1
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Pan J, Wei RR, Xu P, Liu YY, Li C, Ding GW, Fan J, Li YH, Yu JY, Dai P. Progress in the application of Salmonella vaccines in poultry: A mini review. Vet Immunol Immunopathol 2024; 278:110855. [PMID: 39561520 DOI: 10.1016/j.vetimm.2024.110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
Salmonella is a critical group of zoonotic pathogens that are widely spread in poultry, causing avian salmonellosis. This disease usually leads to significant reductions in poultry performance, including reduced egg production in laying hens, decreased hatchability in chicks, and retarded growth in broilers. As a result, worldwide poultry industry suffers serious economic losses. Vaccination serves as an essential strategy for preventing Salmonella infection in poultry, effectively reducing susceptibility and alleviating disease symptoms, while also minimizing fecal shedding and environmental contamination. This subsequently diminishes public health risks. Various Salmonella vaccines can induce humoral and cellular immune responses to different extents. Therefore, a thorough understanding of the immune defense mechanisms, especially adaptive immune responses in poultry infected with Salmonella, is crucial for the development of Salmonella vaccines. This review summarizes the progress in the application of Salmonella vaccines in poultry, including adaptive immune responses induced by Salmonella and vaccines targeting the predominant circulating serotypes in poultry. It also provides an insight into the future of poultry-origin Salmonella vaccines.
Collapse
Affiliation(s)
- Jie Pan
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Rong-Rong Wei
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Ping Xu
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Yun-Ying Liu
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Chen Li
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Guo-Wei Ding
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Juan Fan
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Yu-He Li
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China
| | - Jing-Yi Yu
- Tongda College of Nanjing University of Posts and Telecommunications, Yangzhou, Jiangsu, China
| | - Peng Dai
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd, Yangzhou, Jiangsu, China.
| |
Collapse
|
3
|
Alvarez KG, Goral L, Suwandi A, Lasswitz L, Zapatero-Belinchón FJ, Ehrhardt K, Nagarathinam K, Künnemann K, Krey T, Wiedemann A, Gerold G, Grassl GA. Human tetraspanin CD81 facilitates invasion of Salmonella enterica into human epithelial cells. Virulence 2024; 15:2399792. [PMID: 39239914 PMCID: PMC11423668 DOI: 10.1080/21505594.2024.2399792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Human CD81 and CD9 are members of the tetraspanin family of proteins characterized by a canonical structure of four transmembrane domains and two extracellular loop domains. Tetraspanins are known as molecular facilitators, which assemble and organize cell surface receptors and partner molecules forming clusters known as tetraspanin-enriched microdomains. They have been implicated to play various biological roles including an involvement in infections with microbial pathogens. Here, we demonstrate an important role of CD81 for the invasion of epithelial cells by Salmonella enterica. We show that the overexpression of CD81 in HepG2 cells enhances invasion of various typhoidal and non-typhoidal Salmonella serovars. Deletion of CD81 by CRISPR/Cas9 in intestinal epithelial cells (C2BBe1 and HT29-MTX-E12) reduces S. Typhimurium invasion. In addition, the effect of human CD81 is species-specific as only human but not rat CD81 facilitates Salmonella invasion. Finally, immunofluorescence microscopy and proximity ligation assay revealed that both human tetraspanins CD81 and CD9 are recruited to the entry site of S. Typhimurium during invasion but not during adhesion to the host cell surface. Overall, we demonstrate that the human tetraspanin CD81 facilitates Salmonella invasion into epithelial host cells.
Collapse
Affiliation(s)
- Kris Gerard Alvarez
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Lisa Goral
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Abdulhadi Suwandi
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Lisa Lasswitz
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Francisco J. Zapatero-Belinchón
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), Tierärztliche Hochschule Hannover, Hannover, Germany
| | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Kumar Nagarathinam
- Institute for Biochemistry, Universität zu Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Medizinische Hochschule Hannover, Hannover, Germany
| | - Katrin Künnemann
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
| | - Thomas Krey
- Institute for Biochemistry, Universität zu Lübeck, Lübeck, Germany
- Excellence Cluster 2155 RESIST, Medizinische Hochschule Hannover, Hannover, Germany
- Institute of Virology, Medizinische Hochschule Hannover, Hannover, Germany
- German Centre for Infection Research (DZIF), Lübeck, Germany
- Centre for Structural Systems Biology (CSSB), Hamburg, Germany
| | - Agnes Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, ENVT, INRAE, INSERM, Université́ de Toulouse, UPS, Toulouse, France
| | - Gisa Gerold
- Department of Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), Tierärztliche Hochschule Hannover, Hannover, Germany
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Sweden
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Medizinische Hochschule Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| |
Collapse
|
4
|
Campos LL, Oliveira SRM, Amaral MNS, Gallotti B, Oliveira AF, Arantes RME, Ribeiro-Souza S, Vital KD, Fernandes SOA, Cardoso VN, Nicoli JR, Martins FS. Oral Treatment with Saccharomyces cerevisiae CNCM I-3856 Mitigates the Inflammatory Response Experimentally Induced by Salmonella enterica subsp. enterica Serovar Typhimurium in Mice. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10359-4. [PMID: 39243351 DOI: 10.1007/s12602-024-10359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Salmonella spp. are intracellular, Gram-negative pathogens responsible for a range of diarrheal diseases, which can present either as self-limited (gastroenteritis) or as a systemic form (typhoid fever), characterizing a serious public health problem. In this study, we investigated the therapeutic effects of oral administration of Saccharomyces cerevisiae CNCM I-3856 in a murine model infected with Salmonella Typhimurium (ST). This yeast species has previously demonstrated the potential to support immune function and reduce inflammation and the ability to exert antimicrobial activity, which is important considering the increasing prevalence of antibiotic-resistant bacteria. Our findings revealed that mice infected with ST and only treated with sterile saline exhibited a higher mortality rate and body weight loss. In contrast, mice treated with I-3856 showed a notable reduction in these adverse outcomes. The yeast demonstrated a high capacity for co-aggregation with the pathogen. Furthermore, the significant amounts of yeast found in the feces of treated mice suggest that intestinal colonization was effective, which was associated with several beneficial effects, including reduced intestinal permeability, which likely limits bacterial translocation to extraintestinal organs. Additionally, the administration of I-3856 reduced levels of sIgA and resulted in a decrease in the recruitment of neutrophils and eosinophils to infection sites, indicating a modulation of the inflammatory response. Histological analyses showed attenuated liver and intestinal lesions in the yeast-treated mice, corroborating the protective effects of the yeast. In conclusion, the results suggest that S. cerevisiae CNCM I-3856 has the potential to control the inflammatory response experimentally induced by S. Typhimurium when administered to mice.
Collapse
Affiliation(s)
- Lara L Campos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha R M Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maisa N S Amaral
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline F Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rosa M E Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Samantha Ribeiro-Souza
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Katia D Vital
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Simone O A Fernandes
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert N Cardoso
- Departamento de Análises Clínicas E Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Flaviano S Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Kirthika P, Senevirathne A, Park S, Aganja RP, Kim IS, Tae HJ, Lee JH. Intracellular Survival and Pathogenicity Modulation of Salmonella Lon, CpxR, and RfaL Mutants Used as Live Bacterial Vectors under Abiotic Stress, Unveiling the Link between Stress Response and Virulence in Epithelial Cells. Int J Mol Sci 2024; 25:9056. [PMID: 39201742 PMCID: PMC11354574 DOI: 10.3390/ijms25169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
In the current study, two Salmonella Typhimurium strains, JOL 912 and JOL 1800, were engineered from the wild-type JOL 401 strain through in-frame deletions of the lon and cpxR genes, with JOL 1800 also lacking rfaL. These deletions significantly attenuated the strains, impairing their intracellular survival and creating unique immunological profiles. This study investigates the response of these strains to various abiotic stress conditions commonly experienced in vivo, including temperature, acidity, osmotic, and oxidative stress. Notably, cold stress induced a non-significant trend towards increased invasion by Salmonella compared to other stressors. Despite the observed attenuation, no significant alterations in entry mechanisms (trigger vs. zipper) were noted between these strains, although variations were evident depending on the host cell type. Both strains effectively localized within the cytoplasm, demonstrating their ability to invade and interact with the intracellular environment. Immunologically, JOL 912 elicited a robust response, marked by substantial activation of nuclear factor kappa B (NF-kB), and chemokines, interleukin 8 (CXCL 8) and interleukin 10 (CXCL 10), comparable to the wild-type JOL 401 (over a fourfold increase compared to JOL 1800). In contrast, JOL 1800 exhibited a minimal immune response. Additionally, these attenuations influenced the expression of cyclins D1 and B1 and caspases 3 and 7, indicating cell cycle arrest at the G2/M phase and promotion of the G0/G1 to S phase transition, alongside apoptosis in infected cells. These findings provide valuable insights into the mechanisms governing the association, internalization, and survival of Salmonella mutants, enhancing our understanding of their regulatory effects on host cell physiology.
Collapse
Affiliation(s)
- Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - Sungwoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| | - In-Shik Kim
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan 54596, Republic of Korea; (I.-S.K.); (H.-J.T.)
| | - Hyun-Jin Tae
- College of Veterinary Medicine and Institute of Animal Transplantation, Jeonbuk National University, Iksan 54596, Republic of Korea; (I.-S.K.); (H.-J.T.)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea; (P.K.); (A.S.); (R.P.A.)
| |
Collapse
|
6
|
Sima CM, Buzilă ER, Trofin F, Păduraru D, Luncă C, Duhaniuc A, Dorneanu OS, Nastase EV. Emerging Strategies against Non-Typhoidal Salmonella: From Pathogenesis to Treatment. Curr Issues Mol Biol 2024; 46:7447-7472. [PMID: 39057083 PMCID: PMC11275306 DOI: 10.3390/cimb46070442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Even with the intensive efforts by public health programs to control and prevent it, non-typhoidal Salmonella (NTS) infection remains an important public health challenge. It is responsible for approximately 150 million illnesses and 60,000 deaths worldwide annually. NTS infection poses significant risks with high rates of morbidity and mortality, leading to potential short- and long-term complications. There is growing concern among health authorities about the increasing incidence of antimicrobial resistance, with multidrug resistance totaling 22.6% in Europe, highlighting an urgent need for new therapeutic approaches. Our review aims to provide a comprehensive overview of NTS infection. We outline the molecular mechanisms involved in the pathogenesis of NTS infection, as well as the events leading to invasive NTS infection and the subsequent complications associated with it. Given the widespread implications of antimicrobial resistance, our review also presents the global landscape of resistance, including multidrug resistance, and delve into the underlying mechanisms driving this resistance. The rising rates of antibiotic resistance frequently lead to treatment failures, emphasizing the importance of investigating alternative therapeutic options. Therefore, in this review we also explore potential alternative therapies that could offer promising approaches to treating NTS infections.
Collapse
Affiliation(s)
- Cristina Mihaela Sima
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Elena Roxana Buzilă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Felicia Trofin
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
| | - Diana Păduraru
- “Dr. C.I. Parhon” Clinical Hospital, 700503 Iasi, Romania;
| | - Cătălina Luncă
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- “Sf. Maria” Children Emergency Hospital, 700309 Iasi, Romania
| | - Alexandru Duhaniuc
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Iasi Regional Center for Public Health, National Institute of Public Health, 700465 Iasi, Romania
| | - Olivia Simona Dorneanu
- Department of Preventive Medicine and Interdisciplinarity—Microbiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (C.M.S.); (E.R.B.); (F.T.); (C.L.); (A.D.)
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
| | - Eduard Vasile Nastase
- Clinical Hospital of Infectious Diseases “Sf. Parascheva”, 700116 Iasi, Romania;
- Department of Internal Medicine II—Infectious Diseases, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
7
|
Singh K, Vashishtha S, Chakraborty A, Kumar A, Thakur S, Kundu B. The Salmonella typhi Cell Division Activator Protein StCAP Impacts Pathogenesis by Influencing Critical Molecular Events. ACS Infect Dis 2024; 10:1990-2001. [PMID: 38815059 DOI: 10.1021/acsinfecdis.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 μM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 μM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.
