1
|
Bos TA, Polyakova E, van Gils JM, de Vries AAF, Goumans MJ, Freund C, DeRuiter MC, Jongbloed MRM. A systematic review and embryological perspective of pluripotent stem cell-derived autonomic postganglionic neuron differentiation for human disease modeling. eLife 2025; 14:e103728. [PMID: 40071727 PMCID: PMC11961123 DOI: 10.7554/elife.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
Human autonomic neuronal cell models are emerging as tools for modeling diseases such as cardiac arrhythmias. In this systematic review, we compared 33 articles applying 14 different protocols to generate sympathetic neurons and 3 different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half showed evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models that include multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two-thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modeling.
Collapse
Affiliation(s)
- Thomas A Bos
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Elizaveta Polyakova
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | - Janine Maria van Gils
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
| | | | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical CentreLeidenNetherlands
| | - Christian Freund
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Leiden hiPSC Centre, Leiden University Medical CentreLeidenNetherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| | - Monique RM Jongbloed
- Department of Anatomy and Embryology, Leiden University Medical CentreLeidenNetherlands
- Department of Cardiology, Leiden University Medical CentreLeidenNetherlands
- Centre for Congenital Heart Disease Amsterdam-Leiden (CAHAL)LeidenNetherlands
| |
Collapse
|
2
|
Aksan B, Mauceri D. Beyond vessels: unraveling the impact of VEGFs on neuronal functions and structure. J Biomed Sci 2025; 32:33. [PMID: 40050849 PMCID: PMC11884128 DOI: 10.1186/s12929-025-01128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 02/21/2025] [Indexed: 03/10/2025] Open
Abstract
Neurons rely on the bloodstream for essential nutrients and oxygen, which is facilitated by an intricate coupling of the neuronal and vascular systems. Central to this neurovascular interaction is the vascular endothelial growth factor (VEGF) family, a group of secreted growth factors traditionally known for their roles in promoting endothelial cell proliferation, migration, and survival in the cardiovascular and lymphatic systems. However, emerging evidence shows that VEGFs also play indispensable roles in the nervous system, extending beyond their canonical angiogenic and lymphangiogenic functions. Over the past two decades, VEGFs have been found to exert direct effects on neurons, influencing key aspects of neuronal function independently of their actions on vascular cells. In particular, it has become increasingly evident that VEGFs also play crucial functions in the development, regulation, and maintenance of neuronal morphology. Understanding the roles of VEGFs in neuronal development is of high scientific and clinical interest because of the significance of precise neuronal morphology for neural connectivity and network function, as well as the association of morphological abnormalities with neurological and neurodegenerative disorders. This review begins with an overview of the VEGF family members, their structural characteristics, receptors, and established roles in vasculature. However, it then highlights and focuses on the exciting variety of neuronal functions of VEGFs, especially their crucial role in the development, regulation, and maintenance of neuronal morphology.
Collapse
Affiliation(s)
- Bahar Aksan
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany
| | - Daniela Mauceri
- Department of Neurobiology, Interdisciplinary Centre for Neurosciences (IZN), Heidelberg University, INF 366, 69120, Heidelberg, Germany.
- Institute of Anatomy and Cell Biology, Dept. Molecular and Cellular Neuroscience, University of Marburg, Robert-Koch-Str. 8, 35032, Marburg, Germany.
| |
Collapse
|
3
|
Chen Y, Kuang J, Niu Y, Zhu H, Chen X, So KF, Xu A, Shi L. Multiple factors to assist human-derived induced pluripotent stem cells to efficiently differentiate into midbrain dopaminergic neurons. Neural Regen Res 2024; 19:908-914. [PMID: 37843228 PMCID: PMC10664128 DOI: 10.4103/1673-5374.378203] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 10/17/2023] Open
Abstract
Midbrain dopaminergic neurons play an important role in the etiology of neurodevelopmental and neurodegenerative diseases. They also represent a potential source of transplanted cells for therapeutic applications. In vitro differentiation of functional midbrain dopaminergic neurons provides an accessible platform to study midbrain neuronal dysfunction and can be used to examine obstacles to dopaminergic neuronal development. Emerging evidence and impressive advances in human induced pluripotent stem cells, with tuned neural induction and differentiation protocols, makes the production of induced pluripotent stem cell-derived dopaminergic neurons feasible. Using SB431542 and dorsomorphin dual inhibitor in an induced pluripotent stem cell-derived neural induction protocol, we obtained multiple subtypes of neurons, including 20% tyrosine hydroxylase-positive dopaminergic neurons. To obtain more dopaminergic neurons, we next added sonic hedgehog (SHH) and fibroblast growth factor 8 (FGF8) on day 8 of induction. This increased the proportion of dopaminergic neurons, up to 75% tyrosine hydroxylase-positive neurons, with 15% tyrosine hydroxylase and forkhead box protein A2 (FOXA2) co-expressing neurons. We further optimized the induction protocol by applying the small molecule inhibitor, CHIR99021 (CHIR).This helped facilitate the generation of midbrain dopaminergic neurons, and we obtained 31-74% midbrain dopaminergic neurons based on tyrosine hydroxylase and FOXA2 staining. Thus, we have established three induction protocols for dopaminergic neurons. Based on tyrosine hydroxylase and FOXA2 immunostaining analysis, the CHIR, SHH, and FGF8 combined protocol produces a much higher proportion of midbrain dopaminergic neurons, which could be an ideal resource for tackling midbrain-related diseases.
Collapse
Affiliation(s)
- Yalan Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Junxin Kuang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Yimei Niu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Hongyao Zhu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaoxia Chen
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
| | - Anding Xu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Lingling Shi
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Department of Psychiatry, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
4
|
Moon H, Kim B, Kwon I, Oh Y. Challenges involved in cell therapy for Parkinson's disease using human pluripotent stem cells. Front Cell Dev Biol 2023; 11:1288168. [PMID: 37886394 PMCID: PMC10598731 DOI: 10.3389/fcell.2023.1288168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/25/2023] [Indexed: 10/28/2023] Open
Abstract
Neurons derived from human pluripotent stem cells (hPSCs) provide a valuable tool for studying human neural development and neurodegenerative diseases. The investigation of hPSC-based cell therapy, involving the differentiation of hPSCs into target cells and their transplantation into affected regions, is of particular interest. One neurodegenerative disease that is being extensively studied for hPSC-based cell therapy is Parkinson's disease (PD), the second most common among humans. Various research groups are focused on differentiating hPSCs into ventral midbrain dopaminergic (vmDA) progenitors, which have the potential to further differentiate into neurons closely resembling DA neurons found in the substantia nigra pars compacta (SNpc) after transplantation, providing a promising treatment option for PD. In vivo experiments, where hPSC-derived vmDA progenitor cells were transplanted into the striatum or SNpc of animal PD models, the transplanted cells demonstrated stable engraftment and resulted in behavioral recovery in the transplanted animals. Several differentiation protocols have been developed for this specific cell therapy. However, the lack of a reliable live-cell lineage identification method presents a significant obstacle in confirming the precise lineage of the differentiated cells intended for transplantation, as well as identifying potential contamination by non-vmDA progenitors. This deficiency increases the risk of adverse effects such as dyskinesias and tumorigenicity, highlighting the importance of addressing this issue before proceeding with transplantation. Ensuring the differentiation of hPSCs into the target cell lineage is a crucial step to guarantee precise therapeutic effects in cell therapy. To underscore the significance of lineage identification, this review focuses on the differentiation protocols of hPSC-derived vmDA progenitors developed by various research groups for PD treatment. Moreover, in vivo experimental results following transplantation were carefully analyzed. The encouraging outcomes from these experiments demonstrate the potential efficacy and safety of hPSC-derived vmDA progenitors for PD cell therapy. Additionally, the results of clinical trials involving the use of hPSC-derived vmDA progenitors for PD treatment were briefly reviewed, shedding light on the progress and challenges faced in translating this promising therapy into clinical practice.
