-drug interactions associated with concomitant immune checkpoint and proton pump inhibitors. METHODS Data were obtained from the US Food and Drug Administration Adverse Event Reporting System from 2014 to 2023. Disproportionality analysis was used for data mining by calculating the reporting odds ratios (RORs) with 95% confidence intervals (95%Cls). The adjusted RORs (RORadj) were then analysed using logistic regression analysis, considering age, sex, and reporting year. Drug-drug interactions occur when a combination treatment enhances the frequency of an event. Further confirmation of the robustness of the findings was achieved using additive and multiplicative models, which are the two statistical methodologies for signal detection of DDIs using spontaneous reporting system. RESULTS The total number of reports on immune checkpoint combined with proton pump inhibitors was 4,276. Median patient age was 66 years (interquartile range [IQR]: 60-74 years). Significant interaction signals were observed for congenital, familial and genetic disorders (RORadj = 2.66, 95%CI, 1.38-5.14, additive models = 0.7322, multiplicative models = 3.5142), hepatobiliary disorders (RORcrude = 6.64, 95%CI, 5.82-7.58, RORadj = 7.10, 95%CI, 6.16-8.18, additive models = 2.0525, multiplicative models = 1.1622), metabolism and nutrition disorders (RORcrude = 3.27, 95%CI, 2.90-3.69, RORadj = 2.66, 95%CI, 2.30-3.08, additive models = 0.6194), and skin and subcutaneous tissue disorders (RORcrude = 1.41, 95%CI, 1.26-1.58, RORadj = 1.53, 95%CI, 1.34-1.75, additive models = 0.6927, multiplicative models = 5.3599). Subset data analysis showed that programmed death-1 combined with proton pump inhibitors was associated with congenital, familial, and genetic disorders; hepatobiliary disorders; and skin and subcutaneous tissue disorders. Programmed death ligand-1 combined with proton pump inhibitors was associated with adverse reactions of metabolism and nutrition disorders. Cytotoxic T-lymphocyte antigen-4 combined with proton pump inhibitors was associated with congenital, familial, and genetic disorders, and skin and subcutaneous tissue disorders. CONCLUSIONS Based on real-world data, four Standardized MedDRA Query System Organ Class toxicities were identified as drug-drug interactions associated with combining immune checkpoint and proton pump inhibitors. Clinicians should be cautious when administering these drugs concomitantly. Preclinical trials and robust clinical studies are required to explore the mechanisms and relationships underlying interactions, thus improving understanding of drug-drug interactions associated with this combination therapy.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Li
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiran Chen
- Department of Gynecologic Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangli Cui
- Department of pharmacy, Beijing Friendship hospital, Capital Medical University, Bejing, China
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
6
|
Ahkam AH, Susilawati Y, Sumiwi SA. Peronema canescens as a Source of Immunomodulatory Agents: A New Opportunity and Perspective. BIOLOGY 2024; 13:744. [PMID: 39336171 PMCID: PMC11428267 DOI: 10.3390/biology13090744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/01/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Immunomodulators are pivotal in managing various health conditions by regulating the immune response by either enhancing or suppressing it to maintain homeostasis. The growing interest in natural sources of immunomodulatory agents has spurred the investigation of numerous medicinal plants, including Peronema canescens, commonly known in Asia as sungkai. Traditionally used for its medicinal properties in Southeast Asia, Peronema canescens belongs to the Verbenaceae family and has garnered significant attention. This review discusses the immunomodulatory activity of the active compounds in Peronema canescens and explores the potential directions for future research.
Collapse
Affiliation(s)
- Ahmad Hafidul Ahkam
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| | - Yasmiwar Susilawati
- Department of Biology Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
- The Herbal Studies Center, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| | - Sri Adi Sumiwi
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Padjadjaran University, Sumedang 45363, Indonesia
| |
Collapse
|
7
|
Maleki S, Esmaeili Z, Seighali N, Shafiee A, Namin SM, Zavareh MAT, Khamene SS, Mohammadkhawajah I, Nanna M, Alizadeh-Asl A, M Kwan J, Hosseini K. Cardiac adverse events after Chimeric Antigen Receptor (CAR) T cell therapies: an updated systematic review and meta-analysis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:52. [PMID: 39164789 PMCID: PMC11334556 DOI: 10.1186/s40959-024-00252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T-cell therapy is a new revolutionary method for treating refractory or relapsed hematologic malignancies, CAR T-cell therapy has been associated with cytokine release syndrome (CRS) and cardiotoxicity. We directed a systematic review and meta-analysis to determine the incidence and predictors of cardiovascular events (CVE) with CAR T-cell therapy. METHODS We investigated PubMed, Embase, Cochrane Library, and ClinicalTrials.gov for studies reporting cardiovascular outcomes in CAR-T cell recipients. The study protocol was listed in the International Prospective Register of Systematic Reviews (PROSPERO ID: CRD42023478602). Twenty-three studies were included in this study. RESULTS The pooled incidence of CVE was 54% for arrhythmias, 30% for heart failure, 20% for cardiomyopathy, 10% for acute coronary syndrome, and 7% for cardiac arrest. Patients with CVE had a higher incidence of cytokine release syndrome grade ≥ 2 (RR 2.36, 95% CI 1.86-2.99). The incidence of cardiac mortality in our meta-analysis was 2% (95% CI: 1%-3%). Left ventricular ejection fraction decline was greater in the CVE group (-9.4% versus -1.5%, p < 0.001). Cardiac biomarkers like BNP, CRP, creatinine, and ferritin were also elevated. CONCLUSIONS CAR T-cell therapy commonly leads to cardiotoxicity, mediated by cytokine release syndrome. Vigilant monitoring and tailored treatments are crucial to mitigate these effects. Importantly, there's no significant difference in cardiac mortality between groups, suggesting insights for optimizing preventive interventions and reducing risks after CAR T-cell therapy.
Collapse
Affiliation(s)
- Saba Maleki
- School of Medicine, Guilan University of Medical Sciences (GUMS), Rasht, Guilan Province, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran
| | - Zahra Esmaeili
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Seighali
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Arman Shafiee
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Sara Montazeri Namin
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran
| | | | | | | | - Michael Nanna
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Azin Alizadeh-Asl
- Professor of Cardiology Echocardiologist, Cardio-Oncologist Founder of Cardio-Oncology in Iran Cardio-Oncology Research Center Rajaie Cardiovascular Medical & Research Institute, Tehran, Iran
| | - Jennifer M Kwan
- Cardiovascular Medicine, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Tehran Heart Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, North Kargar Ave, Tehran, 1411713138, Iran.
| |
Collapse
|
8
|
Huang X, Zhang W. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy. SMALL METHODS 2024; 8:e2301326. [PMID: 38040834 DOI: 10.1002/smtd.202301326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Immune checkpoint blockade (ICB) therapy for tumors has arisen in growing interest. However, the low response rate of tumors to ICB is mainly attributed to the inhibitory infiltration of immune cells in the tumor microenvironment (TME). Despite the promising benefits of ICB, the therapeutic effects of antibodies are dependent on a high dose and long-term usage in the clinic, thereby leading to immune-related adverse effects. Accordingly, ICB combined with nano-delivery systems could be used to overcome T cell exhaustion, which reduces the side effects and the usage of antibodies with higher response rates in patients. In this review, the authors aim to overcome T cell exhaustion in TME via immune checkpoint modulation with nano-delivery systems for enhanced immunotherapy. Several strategies are summarized to combine ICB and nano-delivery systems to further enhance immunotherapy: a) expressing immune checkpoint on the surface of nano-delivery systems; b) loading immune checkpoint inhibitors into nano-delivery systems; c) loading gene-editing technology into nano-delivery systems; and d) nano-delivery systems mediated immune checkpoint modulation. Taken together, ICB combined with nano-delivery systems might be a promising strategy to overcome T cell exhaustion in TME for enhanced immunotherapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weiyue Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
9
|
Das S, Ravi H, Devi Rajeswari V, Venkatraman G, Ramasamy M, Dhanasekaran S, Ramanathan G. Therapeutic insight into the role of nuclear protein HNF4α in liver carcinogenesis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 143:1-37. [PMID: 39843133 DOI: 10.1016/bs.apcsb.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hepatocyte nuclear factor 4-alpha (HNF4α), a well-preserved member of the nuclear receptor superfamily of transcription factors, is found in the liver. It is recognized as a central controller of gene expression specific to the liver and plays a key role in preserving the liver's homeostasis. Irregular expression of HNF4α is increasingly recognized as a crucial factor in the proliferation, cell death, invasiveness, loss of specialized functions, and metastasis of cancer cells. An increasing number of studies are pointing to abnormal HNF4α expression as a key component of cancer cell invasion, apoptosis, proliferation, dedifferentiation, and metastasis. Understanding HNF4α's intricate involvement in liver carcinogenesis provides a promising avenue for therapeutic intervention. This chapter attempts to shed light on the diverse aspects of HNF4's role in liver carcinogenesis and demonstrate how this knowledge can be harnessed for approaches to prevent and treat liver cancer. This comprehensive chapter will offer an elaborate perspective on HNF4's function in liver cancer, delineating its molecular mechanisms that aid in the emergence of liver cancer. Furthermore, it will highlight the potential to help create more effective and precisely targeted therapeutic strategies, rekindling fresh optimism in the fight against this formidable condition.