Collapse
Affiliation(s)
- Kritika Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
8
|
Sun Y, Gao R, Liao X, Shen M, Chen X, Feng J, Ding T. Stress response of Salmonella Newport with various sequence types toward plasma-activated water: Viable but nonculturable state formation and outer membrane vesicle production. Curr Res Food Sci 2024; 8:100764. [PMID: 38779345 PMCID: PMC11109322 DOI: 10.1016/j.crfs.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.
Collapse
Affiliation(s)
- Yuhao Sun
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Rui Gao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Liao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Mofei Shen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xiuqin Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Feng
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tian Ding
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| |
Collapse
|
9
|
Wu Y, Zhang X, Liu X, Li Y, Han D, Pi Y, Whitmore MA, Lu X, Zhang G, Zheng J, Wang J. Strain specificity of lactobacilli with promoted colonization by galactooligosaccharides administration in protecting intestinal barriers during Salmonella infection. J Adv Res 2024; 56:1-14. [PMID: 36894120 PMCID: PMC10834803 DOI: 10.1016/j.jare.2023.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Galactooligosaccharides (GOS) are lactogenic prebiotics that exert health benefits by stimulating the growth of different Lactobacillus strains in the gastrointestinal (GI) tract. OBJECTIVES This study aimed to investigate the mechanism of action of different GOS-enriched lactobacilli in intestinal health. METHODS Piglets and mice were supplemented with GOS to identify specific enrichment of Lactobacillus. The protective effects of individual GOS-enriched lactobacilli were investigated in Salmonella-infected mice. Macrophage depletion and transcriptome analysis were further performed to assess the involvement of macrophages and the underlying mechanisms of individual lactobacilli. An in vitro cell co-culture system was also used to evaluate the anti-adhesive and anti-invasive activities of lactobacilli against Salmonella in epithelial cells. RESULTS GOS markedly increased the relative abundance of three lactobacilli including L. delbrueckii, L. johnsonii, and L. reuteri in both piglets and mice. Supplementation with GOS further alleviated Salmonella infection in mice. L. delbrueckii (ATCC®BAA 365™), but not L. johnsonii or L. reuteri, enhanced propionate production in the intestinal tract and ameliorated Salmonella-induced intestinal inflammation and barrier dysfunction by suppressing the JAK2-STAT3 signaling and M1 macrophage polarization. L. johnsonii (BNCC 186110), on the other hand, inhibited Salmonella adhesion and invasion of epithelial cells through competitive exclusion. However, L. reuteri (BNCC 186135) failed to protect mice against Salmonella infection. CONCLUSION GOS-enriched lactobacilli show a differential role in protecting against Salmonella-induced intestinal barrier dysfunction and inflammation. Our results provide novel insights into the mechanism of action of GOS and individual Lactobacillus strains in the control and prevention of intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
10
|
Koczerka M, Lantier I, Morillon M, Deperne J, Clamagirand CD, Virlogeux-Payant I, Grépinet O. From intestine to beyond: Salmonella entry factors display distinct transcription pattern upon infection in murine models. Open Biol 2024; 14:230312. [PMID: 38228171 DOI: 10.1098/rsob.230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
The infectious process of bacteria of the genus Salmonella requires the finely regulated use of various virulence factors. Among them, the type 3 secretion system-1 (T3SS-1) and the Rck and PagN invasins are involved in the internalization of the pathogen within eukaryotic cells, but their precise role in the host and in the pathogenic process is still poorly understood. In this study, we aimed to determine the kinetics of expression of these entry factors in a typhoid fever-like and a gastroenteritis model in mice by in vivo imaging using bioluminescent Salmonella Typhimurium reporter strains carrying chromosomal transcriptional fusions. Only pagN and T3SS-1 transcription has been clearly identified. Independently of the pathological model, the caecum was identified as the main transcription site of both pagN and the T3SS-1-encoding gene both at early and late stages of the infection. An intense transcription of pagN was also observed in deep organs in the typhoid fever-like model, while that of T3SS-1 remained quite sporadic in these organs, and mainly focused on the intestine all along the infection. This work will help to understand the respective role of these entry factors at the cellular level in the pathogenesis of Salmonella in vivo.
Collapse
Affiliation(s)
| | | | - Marie Morillon
- INRAE, Université de Tours, ISP, 37380, Nouzilly, France
| | | | | | | | | |
Collapse
|
11
|
Chaussé AM, Roche SM, Moroldo M, Hennequet-Antier C, Holbert S, Kempf F, Barilleau E, Trotereau J, Velge P. Epithelial cell invasion by salmonella typhimurium induces modulation of genes controlled by aryl hydrocarbon receptor signaling and involved in extracellular matrix biogenesis. Virulence 2023; 14:2158663. [PMID: 36600181 PMCID: PMC9828750 DOI: 10.1080/21505594.2022.2158663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Salmonella is the only bacterium able to enter a host cell by the two known mechanisms: trigger and zipper. The trigger mechanism relies on the injection of bacterial effectors into the host cell through the Salmonella type III secretion system 1. In the zipper mechanism, mediated by the invasins Rck and PagN, the bacterium takes advantage of a cellular receptor for invasion. This study describes the transcriptomic reprogramming of the IEC-6 intestinal epithelial cell line to Salmonella Typhimurium strains that invaded cells by a trigger, a zipper, or both mechanisms. Using S. Typhimurium strains invalidated for one or other entry mechanism, we have shown that IEC-6 cells could support both entries. Comparison of the gene expression profiles of exposed cells showed that irrespective of the mechanism used for entry, the transcriptomic reprogramming of the cell was nearly the same. On the other hand, when gene expression was compared between cells unexposed or exposed to the bacterium, the transcriptomic reprogramming of exposed cells was significantly different. It is particularly interesting to note the modulation of expression of numerous target genes of the aryl hydrocarbon receptor showing that this transcription factor was activated by S. Typhimurium infection. Numerous genes associated with the extracellular matrix were also modified. This was confirmed at the protein level by western-blotting showing a dramatic modification in some extracellular matrix proteins. Analysis of a selected set of modulated genes showed that the expression of the majority of these genes was modulated during the intracellular life of S. Typhimurium.
Collapse
Affiliation(s)
| | | | - Marco Moroldo
- INRAE, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | | | | | | | | | | | - Philippe Velge
- INRAE, ISP, Université de Tours, Nouzilly, France,CONTACT Philippe Velge
| |
Collapse
|
12
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Ahmetzyanova AA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN. Ligilactobacillus salivarius 7247 Strain: Probiotic Properties and Anti- Salmonella Effect with Prebiotics. Antibiotics (Basel) 2023; 12:1535. [PMID: 37887236 PMCID: PMC10604316 DOI: 10.3390/antibiotics12101535] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
The Ligilactobacillus salivarius 7247 (LS7247) strain, originally isolated from a healthy woman's intestines and reproductive system, has been studied for its probiotic potential, particularly against Salmonella Enteritidis (SE) and Salmonella Typhimurium (ST) as well as its potential use in synbiotics. LS7247 showed high tolerance to gastric and intestinal stress and effectively adhered to human and animal enterocyte monolayers, essential for realizing its probiotic properties. LS7247 showed high anti-Salmonella activity. Additionally, the cell-free culture supernatant (CFS) of LS7247 exhibited anti-Salmonella activity, with a partial reduction upon neutralization with NaOH (p < 0.05), suggesting the presence of anti-Salmonella factors such as lactic acid (LA) and bacteriocins. LS7247 produced a high concentration of LA, reaching 124.0 ± 2.5 mM after 48 h of cultivation. Unique gene clusters in the genome of LS7247 contribute to the production of Enterolysin A and metalloendopeptidase. Notably, LS7247 carries a plasmid with a gene cluster identical to human intestinal strain L. salivarius UCC118, responsible for class IIb bacteriocin synthesis, and a gene cluster identical to porcine strain L. salivarius P1ACE3, responsible for nisin S synthesis. Co-cultivation of LS7247 with SE and ST pathogens reduced their viability by 1.0-1.5 log, attributed to cell wall damage and ATP leakage caused by the CFS. For the first time, the CFS of LS7247 has been shown to inhibit adhesion of SE and ST to human and animal enterocytes (p < 0.01). The combination of Actigen prebiotic and the CFS of LS7247 demonstrated a significant combined effect in inhibiting the adhesion of SE and ST to human and animal enterocytes (p < 0.001). These findings highlight the potential of using the LS7247 as a preventive strategy and employing probiotics and synbiotics to combat the prevalence of salmonellosis in animals and humans caused by multidrug resistant (MDR) strains of SE and ST pathogens.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Irina O. Chikileva
- Laboratory of Cell Immunity, Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia;
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Anna A. Ahmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia; (I.V.K.)
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| |
Collapse
|
13
|
Pandeya A, Zhang Y, Cui J, Yang L, Li J, Zhang G, Wu C, Li Z, Wei Y. Inflammasome activation and pyroptosis mediate coagulopathy and inflammation in Salmonella systemic infection. Microbiol Res 2023; 275:127460. [PMID: 37467711 PMCID: PMC10693354 DOI: 10.1016/j.micres.2023.127460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Inflammasome activation is a critical defense mechanism against bacterial infection. Previous studies suggest that inflammasome activation protects against Salmonella oral infection. Here we find inflammasome activation plays a critical role in the pathogenesis of Salmonella systemic infection. We show that in a systemic infection model by i.p. injection of Salmonella, deficiency of caspase-1 or gasdermin-D prolonged survival time, reduced plasma concentrations of the proinflammatory cytokines IL-1β, IL-6 and TNFα. These deficiencies also protected against coagulopathy during Salmonella infection as evidenced by diminished prolongation of prothrombin time and increase in plasma thrombin-antithrombin complex concentrations in the caspase-1 or gasdermin-D deficient mice. Activation of the NAIP/NLRC4 inflammasome by flagellin and/or the components of the SPI1 type 3 secretion system played a critical role in Salmonella-induced coagulopathy. In the absence of flagellin and SPI1, the Salmonella mutant strain still triggered coagulopathy through the caspase-11/NLRP3 pathway. Our results reveal a previously undisclosed role of the inflammasomes and pyroptosis in the pathogenesis of Salmonella systemic infection.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, USA; Department of Chemistry, University of Kentucky, Lexington, KY, USA
| | - Yan Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Jian Cui
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Ling Yang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Jeffery Li
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Guoying Zhang
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, USA
| | - Congqing Wu
- Saha Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Surgery, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Microbiology, Immunology, and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Zhenyu Li
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, USA.
| | - Yinan Wei
- Department of Pharmaceutical Sciences, Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
14
|
Merkushova AV, Shikov AE, Nizhnikov AA, Antonets KS. For Someone, You Are the Whole World: Host-Specificity of Salmonella enterica. Int J Mol Sci 2023; 24:13670. [PMID: 37761974 PMCID: PMC10530738 DOI: 10.3390/ijms241813670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Salmonella enterica is a bacterial pathogen known to cause gastrointestinal infections in diverse hosts, including humans and animals. Despite extensive knowledge of virulence mechanisms, understanding the factors driving host specificity remains limited. In this study, we performed a comprehensive pangenome-wide analysis of S. enterica to identify potential loci determining preference towards certain hosts. We used a dataset of high-quality genome assemblies grouped into 300 reference clusters with a special focus on four host groups: humans, pigs, cattle, and birds. The reconstructed pangenome was shown to be open and enriched with the accessory component implying high genetic diversity. Notably, phylogenetic inferences did not correspond to the distribution of affected hosts, as large compact phylogenetic groups were absent. By performing a pangenome-wide association study, we identified potential host specificity determinants. These included multiple genes encoding proteins involved in distinct infection stages, e.g., secretion systems, surface structures, transporters, transcription regulators, etc. We also identified antibiotic resistance loci in host-adapted strains. Functional annotation corroborated the results obtained with significant enrichments related to stress response, antibiotic resistance, ion transport, and surface or extracellular localization. We suggested categorizing the revealed specificity factors into three main groups: pathogenesis, resistance to antibiotics, and propagation of mobile genetic elements (MGEs).
Collapse
Affiliation(s)
- Anastasiya V. Merkushova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
15
|
McGuckin MA, Davies JM, Felgner P, Wong KY, Giri R, He Y, Moniruzzaman M, Kryza T, Sajiir H, Hooper JD, Florin TH, Begun J, Oussalah A, Hasnain SZ, Hensel M, Sheng YH. MUC13 Cell Surface Mucin Limits Salmonella Typhimurium Infection by Protecting the Mucosal Epithelial Barrier. Cell Mol Gastroenterol Hepatol 2023; 16:985-1009. [PMID: 37660948 PMCID: PMC10630632 DOI: 10.1016/j.jcmgh.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND & AIMS MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.
