1
|
Xue L, Lewis E, Bocharova M, Young AH, Aarsland D. Decreased neutrophil-to-lymphocyte ratio predicted cognitive improvement in late-life depression treated with vortioxetine: Findings from an eight-week randomized controlled trial. Brain Behav Immun 2025; 126:53-58. [PMID: 39921151 DOI: 10.1016/j.bbi.2025.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Elevated neutrophil-to-lymphocyte ratio, a marker of inflammation, has been reported in adult and late-life depression. Vortioxetine has shown efficacy in treatment of late-life depression, yet little is known regarding its immunomodulatory role in clinical trials. METHODS This is a post-hoc analysis of an eight-week randomized controlled trial. Depressed patients aged 65 or above were treated by vortioxetine, duloxetine or placebo. 321 patients that have taken blood tests at baseline and endpoint were included in the analysis. Neutrophil-to-lymphocyte ratio (NLR) was calculated using the absolute counts of each cell type. Cognitive performance was assessed by composite score of Digit Symbol Substitution Test (DSST) and the Rey Auditory Verbal Learning Test (RAVLT) tasks, while depressive symptoms were assessed by Montgomery-Åsberg Depression Rating Scale (MADRS) and Geriatric Depression Scale (GDS). RESULTS NLR levels decreased significantly in the entire analysis set (t(320) = 2.64, p = 0.008) and in the vortioxetine group (M = -0.186, t(105) = 2.070, p = 0.041, Cohen's d = 0.20), but not in the two other groups. This decrease was not significantly different compared to placebo (F(1, 213) = 0.420, p = 0.517). Furthermore, larger NLR changes in vortioxetine arm predicted significant cognitive improvement (β = -4.03, p = 0.03), specifically regarding the DSST correct symbols (β = -1.97, p = 0.04) and RAVLT delayed recall (β = -1.87, p = 0.02) tasks. Additionally, decreased NLR significantly predicted reduced GDS score (β = 1.82, p = 0.02), yet not MADRS score. CONCLUSION Vortioxetine treatment was associated with decreased NLR levels in late-life depression, and reductions in NLR predicted improvements in cognitive function and depressive symptoms, suggesting a potential link between inflammation and clinical outcomes.
Collapse
Affiliation(s)
- Lingfeng Xue
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom.
| | - Elin Lewis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Mariia Bocharova
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Allan H Young
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Dag Aarsland
- Centre for Healthy Brain Ageing, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
2
|
Tan D, Yang X, Yang J, Fan G, Xiong G. PCSK9 in Vascular Aging and Age-Related Diseases. Aging Dis 2025:AD.2024.1713. [PMID: 40354375 DOI: 10.14336/ad.2024.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/27/2025] [Indexed: 05/14/2025] Open
Abstract
The aging process significantly contributes to human disease, and as worldwide life expectancy increases, addressing the challenges of aging and age-related cardiovascular diseases is becoming increasingly urgent. Vascular aging is a key link between aging and the development of age-related diseases. Recent studies indicate that proprotein convertase subtilisin/kexin type 9 (PCSK9), a type of protein involved in the metabolism of lipids, is crucial in modulating vascular aging by affecting the physiological functioning of vascular cells. PCSK9 is linked to lipid metabolism and chronic inflammation and is involved in regulating senescence-related activities, including migration, proliferation, apoptosis, and differentiation. These factors contribute to the aging of vascular cells and age-related vascular diseases, including atherosclerosis, hypertension, coronary artery disease, and cerebrovascular diseases. Given its involvement in these processes, this article provides a comprehensive summary of PCSK9's regulatory functions in vascular aging, highlighting potential therapeutic targets for combating age-related cardiovascular diseases.
Collapse
Affiliation(s)
- Dong Tan
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
| | - Xin Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Metabolism and Endocrinology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Gang Fan
- Pan-Vascular Research Group, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong, China
- Department of Urology, Shenzhen University Affiliated Sixth Hospital, Shenzhen, Guangdong Province, China
| | - Guozuo Xiong
- Department of Vascular Surgery, the Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Third Affiliated Hospital of University of South China, Hengyang, Hunan, China
- Hunan Province Thrombotic Disease Prevention and Treatment Clinical Medical Research Center, The Second Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Bonkhoff AK, Coughlan G, Perosa V, Alhadid K, Schirmer MD, Regenhardt RW, van Veluw S, Buckley R, Fox MD, Rost NS. Sex differences in age-associated neurological diseases-A roadmap for reliable and high-yield research. SCIENCE ADVANCES 2025; 11:eadt9243. [PMID: 40043111 PMCID: PMC11881909 DOI: 10.1126/sciadv.adt9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Once taken into consideration, sex differences in neurological diseases emerge in abundance: (i) Stroke severity is significantly higher in females than in males, (ii) Alzheimer's disease (AD) pathology is more pronounced in females, and (iii) conspicuous links with hormonal cycles led to female-specific diagnoses, such as catamenial migraines and epilepsy. While these differences receive increasing attention in isolation, they likely link to similar processes in the brain. Hence, this review aims to present an overview of the influences of sex chromosomes, hormones, and aging on male and female brains across health and disease, with a particular focus on AD and stroke. The focus here on advancements across several fields holds promise to fuel future research and to lead to an enriched understanding of the brain and more effective personalized neurologic care for all.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kenda Alhadid
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Robert W. Regenhardt
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Susanne van Veluw
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Maletin N, Denda N, Borocki S, Golušin Z, Rašković A, Fejsa-Levakov A, Višnjić BA, Amidžić J. Morphological characteristics of microenvironment in the human thymus during fetal development. BMC Res Notes 2025; 18:92. [PMID: 40033348 PMCID: PMC11877800 DOI: 10.1186/s13104-025-07109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/15/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The thymus is a key organ for the development of T cells. T cell precursors first migrate from the bone marrow to the thymus. During maturation, these precursors require interactions with various types of cells that form the thymic microenvironment, such as epithelial, mesenchymal, and other immune cells not belonging to the T lineage. The aim of this study was to examine the changes in the number and diameter of Hassall's corpuscles, as well as the density and distribution of epithelial cells (p63+) and macrophages (CD68+). METHODS Twenty-five fetal thymus samples were examined, divided into five groups according to gestational age. The samples were processed using standard histological methods and immunohistochemical staining. RESULTS The study showed that the number and diameter of Hassall's corpuscles gradually increased during fetal development, with a significant increase from the 14th to the 38th gestational week. The average diameter of Hassall's corpuscles was largest in the age group of 34-38 weeks. The density of p63 + epithelial cells decreased in correlation with gestational week, while the density of CD68 + macrophages significantly increased, particularly in the thymic medulla, towards the end of the fetal period. CONCLUSIONS An increase in the number and size of Hassall's corpuscles during fetal development was recorded, while the density of epithelial cells decreased and the density of macrophages increased.
Collapse
Affiliation(s)
- Nemanja Maletin
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia.
| | - Nikola Denda
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Stefan Borocki
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - Zoran Golušin
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | | | | | | | - Jelena Amidžić
- Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
5
|
Wang P, Wang S, Huang Q, Chen X, Yu Y, Zhang R, Qiu M, Li Y, Pan X, Li X, Li X. Development and validation of the systemic nutrition/inflammation index for improving perioperative management of non-small cell lung cancer. BMC Med 2025; 23:113. [PMID: 39988705 PMCID: PMC11849302 DOI: 10.1186/s12916-025-03925-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025] Open
Abstract
BACKGROUND Systemic nutrition and inflammation status is recognized for its influence on cancer survival, yet its role in perioperative outcomes remains poorly defined. This study aimed to refine the assessment of systemic nutrition and inflammation status in non-small cell lung cancer (NSCLC) patients and to elucidate its impact on perioperative outcomes. METHODS All patients underwent video-assisted thoracoscopic lobectomy, with their nutrition and inflammation status assessed based on preoperative blood tests. The development cohort, comprising 1497 NSCLC patients from two centers, evaluated the predictive value of systemic nutrition/inflammation indicators for perioperative endpoints and formulated the systemic nutrition-inflammation index (SNII). The tertiles of SNII were used to classify the nutrition/inflammation risk as high (< 15.6), moderate (15.6-23.1), and low (> 23.1). An external validation cohort of 505 NSCLC patients was utilized to confirm the effectiveness of SNII in guiding perioperative management. RESULTS In the development cohort, the SNII tool, calculated as the product of total cholesterol and total lymphocytes divided by total monocytes, demonstrated a stronger correlation with perioperative outcomes compared to 11 existing nutrition/inflammation indicators. A low SNII score, indicative of high nutrition/inflammation risk, was independently predictive of increased complication incidence and severity, as well as prolonged chest tube duration and hospital stay. These findings were corroborated in the validation cohort. Upon combining the development and validation cohorts, the superiority of the SNII in predicting perioperative outcomes was further confirmed over the existing nutrition/inflammation indicators. Additionally, comprehensive subgroup analyses revealed the moderately variable efficacy of SNII across different patient populations. CONCLUSIONS This study developed and validated the SNII as a tool for identifying systemic nutrition and inflammation risk, which can enhance perioperative managements in NSCLC patients. Patients identified with high risk may benefit from prehabilitation and intensive treatments, highlighting the need for further research.
Collapse
Affiliation(s)
- Peiyu Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
- Henan Province Engineering Research Center of Molecular Pathology and Clinical Experiment of Thoracic Diseases, Zhengzhou, 450052, Henan, China.
| | - Shaodong Wang
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Qi Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan Province Engineering Research Center of Molecular Pathology and Clinical Experiment of Thoracic Diseases, Zhengzhou, 450052, Henan, China
| | - Xiankai Chen
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, Henan, China
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Beijing, 100021, Henan, China
| | - Yongkui Yu
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, Henan, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, Henan, China
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Beijing, 100021, Henan, China
| | - Mantang Qiu
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yin Li
- Department of Thoracic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, 450000, Henan, China.
- Department of Thoracic Surgical Oncology, National Cancer Center/Cancer Hospital, Beijing, 100021, Henan, China.
| | - Xue Pan
- School of Nursing and Health, Zhengzhou University, Zhengzhou, 450000, Henan, China.
| | - Xiao Li
- Thoracic Oncology Institute/Department of Thoracic Surgery, Peking University People's Hospital, Beijing, 100044, China.
| | - Xiangnan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Henan Province Engineering Research Center of Molecular Pathology and Clinical Experiment of Thoracic Diseases, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
6
|
Alruhaimi RS, Hussein OE, Alnasser SM, Elbagory I, Alzoghaibi MA, Kamel EM, El Mohtadi M, Mahmoud AM. Haloxylon salicornicum Phytochemicals Suppress NF-κB, iNOS and Pro-Inflammatory Cytokines in Lipopolysaccharide-Induced Macrophages. Chem Biodivers 2025; 22:e202401623. [PMID: 39355861 DOI: 10.1002/cbdv.202401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/03/2024]
Abstract
Haloxylon salicornicum is traditionally used for the treatment of several disorders associated with inflammation. Despite it is a defense response against tissue injury and infections, inflammation can become a chronic condition that can negatively impact the body. This study investigated the effect of H. salicornicum phytochemicals nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS) and cytokines release by lipopolysaccharide (LPS)-challenged macrophages in vitro. The binding affinity of the tested phytochemical towards NF-κB and iNOS was investigated using molecular docking. Ten compounds (four coumarins, three sterols and three flavonoids) were isolated from the ethanolic extract of H. salicornicum. Treatment of LPS-challenged macrophages with the compounds resulted in remarkable decrease in NF-κB p65 and iNOS mRNA abundance. All compounds suppressed the production of nitric oxide (NO) and the pro-inflammatory cytokines (tumor necrosis factor (TNF)-α and interleukin (IL)-6) from macrophages challenged with LPS. Molecular docking revealed the ability of the isolated phytochemicals to bind NF-κB p65 and iNOS. In conclusion, H. salicornicum is a rich source of phytochemicals with anti-inflammatory properties. The anti-inflammatory efficacy of H. salicornicum phytoconstituents is mediated via their ability to modulate NF-κB and iNOS, and suppress the release of NO, TNF-α, and IL-6 from macrophages.
