1
|
Beckham J, Kim YJ, Vargas Paniagua E, Kent N, Nagao K, Selvaraji S, Koehler F, Malkin E, Smith X, Tabet A, Kang S, Anikeeva P. Magnetite Nanodiscs Activate Mechanotransductive Calcium Signaling in Diverse Cell Types. J Am Chem Soc 2025; 147:13303-13314. [PMID: 40215485 PMCID: PMC12024462 DOI: 10.1021/jacs.4c18227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/24/2025]
Abstract
Remote magnetomechanical stimulation using magnetic nanomaterials has emerged as a robust and minimally invasive technique for modulating neuronal activity. However, despite the presence of machinery to convert mechanical force into biochemical signals in many types of cells, magnetomechanical stimulation of non-neuronal tissue remains largely unexplored. Here, we demonstrate that in the presence of weak magnetic fields (12-56 mT) with frequencies 5-125 Hz, magnetite nanodiscs (MNDs) activate ubiquitous mechano-sensitive calcium signaling pathways, including transmembrane calcium entry, the release of intracellular calcium reserves, and store-operated calcium signaling. MNDs mediate calcium transients in cells with disparate calcium signaling machinery, such as cardiomyocytes and hippocampal astrocytes. The characteristics of these calcium responses depend on the protein machinery available in each cell type. These findings expand the reach of cellular modulation strategies using magnetic nanoparticles to non-neuronal cells and thereby open new applications probing endocrine, immune, and circulatory functions and related disorders with remote magnetic approaches.
Collapse
Affiliation(s)
- Jacob
L. Beckham
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ye Ji Kim
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Emmanuel Vargas Paniagua
- Department
of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Noah Kent
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Keisuke Nagao
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sharmelee Selvaraji
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- McGovern
Institute for Brain Research, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Florian Koehler
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Elian Malkin
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xavier Smith
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anthony Tabet
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sehoon Kang
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Polina Anikeeva
- Research
Laboratory of Electronics, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department
of Brain and Cognitive Sciences, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
3
|
Dai WL, Bao YN, Fan JF, Ma B, Li SS, Zhao WL, Yu BY, Liu JH. Blockade of spinal dopamine D1/D2 receptor suppresses activation of NMDA receptor through Gαq and Src kinase to attenuate chronic bone cancer pain. J Adv Res 2020; 28:139-148. [PMID: 33364051 PMCID: PMC7753228 DOI: 10.1016/j.jare.2020.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/23/2022] Open
Abstract
Introduction Spinal N-methyl-D-aspartate receptor (NMDAR) is vital in chronic pain, while NMDAR antagonists have severe side effects. NMDAR has been reported to be controlled by G protein coupled receptors (GPCRs), which might present new therapeutic targets to attenuate chronic pain. Dopamine receptors which belong to GPCRs have been reported could modulate the NMDA-mediated currents, while their exact effects on NMDAR in chronic bone cancer pain have not been elucidated. Objectives This study was aim to explore the effects and mechanisms of dopamine D1 receptor (D1DR) and D2 receptor (D2DR) on NMDAR in chronic bone cancer pain. Methods A model for bone cancer pain was established using intra-tibia bone cavity tumor cell implantation (TCI) of Walker 256 in rats. The nociception was assessed by Von Frey assay. A range of techniques including the fluorescent imaging plate reader, western blotting, and immunofluorescence were used to detect cell signaling pathways. Primary cultures of spinal neurons were used for in vitro evaluation. Results Both D1DR and D2DR antagonists decreased NMDA-induced upregulation of Ca2+ oscillations in primary culture spinal neurons. Additionally, D1DR/D2DR antagonists inhibited spinal Calcitonin Gene-Related Peptide (CGRP) and c-Fos expression and alleviated bone cancer pain induced by TCI which could both be reversed by NMDA. And D1DR/D2DR antagonists decreased p-NR1, p-NR2B, and Gαq protein, p-Src expression. Both Gαq protein and Src inhibitors attenuated TCI-induced bone cancer pain, which also be reversed by NMDA. The Gαq protein inhibitor decreased p-Src expression. In addition, D1DR/D2DR antagonists, Src, and Gαq inhibitors inhibited spinal mitogen-activated protein kinase (MAPK) expression in TCI rats, which could be reversed by NMDA. Conclusions Spinal D1DR/D2DR inhibition eliminated NMDAR-mediated spinal neuron activation through Src kinase in a Gαq-protein-dependent manner to attenuate TCI-induced bone cancer pain, which might present a new therapeutic strategy for bone cancer pain.
Collapse
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yi-Ni Bao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ji-Fa Fan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bin Ma
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shan-Shan Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Wan-Li Zhao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Bo-Yang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
4
|
Guo C, Webb SE, Chan CM, Miller AL. TPC2-mediated Ca 2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. J Cell Sci 2020; 133:jcs244780. [PMID: 32546534 DOI: 10.1242/jcs.244780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.
Collapse
Affiliation(s)
- Chenxi Guo
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
5
|
Mechanism of Manganese Dysregulation of Dopamine Neuronal Activity. J Neurosci 2020; 40:5871-5891. [PMID: 32576620 DOI: 10.1523/jneurosci.2830-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
Manganese exposure produces Parkinson's-like neurologic symptoms, suggesting a selective dysregulation of dopamine transmission. It is unknown, however, how manganese accumulates in dopaminergic brain regions or how it regulates the activity of dopamine neurons. Our in vivo studies in male C57BLJ mice suggest that manganese accumulates in dopamine neurons of the VTA and substantia nigra via nifedipine-sensitive Ca2+ channels. Manganese produces a Ca2+ channel-mediated current, which increases neurotransmitter release and rhythmic firing activity of dopamine neurons. These increases are prevented by blockade of Ca2+ channels and depend on downstream recruitment of Ca2+-activated potassium channels to the plasma membrane. These findings demonstrate the mechanism of manganese-induced dysfunction of dopamine neurons, and reveal a potential therapeutic target to attenuate manganese-induced impairment of dopamine transmission.SIGNIFICANCE STATEMENT Manganese is a trace element critical to many physiological processes. Overexposure to manganese is an environmental risk factor for neurologic disorders, such as a Parkinson's disease-like syndrome known as manganism. We found that manganese concentration-dependently increased the excitability of dopamine neurons, decreased the amplitude of action potentials, and narrowed action potential width. Blockade of Ca2+ channels prevented these effects as well as manganese accumulation in the mouse midbrain in vivo Our data provide a potential mechanism for manganese regulation of dopaminergic neurons.
Collapse
|
6
|
Zheng J, Yu Y, Feng W, Li J, Liu J, Zhang C, Dong Y, Pessah IN, Cao Z. Influence of Nanomolar Deltamethrin on the Hallmarks of Primary Cultured Cortical Neuronal Network and the Role of Ryanodine Receptors. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:67003. [PMID: 31166131 PMCID: PMC6792378 DOI: 10.1289/ehp4583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The pyrethroid deltamethrin (DM) is broadly used for insect control. Although DM hyperexcites neuronal networks by delaying inactivation of axonal voltage-dependent [Formula: see text] channels, this mechanism is unlikely to mediate neurotoxicity at lower exposure levels during critical perinatal periods in mammals. OBJECTIVES We aimed to identify mechanisms by which acute and subchronic DM altered axonal and dendritic growth, patterns of synchronous [Formula: see text] oscillations (SCOs), and electrical spike activity (ESA) functions critical to neuronal network formation. METHODS Measurements of SCOs using [Formula: see text] imaging, ESA using microelectrode array (MEA) technology, and dendritic complexity using Sholl analysis were performed in primary murine cortical neurons from wild-type (WT) and/or ryanodine receptor 1 ([Formula: see text]) mice between 5 and 14 d in vitro (DIV). [Formula: see text] binding analysis and a single-channel voltage clamp were utilized to measure engagement of RyRs as a direct target of DM. RESULTS Neuronal networks responded to DM ([Formula: see text]) as early as 5 DIV, reducing SCO amplitude and depressing ESA and burst frequencies by 60-70%. DM ([Formula: see text]) enhanced axonal growth in a nonmonotonic manner. [Formula: see text] enhanced dendritic complexity. DM stabilized channel open states of RyR1, RyR2, and cortical preparations expressing all three isoforms. DM ([Formula: see text]) altered gating kinetics of RyR1 channels, increasing mean open time, decreasing mean closed time, and thereby enhancing overall open probability. SCO patterns from cortical networks expressing [Formula: see text] were more responsive to DM than WT. [Formula: see text] neurons showed inherently longer axonal lengths than WT neurons and maintained less length-promoting responses to nanomolar DM. CONCLUSIONS Our findings suggested that RyRs were sensitive molecular targets of DM with functional consequences likely relevant for mediating abnormal neuronal network connectivity in vitro. https://doi.org/10.1289/EHP4583.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Yiyi Yu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Wei Feng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Jing Li
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ju Liu
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chunlei Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yao Dong
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Isaac N. Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Zhengyu Cao
- State Key Laboratory of Natural Medicines, Jiangsu Provincial Key Laboratory for TCM Evaluation and Translational Research, Department of TCM Pharmacology, School of Traditional Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
7
|
Teplov IY, Tuleukhanov ST, Zinchenko VP. Regulation of Action Potential Frequency and Amplitude by T-type Ca2+ Channel During Spontaneous Synchronous Activity of Hippocampal Neurons. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Zinchenko VP, Gaidin SG, Teplov IY, Kosenkov AM. Inhibition of spontaneous synchronous activity of hippocampal neurons by excitation of GABAergic neurons. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2017. [DOI: 10.1134/s1990747817040110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Dai WL, Yan B, Jiang N, Wu JJ, Liu XF, Liu JH, Yu BY. Simultaneous inhibition of NMDA and mGlu1/5 receptors bylevo-corydalmine in rat spinal cord attenuates bone cancer pain. Int J Cancer 2017; 141:805-815. [DOI: 10.1002/ijc.30780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/10/2017] [Accepted: 04/27/2017] [Indexed: 01/30/2023]
Affiliation(s)
- Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
| | - Bing Yan
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
| | - Nan Jiang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
| | - Juan-Juan Wu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
| | - Xiu-Feng Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
- State Key Laboratory of Natural Medicines; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
| | - Bo-Yang Yu
- State Key Laboratory of Natural Medicines; Department of Traditional Chinese Medicine, China Pharmaceutical University; Nanjing Jiangsu China
| |
Collapse
|
10
|
Marken JP, Halleran AD, Rahman A, Odorizzi L, LeFew MC, Golino CA, Kemper P, Saha MS. A Markovian Entropy Measure for the Analysis of Calcium Activity Time Series. PLoS One 2016; 11:e0168342. [PMID: 27977764 PMCID: PMC5158058 DOI: 10.1371/journal.pone.0168342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/29/2016] [Indexed: 11/18/2022] Open
Abstract
Methods to analyze the dynamics of calcium activity often rely on visually distinguishable features in time series data such as spikes, waves, or oscillations. However, systems such as the developing nervous system display a complex, irregular type of calcium activity which makes the use of such methods less appropriate. Instead, for such systems there exists a class of methods (including information theoretic, power spectral, and fractal analysis approaches) which use more fundamental properties of the time series to analyze the observed calcium dynamics. We present a new analysis method in this class, the Markovian Entropy measure, which is an easily implementable calcium time series analysis method which represents the observed calcium activity as a realization of a Markov Process and describes its dynamics in terms of the level of predictability underlying the transitions between the states of the process. We applied our and other commonly used calcium analysis methods on a dataset from Xenopus laevis neural progenitors which displays irregular calcium activity and a dataset from murine synaptic neurons which displays activity time series that are well-described by visually-distinguishable features. We find that the Markovian Entropy measure is able to distinguish between biologically distinct populations in both datasets, and that it can separate biologically distinct populations to a greater extent than other methods in the dataset exhibiting irregular calcium activity. These results support the benefit of using the Markovian Entropy measure to analyze calcium dynamics, particularly for studies using time series data which do not exhibit easily distinguishable features.
