1
|
Youn D, Kim B, Jeong D, Lee JY, Kim S, Sumberzul D, Ginting RP, Lee MW, Song JH, Park YS, Kim Y, Oh CM, Lee M, Cho J. Cross-talks between Metabolic and Translational Controls during Beige Adipocyte Differentiation. Nat Commun 2025; 16:3373. [PMID: 40204764 PMCID: PMC11982337 DOI: 10.1038/s41467-025-58665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Whether and how regulatory events at the translation stage shape the cellular and metabolic features of thermogenic adipocytes is hardly understood. In this study, we report two hitherto unidentified cross-talk pathways between metabolic and translational regulation in beige adipocytes. By analysing temporal profiles of translation activity and protein level changes during precursor-to-beige differentiation, we found selective translational down-regulation of OXPHOS component-coding mRNAs. The down-regulation restricted to Complexes I, III, IV, and V, is coordinated with enhanced translation of TCA cycle genes, engendering distinct stoichiometry of OXPHOS and TCA cycle components and altering the related metabolic activities in mitochondria of thermogenic adipocytes. Our high-resolution description of ribosome positioning unveiled potentiated ribosome pausing at glutamate codons. The increased stalling is attributable to remodelled glutamate metabolism that decreases glutamates for tRNA charging during pan-adipocyte differentiation. The ribosome pauses decrease protein synthesis and mRNA stability of glutamate codon-rich genes, such as actin cytoskeleton-associated genes.
Collapse
Affiliation(s)
- Daehwa Youn
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Boseon Kim
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Dahee Jeong
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ju Yeon Lee
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Seha Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Dulguun Sumberzul
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Rehna Paula Ginting
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Min-Woo Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea
| | - Ju Hwan Song
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Ye Seul Park
- Digital Omics Research Center, Korea Basic Science Institute, Ochang, 28119, Republic of Korea
| | - Yumin Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Mihye Lee
- Soonchunhyang Institute of Medi-bio Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, 31151, Republic of Korea.
| | - Jun Cho
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
2
|
Pahlavani M, Pham K, Kalupahana NS, Morovati A, Ramalingam L, Abidi H, Kiridana V, Moustaid-Moussa N. Thermogenic adipose tissues: Promising therapeutic targets for metabolic diseases. J Nutr Biochem 2025; 137:109832. [PMID: 39653156 DOI: 10.1016/j.jnutbio.2024.109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 01/03/2025]
Abstract
The ongoing increase in the prevalence of obesity and its comorbidities such as cardiovascular disease, type 2 diabetes (T2D) and dyslipidemia warrants discovery of novel therapeutic options for these metabolic diseases. Obesity is characterized by white adipose tissue expansion due to chronic positive energy balance as a result of excessive energy intake and/or reduced energy expenditure. Despite various efforts to prevent or reduce obesity including lifestyle and behavioral interventions, surgical weight reduction approaches and pharmacological methods, there has been limited success in significantly reducing obesity prevalence. Recent research has shown that thermogenic adipocyte (brown and beige) activation or formation, respectively, could potentially act as a therapeutic strategy to ameliorate obesity and its related disorders. This can be achieved through the ability of these thermogenic cells to enhance energy expenditure and regulate circulating levels of glucose and lipids. Thus, unraveling the molecular mechanisms behind the formation and activation of brown and beige adipocytes holds the potential for probable therapeutic paths to combat obesity. In this review, we provide a comprehensive update on the development and regulation of different adipose tissue types. We also emphasize recent interventions in harnessing therapeutic potential of thermogenic adipocytes by bioactive compounds and new pharmacological anti-obesity agents.
Collapse
Affiliation(s)
- Mandana Pahlavani
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Sciences, Texas Woman's University, Dallas, Texas, USA
| | - Kenneth Pham
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Nishan Sudheera Kalupahana
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Ashti Morovati
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Department of Nutrition and Food Studies, Syracuse University, Syracuse, New York, USA
| | - Hussain Abidi
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Vasana Kiridana
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, Texas, USA; Obesity Research Institute, Texas Tech University, Lubbock, Texas, USA; Institute for One Health Innovation, Texas Tech University and Texas Tech Health Sciences Center, Lubbock, Texas, USA.
| |
Collapse
|
3
|
Verma N, Perie L, Silvestro M, Verma A, Cronstein BN, Ramkhelawon B, Mueller E. Metabolic dysfunction in mice with adipocyte-specific ablation of the adenosine A2A receptor. J Biol Chem 2025; 301:108206. [PMID: 39828097 PMCID: PMC11850162 DOI: 10.1016/j.jbc.2025.108206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
It has been well established that adenosine plays a key role in the control of inflammation through G protein coupled receptors and recently shown that it can regulate thermogenesis. Here we investigated the specific requirements of the adenosine A2A receptor (A2AR) in mature adipocytes for thermogenic functionality and metabolic homeostasis. We generated fat tissue-specific adenosine A2AR KO mice to assess the influence of signaling through this receptor on brown and beige fat functionality, obesity, insulin sensitivity, inflammation, and liver function. Fat-specific A2AR KO and WT littermate mice were compared for potential differences in cold tolerance and energy metabolism. In addition, we measured glucose metabolism, AT inflammation, and liver phenotypes in mice of the two genotypes after exposure to a diet rich in fat. Our results provide novel evidence indicating that loss of the adenosine A2AR specifically in adipocytes is associated with cold intolerance and decreased oxygen consumption. Furthermore, mice with fat specific ablation of the A2AR exposed to a diet rich in fat showed increased propensity to obesity, decreased insulin sensitivity, elevated adipose tissue inflammation, and hepato-steatosis and hepato-steatitis. Overall, our data provide novel evidence that A2AR in mature adipocytes safeguards metabolic homeostasis, suggesting the possibility of targeting this receptor selectively in fat for the treatment of metabolic disease.
Collapse
Affiliation(s)
- Narendra Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA; Department of Systems Biology, Center of Biomedical Research, SGPGI campus, Lucknow, India
| | - Luce Perie
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Michele Silvestro
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Anupama Verma
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Bhama Ramkhelawon
- Division of Vascular and Endovascular Surgery, Department of Surgery, New York University Grossman School of Medicine, New York, New York, USA
| | - Elisabetta Mueller
- Holman Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Tonphu K, Mueangaun S, Lerkdumnernkit N, Sengking J, Tocharus J, Benjakul S, Mittal A, Tocharus C. Chitooligosaccharide-epigallocatechin gallate conjugate ameliorates lipid accumulation and promotes browning of white adipose tissue in high fat diet fed rats. Chem Biol Interact 2025; 406:111316. [PMID: 39577827 DOI: 10.1016/j.cbi.2024.111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
The prevalence of obesity has increased progressively worldwide. Obesity is characterized by excessive accumulation of fat in adipose tissues, leading to metabolic impairment. The anti-obese effects of chitooligosaccharide (COS) and epigallocatechin-3-gallate (EGCG) have been extensively clarified. This study aimed to investigate the effects and potential mechanisms of the COS-EGCG conjugate (CE) on anti-obesity, specifically by alleviating lipid accumulation and promoting the browning of white adipose tissue (WAT) in obese rats. Obesity as a consequence of a high-fat diet (HFD) was induced in male Wistar rats. The HFD was given for 16 weeks and the rats were then randomly subdivided into five groups namely: vehicle (control group), HFD plus CE at 150 mg/kg/day, HFD plus CE at 600 mg/kg/day, HFD plus COS at 600 mg/kg/day, and HFD plus atorvastatin at 10 mg/kg/day for 4 weeks. CE could reduce body weight, improve serum lipid profiles, and promote lipid metabolism via activation of AMP-activated protein kinase (AMPK) in WAT and enhance the processes of WAT browning by activating sirtuin 1 (Sirt 1), peroxisome proliferator-activated receptor-gamma coactivator (PGC1-α), and uncoupling the protein 1 (UCP1) signaling pathway. CE reduced obesity and promoted WAT browning in HFD-fed rats. Therefore, CE might be a new therapy for metabolic syndrome and obesity.
Collapse
Affiliation(s)
- Kanokrada Tonphu
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sirikul Mueangaun
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Natcha Lerkdumnernkit
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jirakhamon Sengking
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, 90110, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand; Functional Food Research Center for Well-being, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
5
|
Zhu S, Ruan F, Ye L, Jiang S, Yang C, Zuo Z, He C. Black phosphorus quantum dots induce lipid accumulation through PPARγ activation and mitochondrial dysfunction in adipocytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177972. [PMID: 39662394 DOI: 10.1016/j.scitotenv.2024.177972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Black phosphorus quantum dots (BPQDs) are believed to have broad prospects for application. Obesity has garnered significant attention, but the association between BPQDs and lipid metabolism has not been thoroughly investigated. Mice were orally exposed to BPQDs at doses of 0.1 and 1 mg/kg for 28 d. The exposed mice exhibited reduced insulin sensitivity, hypertrophy of white adipose tissues, and reduced thermogenic function of brown adipose tissues. In white adipocyte line (3T3-L1), exposure to 5-20 μg/mL BPQDs induced lipid accumulation, oxidative stress, and upregulated the expression of PPARγ and genes involved in de novo lipogenesis. Moreover, both a reactive oxygen species (ROS) scavenger and a PPARγ inhibitor were able to attenuate lipid accumulation and downregulate the expression of lipid-associated genes in white adipocytes. In mouse brown adipocytes, BPQDs exposure caused oxidative stress, mitochondrial dysfunction, and downregulation of thermogenic genes such as UCP1. The ROS scavenger attenuated the oxidative stress and improved the mitochondrial thermogenic function in brown adipocytes. In summary, this work demonstrates that oxidative stress induced by BPQDs mediates the lipid accumulation possibly through PPARγ activation and mitochondrial dysfunction of adipose tissues, highlighting the potential obesogenic effect of BPQDs. Our findings provide novel insights into the biosafety of BPQDs and their potential health risks to humans, offering important considerations for the sustainable application of BP materials. ENVIRONMENTAL IMPLICATION: BPQDs are a novel type of nanomaterials with unique physicochemical properties, and have broad applications in various fields, particularly in biomedicine. However, during the production and use of BPQDs as medical materials, they inevitably contact with the human body for long periods of time. Therefore, it is necessary to investigate the effects of BPQDs on organisms under long-term exposure, especially lipid metabolism. This study would be helpful decreasing the environmental health risk of BP materials and promoting their sustainable development of nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Sihao Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Lingxiao Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Suhua Jiang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Department of Endocrinology, Xiang'an Hospital of Xiamen University, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China..
| |
Collapse
|
6
|
Wang YC, Hsu YA, Lin SC, Chien LS, Chen JJY, Wu MY, Lin HJ, Chen CS, Huang YQ, Tsai YC, Wan L. Radish Seed Exerts Anti-Diabetic and Obesity-Reducing Effects in Mice by Promoting the Activation of Uncoupling Protein 1 and Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-α. J Evid Based Integr Med 2025; 30:2515690X251316760. [PMID: 39905916 PMCID: PMC11795619 DOI: 10.1177/2515690x251316760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Obesity is primarily due to excessive energy intake and lipid accumulation, leading to type 2 diabetes. Studies showed radish seed extract (RSE) can impede weight gain in mice, but the mechanism was unclear. We hypothesized that RSE inhibits obesity by stimulating adipocyte browning. Radish seeds were water-extracted, yielding a sulforaphene (SE) concentration of 1.381 ± 0.005 mg/g RSE. In 3T3-L1 adipocyte differentiation experiments, RSE and SE increased the expression of beige adipocyte markers uncoupling protein 1 (UCP1) and peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α). In C57BL/6 mice, RSE and SE mitigated weight increase, averted fatty liver, and diminished fat accumulation. In the adipose tissue, we also noted the enhanced browning of white adipocytes through elevated expression of UCP1 and PGC1α. Increased mitochondrial numbers in treated adipocytes supported this effect. Additionally, RSE and SE improved glucose homeostasis and insulin sensitivity in high-fat diet-fed mice, indicating RSE's potential to prevent obesity and diabetes by enhancing adipocyte thermogenesis.