Collapse
Affiliation(s)
- Soumik Das
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Harini Ravi
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Ganesh Venkatraman
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Magesh Ramasamy
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Sivaraman Dhanasekaran
- School of Energy Technology, Pandit Deendayal Energy University, Knowledge Corridor, Gandhinagar, Gujarat, India
| | - Gnanasambandan Ramanathan
- Department of Bio-Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Cook SL, Al Amin M, Bari S, Poonnen PJ, Khasraw M, Johnson MO. Immune Checkpoint Inhibitors in Geriatric Oncology. Curr Oncol Rep 2024; 26:562-572. [PMID: 38587598 DOI: 10.1007/s11912-024-01528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE OF REVIEW This manuscript will update prior reviews of immune checkpoint inhibitors (ICIs) in light of basic science, translational, and clinical discoveries in the field of cancer immunology and aging. RECENT FINDINGS ICIs have led to significant advancements in the treatment of cancer. Landmark trials of ICIs have cited the efficacy and toxicity experienced by older patients, but most trials are not specifically designed to address outcomes in older patients. Underlying mechanisms of aging, like cellular senescence, affect the immune system and may ultimately alter the host's response to ICIs. Validated tools are currently used to identify older adults who may be at greater risk of developing complications from their cancer treatment. We review changes in the aging immune system that may alter responses to ICIs, report outcomes and toxicities in older adults from recent ICI clinical trials, and discuss clinical tools specific to older patients with cancer.
Collapse
Affiliation(s)
- Sarah L Cook
- Department of Neurosurgery, Duke University School of Medicine, 047 Baker House, Trent Drive, Durham, NC, 27710, USA
| | - Md Al Amin
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Sher-E-Bangla Medical College, Barisal City, Bangladesh
| | - Shahla Bari
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Pradeep J Poonnen
- Department of Veterans Affairs, Durham VA Medical Center, Durham, NC, USA
- Department of Veterans Affairs, National TeleOncology Program, Durham, NC, USA
| | - Mustafa Khasraw
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Department of Neurosurgery, Duke University School of Medicine, 047 Baker House, Trent Drive, Durham, NC, 27710, USA.
| | - Margaret O Johnson
- Department of Neurosurgery, Duke University School of Medicine, 047 Baker House, Trent Drive, Durham, NC, 27710, USA
- Department of Veterans Affairs, National TeleOncology Program, Durham, NC, USA
| |
Collapse
|
11
|
Yan T, Yu L, Zhang J, Chen Y, Fu Y, Tang J, Liao D. Achilles' Heel of currently approved immune checkpoint inhibitors: immune related adverse events. Front Immunol 2024; 15:1292122. [PMID: 38410506 PMCID: PMC10895024 DOI: 10.3389/fimmu.2024.1292122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/04/2024] [Indexed: 02/28/2024] Open
Abstract
Immunotherapy has revolutionized the cancer treatment landscape by opening up novel avenues for intervention. As the use of immune checkpoint inhibitors (ICIs) has exponentially increased, so have immune-related adverse events (irAEs). The mechanism of irAEs may involve the direct damage caused by monoclonal antibodies and a sequence of immune responses triggered by T cell activation. Common side effects include dermatologic toxicity, endocrine toxicity, gastrointestinal toxicity, and hepatic toxicity. While relatively rare, neurotoxicity, cardiotoxicity, and pulmonary toxicity can be fatal. These toxicities pose a clinical dilemma regarding treatment discontinuation since they can result in severe complications and necessitate frequent hospitalization. Vigilant monitoring of irAEs is vital in clinical practice, and the principal therapeutic strategy entails the administration of oral or intravenous glucocorticoids (GSCs). It may be necessary to temporarily or permanently discontinue the use of ICIs in severe cases. Given that irAEs can impact multiple organs and require diverse treatment approaches, the involvement of a multidisciplinary team of experts is imperative. This review aims to comprehensively examine the pathogenesis, clinical manifestations, incidence, and treatment options for various irAEs.
Collapse
Affiliation(s)
- Ting Yan
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lun Yu
- Department of Positron Emission Tomography–Computed Tomography (PET-CT) Center, Chenzhou No. 1 People’s Hospital, Chenzhou, China
| | - Jiwen Zhang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- School of Pharmacy, University of South China, Hengyang, China
| | - Yun Chen
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Yilan Fu
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Tang
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Dehua Liao
- Department of Pharmacy, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhang Y, Zhou X, Zhong Y, Chen X, Li Z, Li R, Qin P, Wang S, Yin J, Liu S, Jiang M, Yu Q, Hou Y, Liu S, Wu L. Pan-cancer scRNA-seq analysis reveals immunological and diagnostic significance of the peripheral blood mononuclear cells. Hum Mol Genet 2024; 33:342-354. [PMID: 37944069 DOI: 10.1093/hmg/ddad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) reflect systemic immune response during cancer progression. However, a comprehensive understanding of the composition and function of PBMCs in cancer patients is lacking, and the potential of these features to assist cancer diagnosis is also unclear. Here, the compositional and status differences between cancer patients and healthy donors in PBMCs were investigated by single-cell RNA sequencing (scRNA-seq), involving 262,025 PBMCs from 68 cancer samples and 14 healthy samples. We observed an enhanced activation and differentiation of most immune subsets in cancer patients, along with reduction of naïve T cells, expansion of macrophages, impairment of NK cells and myeloid cells, as well as tumor promotion and immunosuppression. Based on characteristics including differential cell type abundances and/or hub genes identified from weight gene co-expression network analysis (WGCNA) modules of each major cell type, we applied logistic regression to construct cancer diagnosis models. Furthermore, we found that the above models can distinguish cancer patients and healthy donors with high sensitivity. Our study provided new insights into using the features of PBMCs in non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Yuanhang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaorui Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yu Zhong
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xi Chen
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zeyu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Rui Li
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Pengfei Qin
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shanshan Wang
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jianhua Yin
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shang Liu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Miaomiao Jiang
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Qichao Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong Hou
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shiping Liu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Liang Wu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- JFL-BGI STOmics Center, Jinfeng Laboratory , Gaoteng Avenue, Jiulongpo District, Chongqing 401329, China
| |
Collapse
|
13
|
Abdel-Rahman SA, Gabr M. Small Molecule Immunomodulators as Next-Generation Therapeutics for Glioblastoma. Cancers (Basel) 2024; 16:435. [PMID: 38275876 PMCID: PMC10814352 DOI: 10.3390/cancers16020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Glioblastoma (GBM), the most aggressive astrocytic glioma, remains a therapeutic challenge despite multimodal approaches. Immunotherapy holds promise, but its efficacy is hindered by the highly immunosuppressive GBM microenvironment. This review underscores the urgent need to comprehend the intricate interactions between glioma and immune cells, shaping the immunosuppressive tumor microenvironment (TME) in GBM. Immunotherapeutic advancements have shown limited success, prompting exploration of immunomodulatory approaches targeting tumor-associated macrophages (TAMs) and microglia, constituting a substantial portion of the GBM TME. Converting protumor M2-like TAMs to antitumor M1-like phenotypes emerges as a potential therapeutic strategy for GBM. The blood-brain barrier (BBB) poses an additional challenge to successful immunotherapy, restricting drug delivery to GBM TME. Research efforts to enhance BBB permeability have mainly focused on small molecules, which can traverse the BBB more effectively than biologics. Despite over 200 clinical trials for GBM, studies on small molecule immunomodulators within the GBM TME are scarce. Developing small molecules with optimal brain penetration and selectivity against immunomodulatory pathways presents a promising avenue for combination therapies in GBM. This comprehensive review discusses various immunomodulatory pathways in GBM progression with a focus on immune checkpoints and TAM-related targets. The exploration of such molecules, with the capacity to selectively target key immunomodulatory pathways and penetrate the BBB, holds the key to unlocking new combination therapy approaches for GBM.
Collapse
Affiliation(s)
- Somaya A. Abdel-Rahman
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Moustafa Gabr
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
14
|
Ren X, Deng L, Dong X, Bai Y, Li G, Wang Y. Adverse reactions of immune checkpoint inhibitors combined with angiogenesis inhibitors: A pharmacovigilance analysis of drug-drug interactions. Int J Immunopathol Pharmacol 2024; 38:3946320241305390. [PMID: 39660594 PMCID: PMC11632882 DOI: 10.1177/03946320241305390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
The combination of immune checkpoint inhibitors (ICIs) and angiogenesis inhibitors (AGIs) is widely used in cancer treatment; however, drug-drug reactions (DDIs) remain unknown. We aimed to identify interaction signals for the concomitant use of ICIs and AGIs. Data were obtained from the US FDA Adverse Event Reporting System (FAERS) from January 1, 2015, to December 31, 2023. Disproportionality analysis was used for data mining by calculating the reporting odds ratio (ROR) and 95% confidence interval (95% CI). Adjusted RORs were analysed using logistic regression analysis, considering age, sex and reporting year. Further confirmation was assessed via additive and multiplicative models. We identified 75,936 reports on ICIs combined with AGIs. Significant interaction signals were observed for hepatobiliary disorders (RORcrude: 5.25, 95% CI: 5.07-5.44, RORadj: 5.01, 95% CI: 4.82-5.22, additive models: 0.2323), investigations (RORcrude: 1.66, 95% CI: 1.62-1.70, RORadj: 1.63, 95% CI: 1.58-1.67, additive models: 0.2187, multiplicative models: 1.1265), renal and urinary disorders (RORcrude: 1.87, 95% CI: 1.80-1.95, RORadj: 1.72, 95% CI: 1.64-1.79, additive models: 0.3239, multiplicative models: 1.1799) and vascular disorders (RORcrude: 1.94, 95% CI: 1.87-2.02, RORadj: 1.87, 95% CI: 1.80-1.95, additive models: 0.5823, multiplicative models: 1.5676). Subset data analysis showed positive interaction signals for PDL-1/CTLA-4 inhibitors + AGI in hepatobiliary disorders, PD-1 inhibitors + AGI in investigations, or PD-1/PDL-1 inhibitors + AGI in renal and urinary/ vascular disorders. Based on FAERS data, four systemic disorders were identified as having DDIs related to the combined use of ICIs and AGIs. Pre-clinical trials are required to explore the mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Deng
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Dong
- Department of Clinical Laboratory, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Bai
- Clinical Trials Center, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guohui Li
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Swierczynski M, Kasprzak Z, Makaro A, Salaga M. Regulators of G-Protein Signaling (RGS) in Sporadic and Colitis-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:577. [PMID: 38203748 PMCID: PMC10778579 DOI: 10.3390/ijms25010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common neoplasms worldwide. Among the risk factors of CRC, inflammatory bowel disease (IBD) is one of the most important ones leading to the development of colitis-associated CRC (CAC). G-protein coupled receptors (GPCR) are transmembrane receptors that orchestrate a multitude of signaling cascades in response to external stimuli. Because of their functionality, they are promising targets in research on new strategies for CRC diagnostics and treatment. Recently, regulators of G-proteins (RGS) have been attracting attention in the field of oncology. Typically, they serve as negative regulators of GPCR responses to both physiological stimuli and medications. RGS activity can lead to both beneficial and harmful effects depending on the nature of the stimulus. However, the atypical RGS-AXIN uses its RGS domain to antagonize key signaling pathways in CRC development through the stabilization of the β-catenin destruction complex. Since AXIN does not limit the efficiency of medications, it seems to be an even more promising pharmacological target in CRC treatment. In this review, we discuss the current state of knowledge on RGS significance in sporadic CRC and CAC with particular emphasis on the regulation of GPCR involved in IBD-related inflammation comprising opioid, cannabinoid and serotonin receptors.
