1
|
Sinka JL, Bernards MA. Timing Is Everything: The Metabolic Partitioning of Suberin-Destined Carbon. PLANTS (BASEL, SWITZERLAND) 2025; 14:1433. [PMID: 40430998 PMCID: PMC12114950 DOI: 10.3390/plants14101433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Suberin is a cell wall-associated biopolymer that possesses both poly(phenolic) and poly(aliphatic) elements assembled into chemically and spatially distinct domains. Domain-specific monomers are formed via a branched pathway between phenolic and aliphatic metabolisms. Previous transcript accumulation data (RNAseq) from early stages of wound-induced suberization revealed highly coordinated, temporal changes in the regulation of these two branches. Notably, phenolic metabolism-associated transcripts accumulated first, indicating a preference toward phenolic production early on post-wounding. To better understand the dynamics of suberin monomer biosynthesis and assembly, we assessed carbon allocation between phenolic and aliphatic metabolisms during wound-induced suberization. To do so, [13C6]-glucose was administered to wound-healing potato tuber discs at different times post-wounding, and patterns of heavy carbon incorporation into (1) primary metabolites and (2) the suberin polymer were assessed. During early stages of wound-healing, carbon from glucose was rapidly incorporated into phenolic-destined metabolites, while at later stages it was shared between phenolic- and aliphatic-destined metabolites. Similarly, the pattern of labelled carbon incorporation into the poly(aliphatic) domain reflected a greater dedication of carbon towards 18:1 w-hydroxy fatty acid and 18:1 dioic acid (the two most abundant aliphatic monomers in potato suberin) later in the wound healing time course.
Collapse
Affiliation(s)
| | - Mark A. Bernards
- Department of Biology, Western University, London, ON N6A 5B7, Canada;
| |
Collapse
|
2
|
Zhang B, Xu Y, Zhang L, Yu S, Zhu Y, Liu C, Wang P, Shi Y, Li L, Liu H. Root endodermal suberization induced by nitrate stress regulate apoplastic pathway rather than nitrate uptake in tobacco (Nicotiana tabacum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109166. [PMID: 39366201 DOI: 10.1016/j.plaphy.2024.109166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Nitrogen levels and distribution in the rhizosphere strongly regulate the root architecture. Nitrate is an essential nutrient and an important signaling molecule for plant growth and development. Hydroponic experiments were conducted to investigate the differences in endodermal suberization in tobacco (Nicotiana tabacum L.) roots at three nitrate levels. Nitrogen accumulation was detected in the roots, shoots, and xylem sap. Nitrate influx on the root surface was also measured using the non-invasive self-referencing microsensor technique (SRMT). RNA-Seq analysis was performed to identify the genes related to endodermal suberization, nitrate transport, and endogenous abscisic acid (ABA) biosynthesis. The results showed that root length, root-shoot ratio, nitrate influx on the root surface, and NiA and NRT2.4 genes were regulated to maintain the nitrogen nutrient supply in tobacco under low nitrate conditions. Low nitrate levels enhanced root endodermal suberization and hence reduced the apoplastic transport pathway, and genes from the KCS, FAR, PAS2, and CYP86 families were upregulated. The results of exogenous fluridone, an ABA biosynthesis inhibitor, indicated that suberization of the tobacco root endodermis had no relevance to radial nitrate transport and accumulation. However, ABA enhances suberization, relating to ABA biosynthesis genes in the CCD family and degradation gene ABA8ox1.
Collapse
Affiliation(s)
- Biao Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yunxiang Xu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Liwen Zhang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China; Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunyang Yu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yingying Zhu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chunju Liu
- Shandong Weifang Tobacco Co., Ltd., Weifang 261061, China
| | - Peng Wang
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Lianzhen Li
- School of Environment Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Haiwei Liu
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
3
|
Gully K, Berhin A, De Bellis D, Herrfurth C, Feussner I, Nawrath C. The GPAT4/ 6/ 8 clade functions in Arabidopsis root suberization nonredundantly with the GPAT5/7 clade required for suberin lamellae. Proc Natl Acad Sci U S A 2024; 121:e2314570121. [PMID: 38739804 PMCID: PMC11127019 DOI: 10.1073/pnas.2314570121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/28/2024] [Indexed: 05/16/2024] Open
Abstract
Lipid polymers such as cutin and suberin strengthen the diffusion barrier properties of the cell wall in specific cell types and are essential for water relations, mineral nutrition, and stress protection in plants. Land plant-specific glycerol-3-phosphate acyltransferases (GPATs) of different clades are central players in cutin and suberin monomer biosynthesis. Here, we show that the GPAT4/6/8 clade in Arabidopsis thaliana, which is known to mediate cutin formation, is also required for developmentally regulated root suberization, in addition to the established roles of GPAT5/7 in suberization. The GPAT5/7 clade is mainly required for abscisic acid-regulated suberization. In addition, the GPAT5/7 clade is crucial for the formation of the typical lamellated suberin ultrastructure observed by transmission electron microscopy, as distinct amorphous globular polyester structures were deposited in the apoplast of the gpat5 gpat7 double mutant, in contrast to the thinner but still lamellated suberin deposition in the gpat4 gpat6 gpat8 triple mutant. Site-directed mutagenesis revealed that the intrinsic phosphatase activity of GPAT4, GPAT6, and GPAT8, which leads to monoacylglycerol biosynthesis, contributes to suberin formation. GPAT5/7 lack an active phosphatase domain and the amorphous globular polyester structure observed in the gpat5 gpat7 double mutant was partially reverted by treatment with a phosphatase inhibitor or the expression of phosphatase-dead variants of GPAT4/6/8. Thus, GPATs that lack an active phosphatase domain synthetize lysophosphatidic acids that might play a role in the formation of the lamellated structure of suberin. GPATs with active and nonactive phosphatase domains appear to have nonredundant functions and must cooperate to achieve the efficient biosynthesis of correctly structured suberin.
Collapse
Affiliation(s)
- Kay Gully
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| | - Alice Berhin
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| | - Damien De Bellis
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
- Electron Microscopy Facility, University of Lausanne, LausanneCH-1015, Switzerland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences, University of Goettingen, GoettingenD-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute of Plant Sciences, University of Goettingen, GoettingenD-37077, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences, University of Goettingen, GoettingenD-37077, Germany
| | - Christiane Nawrath
- Department of Plant Molecular Biology, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
4
|
Liu C, Chang J, Yang J, Li H, Wu J, Wu J, Dai X, Wei F, Zhang X, Su X, Xia Z. Overexpression of NtDOGL4 improves cadmium tolerance through abscisic acid signaling pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133462. [PMID: 38215520 DOI: 10.1016/j.jhazmat.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.
Collapse
Affiliation(s)
- Can Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianbo Chang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jianxin Yang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Hongchen Li
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jiang Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Junlin Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fengjie Wei
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinhong Su
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
5
|
Godina D, Makars R, Paze A, Rizhikovs J. Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark. Molecules 2023; 28:molecules28052227. [PMID: 36903473 PMCID: PMC10005158 DOI: 10.3390/molecules28052227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Suberin is a complex polyester biopolymer, and it is practically impossible to estimate the real content of suberin in suberised plant tissues. This indicates the importance of the development of instrumental analytical methods for the comprehensive characterisation of suberin derived from plant biomass for the successful integration of suberinic products into biorefinery production chains. In this study, we optimised two GC-MS methods-one with direct sylilation, and the second with additional depolymerisation, using GPC methods with RI detector and polystyrene calibration and with a three-angle light scattering detector and an eighteen-angle light scattering detector. We also performed MALDI-Tof analysis for non-degraded suberin structure determination. We characterised suberinic acid (SA) samples obtained from birch outer bark after alkaline depolymerisation. The samples were particularly rich in diols, fatty acids and their esters, hydroxyacids and their corresponding esters, diacids and their corresponding esters, as well as extracts (mainly betulin and lupeol) and carbohydrates. To remove phenolic-type admixtures, treatment with ferric chloride (FeCl3) was used. The SA treatment with FeCl3 allows the possibility to obtain a sample that has a lower content of phenolic-type compounds and a lower molecular weight than an untreated sample. It was possible to identify the main free monomeric units of SA samples by GC-MS system using direct silylation. By performing an additional depolymerisation step before silylation, it was possible to characterise the complete potential monomeric unit composition in the suberin sample. For the molar mass distribution determination, it is important to perform GPC analysis. Even though chromatographic results can be obtained using a three- laser MALS detector, they are not fully correct because of the fluorescence of the SA samples. Therefore an 18-angle MALS detector with filters was more suitable for SA analysis. MALDI-Tof analysis is a great tool for the polymeric compound structural identification, which cannot be done using GC-MS. Using the MALDI data, we discovered that the main monomeric units that makes up the SA macromolecular structure are octadecanedioic acid and 2-(1,3-dihydroxyprop-2-oxy)decanedioic acid. This corresponds with GC-MS results, showing that after depolymerisation hydroxyacids and diacids were the dominant type of compounds found in the sample.
Collapse
Affiliation(s)
- Daniela Godina
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- Correspondence:
| | - Raimonds Makars
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
- PolyLabs SIA, Mukusalas iela 46, LV-1004 Riga, Latvia
| | - Aigars Paze
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| | - Janis Rizhikovs
- Biorefinery Laboratory, Latvian State Institute of Wood Chemistry, LV-1006 Riga, Latvia
| |
Collapse
|
6
|
Chen A, Liu T, Wang Z, Chen X. Plant root suberin: A layer of defence against biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1056008. [PMID: 36507443 PMCID: PMC9732430 DOI: 10.3389/fpls.2022.1056008] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/11/2022] [Indexed: 05/27/2023]
Abstract
Plant roots have important functions, such as acquiring nutrients and water from the surrounding soil and transporting them upwards to the shoots. Simultaneously, they must be able to exclude potentially harmful substances and prevent the entry of pathogens into the roots. The endodermis surrounds the vascular tissues and forms hydrophobic diffusion barriers including Casparian strips and suberin lamella. Suberin in cell walls can be induced by a range of environmental factors and contribute to against biotic and abiotic threats. Tremendous progress has been made in biosynthesis of suberin and its function, little is known about the effect of its plasticity and distribution on stress tolerance. In field conditions, biotic and abiotic stress can exist at the same time, and little is known about the change of suberization under that condition. This paper update the progress of research related to suberin biosynthesis and its function, and also discuss the change of suberization in plant roots and its role on biotic and abiotic stresses tolerance.