Collapse
Affiliation(s)
- Yao-Chien Wang
- Department of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - Yu-An Hsu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Chun Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Li-Shan Chien
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | | | - Ming Yen Wu
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Hui-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Eye Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chih-Sheng Chen
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Yi-Qi Huang
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Chi Tsai
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Lei Wan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University, Taichung, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
7
|
Roth L, Hoffmann A, Hagemann T, Wagner L, Strehlau C, Sheikh B, Donndorf L, Ghosh A, Noé F, Wolfrum C, Krohn K, Weiner J, Heiker JT, Klöting N, Stumvoll M, Tönjes A, Blüher M, Mittag J, Krause K. Thyroid hormones are required for thermogenesis of beige adipocytes induced by Zfp423 inactivation. Cell Rep 2024; 43:114987. [PMID: 39580797 DOI: 10.1016/j.celrep.2024.114987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/30/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
The significance of thyroid hormones (THs) in beige adipocyte thermogenesis remains incompletely understood. We previously reported that THs directly regulate the expression of zinc-finger protein 423 (ZFP423), an anti-thermogenic factor, in adipose tissue. This study investigates the interaction between THs and adrenergic signaling in regulating thermogenic capacity and activation of beige adipocytes formed in response to Zfp423 deletion. We demonstrate that THs are indispensable for uncoupling protein 1 (UCP1)-dependent thermogenesis, leading to increased energy expenditure in mice with adipocyte-specific Zfp423 knockout. Targeted activation of the thyroid receptor isoform TRβ, which plays a central role in the inguinal depot, is sufficient to enhance energy expenditure in hypothyroid Zfp423iAKO mice. Mechanistically, THs and ZFP423 pathways cooperate to regulate early B cell factor 2 (EBF2)-mediated activation of the Ucp1 gene. RNA sequencing (RNA-seq) analysis of human adipose tissue samples supports the relevance of this regulatory network for human adipose tissue plasticity.
Collapse
Affiliation(s)
- Lisa Roth
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Leonie Wagner
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Christian Strehlau
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Bilal Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Lorenz Donndorf
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zürich, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zürich, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zürich, Switzerland
| | - Knut Krohn
- Medical Faculty, Center for DNA Technologies, University of Leipzig, 04103 Leipzig, Germany
| | - Juliane Weiner
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - John T Heiker
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Michael Stumvoll
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anke Tönjes
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Matthias Blüher
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Jens Mittag
- Institute of Experimental Endocrinology/CBBM, University of Lübeck, 23562 Lübeck, Germany
| | - Kerstin Krause
- Department of Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany; German Center for Diabetes Research e.V., 85764 Neuherberg, Germany.
| |
Collapse
|
8
|
Magaña-Gómez JA, González-Ochoa G, Rosas-Rodríguez JA, Stephens-Camacho NA, Flores-Mendoza LK. Sucralose-Enhanced Adipogenesis on Preadipocyte Human Cell Line During Differentiation Process. Int J Mol Sci 2024; 25:13635. [PMID: 39769396 PMCID: PMC11727828 DOI: 10.3390/ijms252413635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Sucralose, a commonly nonnutritive sweetener used in daily products of habitual diet, is related to impairing the gut microbiome by disrupting inflammatory response, promoting weight gain by increasing adipose tissue and promoting chronic inflammatory processes. Considering the impact of sucralose in the development of metabolic diseases, in this work, we focused on the impact of sucralose on the adipocyte differentiation process to determine if sucralose can promote adipogenesis and increase adipose tissue depots in PCS 210 010 human preadipocytes cell line. Sucralose at 25 (S25) and 100 ng/µL (S100) concentrations were tested against control with no edulcorant (NS) during the adipocyte differentiation process at 48 h and 96 h. The genetic expression of adipogenesis markers such as CEBP-α, PPARγ, EBF-2, UCP-1, and lipogenesis regulator ACC was determined by qPCR. A panel of human cytokines related to inflammatory response was measured by a flow cytometer using the kit Legend Plex Human Cytokine panel of BIOLUMINEX. Our results indicate that sucralose increased the expression of white adipocyte differentiation marker CEBP-α and lipogenesis regulator ACC at 96 h before complete differentiation. Also, sucralose triggers an inflammatory response by synthesizing adiponectin, resistin, IL-6, IL-8, and Il-1B. To summarize, sucralose stimulates the expression of genes related to adipogenesis and negatively affects the secretion of inflammatory cytokines and adipokines during preadipocyte differentiation.
Collapse
Affiliation(s)
- Javier A. Magaña-Gómez
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz, CU 80010 Culiacán, Sinaloa, Mexico;
| | - Guadalupe González-Ochoa
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| | - Jesus A. Rosas-Rodríguez
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| | - N. Aurora Stephens-Camacho
- Posgrado en Ciencias Biomédicas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Av. de las Américas y Josefa Ortiz, CU 80010 Culiacán, Sinaloa, Mexico;
- Licenciatura en Nutrición Humana, Universidad Estatal de Sonora, Blvd. Manlio Fabio Beltrones 810, Col. Bugambilias, CP 85875 Navojoa, Sonora, Mexico
| | - Lilian K. Flores-Mendoza
- Laboratorio Universitario de Análisis Clínicos e Investigación, Universidad de Sonora (LUACI) Departamento de Ciencias Químico-Biológicas y Agropecuarias, Campus Navojoa. Lázaro Cárdenas del Río #100, CP 85880 Navojoa, Sonora, Mexico; (G.G.-O.); (J.A.R.-R.)
| |
Collapse
|
9
|
Pollard AE. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem 2024; 68:349-361. [PMID: 39175418 DOI: 10.1042/ebc20240008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Obesity is a major risk factor for many life-threatening diseases. Adipose tissue dysfunction is emerging as a driving factor in the transition from excess adiposity to comorbidities such as metabolic-associated fatty liver disease, cardiovascular disease, Type 2 diabetes and cancer. However, the transition from healthy adipose expansion to the development of these conditions is poorly understood. Adipose stem cells, residing in the vasculature and stromal regions of subcutaneous and visceral depots, are responsible for the expansion and maintenance of organ function, and are now recognised as key mediators of pathological transformation. Impaired tissue expansion drives inflammation, dysregulation of endocrine function and the deposition of lipids in the liver, muscle and around vital organs, where it is toxic. Contrary to previous hypotheses, it is the promotion of healthy adipose tissue expansion and function, not inhibition of adipogenesis, that presents the most attractive therapeutic strategy in the treatment of metabolic disease. AMP-activated protein kinase, a master regulator of energy homeostasis, has been regarded as one such target, due to its central role in adipose tissue lipid metabolism, and its apparent inhibition of adipogenesis. However, recent studies utilising AMP-activated protein kinase (AMPK)-specific compounds highlight a more subtle, time-dependent role for AMPK in the process of adipogenesis, and in a previously unexplored repression of leptin, independent of adipocyte maturity. In this article, I discuss historic evidence for AMPK-mediated adipogenesis inhibition and the multi-faceted roles for AMPK in adipose tissue.
Collapse
Affiliation(s)
- Alice E Pollard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, U.K
| |
Collapse
|
10
|
Korobkina ED, Calejman CM, Haley JA, Kelly ME, Li H, Gaughan M, Chen Q, Pepper HL, Ahmad H, Boucher A, Fluharty SM, Lin TY, Lotun A, Peura J, Trefely S, Green CR, Vo P, Semenkovich CF, Pitarresi JR, Spinelli JB, Aydemir O, Metallo CM, Lynes MD, Jang C, Snyder NW, Wellen KE, Guertin DA. Brown fat ATP-citrate lyase links carbohydrate availability to thermogenesis and guards against metabolic stress. Nat Metab 2024; 6:2187-2202. [PMID: 39402290 PMCID: PMC11841677 DOI: 10.1038/s42255-024-01143-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/16/2024] [Indexed: 11/28/2024]
Abstract
Brown adipose tissue (BAT) engages futile fatty acid synthesis-oxidation cycling, the purpose of which has remained elusive. Here, we show that ATP-citrate lyase (ACLY), which generates acetyl-CoA for fatty acid synthesis, promotes thermogenesis by mitigating metabolic stress. Without ACLY, BAT overloads the tricarboxylic acid cycle, activates the integrated stress response (ISR) and suppresses thermogenesis. ACLY's role in preventing BAT stress becomes critical when mice are weaned onto a carbohydrate-plentiful diet, while removing dietary carbohydrates prevents stress induction in ACLY-deficient BAT. ACLY loss also upregulates fatty acid synthase (Fasn); yet while ISR activation is not caused by impaired fatty acid synthesis per se, deleting Fasn and Acly unlocks an alternative metabolic programme that overcomes tricarboxylic acid cycle overload, prevents ISR activation and rescues thermogenesis. Overall, we uncover a previously unappreciated role for ACLY in mitigating mitochondrial stress that links dietary carbohydrates to uncoupling protein 1-dependent thermogenesis and provides fundamental insight into the fatty acid synthesis-oxidation paradox in BAT.
Collapse
Affiliation(s)
- Ekaterina D Korobkina
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Camila Martinez Calejman
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - John A Haley
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Miranda E Kelly
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Huawei Li
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Maria Gaughan
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Qingbo Chen
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah L Pepper
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hafsah Ahmad
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Alexander Boucher
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Shelagh M Fluharty
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Te-Yueh Lin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anoushka Lotun
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jessica Peura
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Courtney R Green
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Paula Vo
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason R Pitarresi
- Division of Hematology-Oncology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jessica B Spinelli
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Nathaniel W Snyder
- Aging + Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Karanfil AS, Louis F, Sowa Y, Matsusaki M. Cationic polymer effect on brown adipogenic induction of dedifferentiated fat cells. Mater Today Bio 2024; 27:101157. [PMID: 39113911 PMCID: PMC11304885 DOI: 10.1016/j.mtbio.2024.101157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Obesity and its associated comorbidities place a substantial burden on public health. Given the considerable potential of brown adipose tissue in addressing metabolic disorders that contribute to dysregulation of the body's energy balance, this area is an intriguing avenue for research. This study aimed to assess the impact of various polymers, including collagen type I, fibronectin, laminin, gelatin, gellan gum, and poly-l-lysine (PLL), on the in vitro brown adipogenic differentiation of dedifferentiated fat cells within a fibrin gel matrix. The findings, obtained through RT-qPCR, immunofluorescent imaging, ELISA assay, and mitochondria assessment, revealed that PLL exhibited a significant browning-inducing effect. Compared to fibrin-only brown-like drops after two weeks of incubation in brown adipogenic medium, PLL showed 6 (±3) times higher UCP1 gene expression, 5 (±2) times higher UCP1 concentration by ELISA assay, and 2 (±1) times higher mitochondrial content. This effect can be attributed to PLL's electrostatic properties, which potentially facilitate the cellular uptake of crucial brown adipogenic inducers such as the thyroid hormone, triiodothyronine (T3), and insulin from the induction medium.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Osaka University, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Osaka University, Japan
| |
Collapse
|
12
|
Toya H, Okamatsu-Ogura Y, Yokoi S, Kurihara M, Mito M, Iwasaki S, Hirose T, Nakagawa S. The essential role of architectural noncoding RNA Neat1 in cold-induced beige adipocyte differentiation in mice. RNA (NEW YORK, N.Y.) 2024; 30:1011-1024. [PMID: 38692841 PMCID: PMC11251523 DOI: 10.1261/rna.079972.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
Neat1 is an architectural RNA that provides the structural basis for nuclear bodies known as paraspeckles. Although the assembly processes by which Neat1 organizes paraspeckle components are well-documented, the physiological functions of Neat1 are not yet fully understood. This is partly because Neat1 knockout (KO) mice, lacking paraspeckles, do not exhibit overt phenotypes under normal laboratory conditions. During our search for conditions that elicit clear phenotypes in Neat1 KO mice, we discovered that the differentiation of beige adipocytes-inducible thermogenic cells that emerge upon cold exposure-is severely impaired in these mutant mice. Neat1_2, the architectural isoform of Neat1, is transiently upregulated during the early stages of beige adipocyte differentiation, coinciding with increased paraspeckle formation. Genes with altered expression during beige adipocyte differentiation typically cluster at specific chromosomal locations, some of which move closer to paraspeckles upon cold exposure. These observations suggest that paraspeckles might coordinate the regulation of these gene clusters by controlling the activity of certain transcriptional condensates that coregulate multiple genes. We propose that our findings highlight a potential role for Neat1 and paraspeckles in modulating chromosomal organization and gene expression, potentially crucial processes for the differentiation of beige adipocytes.