Collapse
Affiliation(s)
| | | | | | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (M.S.); (Z.K.); (A.M.)
| |
Collapse
|
16
|
Attieh F, Chartouni A, Boutros M, Mouawad A, Kourie HR. Tackling the immunotherapy conundrum: advances and challenges for operable non-small-cell lung cancer treatment. Immunotherapy 2023; 15:1415-1428. [PMID: 37671552 DOI: 10.2217/imt-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
Lung cancer is the most common cause of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) represents the majority of lung cancer cases, and its standard treatment is primarily surgery. Nonetheless, this type of cancer exhibits an important rate of tumor recurrence. Immune checkpoint inhibitors (ICIs) have demonstrated significant survival benefits in many cancers, especially in early-stage NSCLC. This review considers the latest CheckMate816, IMpower010 and KEYNOTE-091 trials that led to US FDA approvals. The new wave of resectable NSCLC trial results are also summarized. Finally, the latest challenges for these treatment modalities, such as the choice between neoadjuvant and adjuvant use, the accurate identification of biomarkers and the presence of driver mutations such as EGFR, are discussed.
Collapse
Affiliation(s)
- Fouad Attieh
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Antoine Chartouni
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Marc Boutros
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Antoine Mouawad
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Faculty of Medicine, Saint Joseph University of Beirut, Beirut, 11072180, Lebanon
| |
Collapse
|
17
|
Boutros M, Attieh F, Chartouni A, Jalbout J, Kourie HR. Beyond the Horizon: A Cutting-Edge Review of the Latest Checkpoint Inhibitors in Cancer Treatment. Cancer Invest 2023; 41:757-773. [PMID: 37795860 DOI: 10.1080/07357907.2023.2267675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have emerged as a revolutionary paradigm in oncology, offering a potent arsenal against various malignancies by harnessing the body's own immunological prowess. In a whirlwind of advancement, an abundance of new ICIs have come to light, rendering it a Herculean task for physicians to remain au courant with the rapidly evolving landscape. This comprehensive review meticulously explores the crescendo of clinical investigations and FDA approvals that have come to light during 2022 and 2023, showcasing the metamorphic impact of ICIs in cancer therapeutics. Delving into the pith of pivotal Phase 3 trials across diverse cancer types - including lung, renal, melanoma, and more - the review illuminates the significant strides made in enhancing patient outcomes, alongside the unveiling of novel ICIs that have garnered attention in the oncological community. The analysis extends to the notable presentations at the esteemed ESMO and ASCO conventions, providing a panoramic view of the contemporary advancements in ICI technology. Furthermore, the review underscores the imperative of continuous exploration in overcoming the extant challenges, such as the quest for reliable predictive biomarkers and the optimization of combinatorial strategies to surmount resistance and augment therapeutic efficacy. Through a holistic lens, this article elucidates the monumental impact of ICIs, marking a significant epoch in the odyssey towards rendering cancer a conquerable adversary.
Collapse
Affiliation(s)
- Marc Boutros
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Fouad Attieh
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Antoine Chartouni
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Johnny Jalbout
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut, Lebanon
| | - Hampig Raphaël Kourie
- Department of Hematology-Oncology, Faculty of Medicine, Saint-Joseph University of Beirut, Beirut, Lebanon
| |
Collapse
|
18
|
Rocco D, Della Gravara L, Ragone A, Sapio L, Naviglio S, Gridelli C. Prognostic Factors in Advanced Non-Small Cell Lung Cancer Patients Treated with Immunotherapy. Cancers (Basel) 2023; 15:4684. [PMID: 37835378 PMCID: PMC10571734 DOI: 10.3390/cancers15194684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Taking into account the huge epidemiologic impact of lung cancer (in 2020, lung cancer accounted for 2,206,771 of the cases and for 1,796,144 of the cancer-related deaths, representing the second most common cancer in female patients, the most common cancer in male patients, and the second most common cancer in male and female patients) and the current lack of recommendations in terms of prognostic factors for patients selection and management, this article aims to provide an overview of the current landscape in terms of currently available immunotherapy treatments and the most promising assessed prognostic biomarkers, highlighting the current state-of-the-art and hinting at future challenges.
Collapse
Affiliation(s)
- Danilo Rocco
- Department of Pulmonary Oncology, AORN dei Colli Monaldi, 80131 Naples, Italy;
| | - Luigi Della Gravara
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Angela Ragone
- Max-Planck Institute of Molecular Physiology, 44227 Dortmund, Germany;
| | - Luigi Sapio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Silvio Naviglio
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (L.D.G.); (L.S.); (S.N.)
| | - Cesare Gridelli
- Division of Medical Oncology, “S.G. Moscati” Hospital, Contrada Amoretta, 83100 Avellino, Italy
| |
Collapse
|
19
|
Kiaie SH, Salehi-Shadkami H, Sanaei MJ, Azizi M, Shokrollahi Barough M, Nasr MS, Sheibani M. Nano-immunotherapy: overcoming delivery challenge of immune checkpoint therapy. J Nanobiotechnology 2023; 21:339. [PMID: 37735656 PMCID: PMC10512572 DOI: 10.1186/s12951-023-02083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/26/2023] [Indexed: 09/23/2023] Open
Abstract
Immune checkpoint (ICP) molecules expressed on tumor cells can suppress immune responses against tumors. ICP therapy promotes anti-tumor immune responses by targeting inhibitory and stimulatory pathways of immune cells like T cells and dendritic cells (DC). The investigation into the combination therapies through novel immune checkpoint inhibitors (ICIs) has been limited due to immune-related adverse events (irAEs), low response rate, and lack of optimal strategy for combinatorial cancer immunotherapy (IMT). Nanoparticles (NPs) have emerged as powerful tools to promote multidisciplinary cooperation. The feasibility and efficacy of targeted delivery of ICIs using NPs overcome the primary barrier, improve therapeutic efficacy, and provide a rationale for more clinical investigations. Likewise, NPs can conjugate or encapsulate ICIs, including antibodies, RNAs, and small molecule inhibitors. Therefore, combining the drug delivery system (DDS) with ICP therapy could provide a profitable immunotherapeutic strategy for cancer treatment. This article reviews the significant NPs with controlled DDS using current data from clinical and pre-clinical trials on mono- and combination IMT to overcome ICP therapeutic limitations.
Collapse
Affiliation(s)
- Seyed Hossein Kiaie
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hossein Salehi-Shadkami
- Department of Formulation Development, ReNAP Therapeutics, Tehran, Iran
- Department of Medical Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Sanaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, 8815713471, Iran
| | - Marzieh Azizi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | | | - Mohammad Sadegh Nasr
- Department of Computer Science and Engineering Multi-Interprofessional Center for Health Informatics (MICHI), The University of Texas at Arlington, Arlington, TX, USA
| | - Mohammad Sheibani
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Kosche C, Jaishankar D, Cosgrove C, Ramesh P, Hong S, Li L, Shivde RS, Bhuva D, White BEP, Munir SS, Zhang H, Lu KQ, Choi JN, Le Poole IC. Skin Infiltrate Composition as a Telling Measure of Responses to Checkpoint Inhibitors. JID INNOVATIONS 2023; 3:100190. [PMID: 37554516 PMCID: PMC10405096 DOI: 10.1016/j.xjidi.2023.100190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/11/2023] Open
Abstract
Checkpoint inhibitors treat a variety of tumor types with significant benefits. Unfortunately, these therapies come with diverse adverse events. Skin rash is observed early into treatment and might serve as an indicator of downstream responses to therapy. We studied the cellular composition of cutaneous eruptions and whether their contribution varies with the treatment applied. Skin samples from 18 patients with cancer and 11 controls were evaluated by mono- and multiplex imaging, quantification, and statistical analysis. T cells were the prime contributors to skin rash, with T cells and macrophages interacting and proliferating on site. Among T cell subsets examined, type 1 and 17 T cells were relatively increased among inflammatory skin infiltrates. A combination of increased cytotoxic T cell content and decreased macrophage abundance was associated with dual checkpoint inhibition over PD1 inhibition alone. Importantly, responders significantly separated from nonresponders by greater CD68+ macrophage and either CD11c+ antigen-presenting cell or CD4+ T cell abundance in skin rash. The microenvironment promoted epidermal proliferation and thickening as well. The combination of checkpoint inhibitors used affects the development and composition of skin infiltrates, whereas the combined abundance of two cell types in cutaneous eruptions aligns with responses to checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Cory Kosche
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dinesh Jaishankar
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Cormac Cosgrove
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Prathyaya Ramesh
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Suyeon Hong
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lin Li
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rohan S. Shivde
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Deven Bhuva
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Bethany E. Perez White
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sabah S. Munir
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Hui Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kurt Q. Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer N. Choi
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
21
|
Duraisamy P, Panicker VV, Jose WM. Characterization and Prognostic Significance of Cutaneous Immune-Related Adverse Events in Indian Patients on Immune Checkpoint Inhibitor Therapy. Dermatol Pract Concept 2023; 13:e2023127. [PMID: 37557151 PMCID: PMC10412045 DOI: 10.5826/dpc.1303a127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 08/11/2023] Open
Abstract
INTRODUCTION Cutaneous immune-related adverse-events (cIRAEs), commonly seen in cancer patients receiving immune checkpoint inhibitors (ICI) are reported to be associated with better patient survival; however, they have seldom been studied in Indian population. Recent reports suggest racial differences in IRAEs and also in survival outcomes. OBJECTIVES To study the various cIRAEs in Indian patients on ICI therapy and to analyze the association between cIRAEs and patient survival outcomes. METHODS We conducted a retrospective cohort study of 86 cancer patients receiving immunotherapies in a tertiary care hospital in India and studied incidence, nature and grades of cutaneous immune-related adverse events and the association of cIRAEs with the patient survival outcomes. RESULTS Eighty-six patients were included, of whom 16 patients (18.6%) developed cIRAEs, with pruritus (12.8%) and maculopapular eruption (8.1%) being the most common. Kaplan-Meier plot with log-rank test showed that patients developing any type of cIRAE had longer progression-free survival than those without (P = 0.023) and a better objective-response-rate (50% versus 18.5%, P = 0.008). CONCLUSIONS Most common cIRAEs in our study were pruritus and maculopapular rash. The incidence of cIRAEs was lower in our Indian cohort compared to that reported in Caucasian cohorts. Development of cutaneous immune-related adverse event in cancer patients on ICI was associated with a longer progression-free-survival and a better objective-response-rate. Thus, cIRAEs may serve as a surrogate marker for better patient outcomes.
