1
|
Bollin P, Kuś PM, Okińczyc P, Van Dijck P, Szweda P. Identification of potential markers of elevated anticandidal activity of propolis extracts. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119799. [PMID: 40220937 DOI: 10.1016/j.jep.2025.119799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE For centuries, propolis has been one of the most important and popular antimicrobial (antibacterial and antifungal) agents used in traditional medicine worldwide, including Central and Eastern Europe. Despite centuries of use of this product, the molecular mechanisms of its activity remain not fully recognized, and the components that determine its biological activity have not been identified. AIM OF THE STUDY Hence, the main goal of the present study was to identify propolis ingredients that are crucial for the antifungal activity of this product. MATERIALS AND METHODS A serial two-fold microdilution method was applied to evaluate the activity of 83 ethanolic extracts of propolis (EEP) samples collected in different regions of Poland. The chemical composition of all EEPs was determined using UHPLC-DAD and UHPLC-QqTOF-MS methods. Advanced chemometric analysis of the correlation between antifungal activity and chemical composition was performed to identify the components related to the increased antifungal potential of propolis. Subsequently, the antifungal activities of pure "active ingredients" and their combinations were determined. RESULTS Only seven extracts (8.4 %) exhibited high anticandidal potential with MIC (Minimum Inhibitory Concentration) values between 32 and 256 μg/mL. The identified most important potential markers related to increased antifungal activity of propolis collected in East Europe are: pinocembrin, pinobanksin-3-acetate, chrysin, galangin, pinobanksin, techtochrysin, genkwanin, pinostrobin and sakuranetin isomer. However, the pure compounds did not inhibit the growth of Candida spp. up to a concentration of 256 μg/mL (MIC >256 μg/mL). Much better activity was observed for combinations of these ingredients. The highest activity was observed for a mixture of five compounds: chrysin, galangin, pinocembrin, pinobanksin, and pinobanksin-3-acetate, with MIC and MFC (Minimal Fungicidal Concentration) values 64 and 128 μg/mL (summary concentration of all compounds - 12.8 or 25.6 of each μg/mL), respectively. CONCLUSIONS The relatively low number of propolis samples collected in Poland exhibit considerable activity against Candida spp. Markers of elevated antifungal potential have been identified. Moreover, it has been proved, that only the composition of these compounds (not pure ingredients alone) is effective in the treatment of Candida spp. Mixtures of these ingredients can be considered as potential antifungal agents (artificial propolis). Moreover, UHPLC-DAD and UHPLC-QqTOF-MS methods of determining the chemical composition of EEPs have been optimized.
Collapse
Affiliation(s)
- Piotr Bollin
- Gdansk University of Technology, Faculty of Chemistry, Department of Pharmaceutical Technology and Biochemistry, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - Piotr Marek Kuś
- Wroclaw Medical University, Faculty of Pharmacy, Department of Pharmacognosy and Herbal Medicines, Borowska 211a, 50-556 Wroclaw, Poland.
| | - Piotr Okińczyc
- Wroclaw Medical University, Faculty of Pharmacy, Department of Pharmacognosy and Herbal Medicines, Borowska 211a, 50-556 Wroclaw, Poland.
| | - Patrick Van Dijck
- KU Leuven, Department of Biology, Laboratory of Molecular Cell Biology, Kasteelpark Arenberg 31, 3001 Leuven, Belgium; KU Leuven One Health Institute, Leuven, Belgium.
| | - Piotr Szweda
- Gdansk University of Technology, Faculty of Chemistry, Department of Pharmaceutical Technology and Biochemistry, Gabriela Narutowicza 11/12, 80-233 Gdansk, Poland.
| |
Collapse
|
2
|
Ribeiro AA, Santos JAN, Salem PPDO, Santos MFC, Bueno PCP, Lago JHG, Dias DF, Chagas de Paula DA, Soares MG. Chemical annotation of the infusion of Jungia floribunda Less and its inhibitory potential on the elastase enzyme. Nat Prod Res 2025; 39:1380-1386. [PMID: 38088044 DOI: 10.1080/14786419.2023.2293149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 03/04/2025]
Abstract
Jungia floribunda Less. is a shrub belonging to the Asteraceae. The infusion of its leaves has been used, in folk medicine of several South American countries, as anti-inflammatory and hypoglycaemic agent. In the present study, the infusion of leaves from J. floribunda was obtained and its chemical composition was determined by UHPLC-MS associated with molecular network allowing the annotation of flavonoids, sesquiterpene lactones, coumarins, and chlorogenic acid derivatives. Besides, in vitro elastase activity assay was carried out with the infusion. As observed, elastase was inhibited at concentrations ranging from 15 to 240 µg/mL, reaching to 71% of inhibition at the maximum of evaluated concentration. Given that species of plants are promising sources for the discovery of new drugs, these results corroborate the infusion of J. floribunda as a potential source of bioactive compounds for the discovery of new inhibitors for elastase, besides its ethnopharmacological aspects.
Collapse
Affiliation(s)
- Andreza Aparecida Ribeiro
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Jorge Alexandre Nogueira Santos
- Department of Biochemistry, Federal Institute of Education, Science and Technology of the South of Minas Gerais - IFSULDEMINAS, Campus Inconfidentes, Minas Gerais, Brazil
| | - Paula Pio de Oliveira Salem
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Mario Ferreira Conceição Santos
- Department of Chemistry and Physics, Exact, Natural and Health Sciences Center, Federal University of Espirito Santo - UFES, Alegre, Espirito Santo, Brazil
| | - Paula Carolina Pires Bueno
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | | | - Danielle Ferreira Dias
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Daniela Aparecida Chagas de Paula
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| | - Marisi Gomes Soares
- Laboratory of Phytochemistry and Medicinal Chemistry, Institute of Chemistry, Federal University of Alfenas - UNIFAL, Alfenas, Minas Gerais, Brazil
| |
Collapse
|
3
|
Mohammed HS, Elariny HA, Seif-Eldein NA, Mahgoub S, El-Said NT, Abu El Wafa SA, Taha EF. Investigating the involvement of the NLRP3/ASC/caspase-1 and NF-κb/MAPK pathways in the pathogenesis of gouty arthritis: Insights from irradiated and non-irradiated Trifolium alexandrium L. extracts and some metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118566. [PMID: 39002823 DOI: 10.1016/j.jep.2024.118566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Trifolium alexandrinum L. (TA), has traditionally been used in folk medicine for its anti-inflammatory properties against hyperuricemia and gout. However, the specific mechanisms of action of TA have not been thoroughly studied. AIM OF THE WORK This study aimed to evaluate the protective effects of irradiated (TR25) and non-irradiated (TR0) Trifolium alexandrinum L. aqueous extract (TAAE), along with two isolated compounds, caffeine (CAF) and saponin (SAP), in a rat model of acute gouty arthritis (GA). MATERIALS AND METHODS The GA model was established by injecting a monosodium urate (MSU) suspension into the knee joint. Synovial tissue pathology was assessed, and levels of TNF-α, IL-6, IL-1β, NF-κB, mTOR, AKT1, PI3K, NLRP3, and ASC were measured by ELISA. mRNA expression of ERK1, JNK, and p-38 MAPK was detected using qRT-PCR, and Caspase-1 protein expression was assessed by immunohistochemical analysis. Knee swelling, uric acid levels, liver and kidney function, and oxidative stress markers were also evaluated. RESULTS TAAE analysis identified 170 compounds, with 73 successfully identified using LC-HR-MS/MS, including caffeine citrate and theasapogenol B glycoside as the main constituents. The studied materials demonstrated significant protective effects against GA. TR25 administration significantly mitigated knee joint circumference compared to other treatments. It demonstrated potential in alleviating hyperuricemia, renal and hepatic impairments induced by MSU crystals. TR25 also alleviated oxidative stress and reduced levels of IL1β, IL-6, TNF-α, and NF-κB. Weak Caspase-1 immune-positive staining was observed in the TR25 group. TR25 decreased NLRP3 and ASC expression, reducing inflammatory cytokine levels in GA. It effectively inhibited the PI3K, AKT, and mTOR signaling pathways, promoting autophagy. Additionally, TR25 suppressed ERK1, JNK, and p-38 MAPK gene expression in synovial tissue. These effects were attributed to various components in TAAE, such as flavonoids, phenolic acids, tannins, alkaloids, and triterpenes. CONCLUSION Importantly, irradiation (25 KGy) enhanced the antioxidant effects and phtchemical contents of TAAE. Additionally, TR0, TR25, CAF, and SAP exhibited promising protective effects against GA, suggesting their therapeutic potential for managing this condition. These effects were likely mediated through modulation of the NLRP3/ASC/Caspase-1 and ERK/JNK/p-38 MAPK signaling pathways, as well as regulation of the PI3K/AKT/mTOR pathway. Further research is warranted to fully elucidate the underlying mechanisms and optimize their clinical applications.