Collapse
Affiliation(s)
- Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Julie M Davies
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Pascal Felgner
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Rabina Giri
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Yaowu He
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Md Moniruzzaman
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Haressh Sajiir
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - John D Hooper
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Timothy H Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jakob Begun
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Abderrahim Oussalah
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy, France
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Michael Hensel
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Yong H Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Laboratory of B-Lymphocytes in Autoimmunity and Malignancies, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
16
|
Ling C, Liang S, Li Y, Cao Q, Ye H, Zhang C, Dong Z, Feng D, Wang W, Zuo J. A Potential Adhesin/Invasin STM0306 Participates in Host Cell Inflammation Induced by Salmonella enterica Serovar Typhimurium. Int J Mol Sci 2023; 24:ijms24098170. [PMID: 37175877 PMCID: PMC10179656 DOI: 10.3390/ijms24098170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Salmonella enterica serovar typhimurium (S. Typhimurium) is a common Gram-negative foodborne pathogenic bacterium that causes gastrointestinal disease in humans and animals. It is well known that adhesins and invasins play crucial roles in the infection mechanism of S. Typhimurium. S. Typhimurium STM0306 has been denoted as a putative protein and its functions have rarely been reported. In this study, we constructed the STM0306 gene mutant strain of S. Typhimurium and purified the recombinant STM0306 from Escherichia coli. Deletion of the STM0306 gene resulted in reduced adhesion and invasion of S. Typhimurium to IPEC-J2, Caco-2, and RAW264.7 cells. In addition, STM0306 could bind to intestinal epithelial cells and induced F-actin modulation in IPEC-J2 cells. Furthermore, we found that STM0306 activated the nuclear factor kappa B (NF-κB) signaling pathway and increased the mRNA expression of pro-inflammatory cytokines such as IL-1β, TNF-α, as well as chemokine CXCL2, thus resulting in cellular inflammation in host cells. In vivo, the deletion of the STM0306 gene led to reduced pathogenicity of S. Typhimurium, as evidenced by lower fecal bacterial counts and reduced body weight loss in S. Typhimurium infected mice. In conclusion, the STM0306 of S. Typhimurium is an important adhesin/invasin involved in the pathogenic process and cellular inflammation of the host.
Collapse
Affiliation(s)
- Chong Ling
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shujie Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yan Li
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingyun Cao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Changming Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Zemin Dong
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Dingyuan Feng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weiwei Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianjun Zuo
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Meng K, Zhu P, Shi L, Li S. Determination of the Salmonella intracellular lifestyle by the diversified interaction of Type III secretion system effectors and host GTPases. WIREs Mech Dis 2023; 15:e1587. [PMID: 36250298 DOI: 10.1002/wsbm.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
Intracellular bacteria have developed sophisticated strategies to subvert the host endomembrane system to establish a stable replication niche. Small GTPases are critical players in regulating each step of membrane trafficking events, such as vesicle biogenesis, cargo transport, tethering, and fusion events. Salmonella is a widely studied facultative intracellular bacteria. Salmonella delivers several virulence proteins, termed effectors, to regulate GTPase dynamics and subvert host trafficking for their benefit. In this review, we summarize an updated and systematic understanding of the interactions between bacterial effectors and host GTPases in determining the intracellular lifestyle of Salmonella. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Kun Meng
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Ping Zhu
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Liuliu Shi
- School of Basic Medical Science, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
18
|
Ameji JP, Uzairu A, Shallangwa GA, Uba S. Obstructing Salmonella typhi's virulence in eukaryotic cells through design of its SipB protein antagonists. J Taibah Univ Med Sci 2022; 18:726-736. [PMID: 36852248 PMCID: PMC9957885 DOI: 10.1016/j.jtumed.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/17/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023] Open
Abstract
Objective Typhoid fever, a disease caused by Salmonella typhi, is a leading cause of morbidity and mortality, particularly in developing nations. The evolution of resistance mechanisms to existing antibiotics has necessitated a search for newer drug candidates. This study used computer aided drug design techniques to design novel antibiotics that function by antagonizing SipB, an effector protein of the bacterium that is responsible for its pathogenicity and virulence in eukaryotic host cells. Methods A data set of 32 bioactive molecules with established antibacterial activity against S. typhi was retrieved from the PubChem data base; optimized through a DFT approach in Spartan 14 software; and further subjected to QSAR modeling in BIOVIA-Accelrys Material Studio. The validated model (R2 = 0.80, R2 Adj = 0.78, Q2 LOO = 0.74, R2 pred = 0.54, lack of fit = 0.07) revealed the dominant influence of MATS6c and E3p descriptors on the observed antibacterial activity of the compounds. Information from the model was used to optimize the structures of selected lead compounds in the data set, thus leading to the design of a highly potent set of novel analogues denoted D-1, D-2 and D-3. Results The predicted MIC values of D-1, D-2 and D-3 were 1.03, 0.73 and 0.30 μg/mL, respectively. Furthermore, molecular docking studies on these novel ligands against the active sites of SipB revealed binding energy values of -8.0, -7.7 and -7.7 kcal/mol for D-1, D-2 and D-3, respectively. These values were better than the -7.0 kcal/mol recorded for ciprofloxacin, the reference antibiotic used herein for quality assurance. In addition, drug-likeness and ADMET evaluation of the designed compounds revealed that they are orally bioavailable and exhibit excellent pharmacokinetic and toxicological profiles. Conclusion The current findings may provide a roadmap for the discovery of more potent antibiotics against S. typhi.
Collapse
Affiliation(s)
- John P. Ameji
- Department of Chemistry, Federal University Lokoja, Lokoja, Nigeria,Corresponding address: Department of Chemistry, Federal University Lokoja, P.M.B., 1154, Lokoja, Kogi State, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | | | - Sani Uba
- Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| |
Collapse
|
19
|
Shikov AE, Belousova ME, Belousov MV, Nizhnikov AA, Antonets KS. Salmonella-Based Biorodenticides: Past Applications and Current Contradictions. Int J Mol Sci 2022; 23:ijms232314595. [PMID: 36498920 PMCID: PMC9736839 DOI: 10.3390/ijms232314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
20
|
Serhan M, Hadid M, Dimassi H, Deghel M, Hassan HF. Microbiological safety of commercial canned and dry pet food products in Lebanon. Front Vet Sci 2022; 9:995184. [PMID: 36187806 PMCID: PMC9524538 DOI: 10.3389/fvets.2022.995184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
Estimating the microbiological quality of pet food is essential in providing healthy and safe foods to pets. The aim of this study was to assess the microbiological safety of pet food marketed in Lebanon, namely cat and dog products. To the best of our knowledge, no studies have been conducted in Lebanon nor the Middle East region with reference to pet food quality. Lebanese market was screened and a total of 165 dry and canned pet food products were identified, collected and analyzed for their load of total aerobic microbial count, Enterobacteriaceae species, yeasts and molds, and for the presence of Salmonella and Listeria species. Dry pet food products had higher contamination level compared to canned ones. In terms of non-conformity to the European commission regulations, out of the 165 brands, 11 (7%) had a total aerobic microbial count above 106 cfu/g, and 27 (16%) exceeded 3 × 102 cfu/g as a maximum limit of presumptive Enterobacteriaceae. Among the dry brands, 8 out of 66 (12%) had a contamination level of yeasts and molds above 104 cfu/g. Presumptive Salmonella spp. was detected in 68 (41%) and presumptive Listeria spp. in 106 (64%) of brands. These alarming results necessitates setting and monitoring microbiological standards for pet food in Lebanon. This study contributes as well to the building of a database for knowledge development regarding the potential contamination of pet food by the abovementioned microorganisms.
Collapse
Affiliation(s)
- Mireille Serhan
- Department of Nutritional Sciences, Faculty of Health Sciences, University of Balamand, Tripoli, Lebanon
- Professional Trans-European Mobility Programme for University Studies (TEMPUS) Program in Food Science and Technology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Michella Hadid
- Professional Trans-European Mobility Programme for University Studies (TEMPUS) Program in Food Science and Technology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Hani Dimassi
- School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Maria Deghel
- Professional Trans-European Mobility Programme for University Studies (TEMPUS) Program in Food Science and Technology, Faculty of Arts and Sciences, University of Balamand, Tripoli, Lebanon
| | - Hussein F. Hassan
- Nutrition Program, Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Byblos, Lebanon
- *Correspondence: Hussein F. Hassan
| |
Collapse
|
21
|
Lafrance AE, Chimalapati S, Garcia Rodriguez N, Kinch LN, Kaval KG, Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection. mBio 2022; 13:e0162922. [PMID: 35862776 PMCID: PMC9426531 DOI: 10.1128/mbio.01629-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/17/2022] [Indexed: 11/23/2022] Open
Abstract
Vibrio parahaemolyticus is among the leading causes of bacterial seafood-borne acute gastroenteritis. Like many intracellular pathogens, V. parahaemolyticus invades host cells during infection by deamidating host small Rho GTPases. The Rho GTPase deamidating activity of VopC, a type 3 secretion system (T3SS) translocated effector, drives V. parahaemolyticus invasion. The intracellular pathogen uropathogenic Escherichia coli (UPEC) invades host cells by secreting a VopC homolog, the secreted toxin cytotoxic necrotizing factor 1 (CNF1). Because of the homology between VopC and CNF1, we hypothesized that topical application of CNF1 during V. parahaemolyticus infection could supplement VopC activity. Here, we demonstrate that CNF1 improves the efficiency of V. parahaemolyticus invasion, a bottleneck in V. parahaemolyticus infection, across a range of doses. CNF1 increases V. parahaemolyticus invasion independent of both VopC and the T3SS altogether but leaves a disproportionate fraction of intracellular bacteria unable to escape the endosome and complete their infection cycle. This phenomenon holds true in the presence or absence of VopC but is particularly pronounced in the absence of a T3SS. The native VopC, by contrast, promotes a far less efficient invasion but permits the majority of internalized bacteria to escape the endosome and complete their infection cycle. These studies highlight the significance of enzymatic specificity during infection, as virulence factors (VopC and CNF1 in this instance) with similarities in function (bacterial uptake), catalytic activity (deamidation), and substrates (Rho GTPases) are not sufficiently interchangeable for mediating a successful invasion for neighboring bacterial pathogens. IMPORTANCE Many species of intracellular bacterial pathogens target host small Rho GTPases to initiate invasion, including the human pathogens Vibrio parahaemolyticus and uropathogenic Escherichia coli (UPEC). The type three secretion system (T3SS) effector VopC of V. parahaemolyticus promotes invasion through the deamidation of Rac1 and CDC42 in the host, whereas the secreted toxin cytotoxic necrotizing factor 1 (CNF1) drives UPEC's internalization through the deamidation of Rac1, CDC42, and RhoA. Despite these similarities in the catalytic activity of CNF1 and VopC, we observed that the two enzymes were not interchangeable. Although CNF1 increased V. parahaemolyticus endosomal invasion, most intracellular V. parahaemolyticus aborted their infection cycle and remained trapped in endosomes. Our findings illuminate how the precise biochemical fine-tuning of T3SS effectors is essential for efficacious pathogenesis. Moreover, they pave the way for future investigations into the biochemical mechanisms underpinning V. parahaemolyticus endosomal escape and, more broadly, the regulation of successful pathogenesis.