Collapse
Affiliation(s)
- Reem S Alruhaimi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Omnia E Hussein
- Higher Technological Institute for Applied Health Sciences, Beni-Suef, Egypt
| | - Sulaiman M Alnasser
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Ibrahim Elbagory
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, 11461, Saudi Arabia
| | - Emadeldin M Kamel
- Organic Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, 62514, Egypt
| | | | - Ayman M Mahmoud
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
7
|
Xu S, Liu D, Zhang F, Tian Y. Innovative treatment of age-related hearing loss using MSCs and EVs with Apelin. Cell Biol Toxicol 2025; 41:31. [PMID: 39820591 PMCID: PMC11739245 DOI: 10.1007/s10565-025-09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Utilizing single-cell transcriptome sequencing (scRNA-seq) technology, this study explores the viability of employing mesenchymal stem cells (MSCs) as a therapeutic approach for age-related hearing loss (ARHL). The research demonstrates MSCs' ability to differentiate into inner ear cell subpopulations, particularly hair cells, delivering Apelin via extracellular vesicles (EVs) to promote M2 macrophage polarization. In vitro experiments show reduced inflammation and preservation of hair cell health. In elderly mice, MSCs transplantation leads to hair cell regeneration, restoring auditory function. These findings highlight the regenerative capabilities of MSCs and EV-mediated therapeutic approaches for ARHL.
Collapse
Affiliation(s)
- Shengqun Xu
- Ear, Nose, Throat, Head and Neck Surgery Comprehensive Ward, Shengjing Hospital of China Medical University, Shenyang, 110020, China
| | - Dongliang Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Fang Zhang
- Department of Otorhinolaryngology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China.
| | - Yuan Tian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
8
|
Cooper EB, Whalen C, Beeby N, Negron-Del Valle JE, Phillips D, Snyder-Mackler N, Brent LJN, Higham JP. Associations between social behaviour and proinflammatory immune activation are modulated by age in a free-ranging primate population. Anim Behav 2025; 219:123021. [PMID: 39829684 PMCID: PMC11741183 DOI: 10.1016/j.anbehav.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The effect of the social environment on the proinflammatory immune response may mediate the relationship between social environment and fitness but remains understudied outside captive animals and human populations. Age can also influence both immune function and social behaviour, and hence may modulate their relationships. This study investigates the role of social interactions in driving the concentrations of two urinary markers of proinflammatory immune activation, neopterin and soluble urokinase plasminogen activator receptor (suPAR), in a free-ranging population of rhesus macaques, Macaca mulatta. We collected 854 urine samples from 172 adult monkeys and quantified how urinary suPAR and neopterin concentrations were related to affiliative behaviour and agonistic behaviour received over 60 days. In females, but not in males, higher rates of affiliative interactions were associated with lower neopterin concentrations, while conversely, experiencing more agonistic interactions was associated with higher neopterin concentrations. The association between affiliation and neopterin concentration was modulated by age, with older females experiencing a stronger negative association between affiliative behaviour and neopterin concentration. There were no associations between suPAR concentration and social environment for either sex. This study demonstrates that proinflammatory immune activity is a potential mechanism mediating the association between social environment and fitness under naturalistic conditions and that age can be an important modulator of the effect of social environment on the immune system.
Collapse
Affiliation(s)
- Eve B. Cooper
- Department of Anthropology, New York University, New York, NY, U.S.A
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, U.S.A
| | - Connor Whalen
- Department of Anthropology, New York University, New York, NY, U.S.A
| | - Nina Beeby
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, U.S.A
- The Graduate Center of City University of New York, New York, NY, U.S.A
| | | | - Daniel Phillips
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, U.S.A
| | | | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, U.S.A
- School of Life Sciences, Arizona State University, Tempe, AZ, U.S.A
- ASU-Banner Neurodegenerative Disease Research Center, Arizona State University, Tempe, AZ, U.S.A
- School for Human Evolution and Social Change, Arizona State University, Tempe, AZ, U.S.A
| | - Lauren J. N. Brent
- Centre for Research in Animal Behaviour, University of Exeter, Exeter, U.K
| | - James P. Higham
- Department of Anthropology, New York University, New York, NY, U.S.A
- The New York Consortium in Evolutionary Primatology (NYCEP), New York, NY, U.S.A
| |
Collapse
|
9
|
Jacob S, Christofferson A, Fisch S, Norwood P, Castillo P, Yu H, Hirst G, Soliman H, Nanda R, Mukhtar RA, Ewing C, Majure M, Melisko M, Rugo HS, Esserman L, Price E, Chien AJ. Regional lymph node changes on breast MRI in patients with early-stage breast cancer receiving neoadjuvant chemo-immunotherapy. Breast Cancer Res Treat 2025; 209:147-159. [PMID: 39305392 PMCID: PMC11785630 DOI: 10.1007/s10549-024-07481-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/28/2024] [Indexed: 02/02/2025]
Abstract
PURPOSE Establishing breast MRI imaging patterns associated with neoadjuvant immunotherapy is needed to monitor response. We analyzed serial breast MRIs in patients receiving neoadjuvant chemo-immunotherapy on the I-SPY2 clinical trial. METHODS Patients with stage 2-3 HER2-negative breast cancer were randomized to weekly paclitaxel (control), weekly paclitaxel and pembrolizumab, or weekly paclitaxel, pembrolizumab and intra-tumoral injection of SD-101, a TLR9 agonist. All patients received AC. Regional lymph nodes were retrospectively evaluated on breast MRI at baseline, 3, 12 and 20 weeks by a single blinded radiologist. MRIs were assessed for development of new regional lymphadenopathy, or increase in the longest diameter or cortical thickness of the largest abnormal regional lymph node. RESULTS Between 12/2015 and 4/2021, a total of 43 patients enrolled in the control (n = 16) and paclitaxel + pembrolizumab ± SD-101 (n = 27) arms. 12 of 27 patients (44.4%) receiving chemo-immunotherapy experienced increased lymphadenopathy within the first 12 weeks compared to 1 of 16 patients (6.3%) in the control group (p = 0.014). Most patients with increased lymphadenopathy were in the SD101/pembro arm (n = 10, p = 0.002). Increased lymphadenopathy was observed despite concomitant decrease in breast tumor size at all time points. 11 of 12 patients with increased lymphadenopathy had pathologically negative nodes at surgery. There was no association between lymphadenopathy and lower residual cancer burden or immune-related toxicity. CONCLUSIONS The combination of neoadjuvant paclitaxel and pembrolizumab ± SD101 intratumoral injection was associated with early increases in regional lymphadenopathy on MRI despite decreased breast tumor size. Increased lymphadenopathy was not associated with node positive disease at surgery.
Collapse
Affiliation(s)
- Saya Jacob
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | | | - Samantha Fisch
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Peter Norwood
- Quantum Leap Healthcare Collaborative, 499 Illinois Ave, Suite 200, San Francisco, CA, 94158, USA
| | - Paolo Castillo
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Hongmei Yu
- Quantum Leap Healthcare Collaborative, 499 Illinois Ave, Suite 200, San Francisco, CA, 94158, USA
| | - Gillian Hirst
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Hatem Soliman
- Moffit Cancer Center, 10920 N. McKinley Drive, Tampa, FL, 33612, USA
| | - Rita Nanda
- University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, 60637, USA
| | - Rita A Mukhtar
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Cheryl Ewing
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Melanie Majure
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Michelle Melisko
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Hope S Rugo
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Laura Esserman
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - Elissa Price
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA
| | - A Jo Chien
- University of California San Francisco Comprehensive Cancer Center, 1825 4 Street, San Francisco, CA, 94158, USA.
| |
Collapse
|
10
|
Müller L, Di Benedetto S. The impact of COVID-19 on accelerating of immunosenescence and brain aging. Front Cell Neurosci 2024; 18:1471192. [PMID: 39720706 PMCID: PMC11666534 DOI: 10.3389/fncel.2024.1471192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/29/2024] [Indexed: 12/26/2024] Open
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has profoundly impacted global health, affecting not only the immediate morbidity and mortality rates but also long-term health outcomes across various populations. Although the acute effects of COVID-19 on the respiratory system have initially been the primary focus, it is increasingly evident that the virus can have significant impacts on multiple physiological systems, including the nervous and immune systems. The pandemic has highlighted the complex interplay between viral infection, immune aging, and brain health, that can potentially accelerate neuroimmune aging and contribute to the persistence of long COVID conditions. By inducing chronic inflammation, immunosenescence, and neuroinflammation, COVID-19 may exacerbate the processes of neuroimmune aging, leading to increased risks of cognitive decline, neurodegenerative diseases, and impaired immune function. Key factors include chronic immune dysregulation, oxidative stress, neuroinflammation, and the disruption of cellular processes. These overlapping mechanisms between aging and COVID-19 illustrate how the virus can induce and accelerate aging-related processes, leading to an increased risk of neurodegenerative diseases and other age-related conditions. This mini-review examines key features and possible mechanisms of COVID-19-induced neuroimmune aging that may contribute to the persistence and severity of long COVID. Understanding these interactions is crucial for developing effective interventions. Anti-inflammatory therapies, neuroprotective agents, immunomodulatory treatments, and lifestyle interventions all hold potential for mitigating the long-term effects of the virus. By addressing these challenges, we can improve health outcomes and quality of life for millions affected by the pandemic.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development Center for Lifespan Psychology, Berlin, Germany
| | | |
Collapse
|
11
|
Park SS, Park SH, Jeong HT, Shin MS, Kim MK, Kim BK, Yoon HS, Kim SH, Kim TW. The effect of treadmill exercise on memory function and gut microbiota composition in old rats. J Exerc Rehabil 2024; 20:205-212. [PMID: 39781508 PMCID: PMC11704711 DOI: 10.12965/jer.2448692.346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/18/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025] Open
Abstract
Aging is associated with declines in memory function and significant change in gut microbiota. In this study, we investigated how exercise affects age-related memory decline and inflammation, and gut microbiota diversity. Bl6 mice were divided into control, control and exercise, old, and old and exercise groups. Treadmill exercise was performed once a day, 5 days a week for 8 consecutive weeks. Short-term memory was assessed using step-through test and spatial learning memory was assessed using Morris water maze task. Enzyme-linked immunosorbent assay was performed for the proinflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-6, in the hippocampus. Western blot analysis was conducted for the neurotrophic factors, brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB), in the hippocampus. In addition, fecal samples were collected for sequencing and metagenomic analysis. Old rats showed decline in short-term memory and spatial learning memory. Increment of TNF-α and IL-6 concentration with decrement of BDNF and TrkB expression were observed in the old rats. Decreased diversity of gut microbiota composition and decreased beneficial gut microbiota were found in the old rats. However, treadmill exercise improved short-term memory, decreased TNF-α and IL-6 concentration, and increased BDNF and TrkB expression in the old rats. Treadmill exercise also increased the diversity of gut microbiota composition and affected the increase of beneficial gut microbiota in the old rats. In conclusion, treadmill exercise reduced age-related inflammatory markers and effectively improved memory decline while enhancing the diversity and abundance of beneficial gut microbiota.
Collapse
Affiliation(s)
- Sang-Seo Park
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul,
Korea
| | - Si-Hyeon Park
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Hyun-Tae Jeong
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Mal-Soon Shin
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Myung-Ki Kim
- College of Culture and Sports, Division of Global Sport Studies, Korea University, Sejong,
Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon,
Korea
| | - Hye-Sun Yoon
- Department of Pediatrics, Eulji Hospital, Eulji University School of Medicine, Seoul,
Korea
| | - Sang-Hoon Kim
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, The Stat University of New Jersey, Piscataway, NJ,
USA
| | - Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju,
Korea
| |
Collapse
|
12
|
Jing H, Song J, Sun J, Su S, Hu J, Zhang H, Bi Y, Wu B. METTL3 governs thymocyte development and thymic involution by regulating ferroptosis. NATURE AGING 2024; 4:1813-1827. [PMID: 39443728 DOI: 10.1038/s43587-024-00724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Given its central role in immune aging, it is important to identify the regulators of thymic involution. While conventional programmed cell death has a fundamental role in thymocyte development, how cell death pathways contribute to thymic involution are unclear. In this study, we found that CD4+CD8+ double-positive (DP) thymocytes acquired the characteristics of senescence in aged mice undergoing thymic involution, while expression of the m6A methyltransferase-like protein 3 (METTL3), which is enriched in DP cells from young mice, decreased with aging. By conditionally deleting METTL3 in T cells, we revealed a critical role for METTL3 in DP cell survival and in restraining the features of aging in DP thymocytes by preventing ferroptosis signaling through glutathione peroxidase 4. Mechanistically, glutathione peroxidase 4 was maintained by METTL3 at the translational level, independently of its methyltransferase activity. Furthermore, we found that pharmacological inhibition of ferroptosis promoted DP cell survival and attenuated the features of aging in DP thymocytes. These findings uncover a role for METTL3-regulated ferroptosis in thymic involution and identify strategies to restore thymic function.