Collapse
Affiliation(s)
- Hala Sh Mohammed
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Hemat A Elariny
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Noha A Seif-Eldein
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Sebaey Mahgoub
- Food Analysis Laboratory, Ministry of Health, Zagazig, 44511, Egypt.
| | - Nermin T El-Said
- Department of Pharmacology and Toxicology Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Salwa A Abu El Wafa
- Department of Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt.
| | - Eman Fs Taha
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| |
Collapse
|
4
|
Andressa Almeida Farias C, Rodrigues Dos Reis A, Rodrigues de Morais D, Alves Camponogara J, Bettio L, Albieri Pudenzi M, Augusto Ballus C, Teixeira Barcia M. Phenolic diversity and antioxidant potential of different varieties of bamboo leaves using LC-ESI-QTOF-MS/MS and LC-ESI-QqQ-MS/MS. Food Res Int 2024; 179:114025. [PMID: 38342545 DOI: 10.1016/j.foodres.2024.114025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
Bamboo is a highly sustainable plant with a wide variety of leaves, yet little is known about its bioactive composition. Therefore, this study aims to characterize the phenolic profile and antioxidant capacity of 11 different varieties of bamboo leaves using liquid chromatography coupled with mass spectrometry. As a result, 81 phenolic compounds were tentatively identified, 29 of which were identified for the first time in the literature for bamboo leaves. The tentatively identified compounds fell into five classes (hydroxybenzoic and hydroxycinnamic acids, flavones, flavanones, and flavonols). The concentration of phenolic compounds ranged from 103 to 1291 mg/100 g. Among the provisionally identified compounds, there was a predominance of derivatives from the luteolin and apigenin group, with orientin and schaftoside being the majority in each group, respectively. The leaves also showed significant variation in antioxidant activity, highlighting the potential bioactive composition of bamboo leaves for future applications in the food industry.
Collapse
Affiliation(s)
- Carla Andressa Almeida Farias
- Department of Food Technology and Science, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil.
| | - Andreara Rodrigues Dos Reis
- Department of Food Technology and Science, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil.
| | | | - Juliana Alves Camponogara
- Department of Food Technology and Science, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil.
| | - Lucas Bettio
- Department of Chemistry, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil.
| | | | - Cristiano Augusto Ballus
- Department of Food Technology and Science, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil.
| | - Milene Teixeira Barcia
- Department of Food Technology and Science, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, Rio Grande do Sul 97105-900, Brazil.
| |
Collapse
|
5
|
Siniawska M, Wojdyło A. Polyphenol Profiling by LC QTOF/ESI-MS and Biological Activity of Purple Passion Fruit Epicarp Extract. Molecules 2023; 28:6711. [PMID: 37764487 PMCID: PMC10535944 DOI: 10.3390/molecules28186711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
A polyphenolic preparation in the form of the passion fruit epicarp extract was analyzed to identify and quantify the polyphenolic compounds using LC QTOF/ESI-MS and UPLC-PDA-FL. The analyzed parameters included antidiabetic activity (α-amylase, α-glucosidase, and pancreatic lipase), inhibitory activity toward cholinesterase (AChE, BuChE), anti-inflammatory activity (COX-1, COX-2, 15-LOX) and antioxidant activity based on ORAC and ABTS. The polyphenolic preparation of the passion fruit epicarp extract contained 51 polyphenolic compounds representing five groups-flavones (25 compounds; 52% of total polyphenolic), flavonols (8; 16%), flavan-3-ols (6; 7%), phenolic acids (4; 3%), and anthocyanins (7; 21%), with derivatives of luteolin (13 derivatives) and apigenin (8 derivatives) as dominant compounds. The preparation was characterized by an antioxidant activity of 160.7 (ORAC) and 1004.4 mmol Trolox/100 mL (ABTS+o). The inhibitory activity toward α-amylase, α-glucosidase, and pancreatic lipase reached IC50 of 7.99, 12.80, and 0.42, respectively. The inhibition of cholinesterases (IC50) was 18.29 for AChE and 14.22 for BuChE. Anti-inflammatory activity as IC50 was 6.0 for COX-1, 0.9 for COX-2, and 4.9 for 15-LOX. Food enriched with passion fruit epicarp extract has a potentially therapeutic effect.
Collapse
Affiliation(s)
| | - Aneta Wojdyło
- Department of Fruit, Vegetable and Nutraceutical Plant Technology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630 Wrocław, Poland
| |
Collapse
|
6
|
Dos Santos Dantas T, Machado JCB, Dos Santos ECF, de Oliveira AM, Raimundo E Silva JP, Tavares JF, Assunção Ferreira MR, Soares LAL. Phytochemical profile analysis by LC-ESI-MS n and LC-HR-ESI-MS and validated HPLC method for quantification of rutin in herbal drug and products from leaves of Croton blanchetianus. Biomed Chromatogr 2023; 37:e5665. [PMID: 37118901 DOI: 10.1002/bmc.5665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Phytochemical analysis of Croton blanchetianus leaves was performed by. After that, a high performance liquid chromatography method was developed and validated for the determination of rutin in herbal drug and products of C. blanchetianus. The separation was achieved on a C18 column, and the mobile phase was composed of ultrapure water and methanol (acidified with trifluoroacetic acid) with a gradient of 0.8 ml/min. The method was validated following international guidelines. The chemical analysis revealed the presence of flavonoids. Among them rutin was used as the standard for validation. In the HPLC the presence of rutin was observed at 24.7 min. The method was robust, with no significant variations, and linear in the range evaluated with R2 > 0.99. Regarding the matrix effect, it was possible to prove the absence of interference of the constituents in the herbal drug. The precision was determined with a relative standard deviation of <1.34%. The recovery results were achieved between 89.29 and 101.21%. Furthermore, with partial validation, the method was proved to be suitable for the liquid extract, dry extract and effervescent granules. Therefore, this study demonstrated that the method is effective for the quality control analysis of C. blanchetianus leaves and products.
Collapse
Affiliation(s)
- Thainá Dos Santos Dantas
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| | | | | | | | | | - Josean Fechine Tavares
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brazil
| | | | - Luiz Alberto Lira Soares
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brazil
| |
Collapse
|
7
|
Kibungu Kembelo P, Tuenter E, Vanhove W, Belesi Katula H, Van Damme P, Pieters L. Phytochemical Profiling by UPLC-ESI-QTOF-MS of Kalaharia uncinata (Schinz) Moldenke, Widely Used in Traditional Medicine in DR Congo. Chem Biodivers 2023; 20:e202300826. [PMID: 37593932 DOI: 10.1002/cbdv.202300826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023]
Abstract
Kalaharia uncinata (Schinz) Moldenke, is a tropical erect bushy shrub or subshrub of the Lamiaceae family. It is an endemic plant species of Southern Africa, widely used in the pharmacopoeia against upper respiratory tract infections. A previously conducted ethnobotanical survey revealed that it is believed to contain bioactive substances. However, no relevant phytochemical information was available. This study aimed to perform a phytochemical characterization of K. uncinata and also to discuss the potential bioactivity of the identified phytochemical constituents based on documented data. Ultra-performance liquid chromatography with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was used for profiling and identification of the main phytochemical constituents from leaf extracts (MeOH 90 %, DCM, AcOEt, BuOH, hexane and residue) of K.uncinata. Twenty-four constituents, representing mainly flavonoids (14), followed by phenylethanoid glycosides (7), phenolic acids (2), and an iridoid glycoside (1) were tentatively identified. Most of the identified compounds are documented to have antiviral and anti-inflammatory properties, which could possibly be the rationale behind the use of K. uncinata against upper respiratory tract infections.
