1
|
Kumar RR, Agarwal N, Shree A, Gorain JK, Rahul E, Ganguly S, Bakhshi S, Sharma U. Decoding the immune landscape in Ewing sarcoma pathogenesis: The role of tumor infiltrating immune cells and immune milieu. J Bone Oncol 2025; 52:100678. [PMID: 40242222 PMCID: PMC12002756 DOI: 10.1016/j.jbo.2025.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Ewing sarcoma (EwS) is the second most prevalent pediatric bone malignancy, characterized by its aggressive behavior and unfavorable prognosis. The tumor microenvironment (TME) of EwS is shaped by immunosuppressive components, including myeloid-derived suppressor cells, tumor-associated macrophages, and immune checkpoint molecules such as PD-1/PD-L1 and HLA-G. These elements impair anti-tumor immune responses by modulating the function of tumor-infiltrating immune cells, such as regulatory T cells (Tregs), CD8+ T cells, and natural killer cells. Chemokines, including CXCL9 and CXCL12, and cytokines, such as transforming growth factor-beta and interleukin-10, further contribute to immune suppression and promote metastatic dissemination. Recent advances in immunotherapy have highlighted the therapeutic potential of modulating immune cells and signaling pathways to enhance anti-tumor immunity. This review provides a comprehensive analysis of the complex immune landscape within the EwS TME, focusing on the mechanistic roles of key immune components and their potential as therapeutic targets. Understanding these interactions could pave the way for innovative treatment strategies to improve clinical outcomes in patients with EwS.
Collapse
Affiliation(s)
- Rajiv Ranjan Kumar
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Nikita Agarwal
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Akshi Shree
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
- Department of Biomedical Science, Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi 110096, India
| | - Jaya Kanta Gorain
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Ekta Rahul
- Department of Pathology, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi 110001, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Uttam Sharma
- Department of Medical Oncology, Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
2
|
Goodspeed A, Bodlak A, Duffy AB, Nelson-Taylor S, Oike N, Porfilio T, Shirai R, Walker D, Treece A, Black J, Donaldson N, Cost C, Garrington T, Greffe B, Luna-Fineman S, Demedis J, Lake J, Danis EP, Verneris M, Adams DL, Hayashi M. Single-Cell RNA Sequencing of Ewing Sarcoma Tumors Demonstrates Transcriptional Heterogeneity and Clonal Evolution. Clin Cancer Res 2025; 31:2010-2023. [PMID: 40029262 PMCID: PMC12081191 DOI: 10.1158/1078-0432.ccr-24-2040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 02/27/2025] [Indexed: 03/05/2025]
Abstract
PURPOSE Ewing sarcoma is the second most common bone cancer in children, accounting for 2% of pediatric cancer diagnoses. Patients who present with metastatic disease at the time of diagnosis have a dismal prognosis compared with the >70% 5-year survival of those with localized disease. Novel therapeutic approaches that can impact metastatic disease are desperately needed, as well as a deeper understanding of the heterogeneity of Ewing sarcoma tumors. EXPERIMENTAL DESIGN In this study, we utilized single-cell RNA sequencing to characterize the transcriptional landscape of primary Ewing sarcoma tumors and the surrounding tumor microenvironment in a cohort of seven untreated patients with Ewing sarcoma, as well as in circulating tumor cells (CTC). A potential CTC therapeutic target was evaluated through immunofluorescence of fixed CTCs from a separate cohort. RESULTS Primary tumor samples demonstrate a heterogeneous transcriptional landscape with several conserved gene expression programs, including those composed of genes related to proliferation and Ewing sarcoma gene targets, which were found to correlate with overall survival. Copy-number analysis identified subclonal evolution within patients prior to treatment. Analyses of the immune microenvironment reveal an immunosuppressive microenvironment with complex intercellular communication among the tumor and immune cells. Single-cell RNA sequencing and immunofluorescence of CTCs at the time of diagnosis identified TSPAN8 as a potential therapeutic target. CONCLUSIONS Ewing sarcoma tumors demonstrate significant transcriptional heterogeneity as well as a complex immunosuppressive microenvironment. This work evaluates several proposed targets that warrant further exploration as novel therapeutic strategies.
Collapse
Affiliation(s)
- Andrew Goodspeed
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Avery Bodlak
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Sarah Nelson-Taylor
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Naoki Oike
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Timothy Porfilio
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Ryota Shirai
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Deandra Walker
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Amanda Treece
- Department of Pathology and Laboratory Medicine, Children’s of Alabama, Birmingham, Alabama
| | - Jennifer Black
- Department of Pathology and Laboratory Medicine, Children’s of Alabama, Birmingham, Alabama
| | - Nathan Donaldson
- Department of Orthopedics, University of Colorado School of Medicine, Aurora, Colorado
| | - Carrye Cost
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Timothy Garrington
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian Greffe
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Sandra Luna-Fineman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Jenna Demedis
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Jessica Lake
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Etienne P. Danis
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michael Verneris
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | | | - Masanori Hayashi
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
3
|
He F, Xu J, Zeng F, Wang B, Yang Y, Xu J, Sun X, Ren T, Tang X. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Cell Commun Signal 2025; 23:23. [PMID: 39800691 PMCID: PMC11727170 DOI: 10.1186/s12964-024-02020-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Ewing's sarcoma (EwS), a common pediatric bone cancer, is associated with poor survival due to a lack of therapeutic targets for immunotherapy or targeted therapy. Therefore, more effective treatment options are urgently needed. METHODS Since novel immunotherapies may address this need, we performed an integrative analysis involving single-cell RNA sequencing, cell function experiments, and humanized models to dissect the immunoregulatory interactions in EwS and identify strategies for optimizing immunotherapeutic efficacy. RESULTS EwS is infiltrated by immunosuppressive myeloid populations, T and B lymphocytes, and natural killer cells. We found that SLC40A1 and C1QA macrophages were associated with a poor prognosis, whereas CD8+ T-cell infiltration was associated with a good prognosis. A comparative analysis of paired samples revealed that in tumors with a good chemotherapeutic response, macrophages presented increased antigen presentation and reduced release of protumor cytokines, whereas CD8+ T cells presented increased cytotoxicity and reduced exhaustion. An interaction analysis revealed a vast immunoregulatory network and identified MIF-CD74 as a crucial immunoregulatory target that can simultaneously promote M2 polarization of macrophages and inhibit CD8+ T-cell infiltration. Importantly, MIF blockade effectively reshaped the tumor immune microenvironment, turning cold tumors hot and inhibiting tumor growth. CONCLUSIONS Our integrative analysis revealed that the MIF/CD74 axis is a promising target for the treatment of Ewing sarcoma and provides a rationale for this novel immunotherapy.
Collapse
Affiliation(s)
- Fangzhou He
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Fanwei Zeng
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Boyang Wang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China
| | - Yi Yang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Jie Xu
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Xin Sun
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.
- Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, China.
| |
Collapse
|
4
|
Li AY, Bu J, Xiao HN, Zhao ZY, Zhang JL, Yu B, Li H, Li JP, Xiao T. Two-step consensus clustering approach to immune cell infiltration: An integrated exploration and validation of prognostic and immune implications in sarcomas. Heliyon 2024; 10:e38253. [PMID: 39492897 PMCID: PMC11531637 DOI: 10.1016/j.heliyon.2024.e38253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 11/05/2024] Open
Abstract
To conduct a comprehensive investigation of the sarcoma immune cell infiltration (ImmCI) patterns and tumoral microenvironment (TME). We utilized transcriptomic, clinical, and mutation data of sarcoma patients (training cohort) obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) server. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) and Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithms were applied to decipher the immune cell infiltration landscape and TME profiles of sarcomas. An unsupervised clustering method was utilized for classifying ImmCI clusters (initial clustering) and ImmCI-based differentially expressed gene-driven clusters (secondary clustering). Mortality rates and immune checkpoint gene levels was analyzed among the identified clusters. We calculated the ImmCI score through principal component analysis. The tumor immune dysfunction evaluation (TIDE) score was also employed to quantify immunotherapy efficacy between two ImmCI score groups. We further validated the biomarkers for ImmCI and gene-driven clusters via experimental verification and the accuracy of the ImmCI score in predicting survival outcomes and immunotherapy efficacy by external validation cohorts (testing cohort). We demonstrated that ImmCI cluster A and gene-driven cluster A, were beneficial prognostic biomarkers and indicators of immune checkpoint blockade response in sarcomas via in-silico and laboratory experiments. Additionally, the ImmCI score exhibited independent prognostic significance and was predictive of immunotherapy response. Our research underscores the clinical significance of ImmCI scores in identifying sarcoma patients likely to respond to immunotherapy.
Collapse
Affiliation(s)
- Ao-Yu Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jie Bu
- Department of Orthopedics, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui-Ni Xiao
- Department of Gastroenterology, The Second Affiliated Hospital, University of South China, Hengyang, China
| | - Zi-Yue Zhao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jia-Lin Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Bin Yu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Hui Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| | - Jin-Ping Li
- Department of Orthopedics, Changsha Central Hospital, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Tao Xiao
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Orthopedic Biomedical Materials Engineering Laboratory of Hunan Province, Changsha, China
| |
Collapse
|
5
|
Goodspeed A, Bodlak A, Duffy AB, Nelson-Taylor S, Oike N, Porfilio T, Shirai R, Walker D, Treece A, Black J, Donaldson N, Cost C, Garrington T, Greffe B, Luna-Fineman S, Demedis J, Lake J, Danis E, Verneris M, Adams DL, Hayashi M. Characterization of transcriptional heterogeneity and novel therapeutic targets using single cell RNA-sequencing of primary and circulating Ewing sarcoma cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576251. [PMID: 38293103 PMCID: PMC10827204 DOI: 10.1101/2024.01.18.576251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ewing sarcoma is the second most common bone cancer in children, accounting for 2% of pediatric cancer diagnoses. Patients who present with metastatic disease at the time of diagnosis have a dismal prognosis, compared to the >70% 5-year survival of those with localized disease. Here, we utilized single cell RNA-sequencing to characterize the transcriptional landscape of primary Ewing sarcoma tumors and surrounding tumor microenvironment (TME). Copy-number analysis identified subclonal evolution within patients prior to treatment. Primary tumor samples demonstrate a heterogenous transcriptional landscape with several conserved gene expression programs, including those composed of genes related to proliferation and EWS targets. Single cell RNA-sequencing and immunofluorescence of circulating tumor cells at the time of diagnosis identified TSPAN8 as a novel therapeutic target.
Collapse
|
6
|
Daley JD, Mukherjee E, Tufino AC, Bailey N, Bhaskar S, Periyapatna N, MacFawn I, Kunning S, Hinck C, Bruno T, Olson AC, McAllister-Lucas LM, Hinck AP, Cooper K, Bao R, Cillo AR, Bailey KM. Immunocompetent murine model of Ewing sarcoma reveals role for TGFβ inhibition to enhance immune infiltrates in Ewing tumors during radiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592974. [PMID: 38766091 PMCID: PMC11100684 DOI: 10.1101/2024.05.07.592974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ewing sarcoma (ES) is an aggressive cancer diagnosed in adolescents and young adults. The fusion oncoprotein (EWSR1::FLI1) that drives Ewing sarcoma is known to downregulate TGFBR2 expression (part of the TGFβ receptor). Because TGFBR2 is downregulated, it was thought that TGFβ likely plays an inconsequential role in Ewing biology. However, the expression of TGFβ in the Ewing tumor immune microenvironment (TIME) and functional impact of TGFβ in the TIME remains largely unknown given the historical lack of immunocompetent preclinical models. Here, we use single-cell RNAseq analysis of human Ewing tumors to show that immune cells, such as NK cells, are the largest source of TGFβ production in human Ewing tumors. We develop a humanized (immunocompetent) mouse model of ES and demonstrate distinct TME signatures and metastatic potential in these models as compared to tumors developed in immunodeficient mice. Using this humanized model, we study the effect of TGFβ inhibition on the Ewing TME during radiation therapy, a treatment that both enhances TGFβ activation and is used to treat aggressive ES. Utilizing a trivalent ligand TGFβ TRAP to inhibit TGFβ, we demonstrate that in combination with radiation, TGFβ inhibition both increases ES immune cell infiltration and decreases lung metastatic burden in vivo . The culmination of these data demonstrates the value of humanized models to address immunobiologic preclinical questions in Ewing sarcoma and suggests TGFβ inhibition as a promising intervention during radiation therapy to promote metastatic tumor control.
Collapse
|
7
|
Qi H, Sun Z, Gao T, Yao Y, Wang Y, Li W, Wang X, Wang X, Liu D, Jiang JD. Genetic fusion of CCL11 to antigens enhances antigenicity in nucleic acid vaccines and eradicates tumor mass through optimizing T-cell response. Mol Cancer 2024; 23:46. [PMID: 38459592 PMCID: PMC10921619 DOI: 10.1186/s12943-024-01958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/13/2024] [Indexed: 03/10/2024] Open
Abstract
Nucleic acid vaccines have shown promising potency and efficacy for cancer treatment with robust and specific T-cell responses. Improving the immunogenicity of delivered antigens helps to extend therapeutic efficacy and reduce dose-dependent toxicity. Here, we systematically evaluated chemokine-fused HPV16 E6/E7 antigen to improve the cellular and humoral immune responses induced by nucleotide vaccines in vivo. We found that fusion with different chemokines shifted the nature of the immune response against the antigens. Although a number of chemokines were able to amplify specific CD8 + T-cell or humoral response alone or simultaneously. CCL11 was identified as the most potent chemokine in improving immunogenicity, promoting specific CD8 + T-cell stemness and generating tumor rejection. Fusing CCL11 with E6/E7 antigen as a therapeutic DNA vaccine significantly improved treatment effectiveness and caused eradication of established large tumors in 92% tumor-bearing mice (n = 25). Fusion antigens with CCL11 expanded the TCR diversity of specific T cells and induced the infiltration of activated specific T cells, neutrophils, macrophages and dendritic cells (DCs) into the tumor, which created a comprehensive immune microenvironment lethal to tumor. Combination of the DNA vaccine with anti-CTLA4 treatment further enhanced the therapeutic effect. In addition, CCL11 could also be used for mRNA vaccine design. To summarize, CCL11 might be a potent T cell enhancer against cancer.