Collapse
Affiliation(s)
- John P. Marken
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Andrew D. Halleran
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Atiqur Rahman
- Department of Computer Science, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Laura Odorizzi
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Michael C. LeFew
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Caroline A. Golino
- Department of Mathematics, College of William and Mary, Williamsburg, Virginia, United States of America
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Peter Kemper
- Department of Computer Science, College of William and Mary, Williamsburg, Virginia, United States of America
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
11
|
Wang J, Wang Y, Guo F, Feng Z, Wang X, Lu C. Nicotinic modulation of Ca2+ oscillations in rat cortical neurons in vitro. Am J Physiol Cell Physiol 2016; 310:C748-54. [DOI: 10.1152/ajpcell.00197.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/29/2016] [Indexed: 01/28/2023]
Abstract
The roles of nicotine on Ca2+ oscillations [intracellular Ca2+ ([Ca2+]i) oscillation] in rat primary cultured cortical neurons were studied. The spontaneous [Ca2+]i oscillations (SCO) were recorded in a portion of the neurons (65%) cultured for 7–10 days in vitro. Application of nicotine enhanced [Ca2+]i oscillation frequency and amplitude, which were reduced by the selective α4β2-nicotinic acetylcholine receptors (nAChRs) antagonist dihydro-β-erythroidine (DHβE) hydrobromide, and the selective α7-nAChRs antagonist methyllycaconitine citrate (MLA, 20 nM). DHβE reduced SCO frequency and prevented the nicotinic increase in the frequency. DHβE somewhat enhanced SCO amplitude and prevented nicotinic increase in the amplitude. MLA (20 nM) itself reduced SCO frequency without affecting the amplitude but blocked nicotinic increase in [Ca2+]i oscillation frequency and amplitude. Furthermore, coadministration of both α4β2- and α7-nAChRs antagonists completely prevented nicotinic increment in [Ca2+]i oscillation frequency and amplitude. Thus, our results indicate that both α4β2- and α7-nAChRs mediated nicotine-induced [Ca2+]i oscillations, and two nAChR subtypes differentially regulated SCO.
Collapse
Affiliation(s)
- JianGang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Pathophysiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - YaLi Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - FangLi Guo
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| | - ZhiBo Feng
- Department of Anatomy, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - XiangFang Wang
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
| | - ChengBiao Lu
- Henan Province Key Laboratory of Brain Research, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, Henan, Peoples Republic of China; and
| |
Collapse
|
12
|
Chaudhury S, Sharma V, Kumar V, Nag TC, Wadhwa S. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev 2016; 38:355-63. [PMID: 26515724 DOI: 10.1016/j.braindev.2015.10.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/21/2015] [Accepted: 10/10/2015] [Indexed: 12/28/2022]
Abstract
Plasticity or neuronal plasticity is a unique and adaptive feature of nervous system which allows neurons to reorganize their interactions in response to an intrinsic or extrinsic stimulation and shapes the formation and maintenance of a functional neuronal circuit. Synaptic plasticity is the most important form of neural plasticity and plays critical role during the development allowing the formation of precise neural connectivity via the process of pruning. In the sensory systems-auditory and visual, this process is heavily dependent on the external cues perceived during the development. Environmental enrichment paradigms in an activity-dependent manner result in early maturation of the synapses and more efficient trans-synaptic signaling or communication flow. This has been extensively observed in the avian auditory system. On the other hand, stimuli results in negative effect can cause alterations in the synaptic connectivity and strength resulting in various developmental brain disorders including autism, fragile X syndrome and rett syndrome. In this review we discuss the role of different forms of activity (spontaneous or environmental) during the development of the nervous system in modifying synaptic plasticity necessary for shaping the adult brain. Also, we try to explore various factors (molecular, genetic and epigenetic) involved in altering the synaptic plasticity in positive and negative way.
Collapse
Affiliation(s)
- Sraboni Chaudhury
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Vikram Sharma
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vivek Kumar
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
13
|
Cao Z, Cui Y, Busse E, Mehrotra S, Rainier JD, Murray TF. Gambierol inhibition of voltage-gated potassium channels augments spontaneous Ca2+ oscillations in cerebrocortical neurons. J Pharmacol Exp Ther 2014; 350:615-23. [PMID: 24957609 PMCID: PMC4152883 DOI: 10.1124/jpet.114.215319] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 06/17/2014] [Indexed: 12/27/2022] Open
Abstract
Gambierol is a marine polycyclic ether toxin produced by the marine dinoflagellate Gambierdiscus toxicus and is a member of the ciguatoxin toxin family. Gambierol has been demonstrated to be either a low-efficacy partial agonist/antagonist of voltage-gated sodium channels or a potent blocker of voltage-gated potassium channels (Kvs). Here we examined the influence of gambierol on intact cerebrocortical neurons. We found that gambierol produced both a concentration-dependent augmentation of spontaneous Ca(2+) oscillations, and an inhibition of Kv channel function with similar potencies. In addition, an array of selective as well as universal Kv channel inhibitors mimicked gambierol in augmenting spontaneous Ca(2+) oscillations in cerebrocortical neurons. These data are consistent with a gambierol blockade of Kv channels underlying the observed increase in spontaneous Ca(2+) oscillation frequency. We also found that gambierol produced a robust stimulation of phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2). Gambierol-stimulated ERK1/2 activation was dependent on both inotropic [N-methyl-d-aspartate (NMDA)] and type I metabotropic glutamate receptors (mGluRs) inasmuch as MK-801 [NMDA receptor inhibitor; (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate], S-(4)-CGP [S-(4)-carboxyphenylglycine], and MTEP [type I mGluR inhibitors; 3-((2-methyl-4-thiazolyl)ethynyl) pyridine] attenuated the response. In addition, 2-aminoethoxydiphenylborane, an inositol 1,4,5-trisphosphate receptor inhibitor, and U73122 (1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione), a phospholipase C inhibitor, both suppressed gambierol-induced ERK1/2 activation, further confirming the role of type I mGluR-mediated signaling in the observed ERK1/2 activation. Finally, we found that gambierol produced a concentration-dependent stimulation of neurite outgrowth that was mimicked by 4-aminopyridine, a universal potassium channel inhibitor. Considered together, these data demonstrate that gambierol alters both Ca(2+) signaling and neurite outgrowth in cerebrocortical neurons as a consequence of blockade of Kv channels.
Collapse
Affiliation(s)
- Zhengyu Cao
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Yanjun Cui
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Eric Busse
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Suneet Mehrotra
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Jon D Rainier
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| | - Thomas F Murray
- State Key Laboratory of Natural Medicines, Department of Complex Prescription of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, People's Republic of China (Z.C.); Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska (Z.C., Y.C., E.B., S.M., T.F.M.); and Department of Chemistry, University of Utah, Salt Lake City, Utah (J.D.R.)
| |
Collapse
|
14
|
Kelamangalath L, Dravid SM, George J, Aldrich JV, Murray TF. κ-Opioid receptor inhibition of calcium oscillations in spinal cord neurons. Mol Pharmacol 2011; 79:1061-71. [PMID: 21422300 PMCID: PMC3102554 DOI: 10.1124/mol.111.071456] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 03/21/2011] [Indexed: 11/22/2022] Open
Abstract
Mouse embryonic spinal cord neurons in culture exhibit spontaneous calcium oscillations from day in vitro (DIV) 6 through DIV 10. Such spontaneous activity in developing spinal cord contributes to maturation of synapses and development of pattern-generating circuits. Here we demonstrate that these calcium oscillations are regulated by κ opioid receptors (KORs). The κ opioid agonist dynorphin (Dyn)-A (1-13) suppressed calcium oscillations in a concentration-dependent manner, and both the nonselective opioid antagonist naloxone and the κ-selective blocker norbinaltorphimine eliminated this effect. The KOR-selective agonist (+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69593) mimicked the effect of Dyn-A (1-13) on calcium oscillations. A κ-specific peptide antagonist, zyklophin, was also able to prevent the suppression of calcium oscillations caused by Dyn-A (1-13). These spontaneous calcium oscillations were blocked by 1 μM tetrodotoxin, indicating that they are action potential-dependent. Although the L-type voltage-gated calcium channel blocker nifedipine did not suppress calcium oscillations, the N-type calcium channel blocker ω-conotoxin inhibited this spontaneous response. Blockers of ionotropic glutamate receptors, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline and dizocilpine maleate (MK-801), also suppressed calcium oscillations, revealing a dependence on glutamate-mediated signaling. Finally, we have demonstrated expression of KORs in glutamatergic spinal neurons and localization in a presynaptic compartment, consistent with previous reports of KOR-mediated inhibition of glutamate release. The KOR-mediated inhibition of spontaneous calcium oscillations may therefore be a consequence of presynaptic inhibition of glutamate release.