Collapse
Affiliation(s)
- Pathy Kibungu Kembelo
- Department of Environmental Sciences, Kinshasa University (UNIKIN), Kinshasa XI, BP 127, Kinshasa, Democratic Republic of Congo
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
- Faculty of Agronomic Sciences, Kongo University, 23-Avenue Kolo, BP 202, Mbanza-Ngungu, Kongo-Central Province, Democratic Republic of Congo
| | - Emmy Tuenter
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
| | - Wouter Vanhove
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Honoré Belesi Katula
- Department of Environmental Sciences, Kinshasa University (UNIKIN), Kinshasa XI, BP 127, Kinshasa, Democratic Republic of Congo
| | - Patrick Van Damme
- Laboratory of Tropical and Subtropical Agriculture and Ethnobotany, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Kamycka 129, 165 00, Praha - Suchdol, Czech Republic
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, BE-2610, Antwerp, Belgium
| |
Collapse
|
8
|
Abdallah RH, Al-Saleem MSM, Abdel-Mageed WM, Al-Attar ASR, Shehata YM, Abdel-Fattah DM, Atta RM. LCMS/MS Phytochemical Profiling, Molecular, Pathological, and Immune-Histochemical Studies on the Anticancer Properties of Annona muricata. Molecules 2023; 28:5744. [PMID: 37570713 PMCID: PMC10421100 DOI: 10.3390/molecules28155744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
Annona muricate is a tropical plant that is well-known for its edible fruit of therapeutic interest. LCMS/MS analyses were applied to identify phytoconstituents of the ethanolic extract of the whole fruits and the aqueous extract of the edible fruit part, in addition to the investigation of their anticancer properties against Ehrlich ascites carcinoma (EAC) in male albino mice. LCMS/MS analyses resulted in the identification of 388 components, representing a wide array of classes of compounds, including acetogenins as the major constituents, alkaloids, flavonoids, and phenolics. Among them, four compounds were tentatively characterized as new compounds (1-4), including an acid derivative, protocatechuic-coumaroyl-quinic acid (1), and three flavonoid derivatives, dihydromyricetin galloyl hexoside (2), apigenin gallate (3), and dihydromyricetin hexouronic acid hexoside (4). Induction with EAC cells resulted in abnormalities in the gene expression of pro-apoptotic genes (Bax and caspase-3) and anti-apoptotic gene (Bcl-2) in the tumor mass. Moreover, microscopic, histopathological, and immune-histochemical examinations of the tumor mass and liver tissues exhibited extensive growth of malignant Ehrlich carcinoma cells and marked hydropic degeneration of hepatocytes and infiltration by tumor cells to liver tissue with marked inflammatory reaction. These abnormalities were markedly ameliorated aftertreatment of EAC mice with A. muricata extracts.
Collapse
Affiliation(s)
- Rehab H. Abdallah
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Muneera S. M. Al-Saleem
- Department of Chemistry, Science College, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael M. Abdel-Mageed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Al-Sayed R. Al-Attar
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Youssef M. Shehata
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| | - Doaa M. Abdel-Fattah
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (A.-S.R.A.-A.); (D.M.A.-F.)
| | - Rahnaa M. Atta
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt; (Y.M.S.); (R.M.A.)
| |
Collapse
|
9
|
Li Q, Abdulla R, Xin X, Xue G, Kang X, Zhao F, Asia HA. Profiling of chemical constituents of Matricarla chamomilla L. by UHPLC-Q-Orbitrap-HRMS and in vivo evaluation its anti-asthmatic activity. Heliyon 2023; 9:e15470. [PMID: 37153405 PMCID: PMC10160356 DOI: 10.1016/j.heliyon.2023.e15470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Abstract
Matricarla chamomilla L. is native to European countries and widely cultivated in China, especially in Xinjiang. It has been used in Uygur medicine for the treatment of cough caused by asthma. In this study, UHPLC-Q-Orbitrap-MS was used to detect and identify the components from the active fraction of M. Chamomile, 64 compounds were identified by combining the standards, related literatures and mass spectrometry fragments, including 10 caffeoyl quinic acids, 38 flavonoids, 8 coumarins, 5 alkaloids and 3 other compounds. Furtherly, the anti-asthma activity of active fraction of M. Chamomile was investigated in OVA-induced allergic asthma rat model. The results showed that the number of EOS in Penh and bronchoalveolar lavage fluid (BALF) in the group of the active fraction of M. Chamomile was significantly lower than that in the model group. Besides, the active fraction of M. Chamomile can significantly reduce the IgE level and increased glutathione peroxidase (GSH-Px) in the serum of OVA-induced rats, and ameliorated OVA-induced lung injury. Hence, M. Chamomile could be used to treat asthma through their in vivo antioxidant and anti-inflammatory effects. This study explored the potential material basis of M. Chamomile for the treatment of asthma.
Collapse
Affiliation(s)
- Qian Li
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
- Corresponding author. Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University Urumqi, 830000, People's Republic of China.
| | - Rahima Abdulla
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
| | - Xuelei Xin
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
| | - Guipeng Xue
- Xinjiang Uygur Autonomous Region Evaluation and Inspection Center for Drug, Urumqi, 830000, People's Republic of China
| | - Xiaolong Kang
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
| | - Feicui Zhao
- Department of Medicine Research, Hospital of Chinese Medicine Affiliated to Xinjiang Medical University, Urumqi, 830000, People's Republic of China
- Xinjiang Key Laboratory of Processing and Research of Traditional Chinese Medicine, Urumqi, 830000, People's Republic of China
| | - Haji Akber Asia
- CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1, Beijing Road, Urumqi, 830011, Xinjiang, China
- Corresponding author.
| |
Collapse
|
10
|
Mukatay U, Samy MN, Avula B, Katragunta K, Kemelbek M, Zhubanova A, Khan IA, Ross SA. Isolation and LC-QToF Characterization of Secondary Metabolites from an Endemic Plant Artemisia heptapotamica Poljak. Molecules 2023; 28:molecules28072908. [PMID: 37049671 PMCID: PMC10096343 DOI: 10.3390/molecules28072908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Phytochemical investigation of the aerial parts of Artemisia heptapotamica Poljak led to the isolation of ten known compounds, including four alkyl p-coumarates: octadecyl trans-p-coumarate (1), icosy trans-p-coumarate (2), docosyl trans-p-coumarate (3), and tetracosyl trans-p-coumarate (4), one sesquiterpene lactone: santonin (5), four flavonoids; axillarin (6), quercetin 3-O-methyl ether (7), luteolin (8), and quercetin (9), and one phenolic acid derivative: p-coumaric acid (10). The structures of the isolated compounds were identified by various spectroscopic analyses. Additionally, the antimicrobial activity of the total extract and different fractions was screened, and they exhibited no inhibition of the growth of Candida albicans, C. neoformans, Aspergillus fumigatus, methicillin-resistant Staphylococcus aureus (MRS), E. coli, Pseudomonas aeruginosa, Klebsiella pneumonia, and Vancomycin-resistant Enterococci (VRE) at the tested concentrations ranging from 8 to 200 μg/mL. The identification and tentative characterization of the secondary metabolites were conducted using LC-QToF analysis. This method helps in the putative characterization of sesquiterpene lactones, flavonoids, coumarate derivatives, and aliphatic compounds. The developed method identified 43 compounds, of which the majority were sesquiterpene lactones, such as eudesmanolides, germacranolides, and guaianolide derivatives, followed by flavonoids. The proposed LC-QToF method helps develop dereplication strategies and understand the major class of chemicals before proceeding with the isolation of compounds.
Collapse
|
11
|
Lu YY, Li SQ, Lai QZ, Wang LY, Zhou WM, Hua CL, Ning DD, Zhang CC, Li MY, Jiang FS. Chemical constituents, antioxidant and hepatoprotective properties of ethanol extract from Artemisia japonica Thumb. Leaves. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2022.104526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
12
|
Peng J, Abdulla R, Li Y, Liu XY, He F, Xin XL, Aisa HA. Potential anti-diabetic components of Apocynum venetum L. flowers: Optimization, chemical characterization and quality evaluation. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
G S, A S, Vetrivel U, Ayyakannu URN. Chemoprofiling and insilico prioritization of bioactive compounds from Laetiporus versisporus (Lloyd) Imazeki reveals potential Bcl-2 inhibitor. J Biomol Struct Dyn 2022:1-13. [PMID: 35971955 DOI: 10.1080/07391102.2022.2110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Laetiporus versisporus (Lloyd) Imazeki is an edible mushroom that grows abundantly in kodaikanal hills (India) during rainy season. Till now, there is a dearth of reports on chemoprofile and anticancer potential of this mushroom. In our recent study, L.versisporus ethanolic extract was reported to confer hepato-protective activity against DEN-induced HCC rats and also found to downregulate Bcl-2 activity. Moreover, the phytocompounds of a related species namely, L. sulphurous is also reported to potentially modulate Bcl-2 in glioblastoma. Hence, by this study, the bioactive compounds from L. versisporus ethanolic extract were profiled using LC-MS analysis and were virtually screened against ligand binding site of Bcl-2 in order to predict potential moieties with anticancer efficacies. Further, the top 3 potential hits were shortlisted based on MMGBSA score, ADME properties and stable complex formation during MD simulation. Amongst these hits, (6S)-1alpha, 25-dihydroxy vitaminD36,19-sulfurdioxide adduct was found to be highly promising in terms of binding affinity and ADME features comparable to the known inhibitor (DRO), thus shall be further probed for therapeutic efficacy using experimental validations for effective and natural mode of combating Bcl-2 mediated cancers.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shoba G
- Department of Biotechnology, Mother Teresa Women's University, Kodaikanal, Tamil Nadu, India.,Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, (Autonomous), University of Madras, Chennai, Tamil Nadu, India
| | - Samdani A
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Chennai, Tamil Nadu, India
| | - Umashankar Vetrivel
- National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
| | | |
Collapse
|
14
|
Bunse M, Lorenz P, Stintzing FC, Kammerer DR. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). PLANTS 2021; 10:plants10061219. [PMID: 34203945 PMCID: PMC8232588 DOI: 10.3390/plants10061219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/10/2023]
Abstract
The present study aimed at the identification and quantitation of phenolic compounds, fatty acids, and further characteristic substances in the seeds of Geum urbanum L. and Geum rivale L. For this purpose, individual components of extracts recovered with MeOH, CH2Cl2, and by cold-pressing, respectively, were characterized by HPLC-DAD/ESI-MSn and GC/MS and compared with reference compounds. For both Geum species, phenolic compounds, such as flavonoids and gallic acid derivatives, and triterpenes, such as saponins and their aglycones, were detected. Surprisingly, both Geum species revealed the presence of derivatives of the triterpenoid aglycons asiatic acid and madecassic acid, which were characterized for the first time in the genus Geum. Furthermore, the fatty acids of both species were characterized by GC–MS after derivatization. Both species showed a promising fatty-acid profile in terms of nutritional properties because of high proportions of unsaturated fatty acids. Linoleic acid and linolenic acid were most abundant, among other compounds such as palmitic acid and stearic acid. In summary, the present study demonstrates the seeds of G. urbanum and G. rivale to be a valuable source of unsaturated fatty acids and bioactive phenolics, which might be exploited for nutritional and cosmetic products and for phytotherapeutic purposes.