Collapse
Affiliation(s)
- Hailong Qi
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
- Newish Biological R&D Center, Wuxi, China.
| | - Zhongjie Sun
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
- Newish Biological R&D Center, Wuxi, China
| | - Tianle Gao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Yu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China
- Newish Biological R&D Center, Wuxi, China
| | - Weiwei Li
- Newish Biological R&D Center, Wuxi, China
| | | | | | - Defang Liu
- Newish Biological R&D Center, Wuxi, China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, China.
| |
Collapse
|
8
|
Tu C, Kulasinghe A, Barbour A, Souza-Fonseca-Guimaraes F. Leveraging spatial omics for the development of precision sarcoma treatments. Trends Pharmacol Sci 2024; 45:134-144. [PMID: 38212196 DOI: 10.1016/j.tips.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
Sarcomas are rare and heterogeneous cancers that arise from bone or soft tissue, and are the second most prevalent solid cancer in children and adolescents. Owing to the complex nature of pediatric sarcomas, the development of therapeutics for pediatric sarcoma has seen little progress in the past decades. Existing treatments are largely limited to chemotherapy, radiation, and surgery. Limited knowledge of the sarcoma tumor microenvironment (TME) and of well-defined target antigens in the different subtypes necessitates an alternative investigative approach to improve treatments. Recent advances in spatial omics technologies have enabled a more comprehensive study of the TME in multiple cancers. In this opinion article we discuss advances in our understanding of the TME of some cancers enabled by spatial omics technologies, and we explore how these technologies might advance the development of precision treatments for sarcoma, especially pediatric sarcoma.
Collapse
Affiliation(s)
- Cui Tu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Andrew Barbour
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Department of Surgery, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | | |
Collapse
|
9
|
Schober SJ, Thiede M, Gassmann H, von Ofen AJ, Knoch P, Eck J, Prexler C, Kordass-Wally C, Hauer J, Burdach S, Holm PS, Thiel U. TCR-transgenic T cells and YB-1-based oncolytic virotherapy improve survival in a preclinical Ewing sarcoma xenograft mouse model. Front Immunol 2024; 15:1330868. [PMID: 38318175 PMCID: PMC10839048 DOI: 10.3389/fimmu.2024.1330868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Background Ewing sarcoma (EwS) is an aggressive and highly metastatic bone and soft tissue tumor in pediatric patients and young adults. Cure rates are low when patients present with metastatic or relapsed disease. Therefore, innovative therapy approaches are urgently needed. Cellular- and oncolytic virus-based immunotherapies are on the rise for solid cancers. Methods Here, we assess the combination of EwS tumor-associated antigen CHM1319-specific TCR-transgenic CD8+ T cells and the YB-1-driven (i.e. E1A13S-deleted) oncolytic adenovirus XVir-N-31 in vitro and in a xenograft mouse model for antitumor activity and immunostimulatory properties. Results In vitro both approaches specifically kill EwS cell lines in a synergistic manner over controls. This effect was confirmed in vivo, with increased survival using the combination therapy. Further in vitro analyses of immunogenic cell death and antigen presentation confirmed immunostimulatory properties of virus-infected EwS tumor cells. As dendritic cell maturation was also increased by XVir-N-31, we observed superior proliferation of CHM1319-specific TCR-transgenic CD8+ T cells only in virus-tested conditions, emphasizing the superior immune-activating potential of XVir-N-31. Conclusion Our data prove synergistic antitumor effects in vitro and superior tumor control in a preclinical xenograft setting. Combination strategies of EwS-redirected T cells and YB-1-driven virotherapy are a highly promising immunotherapeutic approach for EwS and warrant further evaluation in a clinical setting.
Collapse
Affiliation(s)
- Sebastian J. Schober
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Anna Josefine von Ofen
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Pia Knoch
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Jennifer Eck
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Carolin Prexler
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Corazon Kordass-Wally
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Stefan Burdach
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Institute of Pathology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Per Sonne Holm
- Department of Urology, Klinikum rechts der Isar, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, Medical University Innsbruck, Innsbruck, Austria
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Kumar H, Gupta NV, Jain R, Madhunapantula SV, Babu CS, Kesharwani SS, Dey S, Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J Adv Res 2023; 54:271-292. [PMID: 36791960 DOI: 10.1016/j.jare.2023.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/23/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous, aggressive phenotype of breast cancer with associated chemoresistance. The development of chemo- or radioresistance could be attributed to diverse tumor microenvironments, overexpression of membrane proteins (transporters), epigenetic changes, and alteration of the cell signaling pathways/genes associated with the development of cancer stem cells (CSCs). AIM OF REVIEW Due to the diverse and heterogeneous nature of TNBC, therapeutic response to the existing modalities offers limited scope and thus results in reccurance after therapy. To establish landmark therapeutic efficacy, a number of novel therapeutic modalities have been proposed. In addition, reversal of the resistance that developed during treatment may be altered by employing appropriate therapeutic modalities. This review aims to discuss the plethora of investigations carried out, which will help readers understand and make an appropriate choice of therapy directed toward complete elimination of TNBC. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript addresses the major contributory factors from the tumor microenvironment that are responsible for the development of chemoresistance and poor prognosis. The associated cellular events and molecular mechanism-based therapeutic interventions have been explained in detail. Inhibition of ABC transporters, cell signaling pathways associated with CSCs, and epigenetic modification offers promising results in this regard. TNBC progression, invasion, metastasis and recurrence can also be inhibited by blocking multiple cell signaling pathways, targeting specific receptors/epigenetic targets, disrupting bioenergetics and generating reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hitesh Kumar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - SubbaRao V Madhunapantula
- Department of Biochemistry, Centre of Excellence in Molecular Biology & Regenerative Medicine, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - C Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | | | - Surajit Dey
- Roseman University of Health Sciences, College of Pharmacy, Henderson, NV, USA
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, India.
| |
Collapse
|
11
|
Zhang N, Guan Y, Li J, Yu J, Yi T. Inactivation of the DNA-sensing pathway facilitates oncolytic herpes simplex virus inhibition of pancreatic ductal adenocarcinoma growth. Int Immunopharmacol 2023; 124:110969. [PMID: 37774484 DOI: 10.1016/j.intimp.2023.110969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/10/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Oncolytic viruses are a new class of therapeutic agents for the treatment of cancer that have shown promising results in clinical trials. Oncolytic virus-mediated tumor rejection is highly dependent on viral replication in tumor cells to induce cell death. However, the antiviral immune response of tumor cells limits the replication capacity of oncolytic viruses. We hypothesized that inhibition of the antiviral immune response in infected cells would enhance the antitumor effect. Here, we confirmed that ablation of the key adaptor protein of cellular immunity, STING, significantly suppressed the antiviral immune response and promoted oncolytic herpes simplex virus-1 (oHSV1) proliferation in tumor cells. In a murine pancreatic ductal adenocarcinoma (PDAC) model, oHSV1 enhanced tumor suppression and prolonged the survival of mice in the absence of STING. On this basis, we further found that the TBK1 inhibitor can also significantly enhance the tumor-control ability of oHSV1. Our studies provide a novel strategy for oncolytic virus therapy by inhibiting the intrinsic antiviral response in solid tumors to improve antitumor efficacy.
Collapse
Affiliation(s)
- Nianchao Zhang
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yude Guan
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Li
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jingxuan Yu
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Tailong Yi
- Department of Biochemistry and Molecular Biology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| |
Collapse
|
12
|
Wen J, Yi L, Wan L, Dong X. Prognostic value of GLCE and infiltrating immune cells in Ewing sarcoma. Heliyon 2023; 9:e19357. [PMID: 37662777 PMCID: PMC10474439 DOI: 10.1016/j.heliyon.2023.e19357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/10/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background The prognostic value of D-glucuronyl C5-epimerase (GLCE) and mast cell infiltration in Ewing sarcoma (ES) has not been well specified and highlighted, which may facilitate survival prediction and treatment. Methods Several qualified datasets were downloaded from the GEO website. Common differentially expressed genes between normal subjects and ES patients in GSE17679, GSE45544, and GSE68776 were identified and screened by multiple algorithms to find hub genes with prognostic value. The prognostic value of 64 infiltrating cells was also explored. A prognostic model was established and then validated with GSE63155 and GSE63156. Finally, functional analysis was performed. Results GLCE and mast cell infiltration were screened as two indicators for a prognostic model. The Kaplan‒Meier analysis showed that patients in the low GLCE expression, mast cell infiltration and risk score groups had poorer outcomes than patients in the high GLCE expression, mast cell infiltration and risk score groups, both in the training and validation sets. Scatter plots and heatmaps also indicated the same results. The concordance indices and calibration analyses indicated a high prediction accuracy of the model in the training and validation sets. The time-dependent receiver operating characteristic analyses suggested high sensitivity and specificity of the model, with area under the curve values between 0.76 and 0.98. The decision curve analyses suggested a significantly higher net benefit by the model than the treat-all and treat-none strategies. Functional analyses suggested that glycosaminoglycan biosynthesis-heparan sulfate/heparin, the cell cycle and microRNAs in cancer were upregulated in ES patients. Conclusions GLCE and mast cell infiltration are potential prognostic indicators in ES. GLCE may affect the proliferation, angiogenesis and metastasis of ES by affecting the biosynthesis of heparan sulfate and heparin.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| | - Lijun Yi
- Central Laboratory, Jiangxi Provincial Children's Hospital, Yangming Rd, Nanchang, Jiangxi, 330006, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, 410008, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, 330006, China
- Department of Orthopedics, JXHC Key Laboratory of Digital Orthopedics, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, 152 Aiguo Road, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
13
|
Romero JM, Titmuss E, Wang Y, Vafiadis J, Pacis A, Jang GH, Zhang A, Golesworthy B, Lenko T, Williamson LM, Grünwald B, O'Kane GM, Jones SJM, Marra MA, Wilson JM, Gallinger S, Laskin J, Zogopoulos G. Chemokine expression predicts T cell-inflammation and improved survival with checkpoint inhibition across solid cancers. NPJ Precis Oncol 2023; 7:73. [PMID: 37558751 PMCID: PMC10412582 DOI: 10.1038/s41698-023-00428-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Immune checkpoint inhibitors (ICI) are highly effective in specific cancers where canonical markers of antitumor immunity are used for patient selection. Improved predictors of T cell-inflammation are needed to identify ICI-responsive tumor subsets in additional cancer types. We investigated associations of a 4-chemokine expression signature (c-Score: CCL4, CCL5, CXCL9, CXCL10) with metrics of antitumor immunity across tumor types. Across cancer entities from The Cancer Genome Atlas, subgroups of tumors displayed high expression of the c-Score (c-Scorehi) with increased expression of immune checkpoint (IC) genes and transcriptional hallmarks of the cancer-immunity cycle. There was an incomplete association of the c-Score with high tumor mutation burden (TMB), with only 15% of c-Scorehi tumors displaying ≥10 mutations per megabase. In a heterogeneous pan-cancer cohort of 82 patients, with advanced and previously treated solid cancers, c-Scorehi tumors had a longer median time to progression (103 versus 72 days, P = 0.012) and overall survival (382 versus 196 days, P = 0.038) following ICI therapy initiation, compared to patients with low c-Score expression. We also found c-Score stratification to outperform TMB assignment for overall survival prediction (HR = 0.42 [0.22-0.79], P = 0.008 versus HR = 0.60 [0.29-1.27], P = 0.18, respectively). Assessment of the c-Score using the TIDE and PredictIO databases, which include ICI treatment outcomes from 10 tumor types, provided further support for the c-Score as a predictive ICI therapeutic biomarker. In summary, the c-Score identifies patients with hallmarks of T cell-inflammation and potential response to ICI treatment across cancer types, which is missed by TMB assignment.
Collapse
Affiliation(s)
- Joan Miguel Romero
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Emma Titmuss
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Yifan Wang
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
- Department of Surgery, McGill University, Montréal, QC, Canada
| | - James Vafiadis
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Alain Pacis
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
- Canadian Centre for Computational Genomics, McGill University and Genome Québec Innovation Centre, Montréal, QC, Canada
| | - Gun Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Bryn Golesworthy
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Tatiana Lenko
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada
| | - Barbara Grünwald
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Janessa Laskin
- Department of Medical Oncology, BC Cancer, Vancouver, BC, Canada
| | - George Zogopoulos
- Research Institute of the McGill University Health Centre, Montréal, QC, Canada.
- Rosalind and Morris Goodman Cancer Institute of McGill University, Montréal, QC, Canada.
- Department of Surgery, McGill University, Montréal, QC, Canada.