Collapse
Affiliation(s)
- Heechang Moon
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Bokwang Kim
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
| | - Inbeom Kwon
- Department of Medicine, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Yohan Oh
- Department of Biomedical Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea
- Hanyang Institute of Advanced BioConvergence, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Yeap YJ, Teddy TJW, Lee MJ, Goh M, Lim KL. From 2D to 3D: Development of Monolayer Dopaminergic Neuronal and Midbrain Organoid Cultures for Parkinson's Disease Modeling and Regenerative Therapy. Int J Mol Sci 2023; 24:ijms24032523. [PMID: 36768843 PMCID: PMC9917335 DOI: 10.3390/ijms24032523] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Parkinson's Disease (PD) is a prevalent neurodegenerative disorder that is characterized pathologically by the loss of A9-specific dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Despite intensive research, the etiology of PD is currently unresolved, and the disease remains incurable. This, in part, is due to the lack of an experimental disease model that could faithfully recapitulate the features of human PD. However, the recent advent of induced pluripotent stem cell (iPSC) technology has allowed PD models to be created from patient-derived cells. Indeed, DA neurons from PD patients are now routinely established in many laboratories as monolayers as well as 3D organoid cultures that serve as useful toolboxes for understanding the mechanism underlying PD and also for drug discovery. At the same time, the iPSC technology also provides unprecedented opportunity for autologous cell-based therapy for the PD patient to be performed using the patient's own cells as starting materials. In this review, we provide an update on the molecular processes underpinning the development and differentiation of human pluripotent stem cells (PSCs) into midbrain DA neurons in both 2D and 3D cultures, as well as the latest advancements in using these cells for drug discovery and regenerative medicine. For the novice entering the field, the cornucopia of differentiation protocols reported for the generation of midbrain DA neurons may seem daunting. Here, we have distilled the essence of the different approaches and summarized the main factors driving DA neuronal differentiation, with the view to provide a useful guide to newcomers who are interested in developing iPSC-based models of PD.
Collapse
Affiliation(s)
- Yee Jie Yeap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Tng J. W. Teddy
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Interdisciplinary Graduate Programme (IGP-Neuroscience), Nanyang Technological University, Singapore 639798, Singapore
| | - Mok Jung Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Micaela Goh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- National Neuroscience Institute, Singapore 308433, Singapore
- Department of Brain Sciences, Imperial College London, London SW7 2AZ, UK
- Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
- Correspondence:
| |
Collapse
|
6
|
Gregorio I, Mereu M, Contarini G, Bello L, Semplicini C, Burgio F, Russo L, Sut S, Dall'Acqua S, Braghetta P, Semenza C, Pegoraro E, Papaleo F, Bonaldo P, Cescon M. Collagen VI deficiency causes behavioral abnormalities and cortical dopaminergic dysfunction. Dis Model Mech 2022; 15:276265. [PMID: 35946603 PMCID: PMC9548377 DOI: 10.1242/dmm.049481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/29/2022] [Indexed: 11/20/2022] Open
Abstract
Mutations of genes coding for Collagen VI (COL6) cause muscle diseases, including Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM). Although more recently COL6 genetic variants were linked to brain pathologies, the impact of COL6 deficiency in brain function is still largely unknown. Here, a thorough behavioral characterization of COL6 null (Col6a1-/-) mice unexpectedly revealed that COL6 deficiency leads to a significant impairment in sensorimotor gating and memory/attention functions. In keeping with these behavioral abnormalities, Col6a1-/- mice displayed alterations in dopaminergic signalling, primarily in the prefrontal cortex (PFC). In vitro co-culture of SH-SY5Y neural cells with primary meningeal fibroblasts from wild-type and Col6a1-/- mice confirmed a direct link between COL6 ablation and defective dopaminergic activity, through a mechanism involving the inability of meningeal cells to sustain dopaminergic differentiation. Finally, patients affected by COL6-related myopathies were evaluated with an ad hoc neuropsychological protocol, revealing distinctive defects in attentional control abilities. Altogether, these findings point at a novel role for COL6 in the proper maintenance of dopamine circuitry function and its related neurobehavioral features in both mice and humans.
Collapse
Affiliation(s)
- Ilaria Gregorio
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Maddalena Mereu
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy.,Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Gabriella Contarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy.,Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Luca Bello
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Claudio Semplicini
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | | | - Loris Russo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131, Italy
| | - Paola Braghetta
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Carlo Semenza
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy.,IRCCS San Camillo Hospital, 30126 Venice, Italy
| | - Elena Pegoraro
- ERN Neuromuscular Center, Department of Neurosciences, University of Padova, 35129 Padova, Italy
| | - Francesco Papaleo
- Genetics of Cognition Laboratory, Neuroscience Area, Istituto Italiano di Tecnologia, 16163, Genova, Italy
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| |
Collapse
|
7
|
Chakraborty A, Upadhya R, Usman TA, Shetty AK, Rutkowski JM. Chronic VEGFR-3 signaling preserves dendritic arborization and sensitization under stress. Brain Behav Immun 2021; 98:219-233. [PMID: 34389489 PMCID: PMC8511130 DOI: 10.1016/j.bbi.2021.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 07/15/2021] [Accepted: 08/05/2021] [Indexed: 11/15/2022] Open
Abstract
Dendritic arborization is critical for the establishment and maintenance of precise neural circuits. Vascular endothelial growth factor D (VEGF-D), well-characterized as a "lymphangiogenic" growth factor, reportedly maintains dendritic arborization and synaptic strength in the hippocampus of adult mice through VEGF receptor (VEGFR-3) signaling. Here, we investigated the effect of chronic VEGFR-3-specific activation on adipose arbor morphometry using the Adipo-VD mouse, a model of inducible, adipose-specific VEGF-D overexpression. We examined whether adipose tissue innervation was preserved or functionally different in Adipo-VD mice during stress in vivo and if VEGFR-3 signaling afforded neuroprotection to challenged neurons in vitro. Chronic VEGFR-3 signaling in Adipo-VD subcutaneous adipose tissue resulted in a reduction in the dendrite length, dendritic terminal branches (filament length), and dendritic terminal branch volume (filament volume), but increased dendrite branching. We also identified reduced stimulus-evoked excitatory sympathetic nerve activity in Adipo-VD mice. Following 6-hydroxydopamine (6-OHDA) denervation, Adipo-VD dendritic arbors were preserved, including improved dendritic branch volume, length, and dendritic branches than in wildtype tissues. In vitro, we found that chronic elevation of VEGFR-3 signaling in developing mVC neurons changes the dendritic arbor complexity and improves stress-induced structure remodeling. Developing neurons are conferred neuroprotection against stress, potentially by upregulation of proteolytic conversion of pro-BDNF to mature BDNF. Mature neurons, however, display improved dendritic arbor complexity, and unaltered dendritic structural remodeling and improved resistance to stress with VEGFR-3 signaling. Overall, chronically increasing VEGFR-3 signaling in neurons has a synergistic impact on neurosensitization and neuroprotection during stress.