Collapse
Affiliation(s)
- Marek Bunse
- Department of Analytical Development & Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstr. 1, DE-73087 Bad Boll/Eckwälden, Germany; (M.B.); (P.L.); (F.C.S.)
- Department of Plant Systems Biology, Hohenheim University, Garbenstraße 30, DE-70599 Stuttgart, Germany
| | - Peter Lorenz
- Department of Analytical Development & Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstr. 1, DE-73087 Bad Boll/Eckwälden, Germany; (M.B.); (P.L.); (F.C.S.)
| | - Florian C. Stintzing
- Department of Analytical Development & Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstr. 1, DE-73087 Bad Boll/Eckwälden, Germany; (M.B.); (P.L.); (F.C.S.)
| | - Dietmar R. Kammerer
- Department of Analytical Development & Research, Section Phytochemical Research, WALA Heilmittel GmbH, Dorfstr. 1, DE-73087 Bad Boll/Eckwälden, Germany; (M.B.); (P.L.); (F.C.S.)
- Correspondence:
| |
Collapse
|
15
|
Zhang P, Jiang J, Zhang K, Liu W, Tu P, Li J, Song Y, Zheng J, Tang L. Shotgun chemome characterization of Artemisia rupestris L. Using direct infusion-MS/MS ALL. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1176:122735. [PMID: 34020402 DOI: 10.1016/j.jchromb.2021.122735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 11/26/2022]
Abstract
In comparison of liquid chromatography, direct infusion is a superior choice to achieve high-throughput measurements. The specificity and selectivity of tandem mass spectrometry (MS/MS) actually result in a so-called MS separation potential when chemical characterization of herbal medicines. Here, a MS/MSALL program was introduced to promote DI-MS/MS to be an eligible tool for shotgun chemome characterization of Artemisia rupestris L. that is currently drawing worldwide interests because of the promising antiviral activity. After MS1 spectral acquisition for the crude extract, the gas phase fractionation concept enabled the precursor ion cohort sequentially entered the collision cell with a stepped unit mass window (step-size as 1 Da) to generate MS2 spectra, thus generating a unique property integrating the advantages of both data-dependent and data-independent acquisition manners. Even though being free of chromatographic separation, spectrometric separations were accomplished for by MS/MSALL program unless the components shared identical nominal molecular weights. Extensive efforts such as the correlations of MS1 signals with MS2 spectra, structural annotations of fragment ion species, information retrieval in some accessible databases, and referring to the literature data, were devoted for chemical characterization, and as a result, 44 compounds, in total, were structurally identified from 50% aqueous methanol exact of A. rupestris, including 8 caffeoyl quinic acid derivatives, 13 flavonoids, 15 monomeric and dimeric sesquiterpenoids, 4 fatty acids, 2 penylpropanoids, along with 2 other compounds. However, isomers were assigned as an isomeric mixture because their precursor ions always co-existed in a single mass window. Above all, DI-MS/MSALL provides an alternative tool for chemome characterization of herbal medicines, in particular when the great measurement workload for a large sample cohort, attributing to the high-throughput advantage.
Collapse
Affiliation(s)
- Peijie Zhang
- Key Laboratory of Ethnomedicine (Minzu University of China) Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China; Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Jiang
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Ke Zhang
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenjing Liu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiao Zheng
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Li Tang
- Key Laboratory of Ethnomedicine (Minzu University of China) Ministry of Education, School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
16
|
Zhao Y, Lu H, Wang Q, Liu H, Shen H, Xu W, Ge J, He D. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS. J Sep Sci 2021; 44:1404-1420. [PMID: 33464708 DOI: 10.1002/jssc.202000962] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/17/2020] [Accepted: 01/16/2021] [Indexed: 12/11/2022]
Abstract
Ribes meyeri leaves are used as traditional Kazakh medicine in China. However, no study on the characterization of the phenolic compounds in R. meyeri leaves has been reported, resulting in the lack of quality control measures and poor standardization. This study was conducted to identify the phenolic compounds in R. meyeri leaves and evaluate their antioxidant and antidiabetic activities. A total of 77 phenolics were tentatively identified by liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. Ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry was applied to simultaneously quantify 12 phenolics in R. meyeri leaves. Rutin, epigallocatechin, isoquercitrin, epicatechin, protocatechuic acid, and kaempferol-3-O-rutinoside were abundant in the R. meyeri leaves. The methanol extract and four different extracts enhanced the glucose uptake in 3T3-L1 adipocytes. The ethyl acetate extracts showed a total phenolic content of 966.89 ± 3.59 mg gallic acid equivalents/g, a total flavonoid content of 263.58 ± 17.09 mg catechin equivalents/g, and good protein-tyrosine phosphatase-1B inhibitory activities (IC50 : 0.60 ± 0.03 μg/mL). To our knowledge, this work is the first to identify and quantify the major phenolics in R. meyeri leaves.
Collapse
Affiliation(s)
- Yayun Zhao
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Honglin Lu
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Qiang Wang
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Hailiang Liu
- School of Medicine, Tongji University, Shanghai, P. R. China
| | - Haitao Shen
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Wenbin Xu
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Juan Ge
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| | - Dajun He
- College of Life Science, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Analysis and Testing Centre, Shihezi University, Shihezi, P. R. China
| |
Collapse
|
17
|
Afifi W, Hegazy M, Metwaly A, Mostafa A, Radwan M, M. Mehany A, Ahmed E, Enany S, Magdeldin S, ElSohly M. Biological and chemical evaluation of some African plants belonging to Kalanchoe species: Antitrypanosomal, cytotoxic, antitopoisomerase I activities and chemical profiling using ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometer. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_232_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
18
|
Effect of Artemisia rupestris L. Extract on Gastrointestinal Hormones and Brain-Gut Peptides in Functional Dyspepsia Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:2528617. [PMID: 33281909 PMCID: PMC7685828 DOI: 10.1155/2020/2528617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Artemisia rupestris L. is the perennial herb of rupestris belonging to Artemisia (Compositae), which is wildly distributed in Xinjiang (China), middle Asia, and Europe. It is known to have anti-inflammatory, hepatoprotective, immune function regulation, and gastrointestinal function regulation effects. AR is used to treat digestive diseases, but the effects of AR on antifunctional dyspepsia (FD) activity have not yet been reported. In this study, we aimed to investigate the therapeutic effects of Artemisia rupestris L. extract (ARE) on gastrointestinal hormones and brain-gut peptide in functional dyspepsia (FD) rats. Sixty Sprague-Dawley rats were randomly divided into 6 groups. An FD rat model was established by irregular tail clamp stimulation for 14 days except the blank group. After FD rat models, the blank group and model group were given menstruum, and the medicated rats were given corresponding medicine for 14 days. The general observations, bodyweight, and food intake were observed, and the content of serum gastrin (GAS), plasma motilin (MTL), plasma vasoactive intestinal peptide (VIP), and plasma somatostatin (SS) by the enzyme-linked immunosorbent assay was observed. The content of plasma VIP and plasma SS in the ARE group was significantly lower than in the model group, and the content of serum GAS and plasma MTL was increased in the ARE group; the GAS expression of antrum and hypothalamus was increased in the ARE group, and SS expression of antrum and hypothalamus was decreased in the ARE group by immunohistochemical detection; the results of semiquantitative reverse transcription polymerase chain reaction (RT-PCR) indicate that ARE inhibits the mRNA expression of VIP. Our results suggest that ARE can recover gastrointestinal hormone levels and regulation of the peripheral and central nervous system and alter gut peptide levels, which confirm the therapeutic effect of ARE on functional dyspepsia.