Collapse
|
15
|
Maiese K, Chong ZZ, Shang YC, Hou J. Therapeutic promise and principles: metabotropic glutamate receptors. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2011; 1:1-14. [PMID: 19750024 PMCID: PMC2740993 DOI: 10.4161/oxim.1.1.6842] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For a number of disease entities, oxidative stress becomes a significant factor in the etiology and progression of cell dysfunction and injury. Therapeutic strategies that can identify novel signal transduction pathways to ameliorate the toxic effects of oxidative stress may lead to new avenues of treatment for a spectrum of disorders that include diabetes, Alzheimer's disease, Parkinson's disease and immune system dysfunction. In this respect, metabotropic glutamate receptors (mGluRs) may offer exciting prospects for several disorders since these receptors can limit or prevent apoptotic cell injury as well as impact upon cellular development and function. Yet the role of mGluRs is complex in nature and may require specific mGluR modulation for a particular disease entity to maximize clinical efficacy and limit potential disability. Here we discuss the potential clinical translation of mGluRs and highlight the role of novel signal transduction pathways in the metabotropic glutamate system that may be vital for the clinical utility of mGluRs.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
16
|
Wang JM, Sun C. Calcium and neurogenesis in Alzheimer's disease. Front Neurosci 2010; 4:194. [PMID: 21151820 PMCID: PMC2999846 DOI: 10.3389/fnins.2010.00194] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 11/09/2010] [Indexed: 01/19/2023] Open
Abstract
It was evidenced that impairment of calcium homeostasis is a potential mechanism in the development of Alzheimer's disease (AD). It remains, however, unclear how the calcium signaling are associated with in AD progression. Here we review recent studies to discuss the relationship among the signaling of intracellular calcium concentration, neurogenic activity, and AD progression. Analyzing these findings may provide new ideas to improve the neurogenic status in pathological processes in the aging brain.
Collapse
Affiliation(s)
- Jun Ming Wang
- Department of Pathology, University of Mississippi Medical Center Jackson, MS, USA
| | | |
Collapse
|
17
|
Cao Z, LePage KT, Frederick MO, Nicolaou KC, Murray TF. Involvement of caspase activation in azaspiracid-induced neurotoxicity in neocortical neurons. Toxicol Sci 2010; 114:323-34. [PMID: 20047973 DOI: 10.1093/toxsci/kfp312] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Azaspiracids (AZAs) are a novel group of marine phycotoxins that have been associated with severe human intoxication. We found that AZA-1 exposure increased lactate dehydrogense (LDH) efflux in murine neocortical neurons. AZA-1 also produced nuclear condensation and stimulated caspase-3 activity with an half maximal effective concentration (EC(50)) value of 25.8 nM. These data indicate that AZA-1 triggers neuronal death in neocortical neurons by both necrotic and apoptotic mechanisms. An evaluation of the structure-activity relationships of AZA analogs on LDH efflux and caspase-3 activation demonstrated that the full structure of AZAs was required to produce necrotic or apoptotic cell death. The similar potencies of AZA-1 to stimulate LDH efflux and caspase-3 activation and the parallel structure-activity relationships of azaspiracid analogs in the two assays are consistent with a common molecular target for both responses. To explore the molecular mechanism for AZA-1-induced neurotoxicity, we assessed the influence of AZA-1 on Ca(2+) homeostasis. AZA-1 suppressed spontaneous Ca(2+) oscillations (EC(50) = 445 nM) in neocortical neurons. A distinct structure-activity profile was found for inhibition of Ca(2+) oscillations where both the full structure as well as analogs containing only the FGHI domain attached to a phenyl glycine methyl ester moiety were potent inhibitors. The molecular targets for inhibition of spontaneous Ca(2+) oscillations and neurotoxicity may therefore differ. The caspase protease inhibitor Z-VAD-FMK produced a complete elimination of AZA-1-induced LDH efflux and nuclear condensation in neocortical neurons. Although the molecular target for AZA-induced neurotoxicity remains to be established, these results demonstrate that the observed neurotoxicity is dependent on a caspase signaling pathway.
Collapse
Affiliation(s)
- Zhengyu Cao
- Department of Pharmacology, School of Medicine, Creighton University, Omaha, Nebraska 68178, USA
| | | | | | | | | |
Collapse
|
18
|
Santos SF, Pierrot N, Morel N, Gailly P, Sindic C, Octave JN. Expression of human amyloid precursor protein in rat cortical neurons inhibits calcium oscillations. J Neurosci 2009; 29:4708-18. [PMID: 19369541 PMCID: PMC6665322 DOI: 10.1523/jneurosci.4917-08.2009] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/12/2009] [Accepted: 02/27/2009] [Indexed: 12/19/2022] Open
Abstract
Synchronous calcium oscillations are observed in primary cultures of rat cortical neurons when mature networks are formed. This spontaneous neuronal activity needs an accurate control of calcium homeostasis. Alteration of intraneuronal calcium concentration is described in many neurodegenerative disorders, including Alzheimer disease (AD). Although processing of amyloid precursor protein (APP) that generates Abeta peptide has critical implications for AD pathogenesis, the neuronal function of APP remains unclear. Here, we report that expression of human APP (hAPP) in rat cortical neurons increases L-type calcium currents, which stimulate SK channels, calcium-dependent K(+) channels responsible for medium afterhyperpolarization (mAHP). In a neuronal network, increased mAHP in some neurons expressing hAPP leads to inhibition of calcium oscillations in all the cells of the network. This inhibition is independent of production and secretion of Abeta and other APP metabolites. In a neuronal network, reduction of endogenous APP expression using shRNA increases the frequency and reduces the amplitude of calcium oscillations. Altogether, these data support a key role for APP in the control of neuronal excitability.
Collapse
Affiliation(s)
| | | | - Nicole Morel
- Laboratory of Cell Physiology, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Université catholique de Louvain, B-1200 Brussels, Belgium
| | | | | |
Collapse
|
19
|
Kloppenburg P, Mercer AR. Serotonin modulation of moth central olfactory neurons. ANNUAL REVIEW OF ENTOMOLOGY 2008; 53:179-190. [PMID: 18067443 DOI: 10.1146/annurev.ento.53.103106.093408] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the tobacco hornworm, Manduca sexta, 5-hydroxytryptamine (5HT) acting at the level of the antennal lobes contributes significantly to changing the moth's responsiveness to olfactory stimuli. 5HT targets K(+) conductances in the cells, increasing the excitability of central olfactory neurons and their responsiveness to olfactory cues. Effects of 5HT modulation are apparent not only at the single cell level, but also in the activity patterns of populations of neurons that convey olfactory information from antennal lobes to higher centers of the brain. Evidence suggests that 5HT-induced changes in activity within neural circuits of the antennal lobes might also drive structural plasticity, providing the basis for longer-term changes in antennal lobe function.
Collapse
|
20
|
Maiese K, Chong ZZ, Li F. Driving cellular plasticity and survival through the signal transduction pathways of metabotropic glutamate receptors. Curr Neurovasc Res 2005; 2:425-46. [PMID: 16375723 PMCID: PMC2258008 DOI: 10.2174/156720205774962692] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metabotropic glutamate receptors (mGluRs) share a common molecular morphology with other G protein-linked receptors, but there expression throughout the mammalian nervous system places these receptors as essential mediators not only for the initial development of an organism, but also for the vital determination of a cell's fate during many disorders in the nervous system that include amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease, Multiple Sclerosis, epilepsy, trauma, and stroke. Given the ubiquitous distribution of these receptors, the mGluR system impacts upon neuronal, vascular, and glial cell function and is activated by a wide variety of stimuli that includes neurotransmitters, peptides, hormones, growth factors, ions, lipids, and light. Employing signal transduction pathways that can modulate both excitatory and inhibitory responses, the mGluR system drives a spectrum of cellular pathways that involve protein kinases, endonucleases, cellular acidity, energy metabolism, mitochondrial membrane potential, caspases, and specific mitogen-activated protein kinases. Ultimately these pathways can converge to regulate genomic DNA degradation, membrane phosphatidylserine (PS) residue exposure, and inflammatory microglial activation. As we continue to push the envelope for our understanding of this complex and critical family of metabotropic receptors, we should be able to reap enormous benefits for both clinical disease as well as our understanding of basic biology in the nervous system.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA.
| | | | | |
Collapse
|
21
|
Perk CG, Mercer AR. Dopamine modulation of honey bee (Apis mellifera) antennal-lobe neurons. J Neurophysiol 2005; 95:1147-57. [PMID: 16282199 DOI: 10.1152/jn.01220.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Primary olfactory centers [antennal lobes (ALs)] of the honey bee brain are invaded by dopamine (DA)-immunoreactive neurons early in development (pupal stage 3), immediately before a period of rapid growth and compartmentalization of the AL neuropil. Here we examine the modulatory actions of DA on honey bee AL neurons during this period. Voltage-clamp recordings in whole cell configuration were used to determine the effects of DA on ionic currents in AL neurons in vitro from pupal bees at stages 4-6 of the nine stages of metamorphic adult development. In approximately 45% of the neurons tested, DA (5-50 x 10(-5) M) reduced the amplitude of outward currents in the cells. In addition to a slowly activating, sustained outward current, DA reduced the amplitude of a rapidly activating, transient outward conductance in some cells. Both of the currents modulated by DA could be abolished by the removal of Ca2+ from the external medium or by treatment of cells with charybdotoxin (2 x 10(-8) M), a blocker of Ca2+-dependent K+ currents in the cells. Ca2+ currents were not affected by DA, nor were A-type K+ currents (I(A)). Results suggest that the delayed rectifier-like current (I(KV)) also remains intact in the presence of DA. Taken together, our data indicate that Ca2+-dependent K+ currents are targets of DA modulation in honey bee AL neurons. This study lends support to the hypothesis that DA plays a role in the developing brain of the bee.