- Department of Oncology, McGill University, Montréal, QC, Canada.
| |
Collapse
|
14
|
Jain K, Henrich IC, Quick L, Young R, Mondal S, Oliveira AM, Blobel GA, Chou MM. Natural Killer Cell Activation by Ubiquitin-specific Protease 6 Mediates Tumor Suppression in Ewing Sarcoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1615-1627. [PMID: 37615015 PMCID: PMC10443598 DOI: 10.1158/2767-9764.crc-22-0505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/16/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Ewing sarcoma is a rare and deadly pediatric bone cancer for which survival rates and treatment options have stagnated for decades. Ewing sarcoma has not benefited from immunotherapy due to poor understanding of how its immune landscape is regulated. We recently reported that ubiquitin-specific protease 6 (USP6) functions as a tumor suppressor in Ewing sarcoma, and identified it as the first cell-intrinsic factor to modulate the Ewing sarcoma immune tumor microenvironment (TME). USP6 induces intratumoral infiltration and activation of multiple innate immune lineages in xenografted nude mice. Here we report that natural killer (NK) cells are essential for its tumor-inhibitory functions, as NK cell depletion reverses USP6-mediated suppression of Ewing sarcoma xenograft growth. USP6 expression in Ewing sarcoma cells directly stimulates NK cell activation and degranulation in vitro, and functions by increasing surface levels of multiple NK cell-activating ligands. USP6 also induces surface upregulation of the receptor for the apoptosis-inducing ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), providing an additional route for enhanced sensitivity to NK cell killing. Furthermore, USP6-expressing Ewing sarcoma and NK cells participate in a paracrine immunostimulatory feedforward loop, wherein IFNγ secreted by activated NK cells feeds back on USP6/Ewing sarcoma cells to induce synergistic expression of chemokines CXCL9 and CXCL10. Remarkably, expression of USP6 in subcutaneous Ewing sarcoma xenografts induces systemic activation and maturation of NK cells, and induces an abscopal response in which growth of distal tumors is inhibited, coincident with increased infiltration and activation of NK cells. This work reveals how USP6 reprograms the Ewing sarcoma TME to enhance antitumor immunity, and may be exploited for future therapeutic benefit. Significance This study provides novel insights into the immunomodulatory functions of USP6, the only cancer cell-intrinsic factor demonstrated to regulate the immune TME in Ewing sarcoma. We demonstrate that USP6-mediated suppression of Ewing sarcoma tumorigenesis is dependent on NK cells. USP6 directly activates NK cell cytolytic function, inducing both intratumoral and systemic activation of NK cells in an Ewing sarcoma xenograft model.
Collapse
Affiliation(s)
- Kanika Jain
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian C. Henrich
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura Quick
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Robert Young
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Shreya Mondal
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Andre M. Oliveira
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gerd A. Blobel
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pediatric Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Margaret M. Chou
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
15
|
Qayoom H, Sofi S, Mir MA. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol Res 2023; 71:588-599. [PMID: 37004645 DOI: 10.1007/s12026-023-09376-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023]
Abstract
The immune system plays a vital role in suppressing tumor cell progression. The tumor microenvironment augmented with significant levels of tumor-infiltrating lymphocytes has been widely investigated and it is suggested that tumor-infiltrating lymphocytes have shown a significant role in the prognosis of cancer patients. Compared to ordinary non-infiltrating lymphocytes, tumor-infiltrating lymphocytes (TILs) are a significant population of lymphocytes that infiltrate tumor tissue and have a higher level of specific immunological reactivity against tumor cells. They serve as an effective immunological defense against various malignancies. TILs are a diverse group of immune cells that are divided into immune subsets based on the pathological and physiological impact they have on the immune system. TILs mainly consist of B-cells, T-cells, or natural killer cells with diverse phenotypic and functional properties. TILs are known to be superior to other immune cells in that they can recognize a wide range of heterogeneous tumor antigens by producing many clones of T cell receptors (TCRs), outperforming treatments like TCR-T cell and CAR-T therapy. With the introduction of genetic engineering technologies, tumor-infiltrating lymphocytes (TILs) have become a ground-breaking therapeutic option for malignancies, but because of the hindrances opposed by the immune microenvironment and the mutation of antigens, the development of TILs as therapeutic has been hindered. By giving some insight into the many variables, such as the various barriers inhibiting its usage as a potential therapeutic agent, we have examined various aspects of TILs in this work.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India
| | - Shazia Sofi
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India
| | - Manzoor A Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, 190006, Jammu and Kashmir, India.
| |
Collapse
|
16
|
Lin D, Shen Y, Liang T. Oncolytic virotherapy: basic principles, recent advances and future directions. Signal Transduct Target Ther 2023; 8:156. [PMID: 37041165 PMCID: PMC10090134 DOI: 10.1038/s41392-023-01407-6] [Citation(s) in RCA: 141] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023] Open
Abstract
Oncolytic viruses (OVs) have attracted growing awareness in the twenty-first century, as they are generally considered to have direct oncolysis and cancer immune effects. With the progress in genetic engineering technology, OVs have been adopted as versatile platforms for developing novel antitumor strategies, used alone or in combination with other therapies. Recent studies have yielded eye-catching results that delineate the promising clinical outcomes that OVs would bring about in the future. In this review, we summarized the basic principles of OVs in terms of their classifications, as well as the recent advances in OV-modification strategies based on their characteristics, biofunctions, and cancer hallmarks. Candidate OVs are expected to be designed as "qualified soldiers" first by improving target fidelity and safety, and then equipped with "cold weapons" for a proper cytocidal effect, "hot weapons" capable of activating cancer immunotherapy, or "auxiliary weapons" by harnessing tactics such as anti-angiogenesis, reversed metabolic reprogramming and decomposing extracellular matrix around tumors. Combinations with other cancer therapeutic agents have also been elaborated to show encouraging antitumor effects. Robust results from clinical trials using OV as a treatment congruously suggested its significance in future application directions and challenges in developing OVs as novel weapons for tactical decisions in cancer treatment.
Collapse
Affiliation(s)
- Danni Lin
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yinan Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou, Zhejiang, China.
- The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Tang L, Cegang F, Zhao H, Wang B, Jia S, Chen H, Cai H. Up-regulation of Core 1 Beta 1, 3-Galactosyltransferase Suppresses Osteosarcoma Growth with Induction of IFN-γ Secretion and Proliferation of CD8 + T Cells. Curr Cancer Drug Targets 2023; 23:265-277. [PMID: 36221889 DOI: 10.2174/1568009622666221010105701] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
AIM Abnormal glycosylation often occurs in tumor cells. T-synthase (core 1 beta 1,3- galactosyltransferase, C1GALT1, or T-synthase) is a key enzyme involved in O-glycosylation. Although T-synthase is known to be important in human tumors, the effects of T-synthase and T-antigen on human tumor responses remain poorly defined. METHODS In this study, a T-synthase-specific short hairpin RNA (shRNA) or T-synthase-specific eukaryotic expression vector(pcDNA3.1(+)) was transfected into murine Osteosarcoma LM8 cells to assess the effects of T-synthase on T cells and cytokines. RESULTS The up-regulation of T-synthase promoted the proliferation of osteosarcoma cells in vitro, but it promoted the proliferation of tumor initially up to 2-3 weeks but showed significant growth inhibitory effect after 3 weeks post-implantation in vivo. Osteosarcoma cells with high T-synthase expression in vitro promoted the proliferation and inhibited the apoptosis of CD8+ T cells. Further, T-synthase upregulation promoted CD8+ T-cell proliferation and the increased production of CD4+ T cell-derived IFN-γ cytokines to induce the increased tumor lethality of CTLs. CONCLUSION Our data suggest that high T-synthase expression inhibits tumor growth by improving the body's anti-tumor immunity. Therefore, using this characteristic to prepare tumor cell vaccines with high immunogenicity provides a new idea for clinical immunotherapy of osteosarcoma.
Collapse
Affiliation(s)
- Lei Tang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fu Cegang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Department of Orthopedics, Haikou Orthopedic and Diabetes Hospital, Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Haikou, Hainan Province, China
| | - Hongwei Zhao
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Bofei Wang
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Siyu Jia
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| | - Haidan Chen
- Department of Spinal Surgery Ward, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China.,Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huili Cai
- Department of Hematology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Wuhan Province, China
| |
Collapse
|
18
|
Current State of Immunotherapy and Mechanisms of Immune Evasion in Ewing Sarcoma and Osteosarcoma. Cancers (Basel) 2022; 15:cancers15010272. [PMID: 36612267 PMCID: PMC9818129 DOI: 10.3390/cancers15010272] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
We argue here that in many ways, Ewing sarcoma (EwS) is a unique tumor entity and yet, it shares many commonalities with other immunologically cold solid malignancies. From the historical perspective, EwS, osteosarcoma (OS) and other bone and soft-tissue sarcomas were the first types of tumors treated with the immunotherapy approach: more than 100 years ago American surgeon William B. Coley injected his patients with a mixture of heat-inactivated bacteria, achieving survival rates apparently higher than with surgery alone. In contrast to OS which exhibits recurrent somatic copy-number alterations, EwS possesses one of the lowest mutation rates among cancers, being driven by a single oncogenic fusion protein, most frequently EWS-FLI1. In spite these differences, both EwS and OS are allied with immune tolerance and low immunogenicity. We discuss here the potential mechanisms of immune escape in these tumors, including low representation of tumor-specific antigens, low expression levels of MHC-I antigen-presenting molecules, accumulation of immunosuppressive M2 macrophages and myeloid proinflammatory cells, and release of extracellular vesicles (EVs) which are capable of reprogramming host cells in the tumor microenvironment and systemic circulation. We also discuss the vulnerabilities of EwS and OS and potential novel strategies for their targeting.
Collapse
|
19
|
Li W, Lv L, Ruan M, Xu J, Zhu W, Li Q, Jiang X, Zheng L, Zhu W. Qin Huang formula enhances the effect of Adriamycin in B-cell lymphoma via increasing tumor infiltrating lymphocytes by targeting toll-like receptor signaling pathway. BMC Complement Med Ther 2022; 22:185. [PMID: 35818037 PMCID: PMC9272877 DOI: 10.1186/s12906-022-03660-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background As an original traditional Chinese medicinal formula, Qin Huang formula (QHF) is used as adjuvant therapy for treating lymphoma in our hospital and has proven efficacy when combined with chemotherapy. However, the underlying mechanisms of QHF have not been elucidated. Methods A network pharmacological-based analysis method was used to screen the active components and predict the potential mechanisms of QHF in treating B cell lymphoma. Then, a murine model was built to verify the antitumor effect of QHF combined with Adriamycin (ADM) in vivo. Finally, IHC, ELISA, 18F-FDG PET-CT scan, and western blot were processed to reveal the intriguing mechanism of QHF in treating B cell lymphoma. Results The systemic pharmacological study revealed that QHF took effect following a multiple-target and multiple-pathway pattern in the human body. In vivo study showed that combination therapy with QHF and ADM potently inhibited the growth of B cell lymphoma in a syngeneic murine model, and significantly increased the proportion of tumor infiltrating CD4+ and CD8+ T cells in the tumor microenvironment (TME). Furthermore, the level of CXCL10 and IL-6 was significantly increased in the combination group. Finally, the western blot exhibited that the level of TLR2 and p38 MAPK increased in the combination therapy group. Conclusion QHF in combination of ADM enhances the antitumor effect of ADM via modulating tumor immune microenvironment and can be a combination therapeutic strategy for B cell lymphoma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03660-8.
Collapse
|
20
|
Daley JD, Olson AC, Bailey KM. Harnessing immunomodulation during DNA damage in Ewing sarcoma. Front Oncol 2022; 12:1048705. [PMID: 36483025 PMCID: PMC9722957 DOI: 10.3389/fonc.2022.1048705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
Abstract
Ewing sarcoma is a fusion-oncoprotein-driven primary bone tumor most commonly diagnosed in adolescents. Given the continued poor outcomes for patients with metastatic and relapsed Ewing sarcoma, testing innovative therapeutic approaches is essential. Ewing sarcoma has been categorized as a 'BRCAness' tumor with emerging data characterizing a spectrum of DNA damage repair defects within individual Ewing tumors, including the presence of EWSR1::FLI1 itself, recurrent somatic mutations, and rare germline-based defects. It is critical to understand the cumulative impact of various DNA damage repair defects on an individual Ewing tumor's response to therapy. Further, in addition to DNA-damage-directed therapies, subsets of Ewing tumors may be more susceptible to DNA-damage/immunotherapy combinations given the significant cross-talk between DNA damage and inflammatory pathways in the tumor microenvironment. Here we review potential approaches utilizing DNA-damaging agents as modulators of the Ewing tumor immune microenvironment, with a focus on radiation and opportunities during disease metastasis and relapse.