Collapse
Affiliation(s)
- Anle Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Tong Liu
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhou Wang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Xinping Chen
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, and College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Teixeira RT. Cork Development: What Lies Within. PLANTS (BASEL, SWITZERLAND) 2022; 11:2671. [PMID: 36297695 PMCID: PMC9611905 DOI: 10.3390/plants11202671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
The cork layer present in all dicotyledonous plant species with radial growth is the result of the phellogen activity, a secondary meristem that produces phellem (cork) to the outside and phelloderm inwards. These three different tissues form the periderm, an efficient protective tissue working as a barrier against external factors such as environmental aggressions and pathogen attacks. The protective function offered by cork cells is mainly due to the abundance of suberin in their cell walls. Chemically, suberin is a complex aliphatic network of long chain fatty acids and alcohols with glycerol together with aromatic units. In most woody species growing in temperate climates, the first periderm is replaced by a new functional periderm upon a few years after being formed. One exception to this bark development can be found in cork oak (Quercus suber) which display a single periderm that grows continuously. Quercus suber stands by its thick cork layer development with continuous seasonal growth. Cork raw material has been exploited by man for centuries, especially in Portugal and Spain. Nowadays, its applications have widened vastly, from the most known product, stoppers, to purses or insulating materials used in so many industries, such as construction and car production. Research on how cork develops, and the effect environmental factors on cork oak trees is extremely important to maintain production of good-quality cork, and, by maintaining cork oak stands wealthy, we are preserving a very important ecosystem both by its biodiversity and its vital social and economic role in areas already showing a population declination.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
8
|
Serra O, Geldner N. The making of suberin. THE NEW PHYTOLOGIST 2022; 235:848-866. [PMID: 35510799 PMCID: PMC9994434 DOI: 10.1111/nph.18202] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/15/2022] [Indexed: 05/27/2023]
Abstract
Outer protective barriers of animals use a variety of bio-polymers, based on either proteins (e.g. collagens), or modified sugars (e.g. chitin). Plants, however, have come up with a particular solution, based on the polymerisation of lipid-like precursors, giving rise to cutin and suberin. Suberin is a structural lipophilic polyester of fatty acids, glycerol and some aromatics found in cell walls of phellem, endodermis, exodermis, wound tissues, abscission zones, bundle sheath and other tissues. It deposits as a hydrophobic layer between the (ligno)cellulosic primary cell wall and plasma membrane. Suberin is highly protective against biotic and abiotic stresses, shows great developmental plasticity and its chemically recalcitrant nature might assist the sequestration of atmospheric carbon by plants. The aim of this review is to integrate the rapidly accelerating genetic and cell biological discoveries of recent years with the important chemical and structural contributions obtained from very diverse organisms and tissue layers. We critically discuss the order and localisation of the enzymatic machinery synthesising the presumed substrates for export and apoplastic polymerisation. We attempt to explain observed suberin linkages by diverse enzyme activities and discuss the spatiotemporal relationship of suberin with lignin and ferulates, necessary to produce a functional suberised cell wall.
Collapse
Affiliation(s)
- Olga Serra
- Laboratori del SuroDepartment of BiologyUniversity of GironaCampus MontiliviGirona17003Spain
| | - Niko Geldner
- Department of Plant Molecular BiologyUniversity of LausanneUNIL‐Sorge, Biophore BuildingLausanne1015Switzerland
| |
Collapse
|
9
|
Wang Q, Liu Y, Wu X, Wang L, Li J, Wan M, Jia B, Ye Z, Liu L, Tang X, Tao S, Zhu L, Heng W. MYB1R1 and MYC2 Regulate ω-3 Fatty Acid Desaturase Involved in ABA-Mediated Suberization in the Russet Skin of a Mutant of 'Dangshansuli' ( Pyrus bretschneideri Rehd.). FRONTIERS IN PLANT SCIENCE 2022; 13:910938. [PMID: 35755695 PMCID: PMC9225576 DOI: 10.3389/fpls.2022.910938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 05/26/2023]
Abstract
Russeting, a disorder of pear fruit skin, is mainly caused by suberin accumulation on the inner part of the outer epidermal cell layers. ABA was identified as a crucial phytohormone in suberification. Here, we demonstrated that the ABA content in russet pear skin was higher than in green skin. Then, ABA was applied to explore the changes in phenotype and suberin composition coupled with RNA-Seq and metabolomics to investigate the probably regulatory pathway of ABA-mediated suberification. The results showed that ABA treatment increased the expression of ω-3 fatty acid desaturase (FAD) and the content of α-linolenic acid. We identified 17 PbFADs in white pear, and the expression of PbFAD3a was induced by ABA. In addition, the role of PbFAD3a in promoting suberification has been demonstrated by overexpression in Arabidopsis and VIGS assays in the fruitlets. GUS staining indicated that the promoter of PbFAD3a was activated by ABA. Furthermore, MYC2 and MYB1R1 have been shown to bind to the PbFAD3a promoter directly and this was induced by ABA via yeast one-hybrid (Y1H) screening and qRT-PCR. In summary, our study found that ABA induces the expression of MYC2 and MYB1R1 and activates the PbFAD3a promoter, contributing to the formation of russet pear skin. Functional identification of key transcription factors will be the goal of future research. These findings reveal the molecular mechanism of ABA-mediated suberization in the russet skin and provide a good foundation for future studies on the formation of russet skin.
Collapse
Affiliation(s)
- Qi Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yaping Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xinyi Wu
- College of Horticulture, Anhui Agricultural University, Hefei, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Lindu Wang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Jinchao Li
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Minchen Wan
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Bin Jia
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Zhenfeng Ye
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Shutian Tao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwu Zhu
- College of Horticulture, Anhui Agricultural University, Hefei, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Kim G, Ryu H, Sung J. Hormonal Crosstalk and Root Suberization for Drought Stress Tolerance in Plants. Biomolecules 2022; 12:811. [PMID: 35740936 PMCID: PMC9220869 DOI: 10.3390/biom12060811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
Higher plants in terrestrial environments face to numerous unpredictable environmental challenges, which lead to a significant impact on plant growth and development. In particular, the climate change caused by global warming is causing drought stress and rapid desertification in agricultural fields. Many scientific advances have been achieved to solve these problems for agricultural and plant ecosystems. In this review, we handled recent advances in our understanding of the physiological changes and strategies for plants undergoing drought stress. The activation of ABA synthesis and signaling pathways by drought stress regulates root development via the formation of complicated signaling networks with auxin, cytokinin, and ethylene signaling. An abundance of intrinsic soluble sugar, especially trehalose-6-phosphate, promotes the SnRK-mediated stress-resistance mechanism. Suberin deposition in the root endodermis is a physical barrier that regulates the influx/efflux of water and nutrients through complex hormonal and metabolic networks, and suberization is essential for drought-stressed plants to survive. It is highly anticipated that this work will contribute to the reproduction and productivity improvements of drought-resistant crops in the future.
Collapse
Affiliation(s)
- Gaeun Kim
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| | - Hojin Ryu
- Department of Biology, Chungbuk National University, Cheong-ju 28644, Korea
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheong-ju 28644, Korea
| | - Jwakyung Sung
- Department of Crop Science, Chungbuk National University, Cheong-ju 28644, Korea;
| |
Collapse
|
11
|
Serra O, Mähönen AP, Hetherington AJ, Ragni L. The Making of Plant Armor: The Periderm. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:405-432. [PMID: 34985930 DOI: 10.1146/annurev-arplant-102720-031405] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The periderm acts as armor protecting the plant's inner tissues from biotic and abiotic stress. It forms during the radial thickening of plant organs such as stems and roots and replaces the function of primary protective tissues such as the epidermis and the endodermis. A wound periderm also forms to heal and protect injured tissues. The periderm comprises a meristematic tissue called the phellogen, or cork cambium, and its derivatives: the lignosuberized phellem and the phelloderm. Research on the periderm has mainly focused on the chemical composition of the phellem due to its relevance as a raw material for industrial processes. Today, there is increasing interest in the regulatory network underlying periderm development as a novel breeding trait to improve plant resilience and to sequester CO2. Here, we discuss our current understanding of periderm formation, focusing on aspects of periderm evolution, mechanisms of periderm ontogenesis, regulatory networks underlying phellogen initiation and cork differentiation, and future challenges of periderm research.
Collapse
Affiliation(s)
- Olga Serra
- University of Girona, Department of Biology, Girona, Spain;
| | - Ari Pekka Mähönen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland;
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | | | - Laura Ragni
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
| |
Collapse
|
12
|
Chemical and Molecular Characterization of Wound-Induced Suberization in Poplar (Populus alba × P. tremula) Stem Bark. PLANTS 2022; 11:plants11091143. [PMID: 35567144 PMCID: PMC9102228 DOI: 10.3390/plants11091143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Upon mechanical damage, plants produce wound responses to protect internal tissues from infections and desiccation. Suberin, a heteropolymer found on the inner face of primary cell walls, is deposited in specific tissues under normal development, enhanced under abiotic stress conditions and synthesized by any tissue upon mechanical damage. Wound-healing suberization of tree bark has been investigated at the anatomical level but very little is known about the molecular mechanisms underlying this important stress response. Here, we investigated a time course of wound-induced suberization in poplar bark. Microscopic changes showed that polyphenolics accumulate 3 days post wounding, with aliphatic suberin deposition observed 5 days post wounding. A wound periderm was formed 9 days post wounding. Chemical analyses of the suberin polyester accumulated during the wound-healing response indicated that suberin monomers increased from 0.25 to 7.98 mg/g DW for days 0 to 28, respectively. Monomer proportions varied across the wound-healing process, with an overall ratio of 2:1 (monomers:glycerol) found across the first 14 days post wounding, with this ratio increasing to 7:2 by day 28. The expression of selected candidate genes of poplar suberin metabolism was investigated using qRT-PCR. Genes queried belonging to lipid polyester and phenylpropanoid metabolism appeared to have redundant functions in native and wound-induced suberization. Our data show that, anatomically, the wounding response in poplar bark is similar to that described in periderms of other species. It also provides novel insight into this process at the chemical and molecular levels, which have not been previously studied in trees.
Collapse
|
13
|
Woolfson KN, Esfandiari M, Bernards MA. Suberin Biosynthesis, Assembly, and Regulation. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040555. [PMID: 35214889 PMCID: PMC8875741 DOI: 10.3390/plants11040555] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 05/03/2023]
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term "suberin" has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels.
Collapse
|
14
|
Kligman A, Dastmalchi K, Smith S, John G, Stark RE. Building Blocks of the Protective Suberin Plant Polymer Self-Assemble into Lamellar Structures with Antibacterial Potential. ACS OMEGA 2022; 7:3978-3989. [PMID: 35155893 PMCID: PMC8829861 DOI: 10.1021/acsomega.1c04709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/06/2022] [Indexed: 05/20/2023]
Abstract
The protection of terrestrial plants from desiccation, mechanical injury, and pathogenic invasion is achieved by waxes and cutin polyesters on leaf and fruit surfaces as well as suberin polymers that are embedded in the cell walls of roots, but the physicochemical principles governing the organization of these biological composites remain incompletely understood. Despite the well-established enzymatic mediation of suberin formation in the skins of potato tubers, cork oak trees, and internal plant tissues, the additional possibility of self-assembly in this system was suggested by our serendipitous finding that solvent extracts from potato phellem tissues form suspended fibers and needles in the absence of such catalysts over a period of several weeks. In the current study, we investigated self-assembly for three-component model chemical mixtures comprised of a hydroxyfatty acid, glycerol, and either of two hydroxycinnamic acids that together typify the building blocks of potato suberin biopolymers. We demonstrate that these mixtures spontaneously form lamellar structures that are reminiscent of suberized plant tissues, incorporate all constituents into self-assemblies, can form covalently bound ester structures, and display antibacterial activity. These findings provide new perspectives on the self-association and reactivity of these classes of organic compounds, insights into agriculturally important suberin formation in food crops, and a starting point for engineering sustainable materials with antimicrobial capabilities.
Collapse
Affiliation(s)
- Arina Kligman
- Department
of Chemistry and Biochemistry, The City
College of New York, City University of New York and CUNY Institute
for Macromolecular Assemblies, 160 Convent Avenue, New
York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Keyvan Dastmalchi
- Department
of Chemistry and Biochemistry, The City
College of New York, City University of New York and CUNY Institute
for Macromolecular Assemblies, 160 Convent Avenue, New
York, New York 10031, United States
| | - Stephan Smith
- Department
of Chemistry and Biochemistry, The City
College of New York, City University of New York and CUNY Institute
for Macromolecular Assemblies, 160 Convent Avenue, New
York, New York 10031, United States
| | - George John
- Department
of Chemistry and Biochemistry, The City
College of New York, City University of New York and CUNY Institute
for Macromolecular Assemblies, 160 Convent Avenue, New
York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
| | - Ruth E. Stark
- Department
of Chemistry and Biochemistry, The City
College of New York, City University of New York and CUNY Institute
for Macromolecular Assemblies, 160 Convent Avenue, New
York, New York 10031, United States
- Ph.D.