Collapse
|
22
|
Gruol DL, Netzeband JG, Quina LA, Blakely-Gonzalez PK. Contribution of L‐type channels to Ca 2+ regulation of neuronal properties in early developing Purkinje neurons. THE CEREBELLUM 2005; 4:128-39. [PMID: 16035195 DOI: 10.1080/14734220510007969] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Activity driven Ca2+ signaling is an important regulator of neuronal development. Early developing Purkinje neurons (postnatal day 5-7) prior to the stage of dendritic development express a somatic Ca2+ signaling pathway that is electrically driven and communicates information from the cell membrane to the cytosol and nucleus. In the current studies, we examined the properties and potential functional role of this pathway using acutely isolated Purkinje neurons from postnatal day 5-7 rat pups and brief K+ stimulation to activate the pathway. Results show that the amplitude of the nuclear Ca2+ signal increases as a function of the cytosolic Ca2+ signal but is larger than the cytosolic Ca2+ signal at strong K+ stimulations. Both L-type and P-type Ca2+ channels contribute to the Ca2+ signal. We also show using semiquantitative immunohistochemical methods that activation of this Ca2+ signaling pathway results in activation the transcription factor CREB and that L-type Ca2+ channels play a prominent role in this effect. The level of cfos, a transcription factor whose expression is regulated by CREB, was also increased by K+ stimulation. K+ stimulation also altered the level of the Ca2+ binding protein calbindin, an effect that involved L-type Ca2+ channels. The relationship between increases in Ca2+ and calbindin expression was bell-shaped, with high levels of Ca2+ decreasing calbindin expression. The level of the transmitter GABA was also increased by K+ stimulation but this effect was not dependent on L-type Ca2+ channels. Taken together, these results support a role for L-type channels in the phenotypic expression of Purkinje neuron properties during early development and suggest that the different activity patterns of early developing Purkinje neurons could be one mechanism for signaling the induction of specific genes through differences in cytosolic or nuclear Ca2+.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | |
Collapse
|
23
|
Mercer AR, Kloppenburg P, Hildebrand JG. Plateau Potentials in Developing Antennal-Lobe Neurons of the Moth,Manduca sexta. J Neurophysiol 2005; 93:1949-58. [PMID: 15548619 DOI: 10.1152/jn.01050.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using whole cell recordings from antennal-lobe (AL) neurons in vitro and in situ, in semi-intact brain preparations, we examined membrane properties that contribute to electrical activity exhibited by developing neurons in primary olfactory centers of the brain of the sphinx moth, Manduca sexta. This activity is characterized by prolonged periods of membrane depolarization that resemble plateau potentials. The presence of plateau potential–generating mechanisms was confirmed using a series of tests established earlier. Brief depolarizing current pulses could be used to trigger a plateau state. Once triggered, plateau potentials could be terminated by brief pulses of hyperpolarizing current. Both triggering and terminating of firing states were threshold phenomena, and both conditions resulted in all-or-none responses. Rebound excitation from prolonged hyperpolarizing pulses could also be used to generate plateau potentials in some cells. These neurons were found to express a hyperpolarization-activated inward current. Neither the generation nor the maintenance of plateau potentials was affected by removal of Na+ions from the extracellular medium or by blockade of Na+currents with TTX. However, blocking of Ca2+currents with Cd2+(5 × 10−4M) inhibited the generation of plateau potentials, indicating that, in Manduca AL neurons, plateau potentials depend on Ca2+. Examining Ca2+currents in isolation revealed that activation of these currents occurs in the absence of experimentally applied depolarizing stimuli. Our results suggest that this activity underlies the generation of plateau potentials and characteristic bursts of electrical activity in developing AL neurons of M. sexta.
Collapse
Affiliation(s)
- A R Mercer
- Deptartment of Zoology, University of Otaga, 340 Great King St., Benham Bldg., Rm. 111, Dunedin, New Zealand.
| | | | | |
Collapse
|
24
|
Dravid SM, Murray TF. Spontaneous synchronized calcium oscillations in neocortical neurons in the presence of physiological [Mg(2+)]: involvement of AMPA/kainate and metabotropic glutamate receptors. Brain Res 2004; 1006:8-17. [PMID: 15047019 DOI: 10.1016/j.brainres.2004.01.059] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2004] [Indexed: 10/26/2022]
Abstract
Primary cultures of neocortical neurons exhibit spontaneous Ca(2+) oscillations under zero or low extracellular [Mg(2+)] conditions. We find that mature murine neocortical neurons cultured for 9 days also produce spontaneous Ca(2+) oscillations in the presence of physiological [Mg(2+)]. These Ca(2+) oscillations were action potential mediated inasmuch as tetrodotoxin eliminated their occurrence. AMPA receptors were found to regulate the frequency of Ca(2+) oscillations. In contrast, Ca(2+) oscillations were independent of activation of L-type Ca(2+) channels, and NMDA receptors provided only a minor contribution. Release of intracellular Ca(2+) stores was involved in the oscillatory activity since thapsigargin reduced the amplitude and frequency of the oscillations. S-4-carboxyphenylglycine (S)-4CPG), an antagonist of group I metabotropic glutamate receptor (mGluR), also reduced the amplitude of oscillations. In addition, 1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD), a group I mGluR agonist, increased the oscillation frequency, suggesting a critical role for mGluR in the generation of Ca(2+) oscillations. The mGluR-mediated release of intracellular Ca(2+) stores appeared to be mediated by phospholipase C (PLC) since the PLC inhibitor U73122 eliminated the Ca(2+) oscillations. These results indicate that Ca(2+) oscillations in neocortical cultures in the presence of physiologic [Mg(2+)] are primarily initiated by excitatory input from AMPA receptors and involve mobilization of intracellular Ca(2+) stores following activation of mGluR.
Collapse
Affiliation(s)
- Shashank M Dravid
- Department of Physiology and Pharmacology, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
25
|
Abstract
Cochlear inner hair cells (IHCs) release neurotransmitter onto afferent auditory nerve fibers in response to sound stimulation. During early development, afferent synaptic transmission is triggered by spontaneous Ca2+ spikes of IHCs, which are under efferent cholinergic control. Around the onset of hearing, large-conductance Ca2+-activated K+ channels are acquired, and Ca2+ spikes as well as the cholinergic innervation are lost. Here, we performed patch-clamp measurements in IHCs of mice lacking the CaV1.3 channel (CaV1.3-/-) to investigate the role of this prevailing voltage-gated Ca2+ channel in IHC development and synaptic function. The small Ca2+ current remaining in IHCs from 3-week-old CaV1.3-/- mice was mainly mediated by L-type Ca2+ channels, because it was sensitive to dihydropyridines but resistant to inhibitors of non-L-type Ca2+ channels such as omega-conotoxins GVIA and MVIIC and SNX-482. Depolarization induced only marginal exocytosis in CaV1.3-/- IHC, which was solely mediated by L-type Ca2+ channels, whereas robust exocytic responses were elicited by photolysis of caged Ca2+. Secretion triggered by short depolarizations was reduced proportionally to the Ca2+ current, suggesting that the coupling of the remaining channels to exocytosis was unchanged. CaV1.3-/- IHCs lacked the Ca2+ action potentials and displayed a complex developmental failure. Most strikingly, we observed a continued presence of efferent cholinergic synaptic transmission and a lack of functional large-conductance Ca2+-activated K+ channels up to 4 weeks after birth. We conclude that CaV1.3 channels are essential for normal hair cell development and synaptic transmission.
Collapse
|
26
|
Babwah AV, Dale LB, Ferguson SSG. Protein kinase C isoform-specific differences in the spatial-temporal regulation and decoding of metabotropic glutamate receptor1a-stimulated second messenger responses. J Biol Chem 2003; 278:5419-26. [PMID: 12454004 DOI: 10.1074/jbc.m211053200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) coupled via Gq to the hydrolysis of phosphoinositides stimulate Ca(2+) and PKCbetaII oscillations in both excitable and non-excitable cells. In the present study, we show that mGluR1a activation stimulates the repetitive plasma membrane translocation of each of the conventional and novel, but not atypical, PKC isozymes. However, despite similarities in sequence and cofactor regulation by diacyglycerol and Ca(2+), conventional PKCs exhibit isoform-specific oscillation patterns. PKCalpha and PKCbetaI display three distinct patterns of activity: (1) agonist-independent oscillations, (2) agonist-stimulated oscillations, and (3) persistent plasma membrane localization in response to mGluR1a activation. In contrast, only agonist-stimulated PKCbetaII translocation responses are observed in mGluR1a-expressing cells. PKCbetaI expression also promotes persistent increases in intracellular diacyglycerol concentrations in response to mGluR1a stimulation without affecting PKCbetaII oscillation patterns in the same cell. PKCbetaII isoform-specific translocation patterns are regulated by specific amino acid residues localized within the C-terminal PKC V5 domain. Specifically, Asn-625 and Lys-668 localized within the V5 domain of PKCbetaII cooperatively suppress PKCbetaI-like response patterns for PKCbetaII. Thus, redundancy in PKC isoform expression and differential decoding of second messenger response provides a novel mechanism for generating cell type-specific responses to the same signal.