Collapse
Affiliation(s)
- Hikaru Toya
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
13
|
Lazaro CM, Freitas IN, Nunes VS, Guizoni DM, Victorio JA, Oliveira HCF, Davel AP. Sex-Specific Effects of Cholesteryl Ester Transfer Protein (CETP) on the Perivascular Adipose Tissue. FUNCTION 2024; 5:zqae024. [PMID: 38984977 PMCID: PMC11237897 DOI: 10.1093/function/zqae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
Cholesteryl ester transfer protein (CETP) increases the atherosclerosis risk by lowering HDL-cholesterol levels. It also exhibits tissue-specific effects independent of HDL. However, sexual dimorphism of CETP effects remains largely unexplored. Here, we hypothesized that CETP impacts the perivascular adipose tissue (PVAT) phenotype and function in a sex-specific manner. PVAT function, gene and protein expression, and morphology were examined in male and female transgenic mice expressing human or simian CETP and their non-transgenic counterparts (NTg). PVAT exerted its anticontractile effect in aortas from NTg males, NTg females, and CETP females, but not in CETP males. CETP male PVAT had reduced NO levels, decreased eNOS and phospho-eNOS levels, oxidative stress, increased NOX1 and 2, and decreased SOD2 and 3 expressions. In contrast, CETP-expressing female PVAT displayed increased NO and phospho-eNOS levels with unchanged NOX expression. NOX inhibition and the antioxidant tempol restored PVAT anticontractile function in CETP males. Ex vivo estrogen treatment also restored PVAT function in CETP males. Moreover, CETP males, but not female PVAT, show increased inflammatory markers. PVAT lipid content increased in CETP males but decreased in CETP females, while PVAT cholesterol content increased in CETP females. CETP male PVAT exhibited elevated leptin and reduced Prdm16 (brown adipocyte marker) expression. These findings highlight CETP sex-specific impact on PVAT. In males, CETP impaired PVAT anticontractile function, accompanied by oxidative stress, inflammation, and whitening. Conversely, in females, CETP expression increased NO levels, induced an anti-inflammatory phenotype, and preserved the anticontractile function. This study reveals sex-specific vascular dysfunction mediated by CETP.
Collapse
Affiliation(s)
- C M Lazaro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-862, Campinas, SP, Brazil
| | - I N Freitas
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-862, Campinas, SP, Brazil
| | - V S Nunes
- Laboratório de Lípides (LIM10), Hospital das Clínicas (HCFMUSP) da Faculdade de Medicina da Universidade de São Paulo, CEP 01246-903, São Paulo, SP, Brazil
| | - D M Guizoni
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), CEP 13083-864, Campinas, SP, Brazil
| | - J A Victorio
- Laboratory of Female Vascular Biology, Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), CEP 88037-000, Santa Catarina, SC, Brazil
| | - H C F Oliveira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-862, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), CEP 13083-864, Campinas, SP, Brazil
| | - A P Davel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), CEP 13083-862, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center, Universidade Estadual de Campinas (UNICAMP), CEP 13083-864, Campinas, SP, Brazil
| |
Collapse
|
14
|
Das S, Mukhuty A, Mullen GP, Rudolph MC. Adipocyte Mitochondria: Deciphering Energetic Functions across Fat Depots in Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:6681. [PMID: 38928386 PMCID: PMC11203708 DOI: 10.3390/ijms25126681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Adipose tissue, a central player in energy balance, exhibits significant metabolic flexibility that is often compromised in obesity and type 2 diabetes (T2D). Mitochondrial dysfunction within adipocytes leads to inefficient lipid handling and increased oxidative stress, which together promote systemic metabolic disruptions central to obesity and its complications. This review explores the pivotal role that mitochondria play in altering the metabolic functions of the primary adipocyte types, white, brown, and beige, within the context of obesity and T2D. Specifically, in white adipocytes, these dysfunctions contribute to impaired lipid processing and an increased burden of oxidative stress, worsening metabolic disturbances. Conversely, compromised mitochondrial function undermines their thermogenic capabilities, reducing the capacity for optimal energy expenditure in brown adipocytes. Beige adipocytes uniquely combine the functional properties of white and brown adipocytes, maintaining morphological similarities to white adipocytes while possessing the capability to transform into mitochondria-rich, energy-burning cells under appropriate stimuli. Each type of adipocyte displays unique metabolic characteristics, governed by the mitochondrial dynamics specific to each cell type. These distinct mitochondrial metabolic phenotypes are regulated by specialized networks comprising transcription factors, co-activators, and enzymes, which together ensure the precise control of cellular energy processes. Strong evidence has shown impaired adipocyte mitochondrial metabolism and faulty upstream regulators in a causal relationship with obesity-induced T2D. Targeted interventions aimed at improving mitochondrial function in adipocytes offer a promising therapeutic avenue for enhancing systemic macronutrient oxidation, thereby potentially mitigating obesity. Advances in understanding mitochondrial function within adipocytes underscore a pivotal shift in approach to combating obesity and associated comorbidities. Reigniting the burning of calories in adipose tissues, and other important metabolic organs such as the muscle and liver, is crucial given the extensive role of adipose tissue in energy storage and release.
Collapse
Affiliation(s)
- Snehasis Das
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Alpana Mukhuty
- Department of Zoology, Rampurhat College, Rampurhat 731224, India
| | - Gregory P. Mullen
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Michael C. Rudolph
- Harold Hamm Diabetes Center, Department of Biochemistry and Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
15
|
Boychenko S, Egorova VS, Brovin A, Egorov AD. White-to-Beige and Back: Adipocyte Conversion and Transcriptional Reprogramming. Pharmaceuticals (Basel) 2024; 17:790. [PMID: 38931457 PMCID: PMC11206576 DOI: 10.3390/ph17060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Obesity has become a pandemic, as currently more than half a billion people worldwide are obese. The etiology of obesity is multifactorial, and combines a contribution of hereditary and behavioral factors, such as nutritional inadequacy, along with the influences of environment and reduced physical activity. Two types of adipose tissue widely known are white and brown. While white adipose tissue functions predominantly as a key energy storage, brown adipose tissue has a greater mass of mitochondria and expresses the uncoupling protein 1 (UCP1) gene, which allows thermogenesis and rapid catabolism. Even though white and brown adipocytes are of different origin, activation of the brown adipocyte differentiation program in white adipose tissue cells forces them to transdifferentiate into "beige" adipocytes, characterized by thermogenesis and intensive lipolysis. Nowadays, researchers in the field of small molecule medicinal chemistry and gene therapy are making efforts to develop new drugs that effectively overcome insulin resistance and counteract obesity. Here, we discuss various aspects of white-to-beige conversion, adipose tissue catabolic re-activation, and non-shivering thermogenesis.
Collapse
Affiliation(s)
- Stanislav Boychenko
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Vera S. Egorova
- Biotechnology Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia
| | - Andrew Brovin
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| | - Alexander D. Egorov
- Gene Therapy Department, Center for Translational Medicine, Sirius University of Science and Technology, 354340 Sirius, Russia; (S.B.); (A.B.)
| |
Collapse
|
16
|
Mooli RGR, Zhu B, Khan SR, Nagati V, Michealraj KA, Jurczak MJ, Ramakrishnan SK. Epigenetically active chromatin in neonatal iWAT reveals GABPα as a potential regulator of beige adipogenesis. Front Endocrinol (Lausanne) 2024; 15:1385811. [PMID: 38765953 PMCID: PMC11099907 DOI: 10.3389/fendo.2024.1385811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/22/2024] Open
Abstract
Background Thermogenic beige adipocytes, which dissipate energy as heat, are found in neonates and adults. Recent studies show that neonatal beige adipocytes are highly plastic and contribute to >50% of beige adipocytes in adults. Neonatal beige adipocytes are distinct from recruited beige adipocytes in that they develop independently of temperature and sympathetic innervation through poorly defined mechanisms. Methods We characterized the neonatal beige adipocytes in the inguinal white adipose tissue (iWAT) of C57BL6 postnatal day 3 and 20 mice (P3 and P20) by imaging, genome-wide RNA-seq analysis, ChIP-seq analysis, qRT-PCR validation, and biochemical assays. Results We found an increase in acetylated histone 3 lysine 27 (H3K27ac) on the promoter and enhancer regions of beige-specific gene UCP1 in iWAT of P20 mice. Furthermore, H3K27ac ChIP-seq analysis in the iWAT of P3 and P20 mice revealed strong H3K27ac signals at beige adipocyte-associated genes in the iWAT of P20 mice. The integration of H3K27ac ChIP-seq and RNA-seq analysis in the iWAT of P20 mice reveal epigenetically active signatures of beige adipocytes, including oxidative phosphorylation and mitochondrial metabolism. We identify the enrichment of GA-binding protein alpha (GABPα) binding regions in the epigenetically active chromatin regions of the P20 iWAT, particularly on beige genes, and demonstrate that GABPα is required for beige adipocyte differentiation. Moreover, transcriptomic analysis and glucose oxidation assays revealed increased glycolytic activity in the neonatal iWAT from P20. Conclusions Our findings demonstrate that epigenetic mechanisms regulate the development of peri-weaning beige adipocytes via GABPα. Further studies to better understand the upstream mechanisms that regulate epigenetic activation of GABPα and characterization of the metabolic identity of neonatal beige adipocytes will help us harness their therapeutic potential in metabolic diseases.