Collapse
Affiliation(s)
- Adri Chakraborty
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Timaj A. Usman
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Joseph M. Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA,Correspondence: Joseph M Rutkowski, Texas A&M University College of Medicine, 8447 Riverside Parkway, Bryan, TX 77807 USA, Ph: 979-436-0576,
| |
Collapse
|
8
|
Francis NL, Zhao N, Calvelli HR, Saini A, Gifford JJ, Wagner GC, Cohen RI, Pang ZP, Moghe PV. Peptide-Based Scaffolds for the Culture and Transplantation of Human Dopaminergic Neurons. Tissue Eng Part A 2020; 26:193-205. [PMID: 31537172 PMCID: PMC7044800 DOI: 10.1089/ten.tea.2019.0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/06/2019] [Indexed: 11/12/2022] Open
Abstract
Cell replacement therapy is a promising treatment strategy for Parkinson's disease (PD); however, the poor survival rate of transplanted neurons is a critical barrier to functional recovery. In this study, we used self-assembling peptide nanofiber scaffolds (SAPNS) based on the peptide RADA16-I to support the in vitro maturation and in vivo post-transplantation survival of encapsulated human dopaminergic (DA) neurons derived from induced pluripotent stem cells. Neurons encapsulated within the SAPNS expressed mature neuronal and midbrain DA markers and demonstrated in vitro functional activity similar to neurons cultured in two dimensions. A microfluidic droplet generation method was used to encapsulate cells within monodisperse SAPNS microspheres, which were subsequently used to transplant adherent, functional networks of DA neurons into the striatum of a 6-hydroxydopamine-lesioned PD mouse model. SAPNS microspheres significantly increased the in vivo survival of encapsulated neurons compared with neurons transplanted in suspension, and they enabled significant recovery in motor function compared with control lesioned mice using approximately an order of magnitude fewer neurons than have been previously needed to demonstrate behavioral recovery. These results indicate that such biomaterial scaffolds can be used as neuronal transplantation vehicles to successfully improve the outcome of cell replacement therapies for PD. Impact Statement Transplantation of dopaminergic (DA) neurons holds potential as a treatment for Parkinson's disease (PD), but low survival rates of transplanted neurons is a barrier to successfully improving motor function. In this study, we used hydrogel scaffolds to transplant DA neurons into PD model mice. The hydrogel scaffolds enhanced survival of the transplanted neurons compared with neurons that were transplanted in a conventional manner, and they also improved recovery of motor function by using significantly fewer neurons than have typically been transplanted to see functional benefits. This cell transplantation technology has the capability to improve the outcome of neuron transplantation therapies.
Collapse
Affiliation(s)
- Nicola L. Francis
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| | - Hannah R. Calvelli
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Astha Saini
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Janace J. Gifford
- Department of Psychology, Rutgers University, Piscataway, New Jersey
| | - George C. Wagner
- Department of Psychology, Rutgers University, Piscataway, New Jersey
| | - Rick I. Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
9
|
Sánchez-Maldonado B, Galicia MDL, Rojo C, González-Gil A, Flor-García M, Picazo RA. Spheroids Spontaneously Generated In Vitro from Sheep Ovarian Cortical Cells Contain Integrating Cells That Exhibit Hallmarks of Neural Stem/Progenitor Cells. Stem Cells Dev 2018; 27:1557-1576. [PMID: 30251912 DOI: 10.1089/scd.2017.0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cell spheroids are inducible or spontaneously generated cell aggregates produced in vitro that can provide a valuable model for developmental biology, stem cell biology, and cancer therapy research. This investigation aimed to define the cellular identity of spheroids spontaneously generated in vitro from sheep ovarian cortical cells cultured under specific serum-free conditions. Spheroids were characterized during 21 days of culture by morphometric evaluation, detection of alkaline phosphatase (AP) activity, gene expression analyses of stemness transcription factors and several lineage markers, immunolocalization analyses, as well as assessment of self-renewal and differentiation potential. Cell aggregation, evidenced from day 3 of culture onward, resulted in efficient generation of 65-75 spheroids for every 500,000 cells seeded. The spheroids reached maximum diameter (187 ± 15.9 μm) during the second week of culture and exhibited AP activity. Sox2, Oct4, and Nanog were expressed throughout the culture period, with upregulation of Sox2. Neural lineage specification genes (eg, nestin, vimentin, Pax6, and p75NTR) were expressed from day 10 onward at levels above that of Oct4, Nanog and those for endoderm [alpha-fetoprotein (AFP)], and mesoderm (brachyury) specification. Neural stem cell (NSC)/neural progenitor cell (NPC) markers, nestin, Pax6, p75NTR, and vimentin, were extensively localized in cells on day 10, 15 (44.75% ± 5.84%; 93.54% ± 1.35%; 78.90% ± 4.80%; 73.82% ± 3.40%, respectively), and 21 (49.98% ± 5.30%; 91.84% ± 1.9%; 76.74% ± 11.0%; 95.80% ± 3.60%, respectively). Spheroid cell self-renewal was evidenced by cell proliferation and the generation of new spheroids during two consecutive expansion periods. Culture of spheroid cells under differentiation conditions gave rise to cells showing immunolocalization of the neuron-specific antigen NeuN and the astroglial antigen GFAP (glial fibrillary acidic protein). Our results indicate that spheroids spontaneously generated in this culture system were comprised of cells with molecular characteristics of NSC/NPC that can self-renew and differentiate into neurons and glia, supporting the identity of spheroids as neurospheres.
Collapse
Affiliation(s)
- Belén Sánchez-Maldonado
- 1 Departamento de Medicina y Cirugía, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - María de Lourdes Galicia
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Concepción Rojo
- 3 Sección Departamental de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Alfredo González-Gil
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| | - Miguel Flor-García
- 4 Departamento de Neuropatología Molecular, Centro de Biología Molecular "Severo Ochoa" (CBMSO), CSIC-UAM , Madrid, España.,5 Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid , Madrid, España
| | - Rosa A Picazo
- 2 Sección Departamental de Fisiología, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid, España
| |
Collapse
|
10
|
Puerarin promoted proliferation and differentiation of dopamine-producing cells in Parkinson’s animal models. Biomed Pharmacother 2018; 106:1236-1242. [DOI: 10.1016/j.biopha.2018.07.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/08/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022] Open
|
11
|
Moriarty N, Cabré S, Alamilla V, Pandit A, Dowd E. Encapsulation of young donor age dopaminergic grafts in a GDNF-loaded collagen hydrogel further increases their survival, reinnervation, and functional efficacy after intrastriatal transplantation in hemi-Parkinsonian rats. Eur J Neurosci 2018; 49:487-496. [PMID: 30054941 DOI: 10.1111/ejn.14090] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/10/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022]
Abstract
Biomaterials have been shown to significantly improve the outcome of cellular reparative approaches for Parkinson's disease in experimental studies because of their ability to provide transplanted cells with a supportive microenvironment and shielding from the host immune system. However, given that the margin for improvement in such reparative therapies is considerable, further studies are required to fully investigate and harness the potential of biomaterials in this context. Given that several recent studies have demonstrated improved brain repair in Parkinsonian models when using dopaminergic grafts derived from younger foetal donors, we hypothesized that encapsulating these cells in a supportive biomaterial would further improve their reparative efficacy. Thus, this study aimed to determine the impact of a GDNF-loaded collagen hydrogel on the survival, reinnervation, and functional efficacy of dopaminergic neurons derived from young donors. To do so, hemi-Parkinsonian (6-hydroxydopamine-lesioned) rats received intrastriatal transplants of embryonic day 12 cells extracted from the rat ventral mesencephalon either alone, in a collagen hydrogel, with GDNF, or in a GDNF-loaded collagen hydrogel. Methamphetamine-induced rotational behaviour was assessed at three weekly intervals for a total of 12 weeks, after which rats were sacrificed for postmortem assessment of graft survival. We found that, following intrastriatal transplantation to the lesioned striatum, the GDNF-loaded collagen hydrogel significantly increased the survival (4-fold), reinnervation (5.4-fold), and functional efficacy of the embryonic day 12 dopaminergic neurons. In conclusion, this study further demonstrates the significant potential of biomaterial hydrogel scaffolds for cellular brain repair approaches in neurodegenerative diseases such as Parkinson's disease.