Collapse
Affiliation(s)
- Prasanna Duraisamy
- Department of Dermatology, Amrita Institute of Medical Sciences, Kochi, India
| | | | - Wesley Mannirathil Jose
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences, Kochi, India
| |
Collapse
|
22
|
Alturki NA. Review of the Immune Checkpoint Inhibitors in the Context of Cancer Treatment. J Clin Med 2023; 12:4301. [PMID: 37445336 DOI: 10.3390/jcm12134301] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Checkpoint proteins are an integral part of the immune system and are used by the tumor cells to evade immune response, which helps them grow uncontrollably. By blocking these proteins, immune checkpoint inhibitors can restore the capability of the immune system to attack cancer cells and stop their growth. These findings are backed by adequate clinical trial data and presently, several FDA-approved immune checkpoint inhibitors exist in the market for treating various types of cancers, including melanoma, hepatocellular, endometrial, lung, kidney and others. Their mode of action is inhibition by targeting the checkpoint proteins CTLA-4, PD-1, PD-L1, etc. They can be used alone as well as in amalgamation with other cancer treatments, like surgery, radiation or chemotherapy. Since these drugs target only specific immune system proteins, their side effects are reduced in comparison with the traditional chemotherapy drugs, but may still cause a few affects like fatigue, skin rashes, and fever. In rare cases, these inhibitors are known to have caused more serious side effects, such as cardiotoxicity, and inflammation in the intestines or lungs. Herein, we provide an overview of these inhibitors and their role as biomarkers, immune-related adverse outcomes and clinical studies in the treatment of various cancers, as well as present some future perspectives.
Collapse
Affiliation(s)
- Norah A Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| |
Collapse
|
23
|
Wen J, Huang Q, Yao J, Wei W, Li Z, Zhang H, Chang S, Pei H, Cao Y, Li H. Focusing on scRNA-seq-Derived T Cell-Associated Genes to Identify Prognostic Signature and Immune Microenvironment Status in Low-Grade Glioma. Mediators Inflamm 2023; 2023:3648946. [PMID: 37292257 PMCID: PMC10247320 DOI: 10.1155/2023/3648946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/26/2023] [Accepted: 04/05/2023] [Indexed: 06/10/2023] Open
Abstract
Background The clinical outcomes of low-grade glioma (LGG) are associated with T cell infiltration, but the specific contribution of heterogeneous T cell types remains unclear. Method To study the different functions of T cells in LGG, we mapped the single-cell RNA sequencing results of 10 LGG samples to obtain T cell marker genes. In addition, bulk RNA data of 975 LGG samples were collected for model construction. Algorithms such as TIMER, CIBERSORT, QUANTISEQ, MCPCOUTER, XCELL, and EPIC were used to depict the tumor microenvironment landscape. Subsequently, three immunotherapy cohorts, PRJEB23709, GSE78820, and IMvigor210, were used to explore the efficacy of immunotherapy. Results The Human Primary Cell Atlas was used as a reference dataset to identify each cell cluster; a total of 15 cell clusters were defined and cells in cluster 12 were defined as T cells. According to the distribution of T cell subsets (CD4+ T cell, CD8+ T cell, Naïve T cell, and Treg cell), we selected the differentially expressed genes. Among the CD4+ T cell subsets, we screened 3 T cell-related genes, and the rest were 28, 4, and 13, respectively. Subsequently, according to the T cell marker genes, we screened six genes for constructing the model, namely, RTN1, HERPUD1, MX1, SEC61G, HOPX, and CHI3L1. The ROC curve showed that the predictive ability of the prognostic model for 1, 3, and 5 years was 0.881, 0.817, and 0.749 in the TCGA cohort, respectively. In addition, we found that risk scores were positively correlated with immune infiltration and immune checkpoints. To this end, we obtained three immunotherapy cohorts to verify their predictive ability of immunotherapy effects and found that high-risk patients had better clinical effects of immunotherapy. Conclusion This single-cell RNA sequencing combined with bulk RNA sequencing may elucidate the composition of the tumor microenvironment and pave the way for the treatment of low-grade gliomas.
Collapse
Affiliation(s)
- Jiayu Wen
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100020, China
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Qiaoyi Huang
- Graduate College, Beijing University of Chinese Medicine, Beijing 100020, China
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Jiuxiu Yao
- First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan 250011, China
| | - Wei Wei
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
| | - Zehui Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Huiqin Zhang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Surui Chang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100089, China
| | - Hao Li
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100020, China
| |
Collapse
|
24
|
Zarenezhad E, Kanaan MHG, Abdollah SS, Vakil MK, Marzi M, Mazarzaei A, Ghasemian A. Metallic Nanoparticles: Their Potential Role in Breast Cancer Immunotherapy via Trained Immunity Provocation. Biomedicines 2023; 11:biomedicines11051245. [PMID: 37238916 DOI: 10.3390/biomedicines11051245] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 05/28/2023] Open
Abstract
Owing to drawbacks in the current common cancer therapies including surgery, chemotherapy and radiotherapy, the development of more reliable, low toxic, cost-effective and specific approaches such as immunotherapy is crucial. Breast cancer is among the leading causes of morbidity and mortality with a developed anticancer resistance. Accordingly, we attempted to uncover the efficacy of metallic nanoparticles (MNPs)-based breast cancer immunotherapy emphasizing trained immunity provocation or innate immunity adaptation. Due to the immunosuppressive nature of the tumor microenvironment (TME) and the poor infiltration of immune cells, the potentiation of an immune response or direct combat is a goal employing NPs as a burgeoning field. During the recent decades, the adaptation of the innate immunity responses against infectious diseases and cancer has been recognized. Although the data is in a scarcity with regard to a trained immunity function in breast cancer cells' elimination, this study introduced the potential of this arm of immunity adaptation using MNPs.
Collapse
Affiliation(s)
- Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Manal Hadi Ghaffoori Kanaan
- Department of Agriculture, Technical Institute of Suwaria, Middle Technical University, Baghdad 9768876516, Iraq
| | - Sura Saad Abdollah
- Suwaria Primary Health Care Sector, Wassit Health Office, Sharjah 9668866516, Iraq
| | - Mohammad Kazem Vakil
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Mahrokh Marzi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Abdulbaset Mazarzaei
- Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr 7618815676, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| |
Collapse
|
25
|
Ndjana Lessomo FY, Wang Z, Mukuka C. Comparative cardiotoxicity risk of pembrolizumab versus nivolumab in cancer patients undergoing immune checkpoint inhibitor therapy: A meta-analysis. Front Oncol 2023; 13:1080998. [PMID: 37064101 PMCID: PMC10090546 DOI: 10.3389/fonc.2023.1080998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
ObjectiveRecently, several researchers have reported the incidence of cardiac-related toxicities occurring with nivolumab (Opdivo) and pembrolizumab (Keytruda). There is still a need for balance between oncology treatment efficacy and reduction of cardiotoxicity burden in immune checkpoint inhibitor (ICI)-treated patients. Thus, the primary aim was to determine whether pembrolizumab or nivolumab would present with a greater risk for cardiotoxicity reports.Materials and methodsThis meta-analysis was performed with respect to the MOOSE reporting guidelines. Studies were retrieved by searching PubMed, Embase, and Google Scholar; the search terms were Keytruda or Pembrolizumab, PD1 inhibitors, anti-PD1 drugs, Nivolumab or Opdivo, and cardiotoxicities or cardiac toxicity. The study was restricted to original articles investigating ICI-induced cardiac immune-related adverse events (irAEs). The targeted population was cancer patients treated with either pembrolizumab or nivolumab monotherapy, of which those with records of any cardiac events following the therapy were labeled as events. The measures used to achieve the comparison were descriptive proportions, probabilities, and meta-analysis pooled odds ratios (ORs).ResultsFifteen studies were included in this meta-analysis. Nivolumab accounted for 55.7% cardiotoxicity and pembrolizumab, for 27.31% (P = 0.027). The meta-analysis was based on the Mantel–Haenszel method, and the random-effect model yielded a pooled OR = 0.73 (95% CI [0.43–1.23] P = 0.24), with considerable heterogeneity (I2 = 99% P = 0). Hence, the difference in cardiotoxicity odds risk between pembrolizumab and nivolumab was not statistically significant. On subgroup analysis based on cardiotoxicity type, the “myocarditis” subgroup in which there was no statistical heterogeneity was associated with a significant cardiotoxicity risk increase with pembrolizumab (OR = 1.30 [1.07;1.59], P< 0.05; I2 = 0%, Ph = 0.4).ConclusionTo our knowledge, this is the first meta-analysis to compare the cardiotoxicity potentials of nivolumab and pembrolizumab. In contrast to previous reports, the overall findings here demonstrated that nivolumab-induced cardiotoxicity was more commonly reported in the literature than pembrolizumab; however, myocarditis seemed more likely to occur with pembrolizumab therapy.