Collapse
Affiliation(s)
- Raja Gopal Reddy Mooli
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bokai Zhu
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute of University of Pittsburgh Medical Center (UPMC), University of Pittsburgh, Pittsburgh, PA, United States
| | - Saifur R. Khan
- Division of Cardiology, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh VA Medical Centre, Pittsburgh, PA, United States
- Center for Immunometabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Veerababu Nagati
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sadeesh K. Ramakrishnan
- Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Centre, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
17
|
Shin J, Lee Y, Ju SH, Jung YJ, Sim D, Lee SJ. Unveiling the Potential of Natural Compounds: A Comprehensive Review on Adipose Thermogenesis Modulation. Int J Mol Sci 2024; 25:4915. [PMID: 38732127 PMCID: PMC11084502 DOI: 10.3390/ijms25094915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The process of adipocyte browning has recently emerged as a novel therapeutic target for combating obesity and obesity-related diseases. Non-shivering thermogenesis is the process of biological heat production in mammals and is primarily mediated via brown adipose tissue (BAT). The recruitment and activation of BAT can be induced through chemical drugs and nutrients, with subsequent beneficial health effects through the utilization of carbohydrates and fats to generate heat to maintain body temperature. However, since potent drugs may show adverse side effects, nutritional or natural substances could be safe and effective as potential adipocyte browning agents. This review aims to provide an extensive overview of the natural food compounds that have been shown to activate brown adipocytes in humans, animals, and in cultured cells. In addition, some key genetic and molecular targets and the mechanisms of action of these natural compounds reported to have therapeutic potential to combat obesity are discussed.
Collapse
Affiliation(s)
- Jaeeun Shin
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Yeonho Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Seong Hun Ju
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Young Jae Jung
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Daehyeon Sim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea; (J.S.); (Y.L.); (S.H.J.); (Y.J.J.); (D.S.)
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
18
|
Zhao JY, Zhou LJ, Ma KL, Hao R, Li M. MHO or MUO? White adipose tissue remodeling. Obes Rev 2024; 25:e13691. [PMID: 38186200 DOI: 10.1111/obr.13691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 01/09/2024]
Abstract
In this review, we delve into the intricate relationship between white adipose tissue (WAT) remodeling and metabolic aspects in obesity, with a specific focus on individuals with metabolically healthy obesity (MHO) and metabolically unhealthy obesity (MUO). WAT is a highly heterogeneous, plastic, and dynamically secreting endocrine and immune organ. WAT remodeling plays a crucial role in metabolic health, involving expansion mode, microenvironment, phenotype, and distribution. In individuals with MHO, WAT remodeling is beneficial, reducing ectopic fat deposition and insulin resistance (IR) through mechanisms like increased adipocyte hyperplasia, anti-inflammatory microenvironment, appropriate extracellular matrix (ECM) remodeling, appropriate vascularization, enhanced WAT browning, and subcutaneous adipose tissue (SWAT) deposition. Conversely, for those with MUO, WAT remodeling leads to ectopic fat deposition and IR, causing metabolic dysregulation. This process involves adipocyte hypertrophy, disrupted vascularization, heightened pro-inflammatory microenvironment, enhanced brown adipose tissue (BAT) whitening, and accumulation of visceral adipose tissue (VWAT) deposition. The review underscores the pivotal importance of intervening in WAT remodeling to hinder the transition from MHO to MUO. This insight is valuable for tailoring personalized and effective management strategies for patients with obesity in clinical practice.
Collapse
Affiliation(s)
- Jing Yi Zhao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Juan Zhou
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kai Le Ma
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Hao
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Li
- Research Laboratory of Molecular Biology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Ip JY, Wijaya I, Lee LT, Lim Y, Teoh DEJ, Chan CSC, Cui L, Begley TJ, Dedon PC, Guo H. ROS-induced translational regulation-through spatiotemporal differences in codon recognition-is a key driver of brown adipogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.572954. [PMID: 38463965 PMCID: PMC10925207 DOI: 10.1101/2023.12.22.572954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The role of translational regulation in brown adipogenesis is relatively unknown. Localized translation of mRNAs encoding mitochondrial components enables swift mitochondrial responses, but whether this occurs during brown adipogenesis, which involves massive mitochondrial biogenesis, has not been explored. Here, we used ribosome profiling and RNA-Seq, coupled with cellular fractionation, to obtain spatiotemporal insights into translational regulation. During brown adipogenesis, a translation bias towards G/C-ending codons is triggered first in the mitochondrial vicinity by reactive oxygen species (ROS), which later spreads to the rest of the cell. This translation bias is induced through ROS modulating the activity of the tRNA modification enzyme, ELP3. Intriguingly, functionally relevant mRNAs, including those encoding ROS scavengers, benefit from this bias; in so doing, ROS-induced translation bias both fuels differentiation and concurrently minimizes oxidative damage. These ROS-induced changes could enable sustained mitochondrial biogenesis during brown adipogenesis, and explain in part, the molecular basis for ROS hormesis.
Collapse
|
20
|
Xiong H, Ye J, Luo Q, Li W, Xu N, Yang H. Exosomal EIF5A derived from Lewis lung carcinoma induced adipocyte wasting in cancer cachexia. Cell Signal 2023; 112:110901. [PMID: 37743008 DOI: 10.1016/j.cellsig.2023.110901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/11/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Cancer cachexia is a systemic inflammation-driven syndrome, characterized by muscle atrophy and adipose tissue wasting, with progressive weight loss leading to serious impairment of physiological function. Extracellular vesicles (EVs) derived from cancer cells play a significant role in adipocyte lipolysis, yet the mechanism remain uneclucidated. In this study, EVs derived from Lewis lung carcinoma (LLC) cells were extracted and characterized. 3T3-L1 and HIB1B adipocytes were cultured with conditioned medium or EVs from LLC, and LLC cells were used to establish a cancer cachexia mouse model. EVs derived from LLC cells were taken up by 3T3-L1 and HIB1B adipocytes, and derived exosomal EIF5A protein-induced lipolysis of adipocytes. High level of EIF5A was expressed in EVs from LLC cells, exosomal EIF5A is linked to lipid metabolism. Elevated expression of EIF5A is associated with shorter overall survival in lung cancer patients. Western blots, glycerol release and Oil red O staining assays were used to evaluate lipolysis of adipocytes. The reduction of lipolysis in 3T3-L1 and HIB1B adipocytes is achieved through silencing EIF5A or treating with pharmacologic inhibitor GC7 in vitro, and suppressing the expression of EIF5A in LLC cells by infected with shRNA or GC7 treatment partly alleviated white and brown adipose tissue lipolysis in vivo. Mechanistically, EIF5A directly binds with G protein-coupled bile acid receptor 1 (GPBAR1) mRNA to promote its translation and then activates cAMP response element binding protein (CREB) signaling pathway to induce lipolysis. This study demonstrates that exosomal EIF5A from LLC cells, with hypusinated EIF5A, has a lipolytic effect on adipocyte and adipose tissues in cancer cachexia model. Exosomal EIF5A could be involved in lipolysis and these findings indicate that a novel regulator and potential target for cachexia treatment.
Collapse
Affiliation(s)
- Hairong Xiong
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Ye
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianqian Luo
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Li
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Xu
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Huang Z, Gu C, Zhang Z, Arianti R, Swaminathan A, Tran K, Battist A, Kristóf E, Ruan HB. Supraclavicular brown adipocytes originate from Tbx1+ myoprogenitors. PLoS Biol 2023; 21:e3002413. [PMID: 38048357 PMCID: PMC10721186 DOI: 10.1371/journal.pbio.3002413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/14/2023] [Accepted: 10/31/2023] [Indexed: 12/06/2023] Open
Abstract
Brown adipose tissue (BAT) dissipates energy as heat, contributing to temperature control, energy expenditure, and systemic homeostasis. In adult humans, BAT mainly exists in supraclavicular areas and its prevalence is associated with cardiometabolic health. However, the developmental origin of supraclavicular BAT remains unknown. Here, using genetic cell marking in mice, we demonstrate that supraclavicular brown adipocytes do not develop from the Pax3+/Myf5+ epaxial dermomyotome that gives rise to interscapular BAT (iBAT). Instead, the Tbx1+ lineage that specifies the pharyngeal mesoderm marks the majority of supraclavicular brown adipocytes. Tbx1Cre-mediated ablation of peroxisome proliferator-activated receptor gamma (PPARγ) or PR/SET Domain 16 (PRDM16), components of the transcriptional complex for brown fat determination, leads to supraclavicular BAT paucity or dysfunction, thus rendering mice more sensitive to cold exposure. Moreover, human deep neck BAT expresses higher levels of the TBX1 gene than subcutaneous neck white adipocytes. Taken together, our observations reveal location-specific developmental origins of BAT depots and call attention to Tbx1+ lineage cells when investigating human relevant supraclavicular BAT.
Collapse
Affiliation(s)
- Zan Huang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Chenxin Gu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Zengdi Zhang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Aneesh Swaminathan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kevin Tran
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Alex Battist
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| |
Collapse
|
22
|
Zhu K, Ni L, Han J, Yan Z, Zhang Y, Wang F, Wang L, Yang X. Acetyl-coenzyme A acetyltransferase 1 promotes brown adipogenesis by activating the AMPK-PGC1α signaling pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159369. [PMID: 37582428 DOI: 10.1016/j.bbalip.2023.159369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/08/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Brown adipose tissue (BAT) is thermogenic, expressing high levels of uncoupling protein-1 to convert nutrient energy to heat energy, bypassing ATP synthesis. BAT is a promising therapeutic target for treatment of obesity and type 2 diabetes since it converts fatty acids into heat but mechanisms controlling brown adipogenesis remain unclear. Knockdown of acetyl-Coenzyme A acetyltransferase 1 (ACAT1) in C3H10T1/2 cells suppressed brown adipocyte maturation during the current study and ACAT1 overexpression promoted brown adipocyte maturation. The downstream target of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor gamma coactivator-1-α (PGC1α), was involved in the action of ACAT1 on brown adipocyte maturation. ACAT1 overexpression enhanced AMPK phosphorylation and promoted PGC1α expression. It is suggested that ACAT1 promotes brown adipocyte maturation by activating the AMPK-PGC1α signaling pathway.
Collapse
Affiliation(s)
- Kaixiang Zhu
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Ling Ni
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Jianxiong Han
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Zhongkang Yan
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Yin Zhang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Feifei Wang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China
| | - Lili Wang
- School of Life Science, Anhui University, Hefei, Anhui 230601, PR China.
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui 230601, PR China.
| |
Collapse
|
23
|
Desevin K, Cortez BN, Lin JZ, Lama D, Layne MD, Farmer SR, Rabhi N. Adrenergic Reprogramming of Preexisting Adipogenic Trajectories Steer Naïve Mural Cells Toward Beige Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554950. [PMID: 37662295 PMCID: PMC10473761 DOI: 10.1101/2023.08.26.554950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In adult white adipose tissue, cold or β3-adrenoceptor activation promotes the appearance of thermogenic beige adipocytes. Our comprehensive single-cell analysis revealed that these cells arise through the reprogramming of existing adipogenic trajectories, rather than from a single precursor. These trajectories predominantly arise from SM22-expressing vascular mural progenitor cells. Central in this transition is the activation of Adrb3 in mature adipocytes, leading to subsequent upregulation of Adrb1 in primed progenitors. Under thermoneutral conditions, synergistic activation of both Adrb3 and Adrb1 recapitulates the pattern of cold-induced SM22+ cell recruitment. Lipolysis-derived eicosanoids, specifically docosahexaenoic acid (DHA) and arachidonic acid (AA) prime these processes and in vitro, were sufficient to recapitulate progenitor cells priming. Collectively, our findings provide a robust model for cold-induced beige adipogenesis, emphasizing a profound relationship between mature adipocytes and mural cells during cold acclimation, and revealing the metabolic potential of this unique cellular reservoir.