Collapse
Affiliation(s)
- Huiru Jing
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiayu Song
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jie Sun
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaojun Su
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jin Hu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Haojian Zhang
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanmin Bi
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| | - Bing Wu
- Department of Urology, State Key Laboratory of Virology, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024; 132:956-973. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Venkataraman A, Kordic I, Li J, Zhang N, Bharadwaj NS, Fang Z, Das S, Coskun AF. Decoding senescence of aging single cells at the nexus of biomaterials, microfluidics, and spatial omics. NPJ AGING 2024; 10:57. [PMID: 39592596 PMCID: PMC11599402 DOI: 10.1038/s41514-024-00178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
Aging has profound effects on the body, most notably an increase in the prevalence of several diseases. An important aging hallmark is the presence of senescent cells that no longer multiply nor die off properly. Another characteristic is an altered immune system that fails to properly self-surveil. In this multi-player aging process, cellular senescence induces a change in the secretory phenotype, known as senescence-associated secretory phenotype (SASP), of many cells with the intention of recruiting immune cells to accelerate the clearance of these damaged senescent cells. However, the SASP phenotype results in inducing secondary senescence of nearby cells, resulting in those cells becoming senescent, and improper immune activation resulting in a state of chronic inflammation, called inflammaging, in many diseases. Senescence in immune cells, termed immunosenescence, results in further dysregulation of the immune system. An interdisciplinary approach is needed to physiologically assess aging changes of the immune system at the cellular and tissue level. Thus, the intersection of biomaterials, microfluidics, and spatial omics has great potential to collectively model aging and immunosenescence. Each of these approaches mimics unique aspects of the body undergoes as a part of aging. This perspective highlights the key aspects of how biomaterials provide non-cellular cues to cell aging, microfluidics recapitulate flow-induced and multi-cellular dynamics, and spatial omics analyses dissect the coordination of several biomarkers of senescence as a function of cell interactions in distinct tissue environments. An overview of how senescence and immune dysregulation play a role in organ aging, cancer, wound healing, Alzheimer's, and osteoporosis is included. To illuminate the societal impact of aging, an increasing trend in anti-senescence and anti-aging interventions, including pharmacological interventions, medical procedures, and lifestyle changes is discussed, including further context of senescence.
Collapse
Affiliation(s)
- Abhijeet Venkataraman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA
| | - Ivan Kordic
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - JiaXun Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nivik Sanjay Bharadwaj
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Machine Learning Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sandip Das
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr NW, Atlanta, GA, 30332, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
15
|
Ishizuka T, Nagata W, Nakagawa K, Takahashi S. Brain inflammaging in the pathogenesis of late-life depression. Hum Cell 2024; 38:7. [PMID: 39460876 DOI: 10.1007/s13577-024-01132-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Late-life depression (LLD) is a prevalent mental disorder among older adults. Previous studies revealed that many pathologic factors are associated with the onset and development of LLD. However, the precise mechanisms that cause LLD remain elusive. Aging induces chronic inflammatory changes mediated by alterations of immune responses. The chronic systemic inflammation termed "inflammaging" is linked to the etiology of aging-related disorders. Aged microglia induce senescence-associated secretory phenotype (SASP) and transition to M1-phenotype, cause neuroinflammation, and diminish neuroprotective effects. In addition, there is an age-dependent loss of blood-brain barrier (BBB) integrity. As the BBB breakdown can lead to invasion of immune cells into brain parenchyma, peripheral immunosenescence may cause microglial activation and neuroinflammation. Therefore, it is suggested that these mechanisms related to brain inflammaging may be involved in the pathogenesis of LLD. In this review, we described the role of brain inflammaging in LLD. Pharmacologic approaches to prevent brain inflammaging appears to be a promising strategy for treating LLD.
Collapse
Affiliation(s)
- Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Wataru Nagata
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Keiichi Nakagawa
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Sayaka Takahashi
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
16
|
Ivanov D, Drobintseva A, Rodichkina V, Mironova E, Zubareva T, Krylova Y, Morozkina S, Marasco MGP, Mazzoccoli G, Nasyrov R, Kvetnoy I. Inflammaging: Expansion of Molecular Phenotype and Role in Age-Associated Female Infertility. Biomedicines 2024; 12:1987. [PMID: 39335502 PMCID: PMC11428237 DOI: 10.3390/biomedicines12091987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/02/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Cellular aging is considered as one of the main factors implicated in female infertility. We evaluated the expression of senescence-associated secretory phenotype (SASP) markers and additional molecular factors in an in vitro model of cellular aging. We induced genotoxic stress (UVB/UVA ray irradiation) in primary human endometrial cells obtained from female subjects of young reproductive age (<35 years of age). We assessed the expression levels of IL-6, IL-8, IL-1α, MMP3, SIRT-1, SIRT-6, TERF-1, and CALR at the mRNA level by RT-qPCR and at the protein level by immunofluorescence and confocal microscopy in primary human endometrial cells upon induction of genotoxic stress and compared them to untreated cells. Statistically significant differences were found for the expression of SIRT-1, SIRT-6, and TERF, which were found to be decreased upon induction of cell senescence through genotoxic stress, while IL-6, IL-8, IL-1α, MMP3, and p16 were found to be increased in senescent cells. We propose that these molecules, in addition to SAS-linked factors, could represent novel markers, and eventually potential therapeutic targets, for the aging-associated dysfunction of the female reproductive system.
Collapse
Affiliation(s)
- Dmitry Ivanov
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Anna Drobintseva
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Valeriia Rodichkina
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Ekaterina Mironova
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Tatyana Zubareva
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Yuliya Krylova
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Svetlana Morozkina
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| | - Maria Greta Pia Marasco
- Fondazione IRCCS Casa Sollievo della Sofferenza, Chronobiology Laboratory, Viale Cappuccini, 71013 San Giovanni Rotondo, FG, Italy; (M.G.P.M.); (G.M.)
| | - Gianluigi Mazzoccoli
- Fondazione IRCCS Casa Sollievo della Sofferenza, Chronobiology Laboratory, Viale Cappuccini, 71013 San Giovanni Rotondo, FG, Italy; (M.G.P.M.); (G.M.)
| | - Ruslan Nasyrov
- Deportment of Medical Biology, Saint-Petersburg State Pediatric Medical University, Litovskaya Ulitsa, 2, 194100 Saint Petersburg, Russia
| | - Igor Kvetnoy
- Saint-Petersburg Research Institute of Phthisiopulmonology, Ligovsky pr., 2-4, 191036 Saint Petersburg, Russia (T.Z.); (Y.K.); (S.M.); (I.K.)
| |
Collapse
|
17
|
Koga HK, Grodstein F, Williams DR, Demeo DL, Kubzansky LD. Relations of optimism and purpose in life to immune markers in aging. J Psychosom Res 2024; 184:111851. [PMID: 38964200 DOI: 10.1016/j.jpsychores.2024.111851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Optimism and purpose in life are associated with improved health outcomes. More information is needed on biological mechanisms, including immunosenescence. We investigated if psychological well-being is associated with healthier immunosenescence-related measures including naïve and terminally differentiated CD4+ and CD8+ T cell percentages, CD4+:CD8+, and cytomegalovirus (CMV) IgG response. METHODS Participants were adults over age 50 from the Health and Retirement Study. Optimism was measured using the Life Orientation Test Revised. Purpose in life was assessed using the subscale from the Ryff psychological well-being measure. We examined the cross-sectional associations of optimism and purpose in life with measures of T cell subsets using linear regression and with CMV IgG using ordered logit regression, controlling for potential confounding factors. RESULTS The final analytic sample ranged from 7250 to 7870. After adjusting for sociodemographic factors, a 1-SD increment in optimism was associated with the percentage of naïve CD4+ T cells increasing by 0.6 (95%CI 0.2%, 1.0%). A 1-SD increment in purpose in life was associated with the percentage of naïve CD4+ T cells increasing by 0.9 (95%CI 0.5%, 1.3%) after adjusting for sociodemographic factors and the association was maintained after further adjustments for health conditions, depression, and health behaviors. For naïve CD8+ T cell percentages, CD4:CD8 ratios, and CMV IgG antibodies, associations were seen only in models that adjusted for age. No significant associations were seen in any models for the terminally differentiated CD4+ and CD8+ T cells. CONCLUSIONS We found associations of optimism and purpose in life with naïve CD4+ T cell percentages.
Collapse
Affiliation(s)
- Hayami K Koga
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Harvard Center for Population and Development Studies, Cambridge, MA, United States of America.
| | - Francine Grodstein
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, United States of America
| | - David R Williams
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America; Department of African and African American Studies, Department of Sociology, Harvard University, Cambridge, MA, United States of America
| | - Dawn L Demeo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, United States of America
| | - Laura D Kubzansky
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| |
Collapse
|
18
|
Noppert GA, Clarke P, Stebbins RC, Duchowny KA, Melendez R, Rollings K, Aiello AE. The embodiment of the neighborhood socioeconomic environment in the architecture of the immune system. PNAS NEXUS 2024; 3:pgae253. [PMID: 39006475 PMCID: PMC11244187 DOI: 10.1093/pnasnexus/pgae253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/31/2024] [Indexed: 07/16/2024]
Abstract
There is growing recognition of the importance of immune health for understanding the origins of ageing-related disease and decline. Numerous studies have demonstrated consistent associations between the social determinants of health and immunosenescence (i.e. ageing of the immune system). Yet few studies have interrogated the relationship between neighborhood socioeconomic status (nSES) and biologically specific measures of immunosenescence. We used data from the US Health and Retirement Study to measure immunosenescence linked with neighborhood socioeconomic data from the National Neighborhood Data Archive to examine associations between indicators of nSES and immunosenescence. We found associations between both the ratio of terminally differentiated effector memory to naïve (EMRA:Naïve) CD4+ T cells and cytomegalovirus (CMV) immunoglobulin G (IgG) levels and nSES. For the CD4+ EMRA:Naïve ratio, each 1% increase in the neighborhood disadvantage index was associated with a 0.005 standard deviation higher value of the EMRA:Naïve ratio (95% CI: 0.0003, 0.01) indicating that living in a neighborhood that is 10% higher in disadvantage is associated with a 0.05 higher standardized value of the CD4+ EMRA:Naïve ratio. The results were fully attenuated when adjusting for both individual-level SES and race/ethnicity. For CMV IgG antibodies, a 1% increase in neighborhood disadvantage was associated a 0.03 standard deviation higher value of CMV IgG antibodies (β = 0.03; 95% CI: 0.002, 0.03) indicating that living in a neighborhood that is 10% higher in disadvantage is associated with a 0.3 higher standardized value of CMV. This association was attenuated though still statistically significant when controlling for individual-level SES and race/ethnicity. The findings from this study provide compelling initial evidence that large, nonspecific social exposures, such as neighborhood socioeconomic conditions, can become embodied in cellular processes of immune ageing.
Collapse
Affiliation(s)
- Grace A Noppert
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48104, USA
| | - Philippa Clarke
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48104, USA
| | - Rebecca C Stebbins
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University Irving Medical Center, 722 W. 168th St., New York, NY 10032, USA
| | - Kate A Duchowny
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48104, USA
| | - Robert Melendez
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48104, USA
| | - Kimberly Rollings
- Survey Research Center, Institute for Social Research, University of Michigan, 426 Thompson St., Ann Arbor, MI 48104, USA
| | - Allison E Aiello
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University Irving Medical Center, 722 W. 168th St., New York, NY 10032, USA
| |
Collapse
|
19
|
Li C, Stebbins RC, Noppert GA, Carney CX, Liu C, Sapp ARM, Watson EJ, Aiello AE. Peripheral immune function and Alzheimer's disease: a living systematic review and critical appraisal. Mol Psychiatry 2024; 29:1895-1905. [PMID: 38102484 PMCID: PMC11483233 DOI: 10.1038/s41380-023-02355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/17/2023]
Abstract
BACKGROUND A growing body of literature examines the relationship between peripheral immune function and Alzheimer's Disease (AD) in human populations. Our living systematic review summarizes the characteristics and findings of these studies, appraises their quality, and formulates recommendations for future research. METHODS We searched the electronic databases PubMed, PsycINFO, and Web of Science, and reviewed references of previous reviews and meta-analyses to identify human studies examining the relationship between any peripheral immune biomarkers and AD up to September 7th, 2023. We examined patterns of reported statistical associations (positive, negative, and null) between each biomarker and AD across studies. Evidence for each biomarker was categorized into four groups based on the proportion of studies reporting different associations: corroborating a positive association with AD, a negative association, a null association, and presenting contradictory findings. A modified Newcastle-Ottawa scale (NOS) was employed to assess the quality of the included studies. FINDINGS In total, 286 studies were included in this review. The majority were cross-sectional (n = 245, 85.7%) and hospital-based (n = 248, 86.7%), examining relationships between 187 different peripheral immune biomarkers and AD. Cytokines were the most frequently studied group of peripheral immune biomarkers. Evidence supported a positive association with AD for six biomarkers, including IL-6, IL-1β, IFN-γ, ACT, IL-18, and IL-12, and a negative association for two biomarkers, including lymphocytes and IL-6R. Only a small proportion of included studies (n = 22, 7.7%) were deemed to be of high quality based on quality assessment. INTERPRETATION Existing research on peripheral immune function and AD exhibits substantial methodological variations and limitations, with a notable lack of longitudinal, population-based studies investigating a broad range of biomarkers with prospective AD outcomes. The extent and manner in which peripheral immune function can contribute to AD pathophysiology remain open questions. Given the biomarkers that we identified to be associated with AD, we posit that targeting peripheral immune dysregulation may present a promising intervention point to reduce the burden of AD.