Collapse
Affiliation(s)
| | - Zhiquan Wang
- Cardiovascular Internal Medicine Department, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Zhiquan Wang, ,
| | - Chishimba Mukuka
- Internal Medicine Department, MANSA General Hospital, Mansa, Luapula, Zambia
| |
Collapse
|
26
|
Chen Y, Zhu Y, Kramer A, Fang Y, Wilson M, Li YR, Yang L. Genetic engineering strategies to enhance antitumor reactivity and reduce alloreactivity for allogeneic cell-based cancer therapy. Front Med (Lausanne) 2023; 10:1135468. [PMID: 37064017 PMCID: PMC10090359 DOI: 10.3389/fmed.2023.1135468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/09/2023] [Indexed: 03/31/2023] Open
Abstract
The realm of cell-based immunotherapy holds untapped potential for the development of next-generation cancer treatment through genetic engineering of chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapies for targeted eradication of cancerous malignancies. Such allogeneic "off-the-shelf" cell products can be advantageously manufactured in large quantities, stored for extended periods, and easily distributed to treat an exponential number of cancer patients. At current, patient risk of graft-versus-host disease (GvHD) and host-versus-graft (HvG) allorejection severely restrict the development of allogeneic CAR-T cell products. To address these limitations, a variety of genetic engineering strategies have been implemented to enhance antitumor efficacy, reduce GvHD and HvG onset, and improve the overall safety profile of T-cell based immunotherapies. In this review, we summarize these genetic engineering strategies and discuss the challenges and prospects these approaches provide to expedite progression of translational and clinical studies for adoption of a universal cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yuning Chen
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yichen Zhu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adam Kramer
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ying Fang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matthew Wilson
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
27
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
28
|
Pan X, Li C, Feng J. The role of LncRNAs in tumor immunotherapy. Cancer Cell Int 2023; 23:30. [PMID: 36810034 PMCID: PMC9942365 DOI: 10.1186/s12935-023-02872-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer immunotherapy is a major breakthrough in the history of tumor therapy in the last decade. Immune checkpoint inhibitors blocking CTLA-4/B7 or PD-1/PD-L1 pathways have greatly prolonged the survival of patients with different cancers. Long non-coding RNAs (lncRNAs) are abnormally expressed in tumors and play an important role in tumor immunotherapy through immune regulation and immunotherapy resistance. In this review, we summarized the mechanisms of lncRNAs in regulating gene expression and well-studied immune checkpoint pathways. The crucial regulatory function of immune-related lncRNAs in cancer immunotherapy was also described. Further understanding of the underlying mechanisms of these lncRNAs is of great importance to the development of taking lncRNAs as novel biomarkers and therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Chenchen Li
- grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
29
|
Diep YN, Kim TJ, Cho H, Lee LP. Nanomedicine for advanced cancer immunotherapy. J Control Release 2022; 351:1017-1037. [DOI: 10.1016/j.jconrel.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]
|
30
|
INSC Is a Prognosis-Associated Biomarker Involved in Tumor Immune Infiltration in Colon Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5794150. [PMID: 36132082 PMCID: PMC9484876 DOI: 10.1155/2022/5794150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 12/24/2022]
Abstract
Aims. The purpose of this study was to investigate the correlation of INSC gene with the level of immune infiltration and clinical prognosis in colon adenocarcinoma (COAD) patients. Materials and Methods. INSC expression profile data and clinicopathological information of COAD patients were downloaded from TCGA. Xiantao bioinformatics tool was used to analyze the expression of INSC between the COAD group and the normal control group, and GEPIA2 was used to analyze the top 100 coexpressed genes. Logistic regression analysis was performed to assess the relationship between clinicopathological features and INSC. The Kaplan-Meier method and Cox regression model were used to perform the survival analysis. CIBERSORT algorithm was used to analyze the relationship between INSC expression and immune infiltration cells. Results. The expression level of INSC in COAD was significantly downregulated. The result of logistic regression analysis confirmed that tumor stage was the final influencing factor of INSC expression. The overall survival rate of INSC in the high expression group was higher than that of the low expression group, and it was an independent risk factor of prognosis. Enrichment results indicated that INSC was enriched in the regulation of T-helper 2 cell differentiation pathway. Immune infiltration analysis showed that INSC expression was positively correlated with the B cell plasma, T cell CD4+ memory resting, activated myeloid dendritic cells, and eosinophils. Conclusions. Our study found that the expression of INSC was significantly downregulated in COAD, which regulated immune-infiltrating cells during cancer development and was associated with malignant progression in COAD patients.
Collapse
|
31
|
Microscale Thermophoresis as a Tool to Study Protein Interactions and Their Implication in Human Diseases. Int J Mol Sci 2022; 23:ijms23147672. [PMID: 35887019 PMCID: PMC9315744 DOI: 10.3390/ijms23147672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 02/06/2023] Open
Abstract
The review highlights how protein–protein interactions (PPIs) have determining roles in most life processes and how interactions between protein partners are involved in various human diseases. The study of PPIs and binding interactions as well as their understanding, quantification and pharmacological regulation are crucial for therapeutic purposes. Diverse computational and analytical methods, combined with high-throughput screening (HTS), have been extensively used to characterize multiple types of PPIs, but these procedures are generally laborious, long and expensive. Rapid, robust and efficient alternative methods are proposed, including the use of Microscale Thermophoresis (MST), which has emerged as the technology of choice in drug discovery programs in recent years. This review summarizes selected case studies pertaining to the use of MST to detect therapeutically pertinent proteins and highlights the biological importance of binding interactions, implicated in various human diseases. The benefits and limitations of MST to study PPIs and to identify regulators are discussed.
Collapse
|
32
|
Le Biannic R, Magnez R, Klupsch F, Leleu-Chavain N, Thiroux B, Tardy M, El Bouazzati H, Dezitter X, Renault N, Vergoten G, Bailly C, Quesnel B, Thuru X, Millet R. Pyrazolones as inhibitors of immune checkpoint blocking the PD-1/PD-L1 interaction. Eur J Med Chem 2022; 236:114343. [DOI: 10.1016/j.ejmech.2022.114343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 01/13/2023]
|
33
|
An A, Hui D. Immunotherapy Versus Hospice: Treatment Decision-Making in the Modern Era of Novel Cancer Therapies. Curr Oncol Rep 2022; 24:285-294. [PMID: 35113356 DOI: 10.1007/s11912-022-01203-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Modern advances in cancer treatment with immunotherapy have created substantial hope for patients and oncologists alike due to a new possibility of durable response which can verge on "cure." This, in combination with a more favorable toxicity profile, has led many oncologists to consider immunotherapy for patients who might have previously been recommended for hospice. In this narrative review, we discuss (1) the risks and benefits of immunotherapy in patients with far advanced cancer in the last months of life, (2) the role of supportive and palliative care, and (3) how to navigate complex treatment decisions for these patients. RECENT FINDINGS Unfortunately, data on immunotherapy outcomes for patients with poor performance status and far advanced disease are quite limited. Where available, studies consistently report poorer survival outcomes compared to patients with preserved performance status. However, a minority of patients (15-30%) may achieve at least partial response with immunotherapy, which can be quite durable. Such prognostic uncertainty leads to additional challenges in treatment discussions and decision-making. Given such prognostic uncertainty, clinicians should individualize treatment with consideration for all the various factors that may inform each patient's expected outcome with immunotherapy. Early involvement of palliative care in the disease trajectory can help patients with advanced cancer to optimize their quality of life, improve illness understanding, navigate prognostic uncertainty, and facilitate complex decision-making regarding cancer treatments. With upfront, open discussions of immunotherapy expectations, oncologists can help ensure treatments are aligned with patient goals and optimize value outcomes.
Collapse
Affiliation(s)
- Amy An
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Unit 463, Houston, TX, 77030, USA.
| | - David Hui
- Department of Palliative Care, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
34
|
Baglini E, Salerno S, Barresi E, Marzo T, Settimo FD, Taliani S. Cancer Immunotherapy: An Overview on Small Molecules as Inhibitors of the Immune Checkpoint PD-1/PD-L1 (2015-2021). Mini Rev Med Chem 2022; 22:1816-1827. [PMID: 35176979 DOI: 10.2174/1389557522666220217110925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/06/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022]
Abstract
In 2018, James Allison and Tasuku Honjo received the Nobel Prize in Physiology or Medicine for their discovery of tumor therapy inhibition of negative immune regulation. Immunotherapy stimulates T-cells to fight cancer cells by blocking different immune checkpoint pathways. The interaction between programmed cell death 1 (PD-1) and its ligand PD-L1 (Programmed cell death ligand 1), is one of the main immune checkpoints. Of note, interfering with this pathway is already exploited in clinical cancer therapy, demonstrating that it is one of the key factors involved in cancer immune escape. The development of monoclonal antibodies (mAbs) that possess the ability to inhibit the interactions between PD-1/PD-L1 has radically made the difference in cancer immunotherapy. Yet, because of the many drawbacks that this therapy possesses, the research moved its efforts towards the development of novel small molecules. This may constitute a hope, but also an arduous challenge in fighting cancer. This paper reviews the recent primary literature concerning the development of novel small molecules able to blockade the interaction between PD-1 and its ligand PD-L1.