Collapse
|
24
|
Engelhard CA, Khani S, Derdak S, Bilban M, Kornfeld JW. Nanopore sequencing unveils the complexity of the cold-activated murine brown adipose tissue transcriptome. iScience 2023; 26:107190. [PMID: 37564700 PMCID: PMC10410515 DOI: 10.1016/j.isci.2023.107190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/28/2023] [Accepted: 06/16/2023] [Indexed: 08/12/2023] Open
Abstract
Alternative transcription increases transcriptome complexity by expression of multiple transcripts per gene. Annotation and quantification of transcripts using short-read sequencing is non-trivial. Long-read sequencing aims at overcoming these problems by sequencing full-length transcripts. Activation of brown adipose tissue (BAT) thermogenesis involves major transcriptomic remodeling and positively affects metabolism via increased energy expenditure. We benchmark Oxford Nanopore Technology (ONT) long-read sequencing protocols to Illumina short-read sequencing assessing alignment characteristics, gene and transcript detection and quantification, differential gene and transcript expression, transcriptome reannotation, and differential transcript usage (DTU). We find ONT sequencing is superior to Illumina for transcriptome reassembly, reducing the risk of false-positive events by unambiguously mapping reads to transcripts. We identified novel isoforms of genes undergoing DTU in cold-activated BAT including Cars2, Adtrp, Acsl5, Scp2, Aldoa, and Pde4d, validated by real-time PCR. The reannotated murine BAT transcriptome established here provides a framework for future investigations into the regulation of BAT.
Collapse
Affiliation(s)
- Christoph Andreas Engelhard
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Sajjad Khani
- Max Planck Institute for Metabolism Research, Gleueler Strasse 50, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Lazarettgasse 14, 1090 Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine & Core Facilities, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Jan-Wilhelm Kornfeld
- Department for Biochemistry and Molecular Biology (BMB), University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
25
|
Gupta A, Efthymiou V, Kodani SD, Shamsi F, Patti ME, Tseng YH, Streets A. Mapping the transcriptional landscape of human white and brown adipogenesis using single-nuclei RNA-seq. Mol Metab 2023; 74:101746. [PMID: 37286033 PMCID: PMC10338377 DOI: 10.1016/j.molmet.2023.101746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Adipogenesis is key to maintaining organism-wide energy balance and healthy metabolic phenotype, making it critical to thoroughly comprehend its molecular regulation in humans. By single-nuclei RNA-sequencing (snRNA-seq) of over 20,000 differentiating white and brown preadipocytes, we constructed a high-resolution temporal transcriptional landscape of human white and brown adipogenesis. White and brown preadipocytes were isolated from a single individual's neck region, thereby eliminating inter-subject variability across two distinct lineages. These preadipocytes were also immortalized to allow for controlled, in vitro differentiation, allowing sampling of distinct cellular states across the spectrum of adipogenic progression. Pseudotemporal cellular ordering revealed the dynamics of ECM remodeling during early adipogenesis, and lipogenic/thermogenic response during late white/brown adipogenesis. Comparison with adipogenic regulation in murine models Identified several novel transcription factors as potential targets for adipogenic/thermogenic drivers in humans. Among these novel candidates, we explored the role of TRPS1 in adipocyte differentiation and showed that its knockdown impairs white adipogenesis in vitro. Key adipogenic and lipogenic markers revealed in our analysis were applied to analyze publicly available scRNA-seq datasets; these confirmed unique cell maturation features in recently discovered murine preadipocytes, and revealed inhibition of adipogenic expansion in humans with obesity. Overall, our study presents a comprehensive molecular description of both white and brown adipogenesis in humans and provides an important resource for future studies of adipose tissue development and function in both health and metabolic disease state.
Collapse
Affiliation(s)
- Anushka Gupta
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA
| | - Vissarion Efthymiou
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Sean D Kodani
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY 10010, USA
| | - Mary Elizabeth Patti
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Hua Tseng
- Department of Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Aaron Streets
- University of California at Berkeley, University of California at San Francisco Graduate Program in Bioengineering, Berkeley, CA 94720, USA; Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
26
|
Kabat AM, Pearce EL, Pearce EJ. Metabolism in type 2 immune responses. Immunity 2023; 56:723-741. [PMID: 37044062 PMCID: PMC10938369 DOI: 10.1016/j.immuni.2023.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/11/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023]
Abstract
The immune response is tailored to the environment in which it takes place. Immune cells sense and adapt to changes in their surroundings, and it is now appreciated that in addition to cytokines made by stromal and epithelial cells, metabolic cues provide key adaptation signals. Changes in immune cell activation states are linked to changes in cellular metabolism that support function. Furthermore, metabolites themselves can signal between as well as within cells. Here, we discuss recent progress in our understanding of how metabolic regulation relates to type 2 immunity firstly by considering specifics of metabolism within type 2 immune cells and secondly by stressing how type 2 immune cells are integrated more broadly into the metabolism of the organism as a whole.
Collapse
Affiliation(s)
- Agnieszka M Kabat
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erika L Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA
| | - Edward J Pearce
- Bloomberg Kimmel Institute, and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21287, USA.
| |
Collapse
|
27
|
Abstract
Brown adipose tissue (BAT) displays the unique capacity to generate heat through uncoupled oxidative phosphorylation that makes it a very attractive therapeutic target for cardiometabolic diseases. Here, we review BAT cellular metabolism, its regulation by the central nervous and endocrine systems and circulating metabolites, the plausible roles of this tissue in human thermoregulation, energy balance, and cardiometabolic disorders, and the current knowledge on its pharmacological stimulation in humans. The current definition and measurement of BAT in human studies relies almost exclusively on BAT glucose uptake from positron emission tomography with 18F-fluorodeoxiglucose, which can be dissociated from BAT thermogenic activity, as for example in insulin-resistant states. The most important energy substrate for BAT thermogenesis is its intracellular fatty acid content mobilized from sympathetic stimulation of intracellular triglyceride lipolysis. This lipolytic BAT response is intertwined with that of white adipose (WAT) and other metabolic tissues, and cannot be independently stimulated with the drugs tested thus far. BAT is an interesting and biologically plausible target that has yet to be fully and selectively activated to increase the body's thermogenic response and shift energy balance. The field of human BAT research is in need of methods able to directly, specifically, and reliably measure BAT thermogenic capacity while also tracking the related thermogenic responses in WAT and other tissues. Until this is achieved, uncertainty will remain about the role played by this fascinating tissue in human cardiometabolic diseases.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, J1H 5N4, Canada
| | | | - Denis Richard
- Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Quebec City, Quebec, G1V 4G5, Canada
| |
Collapse
|
28
|
Zhou R, Cao Y, Xiang Y, Fang P, Shang W. Emerging roles of histone deacetylases in adaptive thermogenesis. Front Endocrinol (Lausanne) 2023; 14:1124408. [PMID: 36875455 PMCID: PMC9978507 DOI: 10.3389/fendo.2023.1124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Brown and beige adipose tissues regulate body energy expenditure through adaptive thermogenesis, which converts energy into heat by oxidative phosphorylation uncoupling. Although promoting adaptive thermogenesis has been demonstrated to be a prospective strategy for obesity control, there are few methods for increasing adipose tissue thermogenesis in a safe and effective way. Histone deacetylase (HDAC) is a category of epigenetic modifying enzymes that catalyzes deacetylation on both histone and non-histone proteins. Recent studies illustrated that HDACs play an important role in adipose tissue thermogenesis through modulating gene transcription and chromatin structure as well as cellular signals transduction in both deacetylation dependent or independent manners. Given that different classes and subtypes of HDACs show diversity in the mechanisms of adaptive thermogenesis regulation, we systematically summarized the effects of different HDACs on adaptive thermogenesis and their underlying mechanisms in this review. We also emphasized the differences among HDACs in thermogenesis regulation, which will help to find new efficient anti-obesity drugs targeting specific HDAC subtypes.
Collapse
Affiliation(s)
- Ruonan Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Cao
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingying Xiang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
29
|
Cruciani S, Garroni G, Pala R, Coradduzza D, Cossu ML, Ginesu GC, Capobianco G, Dessole S, Ventura C, Maioli M. Metformin and vitamin D modulate adipose-derived stem cell differentiation towards the beige phenotype. Adipocyte 2022; 11:356-365. [PMID: 35734882 PMCID: PMC9235891 DOI: 10.1080/21623945.2022.2085417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) represent an ideal stem cell population for regenerative medicine. ADSC adipogenic differentiation is controlled by the activation of a specific transcriptional program, including epigenetic factors and key adipogenic genes. Under certain conditioned media, ADSCs can differentiate into several phenotypes. We previously demonstrated that bioactive molecules could counteract lipid accumulation and regulate adipogenesis, acting on inflammation and vitamin D metabolism. In the present paper, we aimed at evaluating the effect of metformin and vitamin D in targeting ADSC differentiation towards an intermediate phenotype, as beige adipocytes. We exposed ADSCs to different conditioned media and then we evaluated the levels of expression of main markers of adipogenesis, aP2, LPL and ACOT2. We also analysed the gene and protein expression of thermogenic UCP1 protein, and the expression of PARP1 and the beige specific marker TMEM26. Our results showed a novel effect of metformin and vitamin D not only in inhibiting adipogenesis, but also in inducing a specific 'brown-like' phenotype. These findings pave the way for their possible application in the control of de novo lipogenesis useful for the prevention of obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Renzo Pala
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Maria Laura Cossu
- General Surgery Unit 2 “Clinica Chirurgica” Medical, Surgical and Experimental Sciences Department, University of Sassari, Sassari, Italy
| | - Giorgio Carlo Ginesu
- General Surgery Unit 2 “Clinica Chirurgica” Medical, Surgical and Experimental Sciences Department, University of Sassari, Sassari, Italy
| | - Giampiero Capobianco
- Department of Medical, Surgical and Experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, Sassari, Italy
| | - Salvatore Dessole
- Department of Medical, Surgical and Experimental Sciences, Gynecologic and Obstetric Clinic, University of Sassari, Sassari, Italy
| | - Carlo Ventura
- Laboratory of Molecular Biology and Stem Cell Engineering, National Institute of Biostructures and Biosystems - Eldor Lab, Innovation Accelerator, Consiglio Nazionale delle Ricerche, Bologna, Italy
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
30
|
Nikolic M, Novakovic J, Ramenskaya G, Kokorekin V, Jeremic N, Jakovljevic V. Cooling down with Entresto. Can sacubitril/valsartan combination enhance browning more than coldness? Diabetol Metab Syndr 2022; 14:175. [PMID: 36419097 PMCID: PMC9686067 DOI: 10.1186/s13098-022-00944-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND It is a growing importance to induce a new treatment approach to encourage weight loss but also to improve maintenance of lost weight. It has been shown that promotion of brown adipose tissue (BAT) function or acquisition of BAT characteristics in white adipose tissue (terms referred as "browning") can be protective against obesity. MAIN TEXT Amongst numerous established environmental influences on BAT activity, cold exposure is the best interested technique due to its not only effects on of BAT depots in proliferation process but also de novo differentiation of precursor cells via β-adrenergic receptor activation. A novel combination drug, sacubitril/valsartan, has been shown to be more efficient in reducing cardiovascular events and heart failure readmission compared to conventional therapy. Also, this combination of drugs increases the postprandial lipid oxidation contributing to energy expenditure, promotes lipolysis in adipocytes and reduces body weight. To date, there is no research examining potential of combined sacubitril/valsartan use to promote browning or mechanisms in the basis of this thermogenic process. CONCLUSION Due to the pronounced effects of cold and sacubitril/valsartan treatment on function and metabolism of BAT, the primary goal of further research should focused on investigation of the synergistic effects of the sacubitril/valsartan treatment at low temperature environmental conditions.
Collapse
Affiliation(s)
- Marina Nikolic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jovana Novakovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | | | - Nevena Jeremic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.
- First Moscow State Medical University IM Sechenov, Moscow, Russia.