Collapse
Affiliation(s)
- Andy V Babwah
- Cell Biology Research Group, Robarts Research Institute, University of Western Ontario, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | | | |
Collapse
|
27
|
Mercer AR, Hildebrand JG. Developmental changes in the electrophysiological properties and response characteristics of Manduca antennal-lobe neurons. J Neurophysiol 2002; 87:2650-63. [PMID: 12037168 DOI: 10.1152/jn.2002.87.6.2650] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using whole cell patch-clamp recordings, we have examined changes in the electrophysiological properties and response characteristics of antennal lobe (AL) neurons associated with the metamorphic adult development of the sphinx moth, Manduca sexta. Whole cell current profiles and electrical excitability were examined in dispersed AL neurons in vitro, and in medial-group AL neurons in situ in semi-intact brain preparations. Around stages 2-4 of the 18 stages of metamorphic adult development, whole cell current profiles were dominated by large outward (K+) currents. Calcium-dependent action potentials could be elicited at this stage, but only a small percentage of cells exhibited sodium spikes. From stages 3 to 10, there was a rapid increase in the proportion of AL neurons exhibiting rapidly activating, transient sodium currents, and many cells in vitro exhibited spontaneous bursts of spike activity at this time. As development progressed, action-potential waveforms became shorter in duration and larger in amplitude. Cell-type-specific differences in the prevalence of spontaneous activity, and in the electrophysiological properties and response characteristics of AL neurons, were most apparent late in metamorphosis. While removal of antennal sensory input to the ALs early (stage 1-2) in metamorphosis had no detectable effect on the development of cell excitability, a significantly higher percentage of neurons in vitro from stage 4 pupae exhibited sodium-based action potentials following the addition of serotonin to the culture medium. Characteristic forms of electrical excitability in developing Manduca AL neurons, and their modulation by serotonin, seem likely to play a central role in the functional development of the ALs.
Collapse
Affiliation(s)
- Alison R Mercer
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| | | |
Collapse
|
28
|
Tapia JC, Mentis GZ, Navarrete R, Nualart F, Figueroa E, Sánchez A, Aguayo LG. Early expression of glycine and GABA(A) receptors in developing spinal cord neurons. Effects on neurite outgrowth. Neuroscience 2002; 108:493-506. [PMID: 11738262 DOI: 10.1016/s0306-4522(01)00348-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using fluorometric and immunocytochemical techniques, we found that high glycine concentrations or blockade of glycine receptors increases neurite outgrowth in developing mouse spinal cord neurons. Glycine- and GABA(A)-activated currents were demonstrated during applications of glycine and GABA (50-100 microM) in 5 days in vitro (DIV) neurons. Long application (> or =10 min) of 100 microM glycine desensitized the membrane response by more than 95%. Application of glutamate in the absence of external Mg(2+), at several membrane potentials, did not produce any detectable membrane response in these cells. Immunocytochemical studies with NR1 and GluR1 antibodies showed a delayed appearance of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors respectively. Spontaneous synaptic activity was readily observed in 5 DIV neurons. The use of various receptor antagonists (strychnine, bicuculline, DL-2-amino-5-phosphonovalerate [APV], 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX]) revealed that this activity was predominantly glycinergic, and to a smaller extent, GABAergic. In the presence of bicuculline, APV and CNQX, we detected abundant spontaneous depolarizing potentials which often reached the action potential threshold. Further evidence for functional synaptic activity was provided by the detection of co-localization of gephyrin and synaptophysin at 5 DIV using confocal microscopy. Fluorometric studies with Fluo-3, a Ca(2+) indicator, in 5 DIV cultures showed the presence of spontaneous fluctuations associated with tetrodotoxin-sensitive synaptic events. The number of neurons displaying these fluctuations was significantly increased (>100%) when the cells were bathed in a strychnine-containing solution. On the other hand, these synaptically mediated Ca(2+) events were blocked by the co-application of strychnine and bicuculline. This suggests that glycine and GABA(A) receptors provide a fundamental regulation of both neuronal excitability and intracellular Ca(2+) at this early time of development.The neurotrophic effects of agonists and antagonists for glycine, GABA(A) and glutamate receptors were examined in neurons cultured for 2 or 5 DIV. From all the agonists used, only high concentrations of glycine increased neurite outgrowth in 5 DIV neurons. We found that strychnine also increased neurite outgrowth, whereas tetrodotoxin (1 microM), nimodipine (4 microM) and bicuculline (20 microM) completely blocked it. On the other hand, APV (50 microM) and CNQX (20 microM) were unable to affect neurite outgrowth. These data suggest that spinal glycine receptors depress neurite outgrowth by shunting neuronal excitability. Outgrowth induction possibly results from the enhanced activity found after the inhibition of glycinergic activity. We postulate that this resets the intracellular calcium at a concentration that favors neurite outgrowth.
Collapse
Affiliation(s)
- J C Tapia
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
29
|
Corner MA, van Pelt J, Wolters PS, Baker RE, Nuytinck RH. Physiological effects of sustained blockade of excitatory synaptic transmission on spontaneously active developing neuronal networks--an inquiry into the reciprocal linkage between intrinsic biorhythms and neuroplasticity in early ontogeny. Neurosci Biobehav Rev 2002; 26:127-85. [PMID: 11856557 DOI: 10.1016/s0149-7634(01)00062-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spontaneous bioelectric activity (SBA) taking the form of extracellularly recorded spike trains (SBA) has been quantitatively analyzed in organotypic neonatal rat visual cortex explants at different ages in vitro, and the effects investigated of both short- and long-term pharmacological suppression of glutamatergic synaptic transmission. In the presence of APV, a selective NMDA receptor blocker, 1-2- (but not 3-)week-old cultures recovered their previous SBA levels in a matter of hours, although in imitation of the acute effect of the GABAergic inhibitor picrotoxin (PTX), bursts of action potentials were abnormally short and intense. Cultures treated either overnight or chronically for 1-3 weeks with APV, the AMPA/kainate receptor blocker DNQX, or a combination of the two were found to display very different abnormalities in their firing patterns. NMDA receptor blockade for 3 weeks produced the most severe deviations from control SBA, consisting of greatly prolonged and intensified burst firing with a strong tendency to be broken up into trains of shorter spike clusters. This pattern was most closely approximated by acute GABAergic disinhibition in cultures of the same age, but this latter treatment also differed in several respects from the chronic-APV effect. In 2-week-old explants, in contrast, it was the APV+DNQX treated group which showed the most exaggerated spike bursts. Functional maturation of neocortical networks, therefore, may specifically require NMDA receptor activation (not merely a high level of neuronal firing) which initially is driven by endogenous rather than afferent evoked bioelectric activity. Putative cellular mechanisms are discussed in the context of a thorough review of the extensive but scattered literature relating activity-dependent brain development to spontaneous neuronal firing patterns.
Collapse
Affiliation(s)
- M A Corner
- Academic Medical Centre, Meibergdreef 33, Netherlands Institute for Brain Research, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
30
|
Faure AV, Grunwald D, Moutin MJ, Hilly M, Mauger JP, Marty I, De Waard M, Villaz M, Albrieux M. Developmental expression of the calcium release channels during early neurogenesis of the mouse cerebral cortex. Eur J Neurosci 2001; 14:1613-22. [PMID: 11860456 DOI: 10.1046/j.0953-816x.2001.01786.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The developmental changes of intracellular calcium release channels of mouse neocortex were studied at the onset of neurogenesis, which occurs between embryonic days E11 and E17. The three main isoforms of the two families of intracellular calcium release channels, namely the inositol trisphosphate receptors (IP3R) and the ryanodine receptors (RyR), were detected by their transcripts in the cerebral hemispheres, as early as stage E11. The major isoforms of each family, IP3R-1 and RyR-2, were found at the protein level by Western blot analysis. Expression of these proteins increases progressively throughout brain development. Their localization in coronal sections of cortex has been observed by immunodetection from E12, and compared to the TuJ1 (anti-class III beta-tubulin antibody) neuronal specific labelling. The expression of both channels is greatly enhanced after E12, and both were seen to be present in most of the proliferative and neuronal cells of the slice. Between E12 and E13, there is a striking transition in the pattern of calcium release elicited by specific agonists of these channels, thimerosal for IP3R and caffeine for RyR. The signals induced by thimerosal were not zone-specific, while the observed calcium release signals induced by caffeine were predominantly restricted out of the ventricular zone. This zone-specific caffeine sensitivity is consistent with the main RyR localization immunodetected at E13. Our results indicate that there is a time lag of several days between the molecular detection of calcium release channels and their functional expression, around the time of neuronal differentiation. Altogether, they provide a molecular basis for analyzing the developmental modulation of calcium signals useful for neurogenesis progression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Caffeine/pharmacology
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Binding Proteins/metabolism
- Calreticulin
- Cell Differentiation/physiology
- Cell Division/physiology
- Central Nervous System Stimulants/pharmacology
- Cerebral Cortex/cytology
- Cerebral Cortex/embryology
- Cerebral Cortex/metabolism
- Chelating Agents/pharmacology
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Female
- Fetus
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Male
- Mice
- Mice, Inbred C57BL
- Neurons/cytology
- Neurons/metabolism
- Preservatives, Pharmaceutical/pharmacology
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ribonucleoproteins/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
- Thimerosal/pharmacology
- Transcription, Genetic/physiology
- Tubulin/metabolism
Collapse
Affiliation(s)
- A V Faure
- Laboratoire Canaux Ioniques et Signalisation, INSERM E 9931, Département de Biologie Moléculaire et Structurale, 17 rue des Martyrs, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dale LB, Babwah AV, Bhattacharya M, Kelvin DJ, Ferguson SS. Spatial-temporal patterning of metabotropic glutamate receptor-mediated inositol 1,4,5-triphosphate, calcium, and protein kinase C oscillations: protein kinase C-dependent receptor phosphorylation is not required. J Biol Chem 2001; 276:35900-8. [PMID: 11461909 DOI: 10.1074/jbc.m103847200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The metabotropic glutamate receptors (mGluR), mGluR1a and mGluR5a, are G protein-coupled receptors that couple via G(q) to the hydrolysis of phosphoinositides, the release of Ca(2+) from intracellular stores, and the activation of protein kinase C (PKC). We show here that mGluR1/5 activation results in oscillatory G protein coupling to phospholipase C thereby stimulating oscillations in both inositol 1,4,5-triphosphate formation and intracellular Ca(2+) concentrations. The mGluR1/5-stimulated Ca(2+) oscillations are translated into the synchronized repetitive redistribution of PKCbetaII between the cytosol and plasma membrane. The frequency at which mGluR1a and mGluR5a subtypes stimulate inositol 1,4,5-triphosphate, Ca(2+), and PKCbetaII oscillations is regulated by the charge of a single amino acid residue localized within their G protein-coupling domains. However, oscillatory mGluR signaling does not involve the repetitive feedback phosphorylation and desensitization of mGluR activity, since mutation of the putative PKC consensus sites within the first and second intracellular loops as well as the carboxyl-terminal tail does not prevent mGluR1a-stimulated PKCbetaII oscillations. Furthermore, oscillations in Ca(2+) continued in the presence of PKC inhibitors, which blocked PKCbetaII redistribution from the plasma membrane back into the cytosol. We conclude that oscillatory mGluR signaling represents an intrinsic receptor/G protein coupling property that does not involve PKC feedback phosphorylation.