Collapse
|
19
|
Kramberger K, Barlič-Maganja D, Bandelj D, Baruca Arbeiter A, Peeters K, Miklavčič Višnjevec A, Jenko Pražnikar Z. HPLC-DAD-ESI-QTOF-MS Determination of Bioactive Compounds and Antioxidant Activity Comparison of the Hydroalcoholic and Water Extracts from Two Helichrysum italicum Species. Metabolites 2020; 10:E403. [PMID: 33053777 PMCID: PMC7600872 DOI: 10.3390/metabo10100403] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 01/08/2023] Open
Abstract
Mediterranean plant Helichrysum italicum represents a rich source of versatile bioactive compounds with potential benefits for human health. Despite extensive research on the plant's active constituents, little attention has yet been paid to characterizing the relationship between its intra-specific genetic diversity and metabolite profile. The study aimed to determine metabolic profile of H. italicum ssp. italicum (HII) and ssp. tyrrhenicum (HIT) cultivated on the experimental plantation in Slovenia and to compare the chemical composition of extracts regarding the solvent extraction process. Extracts were prepared upon conventional extract preparation procedures: maceration with 50 % methanol or ethanol and cold or hot water infusion and analyzed using High Performance Liquid Chromatography-Diode Array Detection-Electrospray Ionization-Quadrupole Time-of-Flight-Mass Spectrometry (HPLC-DAD-ESI-QTOF-MS). One hundred compounds were identified in the samples, among them several isomers and derivatives were reported for the first time, while caffeoylquinic acids and pyrones were the most abundant. Semi-quantitative comparison revealed that the extraction procedure had a greater impact on the chemical profile than genetic variability. All HIT extracts showed a higher total phenolic content compared to HII, while the antioxidant potential evaluated by 1,1-diphenyl-2-picrylhydrazil test was not proportionally higher. In addition, hot water extracts proved to be comparably active as alcoholic ones, confirming high commercial potential of Helichrysum italicum as herbal functional beverages.
Collapse
Affiliation(s)
- Katja Kramberger
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia; (K.K.); (D.B.-M.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Darja Barlič-Maganja
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia; (K.K.); (D.B.-M.)
| | - Dunja Bandelj
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (D.B.); (A.B.A.)
| | - Alenka Baruca Arbeiter
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (D.B.); (A.B.A.)
| | - Kelly Peeters
- InnoRenew CoE, 6310 Izola, Slovenia;
- Andrej Marušič Institute, University of Primorska, 6000 Koper, Slovenia
| | - Ana Miklavčič Višnjevec
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia; (D.B.); (A.B.A.)
| | - Zala Jenko Pražnikar
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia; (K.K.); (D.B.-M.)
| |
Collapse
|
20
|
Majdan M, Kiss AK, Hałasa R, Granica S, Osińska E, Czerwińska ME. Inhibition of Neutrophil Functions and Antibacterial Effects of Tarragon ( Artemisia dracunculus L.) Infusion-Phytochemical Characterization. Front Pharmacol 2020; 11:947. [PMID: 32903580 PMCID: PMC7438555 DOI: 10.3389/fphar.2020.00947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/10/2020] [Indexed: 12/29/2022] Open
Abstract
The aim of the study was to characterize phytochemicals in an infusion of the aerial parts of tarragon (Artemisia dracunculus L.) using ultra-high-performance liquid chromatography diode array detector electrospray ionisation tandem mass spectrometry UHPLC‐DAD‐ESI‐MS/MS method, as well as an evaluation of its effects on mediators of the inflammation in an in vitro model of human neutrophils, and antimicrobial activity on selected pathogens. Flavonoids and caffeoylquinic acids were the main phenolic components of the extract of tarragon’s aerial parts. The infusion was able to inhibit reactive oxygen species (ROS), interleukin 8 (IL-8), and tumour necrosis factor α (TNF-α) production. The antimicrobial assay was performed with the use of nine strains of bacteria, both Gram-negative and Gram-positive. Three human pathogens, Staphylococcus aureus ATCC6538, Staphylococcus epidermidis ATCC14990, and Staphylococcus aureus MRSA (methicyllin-resistant Staphylococcus aureus) ATCC43300, proved to be the most sensitive to tarragon infusion. Our study demonstrated the antiinflammatory and antimicrobial properties of tarragon (Artemisia dracunculus L.), meaning the common spice may be a prospective source of health-promoting constituents.
Collapse
Affiliation(s)
- Magdalena Majdan
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland.,Department of Bromatology, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Anna K Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Hałasa
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk, Poland
| | - Sebastian Granica
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Osińska
- Department of Vegetable and Medicinal Plants, Institute of Horticulture Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Monika E Czerwińska
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
21
|
Metabolite Profiling of Aquilaria malaccensis Leaf Extract Using Liquid Chromatography-Q-TOF-Mass Spectrometry and Investigation of Its Potential Antilipoxygenase Activity In-Vitro. Processes (Basel) 2020. [DOI: 10.3390/pr8020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Aquilaria malaccensis species of the genus Aquilaria is an abundant source of agarwood resin and many bioactive phytochemicals. Recent data regarding the chemical constituents and biological activities of Aquilaria leaves led us to attempt to qualitatively profile the metabolites of Aquilaria malaccensis leaves from a healthy, noninoculated tree through phytochemical screening, GC-MS, and LC/Q-TOF-MS. The present work is also the first to report the antilipoxygenase activity of A. malaccensis leaves from healthy noninoculated tree and investigate its toxicity on oral mucosal cells. A total of 53 compounds were tentatively identified in the extract, some of which have been described in literature as exhibiting anti-inflammatory activity. A number of compounds were identified for the first time in the extract of A. malaccensis leaf, including quercetin, quercetin-O-hexoside, kaempferol-O-dirhamnoside, isorhamnetin-O-hexoside, syringetin-O-hexoside, myricetin, tetrahydroxyflavanone, hesperetin, sissotrin, and lupeol. The antilipoxygenase assay was used to determine the lipoxygenase (LOX) inhibitory potential of the extract, while a WST-1 assay was conducted to investigate the effect of the extract on oral epithelial cells (OEC). The extract implied moderate anti-LOX activity with IC50 value of 71.6 µg/mL. Meanwhile, the cell viability of OEC ranged between 92.55% (10 µg/mL)–76.06% ± (100 µg/mL) upon treatment, indicating some potential toxicity risks. The results attained encourage future studies of the isolation of bioactive compounds from Aquilaria malaccensis leaves, as well as further investigation on the anti-inflammatory mechanisms and toxicity associated with their use.
Collapse
|
22
|
Pan M, Lei Q, Zang N, Zhang H. A Strategy Based on GC-MS/MS, UPLC-MS/MS and Virtual Molecular Docking for Analysis and Prediction of Bioactive Compounds in Eucalyptus Globulus Leaves. Int J Mol Sci 2019; 20:E3875. [PMID: 31398935 PMCID: PMC6721025 DOI: 10.3390/ijms20163875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 11/17/2022] Open
Abstract
The discovery of medicinal plants is crucial for drug development. Eucalyptus globulus leaves are used as a traditional medicine in many areas of world due to herbicidal and insecticidal activity. While natural products are difficult to be separated and activity assayed, a new approach is needed to predict the active ingredients therein. In this study, a new method for screening active compounds extracted from E. globulus leaves was developed by GC-MS/MS and UPLC-MS/MS combined with molecular docking technology. Predicted compounds with high activity were proposed. Firstly, 35 volatile compounds and 34 aqueous extracted compounds were extracted from E. globulus leaves, and identified by GC-MS/MS and UPLC-MS/MS. The herbicidal receptor (1BX9) was then docked with the identified compounds by docking software, evaluated by docking models and seven scoring functions. The results showed that gallic acid had a strong inhibitory activity of 1BX9, which was speculated to be the main reason for the inhibitory effect of E. globulus leaves. Finally, allelopathic tests of gallic acid, citric acid, and isopulegol were carried out on grass seeds to verify its inhibitory activity against herbicide receptor 1BX9. The results show that the method can screen compounds with specific activity from a complex system of medicinal plants, which is very important for the screening of new active ingredients, confirmation of new medicinal ingredients, and the in-depth development of animal and plant medicines.