Collapse
Affiliation(s)
- Jessica D. Daley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adam C. Olson
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, United States
| |
Collapse
|
21
|
Cillo AR, Mukherjee E, Bailey NG, Onkar S, Daley J, Salgado C, Li X, Liu D, Ranganathan S, Burgess M, Sembrat J, Weiss K, Watters R, Bruno TC, Vignali DAA, Bailey KM. Ewing Sarcoma and Osteosarcoma Have Distinct Immune Signatures and Intercellular Communication Networks. Clin Cancer Res 2022; 28:4968-4982. [PMID: 36074145 PMCID: PMC9669190 DOI: 10.1158/1078-0432.ccr-22-1471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 01/26/2023]
Abstract
PURPOSE Ewing sarcoma and osteosarcoma are primary bone sarcomas occurring most commonly in adolescents. Metastatic and relapsed disease are associated with dismal prognosis. Although effective for some soft tissue sarcomas, current immunotherapeutic approaches for the treatment of bone sarcomas have been largely ineffective, necessitating a deeper understanding of bone sarcoma immunobiology. EXPERIMENTAL DESIGN Multiplex immunofluorescence analysis of immune infiltration in relapsed versus primary disease was conducted. To better understand immune states and drivers of immune infiltration, especially during disease progression, we performed single-cell RNA sequencing (scRNAseq) of immune populations from paired blood and bone sarcoma tumor samples. RESULTS Our multiplex immunofluorescence analysis revealed increased immune infiltration in relapsed versus primary disease in both Ewing sarcoma and osteosarcoma. scRNAseq analyses revealed terminally exhausted CD8+ T cells expressing co-inhibitory receptors in osteosarcoma and an effector T-cell subpopulation in Ewing sarcoma. In addition, distinct subsets of CD14+CD16+ macrophages were present in Ewing sarcoma and osteosarcoma. To determine pathways driving tumor immune infiltration, we conducted intercellular communication analyses and uncovered shared mechanisms of immune infiltration driven by CD14+CD16+ macrophages and unique pathways of immune infiltration driven by CXCL10 and CXCL12 in osteosarcoma. CONCLUSIONS Our study provides preclinical rationale for future investigation of specific immunotherapeutic targets upon relapse and provides an invaluable resource of immunologic data from bone sarcomas.
Collapse
Affiliation(s)
- Anthony R. Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Elina Mukherjee
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nathanael G Bailey
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sayali Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Program in Microbiology and Immunology, Pittsburgh, PA, USA
| | - Jessica Daley
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Claudia Salgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Xiang Li
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,School of Medicine, Tsinghua University, Beijing, China
| | - Dongyan Liu
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,School of Medicine, Tsinghua University, Beijing, China
| | | | - Melissa Burgess
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John Sembrat
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kurt Weiss
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rebecca Watters
- Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tullia C. Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh PA, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Kelly M. Bailey
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Jiménez JA, Lawlor ER, Lyssiotis CA. Amino acid metabolism in primary bone sarcomas. Front Oncol 2022; 12:1001318. [PMID: 36276057 PMCID: PMC9581121 DOI: 10.3389/fonc.2022.1001318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary bone sarcomas, including osteosarcoma (OS) and Ewing sarcoma (ES), are aggressive tumors with peak incidence in childhood and adolescence. The intense standard treatment for these patients consists of combined surgery and/or radiation and maximal doses of chemotherapy; a regimen that has not seen improvement in decades. Like other tumor types, ES and OS are characterized by dysregulated cellular metabolism and a rewiring of metabolic pathways to support the biosynthetic demands of malignant growth. Not only are cancer cells characterized by Warburg metabolism, or aerobic glycolysis, but emerging work has revealed a dependence on amino acid metabolism. Aside from incorporation into proteins, amino acids serve critical functions in redox balance, energy homeostasis, and epigenetic maintenance. In this review, we summarize current studies describing the amino acid metabolic requirements of primary bone sarcomas, focusing on OS and ES, and compare these dependencies in the normal bone and malignant tumor contexts. We also examine insights that can be gleaned from other cancers to better understand differential metabolic susceptibilities between primary and metastatic tumor microenvironments. Lastly, we discuss potential metabolic vulnerabilities that may be exploited therapeutically and provide better-targeted treatments to improve the current standard of care.
Collapse
Affiliation(s)
- Jennifer A. Jiménez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth R. Lawlor
- Department of Pediatrics, University of Washington, Seattle, WA, United States,Seattle Children’s Research Institute, Seattle, WA, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| |
Collapse
|
23
|
Wu Y, Yu S, Qiao H. Understanding the functional inflammatory factors involved in therapeutic response to immune checkpoint inhibitors for pan-cancer. Front Pharmacol 2022; 13:990445. [PMID: 36120342 PMCID: PMC9474995 DOI: 10.3389/fphar.2022.990445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) fight tumor progression by activating immune conditions. The inflammatory factors are playing a functional role in programmed death-1 (PD-1) or other immune checkpoints. They are involved in regulating the expression of programmed death ligand-1 (PD-L1), the only predictor recognized by the guidelines in response to ICIs. In addition, abundant components of the tumor microenvironment (TME) all interact with various immune factors contributing to the response to ICIs, including infiltration of various immune cells, extracellular matrix, and fibroblasts. Notably, the occurrence of immune-related adverse events (irAEs) in patients receiving ICIs is increasingly observed in sundry organs. IrAEs are often regarded as an inflammatory factor-mediated positive feedback loop associated with better response to ICIs. It deserves attention because inflammatory factors were observed to be different when targeting different immune checkpoints or in the presence of different irAEs. In the present review, we address the research progresses on regulating inflammatory factors for an intentional controlling anti-cancer response with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Yanmeizhi Wu
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Qiao
- Department of Endocrinology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Huang R, Huang D, Wang S, Xian S, Liu Y, Jin M, Zhang X, Chen S, Yue X, Zhang W, Lu J, Liu H, Huang Z, Zhang H, Yin H. Repression of enhancer RNA PHLDA1 promotes tumorigenesis and progression of Ewing sarcoma via decreasing infiltrating T‐lymphocytes: A bioinformatic analysis. Front Genet 2022; 13:952162. [PMID: 36092920 PMCID: PMC9453160 DOI: 10.3389/fgene.2022.952162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The molecular mechanisms of EWS-FLI-mediating target genes and downstream pathways may provide a new way in the targeted therapy of Ewing sarcoma. Meanwhile, enhancers transcript non-coding RNAs, known as enhancer RNAs (eRNAs), which may serve as potential diagnosis markers and therapeutic targets in Ewing sarcoma. Materials and methods: Differentially expressed genes (DEGs) were identified between 85 Ewing sarcoma samples downloaded from the Treehouse database and 3 normal bone samples downloaded from the Sequence Read Archive database. Included in DEGs, differentially expressed eRNAs (DEeRNAs) and target genes corresponding to DEeRNAs (DETGs), as well as the differentially expressed TFs, were annotated. Then, cell type identification by estimating relative subsets of known RNA transcripts (CIBERSORT) was used to infer portions of infiltrating immune cells in Ewing sarcoma and normal bone samples. To evaluate the prognostic value of DEeRNAs and immune function, cross validation, independent prognosis analysis, and Kaplan–Meier survival analysis were implemented using sarcoma samples from the Cancer Genome Atlas database. Next, hallmarks of cancer by gene set variation analysis (GSVA) and immune gene sets by single-sample gene set enrichment analysis (ssGSEA) were identified to be significantly associated with Ewing sarcoma. After screening by co-expression analysis, most significant DEeRNAs, DETGs and DETFs, immune cells, immune gene sets, and hallmarks of cancer were merged to construct a co-expression regulatory network to eventually identify the key DEeRNAs in tumorigenesis of Ewing sarcoma. Moreover, Connectivity Map Analysis was utilized to identify small molecules targeting Ewing sarcoma. External validation based on multidimensional online databases and scRNA-seq analysis were used to verify our key findings. Results: A six-different-dimension regulatory network was constructed based on 17 DEeRNAs, 29 DETFs, 9 DETGs, 5 immune cells, 24 immune gene sets, and 8 hallmarks of cancer. Four key DEeRNAs (CCR1, CD3D, PHLDA1, and RASD1) showed significant co-expression relationships in the network. Connectivity Map Analysis screened two candidate compounds, MS-275 and pyrvinium, that might target Ewing sarcoma. PHLDA1 (key DEeRNA) was extensively expressed in cancer stem cells of Ewing sarcoma, which might play a critical role in the tumorigenesis of Ewing sarcoma. Conclusion: PHLDA1 is a key regulator in the tumorigenesis and progression of Ewing sarcoma. PHLDA1 is directly repressed by EWS/FLI1 protein and low expression of FOSL2, resulting in the deregulation of FOX proteins and CC chemokine receptors. The decrease of infiltrating T‐lymphocytes and TNFA signaling may promote tumorigenesis and progression of Ewing sarcoma.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Tongji University School of Medicine, Shanghai, China
| | - Dan Huang
- Tongji University School of Medicine, Shanghai, China
| | - Siqiao Wang
- Tongji University School of Medicine, Shanghai, China
| | - Shuyuan Xian
- Tongji University School of Medicine, Shanghai, China
| | - Yifan Liu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minghao Jin
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinkun Zhang
- Tongji University School of Medicine, Shanghai, China
| | - Shaofeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xi Yue
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Huizhen Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Tongji University School of Medicine, Shanghai, China
- *Correspondence: Zongqiang Huang, ; Hao Zhang, ; Huabin Yin,
| | - Hao Zhang
- Department of Orthopedics, Naval Medical Center of PLA, Second Military Medical University, Shanghai, China
- *Correspondence: Zongqiang Huang, ; Hao Zhang, ; Huabin Yin,
| | - Huabin Yin
- Department of Orthopedics, School of Medicine, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Zongqiang Huang, ; Hao Zhang, ; Huabin Yin,
| |
Collapse
|
25
|
D'Angelo SP, Richards AL, Conley AP, Woo HJ, Dickson MA, Gounder M, Kelly C, Keohan ML, Movva S, Thornton K, Rosenbaum E, Chi P, Nacev B, Chan JE, Slotkin EK, Kiesler H, Adamson T, Ling L, Rao P, Patel S, Livingston JA, Singer S, Agaram NP, Antonescu CR, Koff A, Erinjeri JP, Hwang S, Qin LX, Donoghue MTA, Tap WD. Pilot study of bempegaldesleukin in combination with nivolumab in patients with metastatic sarcoma. Nat Commun 2022; 13:3477. [PMID: 35710741 PMCID: PMC9203519 DOI: 10.1038/s41467-022-30874-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
PD-1 blockade (nivolumab) efficacy remains modest for metastatic sarcoma. In this paper, we present an open-label, non-randomized, non-comparative pilot study of bempegaldesleukin, a CD122-preferential interleukin-2 pathway agonist, with nivolumab in refractory sarcoma at Memorial Sloan Kettering/MD Anderson Cancer Centers (NCT03282344). We report on the primary outcome of objective response rate (ORR) and secondary endpoints of toxicity, clinical benefit, progression-free survival, overall survival, and durations of response/treatment. In 84 patients in 9 histotype cohorts, all patients experienced ≥1 adverse event and treatment-related adverse event; 1 death was possibly treatment-related. ORR was highest in angiosarcoma (3/8) and undifferentiated pleomorphic sarcoma (2/10), meeting predefined endpoints. Results of our exploratory investigation of predictive biomarkers show: CD8 + T cell infiltrates and PD-1 expression correlate with improved ORR; upregulation of immune-related pathways correlate with improved efficacy; Hedgehog pathway expression correlate with resistance. Exploration of this combination in selected sarcomas, and of Hedgehog signaling as a predictive biomarker, warrants further study in larger cohorts.
Collapse
Affiliation(s)
- Sandra P D'Angelo
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA.
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| | - Allison L Richards
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Anthony P Conley
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mark A Dickson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Mrinal Gounder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Ciara Kelly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Mary Louise Keohan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Sujana Movva
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Katherine Thornton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Evan Rosenbaum
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Ping Chi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| | - Benjamin Nacev
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
- Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York City, NY, USA
| | - Jason E Chan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Emily K Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Hannah Kiesler
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Travis Adamson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Lilan Ling
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Pavitra Rao
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Shreyaskumar Patel
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan A Livingston
- Department of Sarcoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Narasimhan P Agaram
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Andrew Koff
- Program in Molecular Biology, Memorial Sloan Kettering Cancer, New York City, NY, USA
| | - Joseph P Erinjeri
- Department of Interventional Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sinchun Hwang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Li-Xuan Qin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mark T A Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York City, NY, USA
| |
Collapse
|
26
|
Yang X, Sun J, Wen B, Wang Y, Zhang M, Chen W, Zhao W, He C, Zhong X, Liu Y, Li T, Sun H, He S. Biejiajian Pill Promotes the Infiltration of CD8 + T Cells in Hepatocellular Carcinoma by Regulating the Expression of CCL5. Front Pharmacol 2021; 12:771046. [PMID: 34899325 PMCID: PMC8661106 DOI: 10.3389/fphar.2021.771046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-infiltrating CD8+T lymphocytes are mostly associated with a favorable prognosis in numerous cancers, including hepatocellular carcinoma (HCC). Biejiajian Pill (BJJP) is a common type of traditional Chinese medicine that is widely used in the treatment of HCC in China. Previous studies showed that BJJP suppressed the growth of HCC cells both in vivo and in vitro, by exerting direct cytotoxic effects on tumor cells. The present study demonstrated that in addition to direct cytotoxicity, BJJP inhibits the growth of tumor cells by promoting the infiltration of CD8+T cells into the tumor in H22-bearing mice. Mechanistically, chemokine ligand 5 (CCL5) was identified as one of the most highly expressed chemokines by tumor cells in vivo after treatment with BJJP. Additionally, CCL5 was knocked down in H22 cells and the results showed that knockdown of the gene significantly impaired the infiltration of CD8+T cells in vivo. Furthermore, the effects of BJJP on human HCC cell lines were assessed in vitro. Similarly, cells treated with BJJP had higher expression of CCL5 mRNA, which was consistent with increased levels of CCL5 protein in human tumor cells. These findings provide new insights into the anticancer effects of BJJP, which regulated the expression of CCL5 and the infiltration of CD8+T cells. The results, therefore, suggest that BJJP has great potential application in clinical practice.