Collapse
Affiliation(s)
- L B Dale
- John P. Robarts Research Institute, P. O. Box 5015, 100 Perth Drive, London, Ontario N6A 5K8, Canada
| | | | | | | | | |
Collapse
|
32
|
Developmental expression of the TTX-resistant voltage-gated sodium channels Nav1.8 (SNS) and Nav1.9 (SNS2) in primary sensory neurons. J Neurosci 2001. [PMID: 11487631 DOI: 10.1523/jneurosci.21-16-06077.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The development of neuronal excitability involves the coordinated expression of different voltage-gated ion channels. We have characterized the expression of two sensory neuron-specific tetrodotoxin-resistant sodium channel alpha subunits, Na(v)1. (SNS/PN3) and Na(v)1.9 (SNS2/NaN), in developing rat lumbar dorsal root ganglia (DRGs). Expression of both Na(v)1.8 and Na(v)1.9 increases with age, beginning at embryonic day (E) 15 and E17, respectively, and reaching adult levels by postnatal day 7. Their distribution is restricted mainly to those subpopulations of primary sensory neurons in developing and adult DRGs that give rise to unmyelinated C-fibers (neurofilament 200 negative). Na(v)1.8 is expressed in a higher proportion of neuronal profiles than Na(v)1.9 at all stages during development, as in the adult. At E17, almost all Na(v)1.8-expressing neurons also express the high-affinity NGF receptor TrkA, and only a small proportion bind to IB4, a marker for c-ret-expressing (glial-derived neurotrophic factor-responsive) neurons. Because IB4 binding neurons differentiate from TrkA neurons in the postnatal period, the proportion of Na(v)1.8 cells that bind to IB4 increases, in parallel with a decrease in the proportion of Na(v)1.8-TrkA co-expressing cells. In contrast, an equal number of Na(v)1.9 cells bind IB4 and TrkA in embryonic life. The differential expression of Na(v)1.8 and Na(v)1.9 in late embryonic development, with their distinctive kinetic properties, may contribute to the development of spontaneous and stimulus-evoked excitability in small diameter primary sensory neurons in the perinatal period and the activity-dependent changes in differentiation they produce.
Collapse
|
33
|
Abstract
In this review, we summarize the main stages of structural and functional development of retinal ganglion cells (RGCs). We first consider the various mechanisms that are involved in restructuring of dendritic trees. To date, many mechanisms have been implicated including target-dependent factors, interactions from neighboring RGCs, and afferent signaling. We also review recent evidence showing how rapidly such dendritic remodeling might occur, along with the intracellular signaling pathways underlying these rearrangements. Concurrent with such structural changes, the functional responses of RGCs also alter during maturation, from sub-threshold firing to reliable spiking patterns. Here we consider the development of intrinsic membrane properties and how they might contribute to the spontaneous firing patterns observed before the onset of vision. We then review the mechanisms by which this spontaneous activity becomes correlated across neighboring RGCs to form waves of activity. Finally, the relative importance of spontaneous versus light-evoked activity is discussed in relation to the emergence of mature receptive field properties.
Collapse
Affiliation(s)
- E Sernagor
- Department of Neurobiology, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | |
Collapse
|
34
|
Vinay L, Brocard F, Pflieger JF, Simeoni-Alias J, Clarac F. Perinatal development of lumbar motoneurons and their inputs in the rat. Brain Res Bull 2000; 53:635-47. [PMID: 11165799 DOI: 10.1016/s0361-9230(00)00397-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The rat is quite immature at birth and a rapid maturation of motor behavior takes place during the first 2 postnatal weeks. Lumbar motoneurons undergo a rapid development during this period. The last week before birth represents the initial stages of motoneuron differentiation, including regulation of the number of cells and the arrival of segmental and first supraspinal afferents. At birth, motoneurons are electrically coupled and receive both appropriate and inappropriate connections from the periphery; the control from supraspinal structures is weak and exerted mainly through polysynaptic connections. During the 1st postnatal week, inappropriate sensori-motor contacts and electrical coupling disappear, the supraspinal control increases gradually and myelin formation is responsible for an increased conduction velocity in both descending and motor axons. Both N-methyl-D-aspartate (NMDA) and non-NMDA receptors are transiently overexpressed in the neonatal spinal cord. The contribution of non-NMDA receptors to excitatory amino acid transmission increases with age. Activation of gamma-aminobutyric acid(A) and glycine receptors leads to membrane depolarization in embryonic motoneurons but to hyperpolarization in older motoneurons. The firing properties of motoneurons change with development: they are capable of more repetitive firing at the end of the 1st postnatal week than before birth. However, maturation does not proceed simultaneously in the motor pools innervating antagonistic muscles; for instance, the development of repetitive firing of ankle extensor motoneurons lags behind that of flexor motoneurons. The spontaneous embryonic and neonatal network-driven activity, detected at the levels of motoneurons and primary afferent terminals, may play a role in neuronal maturation and in the formation and refinement of sensorimotor connections.
Collapse
Affiliation(s)
- L Vinay
- CNRS, Développement et Pathologie du Mouvement, Marseille, France.
| | | | | | | | | |
Collapse
|
35
|
Benquet P, Frere S, Pichon Y, Tiaho F. Properties and development of calcium currents in embryonic cockroach neurons. Neurosci Lett 2000; 294:49-52. [PMID: 11044584 DOI: 10.1016/s0304-3940(00)01549-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In freshly dissociated neurons from embryonic cockroach (Periplaneta americana L.) brains, voltage-dependent calcium currents appear early in development (E14). Their intensity increases progressively during embryonic life until eclosion (E35). Their time course and voltage dependency are characteristic of high voltage activated (HVA) currents although a 10 mV shift of the I/V curve towards more negative potentials was observed between E18 and E23. Their sensitivity to omega-AgaTx-IVA and omega-CgTx-GVIA and insensitivity to both amiloride and isradipine indicate that the corresponding channels are of the P/Q and N types. These channels, as well as a small proportion of toxin-resistant (R) channels (about 20%), are blocked by mibefradil and verapamil. The physiological significance of these currents and their modifications during embryonic life is discussed.
Collapse
Affiliation(s)
- P Benquet
- Equipe Canaux et Récepteurs Membranaires, UMR 6026, Campus de Beaulieu, Bât. 13, 35042 Cedex, Rennes, France
| | | | | | | |
Collapse
|
36
|
Tapia JC, Cárdenas AM, Nualart F, Mentis GZ, Navarrete R, Aguayo LG. Neurite outgrowth in developing mouse spinal cord neurons is modulated by glycine receptors. Neuroreport 2000; 11:3007-10. [PMID: 11006984 DOI: 10.1097/00001756-200009110-00036] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The effect of glycine receptor activation on neurite outgrowth and survival was studied in 5 DIV (days in vitro) spinal neurons. These neurons were depolarized by spontaneous synaptic activity and by glycine, but not by glutamate. These responses were accompanied by increases in intracellular calcium concentration measured with Indo-1 and Fluo-3. Glycine (100 microM, 48 h) increased (46 +/- 6%) the number of primary neurites and total neuritic length. This effect was mediated by synaptic activity and calcium influx because TTX (1 microM) and nimodipine (4 microM) blocked the stimulatory effect of glycine. Neuronal survival, on the other hand, was not affected. This study shows for the first time the modulatory effect of glycine receptors on spinal neuron development.
Collapse
Affiliation(s)
- J C Tapia
- Laboratory of Neurophysiology, University of Concepción, Chile
| | | | | | | | | | | |
Collapse
|
37
|
Ceranik K, Zhao S, Frotscher M. Development of the entorhino-hippocampal projection: guidance by Cajal-Retzius cell axons. Ann N Y Acad Sci 2000; 911:43-54. [PMID: 10911866 DOI: 10.1111/j.1749-6632.2000.tb06718.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The entorhinal cortex gives rise to a massive projection to the hippocampus and fascia dentata. In the rat, this projection forms early in development with first entorhinal axons reaching the hippocampus around embryonic day (E) 17. From the very beginning, the entorhinal axons recognize their appropriate termination zones in the hippocampus proper and fascia dentata, i.e., stratum lacunosum-moleculare and the outer molecular layer of the dentate. This is remarkable, because at the time of entorhinal fiber ingrowth, the definitive target cells of entorhinal axons, pyramidal cells and granule cells, are not yet fully developed, and the majority of their distal dendritic tips have not yet reached these layers. This raises the question as to the cellular and molecular signals guiding the entorhinal axons to and keeping them in their target layers. Here we hypothesize that early generated Cajal-Retzius (CR) cells located in stratum lacunosum-moleculare and the outer molecular layer of the dentate, and in particular their axons projecting to the entorhinal cortex, provide a template that is used by the entorhinal axons to find their target layers in the hippocampus.
