1
|
Cant S, Shanks GD, Keeling MJ, Penman BS. Extreme mortality during a historical measles outbreak on Rotuma is consistent with measles immunosuppression. Epidemiol Infect 2024; 152:e85. [PMID: 38736255 PMCID: PMC11149033 DOI: 10.1017/s095026882400075x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
Until the early twentieth century, populations on many Pacific Islands had never experienced measles. As travel to the Pacific Islands by Europeans became more common, the arrival of measles and other pathogens had devastating consequences. In 1911, Rotuma in Fiji was hit by a measles epidemic, which killed 13% of the island population. Detailed records show two mortality peaks, with individuals reported as dying solely from measles in the first and from measles and diarrhoea in the second. Measles is known to disrupt immune system function. Here, we investigate whether the pattern of mortality on Rotuma in 1911 was a consequence of the immunosuppressive effects of measles. We use a compartmental model to simulate measles infection and immunosuppression. Whilst immunosuppressed, we assume that individuals are vulnerable to dysfunctional reactions triggered by either (i) a newly introduced infectious agent arriving at the same time as measles or (ii) microbes already present in the population in a pre-existing equilibrium state. We show that both forms of the immunosuppression model provide a plausible fit to the data and that the inclusion of immunosuppression in the model leads to more realistic estimates of measles epidemiological parameters than when immunosuppression is not included.
Collapse
Affiliation(s)
- Susie Cant
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
| | - G. Dennis Shanks
- School of Public Health, University of Queensland, Herston, QLD, Australia
| | - Matt J. Keeling
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
- Mathematics Institute, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Bridget S. Penman
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, UK
- School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Liu S, Bush WS, Miskimen K, Gonzalez-Vicente A, Bailey JNC, Konidari I, McCauley JL, Sedor JR, O'Toole JF, Crawford DC. T-cell receptor diversity in minimal change disease in the NEPTUNE study. Pediatr Nephrol 2023; 38:1115-1126. [PMID: 35943576 PMCID: PMC10037226 DOI: 10.1007/s00467-022-05696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Minimal change disease (MCD) is the major cause of childhood idiopathic nephrotic syndrome, which is characterized by massive proteinuria and debilitating edema. Proteinuria in MCD is typically rapidly reversible with corticosteroid therapy, but relapses are common, and children often have many adverse events from the repeated courses of immunosuppressive therapy. The pathobiology of MCD remains poorly understood. Prior clinical observations suggest that abnormal T-cell function may play a central role in MCD pathogenesis. Based on these observations, we hypothesized that T-cell responses to specific exposures or antigens lead to a clonal expansion of T-cell subsets, a restriction in the T-cell repertoire, and an elaboration of specific circulating factors that trigger disease onset and relapses. METHODS To test these hypotheses, we sequenced T-cell receptors in fourteen MCD, four focal segmental glomerulosclerosis (FSGS), and four membranous nephropathy (MN) patients with clinical data and blood samples drawn during active disease and during remission collected by the Nephrotic Syndrome Study Network (NEPTUNE). We calculated several T-cell receptor diversity metrics to assess possible differences between active disease and remission states in paired samples. RESULTS Median productive clonality did not differ between MCD active disease (0.0083; range: 0.0042, 0.0397) and remission (0.0088; range: 0.0038, 0.0369). We did not identify dominant clonotypes in MCD active disease, and few clonotypes were shared with FSGS and MN patients. CONCLUSIONS While these data do not support an obvious role of the adaptive immune system T-cells in MCD pathogenesis, further study is warranted given the limited sample size. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Shiying Liu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kristy Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Agustin Gonzalez-Vicente
- Glickman Urological and Kidney Disease and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ioanna Konidari
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - John R Sedor
- Glickman Urological and Kidney Disease and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - John F O'Toole
- Glickman Urological and Kidney Disease and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
3
|
Restivo V, Fallucca A, Trapani F, Immordino P, Calamusa G, Casuccio A. Measles Immunization Status of Health Care Workers: A Cross-Sectional Study Exploring Factors Associated with Lack of Immunization According to the Health Belief Model. Vaccines (Basel) 2023; 11:vaccines11030618. [PMID: 36992202 DOI: 10.3390/vaccines11030618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Suboptimal levels of measles vaccination coverage make Italy a country where the circulation of the virus is still endemic. In the past decade, several nosocomial outbreaks of measles occurred in Italy that rapidly spread the infection among large numbers of hospitalized patients and susceptible healthcare workers (HCWs). A cross-sectional study was conducted at the University Hospital of Palermo (Italy) to estimate the rate of HCWs immunization and to investigate the factors associated with lack of immunization. The attitude to the immunization practice was evaluated by exploring the Health Belief Model. Overall, 118 HCWs were enrolled, with a mean age of 31 years and 59.3% male. About half of the sample (45.8%, n = 54) was found not to be immunized against measles. Multivariable analysis showed that the factors directly associated with the non-immunization status against measles were female sex (OR = 3.70, p = 0.056), being an HCW different from a physician (OR = 10.27, p = 0.015), having a high perception of barriers to vaccination (OR = 5.13, p = 0.047), not being immunized for other exanthematous diseases such as chickenpox (OR = 9.93, p = 0.003), mumps (OR = 33.64, p < 0.001) and rubella (OR = 10.12, p= 0.002). There is a need to contrast the low adherence of HCWs to measles vaccination by identifying effective strategies to increase immunization coverage and limiting the risk of further nosocomial measles outbreaks.