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University IM Sechenov, Moscow, Russia
| |
Collapse
|
31
|
Vosseler A, Machann J, Fritsche L, Prystupa K, Kübler C, Häring HU, Birkenfeld AL, Stefan N, Peter A, Fritsche A, Wagner R, Heni M. Interscapular fat is associated with impaired glucose tolerance and insulin resistance independent of visceral fat mass. Obesity (Silver Spring) 2022; 30:2233-2241. [PMID: 36192827 DOI: 10.1002/oby.23554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Dysregulated body fat distribution is a major determinant of various diseases. In particular, increased visceral fat mass and ectopic lipids in the liver are linked to metabolic disorders such as insulin resistance and type 2 diabetes. Furthermore, interscapular fat is considered to be a metabolically active fat compartment. METHODS This study measured interscapular fat mass and investigated its relationship with glucose metabolism in 822 individuals with a wide range of BMI values and different glucose tolerance statuses. Magnetic resonance imaging was used to quantify body fat depots, and an oral glucose tolerance test was performed to determine glucose metabolism. RESULTS Elevated interscapular fat mass was positively associated with age, BMI, and total body, visceral, and subcutaneous adipose tissue mass. High interscapular fat mass associated with elevated fasting glucose levels, glucose levels at 2 hours during the oral glucose tolerance test, glycated hemoglobin, and insulin resistance, independent of sex, age, and total body and visceral fat mass. CONCLUSIONS In conclusion, interscapular fat might be a highly specific fat compartment with a potential impact on glucose metabolism and the pathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- Andreas Vosseler
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jürgen Machann
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Section of Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Louise Fritsche
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Katsiaryna Prystupa
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Christian Kübler
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Hans-Ulrich Häring
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Norbert Stefan
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Peter
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Fritsche
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Robert Wagner
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology and Diabetology, Medical Faculty, Heinrich-Heine-University and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Martin Heni
- Department of Internal Medicine, Division of Diabetology, Endocrinology and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, Tübingen, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
32
|
Zhang Z, Jiang Y, Su L, Ludwig S, Zhang X, Tang M, Li X, Anderton P, Zhan X, Choi M, Russell J, Bu CH, Lyon S, Xu D, Hildebrand S, Scott L, Quan J, Simpson R, Sun Q, Qin B, Collie T, Tadesse M, Moresco EMY, Beutler B. Obesity caused by an OVOL2 mutation reveals dual roles of OVOL2 in promoting thermogenesis and limiting white adipogenesis. Cell Metab 2022; 34:1860-1874.e4. [PMID: 36228616 PMCID: PMC9633419 DOI: 10.1016/j.cmet.2022.09.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/30/2022] [Accepted: 09/17/2022] [Indexed: 01/11/2023]
Abstract
Using random germline mutagenesis in mice, we identified a viable hypomorphic allele (boh) of the transcription-factor-encoding gene Ovol2 that resulted in obesity, which initially developed with normal food intake and physical activity but decreased energy expenditure. Fat weight was dramatically increased, while lean weight was reduced in 12-week-old boh homozygous mice, culminating by 24 weeks in massive obesity, hepatosteatosis, insulin resistance, and diabetes. The Ovol2boh/boh genotype augmented obesity in Lepob/ob mice, and pair-feeding failed to normalize obesity in Ovol2boh/boh mice. OVOL2-deficient mice were extremely cold intolerant. OVOL2 is essential for brown/beige adipose tissue-mediated thermogenesis. In white adipose tissues, OVOL2 limited adipogenesis by blocking C/EBPα engagement of its transcriptional targets. Overexpression of OVOL2 in adipocytes of mice fed with a high-fat diet reduced total body and liver fat and improved insulin sensitivity. Our data reveal that OVOL2 plays dual functions in thermogenesis and adipogenesis to maintain energy balance.
Collapse
Affiliation(s)
- Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Yiao Jiang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lijing Su
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xuechun Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Priscilla Anderton
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mihwa Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chun-Hui Bu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Stephen Lyon
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darui Xu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lindsay Scott
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rochelle Simpson
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qihua Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Baifang Qin
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tiffany Collie
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meron Tadesse
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Machado SA, Pasquarelli-do-Nascimento G, da Silva DS, Farias GR, de Oliveira Santos I, Baptista LB, Magalhães KG. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr Metab (Lond) 2022; 19:61. [PMID: 36068578 PMCID: PMC9446768 DOI: 10.1186/s12986-022-00694-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/19/2022] [Indexed: 12/11/2022] Open
Abstract
Adipose tissues are dynamic tissues that play crucial physiological roles in maintaining health and homeostasis. Although white adipose tissue and brown adipose tissue are currently considered key endocrine organs, they differ functionally and morphologically. The existence of the beige or brite adipocytes, cells displaying intermediary characteristics between white and brown adipocytes, illustrates the plastic nature of the adipose tissue. These cells are generated through white adipose tissue browning, a process associated with augmented non-shivering thermogenesis and metabolic capacity. This process involves the upregulation of the uncoupling protein 1, a molecule that uncouples the respiratory chain from Adenosine triphosphate synthesis, producing heat. β-3 adrenergic receptor system is one important mediator of white adipose tissue browning, during cold exposure. Surprisingly, hyperthermia may also induce beige activation and white adipose tissue beiging. Physical exercising copes with increased levels of specific molecules, including Beta-Aminoisobutyric acid, irisin, and Fibroblast growth factor 21 (FGF21), which induce adipose tissue browning. FGF21 is a stress-responsive hormone that interacts with beta-klotho. The central roles played by hormones in the browning process highlight the relevance of the individual lifestyle, including circadian rhythm and diet. Circadian rhythm involves the sleep-wake cycle and is regulated by melatonin, a hormone associated with UCP1 level upregulation. In contrast to the pro-inflammatory and adipose tissue disrupting effects of the western diet, specific food items, including capsaicin and n-3 polyunsaturated fatty acids, and dietary interventions such as calorie restriction and intermittent fasting, favor white adipose tissue browning and metabolic efficiency. The intestinal microbiome has also been pictured as a key factor in regulating white tissue browning, as it modulates bile acid levels, important molecules for the thermogenic program activation. During embryogenesis, in which adipose tissue formation is affected by Bone morphogenetic proteins that regulate gene expression, the stimuli herein discussed influence an orchestra of gene expression regulators, including a plethora of transcription factors, and chromatin remodeling enzymes, and non-coding RNAs. Considering the detrimental effects of adipose tissue browning and the disparities between adipose tissue characteristics in mice and humans, further efforts will benefit a better understanding of adipose tissue plasticity biology and its applicability to managing the overwhelming burden of several chronic diseases.
Collapse
Affiliation(s)
- Sabrina Azevedo Machado
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | | | - Debora Santos da Silva
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Gabriel Ribeiro Farias
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Igor de Oliveira Santos
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Luana Borges Baptista
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil
| | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasília, DF, Brazil.
| |
Collapse
|
34
|
RNA-Binding Proteins in the Regulation of Adipogenesis and Adipose Function. Cells 2022; 11:cells11152357. [PMID: 35954201 PMCID: PMC9367552 DOI: 10.3390/cells11152357] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The obesity epidemic represents a critical public health issue worldwide, as it is a vital risk factor for many diseases, including type 2 diabetes (T2D) and cardiovascular disease. Obesity is a complex disease involving excessive fat accumulation. Proper adipose tissue accumulation and function are highly transcriptional and regulated by many genes. Recent studies have discovered that post-transcriptional regulation, mainly mediated by RNA-binding proteins (RBPs), also plays a crucial role. In the lifetime of RNA, it is bound by various RBPs that determine every step of RNA metabolism, from RNA processing to alternative splicing, nucleus export, rate of translation, and finally decay. In humans, it is predicted that RBPs account for more than 10% of proteins based on the presence of RNA-binding domains. However, only very few RBPs have been studied in adipose tissue. The primary aim of this paper is to provide an overview of RBPs in adipogenesis and adipose function. Specifically, the following best-characterized RBPs will be discussed, including HuR, PSPC1, Sam68, RBM4, Ybx1, Ybx2, IGF2BP2, and KSRP. Characterization of these proteins will increase our understanding of the regulatory mechanisms of RBPs in adipogenesis and provide clues for the etiology and pathology of adipose-tissue-related diseases.
Collapse
|
35
|
Cheng Y, Xu LY, Zhang N, Yang JH, Guan L, Liu HM, Zhang YX, Li RM, Xu JW. Erchen Decoction Ameliorates the Metabolic Abnormalities of High-Fat Diet-Fed Rats. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2183542. [PMID: 35844447 PMCID: PMC9279095 DOI: 10.1155/2022/2183542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Objective Brown adipose tissue (BAT) dissipates chemical energy to protect against obesity. In the present study, we aimed to determine the effects of Erchen decoction on the lipolysis and thermogenesis function of BAT in high-fat diet-fed rats. Methods Sprague-Dawley rats were randomly divided into four groups, which were fed a control diet (C) or a high-fat diet (HF), and the latter was administered with high and low doses of Erchen decoction by gavage once a day, for 12 weeks. Body weight, the serum lipid profile, serum glucose, and insulin levels of the rats were evaluated. In addition, the phosphorylation and protein and mRNA expression of AMP-activated protein kinase (AMPK), adipose triglyceride lipase (ATGL), peroxisome proliferator-activated receptor γ coactivator- (PGC-) 1α, and uncoupling protein 1 (UCP-1) in BAT were measured by immunoblotting and RT-PCR. Results Erchen decoction administration decreased body weight gain and ameliorated the abnormal lipid profile and insulin resistance index of the high-fat diet-fed rats. In addition, the expression of p-AMPK and ATGL in the BAT was significantly increased by Erchen decoction. Erchen decoction also increased the protein and mRNA expression of PGC-1α and UCP-1 in BAT. Conclusion Erchen decoction ameliorates the metabolic abnormalities of high-fat diet-fed rats, at least in part via activation of lipolysis and thermogenesis in BAT.
Collapse
Affiliation(s)
- Ya Cheng
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Lu-Yao Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Ning Zhang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Jun-Hua Yang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Li Guan
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Hai-Mei Liu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Ya-Xing Zhang
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Run-Mei Li
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| | - Jin-Wen Xu
- The Research Center of Basic Integrative Medicine, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
- Department of Physiology, Basic Medical College, Guangzhou University of Chinese Medicine, University Town, Guangzhou 510006, China
| |
Collapse
|
36
|
Takeda Y, Dai P. Capsaicin directly promotes adipocyte browning in the chemical compound-induced brown adipocytes converted from human dermal fibroblasts. Sci Rep 2022; 12:6612. [PMID: 35459786 PMCID: PMC9033854 DOI: 10.1038/s41598-022-10644-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
Human brown fat is a potential therapeutic target for preventing obesity and related metabolic diseases by dissipating energy as heat through uncoupling protein 1 (UCP1). We have previously reported a method to obtain chemical compound-induced brown adipocytes (ciBAs) converted from human dermal fibroblasts under serum-free conditions. However, pharmacological responses to bioactive molecules have been poorly characterised in ciBAs. This study showed that the treatment with Capsaicin, an agonist of transient receptor potential vanilloid 1, directly activated adipocyte browning such as UCP1 expression, mitochondrial biogenesis, energy consumption rates, and glycerol recycling in ciBAs. Furthermore, genome-wide transcriptome analysis indicated that Capsaicin activated a broad range of metabolic genes including glycerol kinase and glycerol 3-phosphate dehydrogenase 1, which could be associated with the activation of glycerol recycling and triglyceride synthesis. Capsaicin also activated UCP1 expression in immortalised human brown adipocytes but inhibited its expression in mesenchymal stem cell-derived adipocytes. Altogether, ciBAs successfully reflected the direct effects of Capsaicin on adipocyte browning. These findings suggested that ciBAs could serve as a promising cell model for screening of small molecules and dietary bioactive compounds targeting human brown adipocytes.