Collapse
Affiliation(s)
- Alexander E. Lafrance
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Suneeta Chimalapati
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nalleli Garcia Rodriguez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lisa N. Kinch
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Karan Gautam Kaval
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Luk CH, Enninga J, Valenzuela C. Fit to dwell in many places – The growing diversity of intracellular Salmonella niches. Front Cell Infect Microbiol 2022; 12:989451. [PMID: 36061869 PMCID: PMC9433700 DOI: 10.3389/fcimb.2022.989451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella enterica is capable of invading different host cell types including epithelial cells and M cells during local infection, and immune cells and fibroblasts during the subsequent systemic spread. The intracellular lifestyles of Salmonella inside different cell types are remarkable for their distinct residential niches, and their varying replication rates. To study this, researchers have employed different cell models, such as various epithelial cells, immune cells, and fibroblasts. In epithelial cells, S. Typhimurium dwells within modified endolysosomes or gains access to the host cytoplasm. In the cytoplasm, the pathogen is exposed to the host autophagy machinery or poised for rapid multiplication, whereas it grows at a slower rate or remains dormant within the endomembrane-bound compartments. The swift bimodal lifestyle is not observed in fibroblasts and immune cells, and it emerges that these cells handle intracellular S. Typhimurium through different clearance machineries. Moreover, in these cell types S. Typhimurium grows withing modified phagosomes of distinct functional composition by adopting targeted molecular countermeasures. The preference for one or the other intracellular niche and the diverse cell type-specific Salmonella lifestyles are determined by the complex interactions between a myriad of bacterial effectors and host factors. It is important to understand how this communication is differentially regulated dependent on the host cell type and on the distinct intracellular growth rate. To support the efforts in deciphering Salmonella invasion across the different infection models, we provide a systematic comparison of the findings yielded from cell culture models. We also outline the future directions towards a better understanding of these differential Salmonella intracellular lifestyles.
Collapse
Affiliation(s)
- Chak Hon Luk
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| | - Jost Enninga
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
| | - Camila Valenzuela
- Institut Pasteur, Unité « Dynamique des interactions hôte-pathogène » and CNRS UMR3691, Université de Paris Cité, Paris, France
- *Correspondence: Chak Hon Luk, ; Camila Valenzuela,
| |
Collapse
|
23
|
Zhang J, Liu J, Chen C, Wang Y, Chen X, Li X, Xu F. Resistance and Pathogenicity of Salmonella Thompson Isolated from Incubation End of a Poultry Farm. Vet Sci 2022; 9:vetsci9070349. [PMID: 35878365 PMCID: PMC9323645 DOI: 10.3390/vetsci9070349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Non-typhoid Salmonella is the general term of Salmonella other than typhoid and paratyphoid, which often causes foodborne gastroenteritis in humans, but some serotypes have been proved to be pathogenic to poultry. Salmonella Enterica and Salmonella Typhimurium are the common serotypes pathogenic to poultry and have been systematically studied, but other serotypes have rarely been studied. During Salmonella surveillance in farms, we discovered by chance that Salmonella Thompson, a common non-typhoid Salmonella, is also pathogenic to avian embryos. Therefore, this study aimed to explore antimicrobial resistance and pathogenicity of clinical S. Thompson. Firstly, we found that the core-genome multilocus sequence typing of 14 clinical S. Thompson was consistent with two strains of S. Thompson from humans in China. Secondly, the antimicrobial resistance gene analysis demonstrated that all strains carried the polymyxin resistance gene mcr-9, which had not appeared resistance phenotype. Meanwhile, many essential virulence genes were also found in each S. Thompson isolate. Finally, the bacterial inoculation experiment revealed that clinical S. Thompson was highly pathogenic to newborn chicks after yolk sac inoculation. This study suggests that Salmonella Thompson can circulate between humans and poultry farms and transmit drug resistance genes and demonstrated that Salmonella Thompson is highly pathogenic to chicks and should be guarded against in the hatching stage of poultry farms. Abstract Salmonella Thompson, an important foodborne pathogen, is rarely found to be pathogenic to poultry. Accidentally, S. Thompson was found to be pathogenic to embryos of white feather broiler at a poultry farm in China. Therefore, this study aimed to explore antimicrobial resistance and pathogenicity of clinical S. Thompson isolated from dead poultry embryos. The phylogenetic tree based on 16S rRNA and seven housekeeping genes showed that the 14 clinical S. Thompson were closely related. The core-genome multilocus sequence typing of 14 clinical S. Thompson based on whole-genome sequencing was cgST-12774, consistent with the only two strains of S. Thompson from humans in China as reported in the NCBI database. The antimicrobial resistance gene analysis demonstrated that all strains carried aac(6′)-Iaa and the polymyxin resistance gene mcr-9. Antimicrobial sensitivity tests for 18 antibiotics showed that S. Thompson isolates displayed resistance against streptomycin (100%), ampicillin (35.7%), and doxycycline (14.3%), but sensitivity to polymyxin B, proving that the mcr-9 gene had not appeared resistance phenotype. Virulence genes Salmonella pathogenicity island (SPI) SPI1-5, type I fimbriae gene (fimA), flagellar assembly genes (bcfC, flhD, fliA, fliC, fljB, flgK, and lpfC), and other virulence genes (iroN, pagC, and cigR) were found in each S. Thompson isolate. Additionally, the bacterial inoculation experiment with 1-day-old chicks revealed that clinical S. Thompson was highly pathogenic to newborn chicks after yolk sac inoculation. This study highlighted that the S. Thompson isolated from poultry embryos and the S. Thompson causing human foodborne diarrhea in some parts of China belong to the same cgMLST typology (cgST-12774) and showed the pathogenicity of this clinical S. Thompson to chicks.
Collapse
|
24
|
Ménard S, Lacroix-Lamandé S, Ehrhardt K, Yan J, Grassl GA, Wiedemann A. Cross-Talk Between the Intestinal Epithelium and Salmonella Typhimurium. Front Microbiol 2022; 13:906238. [PMID: 35733975 PMCID: PMC9207452 DOI: 10.3389/fmicb.2022.906238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Salmonella enterica serovars are invasive gram-negative bacteria, causing a wide range of diseases from gastroenteritis to typhoid fever, representing a public health threat around the world. Salmonella gains access to the intestinal lumen after oral ingestion of contaminated food or water. The crucial initial step to establish infection is the interaction with the intestinal epithelium. Human-adapted serovars such as S. Typhi or S. Paratyphi disseminate to systemic organs and induce life-threatening disease known as typhoid fever, whereas broad-host serovars such as S. Typhimurium usually are limited to the intestine and responsible for gastroenteritis in humans. To overcome intestinal epithelial barrier, Salmonella developed mechanisms to induce cellular invasion, intracellular replication and to face host defence mechanisms. Depending on the serovar and the respective host organism, disease symptoms differ and are linked to the ability of the bacteria to manipulate the epithelial barrier for its own profit and cross the intestinal epithelium.This review will focus on S. Typhimurium (STm). To better understand STm pathogenesis, it is crucial to characterize the crosstalk between STm and the intestinal epithelium and decipher the mechanisms and epithelial cell types involved. Thus, the purpose of this review is to summarize our current knowledge on the molecular dialogue between STm and the various cell types constituting the intestinal epithelium with a focus on the mechanisms developed by STm to cross the intestinal epithelium and access to subepithelial or systemic sites and survive host defense mechanisms.
Collapse
Affiliation(s)
- Sandrine Ménard
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | - Katrin Ehrhardt
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Jin Yan
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Guntram A. Grassl
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School and German Center for Infection Research (DZIF), Hannover, Germany
| | - Agnès Wiedemann
- IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
- *Correspondence: Agnès Wiedemann,
| |
Collapse
|
25
|
Fan Q, Zuo J, Wang H, Grenier D, Yi L, Wang Y. Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnol Adv 2022; 59:107965. [PMID: 35487393 DOI: 10.1016/j.biotechadv.2022.107965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Quorum sensing (QS), which is a key part of cell/cell communication, is widely distributed in microorganisms, especially in bacteria. Bacteria can produce and detect the presence of QS signal molecule, perceive the composition and density of microorganisms in their complex habitat, and then dynamically regulate their own gene expression to adapt to their environment. Among the many traits controlled by QS in pathogenic bacteria is the expression of virulence factors and antibiotic resistance. Many pathogenic bacteria rely on QS to govern the production of virulence factors and express drug-resistance, especially in zoonotic bacteria. The threat of antibiotic resistant zoonotic bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Targeting QS has proven to be a promising alternative to conventional antibiotic for controlling infections. Here we review the QS systems in common zoonotic pathogenic bacteria and outline how QS may control the virulence and antibiotic resistance of zoonotic bacteria.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
26
|
Guillén S, Marcén M, Fau E, Mañas P, Cebrián G. Relationship between growth ability, virulence, and resistance to food-processing related stresses in non-typhoidal Salmonellae. Int J Food Microbiol 2022; 361:109462. [PMID: 34749188 DOI: 10.1016/j.ijfoodmicro.2021.109462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/01/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
The ability of Salmonella to resist and adapt to harsh conditions is one of the major features that have made this microorganism such a relevant health hazard. However, the impact of these resistance responses on other aspects of Salmonella physiology, such as virulence and growth ability, is still not fully understood. The objective of this study was to determine the maximum growth rates (in three different media), virulence (adhesion and invasion of Caco-2 cells), and other phenotypic characteristics (biofilm-forming ability and antimicrobial resistance) of 23 Salmonella strains belonging to different serovars, and to compare them with their previously determined stress resistance parameters. Significant differences (p < 0.05) in growth rates, virulence, and biofilm-forming ability were found among the 23 strains studied. Nevertheless, whereas less than 3-fold change between the lowest and the highest growth rate was observed, the percentage of cells capable of invading Caco-2 cells varied more than 100-fold, that to form biofilms more than 30-fold, and the antibiotic MICs varied up to 512-fold, among the different strains. Results indicate that those strains with the highest cell adhesion ability were not always the most invasive ones and suggest that, in general terms, a higher stress resistance did not imply a reduced growth ability (rate). Similarly, no association between stress resistance and biofilm formation ability (except for acid stress) or antibiotic resistance (with minor exceptions) was found. Our data also suggest that, in Salmonella, acid stress resistance would be associated with virulence, since a positive correlation of that trait with adhesion and a negative correlation with invasion was found. This study contributes to a better understanding of the physiology of Salmonella and the relationship between bacterial stress resistance, growth ability, and virulence. It also provides new data regarding intra-specific variability of a series of phenotypic characteristics of Salmonella that are relevant from the food safety perspective.
Collapse
Affiliation(s)
- Silvia Guillén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - María Marcén
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ester Fau
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Pilar Mañas
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Guillermo Cebrián
- Departamento de Producción Animal y Ciencia de los Alimentos, Facultad de Veterinaria, Instituto Agroalimentario de Aragón - IA2 - (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
27
|
Brown EW, Bell R, Zhang G, Timme R, Zheng J, Hammack TS, Allard MW. Salmonella Genomics in Public Health and Food Safety. EcoSal Plus 2021; 9:eESP00082020. [PMID: 34125583 PMCID: PMC11163839 DOI: 10.1128/ecosalplus.esp-0008-2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/16/2021] [Indexed: 12/26/2022]
Abstract
The species Salmonella enterica comprises over 2,600 serovars, many of which are known to be intracellular pathogens of mammals, birds, and reptiles. It is now apparent that Salmonella is a highly adapted environmental microbe and can readily persist in a number of environmental niches, including water, soil, and various plant (including produce) species. Much of what is known about the evolution and diversity of nontyphoidal Salmonella serovars (NTS) in the environment is the result of the rise of the genomics era in enteric microbiology. There are over 340,000 Salmonella genomes available in public databases. This extraordinary breadth of genomic diversity now available for the species, coupled with widespread availability and affordability of whole-genome sequencing (WGS) instrumentation, has transformed the way in which we detect, differentiate, and characterize Salmonella enterica strains in a timely way. Not only have WGS data afforded a detailed and global examination of the molecular epidemiological movement of Salmonella from diverse environmental reservoirs into human and animal hosts, but they have also allowed considerable consolidation of the diagnostic effort required to test for various phenotypes important to the characterization of Salmonella. For example, drug resistance, serovar, virulence determinants, and other genome-based attributes can all be discerned using a genome sequence. Finally, genomic analysis, in conjunction with functional and phenotypic approaches, is beginning to provide new insights into the precise adaptive changes that permit persistence of NTS in so many diverse and challenging environmental niches.