Collapse
Affiliation(s)
- Xuemei Yang
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jialing Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Wen
- Department of Traditional Chinese Medicine, Hospital of PLA, Guangzhou, China
| | - Yu Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingjia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weicong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunyu He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaodan Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tong Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songqi He
- Nanfang Hospital, Southern Medical University, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Morales E, Olson M, Iglesias F, Dahiya S, Luetkens T, Atanackovic D. Role of immunotherapy in Ewing sarcoma. J Immunother Cancer 2021; 8:jitc-2020-000653. [PMID: 33293354 PMCID: PMC7725096 DOI: 10.1136/jitc-2020-000653] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Ewing sarcoma (ES) is thought to arise from mesenchymal stem cells and is the second most common bone sarcoma in pediatric patients and young adults. Given the dismal overall outcomes and very intensive therapies used, there is an urgent need to explore and develop alternative treatment modalities including immunotherapies. In this article, we provide an overview of ES biology, features of ES tumor microenvironment (TME) and review various tumor-associated antigens that can be targeted with immune-based approaches including cancer vaccines, monoclonal antibodies, T cell receptor-transduced T cells, and chimeric antigen receptor T cells. We highlight key reasons for the limited efficacy of various immunotherapeutic approaches for the treatment of ES to date. These factors include absence of human leukocyte antigen class I molecules from the tumor tissue, lack of an ideal surface antigen, and immunosuppressive TME due to the presence of myeloid-derived suppressor cells, F2 fibrocytes, and M2-like macrophages. Lastly, we offer insights into strategies for novel therapeutics development in ES. These strategies include the development of gene-modified T cell receptor T cells against cancer–testis antigen such as XAGE-1, surface target discovery through detailed profiling of ES surface proteome, and combinatorial approaches. In summary, we provide state-of-the-art science in ES tumor immunology and immunotherapy, with rationale and recommendations for future therapeutics development.
Collapse
Affiliation(s)
- Erin Morales
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Michael Olson
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Fiorella Iglesias
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA
| | - Saurabh Dahiya
- Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Tim Luetkens
- Pediatric Oncology and Hematology, University of Utah, Salt Lake City, Utah, USA.,Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA.,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Djordje Atanackovic
- Cancer Immunotherapy, Huntsman Cancer Institute, Salt Lake City, Utah, USA .,Department of Medicine, University of Maryland School of Medicine and Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.,Hematology and Hematologic Malignancies, University of Utah/Huntsman Cancer Institute, Salt Lake City, Utah, USA
| |
Collapse
|
28
|
Ma Q, Chen Y, Qin Q, Guo F, Wang YS, Li D. CXCL13 expression in mouse 4T1 breast cancer microenvironment elicits antitumor immune response by regulating immune cell infiltration. PRECISION CLINICAL MEDICINE 2021; 4:155-167. [PMID: 35693216 PMCID: PMC8982548 DOI: 10.1093/pcmedi/pbab020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer type and the leading cause of cancer-related deaths among women worldwide. Previous studies have reported contradictory performance of chemokine CXC motif ligand 13 (CXCL13) in breast cancer. In this study, The Cancer Genome Atlas database analysis revealed that CXCL13 was overexpressed in various human cancers including breast carcinoma, and associated with good clinical prognosis in breast cancer. Flow cytometry detection also found upregulated intracellular CXCL13 expression in human breast cancer cell lines. To explore the possible role of CXCL13 in the breast cancer microenvironment, mouse triple negative breast cancer (TNBC) was lentivirally transfected to stably overexpress mouse CXCL13 (4T1-CXCL13). Both parental 4T1 and 4T1-CXCL13 strains showed no in vitro or in vivo endogenous cell surface CXCR5 expression. In immune-competent BALB/c mice, the in vivo tumor growth of 4T1-CXCL13 was significantly inhibited and even completely eradicated, accompanied with increased infiltrations of CD4+, CD8+ T lymphocytes and CD11b+CD11c+ DCs. Further investigations showed that CXCL13 expression in the 4T1 tumor microenvironment elicited long-term antitumor immune memory, and rejection of distal parental tumor. The antitumor activity of CXCL13 was remarkedly impaired in BALB/cA-nu nude mice, or in BALB/c mice with CD8+ T lymphocyte or NK cell depletion. Our investigation indicated that CXCL13 expression in TNBC triggered effective antitumor immunity by chemoattracting immune cell infiltrations and could be considered as a novel prognostic marker for TNBC.
Collapse
Affiliation(s)
- Qizhi Ma
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yue Chen
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Qin
- Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fuchun Guo
- Institute of Drug Clinical Trial, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong-sheng Wang
- Institute of Drug Clinical Trial, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
van Oost S, Meijer DM, Kuijjer ML, Bovée JVMG, de Miranda NFCC. Linking Immunity with Genomics in Sarcomas: Is Genomic Complexity an Immunogenic Trigger? Biomedicines 2021; 9:1048. [PMID: 34440251 PMCID: PMC8391750 DOI: 10.3390/biomedicines9081048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Sarcomas comprise a collection of highly heterogeneous malignancies that can be grossly grouped in the categories of sarcomas with simple or complex genomes. Since the outcome for most sarcoma patients has barely improved in the last decades, there is an urgent need for improved therapies. Immunotherapy, and especially T cell checkpoint blockade, has recently been a game-changer in cancer therapy as it produced significant and durable treatment responses in several cancer types. Currently, only a small fraction of sarcoma patients benefit from immunotherapy, supposedly due to a general lack of somatically mutated antigens (neoantigens) and spontaneous T cell immunity in most cancers. However, genomic events resulting from chromosomal instability are frequent in sarcomas with complex genomes and could drive immunity in those tumors. Improving our understanding of the mechanisms that shape the immune landscape of sarcomas will be crucial to overcoming the current challenges of sarcoma immunotherapy. This review focuses on what is currently known about the tumor microenvironment in sarcomas and how this relates to their genomic features. Moreover, we discuss novel therapeutic strategies that leverage the tumor microenvironment to increase the clinical efficacy of immunotherapy, and which could provide new avenues for the treatment of sarcomas.
Collapse
Affiliation(s)
- Siddh van Oost
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Debora M. Meijer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Marieke L. Kuijjer
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
- Centre for Molecular Medicine Norway (NCMM), Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Judith V. M. G. Bovée
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| | - Noel F. C. C. de Miranda
- Department of Pathology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (S.v.O.); (D.M.M.); (M.L.K.); (N.F.C.C.d.M.)
| |
Collapse
|
30
|
Pillozzi S, Bernini A, Palchetti I, Crociani O, Antonuzzo L, Campanacci D, Scoccianti G. Soft Tissue Sarcoma: An Insight on Biomarkers at Molecular, Metabolic and Cellular Level. Cancers (Basel) 2021; 13:cancers13123044. [PMID: 34207243 PMCID: PMC8233868 DOI: 10.3390/cancers13123044] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Soft tissue sarcoma is a rare mesenchymal malignancy. Despite the advancements in the fields of radiology, pathology and surgery, these tumors often recur locally and/or with metastatic disease. STS is considered to be a diagnostic challenge due to the large variety of histological subtypes with clinical and histopathological characteristics which are not always distinct. One of the important clinical problems is a lack of useful biomarkers. Therefore, the discovery of biomarkers that can be used to detect tumors or predict tumor response to chemotherapy or radiotherapy could help clinicians provide more effective clinical management. Abstract Soft tissue sarcomas (STSs) are a heterogeneous group of rare tumors. Although constituting only 1% of all human malignancies, STSs represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. Over 100 histologic subtypes have been characterized to date (occurring predominantly in the trunk, extremity, and retroperitoneum), and many more are being discovered due to molecular profiling. STS mortality remains high, despite adjuvant chemotherapy. New prognostic stratification markers are needed to help identify patients at risk of recurrence and possibly apply more intensive or novel treatments. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the most relevant cellular, molecular and metabolic biomarkers for STS, and highlight advances in STS-related biomarker research.
Collapse
Affiliation(s)
- Serena Pillozzi
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Correspondence:
| | - Andrea Bernini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| | - Ilaria Palchetti
- Department of Chemistry Ugo Schiff, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy;
| | - Olivia Crociani
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Lorenzo Antonuzzo
- Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
- Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Domenico Campanacci
- Department of Health Science, University of Florence, Largo Brambilla 3, 50134 Florence, Italy;
| | - Guido Scoccianti
- Department of Orthopaedic Oncology and Reconstructive Surgery, University of Florence, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| |
Collapse
|
31
|
Zhou Y, Xu B, Wu S, Liu Y. Prognostic Immune-Related Genes of Patients With Ewing's Sarcoma. Front Genet 2021; 12:669549. [PMID: 34122521 PMCID: PMC8194304 DOI: 10.3389/fgene.2021.669549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
Ewing's sarcoma (ES) is an extremely aggressive malignant bone tumor with a high incidence among children and adolescents. The immune microenvironment plays an important role in ES development. The aim of the current study was to investigate the immune microenvironment in ES patients to identify immune-related gene signatures. Single-sample gene set enrichment analysis (ssGSEA) was used to cluster the RNA sequences of 117 ES patients, and their immune cell infiltration data were downloaded and evaluated based on the Gene Expression Omnibus (GEO) database. High, medium, and low immune cell infiltration clusters were identified. Based on the comparison of clusters with high and low immune cell infiltration, normal skeletal muscle cells, and ES, we identified 198 common differentially expressed genes. GO and KEGG enrichment analyses indicated the underlying immune mechanism in ES. Cox and LASSO regression analyses were conducted to select immune-related prognostic genes. An external dataset from the International Cancer Genome Consortium (ICGC) was used to validate our results. Ten immune-related, independent prognostic genes (FMO2, GLCE, GPR64, IGFBP4, LOXHD1, PBK, SNAI2, SPP1, TAPT1-AS1, and ZIC2) were selected for analysis. These 10 immune-related genes signature were determined to exhibit independent prognostic significance for ES. The results of this study provide an approach for predicting the prognosis and survival of ES patients, and the elucidated genes may be a promising target for immunotherapy.
Collapse
Affiliation(s)
- Yangfan Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bin Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shusheng Wu
- The First Affiliated Hospital of USTC, Hefei, China
| | - Yulian Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Bi Q, Liu Y, Yuan T, Wang H, Li B, Jiang Y, Mo X, Lei Y, Xiao Y, Dong S, Shen H, Lv L, Yang Y, Dong H, Wang J, Li F, Zhang D, Ai Y, Lin J. Predicted CD4 + T cell infiltration levels could indicate better overall survival in sarcoma patients. J Int Med Res 2021; 49:300060520981539. [PMID: 33430667 PMCID: PMC7809305 DOI: 10.1177/0300060520981539] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The role of tumor-infiltrating lymphocytes (TILs) has not yet been characterized in sarcomas. The aim of this bioinformatics study was to explore the effect of TILs on sarcoma survival and genome alterations. METHODS Whole-exome sequencing, transcriptome sequencing, and survival data of sarcoma were obtained from The Cancer Genome Atlas. Immune infiltration scores were calculated using the Tumor Immune Estimation Resource. Potential associations between abundance of infiltrating TILs and survival or genome alterations were examined. RESULTS Levels of CD4+ T cell infiltration were associated with overall survival of patients with pan-sarcomas, and higher CD4+ T cell infiltration levels were associated with better survival. Somatic copy number alterations, rather than mutations, were found to correlate with CD4+ T cell infiltration levels. CONCLUSIONS This data mining study indicated that CD4+ T cell infiltration levels predicted from RNA sequencing could predict sarcoma prognosis, and higher levels of CD4+ T cells infiltration indicated a better chance of survival.
Collapse
Affiliation(s)
- Qing Bi
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yang Liu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tao Yuan
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | | | - Bin Li
- 3D Medicines Inc., Shanghai, China
| | - Ye Jiang
- GuiHang Hospital, Guiyang, Guizhou, China
| | - Xingkui Mo
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yonghong Lei
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yanbin Xiao
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Suwei Dong
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongmei Shen
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Li Lv
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yihao Yang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hua Dong
- 3D Medicines Inc., Shanghai, China
| | | | - Fugen Li
- 3D Medicines Inc., Shanghai, China
| | | | - Yiqin Ai
- The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jie Lin
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
33
|
Clemente O, Ottaiano A, Di Lorenzo G, Bracigliano A, Lamia S, Cannella L, Pizzolorusso A, Di Marzo M, Santorsola M, De Chiara A, Fazioli F, Tafuto S. Is immunotherapy in the future of therapeutic management of sarcomas? J Transl Med 2021; 19:173. [PMID: 33902630 PMCID: PMC8077947 DOI: 10.1186/s12967-021-02829-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
Sarcomas are rare, ubiquitous and heterogeneous tumors usually treated with surgery, chemotherapy, target therapy, and radiotherapy. However, 25-50% of patients experience local relapses and/or distant metastases after chemotherapy with an overall survival about 12-18 months. Recently, immuno-therapy has revolutionized the cancer treatments with initial indications for non-small cell lung cancer (NSCLC) and melanoma (immune-checkpoint inhibitors).Here, we provide a narrative review on the topic as well as a critical description of the currently available trials on immunotherapy treatments in patients with sarcoma. Given the promising results obtained with anti-PD-1 monoclonal antibodies (pembrolizumab and nivolumab) and CAR-T cells, we strongly believe that these new immunotherapeutic approaches, along with an innovative characterization of tumor genetics, will provide an exciting opportunity to ameliorate the therapeutic management of sarcomas.