Collapse
Affiliation(s)
- K Ceranik
- Institute of Anatomy, University of Freiburg, Germany
| | | | | |
Collapse
|
38
|
|
39
|
Kochan LD, Churn SB, Omojokun O, Rice A, DeLorenzo RJ. Status epilepticus results in an N-methyl-D-aspartate receptor-dependent inhibition of Ca2+/calmodulin-dependent kinase II activity in the rat. Neuroscience 2000; 95:735-43. [PMID: 10670440 DOI: 10.1016/s0306-4522(99)00462-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Status epilepticus is a major medical emergency that results in significant alteration of neuronal function. Status epilepticus involves seizure activity recurring frequently enough to induce a sustained alteration in brain function. This study was initiated to investigate how status epilepticus affects the activity of calcium and calmodulin-dependent kinase II in the brain. Calcium and calmodulin-dependent kinase II is a neuronally enriched signal transducing system involved in the regulation of neurotransmitter synthesis and release, cytoskeletal function, gene transcription, neurotransmitter receptor function and neuronal excitability. Therefore, alteration of this signal transduction system would have significant physiological effects. Status epilepticus was induced in rats by pilocarpine injection, allowed to progress for 60 min and terminated by repeated diazepam injections. Animals were killed at specific time-points and examined for calcium and calmodulin-dependent kinase II activity. Calcium and calmodulin-dependent kinase II activity was significantly reduced in cerebral cortex and hippocampal homogenates obtained from status epilepticus rats when compared with control animals. Once established, the status epilepticus-induced inhibition of calcium and calmodulin-dependent kinase II activity was observed at all time-points tested following the termination of seizure activity. However, calcium and calmodulin-dependent kinase II activity was not significantly decreased in thalamus and cerebellar homogenates. In addition, status epilepticus-induced inhibition of calcium and calmodulin-dependent kinase II activity was dependent upon activation of N-methyl-D-aspartate subtype of glutamatergic receptors. Thus, status epilepticus induced a significant inhibition of calcium and calmodulin-dependent kinase II activity that involves N-methyl-D-aspartate receptor activation. The data support the hypothesis that inhibition of calcium and calmodulin-dependent kinase II activity may be involved in the alteration of neuronal function following status epilepticus.
Collapse
Affiliation(s)
- L D Kochan
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0599, USA
| | | | | | | | | |
Collapse
|
40
|
A role for voltage-gated potassium channels in the outgrowth of retinal axons in the developing visual system. J Neurosci 2000. [PMID: 10648707 DOI: 10.1523/jneurosci.20-03-01020.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural activity is important for establishing proper connectivity in the developing visual system. Tetrodotoxin blockade of sodium (Na(+))-dependent action potentials impairs the refining of synaptic connections made by developing retinal ganglion cells (RGCs), but does not affect their ability to get out to their target. Although this may suggest neural activity is not required for the directed extension of RGC axons, in many species developing RGCs express additional, Na(+)-independent ionic mechanisms. To test whether the ability of RGC axons to extend in a directed fashion is influenced by membrane excitability, we blocked the principal modulators of the neural activity of a neuron, voltage-dependent potassium (Kv) channels. First, we showed that RGCs and their growth cones express Kv channels when they are growing through the brain on the way to their main midbrain target, the optic tectum. Second, a Kv channel blocker, 4-aminopyridine (4-AP), was applied to the developing Xenopus optic projection. Blocking Kv channels inhibited RGC axon extension and caused aberrant routing of many RGC fibers. With the higher doses, <25% of embryos had a normal optic projection. These data suggest that Kv channel activity regulates the guidance of growing axons in the vertebrate brain.
Collapse
|
41
|
Abstract
Synchronized spontaneous rhythmic activity is a feature common to many parts of the developing nervous system. In the early visual system, before vision, developing circuits in the retina generate synchronized patterns of bursting activity that contain information useful for patterning connections between retinal ganglion cells and their central targets. However, how developing retinal circuits generate and regulate these spontaneous activity patterns is still incompletely understood. Here we show that in developing retinal circuits, the nature of excitatory neurotransmission driving correlated bursting activity in ganglion cells is not fixed but undergoes a developmental shift from cholinergic to glutamatergic transmission. In addition, we show that this shift occurs as presynaptic glutamatergic bipolar cells form functional connections onto the ganglion cells, implicating the role of bipolar cells in providing endogenous drive to bursting activity later in development. This transition coincides with the period when subsets of ganglion cells (On and Off cells) develop distinct activity patterns that are thought to underlie the refinement of their connectivity with their central targets. Here, our results suggest that the differences in activity patterns of On and Off ganglion cells may be conferred by differential synaptic drive from On and Off bipolar cells, respectively. Taken together, our results suggest that the regulation of patterned spontaneous activity by neurotransmitters undergoes systematic change as new cellular elements are added to developing circuits and also that these new elements can help specify distinct activity patterns appropriate for shaping connectivity patterns at later ages.
Collapse
|
42
|
Carey MB, Matsumoto SG. Spontaneous calcium transients are required for neuronal differentiation of murine neural crest. Dev Biol 1999; 215:298-313. [PMID: 10545239 DOI: 10.1006/dbio.1999.9433] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have shown that cultured mouse neural crest (NC) cells exhibit transient increases in intracellular calcium. Up to 50% of the cultured NC-derived cells exhibited calcium transients during the period of neuronal differentiation. As neurogenic activity declined, so did the percentage of active NC-derived cells and their calcium spiking frequency. The decrease in calcium transient activity correlated with a decreased sensitivity to thimerosal, which sensitizes inositol 1,4,5-triphosphate receptors. Thimerosal increased the frequency of oscillations in active NC-derived cells and induced them in a subpopulation of quiescent cells. As neurogenesis ended, NC-derived cells became nonresponsive to thimerosal. Using the expression of time-dependent neuronal traits, we determined that neurons exhibited spontaneous calcium transients as early as a neuronal phenotype could be detected and continued through the acquisition of caffeine sensitivity, soon after which calcium transient activity stopped. A subpopulation of nonneuronal NC-derived cells exhibited calcium transient activity within the same time frame as neurogenesis in culture. Exposing NC-derived cells to 20 mM Mg(2+) blocked calcium transient activity and reduced neuronal number without affecting the survival of differentiated neurons. Using lineage-tracing analysis, we found that 50% of active NC-derived cells gave rise to clones containing neurons, while inactive cells did not. We hypothesize that calcium transient activity establishes a neuronal competence for undifferentiated NC cells.
Collapse
Affiliation(s)
- M B Carey
- Department of Biological Structure and Function, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | |
Collapse
|
43
|
Flint AC, Dammerman RS, Kriegstein AR. Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations. Proc Natl Acad Sci U S A 1999; 96:12144-9. [PMID: 10518590 PMCID: PMC18426 DOI: 10.1073/pnas.96.21.12144] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oscillations in intracellular free calcium concentration ([Ca(2+)](i)) occur spontaneously in immature neurons of the developing cerebral cortex. Here, we show that developing murine cortical neurons exhibit calcium oscillations in response to direct activation of the mGluR5 subtype of the group I metabotropic glutamate receptor (mGluR). In contrast, other manipulations that elicit [Ca(2+)](i) increases produce simple, nonoscillatory changes. Furthermore, we find that spontaneous oscillatory [Ca(2+)](i) activity is blocked by antagonists of group I mGluRs, suggesting a specific role for mGluR activation in the promotion of oscillatory [Ca(2+)](i) dynamics in immature cortical neurons. The oscillatory pattern of [Ca(2+)](i) increases produced by mGluR activation might play a role in the regulation of gene expression and the control of developmental events.
Collapse
Affiliation(s)
- A C Flint
- Center for Neurobiology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
44
|
Intracellular Ca(2+) oscillations in luteinizing hormone-releasing hormone neurons derived from the embryonic olfactory placode of the rhesus monkey. J Neurosci 1999. [PMID: 10407029 DOI: 10.1523/jneurosci.19-14-05898.1999] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To understand the mechanism of pulsatile luteinizing hormone-releasing hormone (LHRH) release, we examined whether cultured LHRH neurons exhibit spontaneous intracellular Ca(2+) ([Ca(2+)](i)) signaling. The olfactory placode and the ventral migratory pathway of LHRH neurons from rhesus monkey embryos at embryonic ages 35-37 were dissected out and cultured on glass coverslips. Two to five weeks later, cultured cells were labeled with fura-2 and examined for [Ca(2+)](i) signaling by recording changes in [Ca(2+)](i) every 10 sec for 30-175 min. Cells were fixed and immunostained for LHRH and neuron-specific enolase. In 20 cultures, 572 LHRH-positive cells exhibited [Ca(2+)](i) oscillations at an interpulse interval (IPI) of 8.2 +/- 0.7 min and a duration of 88.8 +/- 2.9 sec. LHRH-negative neurons in culture exhibited only occasional [Ca(2+)](i) oscillations. In 17 of 20 cultures with LHRH-positive cells, [Ca(2+)](i) oscillations occurred synchronously in 50-100% of the individual cells, whereas [Ca(2+)](i) oscillations in cells in the remaining three cultures did not synchronize. Strikingly, in 12 of 17 cultures the synchronization of [Ca(2+)](i) oscillations repeatedly occurred in complete unison at 52.8 +/- 3.0 min intervals, which is similar to the period observed for LHRH release, whereas in 5 of 17 cultures the less tight synchronization of [Ca(2+)](i) oscillations repeatedly occurred at 23.4 +/- 4.6 min intervals. IPI of [Ca(2+)](i) oscillations in cells with tight synchronization and less tight synchronization did not differ from IPI in cells without synchronization. The results indicate that LHRH neurons derived from the monkey olfactory placode possess an endogenous mechanism for synchronization of [Ca(2+)](i) oscillations. Whether synchronization of [Ca(2+)](i) oscillations relates to neurosecretion remains to be investigated.