Program in Chemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- Ph.D.
Program in Biochemistry, The Graduate Center
of the City University of New York, New York, New York 10016, United States
- . Phone: +1-212-650-8916. Fax: +1-212-650-6107
| |
Collapse
|
15
|
Nomberg G, Marinov O, Arya GC, Manasherova E, Cohen H. The Key Enzymes in the Suberin Biosynthetic Pathway in Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030392. [PMID: 35161373 PMCID: PMC8839845 DOI: 10.3390/plants11030392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 05/14/2023]
Abstract
Suberin is a natural biopolymer found in a variety of specialized tissues, including seed coat integuments, root endodermis, tree bark, potato tuber skin and the russeted and reticulated skin of fruits. The suberin polymer consists of polyaliphatic and polyphenolic domains. The former is made of very long chain fatty acids, primary alcohols and a glycerol backbone, while the latter consists of p-hydroxycinnamic acid derivatives, which originate from the core phenylpropanoid pathway. In the current review, we survey the current knowledge on genes/enzymes associated with the suberin biosynthetic pathway in plants, reflecting the outcomes of considerable research efforts in the last two decades. We discuss the function of these genes/enzymes with respect to suberin aromatic and aliphatic monomer biosynthesis, suberin monomer transport, and suberin pathway regulation. We also delineate the consequences of the altered expression/accumulation of these genes/enzymes in transgenic plants.
Collapse
Affiliation(s)
- Gal Nomberg
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ofir Marinov
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Gulab Chand Arya
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Ekaterina Manasherova
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
| | - Hagai Cohen
- Volcani Center, Department of Vegetable and Field Crops, Institute of Plant Sciences, Agricultural Research Organization (ARO), Rishon Lezion 7505101, Israel; (G.N.); (O.M.); (G.C.A.); (E.M.)
- Correspondence:
| |
Collapse
|
16
|
Shi CH, Wang XQ, Xu JF, Zhang YX, Qi B, Jun L. Dissecting the molecular mechanism of russeting in sand pear (Pyrus pyrifolia Nakai) by metabolomics, transcriptomics, and proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1644-1661. [PMID: 34623717 DOI: 10.1111/tpj.15532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Brown coloration and a rough appearance as russet and semi-russet (partial russet) are features unique to the popular Asian sand pear (Pyrus pyrifolia Nakai). The degree of russeting is different between different genotypes. Russeting is sensitive to water fluctuations, where excessive rainwater can trigger/stimulate its development. However, the molecular mechanism of russeting is currently unclear. Here, we employed multi-omics, i.e., metabolomics, transcriptomics, and proteomics, and analyzed the effect of different sand pear genotypes and artificial rainfall on russeting of pear fruits. This led to the identification of 79, 64, and 29 differentially produced/expressed metabolites, transcripts, and proteins that are involved in the biosynthesis of suberin, phenylpropane, cutin, and waxes. Further analysis of these differentially expressed genes and their encoded proteins revealed that four of them exhibited high expression at both transcript and protein levels. Transient expression of one such gene, PbHHT1 (accession number 103966555), which encodes ω-hydroxypalmitate-O-feruloyl transferase, in young green non-russet fruits triggered premature suberization in the russeting pear genotypes. This coincided with increased production of 16-feruloyloxypalmitic acid, a conjugated compound between phenols and esters during the polymerization for suberin formation. Collectively, our data from the combined three omics demonstrate that russeting in sand pear is a complex process involving the biosynthesis and transport of suberin and many other secondary metabolites.
Collapse
Affiliation(s)
- Chun-Hui Shi
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xiao-Qing Wang
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| | - Jian-Feng Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Yu-Xing Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Baoxiu Qi
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing University of Agriculture, 7 Beinong Rd, Changping District, Beijing, China
| | - Luo Jun
- Forest & Fruit Tree Research Institute, Shanghai Academy of Agriculture Sciences, Shanghai, 201403, China
| |
Collapse
|
17
|
Dastmalchi K, Chira O, Rodriguez MP, Yoo B, Serra O, Figueras M, Stark RE. A chemical window into the impact of RNAi silencing of the StNAC103 gene in potato tuber periderms: Soluble metabolites, suberized cell walls, and antibacterial defense. PHYTOCHEMISTRY 2021; 190:112885. [PMID: 34339979 PMCID: PMC8434825 DOI: 10.1016/j.phytochem.2021.112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/11/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The growth and survival of terrestrial plants require control of their interactions with the environment, e.g., to defend against desiccation and microbial invasion. For major food crops, the protection conferred by the outer skins (periderm in potato) is essential to cultivation, storage, and marketing of the edible tubers and fruits. Potatoes are particularly vulnerable to bacterial infections due to their high content of water and susceptibility to mechanical wounding. Recently, both specific and conserved gene silencing (StNAC103-RNAi and StNAC103-RNAi-c, respectively) were found to increase the load of wax and aliphatic suberin depolymerization products in tuber periderm, implicating this NAC gene as a repressor of the wax and suberin biosynthetic pathways. However, an important gap in our understanding of StNAC103 silencing concerns the metabolites produced in periderm cells as antimicrobial defense agents and potential building blocks of the deposited suberin biopolymer. In the current work, we have expanded prior studies on StNAC103 silenced lines by conducting comprehensive parallel analyses to profile changes in chemical constituents and antibacterial activity. Compositional analysis of the intact suberized cell walls using solid-state 13C NMR (ssNMR) showed that NAC silencing produced an increase in the long-chain aliphatic groups deposited within the periderm cell walls. LC-MS of polar extracts revealed up-regulation of glycoalkaloids in both StNAC103-RNAi and StNAC103-RNAi-c native periderms but down-regulation of a phenolic amine in StNAC103-RNAi-c and a phenolic acid in StNAC103-RNAi native periderms. The nonpolar soluble metabolites identified using GC-MS included notably abundant long-chain alkane metabolites in both silenced samples. By coordinating the differentially accumulated soluble metabolites and the suberin depolymerization products with the ssNMR-based profiles for the periderm polymers, it was possible to obtain a holistic view of the chemical changes that result from StNAC103 gene silencing. Correspondingly, the chemical composition trends served as a backdrop to interpret trends in the chemical barrier defense function of native tuber periderms, which was found to be more robust for the nonpolar extracts.
Collapse
Affiliation(s)
- Keyvan Dastmalchi
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York (CUNY) and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Oseloka Chira
- Department of Chemical Engineering, The City College of New York, CUNY, NY, 10031, USA
| | - Mathiu Perez Rodriguez
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York (CUNY) and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA
| | - Barney Yoo
- Department of Chemistry, Hunter College of CUNY, New York, NY, 10065, USA
| | - Olga Serra
- Laboratori Del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, Girona, E-17071, Spain
| | - Mercè Figueras
- Laboratori Del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, Girona, E-17071, Spain
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York (CUNY) and CUNY Institute for Macromolecular Assemblies, New York, NY, 10031, USA; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
18
|
Atlas of Micromorphological Degradation of Archaeological Birch Bark. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper we present an atlas of micromorphological degradation of archaeological birch bark for the first time. We analysed the morphology of 13 samples extracted from ice-logged, waterlogged and cave-retrieved objects dated from the Neolithic to the Middle Age by means of light microscopy (LM) and transmission electron microscopy (TEM). We then compared their morphology to that of a contemporary sample, both intact and decayed. In all samples, 13 morphological characteristics that can be associated with fungal, bacterial, chemical, mechanical and light degradation are defined and described, and example LM and TEM images are provided. This novel atlas provides conservator-restorers a much-needed tool to relate the macroscopic appearance to the microscopic structure of birch bark objects. The most important macroscopic features allowing estimation of the state of preservation at the cell level are colour changes, loss of pliability, presence of delamination and increased brittleness. Colour change and delamination can be connected to microscopic features, and microscopic analysis can trace whether they were caused by biotic, chemical or physical decay. However, increased brittleness cannot be connected to a specific microscopic feature.
Collapse
|
19
|
Wahrenburg Z, Benesch E, Lowe C, Jimenez J, Vulavala VKR, Lü S, Hammerschmidt R, Douches D, Yim WC, Santos P, Kosma DK. Transcriptional regulation of wound suberin deposition in potato cultivars with differential wound healing capacity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:77-99. [PMID: 33860574 DOI: 10.1111/tpj.15275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 05/20/2023]
Abstract
Wounding during mechanical harvesting and post-harvest handling results in tuber desiccation and provides an entry point for pathogens resulting in substantial post-harvest crop losses. Poor wound healing is a major culprit of these losses. Wound tissue in potato (Solanum tuberosum) tubers, and all higher plants, is composed of a large proportion of suberin that is deposited in a specialized tissue called the wound periderm. However, the genetic regulatory pathway controlling wound-induced suberization remains unknown. Here, we implicate two potato transcription factors, StMYB102 (PGSC0003DMG400011250) and StMYB74 (PGSC0003DMG400022399), as regulators of wound suberin biosynthesis and deposition. Using targeted metabolomics and transcript profiling from the wound healing tissues of two commercial potato cultivars, as well as heterologous expression, we provide evidence for the molecular-genetic basis of the differential wound suberization capacities of different potato cultivars. Our results suggest that (i) the export of suberin from the cytosol to the apoplast and ligno-suberin deposition may be limiting factors for wound suberization, (ii) StMYB74 and StMYB102 are important regulators of the wound suberization process in tubers, and (iii) polymorphisms in StMYB102 may influence cultivar-specific wound suberization capacity. These results represent an important step in understanding the regulated biosynthesis and deposition of wound suberin and provide a practical foundation for targeted breeding approaches aimed at improving potato tuber storage life.
Collapse
Affiliation(s)
- Zachary Wahrenburg
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Elizabeth Benesch
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Catherine Lowe
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Jazmin Jimenez
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Vijaya K R Vulavala
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Shiyou Lü
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ray Hammerschmidt
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Won C Yim
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Patricia Santos
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, The University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
20
|
Fernández-Piñán S, Boher P, Soler M, Figueras M, Serra O. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation. Sci Rep 2021; 11:12053. [PMID: 34103550 PMCID: PMC8187341 DOI: 10.1038/s41598-021-90938-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023] Open
Abstract
The phellogen or cork cambium stem cells that divide periclinally and outwardly specify phellem or cork. Despite the vital importance of phellem in protecting the radially-growing plant organs and wounded tissues, practically only the suberin biosynthetic process has been studied molecularly so far. Since cork oak (Quercus suber) phellogen is seasonally activated and its proliferation and specification to phellem cells is a continuous developmental process, the differentially expressed genes during the cork seasonal growth served us to identify molecular processes embracing from phellogen to mature differentiated phellem cell. At the beginning of cork growth (April), cell cycle regulation, meristem proliferation and maintenance and processes triggering cell differentiation were upregulated, showing an enrichment of phellogenic cells from which phellem cells are specified. Instead, at maximum (June) and advanced (July) cork growth, metabolic processes paralleling the phellem cell chemical composition, such as the biosynthesis of suberin, lignin, triterpenes and soluble aromatic compounds, were upregulated. Particularly in July, polysaccharides- and lignin-related secondary cell wall processes presented a maximal expression, indicating a cell wall reinforcement in the later stages of cork formation, presumably related with the initiation of latecork development. The putative function of relevant genes identified are discussed in the context of phellem ontogeny.