Collapse
Affiliation(s)
- Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa
| | | | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa
| | | | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa
| |
Collapse
|
35
|
Qin J, Zhang M, Guan Y, Guo X, Li Z, Rankl C, Tang J. Imaging and quantifying analysis the binding behavior of PD-L1 at molecular resolution by atomic force microscopy. Anal Chim Acta 2022; 1191:339281. [PMID: 35033247 DOI: 10.1016/j.aca.2021.339281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Immunotherapy has emerged as an effective treatment modality for cancer. The interaction of programmed cell death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) plays a key role in tumor-related immune escape and has become one of the most extensive targets for immunotherapy. Herein, we investigated the interaction of PD-L1 with its antibody and PD-1 using atomic force microscopy-based single molecule force spectroscopy for the first time. It was found that the PD-L1/anti-PD-L1 antibody complex was easier to dissociate than PD-L1/PD-1. The unbinding forces of specific interaction of PD-L1 on T24 cells with its antibody and PD-1 were quantitatively measured and similar to those on substrate. In addition, the location of PD-L1 on T24 cells was mapped at the single-molecule level by force-volume mapping. The force maps revealed that PD-L1 randomly distributed on T24 cells surface. The recognition events on cells obviously increased after INF-γ treatment, which proved that INF-γ up-regulated the expression of PD-L1 on T24 cells. These findings enrich our understanding of the molecular mechanisms by which PD-L1 interacts with its antibody and PD-1. It provides useful information for the physical factors that is needed to be considered in the design of inhibitors for tumor immunology.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Christian Rankl
- Research Center for Non Destructive Testing GmbH, Science Park 2/2. OG, Altenberger Straße 69, A-4040, Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China.
| |
Collapse
|
36
|
Ma C, Qiao S, Liu Z, Shan L, Liang C, Fan M, Sun F. A Novel Type of PD-L1 Inhibitor rU1 snRNPA From Human-Derived Protein Scaffolds Library. Front Oncol 2021; 11:781046. [PMID: 34912719 PMCID: PMC8666589 DOI: 10.3389/fonc.2021.781046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Three marketed anti-PD-L1 antibodies almost have severe immune-mediated side effects. The therapeutic effects of anti-PD-L1 chemical inhibitors are not satisfied in the clinical trials. Here we constructed human-derived protein scaffolds library and screened scaffolds with a shape complementary to the PD-1 binding domain of PD-L1. The RNA binding domain of U1 snRNPA was selected as one of potential binders because it had the most favorable binding energies with PD-L1 and conformed to pre-established biological criteria for the screening of candidates. The recombinant U1 snRNPA (rU1 snRNPA) in Escherichia coli exhibits anti-cancer activity in melanoma and breast cancer by reactivating tumor-suppressed T cells in vitro and anti-melanoma activity in vivo. Considering hydrophobic and electrostatic interactions, three residues were mutated on the interface of U1 snRNPA and PD-L1 complex, and the ranked variants by PatchDock and A32D showed an increased active phenotype. The screening of human-derived protein scaffolds may become the potential development of therapeutic agents.
Collapse
Affiliation(s)
- Chuang Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Sennan Qiao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Zhiyi Liu
- Institute of Frontier Medical Science, Jilin University, Changchun, China
| | - Liang Shan
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, China
| | - Meiling Fan
- Jilin Academy of Chinese Medicine Sciences, Changchun, China
| | - Fei Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
37
|
Abadi B, Yazdanpanah N, Nokhodchi A, Rezaei N. Smart biomaterials to enhance the efficiency of immunotherapy in glioblastoma: State of the art and future perspectives. Adv Drug Deliv Rev 2021; 179:114035. [PMID: 34740765 DOI: 10.1016/j.addr.2021.114035] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma multiform (GBM) is considered as the most lethal tumor among CNS malignancies. Although immunotherapy has achieved remarkable advances in cancer treatment, it has not shown satisfactory results in GBM patients. Biomaterial science, along with nanobiotechnology, is able to optimize the efficiency of immunotherapy in these patients. They can be employed to provide the specific activation of immune cells in tumor tissue and combinational therapy as well as preventing systemic adverse effects resulting from hyperactivation of immune responses and off-targeting effect. Advance biomaterials in this field are classified into targeting nanocarriers and localized delivery systems. This review will offer an overview of immunotherapy strategies for glioblastoma and advance delivery systems for immunotherapeutics that may have a high potential in glioblastoma treatment.
Collapse
|
38
|
Xu H, Chai SS, Lv P, Wang JJ. CNN3 in glioma: The prognostic factor and a potential immunotherapeutic target. Medicine (Baltimore) 2021; 100:e27931. [PMID: 34797350 PMCID: PMC8601287 DOI: 10.1097/md.0000000000027931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/04/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Gliomas are the most intrinsic type of primary intracranial tumors. The protein encoded by The calponin 3 (CNN3) has been proven to be a member of the calponin family. Its relationships with cervical cancer, colorectal cancer, gastric cancer, and colon cancer have been emphasized by several studies. Our research aims to explore the prognosis value and immunotherapeutic targetability of CNN3 in glioma patients using bioinformatics approach. METHODS CNN3 expression in glioma was analyzed based on GEO and TCGA datasets. Gene expression profiling with clinical information was employed to investigate the correlation between clinicopathological features of glioma patients and relative CNN3 expression levels. Survival analysis was conducted using Kaplan-Meier analysis and the Cox proportional-hazards regression model. Gene set enrichment analysis was conducted to select the pathways significantly enriched for CNN3 associations. Correlations between inflammatory activities, immune checkpoint molecules and CNN3 were probed by gene set variation analysis, correlograms, and correlation analysis. RESULTS CNN3 was enriched in gliomas, and high expression of CNN3 correlated with worse clinicopathological features and prognosis. Associations between CNN3 and several immune-related pathways were confirmed using a bioinformatics approach. Correlation analysis revealed that CNN3 was associated with inflammatory and immune activities, tumor microenvironment, and immune checkpoint molecules. CONCLUSION Our results indicate that high CNN3 expression levels predict poor prognosis, and CNN3 may be a promising immunotherapy target.
Collapse
Affiliation(s)
- Hao Xu
- Department of Neurosurgery, General Hospital of the Yangtze River Shipping, Wuhan, China
| | - Song-shan Chai
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, China
| | - Jia-jing Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Mohammed N, Zhou RR, Xiong Z. Imaging evaluation of lung cancer treated with PD-1/PD-L1 inhibitors. Br J Radiol 2021; 94:20210228. [PMID: 34541867 DOI: 10.1259/bjr.20210228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immunotherapy (PD-1/PD-L1 inhibitors) has attracted attention for lung cancer treatment and recasted the administration of immunotherapeutics to patients who have advanced/metastatic diseases. Whether in combination or as monotherapy, these medications have become common therapies for certain patients with lung cancer. Moreover, their usage is expected to expand widely in the future. This review aims to discuss the imaging evaluation of lung cancer response to PD-1/PD-L1 therapy with focus on new radiological criteria for immunotherapy response. Abnormal radiological responses (pseudoprogression, dissociative responses, and hyperprogression) and immune-related adverse events are also described.
Collapse
Affiliation(s)
- Nader Mohammed
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Rong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Xiong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
40
|
Sancho-Araiz A, Zalba S, Garrido MJ, Berraondo P, Topp B, de Alwis D, Parra-Guillen ZP, Mangas-Sanjuan V, Trocóniz IF. Semi-Mechanistic Model for the Antitumor Response of a Combination Cocktail of Immuno-Modulators in Non-Inflamed (Cold) Tumors. Cancers (Basel) 2021; 13:cancers13205049. [PMID: 34680196 PMCID: PMC8534053 DOI: 10.3390/cancers13205049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary The clinical efficacy of immunotherapies when treating cold tumors is still low, and different treatment combinations are needed when dealing with this challenging scenario. In this work, a middle-out strategy was followed to develop a model describing the antitumor efficacy of different immune-modulator combinations, including an antigen, a toll-like receptor-3 agonist, and an immune checkpoint inhibitor in mice treated with non-inflamed tumor cells. Our results support that clinical response requires antigen-presenting cell activation and also relies on the amount of CD8 T cells and tumor resistance mechanisms present. This mathematical model is a very useful platform to evaluate different immuno-oncology combinations in both preclinical and clinical settings. Abstract Immune checkpoint inhibitors, administered as single agents, have demonstrated clinical efficacy. However, when treating cold tumors, different combination strategies are needed. This work aims to develop a semi-mechanistic model describing the antitumor efficacy of immunotherapy combinations in cold tumors. Tumor size of mice treated with TC-1/A9 non-inflamed tumors and the drug effects of an antigen, a toll-like receptor-3 agonist (PIC), and an immune checkpoint inhibitor (anti-programmed cell death 1 antibody) were modeled using Monolix and following a middle-out strategy. Tumor growth was best characterized by an exponential model with an estimated initial tumor size of 19.5 mm3 and a doubling time of 3.6 days. In the treatment groups, contrary to the lack of response observed in monotherapy, combinations including the antigen were able to induce an antitumor response. The final model successfully captured the 23% increase in the probability of cure from bi-therapy to triple-therapy. Moreover, our work supports that CD8+ T lymphocytes and resistance mechanisms are strongly related to the clinical outcome. The activation of antigen-presenting cells might be needed to achieve an antitumor response in reduced immunogenic tumors when combined with other immunotherapies. These models can be used as a platform to evaluate different immuno-oncology combinations in preclinical and clinical scenarios.