Collapse
Affiliation(s)
- Eric W. Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Rebecca Bell
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Guodong Zhang
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Ruth Timme
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jie Zheng
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Thomas S. Hammack
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Marc W. Allard
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| |
Collapse
|
28
|
Patra SD, Mohakud NK, Panda RK, Sahu BR, Suar M. Prevalence and multidrug resistance in Salmonella enterica Typhimurium: an overview in South East Asia. World J Microbiol Biotechnol 2021; 37:185. [PMID: 34580741 DOI: 10.1007/s11274-021-03146-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022]
Abstract
Acute/chronic gastroenteritis is caused by a few serovars of Salmonella enterica. Among different serovars, S. enterica Typhimurium is a potent pathogen that contributes significantly to self-limiting diarrhea related mortality worldwide. With no successful vaccine in hand against this pathogen, antibiotics are used as for gold standard for treatment against Salmonella induced gastroenteritis. Indispensably, rise in multi drug resistance against Salmonella Typhimurium poses challenge to treatment options. South East Asia, with 11 different countries, stands 3rd as super region for global burden of Salmonella induced gastroenteritis. In this review, we made an attempt to discuss on prevalence and multidrug resistance in Salmonella Typhimurium in 11 countries of South East Asia-the issue that has not been seriously addressed so far. By thorough analysis of reported data, we found varying frequencies for prevalence of Salmonella Typhimurium as well as subtle evidences on resistance of this pathogen to multiple antibiotics in different countries. Vietnam ranked top in terms of reports for prevalence and antimicrobial resistance. However, in countries such as Brunei and Timor Leste, no study has been performed so far to track the frequency of incidence and drug resistance of this pathogen. Our review, the first of its kind, emphasizes that, although the pathogen was not found as dominant serovar in South East Asia in last 20 years unlike sub-Saharan Africa, it may be still considered as a major threat in this region due to available evidences for infection in humans as well as contamination in several animal and food sources. More importantly, the importance as a public threat in this subregion of Asia is also due to resistance of this pathogen to multiple antibiotics. South East Asian countries showing incidence and multi drug resistance of Salmonella enterica Typhimurium in human and non-human sources (1969-2020). -Drug resistant S. enterica Typhimurium.
Collapse
Affiliation(s)
| | | | | | | | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, India.
| |
Collapse
|
29
|
Zhou M, Shi Q, Zhang X, Mei L, Ye Y, Fang C, Shang S. Salmonella enterica subsp. diarizonae Harboring ST233, ST1263, and ST1845 in Children. Front Cell Infect Microbiol 2021; 11:727811. [PMID: 34490148 PMCID: PMC8417408 DOI: 10.3389/fcimb.2021.727811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023] Open
Abstract
Objective This study aims to analyze the molecular epidemiology, resistance, and pathogenicity of Salmonella enterica subsp. diarizonae isolated from children. Methods Whole genome sequencing was carried out, and molecular serotypes, sequence types, resistance genes, and virulence genes of S. enterica subsp. diarizonae isolates were analyzed. Antimicrobial susceptibility test was determined by commercialized microdilution method. Results A total of three isolates of S. enterica subsp. diarizonae were isolated during 2015 to 2020. The molecular serotypes of the three strains were 61:c:z35, 61:l,v:1,5,7:[z57], and 65:k:z, respectively, and the sequence types were ST1845, ST233, and ST1263. All the three isolates were susceptible to ceftriaxone, ceftazidime, cefepime, amoxycillin/clavulanic acid, piperacillin/tazobactam, ertapenem, imipenem, levofloxacin, and trimethoprim/sulfamethoxazole. No other resistant gene was detected except aac(6')-Iaa. There were no resistant plasmids detected in all the three isolates. A total of 76 genes were present in all isolates, containing 49 genes of Type III Secretion System (T3SS) mediated by SPI-1and SPI-2, 13 genes of adherence (type 1 fimbriae, Agf, and MisL-related genes), 11 genes of iron uptake (Yersiniabactin), two genes of magnesium uptake, and one gene of typhoid toxin(cdtB). Conclusion The serotypes and sequence types of S. enterica subsp. diarizonae isolates were rarely reported in children; all the S. enterica subsp. diarizonae isolates were susceptible to detected antibiotics; T3SS, adherence, iron uptake, magnesium uptake, and typhoid toxin were responsible for pathogenicity of the S. enterica subsp. diarizonae isolates in children.
Collapse
Affiliation(s)
- Mingming Zhou
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingling Mei
- Microbiological Laboratory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yihua Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Fang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shiqiang Shang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
30
|
Śliwka P, Ochocka M, Skaradzińska A. Applications of bacteriophages against intracellular bacteria. Crit Rev Microbiol 2021; 48:222-239. [PMID: 34428105 DOI: 10.1080/1040841x.2021.1960481] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Infectious diseases pose a significant threat to both human and animal populations. Intracellular bacteria are a group of pathogens that invade and survive within the interior of eukaryotic cells, which in turn protect them from antibacterial drugs and the host immune system. Limited penetration of antibacterials into host cells results in insufficient bacterial clearance and treatment failure. Bacteriophages have, over the decades, been proved to play an important role in combating bacterial infections (phage therapy), making them an important alternative to classical antibiotic strategies today. Phages have been found to be effective at killing various species of extracellular bacteria, but little is still known about how phages control intracellular infections. With advances in phage genomics and mechanisms of delivery and cell uptake, the development of phage-based antibacterial strategies to address the treatment of intracellular bacteria has general potential. In this review, we present the current state of knowledge regarding the application of bacteriophages against intracellular bacteria. We cover phage deployment against the most common intracellular pathogens with special attention to therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Paulina Śliwka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Marta Ochocka
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aneta Skaradzińska
- Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
31
|
Elbediwi M, Shi D, Biswas S, Xu X, Yue M. Changing Patterns of Salmonella enterica Serovar Rissen From Humans, Food Animals, and Animal-Derived Foods in China, 1995-2019. Front Microbiol 2021; 12:702909. [PMID: 34394048 PMCID: PMC8358327 DOI: 10.3389/fmicb.2021.702909] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 12/04/2022] Open
Abstract
Salmonellosis represents a growing threat to global public health. Salmonella enterica remains the leading cause of bacterial foodborne diseases in China. Salmonella enterica serovar Rissen (S. Rissen) has been recognized as one of the emerging serovars among humans in different countries worldwide. However, knowledge on the prevalence of S. Rissen in China is largely lacking. To address essential epidemiological information for S. Rissen in China, a total of 1,182 S. Rissen isolates recovered from samples across the food chain were collected from 16 provinces or province-level cities between 1995 and 2019. Risk factors due to the consumption of animal-derived food products were also analyzed. We found S. Rissen is widely distributed, especially in the Eastern and Southern parts of China, and there is an increasing frequency in recent years as evidenced by the greater number of isolates recovered in 2016, 2017, and 2018. Interestingly, the majority of S. Rissen isolates recovered in this study were from human samples (63.4%; 749/1182), remarkably, 58.4% (438/749) were from asymptomatic carriers. We obtained most of the S. Rissen isolates from humans from Guangxi (59.5%; 446/749) and Shanghai (29.5%; 221/749). Among 302 human diarrheal isolates (40.3%; 302/749), we found 44.6% (139/311) of S. Rissen in children with diarrhea (age below 10 years old). This is of clinical significance as diarrhea is one of the crucial causes of child mortality globally and our findings here highlighted the importance of Salmonella infections in Chinese children. Additionally, S. Rissen isolates were also found to be associated with pork and poultry products in China. This study projected the most updated national-wide study of S. Rissen isolates obtained from different sources in China over the past two decades. Continued surveillance is warranted to further monitor this emerging serovar in China and elsewhere over the world.
Collapse
Affiliation(s)
- Mohammed Elbediwi
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Agriculture Research Center, Animal Health Research Institute, Cairo, Egypt
| | - Daiwei Shi
- National Institutes for Food and Drug Control, Beijing, China
| | - Silpak Biswas
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xuebin Xu
- Department of Microbiology Laboratory, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Min Yue
- Department of Veterinary Medicine, Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou, China.,Hainan Institute of Zhejiang University, Sanya, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou, China
| |
Collapse
|
32
|
Kellermann M, Scharte F, Hensel M. Manipulation of Host Cell Organelles by Intracellular Pathogens. Int J Mol Sci 2021; 22:ijms22126484. [PMID: 34204285 PMCID: PMC8235465 DOI: 10.3390/ijms22126484] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/13/2022] Open
Abstract
Pathogenic intracellular bacteria, parasites and viruses have evolved sophisticated mechanisms to manipulate mammalian host cells to serve as niches for persistence and proliferation. The intracellular lifestyles of pathogens involve the manipulation of membrane-bound organellar compartments of host cells. In this review, we described how normal structural organization and cellular functions of endosomes, endoplasmic reticulum, Golgi apparatus, mitochondria, or lipid droplets are targeted by microbial virulence mechanisms. We focus on the specific interactions of Salmonella, Legionella pneumophila, Rickettsia rickettsii, Chlamydia spp. and Mycobacterium tuberculosis representing intracellular bacterial pathogens, and of Plasmodium spp. and Toxoplasma gondii representing intracellular parasites. The replication strategies of various viruses, i.e., Influenza A virus, Poliovirus, Brome mosaic virus, Epstein-Barr Virus, Hepatitis C virus, severe acute respiratory syndrome virus (SARS), Dengue virus, Zika virus, and others are presented with focus on the specific manipulation of the organelle compartments. We compare the specific features of intracellular lifestyle and replication cycles, and highlight the communalities in mechanisms of manipulation deployed.
Collapse
Affiliation(s)
- Malte Kellermann
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
| | - Felix Scharte
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
| | - Michael Hensel
- Abt. Mikrobiologie, Fachbereich Biologie/Chemie, Barbarastr 11, Universität Osnabrück, 49076 Osnabrück, Germany; (M.K.); (F.S.)
- CellNanOs–Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Barbarastr 11, 49076 Osnabrück, Germany
- Correspondence: ; Tel.: +49-(0)-541-969-3940
| |
Collapse
|
33
|
Barilleau E, Védrine M, Koczerka M, Burlaud-Gaillard J, Kempf F, Grépinet O, Virlogeux-Payant I, Velge P, Wiedemann A. Investigation of the invasion mechanism mediated by the outer membrane protein PagN of Salmonella Typhimurium. BMC Microbiol 2021; 21:153. [PMID: 34020586 PMCID: PMC8140442 DOI: 10.1186/s12866-021-02187-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Salmonella can invade host cells via a type three secretion system called T3SS-1 and its outer membrane proteins, PagN and Rck. However, the mechanism of PagN-dependent invasion pathway used by Salmonella enterica, subspecies enterica serovar Typhimurium remains unclear. RESULTS Here, we report that PagN is well conserved and widely distributed among the different species and subspecies of Salmonella. We showed that PagN of S. Typhimurium was sufficient and necessary to enable non-invasive E. coli over-expressing PagN and PagN-coated beads to bind to and invade different non-phagocytic cells. According to the literature, PagN is likely to interact with heparan sulfate proteoglycan (HSPG) as PagN-mediated invasion could be inhibited by heparin treatment in a dose-dependent manner. This report shows that this interaction is not sufficient to allow the internalization mechanism. Investigation of the role of β1 integrin as co-receptor showed that mouse embryo fibroblasts genetically deficient in β1 integrin were less permissive to PagN-mediated internalization. Moreover, PagN-mediated internalization was fully inhibited in glycosylation-deficient pgsA-745 cells treated with anti-β1 integrin antibody, supporting the hypothesis that β1 integrin and HSPG cooperate to induce the PagN-mediated internalization mechanism. In addition, use of specific inhibitors and expression of dominant-negative derivatives demonstrated that tyrosine phosphorylation and class I phosphatidylinositol 3-kinase were crucial to trigger PagN-dependent internalization, as for the Rck internalization mechanism. Finally, scanning electron microscopy with infected cells showed microvillus-like extensions characteristic of Zipper-like structure, engulfing PagN-coated beads and E. coli expressing PagN, as observed during Rck-mediated internalization. CONCLUSIONS Our results supply new comprehensions into T3SS-1-independent invasion mechanisms of S. Typhimurium and highly indicate that PagN induces a phosphatidylinositol 3-kinase signaling pathway, leading to a Zipper-like entry mechanism as the Salmonella outer membrane protein Rck.