Collapse
Affiliation(s)
- Meng Pan
- School of Food Science and Biological Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Qicheng Lei
- School of Food Science and Biological Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China
| | - Ning Zang
- Guangxi Medical Research Center, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Hong Zhang
- School of Food Science and Biological Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310035, China.
| |
Collapse
|
23
|
Lan JE, Li XJ, Zhu XF, Sun ZL, He JM, Zloh M, Gibbons S, Mu Q. Flavonoids from Artemisia rupestris and their synergistic antibacterial effects on drug-resistant Staphylococcus aureus. Nat Prod Res 2019; 35:1881-1886. [PMID: 31303068 DOI: 10.1080/14786419.2019.1639182] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study seeks to discover flavonoids from a traditional Chinese herb, Artemisia rupestris L., with synergistic antibacterial effects against multidrug-resistant Staphylococcus aureus. Five flavonoids, artemetin (1), chrysosplenetin (2), pachypodol (3), penduletin (4) and chrysoeriol (5) were obtained by various column chromatographic methods. Their chemical structures were determined on the basis of comprehensive spectroscopic analysis and comparison with literature data. Three of the compounds (2, 4 and 5) exhibited synergistic activity when combined with norfloxacin against SA1199B, an effluxing fluoroquinolone-resistant strain. The fractional inhibitory concentration indices (FICIs) of 2, 4 and 5 in combination with norfloxacin were 0.375, 0.079 and 0.266 respectively, suggesting synergy. Compound 5 also showed synergistic effects against EMRSA-15 and EMRSA-16 when combined with ciprofloxacin and oxacillin exhibiting FICIs of 0.024 and 0.375 respectively. Real time ethidium bromide (EtBr) efflux assay, qRT-PCR and molecular docking were employed to explore the mechanisms of the synergistic effects.
Collapse
Affiliation(s)
- Jiang-Er Lan
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xiao-Jin Li
- Traditional Chinese Medicine and Ethno Medicine Institute of Xinjiang, Wulumuqi, 800002, China
| | - Xiao-Feng Zhu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhong-Lin Sun
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jian-Ming He
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mire Zloh
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Simon Gibbons
- Research Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, WC1N 1AX, United Kingdom
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
24
|
Kumar S, Singh A, Singh B, Maurya R, Kumar B. Structural characterization and quantitative determination of bioactive compounds in ethanolic extracts of Boerhaavia diffusa
L. by liquid chromatography with tandem mass spectrometry. SEPARATION SCIENCE PLUS 2018. [DOI: 10.1002/sscp.201800056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Sunil Kumar
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh India
| | - Awantika Singh
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh India
| | - Bikarma Singh
- Biodiversity and Applied Botany Division; CSIR-Indian Institute of Integrative Medicine; Jammu India
| | - Rakesh Maurya
- Medicinal and Process Chemistry Division; CSIR-Central Drug Research Institute; Lucknow India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility; CSIR-Central Drug Research Institute; Lucknow Uttar Pradesh India
| |
Collapse
|
25
|
Koprivica MR, Trifković JĐ, Dramićanin AM, Gašić UM, Akšić MMF, Milojković-Opsenica DM. Determination of the phenolic profile of peach (Prunus persica L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3116-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Zhang A, Wang D, Li J, Gao F, Fan X. The effect of aqueous extract of Xinjiang Artemisia rupestris L. (an influenza virus vaccine adjuvant) on enhancing immune responses and reducing antigen dose required for immunity. PLoS One 2017; 12:e0183720. [PMID: 28841693 PMCID: PMC5571932 DOI: 10.1371/journal.pone.0183720] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/09/2017] [Indexed: 11/18/2022] Open
Abstract
Potent adjuvant can improve the effectiveness of vaccines and reduce the antigen doses required for initiating the protective immunity. In this study, we identified that aqueous extract of Artemisia rupestris L. (AEAR) could be employed as an efficient adjuvant for influenza virus vaccine (V) to enhance immune responses and reduce the antigen doses required for initiating immunity, without compromising the immune response. ICR mice were subcutaneously co-administrated with V combined with different concentrations of AEAR demonstrated that 300 μg AEAR could significantly improve hemagglutination inhibition (HI) and increase IgG antibody titers in serum (P<0.05) and the population of CD4+CD44+ and CD8+CD44+ (P<0.05). Next, 300 μg AEAR combined with different doses of V in vivo markedly increased HI and specific IgG antibody level(P<0.05). It also significantly increased the amount of CD4+ and CD8+ T cells, CD4+CD44+ and CD8+CD44+ T cells (P<0.05), improved lymphocyte proliferation, the secretion of CD4+IL-4, CD4+IFN-γ and CD8+IFN-γ (P<0.05), and the killing efficacy of cytotoxic T lymphocyte (CTL) (P<0.05). Furthermore, the combination increased the expression of major histocompatibility complex-II (MHC-II) and co-stimulatory molecules including CD40, CD80, and CD86 on dendritic cells (DCs), and downregulated the expression of CD25+Foxp3+Treg cells (P<0.05). No significant difference was observed between high-dose V and low-dose AEAR-V (10-fold lower) vaccination group (P>0.05), indicating a 10-fold reduction of antigen required for V vaccine administration. In conclusion, this study demonstrated that AEAR, as an adjuvant for influenza vaccine, could stimulate potent humoral and cellular immune responses and reduce the antigen dose required for effective vaccination, which were mediated by promoting DCs activation and repressing Treg expression.
Collapse
Affiliation(s)
- Ailian Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- * E-mail:
| | - Danyang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Feng Gao
- Urumqi Center for Disease Control and Prevention, Urumqi, China
| | - Xucheng Fan
- Urumqi Center for Disease Control and Prevention, Urumqi, China
| |
Collapse
|
27
|
Han B, Xin Z, Ma S, Liu W, Zhang B, Ran L, Yi L, Ren D. Comprehensive characterization and identification of antioxidants in Folium Artemisiae Argyi using high-resolution tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:84-92. [PMID: 28850890 DOI: 10.1016/j.jchromb.2017.08.021] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/29/2017] [Accepted: 08/15/2017] [Indexed: 01/29/2023]
Abstract
Antioxidants from natural sources, such as vegetables and fruits, are attracting more and more interest. In this work, we evaluated the antioxidant potential of Folium Artemisia Argyi, a traditional Chinese herb medicine and food supplement. The total phenolic content, total flavonoid content, and antioxidant ability of the crude extracts and fractions obtained from consecutively partition of n-hexane, ethyl acetate, and n-butanol were measured and compared. Ethyl acetate fraction shows the highest total phenolic and flavonoid contents and highest antioxidant capability with regard to DPPH, ABTS, superoxide anion free radical scavenging ability, and ferric-reducing antioxidant power. In addition, the potential antioxidant components were screened by DPPH-UHPLC-MS experiments and subsequently characterized by using high-resolution tandem mass spectrometry. This work finally identified 45 antioxidants, including organic acids, phenolic compounds, flavonoids, and methoxylated flavonoids. The results suggested that Folium Artemisiae Argyi is a potential inexpensive resource of natural antioxidants.
Collapse
Affiliation(s)
- Binsong Han
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhongquan Xin
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shasha Ma
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Wenbin Liu
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Bingyang Zhang
- School of Science, Kunming University of Science and Technology, PR China
| | - Lu Ran
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Lunzhao Yi
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Dabing Ren
- Yunnan Food Safety Research Institute, Kunming University of Science and Technology, Kunming 650500, PR China.
| |
Collapse
|
28
|
Wang H, Gu D, Wang M, Guo H, Wu H, Tian G, Li Q, Yang Y, Tian J. A strategy based on gas chromatography–mass spectrometry and virtual molecular docking for analysis and prediction of bioactive composition in natural product essential oil. J Chromatogr A 2017; 1501:128-133. [DOI: 10.1016/j.chroma.2017.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 11/24/2022]
|
29
|
Zhang L, Tu ZC, Xie X, Wang H, Wang H, Wang ZX, Sha XM, Lu Y. Jackfruit (Artocarpus heterophyllus Lam.) peel: A better source of antioxidants and a-glucosidase inhibitors than pulp, flake and seed, and phytochemical profile by HPLC-QTOF-MS/MS. Food Chem 2017; 234:303-313. [PMID: 28551240 DOI: 10.1016/j.foodchem.2017.05.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/16/2023]
Abstract
Jackfruit (Artocarpus heterophyllus Lam.) peel is an underutilized by-product in both, the production and processing of jackfruit. This research compared the antioxidant and hypoglycemic potential of jackfruit peel with jackfruit pulp, flake and seed for the first time. The phytochemical profile of peel extract was characterized with HPLC-QTOF-MS/MS. Results revealed that peel extract exhibited the highest total phenolic and total flavonoid content, and the phenolics was 4.65, 4.12 and 4.95 times higher than that of pulp, flake and seed extract, respectively. The strongest DPPH and ABTS+ scavenging ability, α-glucosidase inhibition were also found in peel extract, and the α-glucosidase inhibition was about 11.8-fold of that of acarbose. The HPLC-QTOF-MS/MS analysis led to the tentative identification of 53 compounds, prenylflavonoids, hydroxycinnamic acids and glycosides are the predominant bioactive compounds. Above results reveal promising potential of jackfruit peel as a new source of natural antioxidants and hypoglycemic agents.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Xing Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Hao Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zhen-Xing Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xiao-Mei Sha
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Yu Lu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
30
|
Aipire A, Li J, Yuan P, He J, Hu Y, Liu L, Feng X, Li Y, Zhang F, Yang J, Li J. Glycyrrhiza uralensis water extract enhances dendritic cell maturation and antitumor efficacy of HPV dendritic cell-based vaccine. Sci Rep 2017; 7:43796. [PMID: 28272545 PMCID: PMC5341557 DOI: 10.1038/srep43796] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Abstract
Licorice has been used as herbal medicine and natural sweetener. Here, we prepared Glycyrrhiza uralensis water extract (GUWE) and investigated the effect of GUWE on the maturation and function of dendritic cells (DCs) and its adjuvant effect on DC-based vaccine. We observed that GUWE dose-dependently promoted DC maturation and cytokine secretion through TLR4 signaling pathway. The capacity of DC to stimulate allogenic splenocyte proliferation was also enhanced by GUWE treatment. Compared with control group, GUWE treated DCs pulsed with human papillomavirus (HPV)-16 E6/E7 peptides significantly inhibited the tumor growth in both early and late therapeutic groups. In early therapeutic group, the frequencies of induced regulatory T cells (iTregs: CD4+CD25−Fopx3+) and CD4+ and CD8+ T cells were significantly decreased and increased, respectively. HPV-16-specific CD8+ T cell responses were significantly induced and negatively correlated with iTreg frequencies and tumor weight. These results indicated the immunoregulatory activities of licorice.