Collapse
Affiliation(s)
- Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Sara Zalba
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Pedro Berraondo
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Program of Immunology and Immunotherapy, CIMA Universidad de Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Brian Topp
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.T.); (D.d.A.)
| | - Dinesh de Alwis
- Quantitative Pharmacology and Pharmacometrics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (B.T.); (D.d.A.)
| | - Zinnia P. Parra-Guillen
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
| | - Víctor Mangas-Sanjuan
- Department of Pharmacy Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100 Valencia, Spain;
- Interuniversity Institute of Recognition Research Molecular and Technological Development, Polytechnic University of Valencia-University of Valencia, 46100 Valencia, Spain
| | - Iñaki F. Trocóniz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31008 Pamplona, Spain; (A.S.-A.); (S.Z.); (M.J.G.); (Z.P.P.-G.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain;
- Correspondence:
| |
Collapse
|
41
|
Dhar R, Seethy A, Singh S, Pethusamy K, Srivastava T, Talukdar J, Rath GK, Karmakar S. Cancer immunotherapy: Recent advances and challenges. J Cancer Res Ther 2021; 17:834-844. [PMID: 34528529 DOI: 10.4103/jcrt.jcrt_1241_20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Immunotherapy is a treatment that uses specific components of a person's immune system to fight diseases. This is usually done by stimulating or assisting one's immune system is attacking the offending agent - for instance, in the case of cancer - the target of immunotherapy will be cancer cells. Some types of immunotherapy are also called biologic therapy or biotherapy. One of the fundamental challenges that a living cell encounters are to accurately copy its genetic material to daughter cells during every single cell cycle. When this process goes haywire, genomic instability ensues, and genetic alterations ranging from nucleotide changes to chromosomal translocations and aneuploidy occur. Genomic instability arising out of DNA structural changes (indels, rearrangements, etc.,) can give rise to mutations predisposing to cancer. Cancer prevention refers to actions taken to mitigate the risk of getting cancer. The past decade has encountered an explosive rate of development of anticancer therapy ranging from standard chemotherapy to novel targeted small molecules that are nearly cancer specific, thereby reducing collateral damage. However, a new class of emerging therapy aims to train the body's defense system to fight against cancer. Termed as "cancer immunotherapy" is the new approach that has gained worldwide acceptance. It includes using antibodies that bind to and inhibit the function of proteins expressed by cancer cells or engineering and boosting the person's own T lymphocytes to target cancer. In this review, we summarized the recent advances and developments in cancer immunotherapy along with their shortcoming and challenges.
Collapse
Affiliation(s)
- Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ashikh Seethy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi; Department of Biochemistry, All India Institute of Medical Sciences, Guwahati, India
| | - Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Tryambak Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Goura Kishor Rath
- Department of Radiation Oncology, DRBRAIRCH, All India Institute of Medical Sciences, New Delhi; Department of Radiation Oncology, NCI, All India Institute of Medical Sciences, Jhajjar, Haryana, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
42
|
Daly S, O’Sullivan A, MacLoughlin R. Cellular Immunotherapy and the Lung. Vaccines (Basel) 2021; 9:1018. [PMID: 34579255 PMCID: PMC8473388 DOI: 10.3390/vaccines9091018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The new era of cellular immunotherapies has provided state-of-the-art and efficient strategies for the prevention and treatment of cancer and infectious diseases. Cellular immunotherapies are at the forefront of innovative medical care, including adoptive T cell therapies, cancer vaccines, NK cell therapies, and immune checkpoint inhibitors. The focus of this review is on cellular immunotherapies and their application in the lung, as respiratory diseases remain one of the main causes of death worldwide. The ongoing global pandemic has shed a new light on respiratory viruses, with a key area of concern being how to combat and control their infections. The focus of cellular immunotherapies has largely been on treating cancer and has had major successes in the past few years. However, recent preclinical and clinical studies using these immunotherapies for respiratory viral infections demonstrate promising potential. Therefore, in this review we explore the use of multiple cellular immunotherapies in treating viral respiratory infections, along with investigating several routes of administration with an emphasis on inhaled immunotherapies.
Collapse
Affiliation(s)
- Sorcha Daly
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
43
|
Morimoto K, Yamada T, Yokoi T, Kijima T, Goto Y, Nakao A, Hibino M, Takeda T, Yamaguchi H, Takumi C, Takeshita M, Chihara Y, Yamada T, Hiranuma O, Morimoto Y, Iwasaku M, Kaneko Y, Uchino J, Takayama K. Clinical impact of pembrolizumab combined with chemotherapy in elderly patients with advanced non-small-cell lung cancer. Lung Cancer 2021; 161:26-33. [PMID: 34500218 DOI: 10.1016/j.lungcan.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVES Combination therapy of immune checkpoint inhibitors and chemotherapy is considered to be one of the standard treatment options for patients with advanced non-small-cell lung cancer (NSCLC). However, the clinical significance of immune checkpoint inhibitors combined with chemotherapy in elderly patients with NSCLC has not yet been fully understood. Therefore, this study aimed to evaluate how aging affects the therapeutic impact of chemotherapy combine with immune checkpoint inhibitors in elderly patients. MATERIALS AND METHODS We retrospectively analyzed 203 patients with advanced NSCLC who were treated with the combination therapy of pembrolizumab and chemotherapy between January 2019 and December 2019 at 12 institutions in Japan. We analyzed the clinical impacts of age on the following two groups: those who received pembrolizumab with platinum and pemetrexed (pemetrexed regimen) and those who received pembrolizumab with carboplatin and nab-paclitaxel/paclitaxel (paclitaxel regimen). Progression-free and overall survival were assessed via the Kaplan-Meier method. RESULTS Multivariate analysis demonstrated that progression-free and overall survival were significantly shorter in elderly patients (aged ≥75 years) with NSCLC than in non-elderly patients (aged <75 years) with NSCLC in the pemetrexed regimen group. In contrast, there were no significant differences in progression-free and overall survival between elderly patients and non-elderly patients with NSCLC in the paclitaxel regimen group. In elderly patients with NSCLC, a programmed death-ligand 1 tumor proportion score of ≥50% was significantly associated with progression-free survival, and performance status of ≥2 was significantly associated with overall survival. Low albumin level (<3.5 g/dL) was significantly associated with both progression-free and overall survival. CONCLUSION The results of this retrospective study show that the pemetrexed regimen, but not the paclitaxel regimen, was related to poor clinical outcomes in elderly patients with NSCLC.
Collapse
Affiliation(s)
- Kenji Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, Japan.
| | - Takashi Yokoi
- Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Takashi Kijima
- Department of Thoracic Oncology, Hyogo College of Medicine, Hyogo, Japan
| | - Yasuhiro Goto
- Department of Respiratory Medicine, Fujita Health University, Aichi, Japan
| | - Akira Nakao
- Department of Respiratory Medicine, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Makoto Hibino
- Department of Respiratory Medicine, Shonan Fujisawa Tokushukai Hospital, Kanagawa, Japan
| | - Takayuki Takeda
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Hiroyuki Yamaguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Chieko Takumi
- Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Masafumi Takeshita
- Department of Respiratory Medicine, Ichinomiyanishi Hospital, Aichi, Japan
| | - Yusuke Chihara
- Department of Respiratory Medicine, Uji-Tokushukai Medical Center, Kyoto, Japan
| | - Takahiro Yamada
- Department of Pulmonary Medicine, Matsushita Memorial Hospital, Osaka, Japan
| | - Osamu Hiranuma
- Department of Pulmonary Medicine, Otsu City Hospital, Shiga, Japan
| | - Yoshie Morimoto
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Yoshiko Kaneko
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Junji Uchino
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kajii-cho, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
44
|
Nash A, Aghlara-Fotovat S, Hernandez A, Scull C, Veiseh O. Clinical translation of immunomodulatory therapeutics. Adv Drug Deliv Rev 2021; 176:113896. [PMID: 34324885 PMCID: PMC8567306 DOI: 10.1016/j.addr.2021.113896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Immunomodulatory therapeutics represent a unique class of drug products that have tremendous potential to rebalance malfunctioning immune systems and are quickly becoming one of the fastest-growing areas in the pharmaceutical industry. For these drugs to become mainstream medicines, they must provide greater therapeutic benefit than the currently used treatments without causing severe toxicities. Immunomodulators, cell-based therapies, antibodies, and viral therapies have all achieved varying amounts of success in the treatment of cancers and/or autoimmune diseases. However, many challenges related to precision dosing, off-target effects, and manufacturing hurdles will need to be addressed before we see widespread adoption of these therapies in the clinic. This review provides a perspective on the progress of immunostimulatory and immunosuppressive therapies to date and discusses the opportunities and challenges for clinical translation of the next generation of immunomodulatory therapeutics.
Collapse
Affiliation(s)
- Amanda Nash
- Rice University, Department of Bioengineering, Houston TX, United States
| | | | - Andrea Hernandez
- Rice University, Department of Bioengineering, Houston TX, United States
| | | | - Omid Veiseh
- Rice University, Department of Bioengineering, Houston TX, United States.
| |
Collapse
|
45
|
Yildirim OA, Poyraz K, Erdur E, Can C, Gundogan C, Guzel Y, Etem H, Kömek H. Nivolumab-Related Dry Mouth and Dry Eye: Cross-Sectional Study. Cancer Invest 2021; 39:797-807. [PMID: 34415812 DOI: 10.1080/07357907.2021.1971241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To evaluate ICIs related dry eye and dry mouth in nivolumab therapy, 24 patients receiving nivolumab (group 1), 30 patients in remission without treatment for 6 months (group 2), 30 healthy participants (group 3) were cross-sectionally examined. Schirmer's 1, 2, TSH blood tests, serological analysis, salivary flow scintigraphy and minor-salivary gland biopsy were performed. Schirmer's tests were performed with anesthetic (1) and without anesthetic (2). Schirmer's scores were lower in group 1 with more frequent reduced tear production (p < 0.001). TSH levels negatively correlated with Schirmer's scores. Functional insufficiency was detected by salivary flow scintigraphy in 7 out of 10 patients with Schirmer's test positivity. In Schirmer's positive patients, lymphocytic sialadenitis was confirmed in 4 patients (focus score > 1) and CD4 T lymphocyte precipitation was observed in 6 patients. Nivolumab therapy may be associated with ICIs related immune sicca.