Collapse
Affiliation(s)
- Sandra Fernández-Piñán
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Pau Boher
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Marçal Soler
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Mercè Figueras
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| | - Olga Serra
- grid.5319.e0000 0001 2179 7512Laboratori del Suro, Departament de Biologia, Universitat de Girona, Campus Montilivi, 17003 Girona, Spain
| |
Collapse
|
21
|
Durr J, Reyt G, Spaepen S, Hilton S, Meehan C, Qi W, Kamiya T, Flis P, Dickinson HG, Feher A, Shivshankar U, Pavagadhi S, Swarup S, Salt D, Bending GD, Gutierrez-Marcos J. A Novel Signaling Pathway Required for Arabidopsis Endodermal Root Organization Shapes the Rhizosphere Microbiome. PLANT & CELL PHYSIOLOGY 2021; 62:248-261. [PMID: 33475132 PMCID: PMC8112839 DOI: 10.1093/pcp/pcaa170] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Casparian strip (CS) constitutes a physical diffusion barrier to water and nutrients in plant roots, which is formed by the polar deposition of lignin polymer in the endodermis tissue. The precise pattern of lignin deposition is determined by the scaffolding activity of membrane-bound Casparian Strip domain proteins (CASPs), but little is known of the mechanism(s) directing this process. Here, we demonstrate that Endodermis-specific Receptor-like Kinase 1 (ERK1) and, to a lesser extent, ROP Binding Kinase1 (RBK1) are also involved in regulating CS formation, with the former playing an essential role in lignin deposition as well as in the localization of CASP1. We show that ERK1 is localized to the cytoplasm and nucleus of the endodermis and that together with the circadian clock regulator, Time for Coffee (TIC), forms part of a novel signaling pathway necessary for correct CS organization and suberization of the endodermis, with their single or combined loss of function resulting in altered root microbiome composition. In addition, we found that other mutants displaying defects in suberin deposition at the CS also display altered root exudates and microbiome composition. Thus, our work reveals a complex network of signaling factors operating within the root endodermis that establish both the CS diffusion barrier and influence the microbial composition of the rhizosphere.
Collapse
Affiliation(s)
- Julius Durr
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Guilhem Reyt
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Stijn Spaepen
- Department of Plant Microbe Interactions & Cluster of Excellence on Plant Sciences (CEPLAS), Max Planck Institute for Plant Breeding Research, Carl-von-Linn�-Weg 10, K�ln 50829, Germany
- Centre for Microbial and Plant Genetics, Leuven Institute for Beer Research, University of Leuven, Gaston Geenslaan 1 B-3001, Belgium
| | - Sally Hilton
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Cathal Meehan
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Wu Qi
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Paulina Flis
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Hugh G Dickinson
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, UK
| | - Attila Feher
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesv�ri krt. 62, Szeged H-6726, Hungary
| | - Umashankar Shivshankar
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Shruti Pavagadhi
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Sanjay Swarup
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - David Salt
- Division of Plant and Crop Sciences, Future Food Beacon of Excellence & School of Biosciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
22
|
Kirschner GK, Xiao TT, Blilou I. Rooting in the Desert: A Developmental Overview on Desert Plants. Genes (Basel) 2021; 12:genes12050709. [PMID: 34068546 PMCID: PMC8151154 DOI: 10.3390/genes12050709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/17/2023] Open
Abstract
Plants, as sessile organisms, have evolved a remarkable developmental plasticity to cope with their changing environment. When growing in hostile desert conditions, plants have to grow and thrive in heat and drought. This review discusses how desert plants have adapted their root system architecture (RSA) to cope with scarce water availability and poor nutrient availability in the desert soil. First, we describe how some species can survive by developing deep tap roots to access the groundwater while others produce shallow roots to exploit the short rain seasons and unpredictable rainfalls. Then, we discuss how desert plants have evolved unique developmental programs like having determinate meristems in the case of cacti while forming a branched and compact root system that allows efficient water uptake during wet periods. The remote germination mechanism in date palms is another example of developmental adaptation to survive in the dry and hot desert surface. Date palms have also designed non-gravitropic secondary roots, termed pneumatophores, to maximize water and nutrient uptake. Next, we highlight the distinct anatomical features developed by desert species in response to drought like narrow vessels, high tissue suberization, and air spaces within the root cortex tissue. Finally, we discuss the beneficial impact of the microbiome in promoting root growth in desert conditions and how these characteristics can be exploited to engineer resilient crops with a greater ability to deal with salinity induced by irrigation and with the increasing drought caused by global warming.
Collapse
|
23
|
Razeq FM, Kosma DK, França D, Rowland O, Molina I. Extracellular lipids of Camelina sativa: Characterization of cutin and suberin reveals typical polyester monomers and unusual dicarboxylic fatty acids. PHYTOCHEMISTRY 2021; 184:112665. [PMID: 33524853 DOI: 10.1016/j.phytochem.2021.112665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Camelina sativa is relatively drought tolerant and requires less fertilizer than other oilseed crops. Various lipid- and phenolic-based extracellular barriers of plants help to protect them against biotic and abiotic stresses. These barriers, which consist of solvent-insoluble polymeric frameworks and solvent-extractable waxes, include the cuticle of aerial plant surfaces and suberized cell walls found, for example, in periderms and seed coats. Cutin, the polymeric matrix of the cuticle, and the aliphatic domain of suberin are fatty acid- and glycerol-based polyesters. These polyesters were investigated by base-catalyzed transesterification of C. sativa aerial and underground delipidated tissues followed by gas chromatographic analysis of the released monomer mixtures. Seed coat and root suberin had similar compositions, with 18-hydroxyoctadecenoic and 1,18-octadecenedioic fatty acids being the dominant species. Root suberin presented a typical lamellar ultrastructure, but seed coats showed almost imperceptible, faint dark bands. Leaf and stem lipid polyesters were composed of fatty acids (FA), 1,ω-dicarboxylic fatty acids (DCA), ω-hydroxy fatty acids (HFA) and hydroxycinnamic acids (HCA). Dihydroxypalmitic acid (DHP) and caffeic acid were the major constituents of leaf cutin, whereas stem cutin presented similar molar proportions in several monomers across the four classes. Unlike the leaf cuticle, the C. sativa stem cuticle presented lamellar structure by transmission electron microscopy. Flower cutin was dominated by DHP, did not contain aromatics, and presented substantial amounts (>30%) of hydroxylated 1,ω-dicarboxylic acids. We found striking differences between the lipid polyester monomer compositions of aerial tissues of C. sativa and that of its close relatives Arabidopsis thaliana and Brassica napus.
Collapse
Affiliation(s)
- Fakhria M Razeq
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Dylan K Kosma
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA
| | - Débora França
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada
| | - Owen Rowland
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada.
| | - Isabel Molina
- Department of Biology, Algoma University, Sault Ste. Marie, Ontario, Canada.
| |
Collapse
|
24
|
Harman-Ware AE, Sparks S, Addison B, Kalluri UC. Importance of suberin biopolymer in plant function, contributions to soil organic carbon and in the production of bio-derived energy and materials. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:75. [PMID: 33743797 PMCID: PMC7981814 DOI: 10.1186/s13068-021-01892-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/27/2021] [Indexed: 05/27/2023]
Abstract
Suberin is a hydrophobic biopolymer of significance in the production of biomass-derived materials and in biogeochemical cycling in terrestrial ecosystems. Here, we describe suberin structure and biosynthesis, and its importance in biological (i.e., plant bark and roots), ecological (soil organic carbon) and economic (biomass conversion to bioproducts) contexts. Furthermore, we highlight the genomics and analytical approaches currently available and explore opportunities for future technologies to study suberin in quantitative and/or high-throughput platforms in bioenergy crops. A greater understanding of suberin structure and production in lignocellulosic biomass can be leveraged to improve representation in life cycle analysis and techno-economic analysis models and enable performance improvements in plant biosystems as well as informed crop system management to achieve economic and environmental co-benefits.
Collapse
Affiliation(s)
- Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
| | - Samuel Sparks
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, Center for Bioenergy Innovation, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Udaya C Kalluri
- Biosciences Division and Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| |
Collapse
|
25
|
Rodrigues R, Palma SICJ, G Correia V, Padrão I, Pais J, Banza M, Alves C, Deuermeier J, Martins C, Costa HMA, Ramou E, Silva Pereira C, Roque ACA. Sustainable plant polyesters as substrates for optical gas sensors. Mater Today Bio 2020; 8:100083. [PMID: 33294837 PMCID: PMC7691741 DOI: 10.1016/j.mtbio.2020.100083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
The fast and non-invasive detection of odors and volatile organic compounds (VOCs) by gas sensors and electronic noses is a growing field of interest, mostly due to a large scope of potential applications. Additional drivers for the expansion of the field include the development of alternative and sustainable sensing materials. The discovery that isolated cross-linked polymeric structures of suberin spontaneously self-assemble as a film inspired us to develop new sensing composite materials consisting of suberin and a liquid crystal (LC). Due to their stimuli-responsive and optically active nature, liquid crystals are interesting probes in gas sensing. Herein, we report the isolation and the chemical characterization of two suberin types (from cork and from potato peels) resorting to analyses of gas chromatography–mass spectrometry (GC-MS), solution nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS). The collected data highlighted their compositional and structural differences. Cork suberin showed a higher proportion of longer aliphatic constituents and is more esterified than potato suberin. Accordingly, when casted it formed films with larger surface irregularities and a higher C/O ratio. When either type of suberin was combined with the liquid crystal 5CB, the ensuing hybrid materials showed distinctive morphological and sensing properties towards a set of 12 VOCs (comprising heptane, hexane, chloroform, toluene, dichlormethane, diethylether, ethyl acetate, acetonitrile, acetone, ethanol, methanol, and acetic acid). The optical responses generated by the materials are reversible and reproducible, showing stability for 3 weeks. The individual VOC-sensing responses of the two hybrid materials are discussed taking as basis the chemistry of each suberin type. A support vector machines (SVM) algorithm based on the features of the optical responses was implemented to assess the VOC identification ability of the materials, revealing that the two distinct suberin-based sensors complement each other, since they selectively identify distinct VOCs or VOC groups. It is expected that such new environmentally-friendly gas sensing materials derived from natural diversity can be combined in arrays to enlarge selectivity and sensing capacity.
Collapse
Affiliation(s)
- R Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - S I C J Palma
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - V G Correia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - I Padrão
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - J Pais
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - M Banza
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal.,UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - C Alves
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - J Deuermeier
- i3N/CENIMAT, Department of Materials Science, School of Science and Technology, NOVA University of Lisbon and CEMOP/UNINOVA, Campus de Caparica, 2829-516, Caparica, Portugal
| | - C Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - H M A Costa
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - E Ramou
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| | - C Silva Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157, Oeiras, Portugal
| | - A C A Roque
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, 2829-516, Caparica, Portugal
| |
Collapse
|
26
|
Saar JS, Lienkamp K. Bioinspired All-Polyester Diblock Copolymers Made from Poly(pentadecalactone) and Poly(2-(2-hydroxyethoxy)benzoate): Synthesis and Polymer Film Properties. MACROMOL CHEM PHYS 2020; 221:2000118. [PMID: 34404982 PMCID: PMC7611513 DOI: 10.1002/macp.202000118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 11/08/2022]
Abstract
The bioinspired diblock copolymers poly(pentadecalactone)-block-poly(2-(2-hydroxyethoxy)-benzoate) (PPDL-block-P2HEB) were synthesized from pentadecalactone and dihydro-5H-1,4-benzodioxepin-5-one (2,3-DHB). No transesterification between the blocks was observed. In a sequential approach, PPDL obtained by ring-opening polymerization (ROP) was used to initiate 2,3-DHB. Here, the molar mass Mn of the P2HEB block was limited. In a modular approach, end-functionalized PPDL and P2HEB were obtained separately by ROP with functional initiators, and connected by 1,3-dipolar Huisgen reaction ("click-chemistry"). Block copolymer compositions from 85:15 mass percent to 28:72 mass percent (PPDL:P2HEB) were synthesized, with Mn of from about 30,000-50,000 g mol-1. The structure of the block copolymer was confirmed by proton NMR, FTIR spectroscopy, and gel permeation chromatography. Morphological studies by atomic force microscopy (AFM) further confirmed the block copolymer structure, while quantitative nanomechanical AFM measurements revealed that the DMT moduli of the block copolymers ranged between 17.2 ± 1.8 MPa and 62.3 ± 5.7 MPa, i.e. between the values of the parent P2HEB and PPDL homopolymers (7.6 ± 1.4 MPa and 801 ± 42 MPa, respectively). Differential scanning calorimetry showed that the thermal properties of the homopolymers were retained by each of the copolymer blocks (melting temperature 90 °C, glass transition temperature 36 °C).