Collapse
Affiliation(s)
- Ottavia Clemente
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Alessandro Ottaiano
- Division of Innovative Therapies, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Giuseppe Di Lorenzo
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Alessandra Bracigliano
- Nuclear Medicine Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale, 80131, Naples, Italy
| | - Sabrina Lamia
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Lucia Cannella
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Antonio Pizzolorusso
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Massimiliano Di Marzo
- Department of Abdominal Oncology, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Mariachiara Santorsola
- Division of Innovative Therapies, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Annarosaria De Chiara
- Histopathology of Lymphomas and Sarcomas SSD, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Flavio Fazioli
- Orthopedic Oncology Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy
| | - Salvatore Tafuto
- Sarcomas and Rare Tumors Unit, Istituto Nazionale Tumori, IRCCS - Fondazione "G. Pascale", 80131, Naples, Italy.
| |
Collapse
|
34
|
Henrich IC, Jain K, Young R, Quick L, Lindsay JM, Park DH, Oliveira AM, Blobel GA, Chou MM. Ubiquitin-Specific Protease 6 Functions as a Tumor Suppressor in Ewing Sarcoma through Immune Activation. Cancer Res 2021; 81:2171-2183. [PMID: 33558334 PMCID: PMC8137534 DOI: 10.1158/0008-5472.can-20-1458] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/21/2020] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
Ewing sarcoma is the second most common pediatric bone cancer, with a 5-year survival rate for metastatic disease of only 20%. Recent work indicates that survival is strongly correlated with high levels of tumor-infiltrating lymphocytes (TIL), whose abundance is associated with IFN-inducible chemokines CXCL10 and CCL5. However, the tumor-intrinsic factors that drive chemokine production and TIL recruitment have not been fully elucidated. We previously showed that ubiquitin-specific protease 6 (USP6) directly deubiquitinates and stabilizes Jak1, thereby inducing an IFN signature in Ewing sarcoma cells. Here, we show that this gene set comprises chemokines associated with immunostimulatory, antitumorigenic functions, including CXCL10 and CCL5. USP6 synergistically enhanced chemokine production in response to exogenous IFN by inducing surface upregulation of IFNAR1 and IFNGR1. USP6-expressing Ewing sarcoma cells stimulated migration of primary human monocytes and T lymphocytes and triggered activation of natural killer (NK) cells in vitro. USP6 inhibited Ewing sarcoma xenograft growth in nude but not NSG mice and was accompanied by increased intratumoral chemokine production and infiltration and activation of NK cells, dendritic cells, and macrophages, consistent with a requirement for innate immune cells in mediating the antitumorigenic effects of USP6. High USP6 expression in patients with Ewing sarcoma was associated with chemokine production, immune infiltration, and improved survival. This work reveals a previously unrecognized tumor-suppressive function for USP6, which engenders an immunostimulatory microenvironment through pleiotropic effects on multiple immune lineages. This further raises the possibility that USP6 activity may be harnessed to create a "hot" tumor microenvironment in immunotherapy. SIGNIFICANCE: This study reveals a novel tumor-suppressive function for USP6 by inducing an immunostimulatory microenvironment, suggesting that USP6 activity may be exploited to enhance immunotherapy regimens.
Collapse
Affiliation(s)
- Ian C Henrich
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Kanika Jain
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Young
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Laura Quick
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jarrett M Lindsay
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H Park
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andre M Oliveira
- Department Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Gerd A Blobel
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
- Department Pediatric Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Margaret M Chou
- Department Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.
- Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
35
|
Zöllner SK, Amatruda JF, Bauer S, Collaud S, de Álava E, DuBois SG, Hardes J, Hartmann W, Kovar H, Metzler M, Shulman DS, Streitbürger A, Timmermann B, Toretsky JA, Uhlenbruch Y, Vieth V, Grünewald TGP, Dirksen U. Ewing Sarcoma-Diagnosis, Treatment, Clinical Challenges and Future Perspectives. J Clin Med 2021; 10:1685. [PMID: 33919988 PMCID: PMC8071040 DOI: 10.3390/jcm10081685] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023] Open
Abstract
Ewing sarcoma, a highly aggressive bone and soft-tissue cancer, is considered a prime example of the paradigms of a translocation-positive sarcoma: a genetically rather simple disease with a specific and neomorphic-potential therapeutic target, whose oncogenic role was irrefutably defined decades ago. This is a disease that by definition has micrometastatic disease at diagnosis and a dismal prognosis for patients with macrometastatic or recurrent disease. International collaborations have defined the current standard of care in prospective studies, delivering multiple cycles of systemic therapy combined with local treatment; both are associated with significant morbidity that may result in strong psychological and physical burden for survivors. Nevertheless, the combination of non-directed chemotherapeutics and ever-evolving local modalities nowadays achieve a realistic chance of cure for the majority of patients with Ewing sarcoma. In this review, we focus on the current standard of diagnosis and treatment while attempting to answer some of the most pressing questions in clinical practice. In addition, this review provides scientific answers to clinical phenomena and occasionally defines the resulting translational studies needed to overcome the hurdle of treatment-associated morbidities and, most importantly, non-survival.
Collapse
Affiliation(s)
- Stefan K. Zöllner
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| | - James F. Amatruda
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA;
| | - Sebastian Bauer
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Medical Oncology, Sarcoma Center, University Hospital Essen, 45147 Essen, Germany
| | - Stéphane Collaud
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Thoracic Surgery, Ruhrlandklinik, University of Essen-Duisburg, 45239 Essen, Germany
| | - Enrique de Álava
- Institute of Biomedicine of Sevilla (IbiS), Virgen del Rocio University Hospital, CSIC, University of Sevilla, CIBERONC, 41013 Seville, Spain;
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Steven G. DuBois
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Jendrik Hardes
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk Institute of Pathology, University Hospital Münster, 48149 Münster, Germany;
- West German Cancer Center (WTZ), Network Partner Site, University Hospital Münster, 48149 Münster, Germany
| | - Heinrich Kovar
- St. Anna Children’s Cancer Research Institute and Medical University Vienna, 1090 Vienna, Austria;
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, 91054 Erlangen, Germany;
| | - David S. Shulman
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA; (S.G.D.); (D.S.S.)
| | - Arne Streitbürger
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Musculoskeletal Oncology, Sarcoma Center, 45147 Essen, Germany
| | - Beate Timmermann
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre, 45147 Essen, Germany
| | - Jeffrey A. Toretsky
- Departments of Oncology and Pediatrics, Georgetown University, Washington, DC 20057, USA;
| | - Yasmin Uhlenbruch
- St. Josefs Hospital Bochum, University Hospital, 44791 Bochum, Germany;
| | - Volker Vieth
- Department of Radiology, Klinikum Ibbenbüren, 49477 Ibbenbühren, Germany;
| | - Thomas G. P. Grünewald
- Division of Translational Pediatric Sarcoma Research, Hopp-Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, 69120 Heidelberg, Germany
| | - Uta Dirksen
- Pediatrics III, University Hospital Essen, 45147 Essen, Germany;
- West German Cancer Center (WTZ), University Hospital Essen, 45147 Essen, Germany; (S.B.); (S.C.); (J.H.); (A.S.); (B.T.)
- German Cancer Consortium (DKTK), Essen/Düsseldorf, University Hospital Essen, 45147 Essen, Germany
| |
Collapse
|
36
|
Starzer AM, Berghoff AS, Hamacher R, Tomasich E, Feldmann K, Hatziioannou T, Traint S, Lamm W, Noebauer-Huhmann IM, Furtner J, Müllauer L, Amann G, Bauer S, Schildhaus HU, Preusser M, Heller G, Brodowicz T. Tumor DNA methylation profiles correlate with response to anti-PD-1 immune checkpoint inhibitor monotherapy in sarcoma patients. J Immunother Cancer 2021; 9:jitc-2020-001458. [PMID: 33762319 PMCID: PMC7993298 DOI: 10.1136/jitc-2020-001458] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Some sarcomas respond to immune checkpoint inhibition, but predictive biomarkers are unknown. We analyzed tumor DNA methylation profiles in relation to immunological parameters and response to anti-programmed cell death 1 (anti-PD-1) immune checkpoint inhibitor (ICI) therapy in patients with sarcoma. PATIENTS AND METHODS We retrospectively identified adult patients who had received anti-PD-1 ICI therapy for recurrent sarcoma in two independent centers. We performed (1) blinded radiological response evaluation according to immune response evaluation criteria in solid tumors (iRECIST) ; (2) tumor DNA methylation profiling of >850,000 probes using Infinium MethylationEPIC microarrays; (3) analysis of tumor-infiltrating immune cell subsets (CD3, CD8, CD45RO, FOXP3) and intratumoral expression of immune checkpoint molecules (PD-L1, PD-1, LAG-3) using immunohistochemistry; and (4) evaluation of blood-based systemic inflammation scores (neutrophil-to-lymphocyte ratio, leucocyte-to-lymphocyte ratio, monocyte-to-lymphocyte ratio, platelet-to-lymphocyte ratio). Response to anti-PD-1 ICI therapy was bioinformatically and statistically correlated with DNA methylation profiles and immunological data. RESULTS 35 patients (median age of 50 (23-81) years; 18 females, 17 males; 27 soft tissue sarcomas; 8 osteosarcomas) were included in this study. The objective response rate to anti-PD-1 ICI therapy was 22.9% with complete responses in 3 out of 35 and partial responses in 5 out of 35 patients. Adjustment of DNA methylation data for tumor-infiltrating immune cells resulted in identification of methylation differences between responders and non-responders to anti-PD-1 ICI. 2453 differentially methylated CpG sites (DMPs; 2043 with decreased and 410 with increased methylation) were identified. Clustering of sarcoma samples based on these DMPs revealed two main clusters: methylation cluster 1 (MC1) consisted of 73% responders and methylation cluster 2 (MC2) contained only non-responders to anti-PD-1 ICI. Median progression-free survival from anti-PD-1 therapy start of MC1 and MC2 patients was 16.5 and 1.9 months, respectively (p=0.001). Median overall survival of these patients was 34.4 and 8.0 months, respectively (p=0.029). The most prominent DNA methylation differences were found in pathways implicated in Rap1 signaling, focal adhesion, adherens junction Phosphoinositide 3-kinase (PI3K)-Akt signaling and extracellular matrix (ECM)-receptor interaction. CONCLUSIONS Our data demonstrate that tumor DNA methylation profiles may serve as a predictive marker for response to anti-PD-1 ICI therapy in sarcoma.
Collapse
Affiliation(s)
- Angelika M Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Rainer Hamacher
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Erwin Tomasich
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Katharina Feldmann
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Teresa Hatziioannou
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Stefan Traint
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Lamm
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Iris M Noebauer-Huhmann
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - Julia Furtner
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Paediatric Radiology, Medical University of Vienna, Vienna, Austria
| | - Leonhard Müllauer
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Gabriele Amann
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Bauer
- Department of Medical Oncology, Sarcoma Center, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | | | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Personalized Immunotherapy, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gerwin Heller
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Thomas Brodowicz
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
37
|
Brewster R, Purington N, Henry S, Wood D, Ganjoo K, Bui N. Evaluation of Absolute Lymphocyte Count at Diagnosis and Mortality Among Patients With Localized Bone or Soft Tissue Sarcoma. JAMA Netw Open 2021; 4:e210845. [PMID: 33666664 PMCID: PMC7936255 DOI: 10.1001/jamanetworkopen.2021.0845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
IMPORTANCE Host-related immune factors have been implicated in the development and progression of diverse malignant neoplasms. Identifying associations between immunologic laboratory parameters and overall survival may inform novel prognostic biomarkers and mechanisms of antitumor immunity in localized bone and soft tissue sarcoma. OBJECTIVE To assess whether lymphopenia at diagnosis is associated with overall survival among patients with localized bone and soft tissue sarcoma. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study analyzed patients from the Stanford Cancer Institute with localized bone and soft tissue sarcoma between September 1, 1998, and November 1, 2018. Patients were included if laboratory values were available within 60 days of diagnosis and, if applicable, prior to the initiation of chemotherapy and/or radiotherapy. Statistical analysis was performed from January 1, 2019, to November 1, 2020. EXPOSURES Absolute lymphocyte count within 60 days of diagnosis and antimicrobial exposure, defined by the number of antimicrobial agent prescriptions and the cumulative duration of antimicrobial administration within 60 days of diagnosis. MAIN OUTCOMES AND MEASURES The association between minimum absolute lymphocyte count at diagnosis and 5-year overall survival probability was characterized with the Kaplan-Meier method and multivariate Cox proportional hazards regression models. Multivariable logistic regressions were fitted to evaluate whether patients with lymphopenia were at greater risk of increased antimicrobial exposure. RESULTS Among 634 patients, the median age at diagnosis was 53.7 years (interquartile range, 37.5-66.8 years), and 290 patients (45.7%) were women, with a 5-year survival probability of 67.9%. There was a significant inverse association between lymphopenia at diagnosis and overall survival (hazard ratio [HR], 1.82; 95% CI, 1.39-1.40), resulting in a 13.5% 5-year survival probability difference compared with patients who did not have lymphopenia at diagnosis (60.2% vs 73.7% for those who never had lymphopenia). In addition, poorer survival was observed with higher-grade lymphopenia (grades 3 and 4: HR, 2.44; 95% CI, 1.68-3.55; grades 1 and 2: HR, 1.60; 95% CI, 1.18-2.18). In an exploratory analysis, patients with increased antibiotic exposure were more likely to have lymphopenia (odds ratio, 1.96; 95% CI, 1.26-3.07 for total number of antimicrobial agents; odds ratio, 1.70; 95% CI, 1.10-2.57 for antimicrobial duration) than antimicrobial-naive patients. CONCLUSIONS AND RELEVANCE This study suggests that an abnormally low absolute lymphocyte count at diagnosis is associated with higher mortality among patients with localized bone and soft tissue sarcoma; therefore, lymphopenia may serve as a reliable prognostic biomarker. Potential mechanisms associated with host immunity and overall survival include a suppressed antitumor response and increased infectious complications, which merit future investigation.