Collapse
|
45
|
Monsonego A, Friedmann I, Shani Y, Eisenstein M, Schwartz M. GTP-dependent conformational changes associated with the functional switch between Galpha and cross-linking activities in brain-derived tissue transglutaminase. J Mol Biol 1998; 282:713-20. [PMID: 9743620 DOI: 10.1006/jmbi.1998.2052] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
GTP and Ca2+, two well-known modulators of intracellular signaling pathways, control a structural/functional switch between two vital and mutually exclusive activities, cross-linking and Galpha activity, in the same enzyme. The enzyme, a brain-derived tissue-type transglutaminase (TGase), was recently cloned by us in two forms, one of which (s-TGN) lacks a C-terminal region that is present in the other (l-TGN). Immunoreaction with antibodies directed against a peptide present in the C-terminus of l-TGN but missing in s-TGN suggested that this site, which is located in the C-terminal fourth domain, undergoes conformational changes as a result of interaction between l-TGN and GTP. Site-directed mutagenesis suggested that the third domain is involved in mediating the inhibition of the cross-linking activity. These results were supported by molecular modeling, which further suggested that domains III and IV both participate in conformational changes leading to the functional switch between the Ca2+-dependent cross-linking activity and the Galpha activity.
Collapse
Affiliation(s)
- A Monsonego
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | |
Collapse
|
46
|
Abstract
That glutamate increases in the extracellular space of the brain during hypoxia or ischemia and that this amino acid, in high enough concentrations, kills neurons has led investigators to use glutamate and study the mechanisms underlying neuronal excitotoxicity as a model for acute cell death that occurs with low oxygen. However, there is some evidence that increased glutamate, on the one hand, and anoxia, on the other, may not be similar events. In this study we undertook experiments to determine whether glutamate, at various concentrations (20-500 microM), and anoxia induce similar changes in intracellular Ca2+ and in cell morphology as assessed by cell volume and eccentricity (degree of some ellipsoid shape). We found that glutamate was much more rapid in inducing a rise in Cai2+ and that the rise itself occurred at a faster rate than during anoxia. Anoxia produced more marked changes in cell volume and eccentricity. These results, which show major differences between glutamate and anoxia, indicate that while glutamate may play an important role in anoxic brain injury, glutamate excitotoxicity should not be used to mimic the effects of anoxia on nerve and brain function.
Collapse
Affiliation(s)
- E Chow
- Department of Pediatrics (Section of Respiratory Medicine), Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
47
|
Chidekel AS, Friedman JE, Haddad GG. Anoxia-induced neuronal injury: role of Na+ entry and Na+-dependent transport. Exp Neurol 1997; 146:403-13. [PMID: 9270051 DOI: 10.1006/exnr.1997.6544] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An important cause of anoxia-induced nerve injury involves the disruption of the ionic balance that exists across the neuronal membrane. This loss of ionic homeostasis results in an increase in intracellular calcium, sodium, and hydrogen and is correlated with cell injury and death. Using time-lapse confocal microscopy, we have previously reported that nerve cell injury is mediated largely by sodium and that removing extracellular sodium prevents the anoxia-induced morphological changes. In this study, we hypothesized that sodium enters neurons via specific mechanisms and that the pharmacologic blockade of sodium entry would prevent nerve damage. In cultured neocortical neurons we demonstrate that replacing extracellular sodium with NMDG+ prevents anoxia-induced morphological changes. With sodium in the extracellular fluid, various routes of sodium entry were examined, including voltage-sensitive sodium channels, glutamate receptor channels, and sodium-dependent chloride-bicarbonate exchange. Blockade of these routes had no effect. Amiloride, however, prevented the morphological changes induced by anoxia lasting 10, 15, or 20 min. At doses of 10 microM-1 mM, amiloride protected neurons in a dose-dependent fashion. We argue that amiloride acts on a Na+-dependent exchanger (e.g., Na+-Ca2+) and present a model to explain these findings in the context of the neuronal response to anoxia.
Collapse
Affiliation(s)
- A S Chidekel
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520-8064, USA
| | | | | |
Collapse
|
48
|
Kortekaas P, Wadman WJ. Development of HVA and LVA calcium currents in pyramidal CA1 neurons in the hippocampus of the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:139-47. [PMID: 9263588 DOI: 10.1016/s0165-3806(97)00059-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
High voltage activated (HVA) and low voltage activated (LVA) calcium currents were recorded in acutely dissociated CA1 hippocampal pyramidal neurons of the rat during the first three postnatal weeks as well as in adults. Measured in whole cell voltage clamp the amplitude of the HVA calcium current increased steadily and reached adult values after 20 postnatal days (P20). Using the perforated patch configuration with amphotericin B the amplitude of the HVA component was more than five times smaller, but the time course of development was the same. The LVA component also increased with age but reached adult values already around P13. The amplitude and developmental pattern of this component were not different when measured with the perforated patch technique. The results indicate a different role for intracellular modulators on these calcium currents, but exclude them as important factors in the developmental pattern. The fast development of the LVA component could lead to calcium dependent action potentials (and calcium spikes) in immature cells. The complex developmental pattern of the relative amplitude of the two currents will either lead to specific variations in the intracellular calcium homeostasis or will have to be accompanied by an adequate developmental pattern of buffering and extrusion mechanisms.
Collapse
Affiliation(s)
- P Kortekaas
- Institute for Neurobiology, Graduate School for the Neurosciences, University of Amsterdam, Netherlands.
| | | |
Collapse
|
49
|
Casini G, Trasarti L, Andolfi L, Bagnoli P. Morphologic maturation of tachykinin peptide-expressing cells in the postnatal rabbit retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 99:131-41. [PMID: 9125466 DOI: 10.1016/s0165-3806(96)00206-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Tachykinin (TK) peptides, which include substance P, neurokinin A, two neurokinin A-related peptides and neurokinin B, are widely present in the nervous system, including the retina, where they act as neurotransmitters/modulators as well as growth factors. In the present study, we investigated the maturation of TK-immunoreactive (IR) cells in the rabbit retina with the aim of further contributing to the knowledge of the development of transmitter-identified retinal cell populations. In the adult retina, the pattern of TK immunostaining is consistent with the presence of TK peptides in amacrine, displaced amacrine, interplexiform and ganglion cells. In the newborn retina, intensely immunostained TK-IR somata are located in the ganglion cell layer (GCL) and in the inner nuclear layer (INL) adjacent to the inner plexiform layer (IPL). They are characterized by an oval-shaped cell body originating a single process without ramifications. TK-IR processes are occasionally observed in the IPL and in the outer plexiform layer (OPL). Long TK-IR fiber bundles are observed in the ganglion cell axon layer. TK-IR profiles resembling small somata are rarely observed in the INL adjacent to the OPL. At postnatal day (PND) 2, some TK-IR cells display more complex morphologic features, including processes with secondary ramifications. Long TK-IR processes in the IPL are often seen to terminate with growth cones. Between PND 6 and PND 11 (eye opening), there is a dramatic increase in the number of immunolabeled processes with growth cones both in the IPL and in the OPL and the mature lamination of TK-IR fibers in laminae 1, 3 and 5 of the IPL is established. TK-IR cells attain mature morphological characteristics and the rare, putative TK-IR somata in the distal INL are no longer observed. After eye opening, growth cones are not present and the pattern typical of the adult is reached. These observations indicate that the development of TK-IR cells can be divided into an early phase (from birth to PND 6) in which these cells establish their morphological characteristics, and a later phase (from PND 6 to eye opening) in which they are involved in active growth of their processes and likely in synapse formation. Since TK peptides are thought to play neurotrophic actions in the developing nervous system and they are consistently present in the retina throughout postnatal development, they may also act as growth factors during retinal maturation.
Collapse
Affiliation(s)
- G Casini
- Department of Environmental Sciences, Tuscia University, Viterbo, Italy
| | | | | | | |
Collapse
|
50
|
Miyashita T, Kubo Y. Localization and developmental changes of the expression of two inward rectifying K(+)-channel proteins in the rat brain. Brain Res 1997; 750:251-63. [PMID: 9098551 DOI: 10.1016/s0006-8993(96)01365-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have raised affinity-purified polyclonal antibodies specific for the inward rectifying K+ channel (IRK1/Kir2.1) and the G protein-activated inward rectifying K+ channel (GIRK1/Kir3.1) examined their distributions in the rat brain immunohistochemically. The regional expression pattern of the IRK1 and GIRK1 proteins were similar to those of mRNA of the previous in situ hybridization study. The subcellular distribution was studied in the cerebellum; cerebral cortex and hippocampus. In the cerebellum, the IRK1 protein was clearly detected in the somata and proximal dendrites of Purkinje cells, while the GIRK1 protein was present in the somata and clustered dendrites of granule cells. In the cerebral cortex and hippocampus, both IRK1- and GIRK1-immunoreactivities were detected in the somata and apical dendrites of the pyramidal cells. The presence of IRK1 or GIRK1 proteins in the axons could not proved by the present study. The developmental changes of the expression pattern of the GIRK1 protein were also investigated in the hippocampus and in the cerebellum of postnatal day (P) 7 to P17 rats. The GIRK1 protein was detected neither in the subgranular zone of the dentate gyrus nor in the proliferative zone of the external granule cell layer of the cerebellum, in which granule cell precursors are reported to proliferate, while it was clearly detected in the adjacent layer in which postmitotic but immature cells exist. These results imply that the expression of the GIRK1 protein starts just after the neuronal precursors finished the last mitotic cell division.
Collapse
Affiliation(s)
- T Miyashita
- Department of Neurophysiology, Tokyo Metropolitan Institute for Neuroscience, Japan.
| | | |
Collapse
|