Collapse
Affiliation(s)
- Chihua Li
- Social Environment and Health Program, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
- Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Rebecca C Stebbins
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York City, NY, USA
| | - Grace A Noppert
- Social Environment and Health Program, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Constanza X Carney
- Department of Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Chunyu Liu
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ashley R M Sapp
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elijah J Watson
- Department of Anthropology, Northwestern University, Evanston, IL, USA
| | - Allison E Aiello
- Robert N. Butler Columbia Aging Center, Mailman School of Public Health, Columbia University, New York City, NY, USA
- Department of Epidemiology, Mailman School of Public, Columbia University, New York City, NY, USA
| |
Collapse
|
20
|
Nikkels AF, Schoevaerdts D, Kauffmann F, Strubbe F, Bensemmane S. Herpes zoster in Belgium: a new solution to an old problem. Acta Clin Belg 2024; 79:205-216. [PMID: 38781037 DOI: 10.1080/17843286.2024.2350258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024]
Abstract
Herpes zoster (HZ) is caused by reactivation of the varicella-zoster virus. The life-time risk of developing HZ is ~ 30%. Management of HZ can be challenging due to limited efficacy of oral antivirals on pain control, and neuropathic pain that may require aggressive management. Post-herpetic neuralgia (PHN) can cause substantial pain and occurs in up to one-quarter of patients with HZ. Up to 48,000 HZ cases are estimated to occur annually in Belgium, estimated to cost almost 7 million euros in treatment. The recombinant zoster vaccine (RZV, Shingrix, GSK) was approved in Europe in 2017. In 2022, the Belgian Superior Health Council recommended vaccination with RZV for immunocompetent adults aged ≥ 60 years, and immunocompromised patients aged ≥ 16 years, including those receiving immunosuppressive therapy, in particular Janus kinase inhibitors. RZV showed high age-independent efficacy in preventing HZ infection and in clinical trials that has since been confirmed in real-world effectiveness studies. In clinical trials, protection was sustained for at least 10 years after vaccination. As of 1 November 2023, RZV is reimbursed for three immunocompromised patient groups aged ≥ 18 years: malignancy treated in the past 5 years, HIV infection, and organ or haematological stem cell transplantation or are a transplant candidate. HZ is vaccine-preventable and RZV provides a highly effective tool for HZ prevention. While reimbursement for some at-risk groups is welcomed, reimbursement currently falls well short of Superior Health Council recommendations. Adult immunisation strategies should be promoted to achieve high vaccination coverage against HZ, contributing to healthy aging in Belgium.
Collapse
|
21
|
Koenen HJPM, Kouijzer IJE, de Groot M, Peters S, Lobeek D, van Genugten EAJ, Diavatopoulos DA, van Oosten N, Gianotten S, Prokop MM, Netea MG, van de Veerdonk FL, Aarntzen EHJG. Preliminary evidence of localizing CD8+ T-cell responses in COVID-19 patients with PET imaging. Front Med (Lausanne) 2024; 11:1414415. [PMID: 38813383 PMCID: PMC11133695 DOI: 10.3389/fmed.2024.1414415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024] Open
Abstract
The upper respiratory tract (URT) is the entry site for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), from where it further disseminates. Early and effective adaptive immune responses are crucial to restrict viral replication and limit symptom development and transmission. Current vaccines increasingly incorporate strategies to boost mucosal immunity in the respiratory tract. Positron emission tomography (PET) is a non-invasive technology that measures cellular responses at a whole-body level. In this case series, we explored the feasibility of [89Zr]Zr-crefmirlimab berdoxam PET to assess CD8+ T-cell localization during active COVID-19. Our results suggest that CD8+ T-cell distributions assessed by PET imaging reflect their differentiation and functional state in blood. Therefore, PET imaging may represent a novel tool to visualize and quantify cellular immune responses during infections at a whole-body level.
Collapse
Affiliation(s)
- Hans J. P. M. Koenen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ilse J. E. Kouijzer
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michel de Groot
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Steffie Peters
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Daphne Lobeek
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Nienke van Oosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sanne Gianotten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mathias M. Prokop
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank L. van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Erik H. J. G. Aarntzen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
22
|
Qiu K, Mao M, Pang W, Deng D, Ren J, Zhao Y. The emerging roles and therapeutic implications of immunosenescence-mediated inflammaging in age-related hearing loss. AMERICAN JOURNAL OF STEM CELLS 2024; 13:101-109. [PMID: 38765806 PMCID: PMC11101989 DOI: 10.62347/dtap3592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
Age-related hearing loss (ARHL) represents one of the most prevalent chronic sensory deficits experienced by the elderly, significantly diminishing their quality of life and correlating with various medical and psychological morbidities. This condition arises from the cumulative effects of aging on the auditory system, implicating intricate interactions between genetic predispositions and environmental factors. Aging entails a progressive decline in immune system functionality, termed immunosenescence, leading to a chronic low-grade inflammation known as inflammaging. This phenomenon potentially serves as a common mechanism underlying ARHL and other age-related pathologies. Recent research suggests that rejuvenating immunosenescence could mitigate inflammaging and ameliorate age-related functional declines, offering promising insights into anti-aging therapies. Consequently, this review endeavors to elucidate the role of immunosenescence-mediated inflammaging in ARHL progression and discuss its therapeutic implications.
Collapse
Affiliation(s)
- Ke Qiu
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Minzi Mao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Wendu Pang
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Di Deng
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Jianjun Ren
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Yu Zhao
- Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University Chengdu, Sichuan, China
| |
Collapse
|
23
|
Gaultier GN, McMillan B, Poloni C, Lo M, Cai B, Zheng JJ, Baer HM, Shulha HP, Simmons K, Márquez AC, Bartlett SR, Cook L, Levings MK, Steiner T, Sekirov I, Zlosnik JEA, Morshed M, Skowronski DM, Krajden M, Jassem AN, Sadarangani M. Adaptive immune responses to two-dose COVID-19 vaccine series in healthy Canadian adults ≥ 50 years: a prospective, observational cohort study. Sci Rep 2024; 14:8926. [PMID: 38637558 PMCID: PMC11026432 DOI: 10.1038/s41598-024-59535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
To evaluate immune responses to COVID-19 vaccines in adults aged 50 years and older, spike protein (S)-specific antibody concentration, avidity, and function (via angiotensin-converting enzyme 2 (ACE2) inhibition surrogate neutralization and antibody dependent cellular phagocytosis (ADCP)), as well as S-specific T cells were quantified via activation induced marker (AIM) assay in response to two-dose series. Eighty-four adults were vaccinated with either: mRNA/mRNA (mRNA-1273 and/or BNT162b2); ChAdOx1-S/mRNA; or ChAdOx1-S/ChAdOx1-S. Anti-S IgG concentrations, ADCP scores and ACE2 inhibiting antibody concentrations were highest at one-month post-second dose and declined by four-months post-second dose for all groups. mRNA/mRNA and ChAdOx1-S/mRNA schedules had significantly higher antibody responses than ChAdOx1-S/ChAdOx1-S. CD8+ T-cell responses one-month post-second dose were associated with increased ACE2 surrogate neutralization. Antibody avidity (total relative avidity index) did not change between one-month and four-months post-second dose and did not significantly differ between groups by four-months post-second dose. In determining COVID-19 correlates of protection, a measure that considers both antibody concentration and avidity should be considered.
Collapse
Affiliation(s)
- Gabrielle N Gaultier
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
| | - Brynn McMillan
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Chad Poloni
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Mandy Lo
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Bing Cai
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jean J Zheng
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Hannah M Baer
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hennady P Shulha
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Karen Simmons
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Sofia R Bartlett
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Laura Cook
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology & Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Megan K Levings
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Theodore Steiner
- British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Inna Sekirov
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Muhammad Morshed
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Danuta M Skowronski
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Agatha N Jassem
- British Columbia Centre for Disease Control, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Manish Sadarangani
- Department of Pediatrics, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
24
|
Tylutka A, Walas Ł, Zembron-Lacny A. Level of IL-6, TNF, and IL-1β and age-related diseases: a systematic review and meta-analysis. Front Immunol 2024; 15:1330386. [PMID: 38495887 PMCID: PMC10943692 DOI: 10.3389/fimmu.2024.1330386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/19/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Chronic low-grade inflammation is an important aspect of morbidity and mortality in older adults. The level of circulating pro-inflammatory cytokines (interleukin (IL)-6, tumor necrosis factor (TNF) or IL-1β) is a risk factor in cardiovascular and neurodegenerative diseases and is also associated with sarcopenia and frailties. The objective of this study was to assess each cytokine: IL-6, TNF, and IL-1β separately in the elderly with comorbidities against controls without diseases according to the data published in the available literature. Methods The electronic bibliographic PubMed database was systematically searched to select all the relevant studies published up to July 2023. The total number of the subjects involved in the meta-analysis included patients with diseases (n=8154) and controls (n=33967). Results The overall concentration of IL-6 was found to be higher in patients with diseases compared to controls and the difference was statistically significant, with a p-value of <0.001 (SMD, 0.16; 95% CI, 0.12-0.19). The heterogeneity was considerable with Q = 109.97 (P <0.0001) and I2 = 79.2%. The potential diagnostic usefulness of IL-6 was confirmed by odds ratio (OR) analysis (OR: 1.03, 95% CI (1.01; 1.05), p=0.0029). The concentration of both TNF and IL-1β was elevated in the control group compared to patients and amounted to SMD -0.03; 95% CI, -0.09-0.02, p-value 0.533 and SMD-0.29; 95% CI, -0.47- -0.12; p = 0.001, respectively. For TNF, however, the difference was statistically insignificant. Discussion IL-6, unlike TNF and IL-1β, could be a useful and convenient marker of peripheral inflammation in older adults with various comorbidities.
Collapse
Affiliation(s)
- Anna Tylutka
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Gora, Poland
| | - Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, Zielona Gora, Poland
| |
Collapse
|
25
|
Tomioka Y, Sugimoto S, Shiotani T, Matsubara K, Choshi H, Ishihara M, Tanaka S, Miyoshi K, Otani S, Toyooka S. Long-term outcomes of lung transplantation requiring renal replacement therapy: A single-center experience. Respir Investig 2024; 62:240-246. [PMID: 38241956 DOI: 10.1016/j.resinv.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Life-long immunosuppressive therapy after lung transplantation (LT) may lead to end-stage renal disease (ESRD), requiring renal replacement therapy (RRT). We aimed to investigate the characteristics and long-term outcomes of patients undergoing LT and requiring RRT. METHODS This study was a single-center, retrospective cohort study. The patients were divided into the RRT (n = 15) and non-RRT (n = 170) groups. We summarized the clinical features of patients in the RRT group and compared patient characteristics, overall survival, and chronic lung allograft dysfunction (CLAD)-free survival between the two groups. RESULTS The cumulative incidences of ESRD requiring RRT after LT at 5, 10, and 15 years were 0.8 %, 7.6 %, and 25.2 %, respectively. In the RRT group, all 15 patients underwent hemodialysis but not peritoneal dialysis, and two patients underwent living-donor kidney transplantation. The median follow-up period was longer in the RRT group than in the non-RRT group (P < 0.001). The CLAD-free survival and overall survival did not differ between the two groups. The 5-year survival rate even after the initiation of hemodialysis was 53.3 %, and the leading cause of death in the RRT group was infection. CONCLUSIONS Favorable long-term outcomes can be achieved by RRT for ESRD after LT.