Collapse
Affiliation(s)
- Niamh Moriarty
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Sílvia Cabré
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Verónica Alamilla
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Eilís Dowd
- Pharmacology & Therapeutics and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| |
Collapse
|
12
|
Joshi R, Fuller B, Mosadegh B, Tavana H. Stem cell colony interspacing effect on differentiation to neural cells. J Tissue Eng Regen Med 2018; 12:2041-2054. [PMID: 30058271 DOI: 10.1002/term.2739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/20/2018] [Accepted: 07/11/2018] [Indexed: 01/30/2023]
Abstract
Efforts to enhance the efficiency of neural differentiation of stem cells are primarily focused on exogenous modulation of physical niche parameters such as surface topography and extracellular matrix proteins, or addition of certain growth factors or small molecules to culture media. We report a novel neurogenic niche to enhance the neural differentiation of embryonic stem cells (ESCs) without any external intervention by micropatterning ESCs into spatially organized colonies of controlled size and interspacing. Using an aqueous two-phase system cell microprinting technology, we generated pairs of uniformly sized isolated ESC colonies at defined interspacing distances over a layer of differentiation-inducing stromal cells. Our comprehensive analysis of temporal expression of neural genes and proteins of cells in colony pairs showed that interspacing two colonies at approximately 0.66 times the colony diameter (0.66D) significantly enhanced neural differentiation of ESCs. Cells in these colonies displayed higher expression of neural genes and proteins and formed thick neurite bundles between the two colonies. A computational model of spatial distribution of soluble factors of cells in interspaced colony pairs showed that the enhanced neural differentiation is due to the presence of stable concentration gradients of soluble signalling factors between the two colonies. Our results indicate that culturing ESCs in colony pairs with defined interspacing is a promising approach to efficiently derive neural cells. Additionally, this approach provides a platform for quantitative studies of molecular mechanisms that regulate neurogenesis of stem cells.
Collapse
Affiliation(s)
- Ramila Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Brendan Fuller
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| | - Bobak Mosadegh
- Department of Radiology, Dalio Institute of Cardiovascular Imaging, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, New York
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio
| |
Collapse
|
13
|
Kim HW, Lee HS, Kang JM, Bae SH, Kim C, Lee SH, Schwarz J, Kim GJ, Kim JS, Cha DH, Kim J, Chang SW, Lee TH, Moon J. Dual Effects of Human Placenta-Derived Neural Cells on Neuroprotection and the Inhibition of Neuroinflammation in a Rodent Model of Parkinson's Disease. Cell Transplant 2018; 27:814-830. [PMID: 29871515 PMCID: PMC6047269 DOI: 10.1177/0963689718766324] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common age-related neurodegenerative disease
in the elderly and the patients suffer from uncontrolled movement disorders due to loss of
dopaminergic (DA) neurons on substantia nigra pars compacta (SNpc). We previously reported
that transplantation of human fetal midbrain-derived neural precursor cells restored the
functional deficits of a 6-hydroxy dopamine (6-OHDA)-treated rodent model of PD but its
low viability and ethical issues still remain to be solved. Albeit immune privilege and
neural differentiation potentials suggest mesenchymal stem cells (MSCs) from various
tissues including human placenta MSCs (hpMSCs) for an alternative source, our
understanding of their therapeutic mechanisms is still limited. To expand our knowledge on
the MSC-mediated PD treatment, we here investigated the therapeutic mechanism of hpMSCs
and hpMSC-derived neural phenotype cells (hpNPCs) using a PD rat model. Whereas both
hpMSCs and hpNPCs protected DA neurons in the SNpc at comparable levels, the hpNPC
transplantation into 6-OHDA treated rats exhibited longer lasting recovery in motor
deficits than either the saline or the hpMSC treated rats. The injected hpNPCs induced
delta-like ligand (DLL)1 and neurotrophic factors, and influenced environments prone to
neuroprotection. Compared with hpMSCs, co-cultured hpNPCs more efficiently protected
primary neural precursor cells from midbrain against 6-OHDA as well as induced their
differentiation into DA neurons. Further experiments with conditioned media from hpNPCs
revealed that the secreted factors from hpNPCs modulated immune responses and neural
protection. Taken together, both DLL1-mediated contact signals and paracrine factors play
critical roles in hpNPC-mediated improvement. First showing here that hpMSCs and their
neural derivative hpNPCs were able to restore the PD-associated deficits via dual
mechanisms, neuroprotection and immunosuppression, this study expanded our knowledge of
therapeutic mechanisms in PD and other age-related diseases.
Collapse
Affiliation(s)
- Han Wool Kim
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Hyun-Seob Lee
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Jun Mo Kang
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Sang-Hun Bae
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea.,2 Department of Biotechnology, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Chul Kim
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Sang-Hun Lee
- 3 Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul, Korea
| | - Johannes Schwarz
- 4 German Center for Neurodegenerative Diseases (DZNE), Technical University Munich, Munich, Germany
| | - Gi Jin Kim
- 5 Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Jin-Su Kim
- 6 Molecular Imaging Research Center, Korea Institute Radiological and Medical Sciences, Seoul, Korea
| | - Dong Hyun Cha
- 7 Deparment of Ob and Gyn, CHA Gangnam Medical Center, CHA University, Seoul, Korea
| | - Joopyung Kim
- 8 Department of Neurosurgery, Bundang CHA Hospital, CHA University School of Medicine, Seongnam-si, Korea
| | - Sung Woon Chang
- 9 Department of Ob and Gyn, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea
| | - Tae Hee Lee
- 10 Formulae Pharmacology Department, School of Oriental Medicine, Gachon University, Gyeonggi, Korea
| | - Jisook Moon
- 1 General Medical Research Institute, CHA Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do, Korea.,2 Department of Biotechnology, CHA University, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
14
|
Tang J, Ji Q, Jin L, Tian M, Zhang LD, Liu XY. Secreted frizzled-related protein 1 regulates the progression of neuropathic pain in mice following spinal nerve ligation. J Cell Physiol 2018; 233:5815-5822. [PMID: 29215727 DOI: 10.1002/jcp.26358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/30/2017] [Indexed: 12/25/2022]
Abstract
Previous studies have shown that the Wnt/β-catenin signaling pathway plays an important role in modulating neuropathic pain after sciatic nerve injury. In this study, we explored the role of secreted frizzled-related protein 1 (SFRP1), a Wnt antagonist, in neuropathic pain using a mouse model following spinal nerve ligation (SNL). We found SNL-induced SFRP1 downregulation in the spinal cord. Further, overexpression of SFRP1 via spinal injection into the spinal cord attenuated SNL-induced allodynia, hyperalgesia, and neuroinflammation. Consistently, in vitro assays also showed decreased expression of SFRP1 in spinal cord astrocytes after exposure to lipopolysaccharide (LPS). Overexpression of SFRP1 significantly alleviated the secretion of LPS-induced proinflammatory factors in spinal cord astrocytes. Furthermore, spinal injection of LPS-treated astrocytes induced allodynia and hyperalgesia, which were reversed by the overexpression of SFRP1 in these cells. Additionally, SNL increased Wnt3a and β-catenin levels and also induced an increase in nuclear expression of β-catenin; these effects were all attenuated by SFRP1. Finally, we found that downregulation of SFRP1, mainly through DNA methylation, is involved in the pathogenesis of neuropathic pain. Taken together, these results suggested that the SFRP1/Wnt3a/β-catenin signaling pathway might be a suitable therapeutic target for neuropathic pain.
Collapse
Affiliation(s)
- Jun Tang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P. R. China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P. R. China
| | - Li Jin
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P. R. China
| | - Mi Tian
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P. R. China
| | - Li D Zhang
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P. R. China
| | - Xiao Y Liu
- Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu Province, P. R. China
| |
Collapse
|
15
|
Jiang Z, Li Y, Ji X, Tang Y, Yu H, Ding L, Yu M, Cui Q, Zhang M, Ma Y, Li M. Protein profiling identified key chemokines that regulate the maintenance of human pluripotent stem cells. Sci Rep 2017; 7:14510. [PMID: 29109449 PMCID: PMC5674019 DOI: 10.1038/s41598-017-15081-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022] Open
Abstract
Microenvironment (or niche)-providing chemokines regulate many important biological functions of tissue-specific stem cells. However, to what extent chemokines influence human pluripotent stem cells (hPSCs) is not yet completely understood. In this study, we applied protein array to screen chemokines found within the cytokine pool in the culture supernatant of hPSCs. Our results showed that chemokines were the predominant supernatant components, and came from three sources: hPSCs, feeder cells, and culture media. Chemotaxis analysis of IL-8, SDF-1α, and IP-10 suggested that chemokines function as uniform chemoattractants to mediate in vitro migration of the hPSCs. Chemokines mediate both differentiated and undifferentiated states of hPSCs. However, balanced chemokine signaling tends to enhance their stemness in vitro. These results indicate that chemokines secreted from both stem cells and feeder cells are essential to mobilize hPSCs and maintain their stemness.