Collapse
Affiliation(s)
- Yukimasa Takeda
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Ping Dai
- Department of Cellular Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
37
|
Wang F, Xu S, Chen T, Ling S, Zhang W, Wang S, Zhou R, Xia X, Yao Z, Li P, Zhao X, Wang J, Guo X. FOXP4 differentially controls cold-induced beige adipocyte differentiation and thermogenesis. Development 2022; 149:274748. [PMID: 35297993 DOI: 10.1242/dev.200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/07/2022] [Indexed: 11/20/2022]
Abstract
Beige adipocytes have a discrete developmental origin and possess notable plasticity in their thermogenic capacity in response to various environmental cues, but the transcriptional machinery controlling beige adipocyte development and thermogenesis remains largely unknown. By analyzing beige adipocyte-specific knockout mice, we identified a transcription factor, forkhead box P4 (FOXP4), that differentially governs beige adipocyte differentiation and activation. Depletion of Foxp4 in progenitor cells impaired beige cell early differentiation. However, we observed that ablation of Foxp4 in differentiated adipocytes profoundly potentiated their thermogenesis capacity upon cold exposure. Of note, the outcome of Foxp4 deficiency on UCP1-mediated thermogenesis was confined to beige adipocytes, rather than to brown adipocytes. Taken together, we suggest that FOXP4 primes beige adipocyte early differentiation, but attenuates their activation by potent transcriptional repression of the thermogenic program.
Collapse
Affiliation(s)
- Fuhua Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuqin Xu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Tienan Chen
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shifeng Ling
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Zhang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaojiao Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rujiang Zhou
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechun Xia
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengju Yao
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengxiao Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaodong Zhao
- Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xizhi Guo
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
38
|
Al-Ali MM, Khan AA, Fayyad AM, Abdallah SH, Khattak MNK. Transcriptomic profiling of the telomerase transformed Mesenchymal stromal cells derived adipocytes in response to rosiglitazone. BMC Genom Data 2022; 23:17. [PMID: 35264099 PMCID: PMC8905835 DOI: 10.1186/s12863-022-01027-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Differentiation of Immortalized Human Bone Marrow Mesenchymal Stromal Cells - hTERT (iMSC3) into adipocytes is in vitro model of obesity. In our earlier study, rosiglitazone enhanced adipogenesis particularly the brown adipogenesis of iMSC3. In this study, the transcriptomic profiles of iMSC3 derived adipocytes with and without rosiglitazone were analyzed through mRNA sequencing. Results A total of 1508 genes were differentially expressed between iMSC3 and the derived adipocytes without rosiglitazone treatment. GO and KEGG enrichment analyses revealed that rosiglitazone regulates PPAR and PI3K-Akt pathways. The constant rosiglitazone treatment enhanced the expression of Fatty Acid Binding Protein 4 (FABP4) which enriched GO terms such as fatty acid binding, lipid droplet, as well as white and brown fat cell differentiation. Moreover, the constant treatment upregulated several lipid droplets (LDs) associated proteins such as PLIN1. Rosiglitazone also activated the receptor complex PTK2B that has essential roles in beige adipocytes thermogenic program. Several uniquely expressed novel regulators of brown adipogenesis were also expressed in adipocytes derived with rosiglitazone: PRDM16, ZBTB16, HOXA4, and KLF15 in addition to other uniquely expressed genes. Conclusions Rosiglitazone regulated several differentially regulated genes and non-coding RNAs that warrant further investigation about their roles in adipogenesis particularly brown adipogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-022-01027-z.
Collapse
Affiliation(s)
- Moza Mohamed Al-Ali
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE
| | - Amir Ali Khan
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| | - Abeer Maher Fayyad
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE.,Department of Molecular and Genetic Diagnostics, Megalabs Group, Amman, 11953, Jordan
| | - Sallam Hasan Abdallah
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, 27272, UAE. .,Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, 27272, UAE.
| |
Collapse
|
39
|
Nahmgoong H, Jeon YG, Park ES, Choi YH, Han SM, Park J, Ji Y, Sohn JH, Han JS, Kim YY, Hwang I, Lee YK, Huh JY, Choe SS, Oh TJ, Choi SH, Kim JK, Kim JB. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab 2022; 34:458-472.e6. [PMID: 35021043 DOI: 10.1016/j.cmet.2021.11.014] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022]
Abstract
In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. Although emerging evidence suggests that subpopulations of adipose stem cells (ASCs) would be important to explain fat depot differences, ASCs of two fat depots have not been comparatively investigated. Here, we characterized heterogeneous ASCs and examined the effects of intrinsic and tissue micro-environmental factors on distinct ASC features. We demonstrated that ASC subpopulations in EAT and IAT exhibited different molecular features with three adipogenic stages. ASC transplantation experiments revealed that intrinsic ASC features primarily determined their adipogenic potential. Upon obesogenic stimuli, EAT-specific SDC1+ ASCs promoted fibrotic remodeling, whereas IAT-specific CXCL14+ ASCs suppressed macrophage infiltration. Moreover, IAT-specific BST2high ASCs exhibited a high potential to become beige adipocytes. Collectively, our data broaden the understanding of ASCs with new insights into the origin of white fat depot differences.
Collapse
Affiliation(s)
- Hahn Nahmgoong
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong Geun Jeon
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Seo Park
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Yoon Ha Choi
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea
| | - Sang Mun Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeu Park
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yul Ji
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee Hyung Sohn
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Seul Han
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ye Young Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Injae Hwang
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kyung Lee
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jin Young Huh
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Sik Choe
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Jung Oh
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Sung Hee Choi
- Internal Medicine, Seoul National University College of Medicine & Seoul National University Bundang Hospital, Seoul 03080, Republic of Korea
| | - Jong Kyoung Kim
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea.
| | - Jae Bum Kim
- National Creative Research Initiatives Center for Adipocyte Structure and Function, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
40
|
SENP2 suppresses browning of white adipose tissues by de-conjugating SUMO from C/EBPβ. Cell Rep 2022; 38:110408. [PMID: 35196497 DOI: 10.1016/j.celrep.2022.110408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/26/2021] [Accepted: 01/27/2022] [Indexed: 11/20/2022] Open
Abstract
The adipose tissue is a key site regulating energy metabolism. One of the contributing factors behind this is browning of white adipose tissue (WAT). However, knowledge of the intracellular determinants of the browning process remains incomplete. By generating adipocyte-specific Senp2 knockout (Senp2-aKO) mice, here we show that SENP2 negatively regulates browning by de-conjugating small ubiquitin-like modifiers from C/EBPβ. Senp2-aKO mice are resistant to diet-induced obesity due to increased energy expenditure and heat production. Senp2 knockout promotes beige adipocyte accumulation in inguinal WAT by upregulation of thermogenic gene expression. In addition, SENP2 knockdown promotes thermogenic adipocyte differentiation of precursor cells isolated from inguinal and epididymal WATs. Mechanistically, sumoylated C/EBPβ, a target of SENP2, suppresses expression of HOXC10, a browning inhibitor, by recruiting a transcriptional repressor DAXX. These findings indicate that a SENP2-C/EBPβ-HOXC10 axis operates for the control of beige adipogenesis in inguinal WAT.
Collapse
|
41
|
Sakers A, De Siqueira MK, Seale P, Villanueva CJ. Adipose-tissue plasticity in health and disease. Cell 2022; 185:419-446. [PMID: 35120662 PMCID: PMC11152570 DOI: 10.1016/j.cell.2021.12.016] [Citation(s) in RCA: 424] [Impact Index Per Article: 141.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/08/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
Abstract
Adipose tissue, colloquially known as "fat," is an extraordinarily flexible and heterogeneous organ. While historically viewed as a passive site for energy storage, we now appreciate that adipose tissue regulates many aspects of whole-body physiology, including food intake, maintenance of energy levels, insulin sensitivity, body temperature, and immune responses. A crucial property of adipose tissue is its high degree of plasticity. Physiologic stimuli induce dramatic alterations in adipose-tissue metabolism, structure, and phenotype to meet the needs of the organism. Limitations to this plasticity cause diminished or aberrant responses to physiologic cues and drive the progression of cardiometabolic disease along with other pathological consequences of obesity.
Collapse
Affiliation(s)
- Alexander Sakers
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Mirian Krystel De Siqueira
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA.
| | - Claudio J Villanueva
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095-7070 USA.
| |
Collapse
|
42
|
Abstract
The endocannabinoid system is found in most, if not all, mammalian organs and is involved in a variety of physiological functions, ranging from the control of synaptic plasticity in the brain to the modulation of smooth muscle motility in the gastrointestinal tract. This signaling complex consists of G protein-coupled cannabinoid receptors, endogenous ligands for those receptors (endocannabinoids) and enzymes/transporters responsible for the formation and deactivation of these ligands. There are two subtypes of cannabinoid receptors, CB1 and CB2, and two major endocannabinoids, arachidonoylethanolamide (anandamide) and 2-arachidonoyl-sn-glycerol (2-AG), which are produced upon demand through cleavage of distinct phospholipid precursors. All molecular components of the endocannabinoid system are represented in the adipose organ, where endocannabinoid signals are thought to regulate critical homeostatic processes, including adipogenesis, lipogenesis and thermogenesis. Importantly, obesity was found to be associated with excess endocannabinoid activity in visceral fat depots, and the therapeutic potential of normalizing such activity by blocking CB1 receptors has been the focus of substantial preclinical and clinical research. Results have been mixed thus far, mostly owing to the emergence of psychiatric side effects rooted in the protective functions served by brain endocannabinoids in mood and affect regulation. Further studies about the roles played by the endocannabinoid system in the adipose organ will offer new insights into the pathogenesis of obesity and might help identify new ways to leverage this signaling complex for therapeutic benefit.
Collapse
Affiliation(s)
- Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, 3101 Gillespie NRF, Irvine, CA, 92697-1275, USA.
- Department of Pharmacology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
43
|
De la Fuente-Hernandez MA, Sarabia-Sanchez MA, Melendez-Zajgla J, Maldonado-Lagunas V. Role of lncRNAs into Mesenchymal Stromal Cell Differentiation. Am J Physiol Cell Physiol 2022; 322:C421-C460. [PMID: 35080923 DOI: 10.1152/ajpcell.00364.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Currently, findings support that 75% of the human genome is actively transcribed, but only 2% is translated into a protein, according to databases such as ENCODE (Encyclopedia of DNA Elements) [1]. The development of high-throughput sequencing technologies, computational methods for genome assembly and biological models have led to the realization of the importance of the previously unconsidered non-coding fraction of the genome. Along with this, noncoding RNAs have been shown to be epigenetic, transcriptional and post-transcriptional regulators in a large number of cellular processes [2]. Within the group of non-coding RNAs, lncRNAs represent a fascinating field of study, given the functional versatility in their mode of action on their molecular targets. In recent years, there has been an interest in learning about lncRNAs in MSC differentiation. The aim of this review is to address the signaling mechanisms where lncRNAs are involved, emphasizing their role in either stimulating or inhibiting the transition to differentiated cell. Specifically, the main types of MSC differentiation are discussed: myogenesis, osteogenesis, adipogenesis and chondrogenesis. The description of increasingly new lncRNAs reinforces their role as players in the well-studied field of MSC differentiation, allowing a step towards a better understanding of their biology and their potential application in the clinic.