Collapse
Affiliation(s)
- Yasuaki Tomioka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kei Matsubara
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Haruki Choshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Megumi Ishihara
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Shinji Otani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Department of Cardiovascular and Thoracic Surgery, Ehime University Medical School, 454 Shizugawa, Toon, Ehime 791-0295, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
26
|
Chang JY, Park SJ, Park JJ, Kim TI, Cheon JH, Park J. Impact of age at diagnosis on long-term prognosis in patients with intestinal Behçet's disease. J Gastroenterol Hepatol 2024; 39:519-526. [PMID: 38149352 DOI: 10.1111/jgh.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/22/2023] [Accepted: 12/03/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND AND AIM Although age at disease onset is considered to be a significant factor in the prognosis of Crohn's disease, little is known about its influence on the long-term prognosis of those with intestinal Behçet's disease (BD). This study aimed to evaluate the long-term clinical outcomes of patients with intestinal BD according to age of disease onset. METHODS Patients diagnosed with intestinal BD at < 18, 18-60, and > 60 years of age were classified into early-onset, adult-onset, and late-onset groups, respectively. The influence of disease onset time on clinical prognosis, including specific medical requirements, BD-related intestinal surgery, hospitalization, and emergency room visits, was compared using the log-rank test in a large cohort of patients with intestinal BD. RESULTS Among 780 patients, 21 (2.7%), 672 (86.2%), and 87 (11.1%) comprised the early-onset, adult-onset, and late-onset groups, respectively. Patients in the early-onset group were more likely to require immunosuppressants than those in the adult-onset group (P = 0.048). Nine (42.9%), 158 (23.5%), and 18 (20.7%) patients in the early-onset, adult-onset, and late-onset groups, respectively, underwent intestinal resection. The early-onset group exhibited a higher risk for intestinal resection than the late-onset (P = 0.043) and adult-onset (P = 0.030) groups. The late-onset group exhibited a higher risk for BD-related hospitalization than the adult-onset group (P = 0.023). CONCLUSIONS Age at diagnosis affected the clinical course of intestinal BD, including intestinal surgery, hospitalization, and specific medical requirements. Different treatment strategies should be established according to age at diagnosis.
Collapse
Affiliation(s)
- Ji Young Chang
- Department of Health Promotion Medicine, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Soo Jung Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Inflammatory Bowel Disease Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Jun Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Inflammatory Bowel Disease Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Il Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Inflammatory Bowel Disease Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Inflammatory Bowel Disease Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihye Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Inflammatory Bowel Disease Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Reid BM, Desjardins C, Thyagarajan B, Linden MA, Gunnar M. Early Life Stress Is Associated with Alterations in Lymphocyte Subsets Independent of Increased Inflammation in Adolescents. Biomolecules 2024; 14:262. [PMID: 38540685 PMCID: PMC10968282 DOI: 10.3390/biom14030262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 11/11/2024] Open
Abstract
Early life stress (ELS) is linked to an elevated risk of poor health and early mortality, with emerging evidence pointing to the pivotal role of the immune system in long-term health outcomes. While recent research has focused on the impact of ELS on inflammation, this study examined the impact of ELS on immune function, including CMV seropositivity, inflammatory cytokines, and lymphocyte cell subsets in an adolescent cohort. This study used data from the Early Life Stress and Cardiometabolic Health in Adolescence Study (N = 191, aged 12 to 21 years, N = 95 exposed to ELS). We employed multiple regression to investigate the association between ELS, characterized by early institutional care, cytomegalovirus (CMV) seropositivity (determined by chemiluminescent immunoassay), inflammation (CRP, IL-6, and TNF-a determined by ELISA), and twenty-one immune cell subsets characterized by flow cytometry (sixteen T cell subsets and five B cell subsets). Results reveal a significant association between ELS and lymphocytes that was independent of the association between ELS and inflammation: ELS was associated with increased effector memory helper T cells, effector memory cytotoxic T cells, senescent T cells, senescent B cells, and IgD- memory B cells compared to non-adopted youth. ELS was also associated with reduced percentages of helper T cells and naive cytotoxic T cells. Exploratory analyses found that the association between ELS and fewer helper T cells and increased cytotoxic T cells remained even in cytomegalovirus (CMV) seronegative youth. These findings suggest that ELS is associated with cell subsets that are linked to early mortality risk in older populations and markers of replicative senescence, separate from inflammation, in adolescents.
Collapse
Affiliation(s)
- Brie M. Reid
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | | | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (B.T.); (M.A.L.)
| | - Michael A. Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; (B.T.); (M.A.L.)
| | - Megan Gunnar
- Institute of Child Development, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
28
|
Dominguez LJ, Veronese N, Barbagallo M. Magnesium and the Hallmarks of Aging. Nutrients 2024; 16:496. [PMID: 38398820 PMCID: PMC10892939 DOI: 10.3390/nu16040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Magnesium is an essential ion in the human body that regulates numerous physiological and pathological processes. Magnesium deficiency is very common in old age. Age-related chronic diseases and the aging process itself are frequently associated with low-grade chronic inflammation, called 'inflammaging'. Because chronic magnesium insufficiency has been linked to excessive generation of inflammatory markers and free radicals, inducing a chronic inflammatory state, we formerly hypothesized that magnesium inadequacy may be considered among the intermediaries helping us explain the link between inflammaging and aging-associated diseases. We show in this review evidence of the relationship of magnesium with all the hallmarks of aging (genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled autophagy, dysbiosis, and chronic inflammation), which may positively affect the human healthspan. It is feasible to hypothesize that maintaining an optimal balance of magnesium during one's life course may turn out to be a safe and economical strategy contributing to the promotion of healthy aging. Future well-designed studies are necessary to further explore this hypothesis.
Collapse
Affiliation(s)
- Ligia J. Dominguez
- School of Medicine, “Kore” University of Enna, 94100 Enna, Italy;
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Nicola Veronese
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| | - Mario Barbagallo
- Geriatric Unit, Department of Medicine, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
29
|
Jones CH, Jenkins MP, Adam Williams B, Welch VL, True JM. Exploring the future adult vaccine landscape-crowded schedules and new dynamics. NPJ Vaccines 2024; 9:27. [PMID: 38336933 PMCID: PMC10858163 DOI: 10.1038/s41541-024-00809-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
Amidst the backdrop of the COVID-19 pandemic, vaccine innovation has garnered significant attention, but this field was already on the cusp of a groundbreaking renaissance. Propelling these advancements are scientific and technological breakthroughs, alongside a growing understanding of the societal and economic boons vaccines offer, particularly for non-pediatric populations like adults and the immunocompromised. In a departure from previous decades where vaccine launches could be seamlessly integrated into existing processes, we anticipate potentially than 100 novel, risk-adjusted product launches over the next 10 years in the adult vaccine market, primarily addressing new indications. However, this segment is infamous for its challenges: low uptake, funding shortfalls, and operational hurdles linked to delivery and administration. To unlock the societal benefits of this burgeoning expansion, we need to adopt a fresh perspective to steer through the dynamics sparked by the rapid growth of the global adult vaccine market. This article aims to provide that fresh perspective, offering a detailed analysis of the anticipated number of adult vaccine approvals by category and exploring how our understanding of barriers to adult vaccine uptake might evolve. We incorporated pertinent insights from external stakeholder interviews, spotlighting shifting preferences, perceptions, priorities, and decision-making criteria. Consequently, this article aspires to serve as a pivotal starting point for industry participants, equipping them with the knowledge to skillfully navigate the anticipated surge in both volume and complexity.
Collapse
Affiliation(s)
| | | | | | - Verna L Welch
- Pfizer Inc, 66 Hudson Boulevard, New York, NY, 10001, USA
| | - Jane M True
- Pfizer Inc, 66 Hudson Boulevard, New York, NY, 10001, USA.
| |
Collapse
|
30
|
La Barbera L, Rizzo C, Camarda F, Miceli G, Tuttolomondo A, Guggino G. The Contribution of Innate Immunity in Large-Vessel Vasculitis: Detangling New Pathomechanisms beyond the Onset of Vascular Inflammation. Cells 2024; 13:271. [PMID: 38334663 PMCID: PMC10854891 DOI: 10.3390/cells13030271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Large-vessel vasculitis (LVV) are autoimmune and autoinflammatory diseases focused on vascular inflammation. The central core of the intricate immunological and molecular network resides in the disruption of the "privileged immune state" of the arterial wall. The outbreak, initially primed by dendritic cells (DC), is then continuously powered in a feed-forward loop by the intimate cooperation between innate and adaptive immunity. If the role of adaptive immunity has been largely elucidated, knowledge of the critical function of innate immunity in LVV is still fragile. A growing body of evidence has strengthened the active role of innate immunity players and their key signaling pathways in orchestrating the complex pathomechanisms underlying LVV. Besides DC, macrophages are crucial culprits in LVV development and participate across all phases of vascular inflammation, culminating in vessel wall remodeling. In recent years, the variety of potential pathogenic actors has expanded to include neutrophils, mast cells, and soluble mediators, including the complement system. Interestingly, new insights have recently linked the inflammasome to vascular inflammation, paving the way for its potential pathogenic role in LVV. Overall, these observations encourage a new conceptual approach that includes a more in-depth study of innate immunity pathways in LVV to guide future targeted therapies.
Collapse
Affiliation(s)
- Lidia La Barbera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Chiara Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Federica Camarda
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| | - Giuseppe Miceli
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Antonino Tuttolomondo
- Unit of Internal Medicine and Stroke, Department of Health Promotion, Maternal and Child Care, Internal Medicine and Specialized Medicine, University of Palermo, 90133 Palermo, Italy; (G.M.); (A.T.)
| | - Giuliana Guggino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Rheumatology Section, University of Palermo, 90133 Palermo, Italy; (L.L.B.); (C.R.); (F.C.)
| |
Collapse
|
31
|
Sciacchitano S, Carola V, Nicolais G, Sciacchitano S, Napoli C, Mancini R, Rocco M, Coluzzi F. To Be Frail or Not to Be Frail: This Is the Question-A Critical Narrative Review of Frailty. J Clin Med 2024; 13:721. [PMID: 38337415 PMCID: PMC10856357 DOI: 10.3390/jcm13030721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/07/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Many factors have contributed to rendering frailty an emerging, relevant, and very popular concept. First, many pandemics that have affected humanity in history, including COVID-19, most recently, have had more severe effects on frail people compared to non-frail ones. Second, the increase in human life expectancy observed in many developed countries, including Italy has led to a rise in the percentage of the older population that is more likely to be frail, which is why frailty is much a more common concern among geriatricians compared to other the various health-care professionals. Third, the stratification of people according to the occurrence and the degree of frailty allows healthcare decision makers to adequately plan for the allocation of available human professional and economic resources. Since frailty is considered to be fully preventable, there are relevant consequences in terms of potential benefits both in terms of the clinical outcome and healthcare costs. Frailty is becoming a popular, pervasive, and almost omnipresent concept in many different contexts, including clinical medicine, physical health, lifestyle behavior, mental health, health policy, and socio-economic planning sciences. The emergence of the new "science of frailty" has been recently acknowledged. However, there is still debate on the exact definition of frailty, the pathogenic mechanisms involved, the most appropriate method to assess frailty, and consequently, who should be considered frail. This narrative review aims to analyze frailty from many different aspects and points of view, with a special focus on the proposed pathogenic mechanisms, the various factors that have been considered in the assessment of frailty, and the emerging role of biomarkers in the early recognition of frailty, particularly on the role of mitochondria. According to the extensive literature on this topic, it is clear that frailty is a very complex syndrome, involving many different domains and affecting multiple physiological systems. Therefore, its management should be directed towards a comprehensive and multifaceted holistic approach and a personalized intervention strategy to slow down its progression or even to completely reverse the course of this condition.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Life Sciences, Health and Health Professions, Link Campus University, 00165 Rome, Italy
| | - Valeria Carola
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Giampaolo Nicolais
- Department of Dynamic and Clinical Psychology and Health Studies, Sapienza University of Rome, 00189 Rome, Italy; (V.C.); (G.N.)
| | - Simona Sciacchitano
- Department of Psychiatry, La Princesa University Hospital, 28006 Madrid, Spain;
| | - Christian Napoli
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Rita Mancini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Monica Rocco
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department of Surgical and Medical Science and Translational Medicine, Sapienza University of Rome, 00189 Rome, Italy;
| | - Flaminia Coluzzi
- Unit of Anaesthesia, Intensive Care and Pain Medicine, Sant’Andrea University Hospital, 00189 Rome, Italy; (M.R.); (F.C.)