Collapse
Affiliation(s)
- Julia S. Saar
- Freiburg Center für Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Karen Lienkamp
- Freiburg Center für Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
27
|
Saar JS, Shi Y, Lienkamp K. Bioinspired All-Polyester Diblock Copolymers Made from Poly(pentadecalactone) and Poly(3-hydroxycinnamate): Synthesis and Polymer Film Properties. MACROMOL CHEM PHYS 2020; 221:2000045. [PMID: 34404981 PMCID: PMC7611514 DOI: 10.1002/macp.202000045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/06/2022]
Abstract
A bioinspired diblock copolymer was synthesized from pentadecalactone and 3-hydroxy cinnamic acid. Poly(pentadecalactone) (PPDL) with a molar mass of up to 43,000 g mol-1 was obtained by ring-opening polymerization initiated propargyl alcohol. Poly(3-hydroxy cinnamate) (P3HCA) was obtained by polycondensation and end-functionalized with 3-azido propanol. The two functionalized homopolymers were connected via 1,3-dipolar Huisgen addition to yield the block copolymer PPDL-triazole-P3HCA. The structure the block copolymer was confirmed by proton NMR, FTIR spectroscopy and GPC. By analyzing the morphology of polymer films made from the homopolymers, from a 1:1 homopolymer blend, and from the PPDL-triazole-P3HCA block copolymer, clearly distinct micro- and nanostructures were revealed. Quantitative nanomechanical measurements revealed that the block copolymer PPDL-triazole-P3HCA had a DMT modulus of 22.3 ± 2.7 MPa, which was lower than that of the PPDL homopolymer (801 ± 42 MPa), yet significantly higher than that of the P3HCA homopolymer (1.77 ± 0.63 MPa). Thermal analytics showed that the melting point of PPDL-triazole-P3HCA was similar to PPDL (89-90 °C), while it had a glass transition was similar to P3HCA (123-124 °C). Thus, the semicrystalline, potentially degradable all-polyester block copolymer PPDL-triazole-P3HCA combines the thermal properties of either homopolymer, and has an intermediate elastic modulus.
Collapse
Affiliation(s)
- Julia S. Saar
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Yue Shi
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Karen Lienkamp
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) and Department of Microsystems Engineering (IMTEK), Albert-Ludwigs-Universität, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
28
|
Tanios S, Thangavel T, Eyles A, Tegg RS, Nichols DS, Corkrey R, Wilson CR. Suberin deposition in potato periderm: a novel resistance mechanism against tuber greening. THE NEW PHYTOLOGIST 2020; 225:1273-1284. [PMID: 31758555 DOI: 10.1111/nph.16334] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/19/2019] [Indexed: 05/20/2023]
Abstract
Light-induced tuber greening is one of the most important quality defects of potato. Although varietal and maturity factors are known to affect greening resistance, physiological mechanisms of resistance are poorly understood. We proposed that physiological and biochemical factors within the tuber periderm provide resistance and hypothesised that resistance is primarily related to suberin content. We investigated differences in the tuber periderm between genotypes and tuber maturities that varied in greening propensity. We examined suberin and light-induced pigment accumulation, and phellem cell development and studied greening propensity in mutant and chemically treated tubers with enhanced suberisation. Resistance to greening was strongly linked to increased suberin in the periderm, which varied with variety and tuber maturity. Furthermore, greening was reduced in mutant and chemically treated tubers with enhanced suberisation. Increases in phellem cell layers and light-induced carotenoids and anthocyanins were identified as secondary resistance factors. Our work represents the first physiological mechanism of varietal and tuber maturity resistance to greening, expanding the known functionality of suberin and providing for the first time a biomarker that will aid producers and breeders in selection and improvement of potato varieties for greening resistance.
Collapse
Affiliation(s)
- Sabine Tanios
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia
| | - Tamilarasan Thangavel
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia
| | - Alieta Eyles
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, TAS, 7001, Australia
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS, 7001, Australia
| | - Ross Corkrey
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, TAS, 7001, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St. Johns Avenue, New Town, TAS, 7008, Australia
| |
Collapse
|
29
|
Xin A, Herburger K. Mini Review: Transport of Hydrophobic Polymers Into the Plant Apoplast. FRONTIERS IN PLANT SCIENCE 2020; 11:590990. [PMID: 33488642 PMCID: PMC7817615 DOI: 10.3389/fpls.2020.590990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/27/2020] [Indexed: 05/03/2023]
Abstract
The plant apoplast contains the four hydrophobic polymer, lignin, suberin, cutin, and cutan, that are crucial for stress resistance, controlling solute diffusion, and strengthening the cell wall. Some of these polymers are widely used in industry and daily life products, such as all wood-containing goods (lignin) and wine cork (suberin). Despite the importance of these polymers, several aspects of their formation remain unknown. This mini review highlights technical bottlenecks in the current research and summarizes recent insights into the precursor transmembrane transport, an essential step in the polymer formation. We also briefly discuss how some of the remaining knowledge gaps can be closed and how a better understanding of these biopolymers will benefit other research fields.
Collapse
Affiliation(s)
- Anzhou Xin
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Klaus Herburger
- Section for Plant Glycobiology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Klaus Herburger,
| |
Collapse
|
30
|
Liakos IL, Menager C, Guigo N, Holban AM, Iordache F, Pignatelli F, Grumezescu AM, Mazzolai B, Sbirrazzuoli N. Suberin/trans-Cinnamaldehyde Oil Nanoparticles with Antimicrobial Activity and Anticancer Properties When Loaded with Paclitaxel. ACS APPLIED BIO MATERIALS 2019; 2:3484-3497. [DOI: 10.1021/acsabm.9b00408] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ioannis L. Liakos
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Charlotte Menager
- Eco-Friendly Materials and Polymers Team, Institute of Chemistry of Nice, UMR CNRS 7272, University Nice Sophia Antipolis − University Côte d’Azur, 28 avenue Valrose, 06108 Nice Cedex 2, France
| | - Nathanael Guigo
- Eco-Friendly Materials and Polymers Team, Institute of Chemistry of Nice, UMR CNRS 7272, University Nice Sophia Antipolis − University Côte d’Azur, 28 avenue Valrose, 06108 Nice Cedex 2, France
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Aleea Portocalelor, No. 1-3, Bucharest 060101, Romania
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of Romanian Academy, B.P. Hasdeu, 8, Bucharest, 050568, Romania
| | - Florin Iordache
- University of Agronomic Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Splaiul Independentei, nr. 105, Bucharest 050097, Romania
- Institute of Cellular Biology and Pathology “Nicolae Simionescu” of Romanian Academy, B.P. Hasdeu, 8, Bucharest, 050568, Romania
| | - Francesca Pignatelli
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Polizu Street No. 1-7, Bucharest 011061, Romania
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia (IIT), Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Nicolas Sbirrazzuoli
- Eco-Friendly Materials and Polymers Team, Institute of Chemistry of Nice, UMR CNRS 7272, University Nice Sophia Antipolis − University Côte d’Azur, 28 avenue Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
31
|
John G, Nagarajan S, Vemula PK, Silverman JR, Pillai C. Natural monomers: A mine for functional and sustainable materials – Occurrence, chemical modification and polymerization. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
The mechanism behind lack-of-effect of lanthanum on seed germination of switchgrass. PLoS One 2019; 14:e0212674. [PMID: 30830924 PMCID: PMC6398849 DOI: 10.1371/journal.pone.0212674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022] Open
Abstract
Switchgrass (Panicum virgatum L.) is a perennial warm-season C4 grass identified as a model species for bioenergy feedstock production. Lanthanum (La) as a rare earth element can stimulate the physiological processes of plant growth. The purpose of this study was to investigate the effect of lanthanum on seed germination of switchgrass. However, no significant differences in seed germination were found. The energy dispersive X-ray analysis showed that abundant lanthanum deposits resided on the pericarp and testa of the seed while few lanthanum deposits were present on the aleurone and endosperm. This phenomenon demonstrates that a semi-permeable layer, which could restrict or impede solute exchange, while allowing the permeability of internal and external water and gas, may be located between the testa and aleurone. Light microscopy and histochemical analysis revealed that the main chemical composition of the semi-permeable layer would be expected to be suberin because the layer was stained yellow with aniline blue. The quantum chemical calculations predict that the intervals between adjacent carbon chains in suberin molecule are so small that lanthanum ([La(H2O)8]3+) cannot pass through the suberin molecule. In conclusion, the seed germination of switchgrass is not affected by lanthanum because the semi-permeable layer restricts the penetration of lanthanum into the embryo.
Collapse
|
33
|
Kováč J, Lux A, Vaculík M. Formation of a subero-lignified apical deposit in root tip of radish (Raphanus sativus) as a response to copper stress. ANNALS OF BOTANY 2018; 122:823-831. [PMID: 29444204 PMCID: PMC6215032 DOI: 10.1093/aob/mcy013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS Heavy metals induce changes in root metabolism and physiology, which can lead to a complex remodelling of the root system. The final morphological responses of radish (Raphanus sativus) roots exposed to toxic concentrations of the heavy metal (Cu) include root growth inhibition, differentiation of xylem vessels close to the root tip, enhanced suberin lamellae deposition and enhanced lateral root production. Recently, we have found that such changes in root morphology and anatomy are coupled to the formation of a subero-lignified apical deposit (SLAD) very close to the root tip. METHODS To clarify the details of the formation of a SLAD in the root tip, we conducted experiments with radish roots exposed to a high Cu concentration (60 µm). Histochemical analysis of lignin and suberin as well as analysis of spatial-temporal characteristics of SLAD formation were performed by bright-field, fluorescence and confocal microscopy. KEY RESULTS This unique structure, not longer than 100 µm, consists of modified cell walls of the central cylinder that are encircled by a short cylinder of prematurely suberized endodermal cells. A SLAD starts to form, in both primary and lateral roots, after cessation of root elongation, and it is coupled with xylem differentiation and root branching close to the root apex. We noticed that deposition of phenolic substances into a SLAD, mainly suberin in the endodermis, is spatially separated from suberization or lignification in basally located endodermis. CONCLUSIONS Although the main reason for formation of a SLAD is elusive, we suggest that it is a part of stress-induced responses which relate to decreased root growth or permeability in heavy metal stress.