Collapse
Affiliation(s)
- Vincenzo Restivo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Alessandra Fallucca
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Federica Trapani
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Palmira Immordino
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Giuseppe Calamusa
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| | - Alessandra Casuccio
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE) "G. D'Alessandro", University of Palermo, Via del Vespro 133, 90127 Palermo, Italy
| |
Collapse
|
4
|
Moritoh K, Shoji K, Amagai Y, Fujiyuki T, Sato H, Yoneda M, Kai C. Immune response elicited in the tumor microenvironment upon rMV-SLAMblind cancer virotherapy. Cancer Sci 2023; 114:2158-2168. [PMID: 36715555 PMCID: PMC10154881 DOI: 10.1111/cas.15740] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Oncolytic virotherapy is a promising therapy for cancer. We previously established a recombinant measles virus (rMV-SLAMblind) that targets NECTIN4-expressing cancer cells and demonstrated its antitumor effects using a xenograft model in an immunodeficient mouse. In the current study, to investigate the immune response after rMV-SLAMblind therapy, we developed an immunocompetent cancer mouse model by introducing the NECTIN4 gene into mouse cancer cell lines. NECTIN4-expressing mouse cancer cells were successfully killed by rMV-SLAMblind in vitro. After transplantation of the NECTIN4-expressing tumor cells, rMV-SLAMblind significantly suppressed tumor growth in immunocompetent mice. Thus, this immunocompetent mouse cancer model could be a powerful tool in which to study the effect of rMV-SLAMblind therapy on the immune response. Using this model we found that rMV-SLAMblind elicited significant activation of natural killer cells, type 1 helper T cells and the tumor-specific CD8+ T-cell response in the tumor microenvironment. Immune cell depletion study revealed that CD8+ cells particularly played significant roles in the therapeutic efficacy of rMV-SLAMblind. Thus, rMV-SLAMblind exerts a therapeutic effect, not only directly by tumor cell killing, but also indirectly by efficient induction of antitumor immunity.
Collapse
Affiliation(s)
- Kanako Moritoh
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Koichiro Shoji
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yosuke Amagai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tomoko Fujiyuki
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sato
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Misako Yoneda
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Chieko Kai
- Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Amurri L, Reynard O, Gerlier D, Horvat B, Iampietro M. Measles Virus-Induced Host Immunity and Mechanisms of Viral Evasion. Viruses 2022; 14:v14122641. [PMID: 36560645 PMCID: PMC9781438 DOI: 10.3390/v14122641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The immune system deploys a complex network of cells and signaling pathways to protect host integrity against exogenous threats, including measles virus (MeV). However, throughout its evolutionary path, MeV developed various mechanisms to disrupt and evade immune responses. Despite an available vaccine, MeV remains an important re-emerging pathogen with a continuous increase in prevalence worldwide during the last decade. Considerable knowledge has been accumulated regarding MeV interactions with the innate immune system through two antagonistic aspects: recognition of the virus by cellular sensors and viral ability to inhibit the induction of the interferon cascade. Indeed, while the host could use several innate adaptors to sense MeV infection, the virus is adapted to unsettle defenses by obstructing host cell signaling pathways. Recent works have highlighted a novel aspect of innate immune response directed against MeV unexpectedly involving DNA-related sensing through activation of the cGAS/STING axis, even in the absence of any viral DNA intermediate. In addition, while MeV infection most often causes a mild disease and triggers a lifelong immunity, its tropism for invariant T-cells and memory T and B-cells provokes the elimination of one primary shield and the pre-existing immunity against previously encountered pathogens, known as "immune amnesia".