Collapse
Affiliation(s)
- Adila Aipire
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyu Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Pengfei Yuan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jiang He
- Key laboratory of Xinjiang Uighur Medicine, Xinjiang Institute of Materia Medica, 140 Xinhua South Road, Urumqi 830004, China
| | - Yelang Hu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Lu Liu
- XinJiang DingJu Biotech CO., LTD, 181 Xicai Road, Urumqi 830000, China
| | - Xiaoli Feng
- XinJiang DingJu Biotech CO., LTD, 181 Xicai Road, Urumqi 830000, China
| | - Yijie Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Fuchun Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Jianhua Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, TX 77030, USA
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
31
|
Li ZH, Guo H, Xu WB, Ge J, Li X, Alimu M, He DJ. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS. J Chromatogr Sci 2016; 54:805-10. [PMID: 26896347 PMCID: PMC4890459 DOI: 10.1093/chromsci/bmw016] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/19/2015] [Indexed: 11/13/2022]
Abstract
Many potential health benefits of raspberry (Rubus idaeus L.) leaves were attributed to polyphenolic compounds, especially flavonoids. In this study, the methanol extract of R. idaeus leaves showed significant protein tyrosine phosphatase-1B (PTP1B) inhibitory activity with IC50 value of 3.41 ± 0.01 µg mL(-1) Meanwhile, a rapid and reliable method, employed high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry, was established for structure identification of flavonoids from PTP1B inhibitive extract of R. idaeus leaves using accurate mass measurement and characteristic fragmentation patterns. A total of 16 flavonoids, including 4 quercetin derivatives, 2 luteolin derivatives, 8 kaempferol derivatives and 2 isorhamnetin derivatives, were identified. Compounds 3: and 4: , Compounds 6: and 7: and Compounds 15: and 16: were isomers with different aglycones and different saccharides. Compounds 8: , 9: and 10: were isomers with the same aglycone and the same saccharide but different substituent positions. Compounds 11: and 12: were isomers with the same aglycone but different saccharides. Compounds 2: , 8: , 9: and 10: possessed the same substituent saccharide of glycuronic acid. Most of them were reported inR. idaeus for the first time.
Collapse
Affiliation(s)
- Zhuan-Hong Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Han Guo
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wen-Bin Xu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Juan Ge
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Xin Li
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Mireguli Alimu
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Da-Jun He
- College of Life Science, Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
32
|
Shan SM, Luo JG, Pan K, Zou HY, Kong LY. Rapid screening and identification of lycodine-type alkaloids in Lycopodiaceae and Huperziaceae plants by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Biomed Chromatogr 2016; 30:1861-1872. [PMID: 27012167 DOI: 10.1002/bmc.3723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/09/2016] [Accepted: 03/18/2016] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Ke Pan
- Nanjing People's Republic of China
| | | | | |
Collapse
|
33
|
Zhang L, Tu ZC, Wang H, Wen QH, Fu ZF, Xie X. Antioxidant Activity and Phenolic Acids Profiles of Artemisia Selengensis
Turcz Extracted with Various Methods by HPLC-QTOF-MS/MS. J Food Biochem 2016. [DOI: 10.1111/jfbc.12255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Lu Zhang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University; Nanchang 330022 China
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| | - Zong-Cai Tu
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Life Science, Jiangxi Normal University; Nanchang 330022 China
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| | - Qing-Hui Wen
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| | - Zhi-Feng Fu
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| | - Xing Xie
- State Key Laboratory of Food Science and Technology; Nanchang University; Nanchang 330047 China
| |
Collapse
|
34
|
Zhang C, Wang S, Zeng KW, Li J, Ferreira D, Zjawiony JK, Liu BY, Guo XY, Jin HW, Jiang Y, Tu PF. Nitric Oxide Inhibitory Dimeric Sesquiterpenoids from Artemisia rupestris. JOURNAL OF NATURAL PRODUCTS 2016; 79:213-223. [PMID: 26696523 DOI: 10.1021/acs.jnatprod.5b00894] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Twelve new dimeric sesquiterpenoids (1-12) were isolated from the dried whole plants of Artemisia rupestris. Their structures were determined using MS and NMR data, and the absolute configurations were elucidated on the basis of experimental and calculated ECD spectra. Compounds 1-9 are presumably formed via biocatalyzed [2+2] or [4+2] cycloaddition reactions. Stereoselectivity of the [4+2] Diels-Alder reaction dictated the formation of endo-products. The dimeric sesquiterpenoids exhibited moderate inhibition on NO production stimulated by lipopolysaccharide in BV-2 microglial cells, with IC50 values in the range 17.0-71.8 μM.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Shu Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, Logistics College of Chinese People's Armed Police Forces , Tianjin 300162, People's Republic of China
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine , Beijing 100029, People's Republic of China
| | - Daneel Ferreira
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi , University, Mississippi 38677-1848, United States
| | - Jordan K Zjawiony
- Department of BioMolecular Sciences, Division of Pharmacognosy, and Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi , University, Mississippi 38677-1848, United States
| | - Bing-Yu Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Xiao-Yu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Hong-Wei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing 100191, People's Republic of China
| |
Collapse
|
35
|
Younsi F, Trimech R, Boulila A, Ezzine O, Dhahri S, Boussaid M, Messaoud C. Essential Oil and Phenolic Compounds ofArtemisia herba-alba(Asso.): Composition, Antioxidant, Antiacetylcholinesterase, and Antibacterial Activities. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2015.1079789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
36
|
Shehata E, Grigorakis S, Loupassaki S, Makris DP. Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.06.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
37
|
Comparison of different methods for extracting polyphenols from Ipomoea batatas leaves, and identification of antioxidant constituents by HPLC-QTOF-MS2. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.01.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Zhang L, Tu ZC, Wang H, Fu ZF, Wen QH, Fan D. Metabolic profiling of antioxidants constituents in Artemisia selengensis leaves. Food Chem 2015; 186:123-32. [PMID: 25976801 DOI: 10.1016/j.foodchem.2015.03.068] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
This study aimed to evaluate the antioxidant potential of Artemisia selengensis Turcz (AST) leaves, a byproduct when processing AST stalk, and identify the antioxidant constituents by using HPLC-QTOF-MS(2). The total phenolics content (TPC), total flavonoids content (TFC) and antioxidant abilities of fractions resulted from the successively partition of chloroform, ethyl acetate and n-butanol were compared. Ethyl acetate fraction (EAF) exhibited the highest TFC (65.44 mg QuE/g fraction), n-butanol fraction (nBuF) showed the highest TPC (384.78 mg GAE/g fraction) and the best DPPH scavenging ability, ABTS(+) scavenging ability and reducing power. Totally, 57 compounds were identified or tentatively identified in nBuF and EAF, 40 of them were reported in AST for the first time. The major constituents in EAF were flavonoids, and the major constituents in nBuF were phenolic acids and organic acids. Thus, AST leaves might be a potential low-cost resource of natural antioxidants.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zong-cai Tu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| | - Hui Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| | - Zhi-feng Fu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Qing-hui Wen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Dan Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
39
|
Liu J, Xia B, Ji B, Li J, Xiao S, Ding L, Zhou Y. Strategy to rapidly discriminate trace isomeric lignan compounds from Gymnotheca chinensis by probe electrospray ionization tandem mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:37-44. [PMID: 25906033 DOI: 10.1255/ejms.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Probe electrospray ionization (PESI) is a recently developed ionization technique based on electrospray ionization (ESI) that generates electrospray from the tip of a solid needle. High tolerance to salts, requirements of a trace amount of sample and direct ambient sampling- are major advantages of PESI compared with conventional ESI. In this report, three pairs of isomeric lignans bearing tetra-hydrofuran with variable conformations from Gymnotheca chinensis were investigated by probe electrospray tandem mass spectrometry (PESI-MS/MS) in the positive ion mode. The diagnostic characteristics of these compounds were obtained and the isomers could be successfully distinguished by comparison with their breakdown curves, even though the isomers differed only in the conformation of some groups of the isomer pairs. This report provides a rapid and reliable method for the identification of trace amounts of isomeric lignans by PESI-MS/MS. Furthermore, application of PESI and breakdown curves should have value in mass spectrometry studies of isomeric natural products compounds.