Collapse
Affiliation(s)
| | - Mégane Védrine
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France.,Present Address: Service Biologie Vétérinaire et Santé Animale, Inovalys, Angers, France
| | | | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHRU de Tours, Tours, France
| | - Florent Kempf
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | | | | | - Philippe Velge
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France
| | - Agnès Wiedemann
- INRAE, Université de Tours, ISP, F-37380, Nouzilly, France. .,Present Address: IRSD - Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.
| |
Collapse
|
34
|
Cohen E, Azriel S, Auster O, Gal A, Zitronblat C, Mikhlin S, Scharte F, Hensel M, Rahav G, Gal-Mor O. Pathoadaptation of the passerine-associated Salmonella enterica serovar Typhimurium lineage to the avian host. PLoS Pathog 2021; 17:e1009451. [PMID: 33739988 PMCID: PMC8011750 DOI: 10.1371/journal.ppat.1009451] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica is a diverse bacterial pathogen and a primary cause of human and animal infections. While many S. enterica serovars present a broad host-specificity, several specialized pathotypes have been adapted to colonize and cause disease in one or limited numbers of host species. The underlying mechanisms defining Salmonella host-specificity are far from understood. Here, we present genetic analysis, phenotypic characterization and virulence profiling of a monophasic S. enterica serovar Typhimurium strain that was isolated from several wild sparrows in Israel. Whole genome sequencing and complete assembly of its genome demonstrate a unique genetic signature that includes the integration of the BTP1 prophage, loss of the virulence plasmid, pSLT and pseudogene accumulation in multiple T3SS-2 effectors (sseJ, steC, gogB, sseK2, and sseK3), catalase (katE), tetrathionate respiration (ttrB) and several adhesion/ colonization factors (lpfD, fimH, bigA, ratB, siiC and siiE) encoded genes. Correspondingly, this strain demonstrates impaired biofilm formation, intolerance to oxidative stress and compromised intracellular replication within non-phagocytic host cells. Moreover, while this strain showed attenuated pathogenicity in the mouse, it was highly virulent and caused an inflammatory disease in an avian host. Overall, our findings demonstrate a unique phenotypic profile and genetic makeup of an overlooked S. Typhimurium sparrow-associated lineage and present distinct genetic signatures that are likely to contribute to its pathoadaptation to passerine birds. During Salmonella enterica evolution, many different ecological niches have been effectively occupied by this highly diverse bacterial pathogen. While many S. enterica serovars successfully maintained their ability to infect and colonize in a wide-array of host species, a few biotypes have evolved to colonize and cause a disease in only one or a small group of hosts. The evolutionary dynamic and the mechanisms shaping the host-specificity of Salmonella adapted strains are important to better understand Salmonella pathogenicity and its ecology, but still not fully understood. Here, we report genetic and phenotypic characterization of a S. Typhimurium strain that was isolated from several wild sparrows in Israel. This strain presented unique phenotypic profile that included impaired biofilm formation, high sensitivity to oxidative stress and reduced intracellular replication in non-phagocytic cells. In addition, while this strain was able to cause high inflammatory disease in an avian host, it was highly attenuated in the mouse model. Genome analysis identified that specific genetic signatures found in the sparrow strain are more frequently associated with poultry isolates than clinical isolates of S. Typhimurium. These genetic features are expected to accumulatively contribute toward the adaptation of this strain to birds.
Collapse
Affiliation(s)
- Emiliano Cohen
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Shalevet Azriel
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
| | - Oren Auster
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Adiv Gal
- Faculty of Sciences, Kibbutzim College, Tel-Aviv Israel
| | | | | | - Felix Scharte
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Galia Rahav
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- The Infectious Diseases Research Laboratory, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
35
|
Sierocki R, Jneid B, Orsini Delgado ML, Plaisance M, Maillère B, Nozach H, Simon S. An antibody targeting type III secretion system induces broad protection against Salmonella and Shigella infections. PLoS Negl Trop Dis 2021; 15:e0009231. [PMID: 33711056 PMCID: PMC7990167 DOI: 10.1371/journal.pntd.0009231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/24/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents. Salmonella and Shigella are responsible for gastrointestinal diseases and continue to remain a serious health hazard in South and South-East Asia and African countries, even more with the new emergence of multi drug resistances. Developed vaccines are either not commercialized (for Shigella) or cover only a limited number of serotypes (for Salmonella). There is thus a crucial need to develop cross-protective therapies. By targeting proteins SipD and IpaD belonging respectively to the injectisome of Salmonella and Shigella and necessary to their virulence, we have shown that a monoclonal antibody (mAb) directed against a conserved common region of their apical part provides good cross-protection prophylactic efficacy. We have determined the region targeted by this mAb which could explain why it is conserved among Salmonella and Shigella bacteria.
Collapse
Affiliation(s)
- Raphaël Sierocki
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Marc Plaisance
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
36
|
The Hha-TomB toxin-antitoxin module in Salmonella enterica serovar Typhimurium limits its intracellular survival profile and regulates host immune response. Cell Biol Toxicol 2021; 38:111-127. [PMID: 33651227 DOI: 10.1007/s10565-021-09587-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
The key to bacterial virulence relies on an exquisite balance of signals between microbe and hosts. Bacterial toxin-antitoxin (TA) system is known to play a vital role in response to stress adaptation, drug resistance, biofilm formation, intracellular survival, persistence as well as pathogenesis. In the present study, we investigated the role of Hha-TomB TA system in regulating virulence of Salmonella enterica serovar Typhimurium (S. Typhimurium) in a host model system, where we showed that deletion of hha and tomB genes displayed impaired cell adhesion, invasion, and uptake. The isogenic hha and tomB mutant strain was also found to be deficient in intracellular replication in vitro, with a highly repressed Salmonella Pathogenicity Island-2 (SPI-2) genes and downregulation of Salmonella Pathogenicity Island-1 (SPI-1) genes. In addition, the Δhha and ΔtomB did not show acute colitis in C57BL/6 mice and displayed less dissemination to systemic organs followed by their cecal pathology. The TA mutants also showed reduction in serum cytokine and nitric oxide levels both in vitro and in vivo. However, the inflammation phenotype was restored on complementing strain of TA gene to its mutant strain. In silico studies depicted firm interaction of Hha-TomB complex and the regulatory proteins, namely, SsrA, SsrB, PhoP, and PhoQ. Overall, we demonstrate that this study of Hha-TomB TA system is one of the prime regulating networks essential for S. Typhimurium pathogenesis. 1. Role of Hha-TomB toxin-antitoxin (TA) system in Salmonella pathogenesis was examined. 2. The TA mutants resulted in impaired invasion and intracellular replication in vitro. 3. The TA mutants displayed alteration in SPI-1 and SPI-2 regulatory genes inside host cells. 4. Mutation in TA genes also limited systemic colonization and inflammatory response in vivo.
Collapse
|
37
|
Aguirre-Sanchez JR, Ibarra-Rodriguez JR, Vega-Lopez IF, Martínez-Urtaza J, Chaidez-Quiroz C. Genomic signatures of adaptation to natural settings in non-typhoidal Salmonella enterica Serovars Saintpaul, Thompson and Weltevreden. INFECTION GENETICS AND EVOLUTION 2021; 90:104771. [PMID: 33592318 DOI: 10.1016/j.meegid.2021.104771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Salmonella enterica is a pathogenic bacterium responsible for intestinal illness and systemic diseases such as typhoid and paratyphoid fevers. Among clinical manifestation classification, non-typhoidal Salmonella is mainly known as foodborne pathogen associated with the consumption of fecal contaminated food and water. Even though Salmonella hosts include humans and warm-blooded animals, it has been found in non-host environments as river water where the bacteria use different strategies to fitness the environment persisting and establishment. Now with the availability of WGS and bioinformatics tools, we can explore bacterial genomes with higher resolution to increase our understanding of specific genetic signatures among environmental and clinical isolates, being the goal of this work. Pangenome construction allowed the detection of specific environmental and clinical gene clusters related to metabolism and secretion systems as the main signature respectively. Specifically, D-galactonate degradation pathway was observed mainly in environmental genomes while T3SS and flagellum genes were detected for all clinical but not for all environmental isolates. Gene duplication and pseudogenes accumulation were detected as the main adaptation strategy for environmental isolates; thus, isolation source may play an important role in genome plasticity, conferring a selective advantage to survive and persist for environmental Salmonella isolates. Intact prophage sequences with cargo genes were observable for both isolation sources playing an important role in virulence contribution.
Collapse
Affiliation(s)
| | | | - I F Vega-Lopez
- Parque de Innovación Tecnológica de la Universidad Autónoma de Sinaloa, Culiacán, Mexico
| | - J Martínez-Urtaza
- Departement of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - C Chaidez-Quiroz
- Centro de Investigación en Alimentación y Desarrollo, Culiacán, Mexico.
| |
Collapse
|
38
|
Birhanu BT, Lee EB, Lee SJ, Park SC. Targeting Salmonella Typhimurium Invasion and Intracellular Survival Using Pyrogallol. Front Microbiol 2021; 12:631426. [PMID: 33603727 PMCID: PMC7884331 DOI: 10.3389/fmicb.2021.631426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
Salmonella enterica serovar Typhimurium, an intracellular pathogen, evades the host immune response mechanisms to cause gastroenteritis in animals and humans. After invading the host cells, the bacteria proliferate in Salmonella-containing vacuole (SCV) and escapes from antimicrobial therapy. Moreover, Salmonella Typhimurium develops resistance to various antimicrobials including, fluoroquinolones. Treating intracellular bacteria and combating drug resistance is essential to limit the infection rate. One way of overcoming these challenges is through combination therapy. In this study, Pyrogallol (PG), a polyphenol, is combined with marbofloxacin (MAR) to investigate its effect on Salmonella Typhimurium invasion and intracellular survival inhibition. The Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of PG against Salmonella Typhimurium were 128 and 256 μg/mL, respectively. The lowest fractional inhibitory concentration (FIC) index for a combination of PG and MAR was 0.5. The gentamycin protection assay revealed that PG (30 μg/mL) alone and in combination with sub-MIC of MAR inhibited 72.75 and 76.18% of the invading bacteria in Caco-2 cells, respectively. Besides, the intracellular survival of Salmonella Typhimurium was reduced by 7.69 and 74.36% in treatment with PG alone and combined with sub-MIC of MAR, respectively, which was visualized by the confocal microscopy. PG has also shown to increase the intracellular accumulation of fluoroquinolone by 15.2 and 34.9% at 30 and 100 μg/mL concentration, respectively. Quantitative real-time PCR demonstrated PG suppressed the genetic expression of hilA, invF, sipB, and acrA by 14.6, 15.4, 13.6, and 36%, respectively. However, the downregulation of hilA, invF, sipB, and acrA increased to 80, 74.6, 78, and 70.1%, in combination with sub-MIC of MAR, respectively. Similarly, PG combined with MAR inhibited the expression of sdiA, srgE, and rck genes by 78.6, 62.8, and 61.8%, respectively. In conclusion, PG has shown antimicrobial activity against Salmonella Typhimurium alone and in combination with MAR. It also inhibited invasion and intracellular survival of the bacteria through downregulation of quorum sensing, invading virulence, and efflux pump genes. Hence, PG could be a potential antimicrobial candidate which could limit the intracellular survival and replication of Salmonella Typhimurium.
Collapse
Affiliation(s)
- Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Seung-Jin Lee
- Development and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
39
|
Lee M, Ryu M, Joo M, Seo YJ, Lee J, Kim HM, Shin E, Yeom JH, Kim YH, Bae J, Lee K. Endoribonuclease-mediated control of hns mRNA stability constitutes a key regulatory pathway for Salmonella Typhimurium pathogenicity island 1 expression. PLoS Pathog 2021; 17:e1009263. [PMID: 33524062 PMCID: PMC7877770 DOI: 10.1371/journal.ppat.1009263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/11/2021] [Accepted: 01/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bacteria utilize endoribonuclease-mediated RNA processing and decay to rapidly adapt to environmental changes. Here, we report that the modulation of hns mRNA stability by the endoribonuclease RNase G plays a key role in Salmonella Typhimurium pathogenicity. We found that RNase G determines the half-life of hns mRNA by cleaving its 5′ untranslated region and that altering its cleavage sites by genome editing stabilizes hns mRNA, thus decreasing S. Typhimurium virulence in mice. Under anaerobic conditions, the FNR-mediated transcriptional repression of rnc encoding RNase III, which degrades rng mRNA, and simultaneous induction of rng transcription resulted in rapid hns mRNA degradation, leading to the derepression of genes involved in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). Together, our findings show that RNase III and RNase G levels-mediated control of hns mRNA abundance acts as a regulatory pathway upstream of a complex feed-forward loop for SPI-1 expression. Recent studies have shown that pathogenic bacteria with ribonuclease mutations display attenuated virulence, impaired mobility, and reduced proliferation in host cells. However, the molecular mechanisms underlying ribonuclease-associated pathogenesis have not yet been characterised. Here, we provide strong experimental evidence that the coordinated modulation of endoribonuclease activity constitutes an additional regulatory layer upstream of a complex feed-forward loop controlling global regulatory systems in the Salmonella pathogenicity island 1 (SPI-1) type III secretion system (T3SS). In addition, we showed that this regulatory pathway plays a key role in the virulence of S. Typhimurium in the host. Thus, our study improves the understanding of the mechanisms through which bacterial pathogens sense the host environment and respond precisely by expressing gene products required for adaptation to that particular niche.