Collapse
Affiliation(s)
- Lucia Amurri
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Olivier Reynard
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie (CIRI), Team Neuro-Invasion, TROpism and VIRal Encephalitis, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Branka Horvat
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
| | - Mathieu Iampietro
- Centre International de Recherche en Infectiologie (CIRI), Team Immunobiology of Viral infections, Univ Lyon, Inserm, U1111, CNRS, UMR5308, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007 Lyon, France
- Correspondence:
| |
Collapse
|
6
|
Reynard O, Gonzalez C, Dumont C, Iampietro M, Ferren M, Le Guellec S, Laurie L, Mathieu C, Carpentier G, Roseau G, Bovier FT, Zhu Y, Le Pennec D, Montharu J, Addetia A, Greninger AL, Alabi CA, Brisebard E, Moscona A, Vecellio L, Porotto M, Horvat B. Nebulized fusion inhibitory peptide protects cynomolgus macaques from measles virus infection. Nat Commun 2022; 13:6439. [PMID: 36307480 PMCID: PMC9616412 DOI: 10.1038/s41467-022-33832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/03/2022] [Indexed: 12/25/2022] Open
Abstract
Measles is the most contagious airborne viral infection and the leading cause of child death among vaccine-preventable diseases. We show here that aerosolized lipopeptide fusion inhibitor, derived from heptad-repeat regions of the measles virus (MeV) fusion protein, blocks respiratory MeV infection in a non-human primate model, the cynomolgus macaque. We use a custom-designed mesh nebulizer to ensure efficient aerosol delivery of peptide to the respiratory tract and demonstrate the absence of adverse effects and lung pathology in macaques. The nebulized peptide efficiently prevents MeV infection, resulting in the complete absence of MeV RNA, MeV-infected cells, and MeV-specific humoral responses in treated animals. This strategy provides an additional means to fight against respiratory infection in non-vaccinated people, that can be readily translated to human trials. It presents a proof-of-concept for the aerosol delivery of fusion inhibitory peptides to protect against measles and other airborne viruses, including SARS-CoV-2, in case of high-risk exposure.
Collapse
Affiliation(s)
- Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claudia Gonzalez
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Marion Ferren
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | - Sandrine Le Guellec
- DTF-Aerodrug, R&D aerosolltherapy department of DTF medical (Saint Etienne, France), Faculté de médecine, Université de Tours, 37032, Tours, France
| | - Lajoie Laurie
- Université de Tours, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAe), UMR1282, Infectiologie et santé publique (ISP), Tours, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France
| | | | | | - Francesca T Bovier
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Yun Zhu
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Laboratory of Infection and Virology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Deborah Le Pennec
- INSERM, Research Center for Respiratory Diseases, CEPR U1100, Université de Tours, 37032, Tours, France
| | | | - Amin Addetia
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Alexander L Greninger
- Department of Laboratory Medicine and Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Christopher A Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Anne Moscona
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
- Department of Physiology & Cellular Biophysics, Columbia University Vagelos College of Physicians & Surgeons, New York, NY, USA
| | | | - Matteo Porotto
- Center for Host-Pathogen Interaction, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Experimental Medicine, University of Studies of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, 21 Avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
7
|
Soltani-Zangbar MS, Parhizkar F, Ghaedi E, Tarbiat A, Motavalli R, Alizadegan A, Aghebati-Maleki L, Rostamzadeh D, Yousefzadeh Y, Jadideslam G, Farid SS, Roshangar L, Mahmoodpoor A, Heris JA, Miahipour A, Yousefi M. A comprehensive evaluation of the immune system response and type-I Interferon signaling pathway in hospitalized COVID-19 patients. Cell Commun Signal 2022; 20:106. [PMID: 35842705 PMCID: PMC9287826 DOI: 10.1186/s12964-022-00903-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic has become the world's main life-threatening challenge in the third decade of the twenty-first century. Numerous studies have been conducted on SARS-CoV2 virus structure and pathogenesis to find reliable treatments and vaccines. The present study aimed to evaluate the immune-phenotype and IFN-I signaling pathways of COVID-19 patients with mild and severe conditions. MATERIAL AND METHODS A total of 100 COVID-19 patients (50 with mild