Collapse
Affiliation(s)
- Ozgen Ahmet Yildirim
- Department of Internal Medicine, Division of Medical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Kerem Poyraz
- Department of Radiation Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Erkan Erdur
- Department of Internal Medicine, Division of Medical Oncology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Canan Can
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Cihan Gundogan
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Yunus Guzel
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Hülya Etem
- Department of Pathology, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | - Halil Kömek
- Department of Nuclear Medicine, Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| |
Collapse
|
46
|
Cardiovascular toxicity of angiogenesis inhibitors and immune checkpoint inhibitors: synergistic anti-tumour effects at the cost of increased cardiovascular risk? Clin Sci (Lond) 2021; 135:1649-1668. [PMID: 34283204 DOI: 10.1042/cs20200300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022]
Abstract
In the past two decades, treatment outcomes for a wide range of malignancies have improved remarkably due to the development of novel anti-cancer therapies, including vascular endothelial growth factor inhibitors (VEGFIs) and immune checkpoint inhibitors (ICIs). Despite their unprecedented anti-tumour effects, it is becoming increasingly clear that both types of agents are associated with specific cardiovascular toxicity, including hypertension, congestive heart failure, myocarditis and acceleration of atherosclerosis. Currently, VEGFI and ICI combination therapy is recommended for the treatment of advanced renal cell carcinoma (RCC) and has shown promising treatment efficacy in other tumour types as well. Consequently, VEGFI and ICI combination therapy will most likely become an important therapeutic strategy for various malignancies. However, this combinatory approach is expected to be accompanied by a substantial increase in cardiovascular risk, as both types of agents could act synergistically to induce cardiovascular sequelae. Therefore, a comprehensive baseline assessment and adequate monitoring by specialised cardio-oncology teams is essential in case these agents are used in combination, particularly in high-risk patients. This review summarises the mechanisms of action and treatment indications for currently registered VEGFIs and ICIs, and discusses their main vascular and cardiac toxicity. Subsequently, we provide the biological rationales for the observed promising synergistic anti-tumour effects of combined VEGFI/ICI administration. Lastly, we speculate on the increased risk for cardiovascular toxicity in case these agents are used in combination and its implications and future directions for the clinical situation.
Collapse
|
47
|
Zhang C, Ding J, Xu X, Liu Y, Huang W, Da L, Ma Q, Chen S. Tumor Microenvironment Characteristics of Pancreatic Cancer to Determine Prognosis and Immune-Related Gene Signatures. Front Mol Biosci 2021; 8:645024. [PMID: 34169093 PMCID: PMC8217872 DOI: 10.3389/fmolb.2021.645024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Pancreatic cancer (PC) is one of the most lethal types of cancer with extremely poor diagnosis and prognosis, and the tumor microenvironment plays a pivotal role during PC progression. Poor prognosis is closely associated with the unsatisfactory results of currently available treatments, which are largely due to the unique pancreatic tumor microenvironment (TME). Methods: In this study, a total of 177 patients with PC from The Cancer Genome Atlas (TCGA) cohort and 65 patients with PC from the GSE62452 cohort in Gene Expression Omnibus (GEO) were included. Based on the proportions of 22 types of infiltrated immune cell subpopulations calculated by cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT), the TME was classified by K-means clustering and differentially expressed genes (DEGs) were determined. A combination of the elbow method and the gap statistic was used to explore the likely number of distinct clusters in the data. The ConsensusClusterPlus package was utilized to identify radiomics clusters, and the samples were divided into two subtypes. Result: Survival analysis showed that the patients with TMEscore-high phenotype had better prognosis. In addition, the TMEscore-high had better inhibitory effect on the immune checkpoint. A total of 10 miRNAs, 311 DEGs, and 68 methylation sites related to survival were obtained, which could be biomarkers to evaluate the prognosis of patients with pancreatic cancer. Conclusions: Therefore, a comprehensive description of TME characteristics of pancreatic cancer can help explain the response of pancreatic cancer to immunotherapy and provide a new strategy for cancer treatment.
Collapse
Affiliation(s)
- Congjun Zhang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Ding
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Xu
- Department of Oncology, Xintai People's Hospital, Xintai, China
| | - Yangyang Liu
- Department of Oncology, Xintai People's Hospital, Xintai, China
| | - Wei Huang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liangshan Da
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Ma
- Department of Oncology, Xintai People's Hospital, Xintai, China
| | - Shengyang Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Pegna GJ, Roper N, Kaplan RN, Bergsland E, Kiseljak-Vassiliades K, Habra MA, Pommier Y, Del Rivero J. The Immunotherapy Landscape in Adrenocortical Cancer. Cancers (Basel) 2021; 13:2660. [PMID: 34071333 PMCID: PMC8199088 DOI: 10.3390/cancers13112660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer of the adrenal gland that is frequently associated with excess production of adrenal hormones. Although surgical resection may be curative in early-stage disease, few effective therapeutic options exist in the inoperable advanced or metastatic setting. Immunotherapies, inclusive of a broad array of immune-activating and immune-modulating antineoplastic agents, have demonstrated clinical benefit in a wide range of solid and hematologic malignancies. Due to the broad activity across multiple cancer types, there is significant interest in testing these agents in rare tumors, including ACC. Multiple clinical trials evaluating immunotherapies for the treatment of ACC have been conducted, and many more are ongoing or planned. Immunotherapies that have been evaluated in clinical trials for ACC include the immune checkpoint inhibitors pembrolizumab, nivolumab, and avelumab. Other immunotherapies that have been evaluated include the monoclonal antibodies figitumumab and cixutumumab directed against the ACC-expressed insulin-like growth factor 1 (IGF-1) receptor, the recombinant cytotoxin interleukin-13-pseudomonas exotoxin A, and autologous tumor lysate dendritic cell vaccine. These agents have shown modest clinical activity, although nonzero in the case of the immune checkpoint inhibitors. Clinical trials are ongoing to evaluate whether this clinical activity may be augmented through combinations with other immune-acting agents or targeted therapies.
Collapse
Affiliation(s)
- Guillaume J. Pegna
- Medical Oncology Service, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.R.); (Y.P.); (J.D.R.)
| | - Rosandra N. Kaplan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Emily Bergsland
- Division of Medical Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA 94158, USA;
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA;
- Research Service Veterans Affairs Medical Center, Aurora, CO 80045, USA
| | - Mouhammed Amir Habra
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1461, Houston, TX 77030, USA;
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.R.); (Y.P.); (J.D.R.)
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (N.R.); (Y.P.); (J.D.R.)
| |
Collapse
|
49
|
Saade M, Araujo de Souza G, Scavone C, Kinoshita PF. The Role of GPNMB in Inflammation. Front Immunol 2021; 12:674739. [PMID: 34054862 PMCID: PMC8149902 DOI: 10.3389/fimmu.2021.674739] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a response to a lesion in the tissue or infection. This process occurs in a specific manner in the central nervous system and is called neuroinflammation, which is involved in neurodegenerative diseases. GPNMB, an endogenous glycoprotein, has been recently related to inflammation and neuroinflammation. GPNMB is highly expressed in macrophages and microglia, which are cells involved with innate immune response in the periphery and the brain, respectively. Some studies have shown increased levels of GPNMB in pro-inflammatory conditions, such as LPS treatment, and in pathological conditions, such as neurodegenerative diseases and cancer. However, the role of GPNMB in inflammation is still not clear. Even though most studies suggest that GPNMB might have an anti-inflammatory role by promoting inflammation resolution, there is evidence that GPNMB could be pro-inflammatory. In this review, we gather and discuss the published evidence regarding this interaction.
Collapse
Affiliation(s)
- Marina Saade
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Giovanna Araujo de Souza
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Paula Fernanda Kinoshita
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
50
|
Fernández-García V, González-Ramos S, Martín-Sanz P, Laparra JM, Boscá L. NOD1-Targeted Immunonutrition Approaches: On the Way from Disease to Health. Biomedicines 2021; 9:519. [PMID: 34066406 PMCID: PMC8148154 DOI: 10.3390/biomedicines9050519] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Immunonutrition appears as a field with great potential in modern medicine. Since the immune system can trigger serious pathophysiological disorders, it is essential to study and implement a type of nutrition aimed at improving immune system functioning and reinforcing it individually for each patient. In this sense, the nucleotide-binding oligomerization domain-1 (NOD1), one of the members of the pattern recognition receptors (PRRs) family of innate immunity, has been related to numerous pathologies, such as cancer, diabetes, or cardiovascular diseases. NOD1, which is activated by bacterial-derived peptidoglycans, is known to be present in immune cells and to contribute to inflammation and other important pathways, such as fibrosis, upon recognition of its ligands. Since immunonutrition is a significant developing research area with much to discover, we propose NOD1 as a possible target to consider in this field. It is relevant to understand the cellular and molecular mechanisms that modulate the immune system and involve the activation of NOD1 in the context of immunonutrition and associated pathological conditions. Surgical or pharmacological treatments could clearly benefit from the synergy with specific and personalized nutrition that even considers the health status of each subject.
Collapse
Affiliation(s)
- Victoria Fernández-García
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Silvia González-Ramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| | - Paloma Martín-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Hepáticas (CIBERehd), 28029 Madrid, Spain
| | - José M. Laparra
- Madrid Institute for Advanced studies in Food (IMDEA Food), Ctra. Cantoblanco 8, 28049 Madrid, Spain;
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (V.F.-G.); (P.M.-S.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Melchor Fernández Almagro 6, 28029 Madrid, Spain
| |
Collapse
|