Collapse
Affiliation(s)
- Zongmin Jiang
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Yonggang Li
- Department of Reproduction and Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China
| | - Xinglai Ji
- Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| | - Yiyuli Tang
- Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, Yunnan, 650091, China
| | - Haijing Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Lei Ding
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Qinghua Cui
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China
| | - Ming Zhang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yanping Ma
- Department of Reproduction and Genetics, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650032, China.
| | - Meizhang Li
- Laboratory of Biochemistry and Molecular Biology, School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China. .,Key Laboratory of Molecular Cancer Biology, Yunnan Education Department, Kunming, Yunnan, 650091, China.
| |
Collapse
|
16
|
Dumont CM, Piselli JM, Kazi N, Bowman E, Li G, Linhardt RJ, Temple S, Dai G, Thompson DM. Factors Released from Endothelial Cells Exposed to Flow Impact Adhesion, Proliferation, and Fate Choice in the Adult Neural Stem Cell Lineage. Stem Cells Dev 2017; 26:1199-1213. [PMID: 28557666 DOI: 10.1089/scd.2016.0350] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The microvasculature within the neural stem cell (NSC) niche promotes self-renewal and regulates lineage progression. Previous work identified endothelial-produced soluble factors as key regulators of neural progenitor cell (NPC) fate and proliferation; however, endothelial cells (ECs) are sensitive to local hemodynamics, and the effect of this key physiological process has not been defined. In this study, we evaluated adult mouse NPC response to soluble factors isolated from static or dynamic (flow) EC cultures. Endothelial factors generated under dynamic conditions significantly increased neuronal differentiation, while those released under static conditions stimulated oligodendrocyte differentiation. Flow increases EC release of neurogenic factors and of heparin sulfate glycosaminoglycans that increase their bioactivity, likely underlying the enhanced neuronal differentiation. Additionally, endothelial factors, especially from static conditions, promoted adherent growth. Together, our data suggest that blood flow may impact proliferation, adhesion, and the neuron-glial fate choice of adult NPCs, with implications for diseases and aging that reduce flow.
Collapse
Affiliation(s)
- Courtney M Dumont
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Jennifer M Piselli
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Nadeem Kazi
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Evan Bowman
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Guoyun Li
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Robert J Linhardt
- 2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute , Troy, New York
| | - Sally Temple
- 4 Neural Stem Cell Institute , Rensselaer, New York
| | - Guohao Dai
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| | - Deanna M Thompson
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York
| |
Collapse
|
17
|
Joshi R, Buchanan JC, Tavana H. Self-regulatory factors of embryonic stem cells in co-culture with stromal cells enhance neural differentiation. Integr Biol (Camb) 2017; 9:418-426. [PMID: 28406502 PMCID: PMC5498101 DOI: 10.1039/c7ib00038c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Embryonic stem cells (ESCs), due to their intrinsic capability to generate somatic cells of all three germ layers, are potential sources of neural cells for cell replacement therapies. However, the empirical differentiation protocols and the lack of mechanistic understanding of the neural differentiation of ESCs have limited the utility of ESCs as a developmental model or as a cell source for neural cell populations for replacement therapies. Co-culturing ESCs with stromal cells is one of the extensively used methods to induce neural differentiation. Despite several studies to identify neural inducing factors in stromal cell induced neural differentiation, the self-regulatory effects of ESCs in the neural differentiation process remain unexplored. For the first time, we elucidate the self-regulatory role of mESCs in their neural cell differentiation by supplementing conditioned media from differentiating mESCs to mESC-PA6 co-cultures and quantitatively evaluating the change in neural differentiation. Moreover, we use statistical tools to analyze the expression of various growth and trophic factors and distinguish the factors produced primarily by PA6 cells versus mESCs in co-culture. We observe that addition of the medium containing mESC-secreted factors to a single mESC colony co-cultured with PA6 cells significantly enhances the neural differentiation of mESCs compares to the medium extracted from the stromal cells only. Hierarchical clustering of gene expression data from PA6 and co-cultured mESCs segregates two groups of factors that are produced by the stromal cells and differentiating mESCs. Identifying the major soluble factors that drive and regulate the neural differentiation process in the mESC-PA6 co-culture niche will help understand molecular mechanisms of neural development. Moreover, it can be a major step toward developing novel protocols to differentiate stem cells with mESC derived factor supplementation without using feeder cells and with greater efficiency compared to existing approaches.
Collapse
Affiliation(s)
- R. Joshi
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - J. C. Buchanan
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - H. Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
18
|
Reis VNDS, Kitajima JP, Tahira AC, Feio-dos-Santos AC, Fock RA, Lisboa BCG, Simões SN, Krepischi ACV, Rosenberg C, Lourenço NC, Passos-Bueno MR, Brentani H. Integrative Variation Analysis Reveals that a Complex Genotype May Specify Phenotype in Siblings with Syndromic Autism Spectrum Disorder. PLoS One 2017; 12:e0170386. [PMID: 28118382 PMCID: PMC5261619 DOI: 10.1371/journal.pone.0170386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/31/2016] [Indexed: 12/30/2022] Open
Abstract
It has been proposed that copy number variations (CNVs) are associated with increased risk of autism spectrum disorder (ASD) and, in conjunction with other genetic changes, contribute to the heterogeneity of ASD phenotypes. Array comparative genomic hybridization (aCGH) and exome sequencing, together with systems genetics and network analyses, are being used as tools for the study of complex disorders of unknown etiology, especially those characterized by significant genetic and phenotypic heterogeneity. Therefore, to characterize the complex genotype-phenotype relationship, we performed aCGH and sequenced the exomes of two affected siblings with ASD symptoms, dysmorphic features, and intellectual disability, searching for de novo CNVs, as well as for de novo and rare inherited point variations—single nucleotide variants (SNVs) or small insertions and deletions (indels)—with probable functional impacts. With aCGH, we identified, in both siblings, a duplication in the 4p16.3 region and a deletion at 8p23.3, inherited by a paternal balanced translocation, t(4, 8) (p16; p23). Exome variant analysis found a total of 316 variants, of which 102 were shared by both siblings, 128 were in the male sibling exome data, and 86 were in the female exome data. Our integrative network analysis showed that the siblings’ shared translocation could explain their similar syndromic phenotype, including overgrowth, macrocephaly, and intellectual disability. However, exome data aggregate genes to those already connected from their translocation, which are important to the robustness of the network and contribute to the understanding of the broader spectrum of psychiatric symptoms. This study shows the importance of using an integrative approach to explore genotype-phenotype variability.