Collapse
Affiliation(s)
- Jie Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China.
| | - Bing Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China.
| | - Baocheng Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China.
| | - Jingrong Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China.
| | - Shiji Xiao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China.
| | - Lisheng Ding
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China.
| | - Yan Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, P.R.China.
| |
Collapse
|
40
|
Gu D, Yang Y, Hang B, Lv Q, Aisa HA. Characterization and Identification of the Chemical Compositions in a Traditional Uighur Medicine Prescription Yizhihao Granule by LC–ESI-QTOF-MS. J LIQ CHROMATOGR R T 2014. [DOI: 10.1080/10826076.2014.903848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Dongyu Gu
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
- b School of Marine Science and Environment Engineering , Dalian Ocean University , Dalian , China
| | - Yi Yang
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
| | - Ba Hang
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
| | - Qiaoying Lv
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
| | - Haji Akber Aisa
- a Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization , Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi , China
| |
Collapse
|
41
|
Gu D, Yang Y, Chen Q, Habasi M, Zhao J, Aisa HA. Identification of metabolites of rupestonic acid in rat urine by liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. Biomed Chromatogr 2014; 29:595-603. [DOI: 10.1002/bmc.3319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/23/2014] [Accepted: 07/25/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Dongyu Gu
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- School of Marine Science and Environment Engineering; Dalian Ocean University; Dalian 116023 China
| | - Yi Yang
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Qibin Chen
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Madina Habasi
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Jiangyu Zhao
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| | - Haji Akber Aisa
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
- The Key Laboratory of Plant Resources and Chemistry of Arid Zone; Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences; Urumqi 830011 China
| |
Collapse
|
42
|
Rupestonic acids B–G, NO inhibitory sesquiterpenoids from Artemisia rupestris. Bioorg Med Chem Lett 2014; 24:4318-22. [DOI: 10.1016/j.bmcl.2014.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/01/2014] [Accepted: 07/02/2014] [Indexed: 10/25/2022]
|
43
|
Melguizo-Melguizo D, Diaz-de-Cerio E, Quirantes-Piné R, Švarc-Gajić J, Segura-Carretero A. The potential of Artemisia vulgaris leaves as a source of antioxidant phenolic compounds. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
44
|
Gu D, Yang Y, Bakri M, Chen Q, Xin X, Aisa HA. A LC/QTOF-MS/MS application to investigate chemical compositions in a fraction with protein tyrosine phosphatase 1B inhibitory activity from Rosa rugosa flowers. PHYTOCHEMICAL ANALYSIS : PCA 2013; 24:661-670. [PMID: 23813906 DOI: 10.1002/pca.2451] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/25/2013] [Accepted: 04/25/2013] [Indexed: 06/02/2023]
Abstract
INTRODUCTION Rosa rugosa flowers used as herbal medicine possess many activities. A fraction extracted by ethyl acetate exhibited strong inhibitive activity against protein tyrosine phosphatase 1B (PTP1B) in vitro. OBJECTIVE Establish an efficient method of LC coupled to quadrupole time-of-flight (QTOF) with tandem MS/MS to investigate the compositions in the active fraction. METHODS Chemical compositions were separated and investigated by LC/QTOF-MS/MS in negative electrospray ionisation (ESI) mode at different collision energy (CE) values. The maximal structural information was obtained for the identification of components. RESULTS A total of 75 compounds including tannins, their related compounds and flavonoids were identified or partially characterised according to accurate mass and the characteristic fragments at low and high CE. Meanwhile, the fragmentation pathways of gallotannins and ellagitannins (hexahydroxydiphenoyl group and lactonised valoneoyl group) were studied and proposed and were used to trace tannins in crude extracts. CONCLUSION The results suggest that this fraction is a source of PTP1B inhibitory activity with a potential for treating diabetes.
Collapse
Affiliation(s)
- Dongyu Gu
- Key Laboratory of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | | | | | | | | | | |
Collapse
|
45
|
Liu XC, Li YP, Li HQ, Deng ZW, Zhou L, Liu ZL, Du SS. Identification of repellent and insecticidal constituents of the essential oil of Artemisia rupestris L. aerial parts against Liposcelis bostrychophila Badonnel. Molecules 2013; 18:10733-46. [PMID: 24005967 PMCID: PMC6270646 DOI: 10.3390/molecules180910733] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 11/16/2022] Open
Abstract
The aim of this research was to determine the chemical composition and insecticidal and repellent activity of the essential oil of Artemisia rupestris L. aerial parts against the booklice Liposcelis bostrychophila Badonnel and isolation of insecticidal and repellent constituents from the essential oil. The essential oil of A. rupestris was obtained by hydrodistillation and analyzed by GC-MS. A total of 30 components of the essential oil of A. rupestris was identified and the principal compounds in the essential oil were α-terpinyl acetate (37.18%), spathulenol (10.65%), α-terpineol (10.09%), and linalool (7.56%), followed by 4-terpineol (3.92%) and patchoulol (3.05%). Based on bioactivity-guided fractionation, the four active constituents were isolated from the essential oil and identified as α-terpineol, α-terpinyl acetate, 4-terpineol and linalool. The essential oil of A. rupestris exhibited contact toxicity against L. bostrychophila with LD50 value of 414.48 µg/cm2. α-Terpinyl acetate (LD50 = 92.59 µg/cm2) exhibited stronger contact toxicity against booklice than α-terpineol (LD50 = 140.30 µg/cm2), 4-terpineol (LD50 = 211.35 µg/cm2), and linalool (LD50 = 393.16 µg/cm2). The essential oil of A. rupestris (LC50 = 6.67 mg/L air) also possessed fumigant toxicity against L. bostrychophila while the four constituents, 4-terpineol, α-terpineol, α-terpinyl acetate and linalool had LC50 values of 0.34, 1.12, 1.26 and 1.96 mg/L air, respectively. α-Terpinol and α-terpinyl acetate showed strong repellency against L. bostrychophila, while linalool and 4-terpinol exhibited weak repellency. The results indicate that the essential oil of A. rupestris aerial parts and its constituent compounds have potential for development into natural insecticides or fumigants as well as repellents for control of insects in stored grains.
Collapse
Affiliation(s)
- Xin Chao Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China; E-Mails: (X.C.L.); (H.Q.L.)
| | - Yin Ping Li
- Analytical and Testing Center, Beijing Normal University, Haidian District, Beijing 100875, China; E-Mails: (Y.P.L.); (Z.W.D.)
| | - He Qin Li
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China; E-Mails: (X.C.L.); (H.Q.L.)
| | - Zhi Wei Deng
- Analytical and Testing Center, Beijing Normal University, Haidian District, Beijing 100875, China; E-Mails: (Y.P.L.); (Z.W.D.)
| | - Ligang Zhou
- Department of Plant Pathology, China Agricultural University, Haidian District, Beijing 100193, China; E-Mail:
| | - Zhi Long Liu
- Department of Entomology, China Agricultural University, Haidian District, Beijing 100193, China; E-Mails: (X.C.L.); (H.Q.L.)
- Authors to whom correspondence should be addressed; E-Mails: (Z.L.L.); (S.S.D.); Tel./Fax: +86-10-6273-2800 (Z.L.L.); Tel./Fax: +86-10-6220-8032 (S.S.D.)
| | - Shu Shan Du
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China
- Authors to whom correspondence should be addressed; E-Mails: (Z.L.L.); (S.S.D.); Tel./Fax: +86-10-6273-2800 (Z.L.L.); Tel./Fax: +86-10-6220-8032 (S.S.D.)
| |
Collapse
|
46
|
Xie ZY, Lin TT, Yao MC, Wan JZ, Yin S. Unusual Guaiane Sesquiterpenoids fromArtemisia rupestris. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200408] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|