Collapse
Affiliation(s)
- Ján Kováč
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
34
|
Capote T, Barbosa P, Usié A, Ramos AM, Inácio V, Ordás R, Gonçalves S, Morais-Cecílio L. ChIP-Seq reveals that QsMYB1 directly targets genes involved in lignin and suberin biosynthesis pathways in cork oak (Quercus suber). BMC PLANT BIOLOGY 2018; 18:198. [PMID: 30223777 PMCID: PMC6142680 DOI: 10.1186/s12870-018-1403-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/30/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Gene activity is largely controlled by transcriptional regulation through the action of transcription factors and other regulators. QsMYB1 is a member of the R2R3-MYB transcription factor family related to secondary growth, and in particular, with the cork development process. In order to identify the putative gene targets of QsMYB1 across the cork oak genome we developed a ChIP-Seq strategy. RESULTS Results provide direct evidence that QsMY1B targets genes encoding for enzymes involved in the lignin and suberin pathways as well as gene encoding for ABCG transporters and LTPs implicated in the transport of monomeric suberin units across the cellular membrane. These results highlight the role of QsMYB1 as a regulator of lignin and suberin biosynthesis, transport and assembly. CONCLUSION To our knowledge, this work constitutes the first ChIP-Seq experiment performed in cork oak, a non-model plant species with a long-life cycle, and these results will contribute to deepen the knowledge about the molecular mechanisms of cork formation and differentiation.
Collapse
Affiliation(s)
- Tiago Capote
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Pedro Barbosa
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Vera Inácio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| | - Ricardo Ordás
- Departamento BOS, Escuela Politécnica de Mieres, Oviedo University, Oviedo, Spain
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-alimentar do Alentejo (CEBAL) / Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Present Address: Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB101SA UK
| | - Leonor Morais-Cecílio
- Linking Landscape, Environment, Agriculture and Food (LEAF) Instituto Superior de Agronomia, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
35
|
Meireles B, Usié A, Barbosa P, Fortes AM, Folgado A, Chaves I, Carrasquinho I, Costa RL, Gonçalves S, Teixeira RT, Ramos AM, Nóbrega F. Characterization of the cork formation and production transcriptome in Quercus cerris × suber hybrids. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:535-549. [PMID: 30042611 PMCID: PMC6041232 DOI: 10.1007/s12298-018-0526-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/13/2018] [Accepted: 03/20/2018] [Indexed: 05/31/2023]
Abstract
Cork oak is the main cork-producing species worldwide, and plays a significant economic, ecological and social role in the Mediterranean countries, in particular in Portugal and Spain. The ability to produce cork is limited to a few species, hence it must involve specific regulation mechanisms that are unique to these species. However, to date, these mechanisms remain largely understudied, especially with approaches involving the use of high-throughput sequencing technology. In this study, the transcriptome of cork-producing and non-cork-producing Quercus cerris × suber hybrids was analyzed in order to elucidate the differences between the two groups of trees displaying contrasting phenotypes for cork production. The results revealed the presence of a significant number of genes exclusively associated with cork production, in the trees that developed cork. Moreover, several gene ontology subcategories, such as cell wall biogenesis, lipid metabolic processes, metal ion binding and apoplast/cell wall, were only detected in the trees with cork production. These results indicate the existence, at the transcriptome level, of mechanisms that seem to be unique and necessary for cork production, which is an advancement in our knowledge regarding the genetic regulation behind cork formation and production.
Collapse
Affiliation(s)
- Brígida Meireles
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Ana Usié
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Pedro Barbosa
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Ana Margarida Fortes
- Faculdade de Ciências de Lisboa, Biosystems and Integrative Sciences Institute (BIOISI), Universidade de Lisboa, Lisbon, Portugal
| | - André Folgado
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Inês Chaves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Isabel Carrasquinho
- Instituto Nacional de Investigação Agrária e Veterinária, I.P, Quinta do Marquês, 2780-159 Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária, I.P, Quinta do Marquês, 2780-159 Oeiras, Portugal
- Centro de estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Present Address: Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB101SA UK
| | - Rita Teresa Teixeira
- Instituto Superior de Agronomia da Universidade de Lisboa (ISA), Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - António Marcos Ramos
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Évora, Portugal
| | - Filomena Nóbrega
- Instituto Nacional de Investigação Agrária e Veterinária, I.P, Quinta do Marquês, 2780-159 Oeiras, Portugal
| |
Collapse
|
36
|
Rains MK, Gardiyehewa de Silva ND, Molina I. Reconstructing the suberin pathway in poplar by chemical and transcriptomic analysis of bark tissues. TREE PHYSIOLOGY 2018; 38:340-361. [PMID: 28575526 DOI: 10.1093/treephys/tpx060] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/18/2017] [Indexed: 05/09/2023]
Abstract
The tree bark periderm confers the first line of protection against pathogen invasion and abiotic stresses. The phellogen (cork cambium) externally produces cork (phellem) cells that are dead at maturity; while metabolically active, these tissues synthesize cell walls, as well as cell wall modifications, namely suberin and waxes. Suberin is a heteropolymer with aliphatic and aromatic domains, composed of acylglycerols, cross-linked polyphenolics and solvent-extractable waxes. Although suberin is essentially ubiquitous in vascular plants, the biochemical functions of many enzymes and the genetic regulation of its synthesis are poorly understood. We have studied suberin and wax composition in four developmental stages of hybrid poplar (Populus tremula x Populus alba) stem periderm. The amounts of extracellular ester-linked acyl lipids per unit area increased with tissue age, a trend not observed with waxes. We used RNA-Seq deep-sequencing technology to investigate the cork transcriptome at two developmental stages. The transcript analysis yielded 455 candidates for the biosynthesis and regulation of poplar suberin, including genes with proven functions in suberin metabolism, genes highlighted as candidates in other plant species and novel candidates. Among these, a gene encoding a putative lipase/acyltransferase of the GDSL-motif family emerged as a suberin polyester synthase candidate, and specific isoforms of peroxidase and laccase genes were preferentially expressed in cork, suggesting that their corresponding proteins may be involved in cross-linking aromatics to form lignin-like polyphenolics. Many transcriptional regulators with possible roles in meristem identity, cork differentiation and acyl-lipid metabolism were also identified. Our work provides the first large-scale transcriptomic dataset on the suberin-synthesizing tissue of poplar bark, contributing to our understanding of tree bark development at the molecular level. Based on these data, we have proposed a number of hypotheses that can be used in future research leading to novel biological insights into suberin biosynthesis and its physiological function.
Collapse
Affiliation(s)
- Meghan K Rains
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| | - Nayana Dilini Gardiyehewa de Silva
- Department of Biology and Institute of Biochemistry, Nesbitt Biology Building, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| | - Isabel Molina
- Department of Biology, Biosciences Complex, Queen's University, 116 Barrie St., Kingston, ON, Canada K7L 3N6
- Department of Biology, Essar Convergence Centre, Algoma University, 1520 Queen Street East, Sault Ste Marie, ON, Canada P6A 2G4
| |
Collapse
|
37
|
Jin L, Cai Q, Huang W, Dastmalchi K, Rigau J, Molinas M, Figueras M, Serra O, Stark RE. Potato native and wound periderms are differently affected by down-regulation of FHT, a suberin feruloyl transferase. PHYTOCHEMISTRY 2018; 147:30-48. [PMID: 29288888 PMCID: PMC5801124 DOI: 10.1016/j.phytochem.2017.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 05/24/2023]
Abstract
Potato native and wound healing periderms contain an external multilayered phellem tissue (potato skin) consisting of dead cells whose cell walls are impregnated with suberin polymers. The phellem provides physical and chemical barriers to tuber dehydration, heat transfer, and pathogenic infection. Previous RNAi-mediated gene silencing studies in native periderm have demonstrated a role for a feruloyl transferase (FHT) in suberin biosynthesis and revealed how its down-regulation affects both chemical composition and physiology. To complement these prior analyses and to investigate the impact of FHT deficiency in wound periderms, a bottom-up methodology has been used to analyze soluble tissue extracts and solid polymers concurrently. Multivariate statistical analysis of LC-MS and GC-MS data, augmented by solid-state NMR and thioacidolysis, yields two types of new insights: the chemical compounds responsible for contrasting metabolic profiles of native and wound periderms, and the impact of FHT deficiency in each of these plant tissues. In the current report, we confirm a role for FHT in developing wound periderm and highlight its distinctive features as compared to the corresponding native potato periderm.
Collapse
Affiliation(s)
- Liqing Jin
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York and CUNY Institute for Macromolecular Assemblies, New York, NY 10031, USA; Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Qing Cai
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York and CUNY Institute for Macromolecular Assemblies, New York, NY 10031, USA; Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Wenlin Huang
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York and CUNY Institute for Macromolecular Assemblies, New York, NY 10031, USA
| | - Keyvan Dastmalchi
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York and CUNY Institute for Macromolecular Assemblies, New York, NY 10031, USA
| | - Joan Rigau
- Centre for Research in Agricultural Genomics, Consorci CSIC-IRTA-UAB-UB, Campus de Bellaterra UAB, E-08193, Cerdanyola Del Vallès, Barcelona, Spain
| | - Marisa Molinas
- Laboratori Del Suro, Departament de Biologia, University of Girona, Campus Montilivi, Girona, E-17071 Spain
| | - Mercè Figueras
- Laboratori Del Suro, Departament de Biologia, University of Girona, Campus Montilivi, Girona, E-17071 Spain
| | - Olga Serra
- Laboratori Del Suro, Departament de Biologia, University of Girona, Campus Montilivi, Girona, E-17071 Spain
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, The City College of New York, City University of New York and CUNY Institute for Macromolecular Assemblies, New York, NY 10031, USA; Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA; Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA.
| |
Collapse
|
38
|
Woolfson KN, Haggitt ML, Zhang Y, Kachura A, Bjelica A, Rey Rincon MA, Kaberi KM, Bernards MA. Differential induction of polar and non-polar metabolism during wound-induced suberization in potato (Solanum tuberosum L.) tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:931-942. [PMID: 29315972 DOI: 10.1111/tpj.13820] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 05/11/2023]
Abstract
Wound-induced suberin deposition involves the temporal and spatial coordination of phenolic and fatty acid metabolism. Phenolic metabolism leads to both soluble metabolites that accumulate as defense compounds as well as hydroxycinnamoyl derivatives that form the basis of the poly(phenolic) domain found in suberized tissue. Fatty acid metabolism involves the biosynthesis of very-long-chain fatty acids, 1-alkanols, ω-hydroxy fatty acids and α,ω-dioic acids that form a poly(aliphatic) domain, commonly referred to as suberin. Using the abscisic acid (ABA) biosynthesis inhibitor fluridone (FD), we reduced wound-induced de novo biosynthesis of ABA in potato tubers, and measured the impact on the expression of genes involved in phenolic metabolism (StPAL1, StC4H, StCCR, StTHT), aliphatic metabolism (StCYP86A33, StCYP86B12, StFAR3, StKCS6), metabolism linking phenolics and aliphatics (StFHT) or acyl chains and glycerol (StGPAT5, StGPAT6), and in the delivery of aliphatic monomers to the site of suberization (StABCG1). In FD-treated tissue, both aliphatic gene expression and accumulation of aliphatic suberin monomers were delayed. Exogenous ABA restored normal aliphatic suberin deposition in FD-treated tissue, and enhanced aliphatic gene expression and poly(aliphatic) domain deposition when applied alone. By contrast, phenolic metabolism genes were not affected by FD treatment, while FD + ABA and ABA treatments slightly enhanced the accumulation of polar metabolites. These data support a role for ABA in the differential induction of phenolic and aliphatic metabolism during wound-induced suberization in potato.