- Department Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy
| |
Collapse
|
32
|
Moorlag SJCFM, Folkman L, Ter Horst R, Krausgruber T, Barreca D, Schuster LC, Fife V, Matzaraki V, Li W, Reichl S, Mourits VP, Koeken VACM, de Bree LCJ, Dijkstra H, Lemmers H, van Cranenbroek B, van Rijssen E, Koenen HJPM, Joosten I, Xu CJ, Li Y, Joosten LAB, van Crevel R, Netea MG, Bock C. Multi-omics analysis of innate and adaptive responses to BCG vaccination reveals epigenetic cell states that predict trained immunity. Immunity 2024; 57:171-187.e14. [PMID: 38198850 DOI: 10.1016/j.immuni.2023.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.
Collapse
Affiliation(s)
- Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lukas Folkman
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Rob Ter Horst
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Daniele Barreca
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Linda C Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Victoria Fife
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Wenchao Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Stephan Reichl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Bandim Health Project, OPEN, Institute of Clinical Research, University of Southern Denmark, Odense University Hospital, Odense, Denmark; Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Helga Dijkstra
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bram van Cranenbroek
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther van Rijssen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans J P M Koenen
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Laboratory of Medical Immunology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Vienna, Austria.
| |
Collapse
|
33
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
34
|
Chaudhary R, Khanna J, Rohilla M, Gupta S, Bansal S. Investigation of Pancreatic-beta Cells Role in the Biological Process of Ageing. Endocr Metab Immune Disord Drug Targets 2024; 24:348-362. [PMID: 37608675 DOI: 10.2174/1871530323666230822095932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Cellular senescence is associated with the formation and progression of a range of illnesses, including ageing and metabolic disorders such as diabetes mellitus and pancreatic beta cell dysfunction. Ageing and reduced glucose tolerance are interconnected. Often, Diabetes is becoming more common, which is concerning since it raises the risk of a variety of age-dependent disorders such as cardiovascular disease, cancer, Parkinson's disease, stroke, and Alzheimer's disease. OBJECTIVES The objectives of this study are to find out the most recent research on how ageing affects the functions of pancreatic beta cells, beta cell mass, beta cell senescence, mitochondrial dysfunction, and hormonal imbalance. METHODS Various research and review manuscripts are gathered from various records such as Google Scholar, PubMed, Mendeley, Scopus, Science Open, the Directory of Open Access Journals, and the Education Resources Information Centre, using different terms like "Diabetes, cellular senescence, beta cells, ageing, insulin, glucose". RESULTS In this review, we research novel targets in order to discover new strategies to treat diabetes. Abnormal glucose homeostasis and type 2 diabetes mellitus in the elderly may aid in the development of novel medicines to delay or prevent diabetes onset, improve quality of life, and, finally, increase life duration. CONCLUSION Aging accelerates beta cell senescence by generating premature cell senescence, which is mostly mediated by high glucose levels. Despite higher plasma glucose levels, hepatic gluconeogenesis accelerates and adipose tissue lipolysis rises, resulting in an increase in free fatty acid levels in the blood and worsening insulin resistance throughout the body.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Janvi Khanna
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Manni Rohilla
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133206, India
| |
Collapse
|
35
|
Islam MR, Rauf A, Akash S, Trisha SI, Nasim AH, Akter M, Dhar PS, Ogaly HA, Hemeg HA, Wilairatana P, Thiruvengadam M. Targeted therapies of curcumin focus on its therapeutic benefits in cancers and human health: Molecular signaling pathway-based approaches and future perspectives. Biomed Pharmacother 2024; 170:116034. [PMID: 38141282 DOI: 10.1016/j.biopha.2023.116034] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023] Open
Abstract
The curry powder spices turmeric (Curcuma longa L.), which contains curcumin (diferuloylmethane), an orange-yellow chemical. Polyphenols are the most commonly used sources of curcumin. It combats oxidative stress and inflammation in diseases, such as hyperlipidemia, metabolic syndrome, arthritis, and depression. Most of these benefits are due to their anti-inflammatory and antioxidant properties. Curcumin consumption leads to decreased bioavailability, resulting in limited absorption, quick metabolism, and quick excretion, which hinders health improvement. Numerous factors can increase its bioavailability. Piperine enhances bioavailability when combined with curcumin in a complex. When combined with other enhancing agents, curcumin has a wide spectrum of health benefits. This review evaluates the therapeutic potential of curcumin with a specific emphasis on its approach based on molecular signaling pathways. This study investigated its influence on the progression of cancer, inflammation, and many health-related mechanisms, such as cell proliferation, apoptosis, and metastasis. Curcumin has a significant potential for the prevention and treatment of various diseases. Curcumin modulates several biochemical pathways and targets involved in cancer growth. Despite its limited tissue accumulation and bioavailability when administered orally, curcumin has proven useful. This review provides an in-depth analysis of curcumin's therapeutic applications, its molecular signaling pathway-based approach, and its potential for precision medicine in cancer and human health.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Sadiya Islam Trisha
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Akram Hossain Nasim
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Puja Sutro Dhar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh
| | - Hanan A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Hassan A Hemeg
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Taibah University, Al-Medinah Al-Monawara, Saudi Arabia
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Science, Konkuk University, Seoul 05029, Republic of Korea; Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India.
| |
Collapse
|
36
|
Ghosh A, Sanyal A, Mitra P, Dey T, Acharjee A, Pattnaik R, Nesa L. Transmission mechanism and clinical manifestations of SARS-CoV-2. DIAGNOSIS AND ANALYSIS OF COVID-19 USING ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING-BASED TECHNIQUES 2024:65-96. [DOI: 10.1016/b978-0-323-95374-0.00006-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
37
|
Corral-Ruiz GM, Pérez-Vega MJ, Galán-Salinas A, Mancilla-Herrera I, Barrios-Payán J, Fabila-Castillo L, Hernández-Pando R, Sánchez-Torres LE. Thymic atrophy induced by Plasmodium berghei ANKA and Plasmodium yoelii 17XL infection. Immunol Lett 2023; 264:4-16. [PMID: 37875239 DOI: 10.1016/j.imlet.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/06/2023] [Accepted: 10/21/2023] [Indexed: 10/26/2023]
Abstract
The thymus is the anatomical site where T cells undergo a complex process of differentiation, proliferation, selection, and elimination of autorreactive cells which involves molecular signals in different intrathymic environment. However, the immunological functions of the thymus can be compromised upon exposure to different infections, affecting thymocyte populations. In this work, we investigated the impact of malaria parasites on the thymus by using C57BL/6 mice infected with Plasmodium berghei ANKA and Plasmodium yoelii 17XL; these lethal infection models represent the most severe complications, cerebral malaria, and anemia respectively. Data showed a reduction in the thymic weight and cellularity involving different T cell maturation stages, mainly CD4-CD8- and CD4+CD8+ thymocytes, as well as an increased presence of apoptotic cells, leading to significant thymic cortex reduction. Thymus atrophy showed no association with elevated serum cytokines levels, although increased glucocorticoid levels did. The severity of thymic damage in both models reached the same extend although it occurs at different stages of infection, showing that thymic atrophy does not depend on parasitemia level but on the specific host-parasite interaction.
Collapse
Affiliation(s)
- G M Corral-Ruiz
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M J Pérez-Vega
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - A Galán-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico; Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - I Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - J Barrios-Payán
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L Fabila-Castillo
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - R Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - L E Sánchez-Torres
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico.
| |
Collapse
|
38
|
Yang J, Liu J, Liang J, Li F, Wang W, Chen H, Xie X. Epithelial-mesenchymal transition in age-associated thymic involution: Mechanisms and therapeutic implications. Ageing Res Rev 2023; 92:102115. [PMID: 37922996 DOI: 10.1016/j.arr.2023.102115] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
The thymus is a critical immune organ with endocrine and immune functions that plays important roles in the physiological and pathological processes of the body. However, with aging, the thymus undergoes degenerative changes leading to decreased production and output of naive T cells and the secretion of thymic hormones and related cytokines, thereby promoting the occurrence and development of various age-associated diseases. Therefore, identifying essential processes that regulate age-associated thymic involution is crucial for long-term control of thymic involution and age-associated disease progression. Epithelial-mesenchymal transition (EMT) is a well-established process involved in organ aging and functional impairment through tissue fibrosis in several organs, such as the heart and kidney. In the thymus, EMT promotes fibrosis and potentially adipogenesis, leading to thymic involution. This review focuses on the factors involved in thymic involution, including oxidative stress, inflammation, and hormones, from the perspective of EMT. Furthermore, current interventions for reversing age-associated thymic involution by targeting EMT-associated processes are summarized. Understanding the key mechanisms of thymic involution through EMT as an entry point may promote the development of new therapies and clinical agents to reverse thymic involution and age-associated disease.
Collapse
Affiliation(s)
- Jiali Yang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Juan Liu
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Jiayu Liang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Fan Li
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Wenwen Wang
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China
| | - Huan Chen
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Nucleic Acid Medicine of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| | - Xiang Xie
- The School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Public Center of Experimental Technology, Model Animal and Human Disease Research of Luzhou Key Laboratory, Southwest Medical University, Luzhou, China.
| |
Collapse
|
39
|
Asghari F, Asghary A, Majidi Zolbanin N, Faraji F, Jafari R. Immunosenescence and Inflammaging in COVID-19. Viral Immunol 2023; 36:579-592. [PMID: 37797216 DOI: 10.1089/vim.2023.0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Despite knowledge gaps in understanding the full spectrum of the hyperinflammatory phase caused by SARS-CoV-2, according to the World Health Organization (WHO), COVID-19 is still the leading cause of death worldwide. Susceptible people to severe COVID-19 are those with underlying medical conditions or those with dysregulated and senescence-associated immune responses. As the immune system undergoes aging in the elderly, such drastic changes predispose them to various diseases and affect their responsiveness to infections, as seen in COVID-19. At-risk groups experience poor prognosis in terms of disease recovery. Changes in the quantity and quality of immune cell function have been described in numerous literature sites. Impaired immune cell function along with age-related metabolic changes can lead to features such as hyperinflammatory response, immunosenescence, and inflammaging in COVID-19. Inflammaging is related to the increased activity of the most inflammatory factors and is the main cause of age-related diseases and tissue failure in the elderly. Since hyperinflammation is a common feature of most severe cases of COVID-19, this pathway, which is not fully understood, leads to immunosenescence and inflammaging in some individuals, especially in the elderly and those with comorbidities. In this review, we shed some light on the age-related abnormalities of innate and adaptive immune cells and how hyperinflammatory immune responses contribute to the inflammaging process, leading to clinical deterioration. Further, we provide insights into immunomodulation-based therapeutic approaches, which are potentially important considerations in vaccine design for elderly populations.
Collapse
Affiliation(s)
- Faezeh Asghari
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran
| | - Amir Asghary
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
40
|
Tomioka Y, Tanaka S, Otani S, Shiotani T, Yamamoto H, Miyoshi K, Okazaki M, Sugimoto S, Yamane M, Toyooka S. Elderly lung transplant recipients show acceptable long-term outcomes for lung transplantation: A propensity score-matched analysis. Surg Today 2023; 53:1286-1293. [PMID: 37269338 DOI: 10.1007/s00595-023-02699-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/15/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE Although the performance lung transplantation (LTx) in the elderly (≥ 60 years) has increased globally, the situation in Japan remains quite different, because the age limit at registration for cadaveric transplantation is 60 years. We investigated the long-term outcomes of LTx in the elderly in Japan. METHODS This was a single-center retrospective study. We divided the patients into two groups according to age: the younger group (< 60 years; Y group; n = 194) and the elderly group (≥ 60 years; E group; n = 10). We performed three-to-one propensity score matching to compare the long-term survival between the E and Y groups. RESULTS In the E group, the survival rate was significantly worse (p = 0.003), and single-LTx was more frequent (p = 0.036). There was a significant difference in the indications for LTx between the two groups (p < 0.001). The 5-year survival rate after single-LTx in the E group was significantly lower than that in the Y group (p = 0.006). After propensity score matching, the 5-year survival rates of the two groups were comparable (p = 0.55). However, the 5-year survival rate after single-LTx in the E group was significantly lower than that in the Y group (p = 0.007). CONCLUSION Elderly patients showed acceptable long-term survival after LTx.