and 50 with severe conditions) were enrolled in this study. The frequency of CD4 + T, CD8 + T, Th17, Treg, and B lymphocytes beside NK cells was evaluated using flow cytometry. IFN-I downstream signaling molecules, including JAK-1, TYK-2, STAT-1, and STAT-2, and Interferon regulatory factors (IRF) 3 and 7 expressions at RNA and protein status were investigated using real-time PCR and western blotting techniques, respectively. Immune levels of cytokines (e.g., IL-1β, IL-6, IL-17, TNF-α, IL-2R, IL-10, IFN-α, and IFN-β) and the existence of anti-IFN-α autoantibodies were evaluated via enzyme-linked immunosorbent assay (ELISA). RESULTS Immune-phenotyping results showed a significant decrease in the absolute count of NK cells, CD4 + T, CD8 + T, and B lymphocytes in COVID-19 patients. The frequency of Th17 and Treg cells showed a remarkable increase and decrease, respectively. All signaling molecules of the IFN-I downstream pathway and IRFs (i.e., JAK-1, TYK-2, STAT-1, STAT-2, IRF-3, and IRF-7) showed very reduced expression levels in COVID-19 patients with the severe condition compared to healthy individuals at both RNA and protein levels. Of 50 patients with severe conditions, 14 had anti-IFN-α autoantibodies in sera. Meanwhile, this result was 2 and 0 for patients with mild symptoms and healthy controls, respectively. CONCLUSION Our results indicate a positive association of the existence of anti-IFN-α autoantibodies and immune cells dysregulation with the severity of illness in COVID-19 patients. However, comprehensive studies are necessary to find out more about this context. Video abstract.
Collapse
Affiliation(s)
- Mohammad Sadegh Soltani-Zangbar
- grid.412888.f0000 0001 2174 8913Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Parhizkar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ghaedi
- grid.78028.350000 0000 9559 0613Pirogov Russian National Research Medical University, Moscow, Russia
| | - Ali Tarbiat
- grid.412763.50000 0004 0442 8645Department of Cardiology, Medical Faculty, Urmia University of Medical Sciences, Urmia, Iran
| | - Roza Motavalli
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Alizadegan
- grid.412888.f0000 0001 2174 8913Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- grid.412888.f0000 0001 2174 8913Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Rostamzadeh
- grid.413020.40000 0004 0384 8939Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Yousef Yousefzadeh
- grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Golamreza Jadideslam
- grid.412888.f0000 0001 2174 8913Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Shahmohammadi Farid
- grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- grid.412888.f0000 0001 2174 8913Department of Anesthesiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- grid.412888.f0000 0001 2174 8913Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Miahipour
- grid.411705.60000 0001 0166 0922Department of Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Yousefi
- grid.412888.f0000 0001 2174 8913Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- grid.412888.f0000 0001 2174 8913Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Enchéry F, Dumont C, Iampietro M, Pelissier R, Aurine N, Bloyet LM, Carbonnelle C, Mathieu C, Journo C, Gerlier D, Horvat B. Nipah virus W protein harnesses nuclear 14-3-3 to inhibit NF-κB-induced proinflammatory response. Commun Biol 2021; 4:1292. [PMID: 34785771 PMCID: PMC8595879 DOI: 10.1038/s42003-021-02797-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic emerging bat-borne Henipavirus that has caused numerous outbreaks with public health concerns. It is able to inhibit the host innate immune response. Since the NF-κB pathway plays a crucial role in the innate antiviral response as a major transcriptional regulator of inflammation, we postulated its implication in the still poorly understood NiV immunopathogenesis. We report here that NiV inhibits the canonical NF-κB pathway via its nonstructural W protein. Translocation of the W protein into the nucleus causes nuclear accumulation of the cellular scaffold protein 14-3-3 in both African green monkey and human cells infected by NiV. Excess of 14-3-3 in the nucleus was associated with a reduction of NF-κB p65 subunit phosphorylation and of its nuclear accumulation. Importantly, W-S449A substitution impairs the binding of the W protein to 14-3-3 and the subsequent suppression of NF-κB signaling, thus restoring the production of proinflammatory cytokines. Our data suggest that the W protein increases the steady-state level of 14-3-3 in the nucleus and consequently enhances 14-3-3-mediated negative feedback on the NF-κB pathway. These findings provide a mechanistic model of W-mediated disruption of the host inflammatory response, which could contribute to the high severity of NiV infection.