Collapse
Affiliation(s)
- Kathlyn N Woolfson
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Meghan L Haggitt
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Yanni Zhang
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Alexandra Kachura
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Anica Bjelica
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - M Alejandra Rey Rincon
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Karina M Kaberi
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Mark A Bernards
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| |
Collapse
|
39
|
Han X, Lu W, Wei X, Li L, Mao L, Zhao Y. Proteomics analysis to understand the ABA stimulation of wound suberization in kiwifruit. J Proteomics 2018; 173:42-51. [DOI: 10.1016/j.jprot.2017.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/31/2017] [Accepted: 11/24/2017] [Indexed: 11/30/2022]
|
40
|
Kobayashi K, Ura Y, Kimura S, Sugiyama J. Outstanding Toughness of Cherry Bark Achieved by Helical Spring Structure of Rigid Cellulose Fiber Combined with Flexible Layers of Lipid Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1705315. [PMID: 29314263 DOI: 10.1002/adma.201705315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/23/2017] [Indexed: 06/07/2023]
Abstract
Cellulose, a main component of cell walls, generally makes materials hard and brittle. However, an ultratough, cellulosic material is found in nature: cherry bark. Surprisingly, it elongates by more than twice of its initial length and behaves as a plastic film during stretching. This amazing mechanical property is achieved by a well-designed cell wall structure; cellulose fibers are folded like helical springs, covered by multiple flexible layers of lipid polymers.
Collapse
Affiliation(s)
- Kayoko Kobayashi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 6110011, Japan
| | - Yoko Ura
- National Institute for Cultural Properties Nara, 2-9-1, Nijo-cho, Nara, 6308577, Japan
| | - Satoshi Kimura
- Department of Biomaterials Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 1138657, Japan
| | - Junji Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 6110011, Japan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| |
Collapse
|
41
|
Teixeira RT, Fortes AM, Bai H, Pinheiro C, Pereira H. Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection. PLANTA 2018; 247:317-338. [PMID: 28988391 DOI: 10.1007/s00425-017-2786-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
The phenylpropanoid pathway impacts the cork quality development. In cork of bad quality, the flavonoid route is favored, whereas in good quality, cork lignin and suberin production prevails. Cork oaks develop a thick cork tissue as a protective shield that results of the continuous activity of a secondary meristem, the cork cambium, or phellogen. Most studies applied to developmental processes do not consider the cell types from which the samples were extracted. Here, laser microdissection (LM) coupled with transcript profiling using RNA sequencing (454 pyrosequencing) was applied to phellogen cells of trees producing low- and good quality cork. Functional annotation and functional enrichment analyses showed that stress-related genes are enriched in samples extracted from trees producing good quality cork (GQC). This process is under tight transcriptional (transcription factors, kinases) regulation and also hormonal control involving ABA, ethylene, and auxins. The phellogen cells collected from trees producing bad quality cork (BQC) show a consistent up-regulation of genes belonging to the flavonoid pathway as a response to stress. They also display a different modulation of cell wall genes resulting into a thinner cork layer, i.e., less meristematic activity. Based on the analysis of the phenylpropanoid pathway regulating genes, in GQC, the synthesis of lignin and suberin is promoted, whereas in BQC, the same pathway favors the biosynthesis of free phenolic compounds. This study provided new insights of how cell-specific gene expression can determine tissue and organ morphology and physiology and identified robust candidate genes that can be used in breeding programs aiming at improving cork quality.
Collapse
Affiliation(s)
- Rita Teresa Teixeira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal.
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute, State University, Blacksburg, VA, 24060, USA.
| | - Ana Margarida Fortes
- BIOISI, Science Faculty, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | - Hua Bai
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute, State University, Blacksburg, VA, 24060, USA
| | - Carla Pinheiro
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, EAN, 2780-157, Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Helena Pereira
- Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| |
Collapse
|
42
|
Boher P, Soler M, Sánchez A, Hoede C, Noirot C, Paiva JAP, Serra O, Figueras M. A comparative transcriptomic approach to understanding the formation of cork. PLANT MOLECULAR BIOLOGY 2018; 96:103-118. [PMID: 29143299 DOI: 10.1007/s11103-017-0682-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/08/2017] [Indexed: 05/09/2023]
Abstract
The transcriptome comparison of two oak species reveals possible candidates accounting for the exceptionally thick and pure cork oak phellem, such as those involved in secondary metabolism and phellogen activity. Cork oak, Quercus suber, differs from other Mediterranean oaks such as holm oak (Quercus ilex) by the thickness and organization of the external bark. While holm oak outer bark contains sequential periderms interspersed with dead secondary phloem (rhytidome), the cork oak outer bark only contains thick layers of phellem (cork rings) that accumulate until reaching a thickness that allows industrial uses. Here we compare the cork oak outer bark transcriptome with that of holm oak. Both transcriptomes present similitudes in their complexity, but whereas cork oak external bark is enriched with upregulated genes related to suberin, which is the main polymer responsible for the protective function of periderm, the upregulated categories of holm oak are enriched in abiotic stress and chromatin assembly. Concomitantly with the upregulation of suberin-related genes, there is also induction of regulatory and meristematic genes, whose predicted activities agree with the increased number of phellem layers found in the cork oak sample. Further transcript profiling among different cork oak tissues and conditions suggests that cork and wood share many regulatory mechanisms, probably reflecting similar ontogeny. Moreover, the analysis of transcripts accumulation during the cork growth season showed that most regulatory genes are upregulated early in the season when the cork cambium becomes active. Altogether our work provides the first transcriptome comparison between cork oak and holm oak outer bark, which unveils new regulatory candidate genes of phellem development.
Collapse
Affiliation(s)
- Pau Boher
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Marçal Soler
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Anna Sánchez
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Claire Hoede
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Céline Noirot
- PF Bioinfo GenoToul, MIAT, Université de Toulouse, INRA, 24 Chemin de Borde Rouge, 31320, Auzeville-Tolosane, France
| | - Jorge Almiro Pinto Paiva
- iBET, Instituto de Biologia Experimental e Tecnológica, Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
- Institute of Plant Genetics, Department of Integrative Plant Biology, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznan, Poland
| | - Olga Serra
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Faculty of Science, Biology Department, Universitat de Girona, C/ Maria Aurèlia Campmany 40, 17003, Girona, Spain.
| |
Collapse
|
43
|
Wang PP, Liu H, Gao S, Cheng AX. Functional Characterization of a Hydroxyacid/Alcohol Hydroxycinnamoyl Transferase Produced by the Liverwort Marchantia emarginata. Molecules 2017; 22:E1854. [PMID: 29088080 PMCID: PMC6150198 DOI: 10.3390/molecules22111854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
The aerial organs of most terrestrial plants are covered by a hydrophobic protective cuticle. The main constituent of the cuticle is the lipid polyester cutin, which is composed of aliphatic and aromatic domains. The aliphatic component is a polyester between fatty acid/alcohol and hydroxycinnamoyl acid. The BAHD/HxxxD family enzymes are central to the synthesis of these polyesters. The nature of this class of enzymes in bryophytes has not been explored to date. Here, a gene encoding a fatty ω-hydroxyacid/fatty alcohol hydroxycinnamoyl transferase (HFT) has been isolated from the liverwort Marchantia emarginata and has been functionally characterized. Experiments based on recombinant protein showed that the enzyme uses ω-hydroxy fatty acids or primary alcohols as its acyl acceptor and various hydroxycinnamoyl-CoAs-preferentially feruloyl-CoA and caffeoyl-CoA-as acyl donors at least in vitro. The transient expression of a MeHFT-GFP fusion transgene in the Nicotiana benthamiana leaf demonstrated that MeHFT is directed to the cytoplasm, suggesting that the feruloylation of cutin monomers takes place there.
Collapse
Affiliation(s)
- Ping-Ping Wang
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Hui Liu
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Shuai Gao
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
44
|
Novo M, Silvar C, Merino F, Martínez-Cortés T, Lu F, Ralph J, Pomar F. Deciphering the role of the phenylpropanoid metabolism in the tolerance of Capsicum annuum L. to Verticillium dahliae Kleb. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:12-20. [PMID: 28330555 DOI: 10.1016/j.plantsci.2017.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 05/08/2023]
Abstract
Verticillium dahliae is an economically relevant soilborne pathogen that causes vascular wilt in several crops, including pepper (Capsicum annuum). Fungal infection is usually visualized as a vascular browning, likely due to the onset of phenylpropanoid metabolism, which also seems to play a crucial role in the tolerance of some pepper varieties. In the current work, the potential function of distinct phenylpropanoid derivatives (suberin, lignin and phenolic compounds) in the pepper tolerance response against V. dahliae, was investigated. Histochemical and biochemical analyses ruled out suberin as a key player in the pepper-fungus interaction. However, changes observed in lignin composition and higher deposition of bound phenolics in infected stems seemed to contribute to the reinforcement of cell walls and the impairment of V. dahliae colonization. Most importantly, this is the first time that the accumulation of the hydroxycinnamic acid amide N-feruloyltyramine was reported in pepper stems in response to a vascular fungus. Fungitoxic activity for that hydroxycinnamate-tyramine conjugate was demonstrated as well.
Collapse
Affiliation(s)
- Marta Novo
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Cristina Silvar
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Fuencisla Merino
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Teresa Martínez-Cortés
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain
| | - Fachuang Lu
- Department of Biochemistry and the Department of Energy's Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, WI 53726 Madison, USA; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640 Guangzhou, China
| | - John Ralph
- Department of Biochemistry and the Department of Energy's Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, WI 53726 Madison, USA
| | - Federico Pomar
- Universidade da Coruña, Grupo de Investigación en Bioloxía Evolutiva, Departamento de Bioloxía Animal, Bioloxía Vexetal e Ecoloxía, Facultade de Ciencias, Centro de Investigaciones Científicas Avanzadas (CICA), 15071 A Coruña, Spain.
| |
Collapse
|
45
|
Heinämäki J, Pirttimaa MM, Alakurtti S, Pitkänen HP, Kanerva H, Hulkko J, Paaver U, Aruväli J, Yliruusi J, Kogermann K. Suberin Fatty Acids from Outer Birch Bark: Isolation and Physical Material Characterization. JOURNAL OF NATURAL PRODUCTS 2017; 80:916-924. [PMID: 28333461 DOI: 10.1021/acs.jnatprod.6b00771] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The isolation and physical material properties of suberin fatty acids (SFAs) were investigated with special reference to their potential applications as novel pharmaceutical excipients. SFAs were isolated from outer birch bark (OBB) with a new extractive hydrolysis method. The present simplified isolation process resulted in a moderate batch yield and chemical purity of SFAs, but further development is needed for establishing batch-to-batch variation. Cryogenic milling was the method of choice for the particle size reduction of SFAs powder. The cryogenically milled SFAs powder exhibited a semicrystalline structure with apparent microcrystalline domains within an amorphous fatty acids matrix. The thermogravimetric analysis (TGA) of SFAs samples showed a good thermal stability up to 200 °C, followed by a progressive weight loss, reaching a plateau at about 95% volatilization at about 470 °C. The binary blends of SFAs and microcrystalline cellulose (MCC; Avicel PH 101) in a ratio of 25:75 (w/w) displayed good powder flow and tablet compression properties. The corresponding theophylline-containing tablets showed sustained or prolonged-release characteristics. The physicochemical and bulk powder properties of SFAs isolated from OBB are auspicious in terms of potential pharmaceutical excipient applications.