Collapse
Affiliation(s)
- Minho Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minkyung Ryu
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Minju Joo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Jaejin Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Hong-Man Kim
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
| | - Yong-Hak Kim
- Department of Microbiology, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Jeehyeon Bae
- Department of Pharmacy, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Dongjak-Gu, Seoul, Republic of Korea
- * E-mail: (Y-HK); (JB); (KL)
| |
Collapse
|
40
|
Elgueta E, Mena J, Orihuela PA. Hydroethanolic Extracts of Haplopappus baylahuen Remy and Aloysia citriodora Palau Have Bactericide Activity and Inhibit the Ability of Salmonella Enteritidis to Form Biofilm and Adhere to Human Intestinal Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:3491831. [PMID: 33575326 PMCID: PMC7857884 DOI: 10.1155/2021/3491831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/15/2023]
Abstract
We analysed whether the hydroethanolic extracts from leaves of Haplopappus baylahuen Remy (bailahuen) and Aloysia citriodora Palau (cedron) inhibit the growth and ability of Salmonella Enteritidis to form biofilms and to adhere to human intestinal epithelial cells. Herein, we first determined the total phenolic content and antioxidant and antibacterial activities of the extracts. Then, Salmonella Enteritidis was treated with the extracts to analyse biofilm formation by scanning electronic microscopy and the violet crystal test. We also measured the efflux pump activity of Salmonella Enteritidis since biofilm formation is associated with this phenomenon. Furthermore, the human intestinal cell line Caco-2 was infected with Salmonella Enteritidis pretreated with the extracts, and 30 min later, the number of bacteria that adhered to the cell surface was quantified. Finally, we determined by qPCR the expression of genes associated with biofilm formation, namely, the diguanilate cyclase AdrA protein gene (adrA) and the BapA protein gene (bapA), and genes associated with adhesion, namely, the transcriptional regulator HilA (hilA). The phenolic content and antioxidant and bactericide activities were higher in bailahuen than in the cedron extract. Biofilm formation was inhibited by the extracts in a dose-dependent manner, while the activity of efflux pumps was decreased only with the cedron extract. Adhesion to Caco-2 cells was also inhibited without differences between doses and extracts. The extracts decreased the expression of adrA; with the cedron extract being the most efficient. The expression of hilA is affected only with the cedron extract. We concluded that hydroethanolic extracts of bailahuen and cedron differentially inhibit the growth of Salmonella Enteritidis and affect its the ability to form biofilms and to adhere to human intestinal epithelial cells. These results highlight the presence of molecules in bailahuen and cedron with a high potential for the control of the Salmonella Enteritidis pathogenesis.
Collapse
Affiliation(s)
- Estefanía Elgueta
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Javier Mena
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Pedro A. Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro de Nanociencia y Nanotecnología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
41
|
Kolenda R, Burdukiewicz M, Wimonć M, Aleksandrowicz A, Ali A, Szabo I, Tedin K, Bartholdson Scott J, Pickard D, Schierack P. Identification of Natural Mutations Responsible for Altered Infection Phenotypes of Salmonella enterica Clinical Isolates by Using Cell Line Infection Screens. Appl Environ Microbiol 2021; 87:e02177-20. [PMID: 33127819 PMCID: PMC7783345 DOI: 10.1128/aem.02177-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022] Open
Abstract
The initial steps of Salmonella pathogenesis involve adhesion to and invasion into host epithelial cells. While well-studied for Salmonella enterica serovar Typhimurium, the factors contributing to this process in other, host-adapted serovars remains unexplored. Here, we screened clinical isolates of serovars Gallinarum, Dublin, Choleraesuis, Typhimurium, and Enteritidis for adhesion to and invasion into intestinal epithelial cell lines of human, porcine, and chicken origins. Thirty isolates with altered infectivity were used for genomic analyses, and 14 genes and novel mutations associated with high or low infectivity were identified. The functions of candidate genes included virulence gene expression regulation and cell wall or membrane synthesis and components. The role of several of these genes in Salmonella adhesion to and invasion into cells has not previously been investigated. The genes dksA (encoding a stringent response regulator) and sanA (encoding a vancomycin high-temperature exclusion protein) were selected for further analyses, and we confirmed their roles in adhesion to and invasion into host cells. Furthermore, transcriptomic analyses were performed for S Enteritidis and S Typhimurium, with two highly infective and two marginally infective isolates for each serovar. Expression profiles for the isolates with altered infection phenotypes revealed the importance of type 3 secretion system expression levels in the determination of an isolate's infection phenotype. Taken together, these data indicate a new role in cell host infection for genes or gene variants previously not associated with adhesion to and invasion into the epithelial cells.IMPORTANCESalmonella is a foodborne pathogen affecting over 200 million people and resulting in over 200,000 fatal cases per year. Its adhesion to and invasion into intestinal epithelial cells represent one of the first and key steps in the pathogenesis of salmonellosis. Still, around 35 to 40% of bacterial genes have no experimentally validated function, and their contribution to bacterial virulence, including adhesion and invasion, remains largely unknown. Therefore, the significance of this study is in the identification of new genes or gene allelic variants previously not associated with adhesion and invasion. It is well established that blocking adhesion and/or invasion would stop or hamper bacterial infection; therefore, the new findings from this study could be used in future developments of anti-Salmonella therapy targeting genes involved in these key processes. Such treatment could be a valuable alternative, as the prevalence of antibiotic-resistant bacteria is increasing very rapidly.
Collapse
Affiliation(s)
- Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Institute of Biotechnology, Faculty Environment and Natural Sciences, BTU Cottbus-Senftenberg, Senftenberg, Germany
| | | | - Marcjanna Wimonć
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adrianna Aleksandrowicz
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Aamir Ali
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Istvan Szabo
- National Salmonella Reference Laboratory, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | - Josefin Bartholdson Scott
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge Department of Medicine, Cambridge, United Kingdom
| | - Derek Pickard
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, University of Cambridge Department of Medicine, Cambridge, United Kingdom
| | - Peter Schierack
- Institute of Biotechnology, Faculty Environment and Natural Sciences, BTU Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Public Health Campus, Brandenburg, Germany
| |
Collapse
|
42
|
Tan S, Yan F, Li Q, Liang Y, Yu J, Li Z, He F, Li R, Li M. Chlorogenic Acid Promotes Autophagy and Alleviates Salmonella Typhimurium Infection Through the lncRNAGAS5/miR-23a/PTEN Axis and the p38 MAPK Pathway. Front Cell Dev Biol 2020; 8:552020. [PMID: 33240872 PMCID: PMC7682651 DOI: 10.3389/fcell.2020.552020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
Background Salmonella typhimurium (ST) causes several intestinal diseases. Polyphenols including chlorogenic acid (CGA) inhibit pathogenesis. Objective This study aimed to investigate the mechanisms of CGA in ST infection. Methods The intestinal pathological changes and survival rate of ST-infected mice were measured to verify the protection of CGA on ST infection. The antibacterial effects of CGA in vitro on the invasion to intestinal epithelial cells and autophagy was evaluated. The relationships among GAS5, miR-23a, and PTEN were verified. Expression of inflammation- and autophagy-related proteins was detected. Results CGA treatment alleviated pathological damage, improved the secretion disturbance of intestinal cytokines caused by ST infection, and reduced the mortality of mice. Intestinal GAS5 was upregulated after CGA treatment. LncRNA GAS5 competitively bound to miR-23a to upregulate PTEN and inhibit the p38 MAPK pathway. CGA regulated the p38 MAPK pathway through lncRNA GAS5/miR-23a/PTEN axis to promote autophagy in ST infection. The functional rescue experiments of miR-23a and PTEN further identified these effects. Conclusion CGA promotes autophagy and inhibits ST infection through the GAS5/miR-23a/PTEN axis and the p38 MAPK pathway.
Collapse
Affiliation(s)
- Shirui Tan
- Center of Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Fang Yan
- Center of Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Qingrong Li
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yaping Liang
- Center of Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Junxu Yu
- Center of Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Zhenjun Li
- Pneumology Department, Suzhou Kowloon Hospital, School of Medicine, Shanghai Jiao Tong University, Suzhou, China
| | - Feifei He
- School of Agriculture, Yunnan University, Kunming, China
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ming Li
- Center of Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
43
|
Qamar A, Ismail T, Akhtar S. Prevalence and antibiotic resistance of Salmonella spp. in South Punjab-Pakistan. PLoS One 2020; 15:e0232382. [PMID: 33211713 PMCID: PMC7676730 DOI: 10.1371/journal.pone.0232382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/07/2020] [Indexed: 11/18/2022] Open
Abstract
Present study aimed at investigating the magnitude of the prevalence and antibiotic resistance among four Salmonella spp. i.e., S. typhi, S. paratyphi A, S. paratyphi B and S. typhimurium. Raw milk and environment samples were collected from the five districts of southern part of the province of Punjab in Pakistan i.e., Multan, Bahawalpur, Lodhran, Dera Ghazi Khan and Muzaffargarh. Extent of antibiotic resistance was also determined and classified as resistant, intermediate and susceptible. District–wise prevalence data on Salmonella spp. in milk and environmental samples indicated higher S. typhi, S. paratyphi B and S. typhimurium count in Bahawalpur, D.G. Khan and Muzaffargarh districts, respectively. Amongst 13 tested antibiotics, chloramphenicol and ofloxacin were found to be the most susceptible against Salmonella spp. Increased emergence of antibacterial resistance was noted with respect to the type of antibiotics among Salmonella spp. isolates. The study suggests serious interventions to be practiced by the farmers and raw milk vendors in animal husbandry and milk marketing, respectively to curb the burden of Salmonella spp. prevalence in milk. Further, active engagement of animal health division and enforcement agencies to ensure sagacious use of antibiotics at farm level may also help in containment of antimicrobial resistance in Salmonella spp.
Collapse
Affiliation(s)
- Aftab Qamar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Tariq Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Saeed Akhtar
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
- * E-mail:
| |
Collapse
|
44
|
Mambu J, Barilleau E, Fragnet-Trapp L, Le Vern Y, Olivier M, Sadrin G, Grépinet O, Taieb F, Velge P, Wiedemann A. Rck of Salmonella Typhimurium Delays the Host Cell Cycle to Facilitate Bacterial Invasion. Front Cell Infect Microbiol 2020; 10:586934. [PMID: 33330131 PMCID: PMC7734966 DOI: 10.3389/fcimb.2020.586934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Salmonella Typhimurium expresses on its outer membrane the protein Rck which interacts with the epidermal growth factor receptor (EGFR) of the plasma membrane of the targeted host cells. This interaction activates signaling pathways, leading to the internalization of Salmonella. Since EGFR plays a key role in cell proliferation, we sought to determine the influence of Rck mediated infection on the host cell cycle. By analyzing the DNA content of uninfected and infected cells using flow cytometry, we showed that the Rck-mediated infection induced a delay in the S-phase (DNA replication phase) of the host cell cycle, independently of bacterial internalization. We also established that this Rck-dependent delay in cell cycle progression was accompanied by an increased level of host DNA double strand breaks and activation of the DNA damage response. Finally, we demonstrated that the S-phase environment facilitated Rck-mediated bacterial internalization. Consequently, our results suggest that Rck can be considered as a cyclomodulin with a genotoxic activity.