Collapse
Affiliation(s)
- Ryan Brewster
- Stanford University School of Medicine, Stanford, California
| | - Natasha Purington
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, California
| | - Solomon Henry
- Deprtment of Biomedical Data Science, Stanford University, Stanford, California
| | - Douglas Wood
- Deprtment of Biomedical Data Science, Stanford University, Stanford, California
| | - Kristen Ganjoo
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, California
| | - Nam Bui
- Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, California
| |
Collapse
|
38
|
Domenici G, Eduardo R, Castillo-Ecija H, Orive G, Montero Carcaboso Á, Brito C. PDX-Derived Ewing's Sarcoma Cells Retain High Viability and Disease Phenotype in Alginate Encapsulated Spheroid Cultures. Cancers (Basel) 2021; 13:cancers13040879. [PMID: 33669730 PMCID: PMC7922076 DOI: 10.3390/cancers13040879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Ewing’s Sarcoma (ES) is the second most frequent bone tumour in children and young adults, with very aggressive behaviour and significant disease recurrence. To better study the disease and find new therapies, experimental models are needed. Recently, patient-derived xenografts (PDX), obtained by implanting patient tumour samples in immunodeficient mice, have been developed. However, when ES cells are extracted from the patient’s tumour or from PDX and placed on plasticware surfaces, they lose their original 3D configuration, cell identity and function. To overcome these issues, we implemented cultures of PDX-derived ES cells, by making them aggregate to form ES cell spheroids and then encapsulating these 3D spheroids into a hydrogel, alginate, to stabilize the culture. We show that this methodology maintained ES cell viability and intrinsic characteristics of the original ES tumour cells for at least one month and that it is suitable for study the effect of anticancer drugs. Abstract Ewing’s Sarcoma (ES) is the second most frequent malignant bone tumour in children and young adults and currently only untargeted chemotherapeutic approaches and surgery are available as treatment, although clinical trials are on-going for recently developed ES-targeted therapies. To study ES pathobiology and develop novel drugs, established cell lines and patient-derived xenografts (PDX) are the most employed experimental models. Nevertheless, the establishment of ES cell lines is difficult and the extensive use of PDX raises economic/ethical concerns. There is a growing consensus regarding the use of 3D cell culture to recapitulate physiological and pathophysiological features of human tissues, including drug sensitivity. Herein, we implemented a 3D cell culture methodology based on encapsulation of PDX-derived ES cell spheroids in alginate and maintenance in agitation-based culture systems. Under these conditions, ES cells displayed high proliferative and metabolic activity, while retaining the typical EWSR1-FLI1 chromosomal translocation. Importantly, 3D cultures presented reduced mouse PDX cell contamination compared to 2D cultures. Finally, we show that these 3D cultures can be employed in drug sensitivity assays, with results similar to those reported for the PDX of origin. In conclusion, this novel 3D cell culture method involving ES-PDX-derived cells is a suitable model to study ES pathobiology and can assist in the development of novel drugs against this disease, complementing PDX studies.
Collapse
Affiliation(s)
- Giacomo Domenici
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Eduardo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Helena Castillo-Ecija
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain;
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Ángel Montero Carcaboso
- Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Déu, Passeig Sant Joan de Déu 2, 08950 Barcelona, Spain; (H.C.-E.); (Á.M.C.)
| | - Catarina Brito
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (G.D.); (R.E.)
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- Correspondence:
| |
Collapse
|
39
|
Montoya ML, Kasahara N, Okada H. Introduction to immunotherapy for brain tumor patients: challenges and future perspectives. Neurooncol Pract 2020; 7:465-476. [PMID: 33014387 PMCID: PMC7516091 DOI: 10.1093/nop/npaa007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Malignant gliomas, including glioblastoma (GBM) as the most aggressive type of adult CNS tumors, are notoriously resistant to current standard of care treatments, including surgery, systemic chemotherapy, and radiation therapy (RT). This lack of effective treatment options highlights the urgent need for novel therapies, including immunotherapies. The overarching goal of immunotherapy is to stimulate and activate the patient's immune system in a targeted manner to kill tumor cells. The success of immunotherapeutic interventions in other cancer types has led to interest in and evaluation of various experimental immunotherapies in patients with malignant gliomas. However, these primary malignant brain tumors present a challenge because they exist in a vital and sensitive organ with a unique immune environment. The challenges and current status of experimental immunotherapeutic approaches, including vaccines, immune-checkpoint blockade, chimeric antigen receptor T-cell therapy, and oncolytic viruses will be discussed, as well as the potential for combinatorial therapies.
Collapse
Affiliation(s)
- Megan L Montoya
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
| | - Noriyuki Kasahara
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, US
| | - Hideho Okada
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, US
- The Parker Institute of Cancer Immunotherapy, California, US
- Cancer Immunotherapy Program, University of California San Francisco, San Francisco, California, US
| |
Collapse
|
40
|
Deng J, Zeng W, Kong W, Shi Y, Mou X. The Study of Sarcoma Microenvironment Heterogeneity Associated With Prognosis Based on an Immunogenomic Landscape Analysis. Front Bioeng Biotechnol 2020; 8:1003. [PMID: 32974322 PMCID: PMC7471631 DOI: 10.3389/fbioe.2020.01003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Microenvironment-driven tumor heterogeneity causes the limitation of immunotherapy of sarcomas. Nonetheless, systematical studies of various molecular levels can enhance the understanding of tumor microenvironment (TME) related to prognosis and provide novel insights of precision immunotherapy. Three prognostic-related TME phenotypes were identified by consensus clustering of the relative infiltration of 22 immune cells from 869 samples of sarcomas. Additionally, integrative immunogenomic analysis is applied to explore the characteristics of different TME groups. The results revealed that most of the immune cell infiltration is higher in the better prognostic group, which are more affected by lower DNA methylation levels and fewer copy number variations in the worse prognostic group. The signaling pathway crosstalk analysis suggested that the changes in the TME will cause considerable variation in the flow of information between pathways, especially when the degree of relative infiltration of immune cells is low, patient's endocrine system may also be significantly affected. Also, the endogenous competitive network analysis indicated that several differentially expressed long non-coding RNAs (lncRNAs) associated with the prognosis or tumor recurrence of sarcoma patients affected the regulatory relationship between miRNAs and different genes when the sarcoma microenvironment changes. In summary, the significant relationship between genetic alterations and prognostic-related TME characteristics in sarcomas were determined in this study. These findings may provide new clues for the treatment of sarcomas.
Collapse
Affiliation(s)
- Jin Deng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Yuhu Shi
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, NJ, United States
| |
Collapse
|
41
|
Li W, Wang W, Liao P, Song K, Zhu Z, Wang K, Liu Z, Zhang W, Xie S, He Y, Mcleod HL, Chen L. High levels of tumor-infiltrating lymphocytes showed better clinical outcomes in FOLFOX-treated gastric cancer patients. Pharmacogenomics 2020; 21:751-759. [PMID: 32615909 DOI: 10.2217/pgs-2019-0102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Tumor-infiltrating lymphocytes (TILs) and postoperative chemotherapeutics interact in the tumor micro-environment. This interaction has not been well investigated in gastric cancer. Materials & methods: A total of 129 patients were divided into high or low TILs based on the median number of positive CD3+ and FoxP3+ T cells, which was assessed by immunocytochemistry. Results: Cox regression analysis showed that the stage III disease with shorter overall survival was significant. The analysis showed that high numbers of CD3+ or FoxP3+ T cells have better clinical outcomes in FOLFOX-treated patients. Conclusion: High CD3+ and FoxP3+ T-cell infiltration was associated with better clinical outcomes in patients with gastric cancer treated with FOLFOX, suggesting TILs incorporated into algorithms to improve the therapeutic efficacy of optimal chemotherapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Weili Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Ping Liao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Kun Song
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China
| | - Zhanwei Zhu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China
| | - Kuansong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Shangchen Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Howard L Mcleod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Department of Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, Hunan, 410078, PR China.,Institude of National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, Hunan, 410008, PR China
| | - Ling Chen
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, PR China
| |
Collapse
|
42
|
Terry RL, Meyran D, Ziegler DS, Haber M, Ekert PG, Trapani JA, Neeson PJ. Immune profiling of pediatric solid tumors. J Clin Invest 2020; 130:3391-3402. [PMID: 32538896 PMCID: PMC7324195 DOI: 10.1172/jci137181] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pediatric cancers, particularly high-risk solid tumors, urgently need effective and specific therapies. Their outlook has not appreciably improved in decades. Immunotherapies such as immune checkpoint inhibitors offer much promise, but most are only approved for use in adults. Though several hundred clinical trials have tested immune-based approaches in childhood cancers, few have been guided by biomarkers or clinical-grade assays developed to predict patient response and, ultimately, to help select those most likely to benefit. There is extensive evidence in adults to show that immune profiling has substantial predictive value, but few studies focus on childhood tumors, because of the relatively small disease population and restricted use of immune-based therapies. For instance, only one published study has retrospectively examined the immune profiles of pediatric brain tumors after immunotherapy. Furthermore, application and integration of advanced multiplex techniques has been extremely limited. Here, we review the current status of immune profiling of pediatric solid tumors, with emphasis on tumor types that represent enormous unmet clinical need, primarily in the context of immune checkpoint inhibitor therapy. Translating optimized and informative immune profiling into standard practice and access to personalized combination therapy will be critical if childhood cancers are to be treated effectively and affordably.
Collapse
Affiliation(s)
- Rachael L. Terry
- Children’s Cancer Institute, Randwick, New South Wales, Australia
| | - Deborah Meyran
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Université de Paris, Inserm, U976 HIPI Unit, Institut de Recherche Saint-Louis, Paris, France
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Randwick, New South Wales, Australia
- Kids Cancer Center, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Randwick, New South Wales, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Randwick, New South Wales, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
| | - Joseph A. Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J. Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Schober SJ, Thiede M, Gassmann H, Prexler C, Xue B, Schirmer D, Wohlleber D, Stein S, Grünewald TGP, Busch DH, Richter GHS, Burdach SEG, Thiel U. MHC Class I-Restricted TCR-Transgenic CD4 + T Cells Against STEAP1 Mediate Local Tumor Control of Ewing Sarcoma In Vivo. Cells 2020; 9:cells9071581. [PMID: 32610710 PMCID: PMC7408051 DOI: 10.3390/cells9071581] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022] Open
Abstract
In this study we report the functional comparison of T cell receptor (TCR)-engineered major histocompatibility complex (MHC) class I-restricted CD4+ versus CD8+ T cells targeting a peptide from six transmembrane epithelial antigen of the prostate 1 (STEAP1) in the context of HLA-A*02:01. STEAP1 is a tumor-associated antigen, which is overexpressed in many cancers, including Ewing sarcoma (EwS). Based on previous observations, we postulated strong antitumor potential of tumor-redirected CD4+ T cells transduced with an HLA class I-restricted TCR against a STEAP1-derived peptide. We compared CD4+ T cell populations to their CD8+ counterparts in vitro using impedance-based xCELLigence and cytokine/granzyme release assays. We further compared antitumor activity of STEAP130-TCR transgenic (tg) CD4+ versus CD8+ T cells in tumor-bearing xenografted Rag2-/-gc-/- mice. TCR tgCD4+ T cells showed increased cytotoxic features over time with similar functional avidity compared to tgCD8+ cells after 5-6 weeks of culture. In vivo, local tumor control was equal. Assessing metastatic organotropism of intraveniously (i.v.) injected tumors, only tgCD8+ cells were associated with reduced metastases. In this analysis, EwS-redirected tgCD4+ T cells contribute to local tumor control, but fail to control metastatic outgrowth in a model of xenografted EwS.
Collapse
Affiliation(s)
- Sebastian J. Schober
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Correspondence: (S.J.S.); (U.T.)
| | - Melanie Thiede
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Hendrik Gassmann
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Carolin Prexler
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Busheng Xue
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - David Schirmer
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
| | - Dirk Wohlleber
- Institute of Molecular Immunology/Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, 81674 Munich, Germany;
| | - Stefanie Stein
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU, 80337 Munich, Germany; (S.S.); (T.G.P.G.)
| | - Thomas G. P. Grünewald
- Max-Eder Research Group for Pediatric Sarcoma Biology, Institute of Pathology of the LMU, 80337 Munich, Germany; (S.S.); (T.G.P.G.)