Collapse
MESH Headings
- Autism Spectrum Disorder/genetics
- Child
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 4/ultrastructure
- Chromosomes, Human, Pair 8/genetics
- Chromosomes, Human, Pair 8/ultrastructure
- Comparative Genomic Hybridization
- DNA Copy Number Variations
- Exome/genetics
- Female
- Gene Duplication
- Gene Regulatory Networks
- Genetic Association Studies
- Humans
- In Situ Hybridization, Fluorescence
- Intellectual Disability/genetics
- Learning Disabilities/genetics
- Male
- Megalencephaly/genetics
- Nerve Tissue Proteins/genetics
- Nucleic Acid Amplification Techniques
- Sequence Deletion
- Siblings
- Syndrome
- Translocation, Genetic
Collapse
Affiliation(s)
| | | | - Ana Carolina Tahira
- LIM23-Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | - Rodrigo Ambrósio Fock
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | | | - Sérgio Nery Simões
- Department of Informatics, Federal Institute of Espírito Santo, Serra, Brazil
| | - Ana C. V. Krepischi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, São Paulo, Brazil
| | - Naila Cristina Lourenço
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of Sao Paulo, São Paulo, Brazil
| | - Helena Brentani
- LIM23-Institute of Psychiatry, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
19
|
Zhu C, Yao WL, Tan W, Zhang CH. SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation. Brain Res 2016; 1657:223-231. [PMID: 27288704 DOI: 10.1016/j.brainres.2016.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/06/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022]
Abstract
Evidence has shown that stromal cell-derived factor (SDF-1/CXCL12) plays an important role in maintaining adult neural progenitor cells (NPCs). SDF-1 is also known to enhance recovery by recruiting NPCs to damaged regions and recent studies have revealed that SDF-1α exhibits pleiotropism, thereby differentially affecting NPC subpopulations. In this study, we investigated the role of SDF-1 in in vitro NPC self-renewal, proliferation and differentiation, following treatment with different concentrations of SDF-1 or a CXCR4 antagonist, AMD3100. We observed that AMD3100 inhibited the formation of primary neurospheres. However, SDF-1 and AMD3100 exhibited no effect on proliferation upon inclusion of growth factors in the media. Following growth factor withdrawal, AMD3100 and SDF-1 treatment resulted in differential effects on NPC proliferation. SDF-1, at a concentration of 500ng/ml, resulted in an increase in the relative proportion of oligodendrocytes following growth factor withdrawal-induced differentiation. Using CXCR4 knockout mice, we observed that SDF-1 affected NPC proliferation in the sub-ventricular zone (SVZ). We also investigated the occurrence of differential CXCR4 expression at different stages during lineage progression. These results clearly indicate that signaling interactions between SDF-1 and CXCR4 play an important role in adult SVZ lineage cell proliferation and differentiation.
Collapse
Affiliation(s)
- Chang Zhu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wen-Long Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Wei Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Chuan-Han Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Abstract
Immunomodulators regulate stem cell activity at all stages of development as well as during adulthood. Embryonic stem cell (ESC) proliferation as well as neurogenic processes during embryonic development are controlled by factors of the immune system. We review here immunophenotypic expression patterns of different stem cell types, including ESC, neural (NSC) and tissue-specific mesenchymal stem cells (MSC), and focus on immunodulatory properties of these cells. Immune and inflammatory responses, involving actions of cytokines as well as toll-like receptor (TLR) signaling are known to affect the differentiation capacity of NSC and MSC. Secretion of pro- and anti-inflammatory messengers by MSC have been observed as the consequence of TLR and cytokine activation and promotion of differentiation into specified phenotypes. As result of augmented differentiation capacity, stem cells secrete angiogenic factors including vascular endothelial growth factor, resulting in multifactorial actions in tissue repair. Immunoregulatory properties of tissue specific adult stem cells are put into the context of possible clinical applications.
Collapse
|
21
|
Somaa FA, Bye CR, Thompson LH, Parish CL. Meningeal cells influence midbrain development and the engraftment of dopamine progenitors in Parkinsonian mice. Exp Neurol 2015; 267:30-41. [PMID: 25708989 DOI: 10.1016/j.expneurol.2015.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 01/09/2023]
Abstract
Dopaminergic neuroblasts, isolated from ventral midbrain fetal tissue, have been shown to structurally and functionally integrate, and alleviate Parkinsonian symptoms following transplantation. The use of donor tissue isolated at an age younger than conventionally employed can result in larger grafts - a consequence of improved cell survival and neuroblast proliferation at the time of implantation. However studies have paid little attention to removal of the meninges from younger tissue, due to its age-dependent tight attachment to the underlying brain. Beyond the protection of the central nervous system, the meninges act as a signaling center, secreting a variety of trophins to influence neural development and additionally impact on neural repair. However it remains to be elucidated what influence these cells have on ventral midbrain development and grafted dopaminergic neuroblasts. Here we examined the temporal role of meningeal cells in graft integration in Parkinsonian mice and, using in vitro approaches, identified the mechanisms underlying the roles of meningeal cells in midbrain development. We demonstrate that young (embryonic day 10), but not older (E12), meningeal cells promote dopaminergic differentiation as well as neurite growth and guidance within grafts and during development. Furthermore we identify stromal derived factor 1 (SDF1), secreted by the meninges and acting on the CXCR4 receptor present on dopaminergic progenitors, as a contributory mediator in these effects. These findings identify new and important roles for the meningeal cells, and SDF1/CXCR4 signaling, in ventral midbrain development as well as neural repair following cell transplantation into the Parkinsonian brain.
Collapse
Affiliation(s)
- Fahad A Somaa
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christopher R Bye
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
22
|
Guloglu MO, Larsen A. Dopaminergic Differentiation of Human Embryonic Stem Cells on PA6-Derived Adipocytes. Methods Mol Biol 2015; 1341:235-44. [PMID: 25947418 DOI: 10.1007/7651_2015_235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human embryonic stem cells (hESCs) are a promising source for cell replacement therapies. Parkinson's disease is one of the candidate diseases for the cell replacement therapy since the motor manifestations of the disease are associated with the loss of dopaminergic neurons in the substantia nigra pars compacta. Stromal cell-derived inducing activity (SDIA) is the most commonly used method for the dopaminergic differentiation of hESCs. This chapter describes a simple, reliable, and scalable dopaminergic induction method of hESCs using PA6-derived adipocytes. Coculturing hESCs with PA6-derived adipocytes markedly reduces the variable outcomes among experiments. Moreover, the colony differentiation step of this method can also be used for the dopaminergic induction of mouse embryonic stem cells and NTERA2 cells as well.
Collapse
Affiliation(s)
- M Oktar Guloglu
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden.
| | - Anna Larsen
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22184, Lund, Sweden
| |
Collapse
|
23
|
Wright JW, Kawas LH, Harding JW. The development of small molecule angiotensin IV analogs to treat Alzheimer's and Parkinson's diseases. Prog Neurobiol 2014; 125:26-46. [PMID: 25455861 DOI: 10.1016/j.pneurobio.2014.11.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 11/17/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's (AD) and Parkinson's (PD) diseases are neurodegenerative diseases presently without effective drug treatments. AD is characterized by general cognitive impairment, difficulties with memory consolidation and retrieval, and with advanced stages episodes of agitation and anger. AD is increasing in frequency as life expectancy increases. Present FDA approved medications do little to slow disease progression and none address the underlying progressive loss of synaptic connections and neurons. New drug design approaches are needed beyond cholinesterase inhibitors and N-methyl-d-aspartate receptor antagonists. Patients with PD experience the symptomatic triad of bradykinesis, tremor-at-rest, and rigidity with the possibility of additional non-motor symptoms including sleep disturbances, depression, dementia, and autonomic nervous system failure. This review summarizes available information regarding the role of the brain renin-angiotensin system (RAS) in learning and memory and motor functions, with particular emphasis on research results suggesting a link between angiotensin IV (AngIV) interacting with the AT4 receptor subtype. Currently there is controversy over the identity of this AT4 receptor protein. Albiston and colleagues have offered convincing evidence that it is the insulin-regulated aminopeptidase (IRAP). Recently members of our laboratory have presented evidence that the brain AngIV/AT4 receptor system coincides with the brain hepatocyte growth factor/c-Met receptor system. In an effort to resolve this issue we have synthesized a number of small molecule AngIV-based compounds that are metabolically stable, penetrate the blood-brain barrier, and facilitate compromised memory and motor systems. These research efforts are described along with details concerning a recently synthesized molecule, Dihexa that shows promise in overcoming memory and motor dysfunctions by augmenting synaptic connectivity via the formation of new functional synapses.