Collapse
Affiliation(s)
- Marcela Angelica De la Fuente-Hernandez
- Facultad de Medicina, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Laboratorio de Epigenética, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Miguel Angel Sarabia-Sanchez
- Facultad de Medicina, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jorge Melendez-Zajgla
- Laboratorio de Genómica Funcional del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | |
Collapse
|
44
|
Mills EL, Harmon C, Jedrychowski MP, Xiao H, Gruszczyk AV, Bradshaw GA, Tran N, Garrity R, Laznik-Bogoslavski D, Szpyt J, Prendeville H, Lynch L, Murphy MP, Gygi SP, Spiegelman BM, Chouchani ET. Cysteine 253 of UCP1 regulates energy expenditure and sex-dependent adipose tissue inflammation. Cell Metab 2022; 34:140-157.e8. [PMID: 34861155 PMCID: PMC8732317 DOI: 10.1016/j.cmet.2021.11.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/15/2021] [Accepted: 11/08/2021] [Indexed: 01/07/2023]
Abstract
Uncoupling protein 1 (UCP1) is a major regulator of brown and beige adipocyte energy expenditure and metabolic homeostasis. However, the widely employed UCP1 loss-of-function model has recently been shown to have a severe deficiency in the entire electron transport chain of thermogenic fat. As such, the role of UCP1 in metabolic regulation in vivo remains unclear. We recently identified cysteine-253 as a regulatory site on UCP1 that elevates protein activity upon covalent modification. Here, we examine the physiological importance of this site through the generation of a UCP1 cysteine-253-null (UCP1 C253A) mouse, a precise genetic model for selective disruption of UCP1 in vivo. UCP1 C253A mice exhibit significantly compromised thermogenic responses in both males and females but display no measurable effect on fat accumulation in an obesogenic environment. Unexpectedly, we find that a lack of C253 results in adipose tissue redox stress, which drives substantial immune cell infiltration and systemic inflammatory pathology in adipose tissues and liver of male, but not female, mice. Elevation of systemic estrogen reverses this male-specific pathology, providing a basis for protection from inflammation due to loss of UCP1 C253 in females. Together, our results establish the UCP1 C253 activation site as a regulator of acute thermogenesis and sex-dependent tissue inflammation.
Collapse
Affiliation(s)
- Evanna L Mills
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Cathal Harmon
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA
| | - Mark P Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Haopeng Xiao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Anja V Gruszczyk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Gary A Bradshaw
- Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Nhien Tran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ryan Garrity
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - John Szpyt
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hannah Prendeville
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Lydia Lynch
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital and Harvard Medical School, Boston, USA; School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Michael P Murphy
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Bruce M Spiegelman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Lizcano F. Roles of estrogens, estrogen-like compounds, and endocrine disruptors in adipocytes. Front Endocrinol (Lausanne) 2022; 13:921504. [PMID: 36213285 PMCID: PMC9533025 DOI: 10.3389/fendo.2022.921504] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Women are subject to constitutional changes after menopause, which increases conditions and diseases prone to cardiovascular risks such as obesity and diabetes mellitus. Both estrogens and androgens influence the individual's metabolic mechanism, which controls the fat distribution and the hypothalamic organization of the regulatory centers of hunger and satiety. While androgens tend to accumulate fat in the splanchnic and the visceral region with an increase in cardiovascular risk, estrogens generate more subcutaneous and extremity distribution of adipose tissue. The absence of estrogen during menopause seems to be the main factor that gives rise to the greater predisposition of women to suffer cardiovascular alterations. However, the mechanisms by which estrogens regulate the energy condition of people are not recognized. Estrogens have several mechanisms of action, which mainly include the modification of specific receptors that belong to the steroid receptor superfamily. The alpha estrogen receptors (ERα) and the beta receptors (ERβ) have a fundamental role in the metabolic control of the individual, with a very characteristic corporal distribution that exerts an influence on the metabolism of lipids and glucose. Despite the significant amount of knowledge in this field, many of the regulatory mechanisms exerted by estrogens and ER continue to be clarified. This review will discuss the role of estrogens and their receptors on the central regulation of caloric expenditure and the influence they exert on the differentiation and function of adipocytes. Furthermore, chemical substances with a hormonal activity that cause endocrine disruption with affectation on estrogen receptors will be considered. Finally, the different medical therapies for the vasomotor manifestations of menopause and their role in reducing obesity, diabetes, and cardiovascular risk will be analyzed.
Collapse
|
46
|
T Regulatory Cells in the Visceral Adipose Tissues. IMMUNOMETABOLISM 2021; 4. [PMID: 35070445 PMCID: PMC8774286 DOI: 10.20900/immunometab20220002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
CD4+ Foxp3+ T regulatory cells (Tregs) residing in the visceral adipose tissues (VAT) have profound effects on local and systemic metabolism. Although many of the molecular characteristics of VAT resident Tregs have been identified, how these cells promote metabolic homeostasis is still unclear. Several new publications help to illuminate the molecular mechanisms that underpin VAT resident Treg function and will be discussed here.
Collapse
|
47
|
Xu Y, Shi T, Cui X, Yan L, Wang Q, Xu X, Zhao Q, Xu X, Tang QQ, Tang H, Pan D. Asparagine reinforces mTORC1 signaling to boost thermogenesis and glycolysis in adipose tissues. EMBO J 2021; 40:e108069. [PMID: 34704268 PMCID: PMC8672174 DOI: 10.15252/embj.2021108069] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/19/2023] Open
Abstract
Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine‐fed mice showed better cold tolerance. In mice with diet‐induced obesity, the asparagine‐fed group was more responsive to β3‐adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13C‐glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.
Collapse
Affiliation(s)
- Yingjiang Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ting Shi
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuan Cui
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linyu Yan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qingwen Zhao
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoxuan Xu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongning Pan
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
48
|
Choi KM, Kim JH, Kong X, Isik M, Zhang J, Lim HW, Yoon JC. Defective brown adipose tissue thermogenesis and impaired glucose metabolism in mice lacking Letmd1. Cell Rep 2021; 37:110104. [PMID: 34910916 PMCID: PMC12003058 DOI: 10.1016/j.celrep.2021.110104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Manipulation of energy-dissipating adipocytes has the potential to produce metabolic benefits. To this end, it is valuable to understand the mechanisms controlling the generation and function of thermogenic fat. Here, we identify Letm1 domain containing 1 (Letmd1) as a regulator of brown fat formation and function. The expression of Letmd1 is induced in brown fat by cold exposure and by β-adrenergic activation. Letmd1-deficient mice exhibit severe cold intolerance concomitant with abnormal brown fat morphology, reduced thermogenic gene expression, and low mitochondrial content. The null mice exhibit impaired β3-adrenoreceptor-dependent thermogenesis and are prone to diet-induced obesity and defective glucose disposal. Letmd1 was previously described as a mitochondrial protein, and we find that it also localizes to the nucleus and interacts with the transcriptional coregulator and chromatin remodeler Brg1/Smarca4, thus providing a way to impact thermogenic gene expression. Our study uncovers a role for Letmd1 as a key regulatory component of adaptive thermogenesis.
Collapse
Affiliation(s)
- Kyung-Mi Choi
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Jung Hak Kim
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Xiangmudong Kong
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | | | - Jin Zhang
- Department of Surgical and Radiological Sciences, University of California Davis School of Veterinary Medicine, Davis, CA 95616, USA
| | - Hee-Woong Lim
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - John C Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Marcelin G, Clément K. The multifaceted progenitor fates in healthy or unhealthy adipose tissue during obesity. Rev Endocr Metab Disord 2021; 22:1111-1119. [PMID: 34105090 DOI: 10.1007/s11154-021-09662-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
While obesity is defined as an excessive fat accumulation conferring a risk to metabolic health, increased adipose mass by itself does not fully explain obesity's propensity to promote metabolic alterations. Adipose tissue regulates multiple processes critical for energy homeostasis and its dysfunction favors the development and perpetuation of metabolic diseases. Obesity drives inflammatory leucocyte infiltration in adipose tissue and fibrotic transformation of the fat depots. Both features associate with metabolic alterations such as impaired glucose control and resistance to fat mass loss. In this context, adipose progenitors, an heterogenous resident population of mesenchymal stromal cells, display functions important to shape healthy or unhealthy adipose tissue expansion. We, here, outline the current understanding of adipose progenitor biology in the context of obesity-induced adipose tissue remodeling.
Collapse
Affiliation(s)
- Geneviève Marcelin
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France
| | - Karine Clément
- Nutrition and Obesities : Systemic Approaches (NutriOmics, UMRS U1269), Sorbonne Universités, INSERM, Paris, France.
- Nutrition Department, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, CRNH Ile de France, 75013, Paris, France.
| |
Collapse
|
50
|
Wang Q, Jin F, Zhang J, Li Z, Yu D. Lipoxin A4 promotes adipogenic differentiation and browning of mouse embryonic fibroblasts. In Vitro Cell Dev Biol Anim 2021; 57:953-961. [PMID: 34811702 DOI: 10.1007/s11626-021-00617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/14/2021] [Indexed: 10/19/2022]
Abstract
Recently, it has been irrefutably discovered that brown adipocytes dissipate energy as heat and protect against obesity. Researchers make great efforts to explore approaches for its activation. Lipoxin A4 (LXA4) has been proven to reverse adipose tissue inflammation and improve insulin resistance, but its function on brown adipocyte differentiation has been poorly understood, which therefore to be investigated in the present study. Mouse embryonic fibroblasts (MEFs) were induced and differentiated to model brown adipocytes, and treated with LXA4 at 0, 1, 5, and 10 nM for 0-14 d. Afterwards, Oil Red O staining detected lipid droplets. In differentiated MEFs with or without LXA4 (10 nM) treatment, western blot and quantitative real-time polymerase chain reaction (qRT-PCR) assessed adipocyte browning marker uncoupling protein 1 (UCP-1), and brown adipogenesis markers peroxisome proliferator-activated receptor gamma (PPARγ), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α), cyclooxygenase-2 (COX-2), and positive regulation domain containing 16 (PRDM16) as well as lipogenic genes of stearoyl-CoA desaturase 1 (SCD1), fatty acid synthase (FASN), glucose transporter type 4 (GLUT4), and carbohydrate response element binding protein (ChREBP). The induced differentiation of MEFs toward brown adipocytes was successful. LXA4 promoted intracellular accumulation of lipid droplets of induced cells and increased UCP-1 expression in a dose- or time-dependent manner. Under the administration of LXA4, brown adipogenesis markers and lipogenic genes were further upregulated. LXA4 made a contribution to induce differentiation of MEFs to brown adipocytes, which could be regarded a new drug target for obesity management.
Collapse
Affiliation(s)
- Qijun Wang
- Endocrinology Department, Xihu District, Zhejiang Hospital, No. 12 Lingyin RoadZhejiang Province, Hangzhou City, 310013, China
| | - Fubi Jin
- Endocrinology Department, Xihu District, Zhejiang Hospital, No. 12 Lingyin RoadZhejiang Province, Hangzhou City, 310013, China
| | - Jinghong Zhang
- Endocrinology Department, Xihu District, Zhejiang Hospital, No. 12 Lingyin RoadZhejiang Province, Hangzhou City, 310013, China
| | - Zheng Li
- Endocrinology Department, Xihu District, Zhejiang Hospital, No. 12 Lingyin RoadZhejiang Province, Hangzhou City, 310013, China
| | - Dan Yu
- Endocrinology Department, Xihu District, Zhejiang Hospital, No. 12 Lingyin RoadZhejiang Province, Hangzhou City, 310013, China.
| |
Collapse
|