- Division of Translational Pediatric Sarcoma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81674 Munich, Germany;
| | - Guenther H. S. Richter
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Division of Oncology and Hematology, Department of Pediatrics, Charité—Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefan E. G. Burdach
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Munich, 80336 Munich, Germany
| | - Uwe Thiel
- Department of Pediatrics, Children’s Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, 80804 Munich, Germany; (M.T.); (H.G.); (C.P.); (B.X.); (D.S.); (G.H.S.R.); (S.E.G.B.)
- Correspondence: (S.J.S.); (U.T.)
| |
Collapse
|
44
|
Nielsen M, Krarup-Hansen A, Hovgaard D, Petersen MM, Loya AC, Westergaard MCW, Svane IM, Junker N. In vitro 4-1BB stimulation promotes expansion of CD8 + tumor-infiltrating lymphocytes from various sarcoma subtypes. Cancer Immunol Immunother 2020; 69:2179-2191. [PMID: 32472369 DOI: 10.1007/s00262-020-02568-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
Tumor-specific tumor-infiltrating lymphocytes (TILs) can be in vitro expanded and have the ability to induce complete and durable tumor regression in some patients with melanoma following adoptive cell therapy (ACT). In this preclinical study, we investigated the feasibility of expanding TIL from sarcomas, as well as performing functional in vitro analyses on these. TILs were expanded in vitro by the use of IL2 stimulation with or without the addition of 4-1BB and CD3 antibodies. Phenotypical and functional analyses were mainly performed by flow cytometry. TILs were expanded from 25 of 28 (89%) tumor samples from patients with 9 different sarcoma subtypes. TILs were predominantly αβ T-cells of effector memory subtype with CD4+ dominance. In particular, CD8+ TIL highly expressed LAG3 and to a lesser degree PD-1 and BTLA. In total, 10 of 20 TIL cultures demonstrated in vitro recognition of autologous tumor. In some cases, the fraction of tumor-reactive T cells was more than 20%. 4-1BB stimulation augmented expansion kinetics and favored CD8+ occurrence. In conclusion, TIL expansion from sarcoma is feasible and expanded TILs highly express LAG3 and comprise multifunctional tumor-reactive T-cells.
Collapse
Affiliation(s)
- Morten Nielsen
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | | | - Dorrit Hovgaard
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Mørk Petersen
- Department of Orthopedic Surgery, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Anand Chainsukh Loya
- Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, Herlev, Denmark
| | - Niels Junker
- Department of Oncology, Copenhagen University Hospital Herlev, Herlev, Denmark.
| |
Collapse
|
45
|
Taddei ML, Pietrovito L, Leo A, Chiarugi P. Lactate in Sarcoma Microenvironment: Much More than just a Waste Product. Cells 2020; 9:E510. [PMID: 32102348 PMCID: PMC7072766 DOI: 10.3390/cells9020510] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
Sarcomas are rare and heterogeneous malignant tumors relatively resistant to radio- and chemotherapy. Sarcoma progression is deeply dependent on environmental conditions that sustain both cancer growth and invasive abilities. Sarcoma microenvironment is composed of different stromal cell types and extracellular proteins. In this context, cancer cells may cooperate or compete with stromal cells for metabolic nutrients to sustain their survival and to adapt to environmental changes. The strict interplay between stromal and sarcoma cells deeply affects the extracellular metabolic milieu, thus altering the behavior of both cancer cells and other non-tumor cells, including immune cells. Cancer cells are typically dependent on glucose fermentation for growth and lactate is one of the most heavily increased metabolites in the tumor bulk. Currently, lactate is no longer considered a waste product of the Warburg metabolism, but novel signaling molecules able to regulate the behavior of tumor cells, tumor-stroma interactions and the immune response. In this review, we illustrate the role of lactate in the strong acidity microenvironment of sarcoma. Really, in the biological context of sarcoma, where novel targeted therapies are needed to improve patient outcomes in combination with current therapies or as an alternative treatment, lactate targeting could be a promising approach to future clinical trials.
Collapse
Affiliation(s)
- Maria Letizia Taddei
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy
| | - Laura Pietrovito
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Angela Leo
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
| | - Paola Chiarugi
- Dipartimento di Scienze Biomediche Sperimentali e Cliniche, Università degli Studi di Firenze, Viale Morgagni 50, 50142 Firenze, Italy; (L.P.); (A.L.)
- Tuscany Tumor Institute and “Center for Research, Transfer and High Education DenoTHE”, 50134 Florence, Italy
| |
Collapse
|
46
|
Romero JM, Grünwald B, Jang GH, Bavi PP, Jhaveri A, Masoomian M, Fischer SE, Zhang A, Denroche RE, Lungu IM, De Luca A, Bartlett JMS, Xu J, Li N, Dhaliwal S, Liang SB, Chadwick D, Vyas F, Bronsert P, Khokha R, McGaha TL, Notta F, Ohashi PS, Done SJ, O'Kane GM, Wilson JM, Knox JJ, Connor A, Wang Y, Zogopoulos G, Gallinger S. A Four-Chemokine Signature Is Associated with a T-cell-Inflamed Phenotype in Primary and Metastatic Pancreatic Cancer. Clin Cancer Res 2020; 26:1997-2010. [PMID: 31964786 DOI: 10.1158/1078-0432.ccr-19-2803] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 12/14/2019] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE The molecular drivers of antitumor immunity in pancreatic ductal adenocarcinoma (PDAC) are poorly understood, posing a major obstacle for the identification of patients potentially amenable for immune-checkpoint blockade or other novel strategies. Here, we explore the association of chemokine expression with effector T-cell infiltration in PDAC. EXPERIMENTAL DESIGN Discovery cohorts comprised 113 primary resected PDAC and 107 PDAC liver metastases. Validation cohorts comprised 182 PDAC from The Cancer Genome Atlas and 92 PDACs from the Australian International Cancer Genome Consortium. We explored associations between immune cell counts by immunohistochemistry, chemokine expression, and transcriptional hallmarks of antitumor immunity by RNA sequencing (RNA-seq), and mutational burden by whole-genome sequencing. RESULTS Among all known human chemokines, a coregulated set of four (CCL4, CCL5, CXCL9, and CXCL10) was strongly associated with CD8+ T-cell infiltration (P < 0.001). Expression of this "4-chemokine signature" positively correlated with transcriptional metrics of T-cell activation (ZAP70, ITK, and IL2RB), cytolytic activity (GZMA and PRF1), and immunosuppression (PDL1, PD1, CTLA4, TIM3, TIGIT, LAG3, FASLG, and IDO1). Furthermore, the 4-chemokine signature marked tumors with increased T-cell activation scores (MHC I presentation, T-cell/APC costimulation) and elevated expression of innate immune sensing pathways involved in T-cell priming (STING and NLRP3 inflammasome pathways, BATF3-driven dendritic cells). Importantly, expression of this 4-chemokine signature was consistently indicative of a T-cell-inflamed phenotype across primary PDAC and PDAC liver metastases. CONCLUSIONS A conserved 4-chemokine signature marks resectable and metastatic PDAC tumors with an active antitumor phenotype. This could have implications for the appropriate selection of PDAC patients in immunotherapy trials.
Collapse
Affiliation(s)
- Joan M Romero
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Barbara Grünwald
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Gun-Ho Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Prashant P Bavi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Aaditeya Jhaveri
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Mehdi Masoomian
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Sandra E Fischer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Amy Zhang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Robert E Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ilinca M Lungu
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Angela De Luca
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - John M S Bartlett
- Diagnostic Development, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jing Xu
- Drug Development Program Biomarker Laboratory, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Niandong Li
- UHN Biobank, University Health Network, Toronto, Ontario, Canada
| | - Sharon Dhaliwal
- UHN Biobank, University Health Network, Toronto, Ontario, Canada
| | - Sheng-Ben Liang
- UHN Biobank, University Health Network, Toronto, Ontario, Canada
| | - Dianne Chadwick
- UHN Biobank, University Health Network, Toronto, Ontario, Canada
| | - Foram Vyas
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Peter Bronsert
- Tumorbank Comprehensive Cancer Center Freiburg, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Surgical Pathology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Rama Khokha
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Faiyaz Notta
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Susan J Done
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre of Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Julie M Wilson
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jennifer J Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre of Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Ashton Connor
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Yifan Wang
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- The Goodman Cancer Research Centre of McGill University, Montréal, Québec, Canada
| | - George Zogopoulos
- The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- The Goodman Cancer Research Centre of McGill University, Montréal, Québec, Canada
| | - Steven Gallinger
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre of Pancreatic Cancer, Department of Medical Oncology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Hepatobilliary Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
48
|
Borgatti A, Dickerson EB, Lawrence J. Emerging therapeutic approaches for canine sarcomas: Pushing the boundaries beyond the conventional. Vet Comp Oncol 2019; 18:9-24. [PMID: 31749286 DOI: 10.1111/vco.12554] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Sarcomas represent a group of genomically chaotic, highly heterogenous tumours of mesenchymal origin with variable mutational load. Conventional therapy with surgery and radiation therapy is effective for managing small, low-grade sarcomas and remains the standard therapeutic approach. For advanced, high-grade, recurrent, or metastatic sarcomas, systemic chemotherapy provides minimal benefit, therefore, there is a drive to develop novel approaches. The discovery of "Coley's toxins" in the 19th century, and their use to stimulate the immune system supported the application of unconventional therapies for the treatment of sarcomas. While promising, this initial work was abandoned and treatment paradigm and disease course of sarcomas was largely unchanged for several decades. Exciting new therapies are currently changing treatment algorithms for advanced carcinomas and melanomas, and similar approaches are being applied to advance the field of sarcoma research. Recent discoveries in subtype-specific cancer biology and the identification of distinct molecular targets have led to the development of promising targeted strategies with remarkable potential to change the landscape of sarcoma therapy in dogs. The purpose of this review article is to describe the current standard of care and limitations as well as emerging approaches for sarcoma therapy that span many of the most active paradigms in oncologic research, including immunotherapies, checkpoint inhibitors, and drugs capable of cellular metabolic reprogramming.
Collapse
Affiliation(s)
- Antonella Borgatti
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota.,Clinical Investigation Center, College of Veterinary Medicine, St. Paul, Minnesota
| | - Erin B Dickerson
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Jessica Lawrence
- Animal Cancer Care and Research (ACCR) Program, University of Minnesota, St. Paul, Minnesota.,Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota.,Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
49
|
Stahl D, Gentles AJ, Thiele R, Gütgemann I. Prognostic profiling of the immune cell microenvironment in Ewing´s Sarcoma Family of Tumors. Oncoimmunology 2019; 8:e1674113. [PMID: 31741777 DOI: 10.1080/2162402x.2019.1674113] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Ewing´s Sarcoma Family of Tumors (ESFT) are clinically aggressive bone and soft tissue tumors in children and young adults. Analysis of the immune tumor microenvironment (TME) provides insight into tumor evolution and novel treatment options. So far, the scarcity of immune cells in ESFT has hindered a comprehensive analysis of rare subtypes. We determined the relative fraction of 22 immune cell types using 197 microarray gene expression datasets of primary ESFT tumor samples by using CIBERSORT, a deconvolution algorithm enumerating infiltrating leucocytes in bulk tumor tissue. The most abundant cells were macrophages (mean 43% of total tumor-infiltrating leukocytes, TILs), predominantly immunosuppressive M2 type macrophages, followed by T cells (mean 23% of TILs). Increased neutrophils, albeit at low number, were associated with a poor overall survival (OS) (p = .038) and increased M2 macrophages predicted a shorter event-free survival (EFS) (p = .033). High frequency of T cells and activated NK cells correlated with prolonged OS (p = .044 and p = .007, respectively). A small patient population (9/32) with combined low infiltrating M2 macrophages, low neutrophils, and high total T cells was identified with favorable outcome. This finding was confirmed in a validation cohort of patients with follow up (11/38). When comparing the immune TME with expression of known stemness genes, hypoxia-inducible factor 1 α (HIF1α) correlated with high abundance of macrophages and neutrophils and decreased T cell levels. The immune TME in ESFTs shows a distinct composition including rare immune cell subsets that in part may be due to expression of HIF1α.
Collapse
Affiliation(s)
- David Stahl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Andrew J Gentles
- Departments of Medicine and Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Ralf Thiele
- Department of Computer Science, Bonn-Rhine-Sieg University of Applied Sciences, Sankt Augustin, Germany
| | - Ines Gütgemann
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
50
|
Shindo Y, Hazama S, Tsunedomi R, Suzuki N, Nagano H. Novel Biomarkers for Personalized Cancer Immunotherapy. Cancers (Basel) 2019; 11:E1223. [PMID: 31443339 PMCID: PMC6770350 DOI: 10.3390/cancers11091223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer immunotherapy has emerged as a novel and effective treatment strategy for several types of cancer. Immune checkpoint inhibitors (ICIs) have recently demonstrated impressive clinical benefit in some advanced cancers. Nonetheless, in the majority of patients, the successful use of ICIs is limited by a low response rate, high treatment cost, and treatment-related toxicity. Therefore, it is necessary to identify predictive and prognostic biomarkers to select the patients who are most likely to benefit from, and respond well to, these therapies. In this review, we summarize the evidence for candidate biomarkers of response to cancer immunotherapy.
Collapse
Affiliation(s)
- Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Shoichi Hazama
- Department of Translational Research and Developmental Therapeutics against Cancer, Yamaguchi University Faculty of Medicine, Ube 755-8505, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
| |
Collapse
|