Collapse
Affiliation(s)
- Yasuaki Tomioka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| | - Shinji Otani
- Department of Cardiovascular and Thoracic Surgery, Ehime University Medical School, Toon City, Japan
| | - Toshio Shiotani
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Haruchika Yamamoto
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Organ Transplant Center, Okayama University Hospital, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Masaomi Yamane
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
41
|
de Oliveira Gomes J, Gagliardi AM, Andriolo BN, Torloni MR, Andriolo RB, Puga MEDS, Canteiro Cruz E. Vaccines for preventing herpes zoster in older adults. Cochrane Database Syst Rev 2023; 10:CD008858. [PMID: 37781954 PMCID: PMC10542961 DOI: 10.1002/14651858.cd008858.pub5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
BACKGROUND Herpes zoster, commonly known as shingles, is a neurocutaneous disease caused by the reactivation of the virus that causes varicella (chickenpox). After resolution of the varicella episode, the virus can remain latent in the sensitive dorsal ganglia of the spine. Years later, with declining immunity, the varicella zoster virus (VZV) can reactivate and cause herpes zoster, an extremely painful condition that can last many weeks or months and significantly compromise the quality of life of the affected person. The natural process of ageing is associated with a reduction in cellular immunity, and this predisposes older adults to herpes zoster. Vaccination with an attenuated form of the VZV activates specific T-cell production avoiding viral reactivation. Two types of herpes zoster vaccines are currently available. One of them is the single-dose live attenuated zoster vaccine (LZV), which contains the same live attenuated virus used in the chickenpox vaccine, but it has over 14-fold more plaque-forming units of the attenuated virus per dose. The other is the recombinant zoster vaccine (RZV) which does not contain the live attenuated virus, but rather a small fraction of the virus that cannot replicate but can boost immunogenicity. The recommended schedule for the RZV is two doses two months apart. This is an update of a Cochrane Review first published in 2010, and updated in 2012, 2016, and 2019. OBJECTIVES To evaluate the effectiveness and safety of vaccination for preventing herpes zoster in older adults. SEARCH METHODS For this 2022 update, we searched the Cochrane Central Register of Controlled Trials (CENTRAL 2022, Issue 10), MEDLINE (1948 to October 2022), Embase (2010 to October 2022), CINAHL (1981 to October 2022), LILACS (1982 to October 2022), and three trial registries. SELECTION CRITERIA We included studies involving healthy older adults (mean age 60 years or older). We included randomised controlled trials (RCTs) or quasi-RCTs comparing zoster vaccine (any dose and potency) versus any other type of intervention (e.g. varicella vaccine, antiviral medication), placebo, or no intervention (no vaccine). Outcomes were cumulative incidence of herpes zoster, adverse events (death, serious adverse events, systemic reactions, or local reaction occurring at any time after vaccination), and dropouts. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS We included two new studies involving 1736 participants in this update. The review now includes a total of 26 studies involving 90,259 healthy older adults with a mean age of 63.7 years. Only three studies assessed the cumulative incidence of herpes zoster in groups that received vaccines versus placebo. Most studies were conducted in high-income countries in Europe and North America and included healthy Caucasians (understood to be white participants) aged 60 years or over with no immunosuppressive comorbidities. Two studies were conducted in Japan and one study was conducted in the Republic of Korea. Sixteen studies used LZV. Ten studies tested an RZV. The overall certainty of the evidence was moderate, which indicates that the intervention probably works. Most data for the primary outcome (cumulative incidence of herpes zoster) and secondary outcomes (adverse events and dropouts) came from studies that had a low risk of bias and included a large number of participants. The cumulative incidence of herpes zoster at up to three years of follow-up was lower in participants who received the LZV (one dose subcutaneously) than in those who received placebo (risk ratio (RR) 0.49, 95% confidence interval (CI) 0.43 to 0.56; risk difference (RD) 2%; number needed to treat for an additional beneficial outcome (NNTB) 50; moderate-certainty evidence) in the largest study, which included 38,546 participants. There were no differences between the vaccinated and placebo groups for serious adverse events (RR 1.08, 95% CI 0.95 to 1.21) or deaths (RR 1.01, 95% CI 0.92 to 1.11; moderate-certainty evidence). The vaccinated group had a higher cumulative incidence of one or more adverse events (RR 1.71, 95% CI 1.38 to 2.11; RD 23%; number needed to treat for an additional harmful outcome (NNTH) 4.3) and injection site adverse events (RR 3.73, 95% CI 1.93 to 7.21; RD 28%; NNTH 3.6; moderate-certainty evidence) of mild to moderate intensity. These data came from four studies with 6980 participants aged 60 years or older. Two studies (29,311 participants for safety evaluation and 22,022 participants for efficacy evaluation) compared RZV (two doses intramuscularly, two months apart) versus placebo. Participants who received the new vaccine had a lower cumulative incidence of herpes zoster at 3.2 years follow-up (RR 0.08, 95% CI 0.03 to 0.23; RD 3%; NNTB 33; moderate-certainty evidence), probably indicating a favourable profile of the intervention. There were no differences between the vaccinated and placebo groups in cumulative incidence of serious adverse events (RR 0.97, 95% CI 0.91 to 1.03) or deaths (RR 0.94, 95% CI 0.84 to 1.04; moderate-certainty evidence). The vaccinated group had a higher cumulative incidence of adverse events, any systemic symptom (RR 2.23, 95% CI 2.12 to 2.34; RD 33%; NNTH 3.0), and any local symptom (RR 6.89, 95% CI 6.37 to 7.45; RD 67%; NNTH 1.5). Although most participants reported that their symptoms were of mild to moderate intensity, the risk of dropouts (participants not returning for the second dose, two months after the first dose) was higher in the vaccine group than in the placebo group (RR 1.25, 95% CI 1.13 to 1.39; RD 1%; NNTH 100, moderate-certainty evidence). Only one study reported funding from a non-commercial source (a university research foundation). All other included studies received funding from pharmaceutical companies. We did not conduct subgroup and sensitivity analyses AUTHORS' CONCLUSIONS: LZV (single dose) and RZV (two doses) are probably effective in preventing shingles disease for at least three years. To date, there are no data to recommend revaccination after receiving the basic schedule for each type of vaccine. Both vaccines produce systemic and injection site adverse events of mild to moderate intensity. The conclusions did not change in relation to the previous version of the systematic review.
Collapse
Affiliation(s)
| | - Anna Mz Gagliardi
- Department of Geriatrics and Gerontology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Brenda Ng Andriolo
- Cochrane Brazil, Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em Saúde, São Paulo, Brazil
| | - Maria Regina Torloni
- Cochrane Brazil, Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em Saúde, São Paulo, Brazil
| | - Regis B Andriolo
- Department of Public Health, Universidade do Estado do Pará, Belém, Brazil
| | - Maria Eduarda Dos Santos Puga
- Cochrane Brazil, Centro de Estudos de Saúde Baseada em Evidências e Avaliação Tecnológica em Saúde, São Paulo, Brazil
| | - Eduardo Canteiro Cruz
- Department of Geriatrics and Gerontology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Bevilacqua A, Ho PC, Franco F. Metabolic reprogramming in inflammaging and aging in T cells. LIFE METABOLISM 2023; 2:load028. [PMID: 39872627 PMCID: PMC11749375 DOI: 10.1093/lifemeta/load028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 01/30/2025]
Abstract
Aging represents an emerging challenge for public health due to the declined immune responses against pathogens, weakened vaccination efficacy, and disturbed tissue homeostasis. Metabolic alterations in cellular and systemic levels are also known to be cardinal features of aging. Moreover, cellular metabolism has emerged to provide regulations to guide immune cell behavior via modulations on signaling cascades and epigenetic landscape, and the aberrant aging process in immune cells can lead to inflammaging, a chronic and low-grade inflammation that facilitates aging by perturbing homeostasis in tissues and organs. Here, we review how the metabolic program in T cells is influenced by the aging process and how aged T cells modulate inflammaging. In addition, we discuss the potential approaches to reverse or ameliorate aging by rewiring the metabolic programming of immune cells.
Collapse
Affiliation(s)
- Alessio Bevilacqua
- Department of Fundamental Oncology, University of Lausanne, 1007 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Ping-Chih Ho
- Department of Fundamental Oncology, University of Lausanne, 1007 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| | - Fabien Franco
- Department of Fundamental Oncology, University of Lausanne, 1007 Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, 1066 Epalinges, Switzerland
| |
Collapse
|
43
|
Freigang V, Walter N, Rupp M, Riedl M, Alt V, Baumann F. Treatment of Fracture-Related Infection after Pelvic Fracture. J Clin Med 2023; 12:6221. [PMID: 37834865 PMCID: PMC10573264 DOI: 10.3390/jcm12196221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND The management of pelvic fractures is a significant challenge. Surgical site infection can result in the need for revision surgery, cause functional impairment, and lead to a prolonged length of stay and increased treatment costs. Although reports on fracture-related infection (FRI) after pelvic fracture fixation are sparsely reported in the literature, it is a serious complication. This study analysed patients with FRIs after pelvic fracture regarding patient characteristics, treatment strategies, and an evaluation of risk factors for FRI. METHODS In this retrospective single-centre study, FRI was diagnosed based on clinical symptoms of infection and a positive culture of a bacterial infection. Depending on the severity and acuteness of the infection, osseous stabilization was restored either via implant retention (stable implant, no osteolysis), exchange (loose implant or bony defect), or external fixation (recurrence of infection after prior implant retaining revision). Healing of infection was defined as no sign of recurring infection upon clinical, radiological, and laboratory examination in the last follow-up visit. RESULTS The FRI rate in our patient population was 7.5% (24/316). In 8/24 patients, the FRI occurred within the first three weeks after initial surgery (early) and 16/24 presented with a late onset of symptoms of FRI. A strategy of debridement, antibiotics, and implant retention (DAIR) was successful in 9/24 patients with FRI after pelvic fracture. A total of 10 patients required an exchange of osteo-synthetic implants, whereof three were exchanged to an external fixator. In five patients, we removed the implant because the fracture had already consolidated at the time of revision for infection. A total of 17/24 patients had a poly-microbial infection after a pelvic fracture and 3/24 patients died from post-traumatic multi-organ failure within the first 6 months after trauma. There were no cases of persistent infection within the remaining 21 patients. CONCLUSIONS Although poly-microbial infection is common in FRI after pelvic fracture, the recurrence rate of infection is relatively low. A complex pelvic trauma with significant soft tissue injury is a risk factor for recurrent infection and multiple revisions. A strategy of DAIR can be successful in patients with a stable implant. In cases with recurrent infection or an unstable fracture site, the exchange of implants should be considered.
Collapse
Affiliation(s)
- Viola Freigang
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
- Faculty of Interdisciplinary Studies, Landshut University of Applied Sciences, Am Lurzenhof 1, 84036 Landshut, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Moritz Riedl
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Florian Baumann
- Department of Trauma Surgery, University Medical Centre Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
44
|
Poder A, Oberije J, Meyer J, Heymer P, Molrine D, Versage E, Isakov L, Zhang Q, Hohenboken M. Immunogenicity and Safety of MF59-Adjuvanted Quadrivalent Influenza Vaccine Compared with a Nonadjuvanted, Quadrivalent Influenza Vaccine in Adults 50-64 Years of Age. Vaccines (Basel) 2023; 11:1528. [PMID: 37896932 PMCID: PMC10611124 DOI: 10.3390/vaccines11101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Adults aged 50-64 years have a high incidence of symptomatic influenza associated with substantial disease and economic burden each year. We conducted a randomized, controlled trial to compare the immunogenicity and safety of an adjuvanted quadrivalent inactivated influenza vaccine (aIIV4; n = 1027) with a nonadjuvanted standard dose IIV4 (n = 1017) in this population. Immunogenicity was evaluated on Days 22, 181, and 271. On Day 22, upper limits (UL) of 95% confidence intervals (CI) for geometric mean titer (GMT) ratios (IIV4/aIIV4) were <1.5 and 95% CI ULs for the difference in seroconversion rate (SCR IIV4 - aIIV4) were <10% for all four vaccine strains, meeting primary endpoint noninferiority criteria. Protocol-defined superiority criteria (95% CI ULs < 1.0) were also met for A(H1N1) and A(H3N2). Immune responses following aIIV4 vaccination were more pronounced in persons with medical comorbidities and those not recently vaccinated against influenza. Safety data were consistent with previous studies of MF59 adjuvanted seasonal and pandemic influenza vaccines. These findings support the immunological benefit of aIIV4 for persons aged 50-64 years, especially those with comorbidities.