Collapse
Affiliation(s)
- Jyrki Heinämäki
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, 50411 Tartu, Estonia
| | - Minni M Pirttimaa
- VTT Technical Research Centre Finland Ltd , VTT Industrial Synthesis, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Sami Alakurtti
- VTT Technical Research Centre Finland Ltd , VTT Industrial Synthesis, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - H Pauliina Pitkänen
- VTT Technical Research Centre Finland Ltd , VTT Industrial Synthesis, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Heimo Kanerva
- VTT Technical Research Centre Finland Ltd , VTT Industrial Synthesis, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Janne Hulkko
- VTT Technical Research Centre Finland Ltd , VTT Industrial Synthesis, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Urve Paaver
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, 50411 Tartu, Estonia
| | - Jaan Aruväli
- Department of Geology, Institute of Ecology and Earth Sciences, University of Tartu , Ravila 14a, 50411 Tartu, Estonia
| | - Jouko Yliruusi
- Division of Pharmaceutical Chemistry and Technology , Faculty of Pharmacy, P.O. Box 56 (Viikinkaari 5E), FI-00014 University of Helsinki, Finland
| | - Karin Kogermann
- Institute of Pharmacy, Faculty of Medicine, University of Tartu , Nooruse 1, 50411 Tartu, Estonia
| |
Collapse
|
46
|
Huang W, Serra O, Dastmalchi K, Jin L, Yang L, Stark RE. Comprehensive MS and Solid-State NMR Metabolomic Profiling Reveals Molecular Variations in Native Periderms from Four Solanum tuberosum Potato Cultivars. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2258-2274. [PMID: 28215068 DOI: 10.1021/acs.jafc.6b05179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The potato (Solanum tuberosum L.) ranks third in worldwide consumption among food crops. Whereas disposal of potato peels poses significant challenges for the food industry, secondary metabolites in these tissues are also bioactive and essential to crop development. The diverse primary and secondary metabolites reported in whole tubers and wound-healing tissues prompted a comprehensive profiling study of native periderms from four cultivars with distinctive skin morphologies and commercial food uses. Polar and nonpolar soluble metabolites were extracted concurrently, analyzed chromatographically, and characterized with mass spectrometry; the corresponding solid interfacial polymeric residue was examined by solid-state 13C NMR. In total, 112 secondary metabolites were found in the phellem tissues; multivariate analysis identified 10 polar and 30 nonpolar potential biomarkers that distinguish a single cultivar among Norkotah Russet, Atlantic, Chipeta, and Yukon Gold cultivars which have contrasting russeting features. Compositional trends are interpreted in the context of periderm protective function.
Collapse
Affiliation(s)
- Wenlin Huang
- Department of Chemistry and Biochemistry, The City College of New York , City University of New York Ph.D. Programs in Chemistry and Biochemistry, and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, United States
| | - Olga Serra
- Laboratori del Suro, Departament de Biologia, University of Girona , Campus Montilivi s/n, Girona, E-17071 Spain
| | - Keyvan Dastmalchi
- Department of Chemistry and Biochemistry, The City College of New York , City University of New York Ph.D. Programs in Chemistry and Biochemistry, and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, United States
| | - Liqing Jin
- Department of Chemistry and Biochemistry, The City College of New York , City University of New York Ph.D. Programs in Chemistry and Biochemistry, and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, United States
| | - Lijia Yang
- Department of Chemistry and Biochemistry, The City College of New York , City University of New York Ph.D. Programs in Chemistry and Biochemistry, and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, United States
| | - Ruth E Stark
- Department of Chemistry and Biochemistry, The City College of New York , City University of New York Ph.D. Programs in Chemistry and Biochemistry, and CUNY Institute for Macromolecular Assemblies, New York, New York 10031, United States
| |
Collapse
|
47
|
Watanabe K, Takahashi H, Sato S, Nishiuchi S, Omori F, Malik AI, Colmer TD, Mano Y, Nakazono M. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. PLANT, CELL & ENVIRONMENT 2017; 40:304-316. [PMID: 27762444 DOI: 10.1111/pce.12849] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 05/24/2023]
Abstract
A radial oxygen loss (ROL) barrier in roots of waterlogging-tolerant plants promotes oxygen movement via aerenchyma to the root tip, and impedes soil phytotoxin entry. The molecular mechanism and genetic regulation of ROL barrier formation are largely unknown. Zea nicaraguensis, a waterlogging-tolerant wild relative of maize (Zea mays ssp. mays), forms a tight ROL barrier in its roots when waterlogged. We used Z. nicaraguensis chromosome segment introgression lines (ILs) in maize (inbred line Mi29) to elucidate the chromosomal region involved in regulating root ROL barrier formation. A segment of the short-arm of chromosome 3 of Z. nicaraguensis conferred ROL barrier formation in the genetic background of maize. This chromosome segment also decreased apoplastic solute permeability across the hypodermis/exodermis. However, the IL and maize were similar for suberin staining in the hypodermis/exodermis at 40 mm and further behind the root tip. Z. nicaraguensis contained suberin in the hypodermis/exodermis at 20 mm and lignin at the epidermis. The IL with ROL barrier, however, did not contain lignin in the epidermis. Discovery of the Z. nicaraguensis chromosomal region responsible for root ROL barrier formation has improved knowledge of this trait and is an important step towards improvement of waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Kohtaro Watanabe
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Hirokazu Takahashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Saori Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Shunsaku Nishiuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Fumie Omori
- Forage Crop Research Division, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - Al Imran Malik
- Centre for Plant Genetics and Breeding, School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Timothy David Colmer
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- The UWA Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Yoshiro Mano
- Forage Crop Research Division, Institute of Livestock and Grassland Science, NARO, 768 Senbonmatsu, Nasushiobara, Tochigi, 329-2793, Japan
| | - Mikio Nakazono
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
48
|
Bjelica A, Haggitt ML, Woolfson KN, Lee DPN, Makhzoum AB, Bernards MA. Fatty acid ω-hydroxylases from Solanum tuberosum. PLANT CELL REPORTS 2016; 35:2435-2448. [PMID: 27565479 DOI: 10.1007/s00299-016-2045-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 08/22/2016] [Indexed: 05/20/2023]
Abstract
Potato StCYP86A33 complements the Arabidopsis AtCYP86A1 mutant, horst - 1. Suberin is a cell-wall polymer that comprises both phenolic and aliphatic components found in specialized plant cells. Aliphatic suberin is characterized by bi-functional fatty acids, typically ω-hydroxy fatty acids and α,ω-dioic acids, which are linked via glycerol to form a three-dimensional polymer network. In potato (Solanum tuberosum L.), over 65 % of aliphatics are either ω-hydroxy fatty acids or α,ω-dioic acids. Since the biosynthesis of α,ω-dioic acids proceeds sequentially through ω-hydroxy fatty acids, the formation of ω-hydroxy fatty acids represents a significant metabolic commitment during suberin deposition. Four different plant cytochrome P450 subfamilies catalyze ω-hydroxylation, namely, 86A, 86B, 94A, and 704B; though to date, only a few members have been functionally characterized. In potato, CYP86A33 has been identified and implicated in suberin biosynthesis through reverse genetics (RNAi); however, attempts to express the CYP86A33 protein and characterize its catalytic function have been unsuccessful. Herein, we describe eight fatty acid ω-hydroxylase genes (three CYP86As, one CYP86B, three CYP94As, and a CYP704B) from potato and demonstrate their tissue expression. We also complement the Arabidopsis cyp86A1 mutant horst-1 using StCYP86A33 under the control of the Arabidopsis AtCYP86A1 promoter. Furthermore, we provide preliminary analysis of the StCYP86A33 promoter using a hairy root transformation system to monitor pStCYP86A33::GUS expression constructs. These data confirm the functional role of StCYP86A33 as a fatty acid ω-hydroxylase, and demonstrate the utility of hairy roots in the study of root-specific genes.
Collapse
Affiliation(s)
- Anica Bjelica
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Meghan L Haggitt
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Kathlyn N Woolfson
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Daniel P N Lee
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Abdullah B Makhzoum
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Mark A Bernards
- Department of Biology and the Biotron, The University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
49
|
Company-Arumí D, Figueras M, Salvadó V, Molinas M, Serra O, Anticó E. The Identification and Quantification of Suberin Monomers of Root and Tuber Periderm from Potato (Solanum tuberosum) as Fatty Acyl tert-Butyldimethylsilyl Derivatives. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:326-335. [PMID: 27687607 DOI: 10.1002/pca.2625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Protective plant lipophilic barriers such as suberin and cutin, with their associated waxes, are complex fatty acyl derived polyesters. Their precise chemical composition is valuable to understand the specific role of each compound to the physiological function of the barrier. OBJECTIVES To develop a method for the compositional analysis of suberin and associated waxes by gas chromatography (GC) coupled to ion trap-mass spectrometry (IT-MS) using N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) as sylilating reagent, and apply it to compare the suberin of the root and tuber periderm of potato (Solanum tuberosum). METHODOLOGY Waxes and suberin monomers from root and periderm were extracted subsequently using organic solvents and by methanolysis, and subjected to MTBSTFA derivatisation. GC analyses of periderm extracts were used to optimise the chromatographic method and the compound identification. Quantitative data was obtained using external calibration curves. The method was fully validated and applied for suberin composition analyses of roots and periderm. RESULTS Wax and suberin compounds were successfully separated and compound identification was based on the specific (M-57) and non-specific ions in mass spectra. The use of calibration curves built with different external standards provided quantitative accurate data and showed that suberin from root contains shorter chained fatty acyl derivatives and a relative predominance of α,ω-alkanedioic acids compared to that of the periderm. CONCLUSION We present a method for the analysis of suberin and their associated waxes based on MTBSTFA derivatisation. Moreover, the characteristic root suberin composition may be the adaptive response to its specific regulation of permeability to water and gases. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Dolors Company-Arumí
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17003, Girona, Spain
| | - Mercè Figueras
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17003, Girona, Spain
| | - Victoria Salvadó
- Chemistry Department, Faculty of Sciences, University of Girona, Campus Montilivi, E-17003, Girona, Spain
| | - Marisa Molinas
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17003, Girona, Spain
| | - Olga Serra
- Laboratori del Suro, Biology Department, Campus Montilivi, E-17003, Girona, Spain.
| | - Enriqueta Anticó
- Chemistry Department, Faculty of Sciences, University of Girona, Campus Montilivi, E-17003, Girona, Spain.
| |
Collapse
|
50
|
Sidibé A, Simao-Beaunoir AM, Lerat S, Giroux L, Toussaint V, Beaulieu C. Proteome Analyses of Soil Bacteria Grown in the Presence of Potato Suberin, a Recalcitrant Biopolymer. Microbes Environ 2016; 31:418-426. [PMID: 27795492 PMCID: PMC5158114 DOI: 10.1264/jsme2.me15195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Suberin is a complex lipidic plant polymer found in various tissues including the potato periderm. The biological degradation of suberin is attributed to fungi. Soil samples from a potato field were used to inoculate a culture medium containing suberin as the carbon source, and a metaproteomic approach was used to identify bacteria that developed in the presence of suberin over a 60-d incubation period. The normalized spectral counts of predicted extracellular proteins produced by the soil bacterial community markedly decreased from day 5 to day 20 and then slowly increased, revealing a succession of bacteria. The population of fast-growing pseudomonads declined and was replaced by species with the ability to develop in the presence of suberin. The recalcitrance of suberin was demonstrated by the emergence of auxotrophic bacteria such as Oscillatoria on the last days of the assay. Nevertheless, two putative lipases from Rhodanobacter thiooxydans (I4WGM2) and Myxococcus xanthus (Q1CWS1) were detected in the culture supernatants, suggesting that at least some bacterial species degrade suberin. When grown in suberin-containing medium, R. thiooxydans strain LCS2 and M. xanthus strain DK 1622 both produced three lipases, including I4WGM2 and Q1CWS1. These strains also produced other proteins linked to lipid metabolism, including fatty acid and lipid transporters and β-oxidation enzymes, suggesting that they participate in the degradation of suberin. However, only the R. thiooxydans strain appeared to retrieve sufficient carbon and energy from this recalcitrant polymer in order to maintain its population over an extended period of time.
Collapse
Affiliation(s)
- Amadou Sidibé
- Centre SÈVE, Département de Biologie, Université de Sherbrooke
| | | | | | | | | | | |
Collapse
|