Collapse
Affiliation(s)
- John W Wright
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA.
| | - Leen H Kawas
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| | - Joseph W Harding
- Departments of Psychology, Integrative Physiology and Neuroscience and Program in Biotechnology, Washington State University, Pullman, WA 99164-4820, USA; M3 Biotechnology, Inc., 4000 Mason Rd Suite 300, Box 352141, Seattle, WA 98195-2141, USA
| |
Collapse
|
24
|
Upadhyay G, Shankar S, Srivastava RK. Stem Cells in Neurological Disorders: Emerging Therapy with Stunning Hopes. Mol Neurobiol 2014; 52:610-25. [DOI: 10.1007/s12035-014-8883-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
|
25
|
Production of neural stem cells from human pluripotent stem cells. J Biotechnol 2014; 188:122-9. [PMID: 25150215 DOI: 10.1016/j.jbiotec.2014.07.453] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/01/2014] [Accepted: 07/31/2014] [Indexed: 12/24/2022]
Abstract
Despite significant advances in commercially available media and kits and the differentiation approaches for human neural stem cell (NSC) generation, NSC production from the differentiation of human pluripotent stem cell (hPSC) is complicated by its time-consuming procedure, complex medium composition, and purification step. In this study, we developed a convenient and simplified NSC production protocol to meet the demand of NSC production. We demonstrated that NSCs can be generated efficiently without requirement of specific small molecules or embryoid body formation stage. Our experimental results suggest that a short suspension culture period may facilitate ectoderm lineage specification rather than endoderm or mesoderm lineage specification from hPSCs. The method developed in this study shortens the turnaround time of NSC production from both human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) differentiation. It provides a straightforward and useful strategy for generating NSCs that can benefit a wide range of research applications for human brain research.
Collapse
|
26
|
Pronto-Laborinho AC, Pinto S, de Carvalho M. Roles of vascular endothelial growth factor in amyotrophic lateral sclerosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:947513. [PMID: 24987705 PMCID: PMC4022172 DOI: 10.1155/2014/947513] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound, translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly in ALS.
Collapse
Affiliation(s)
- Ana Catarina Pronto-Laborinho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Susana Pinto
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| | - Mamede de Carvalho
- Institute of Physiology, Faculty of Medicine, University of Lisbon, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Instituto de Medicina Molecular (IMM), Translational Clinical Physiology Unit, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
- Department of Neurosciences, Hospital Santa Maria, Centro Hospitalar Lisboa Norte, Avenida Professor Egas Moniz, 1649-028 Lisbon, Portugal
| |
Collapse
|
27
|
Nguyen HX, Nekanti U, Haus DL, Funes G, Moreno D, Kamei N, Cummings BJ, Anderson AJ. Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions. J Comp Neurol 2014; 522:2767-83. [DOI: 10.1002/cne.23604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Hal X. Nguyen
- Physical Medicine & Rehabilitation; University of California; Irvine California
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Usha Nekanti
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Daniel L. Haus
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
| | - Gabrielle Funes
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Denisse Moreno
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Noriko Kamei
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Brian J. Cummings
- Physical Medicine & Rehabilitation; University of California; Irvine California
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Aileen J. Anderson
- Physical Medicine & Rehabilitation; University of California; Irvine California
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| |
Collapse
|
28
|
Guloglu MO, Larsen A, Brundin P. Adipocytes derived from PA6 cells reliably promote the differentiation of dopaminergic neurons from human embryonic stem cells. J Neurosci Res 2014; 92:564-73. [PMID: 24482287 DOI: 10.1002/jnr.23355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 11/09/2022]
Abstract
The PA6 stromal cell line comprises a heterogeneous population of cells that can induce both mouse and human embryonic stem cells to differentiate into dopaminergic neurons. This ability of PA6 cells has been termed stromal cell-derived inducing activity (SDIA). The level of SDIA has been found to vary considerably between and within batches of PA6 cells. Not only are the molecular mechanisms that underlie SDIA unknown but also the cell type(s) within the heterogeneous PA6 cultures that underlie SDIA remain poorly defined. In this study, we reveal that adipocytes, which are present within the heterogeneous PA6 cell population, robustly release the factors mediating SDIA. Furthermore, we report that the coculture of human embryonic stem cells with PA6-derived adipocytes reliably induces their differentiation into midbrain dopaminergic neurons.
Collapse
Affiliation(s)
- M O Guloglu
- Neuronal Survival Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund, Sweden
| | | | | |
Collapse
|
29
|
Kwon YW, Chung YJ, Kim J, Lee HJ, Park J, Roh TY, Cho HJ, Yoon CH, Koo BK, Kim HS. Comparative study of efficacy of dopaminergic neuron differentiation between embryonic stem cell and protein-based induced pluripotent stem cell. PLoS One 2014; 9:e85736. [PMID: 24465672 PMCID: PMC3899054 DOI: 10.1371/journal.pone.0085736] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/01/2013] [Indexed: 11/29/2022] Open
Abstract
In patients with Parkinson's disease (PD), stem cells can serve as therapeutic agents to restore or regenerate injured nervous system. Here, we differentiated two types of stem cells; mouse embryonic stem cells (mESCs) and protein-based iPS cells (P-iPSCs) generated by non-viral methods, into midbrain dopaminergic (mDA) neurons, and then compared the efficiency of DA neuron differentiation from these two cell types. In the undifferentiated stage, P-iPSCs expressed pluripotency markers as ES cells did, indicating that protein-based reprogramming was stable and authentic. While both stem cell types were differentiated to the terminally-matured mDA neurons, P-iPSCs showed higher DA neuron-specific markers' expression than ES cells. To investigate the mechanism of the superior induction capacity of DA neurons observed in P-iPSCs compared to ES cells, we analyzed histone modifications by genome-wide ChIP sequencing analysis and their corresponding microarray results between two cell types. We found that Wnt signaling was up-regulated, while SFRP1, a counter-acting molecule of Wnt, was more suppressed in P-iPSCs than in mESCs. In PD rat model, transplantation of neural precursor cells derived from both cell types showed improved function. The present study demonstrates that P-iPSCs could be a suitable cell source to provide patient-specific therapy for PD without ethical problems or rejection issues.
Collapse
Affiliation(s)
- Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Yeon-Ju Chung
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Ho-Jae Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
| | - Jihwan Park
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Tae-Young Roh
- Division of Molecular and Life Sciences,Pohang University of Science and Technology, Pohang, Korea
| | - Hyun-Jai Cho
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Chang-Hwan Yoon
- Cardiovascular center, Seoul National University Bundang Hospital, Seoul National University, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine, Seoul National University, Seoul, Korea
| | - Hyo-Soo Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, Korea
- Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Seoul National University, Seoul, Korea
- Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
30
|
Keifer OP, O'Connor DM, Boulis NM. Gene and protein therapies utilizing VEGF for ALS. Pharmacol Ther 2013; 141:261-71. [PMID: 24177067 DOI: 10.1016/j.pharmthera.2013.10.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that is usually fatal within 2-5years. Unfortunately, the only treatment currently available is riluzole, which has a limited efficacy. As a redress, there is an expanding literature focusing on other potential treatments. One such potential treatment option utilizes the vascular endothelial growth factor (VEGF) family, which includes factors that are primarily associated with angiogenesis but are now increasingly recognized to have neurotrophic effects. Reduced expression of a member of this family, VEGF-A, in mice results in neurodegeneration similar to that of ALS, while treatment of animal models of ALS with either VEGF-A gene therapy or VEGF-A protein has yielded positive therapeutic outcomes. These basic research findings raise the potential for a VEGF therapy to be translated to the clinic for the treatment of ALS. This review covers the VEGF family, its receptors and neurotrophic effects as well as VEGF therapy in animal models of ALS and advances towards clinical trials.