Collapse
Affiliation(s)
- Airi Poder
- Tartu University Hospital, 50406 Tartu, Estonia
| | | | - Jay Meyer
- Velocity Clinical Research, Lincoln, NE 68510, USA
| | - Peter Heymer
- Klinische Forschung Dresden GmbH, 01069 Dresden, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Thompson González N, Machanda Z, Emery Thompson M. Age-related social selectivity: An adaptive lens on a later life social phenotype. Neurosci Biobehav Rev 2023; 152:105294. [PMID: 37380041 PMCID: PMC10529433 DOI: 10.1016/j.neubiorev.2023.105294] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Age-related social selectivity is a process in which older humans reduce their number of social partners to a subset of positive and emotionally fulfilling relationships. Although selectivity has been attributed to humans' unique perceptions of time horizons, recent evidence demonstrates that these social patterns and processes occur in other non-human primates, suggesting an evolutionarily wider phenomenon. Here, we develop the hypothesis that selective social behavior is an adaptive strategy that allows social animals to balance the costs and benefits of navigating social environments in the face of age-related functional declines. We first aim to distinguish social selectivity from the non-adaptive social consequences of aging. We then outline multiple mechanisms by which social selectivity in old age may enhance fitness and healthspan. Our goal is to lay out a research agenda to identify selective strategies and their potential benefits. Given the importance of social support for health across primates, understanding why aging individuals lose social connections and how they can remain resilient has vital applications to public health research.
Collapse
Affiliation(s)
- Nicole Thompson González
- Integrative Anthropological Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zarin Machanda
- Department of Anthropology, Tufts University, Medford, MA 02155, USA
| | | |
Collapse
|
46
|
Kalyakulina A, Yusipov I, Kondakova E, Bacalini MG, Franceschi C, Vedunova M, Ivanchenko M. Small immunological clocks identified by deep learning and gradient boosting. Front Immunol 2023; 14:1177611. [PMID: 37691946 PMCID: PMC10485620 DOI: 10.3389/fimmu.2023.1177611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/31/2023] [Indexed: 09/12/2023] Open
Abstract
Background The aging process affects all systems of the human body, and the observed increase in inflammatory components affecting the immune system in old age can lead to the development of age-associated diseases and systemic inflammation. Results We propose a small clock model SImAge based on a limited number of immunological biomarkers. To regress the chronological age from cytokine data, we first use a baseline Elastic Net model, gradient-boosted decision trees models, and several deep neural network architectures. For the full dataset of 46 immunological parameters, DANet, SAINT, FT-Transformer and TabNet models showed the best results for the test dataset. Dimensionality reduction of these models with SHAP values revealed the 10 most age-associated immunological parameters, taken to construct the SImAge small immunological clock. The best result of the SImAge model shown by the FT-Transformer deep neural network model has mean absolute error of 6.94 years and Pearson ρ = 0.939 on the independent test dataset. Explainable artificial intelligence methods allow for explaining the model solution for each individual participant. Conclusions We developed an approach to construct a model of immunological age based on just 10 immunological parameters, coined SImAge, for which the FT-Transformer deep neural network model had proved to be the best choice. The model shows competitive results compared to the published studies on immunological profiles, and takes a smaller number of features as an input. Neural network architectures outperformed gradient-boosted decision trees, and can be recommended in the further analysis of immunological profiles.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Research Center for Trusted Artificial Intelligence, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Igor Yusipov
- Research Center for Trusted Artificial Intelligence, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Elena Kondakova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Neuroscience, Lobachevsky State University, Nizhny Novgorod, Russia
| | | | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Maria Vedunova
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Mikhail Ivanchenko
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| |
Collapse
|
47
|
Lanzer KG, Cookenham T, Lehrmann E, Zhang Y, Duso D, Xie Q, Reiley WW, Becker KG, Blackman MA. Sequential Early-Life Infections Alter Peripheral Blood Transcriptomics in Aging Female Mice but Not the Response to De Novo Infection with Influenza Virus or M. tuberculosis. Immunohorizons 2023; 7:562-576. [PMID: 37555847 PMCID: PMC10587504 DOI: 10.4049/immunohorizons.2200066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
To determine the impact of accumulating Ag exposure on immunity in the aging mouse, and to develop a model more relevant to humans who are exposed to multiple pathogens during life, we sequentially infected young female mice with four distinct pathogens at 8-wk intervals: murine γ-herpesvirus 68, Sendai virus, murine CMV, and Heligmosomoides polygyrus. Mock-infected mice received PBS. After aging the sequentially infected and mock-infected mice to 18-25 mo under specific pathogen-free conditions, we analyzed multiple immune parameters. We assessed transcriptional activity in peripheral blood, T cell phenotype, the diversity of influenza epitopes recognized by CD8 T cells, and the response of the animals to infection with influenza virus and Mycobacterium tuberculosis. Our data show enhanced transcriptional activation in sequentially infected aged mice, with changes in some CD8 T cell subsets. However, there was no measurable difference in the response of mock-infected and sequentially infected aged mice to de novo infection with either influenza virus or M. tuberculosis at 18-21 mo. Unexpectedly, a single experiment in which 25-mo-old female mice were challenged with influenza virus revealed a significantly higher survival rate for sequentially infected (80%) versus mock-infected (20%) mice. These data suggest that although exposure to a variety of pathogen challenges in the mouse model does not overtly impact cellular markers of immunity in aged female mice following de novo respiratory infection, subtle changes may emerge in other compartments or with increasing age.
Collapse
Affiliation(s)
| | | | - Elin Lehrmann
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD
| | - Yongqing Zhang
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD
| | | | | | | | - Kevin G. Becker
- Computational Biology and Genomics Core, Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD
| | | |
Collapse
|
48
|
Whelan M, Galipeau Y, White-Al Habeeb N, Konforte D, Abou El Hassan M, Booth RA, Arnold C, Langlois MA, Pelchat M. Cross-sectional Characterization of SARS-CoV-2 Antibody Levels and Decay Rates Following Infection of Unvaccinated Elderly Individuals. Open Forum Infect Dis 2023; 10:ofad384. [PMID: 37547857 PMCID: PMC10404006 DOI: 10.1093/ofid/ofad384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
Background SARS-CoV-2 infections have disproportionally burdened elderly populations with excessive mortality. While several contributing factors exists, questions remain about the quality and duration of humoral antibody-mediated responses resulting from infections in unvaccinated elderly individuals. Methods Residual serum/plasma samples were collected from individuals undergoing routine SARS-CoV-2 polymerase chain reaction testing in a community laboratory in Canada. The samples were collected in 2020, before vaccines became available. IgG, IgA, and IgM antibodies against SARS-CoV-2 nucleocapsid, trimeric spike, and its receptor-binding domain were quantified via a high-throughput chemiluminescent enzyme-linked immunosorbent assay. Neutralization efficiency was also quantified through a surrogate high-throughput protein-based neutralization assay. Results This study analyzed SARS-CoV-2 antibody levels in a large cross-sectional cohort (N = 739), enriched for elderly individuals (median age, 82 years; 75% >65 years old), where 72% of samples tested positive for SARS-CoV-2 by polymerase chain reaction. The age group ≥90 years had higher levels of antibodies than that <65 years. Neutralization efficiency showed an age-dependent trend, where older persons had higher levels of neutralizing antibodies. Antibodies targeting the nucleocapsid had the fastest decline. IgG antibodies targeting the receptor-binding domain remained stable over time, potentially explaining the lack of neutralization decay observed in this cohort. Conclusions Despite older individuals having the highest levels of antibodies postinfection, they are the cohort in which antibody decay was the fastest. Until a better understanding of correlates of protection is acquired, along with the protective role of nonneutralizing antibodies, booster vaccinations remain important in this demographic.
Collapse
Affiliation(s)
- Marilyn Whelan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Yannick Galipeau
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | | | | | - Mohamed Abou El Hassan
- LifeLabs Medical Laboratory Services, Etobicoke, Canada
- Department of Pathology, Dalhousie University, Halifax, Canada
| | - Ronald A Booth
- Department of Pathology and Laboratory Medicine and the Eastern Ontario Regional Laboratory Association, University of Ottawa and The Ottawa Hospital, Ottawa, Canada
| | - Corey Arnold
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Marc-André Langlois
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| | - Martin Pelchat
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Canada
| |
Collapse
|
49
|
Čarna M, Onyango IG, Katina S, Holub D, Novotny JS, Nezvedova M, Jha D, Nedelska Z, Lacovich V, Vyvere TV, Houbrechts R, Garcia-Mansfield K, Sharma R, David-Dirgo V, Vyhnalek M, Texlova K, Chaves H, Bakkar N, Pertierra L, Vinkler M, Markova H, Laczo J, Sheardova K, Hortova-Kohoutkova M, Frič J, Forte G, Kaňovsky P, Belaškova S, Damborsky J, Hort J, Seyfried NT, Bowser R, Sevlever G, Rissman RA, Smith RA, Hajduch M, Pirrotte P, Spačil Z, Dammer EB, Limbäck-Stokin C, Stokin GB. Pathogenesis of Alzheimer's disease: Involvement of the choroid plexus. Alzheimers Dement 2023; 19:3537-3554. [PMID: 36825691 PMCID: PMC10634590 DOI: 10.1002/alz.12970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 02/25/2023]
Abstract
The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.
Collapse
Affiliation(s)
- Maria Čarna
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Isaac G. Onyango
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Stanislav Katina
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
| | - Dušan Holub
- Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jan Sebastian Novotny
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Marketa Nezvedova
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Durga Jha
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Zuzana Nedelska
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Valentina Lacovich
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | | | | | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Victoria David-Dirgo
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Martin Vyhnalek
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Texlova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | | | - Nadine Bakkar
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Mojmir Vinkler
- Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
| | - Hana Markova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczo
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Sheardova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- 1 Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Jan Frič
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Petr Kaňovsky
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Research and Science Department, University Hospital Olomouc, Olomouc, Czech Republic
| | - Silvie Belaškova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Jiři Damborsky
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Jakub Hort
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
- Departments of Biochemistry and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Marian Hajduch
- Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
- Mass Spectrometry & Proteomics Core Facility, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zdeněk Spačil
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Eric B. Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - Clara Limbäck-Stokin
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, UK
- Imperial College London, Faculty of Medicine, London, UK
| | - Gorazd B. Stokin
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Translational Aging and Neuroscience Program, Mayo Clinic, MN, Rochester, USA
| |
Collapse
|
50
|
Arfuso F, Piccione G, Guttadauro A, Monteverde V, Giudice E, Giannetto C. Serum C-reactive Protein and Protein Electrophoretic Pattern Correlated With Age in Horses. J Equine Vet Sci 2023; 126:104561. [PMID: 37160186 DOI: 10.1016/j.jevs.2023.104561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/22/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023]
Abstract
Inflammaging or chronic, low-grade inflammation is a phenomenon characterizing age-related pathologies and natural processes in aging tissues. This study aimed to investigate the effect of age on the serum levels of C-reactive protein and protein electrophoretic pattern in horses. Thirty Italian Saddle horses from the same horse training center, were enrolled and divided in three equal groups according to their age: Group A (2-4 years), Group B (7-10 years), Group C (15-20 years). Blood samples were collected from each horse to evaluate hematological parameters and the serum concentration of C-reactive protein (CRP), total proteins, albumin, α1-, α-2, β1-, β2- and γ-globulins. One-way analysis of variance showed an age-related difference in the concentration of CRP, α1- and α2-globulins (P < 0.001) which increased with aging. Albumin and albumin:globulin ratio showed lower values in Groups B and C than Group A (P < 0.001). Age of horses showed a negative correlation with the values of albumin, and a positive correlation with CRP, α1- and α2-globulins concentration. The results of the current study suggest an increased acute phase response in adult and old horses compared to young ones. As α-globulin fractions include many other acute phase proteins (APPs) in addition to CRP, further studies to assess what other APPs could be involved in chronic inflammation or "inflammaging" are recommended in horse in order to improve knowledge on the key inflammatory biomarkers during aging in this species.
Collapse
Affiliation(s)
- Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Giuseppe Piccione
- Department of Veterinary Sciences, University of Messina, Messina, Italy..
| | | | - Vincenzo Monteverde
- Experimental Zooprophylactic Institute of Sicily, A. Mirri, Via Gino Marinuzzi, Palermo, Italy
| | - Elisabetta Giudice
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Claudia Giannetto
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|