Collapse
Affiliation(s)
- Julien Mambu
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | | | - Yves Le Vern
- INRAE, Université de Tours, ISP, Nouzilly, France
| | | | | | | | - Frédéric Taieb
- IRSD-Institut de Recherche en Santé Digestive, Université́ de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | | | | |
Collapse
|
45
|
Kirthika P, Senevirathne A, Jawalagatti V, Park S, Lee JH. Deletion of the lon gene augments expression of Salmonella Pathogenicity Island (SPI)-1 and metal ion uptake genes leading to the accumulation of bactericidal hydroxyl radicals and host pro-inflammatory cytokine-mediated rapid intracellular clearance. Gut Microbes 2020; 11:1695-1712. [PMID: 32567462 PMCID: PMC7524146 DOI: 10.1080/19490976.2020.1777923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 02/03/2023] Open
Abstract
In the present study, we characterized the involvement of Lon protease in bacterial virulence and intracellular survival in Salmonella under abiotic stress conditions resembling the conditions of a natural infection. Wild type (JOL401) and the lon mutant (JOL909) Salmonella Typhimurium were exposed to low temperature, pH, osmotic, and oxidative stress conditions and changes in gene expression profiles related to virulence and metal ion uptake were investigated. Expression of candidate genes invF and hilC of Salmonella Pathogenicity Island (SPI)-1 and sifA and sseJ of SPI-2 revealed that Lon protease controls SPI-1 genes and not SPI-2 genes under all stress conditions tested. The lon mutant exhibited increased accumulation of hydroxyl (OH·) ions that lead to cell damage due to oxidative stress. This oxidative damage can also be linked to an unregulated influx of iron due to the upregulation of ion channel genes such as fepA in the lon mutant. The deletion of lon from the Salmonella genome causes oxidative damage and increased expression of virulence genes. It also prompts the secretion of host pro-inflammatory cytokines leading to early clearance of the bacteria from host cells. We conclude that poor bacterial recovery from mice infected with the lon mutant is a result of disrupted bacterial intracellular equilibrium and rapid activation of cytokine expression leading to bacterial lysis.
Collapse
Affiliation(s)
- Perumalraja Kirthika
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | | | - SungWoo Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
46
|
Campioni F, Gomes CN, Rodrigues DDP, Bergamini AMM, Falcão JP. Phenotypic analyses of Salmonella enterica serovar Enteritidis strains isolated in the pre- and post-epidemic period in Brazil. Braz J Microbiol 2020; 52:173-183. [PMID: 33107010 DOI: 10.1007/s42770-020-00392-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 10/17/2020] [Indexed: 11/26/2022] Open
Abstract
Salmonella Enteritidis has caused, since the 1980s, a sustained epidemic of human infections in many countries. This study analyzed S. Enteritidis strains isolated before and after the epidemic period in Brazil regarding their capacities to survive to acid, oxidative, and high-temperature stresses, and capacity to grow in egg albumen. Moreover, the ability to invade human epithelial cells (Caco-2) and to survive inside human (U937) and chicken (HD11) macrophages was checked. Post-epidemic strains showed a better ability to survive after 10 min under acid stress at 37 °C (P ≤ 0.05). However, both groups of strains showed similar ability to survive after 1 h under acid stress at 37 °C and at 42 °C independently of the time of exposure. Similar ability was verified in both groups of strains regarding oxidative stress, growth in egg albumen, high-temperature stress, invasion to Caco-2 cells, and invasion and survival in macrophages. In conclusion, post-epidemic S. Enteritidis strains showed a better ability to survive under the acid stress found in the stomach, which might be an advantage to reach the intestine and colonize chickens and humans. However, both groups of strains did not differ significantly in the majority of the phenotypic tests analyzed in this study.
Collapse
Affiliation(s)
- Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Carolina Nogueira Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil
| | - Dália Dos Prazeres Rodrigues
- Laboratório de Enterobactérias, Fundação Oswaldo Cruz - FIOCRUZ, Av. Brasil, 4365, Pavilhão Rocha Lima, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Alzira Maria Morato Bergamini
- Laboratório de Microbiologia de Alimentos, Instituto Adolfo Lutz - Centro de Laboratórios Regionais - Ribeirão Preto VI, Rua Minas 877, Ribeirão Preto, SP, 14085-410, Brazil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - USP, Av. do Café, s/n. Bloco S - Sala 41, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
47
|
Wolfson EB, Elvidge J, Tahoun A, Gillespie T, Mantell J, McAteer SP, Rossez Y, Paxton E, Lane F, Shaw DJ, Gill AC, Stevens J, Verkade P, Blocker A, Mahajan A, Gally DL. The interaction of Escherichia coli O157 :H7 and Salmonella Typhimurium flagella with host cell membranes and cytoskeletal components. MICROBIOLOGY (READING, ENGLAND) 2020; 166:947-965. [PMID: 32886602 PMCID: PMC7660914 DOI: 10.1099/mic.0.000959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Bacterial flagella have many established roles beyond swimming motility. Despite clear evidence of flagella-dependent adherence, the specificity of the ligands and mechanisms of binding are still debated. In this study, the molecular basis of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium flagella binding to epithelial cell cultures was investigated. Flagella interactions with host cell surfaces were intimate and crossed cellular boundaries as demarcated by actin and membrane labelling. Scanning electron microscopy revealed flagella disappearing into cellular surfaces and transmission electron microscopy of S. Typhiumurium indicated host membrane deformation and disruption in proximity to flagella. Motor mutants of E. coli O157:H7 and S. Typhimurium caused reduced haemolysis compared to wild-type, indicating that membrane disruption was in part due to flagella rotation. Flagella from E. coli O157 (H7), EPEC O127 (H6) and S. Typhimurium (P1 and P2 flagella) were shown to bind to purified intracellular components of the actin cytoskeleton and directly increase in vitro actin polymerization rates. We propose that flagella interactions with host cell membranes and cytoskeletal components may help prime intimate attachment and invasion for E. coli O157:H7 and S. Typhimurium, respectively.
Collapse
Affiliation(s)
- Eliza B. Wolfson
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Johanna Elvidge
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Amin Tahoun
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Faculty of Veterinary Medicine, Kafrelsheikh University, 33516 Kafr el-Sheikh, Egypt
| | - Trudi Gillespie
- IMPACT Facility, Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Judith Mantell
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Sean P. McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yannick Rossez
- Génie Enzymatique et Cellulaire, UMR 7025 CNRS, Centre de recherche Royallieu, Sorbonne Universités, Université de Technologie de Compiègne, Compiègne Cedex, France
| | - Edith Paxton
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Fiona Lane
- Division of Neurobiology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Darren J. Shaw
- Division of Clinical Sciences, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Andrew C. Gill
- Division of Neurobiology, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jo Stevens
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Paul Verkade
- Departments of Biochemistry, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Ariel Blocker
- Department of Cellular and Molecular Medicine, Biomedical Sciences Building, The University of Bristol, Bristol, BS8 1TD, UK
| | - Arvind Mahajan
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David L. Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| |
Collapse
|
48
|
Cazzola H, Lemaire L, Acket S, Prost E, Duma L, Erhardt M, Čechová P, Trouillas P, Mohareb F, Rossi C, Rossez Y. The Impact of Plasma Membrane Lipid Composition on Flagellum-Mediated Adhesion of Enterohemorrhagic Escherichia coli. mSphere 2020; 5:e00702-20. [PMID: 32938696 PMCID: PMC7494831 DOI: 10.1128/msphere.00702-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/27/2020] [Indexed: 01/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell's plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions.IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.
Collapse
Affiliation(s)
- Hélène Cazzola
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Laurine Lemaire
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Sébastien Acket
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Elise Prost
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Luminita Duma
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Marc Erhardt
- Institute for Biology-Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Čechová
- RCPTM, Palacký University Olomouc, Olomouc, Czech Republic
| | - Patrick Trouillas
- RCPTM, Palacký University Olomouc, Olomouc, Czech Republic
- INSERM U1248-IPPRITT, University of Limoges, Limoges, France
| | - Fady Mohareb
- The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
| | - Claire Rossi
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| | - Yannick Rossez
- Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
| |
Collapse
|
49
|
Khaitlina S, Bozhokina E, Tsaplina O, Efremova T. Bacterial Actin-Specific Endoproteases Grimelysin and Protealysin as Virulence Factors Contributing to the Invasive Activities of Serratia. Int J Mol Sci 2020; 21:E4025. [PMID: 32512842 PMCID: PMC7311988 DOI: 10.3390/ijms21114025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
The article reviews the discovery, properties and functional activities of new bacterial enzymes, proteases grimelysin (ECP 32) of Serratia grimesii and protealysin of Serratia proteamaculans, characterized by both a highly specific "actinase" activity and their ability to stimulate bacterial invasion. Grimelysin cleaves the only polypeptide bond Gly42-Val43 in actin. This bond is not cleaved by any other proteases and leads to a reversible loss of actin polymerization. Similar properties were characteristic for another bacterial protease, protealysin. These properties made grimelysin and protealysin a unique tool to study the functional properties of actin. Furthermore, bacteria Serratia grimesii and Serratia proteamaculans, producing grimelysin and protealysin, invade eukaryotic cells, and the recombinant Escherichia coli expressing the grimelysin or protealysins gene become invasive. Participation of the cellular c-Src and RhoA/ROCK signaling pathways in the invasion of eukaryotic cells by S. grimesii was shown, and involvement of E-cadherin in the invasion has been suggested. Moreover, membrane vesicles produced by S. grimesii were found to contain grimelysin, penetrate into eukaryotic cells and increase the invasion of bacteria into eukaryotic cells. These data indicate that the protease is a virulence factor, and actin can be a target for the protease upon its translocation into the host cell.
Collapse
Affiliation(s)
- Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (E.B.); (O.T.); (T.E.)
| | | | | | | |
Collapse
|
50
|
Rimet CS, Maurer JJ, Berghaus RD, Jordan BJ, da Silva LHA, Stabler LJ, Johnson KK, Tensa LR, Segovia KM, França MS. The Contribution of Eimeria Coinfection and Intestinal Inflammation to Cecal Colonization and Systemic Spread of Salmonella Typhimurium Deficient in Tetrathionate Reductase or Type III Secretion Systems Salmonella Pathogenicity Island 1 or 2. Avian Dis 2020; 63:559-567. [PMID: 31865669 DOI: 10.1637/aviandiseases-d-19-00082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/19/2019] [Indexed: 11/05/2022]
Abstract
Intestinal inflammation may provide a growth advantage for Salmonella and enhance its systemic spread in chickens. Salmonella triggers intestinal inflammation in the host by using type III secretion systems (T3SS) and produces the inflammatory end product tetrathionate. In mice, tetrathionate respiration confers a growth advantage for Salmonella Typhimurium over the competitive microbiome in the inflamed intestine. Coccidia also promote intestinal inflammation and enhance Salmonella intestinal growth and systemic spread in chickens. The objective of this study was to evaluate the contribution of inflammation, induced by Eimeria spp. or Salmonella Typhimurium, to Salmonella colonization and dissemination in chickens. In addition, the fitness costs associated with defects in tetrathionate reductase and T3SS associated with Salmonella Pathogenicity Island 1 or 2 (SPI-1 or SPI-2) were evaluated in in vivo competition experiments with wild-type Salmonella strain, with or without Eimeria coinfection. One-day-old specific-pathogen-free chickens were orally inoculated with a sham inoculum or with 4 × 102 Eimeria oocysts cocktail of Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria mitis. At 6 days of age, birds were orally administered a 1:1 ratio of Salmonella Typhimurium wild-type and mutant deficient in tetrathionate reductase, SPI-1, or SPI-2 (108 colony forming units/bird). Ceca, livers, and drumsticks were collected at 3, 7, 14, and 42 days after Salmonella infection, for bacteriology. Intestinal inflammation was scored by histology. Significantly higher intestinal inflammation was observed in challenge groups compared with the control. However, there were no significant differences in intestinal inflammation scores between groups coinfected with both Eimeria spp. and Salmonella Typhimurium and birds infected with Salmonella alone, and Eimeria coinfection did not increase Salmonella prevalence or abundance. Contrary to mouse studies, tetrathionate reductase did not enhance Salmonella Typhimurium cecal colonization or systemic spread in chickens. SPI-1 and SPI-2 played a significant role in Salmonella dissemination and cecal colonization in chickens, respectively.
Collapse
Affiliation(s)
- Claire-Sophie Rimet
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - John J Maurer
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061
| | - Roy D Berghaus
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Brian J Jordan
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601.,Poultry Science Department, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30601
| | - Luciana Helena Antoniassi da Silva
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601.,Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, SP, 13083-862, Brazil
| | - Lisa J Stabler
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Kasey K Johnson
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Laura R Tensa
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Karen M Segovia
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601
| | - Monique S França
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, 953 College Station Road, University of Georgia, Athens, GA 30601,
| |
Collapse
|