Collapse
Affiliation(s)
- Orion P Keifer
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Deirdre M O'Connor
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University, 101 Woodruff Circle, Atlanta, GA 30322, United States.
| |
Collapse
|
31
|
Chaitanya GV, Omura S, Sato F, Martinez NE, Minagar A, Ramanathan M, Guttman BW, Zivadinov R, Tsunoda I, Alexander JS. Inflammation induces neuro-lymphatic protein expression in multiple sclerosis brain neurovasculature. J Neuroinflammation 2013; 10:125. [PMID: 24124909 PMCID: PMC3854084 DOI: 10.1186/1742-2094-10-125] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/24/2013] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is associated with ectopic lymphoid follicle formation. Podoplanin+ (lymphatic marker) T helper17 (Th17) cells and B cell aggregates have been implicated in the formation of tertiary lymphoid organs (TLOs) in MS and experimental autoimmune encephalitis (EAE). Since podoplanin expressed by Th17 cells in MS brains is also expressed by lymphatic endothelium, we investigated whether the pathophysiology of MS involves inductions of lymphatic proteins in the inflamed neurovasculature. METHODS We assessed the protein levels of lymphatic vessel endothelial hyaluronan receptor and podoplanin, which are specific to the lymphatic system and prospero-homeobox protein-1, angiopoietin-2, vascular endothelial growth factor-D, vascular endothelial growth factor receptor-3, which are expressed by both lymphatic endothelium and neurons. Levels of these proteins were measured in postmortem brains and sera from MS patients, in the myelin proteolipid protein (PLP)-induced EAE and Theiler's murine encephalomyelitis virus (TMEV) induced demyelinating disease (TMEV-IDD) mouse models and in cell culture models of inflamed neurovasculature. RESULTS AND CONCLUSIONS Intense staining for LYVE-1 was found in neurons of a subset of MS patients using immunohistochemical approaches. The lymphatic protein, podoplanin, was highly expressed in perivascular inflammatory lesions indicating signaling cross-talks between inflamed brain vasculature and lymphatic proteins in MS. The profiles of these proteins in MS patient sera discriminated between relapsing remitting MS from secondary progressive MS and normal patients. The in vivo findings were confirmed in the in vitro cell culture models of neuroinflammation.
Collapse
Affiliation(s)
- Ganta Vijay Chaitanya
- Department of Molecular & Cellular Physiology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Seiichi Omura
- Department of Microbiology and Immunology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Fumitaka Sato
- Department of Microbiology and Immunology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Nicholas E Martinez
- Department of Microbiology and Immunology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Alireza Minagar
- Department of Neurology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Murali Ramanathan
- Department of Neurology, State University of New York, Buffalo, NY, USA
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, USA
| | | | - Robert Zivadinov
- Department of Neurology, State University of New York, Buffalo, NY, USA
- Buffalo Neuroimaging Analysis Center, State University of New York, Buffalo, NY, USA
| | - Ikuo Tsunoda
- Department of Microbiology and Immunology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| | - Jonathan S Alexander
- Department of Molecular & Cellular Physiology, School of Medicine, Louisiana State University Health-Shreveport, 1501 Kings Highway, Shreveport, LA, 71130, USA
| |
Collapse
|
32
|
BMP and TGF-β pathway mediators are critical upstream regulators of Wnt signaling during midbrain dopamine differentiation in human pluripotent stem cells. Dev Biol 2013; 376:62-73. [PMID: 23352789 DOI: 10.1016/j.ydbio.2013.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 01/21/2023]
Abstract
Although many laboratories currently use small molecule inhibitors of the BMP (Dorsomorphin/DM) and TGF-β (SB431542/SB) signaling pathways in protocols to generate midbrain dopamine (mDA) neurons from hES and hiPS cells, until now, these substances have not been thought to play a role in the mDA differentiation process. We report here that the transient inhibition of constitutive BMP (pSMADs 1, 5, 8) signaling, either alone or in combination with TGF-β inhibition (pSMADs 2, 3), is critically important in the upstream regulation of Wnt1-Lmx1a signaling in mDA progenitors. We postulate that the mechanism via which DM or DM/SB mediates these effects involves the up-regulation in SMAD-interacting protein 1 (SIP1), which results in greater repression of the Wnt antagonist, secreted frizzled related protein 1 (Sfrp1) in stem cells. Accordingly, knockdown of SIP1 reverses the inductive effects of DM/SB on mDA differentiation while Sfrp1 knockdown/inhibition mimics DM/SB. The rise in Wnt1-Lmx1a levels in SMAD-inhibited cultures is, however, accompanied by a reciprocal down-regulation in SHH-Foxa2 levels leading to the generation of few TH+ neurons that co-express Foxa2. If however, exogenous SHH/FGF8 is added along with SMAD inhibitors, equilibrium in these two important pathways is achieved such that authentic (Lmx1a+Foxa2+TH+) mDA neuron differentiation is promoted while alternate cell fates are suppressed in stem cell cultures. These data indicate that activators/inhibitors of BMP and TGF-β signaling play a critical upstream regulatory role in the mDA differentiation process in human pluripotent stem cells.
Collapse
|
33
|
Systems Analysis of Arrestin Pathway Functions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:431-67. [DOI: 10.1016/b978-0-12-394440-5.00017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Wright JW, Harding JW. Importance of the brain Angiotensin system in Parkinson's disease. PARKINSON'S DISEASE 2012; 2012:860923. [PMID: 23213621 PMCID: PMC3503402 DOI: 10.1155/2012/860923] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/01/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) has become a major health problem affecting 1.5% of the world's population over 65 years of age. As life expectancy has increased so has the occurrence of PD. The primary direct consequence of this disease is the loss of dopaminergic (DA) neurons in the substantia nigra and striatum. As the intensity of motor dysfunction increases, the symptomatic triad of bradykinesia, tremors-at-rest, and rigidity occur. Progressive neurodegeneration may also impact non-DA neurotransmitter systems including cholinergic, noradrenergic, and serotonergic, often leading to the development of depression, sleep disturbances, dementia, and autonomic nervous system failure. L-DOPA is the most efficacious oral delivery treatment for controlling motor symptoms; however, this approach is ineffective regarding nonmotor symptoms. New treatment strategies are needed designed to provide neuroprotection and encourage neurogenesis and synaptogenesis to slow or reverse this disease process. The hepatocyte growth factor (HGF)/c-Met receptor system is a member of the growth factor family and has been shown to protect against degeneration of DA neurons in animal models. Recently, small angiotensin-based blood-brain barrier penetrant mimetics have been developed that activate this HGF/c-Met system. These compounds may offer a new and novel approach to the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- John W. Wright
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| | - Joseph W. Harding
- Departments of Psychology, Veterinary and Comparative Anatomy, Pharmacology, and Physiology and Programs in Neuroscience and Biotechnology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA
| |
Collapse
|
35
|
Nagatsu T. Tyrosine hydroxylase: human isoforms, structure and regulation in physiology and pathology. Essays Biochem 1996; 272:229-39. [PMID: 8822146 DOI: 10.1016/j.neuroscience.2014.04.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/09/2014] [Accepted: 04/24/2014] [Indexed: 01/05/2023]
Abstract
TH is a tetrahydrobiopterin-requiring, iron-containing monooxygenase. It catalyses the conversion of L-tyrosine to L-dopa, which is the first, rate-limiting step in the biosynthesis of catecholamines (dopamine, noradrenaline and adrenaline), the central and sympathetic neurotransmitters and adrenomedullary hormones. The cofactor of TH is tetrahydrobiopterin, which is synthesized from GTP in three steps. The TH gene consists of 14 exons only in humans and 13 exons in animals. Human TH exists in four isoforms (hTH1-4) that are produced by alternative mRNA splicing from a single gene. A single mRNA and protein corresponding to hTH1 exists in non-primates. Monkey TH exists in two isoforms, corresponding to hTH1 and hTH2. TH activity is regulated in the short term by feedback inhibition of catecholamines in competition with tetrahydrobiopterin, and by activation and deactivation due to phosphorylation and dephosphorylation, mainly at Ser-19 and Ser-40 of hTH1. The multiple TH isoforms in humans and monkeys have additional phosphorylation, resulting in more subtle regulation. In long-term regulation under stress conditions, TH protein is induced. CRE and AP1 in the 5' flanking region of the TH gene may be the main functional elements for TH gene expression. TH may be closely related to the pathogenesis of neurological diseases, such as dystonia and Parkinson's disease, psychiatric diseases, such as affective disorders and schizophrenia, as well as cardiovascular diseases. The TH gene may prove useful in gene therapy to compensate for decreased levels of catecholamines in neurological diseases, for example, for supplementation of dopamine in Parkinson's disease.
Collapse
Affiliation(s)
- T Nagatsu
- Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| |
Collapse
|