Collapse
Affiliation(s)
- François Enchéry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Claire Dumont
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Mathieu Iampietro
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Rodolphe Pelissier
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Noémie Aurine
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Louis-Marie Bloyet
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Caroline Carbonnelle
- INSERM- Laboratoire P4 Jean Mérieux, 21 Avenue Tony Garnier, 69365, Lyon, France
| | - Cyrille Mathieu
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Chloé Journo
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Denis Gerlier
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, Univ Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
9
|
Kakoullis L, Sampsonas F, Giannopoulou E, Kalogeropoulou C, Papachristodoulou E, Tsiamita M, Lykouras D, Velissaris D, Karkoulias K, Spiropoulos K, Panos G. Measles-associated pneumonia and hepatitis during the measles outbreak of 2018. Int J Clin Pract 2020; 74:e13430. [PMID: 31573732 DOI: 10.1111/ijcp.13430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/19/2019] [Accepted: 09/21/2019] [Indexed: 11/27/2022] Open
Abstract
Background Between 2017 and 2018, Greece experienced a measles outbreak, affecting >3000 patients, most of which were unvaccinated. Measles-associated pneumonia (MAP) is the most common serious compilation of the disease, but very few recent reports regarding its presentation are available. Materials and Methods Between January and May 2018, 11 adult patients presented to our department with acute measles virus infection, hypoxia and findings on chest X-ray. Clinical, laboratory and radiological data were collected and assessed. Nine out of eleven patients had hypoxic respiratory failure. Other complications included hepatitis, cholestasis and myositis, which were observed in the majority of patients. All patients received supplementary oxygen administration, whereas five patients required continuous positive airway pressure ventilation. Scoring of the radiological examinations performed was most notable for the presence of reticular opacities and consolidations. Statistical analysis demonstrated a significant association between PaO2/FiO2 values and the presence of reticular opacities, with PaO2/FiO2 decreasing as the mean value of the reticular opacities score increased (P = .02). Conclusion To our knowledge, this is the first report demonstrating an association between PaO2/FiO2 values and the presence of reticular opacities in patients with MAP. MAP should be suspected in any patient presenting with acute onset hypoxaemia and a reticular pattern on radiological examination, especially in outbreak settings. What is known Measles infections are on the rise in Europe, with epidemics affecting several European countries, resulting from suboptimal immunisation. The most common serious complication of measles is pneumonia, which is more common in adult patients and can cause significant morbidity. It is the most common cause of death due to measles. What is new In this report, we present 11 adults with measles-associated pneumonia, who presented with the combination of acute measles virus infection, hypoxia and findings on chest X-ray. To our knowledge, this is the first report demonstrating an association between the severity of hypoxaemia and the presence of reticular opacities on chest imaging studies.
Collapse
Affiliation(s)
- Loukas Kakoullis
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
- Department of Internal Medicine, Nicosia General Hospital, University of Cyprus, Nicosia, Cyprus
| | - Fotios Sampsonas
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Eleni Giannopoulou
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | | | - Eleni Papachristodoulou
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
- Department of Internal Medicine, Nicosia General Hospital, University of Cyprus, Nicosia, Cyprus
| | - Maria Tsiamita
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Dimosthenis Lykouras
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | | | - Kyriakos Karkoulias
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - Kostas Spiropoulos
- Department of Respiratory Medicine, University Hospital of Patras, Patras, Greece
| | - George Panos
- Department of Internal Medicine, Nicosia General Hospital, University of Cyprus, Nicosia, Cyprus
- Department of Internal Medicine, Section of Infectious Diseases, University Hospital of Patras, Patras, Greece
| |
Collapse
|
10
|
Diana NE, Feldman C. Measles in adults: A comparison of hospitalised HIV-infected and HIV-uninfected patients. South Afr J HIV Med 2019; 20:877. [PMID: 39391096 PMCID: PMC11466014 DOI: 10.4102/sajhivmed.v20i1.877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 02/22/2019] [Indexed: 10/12/2024] Open
Abstract
Background Although measles is traditionally a childhood illness, there are an increasing number of adult cases. Despite both measles and HIV infection being endemic in sub-Saharan Africa, there are little data regarding outcomes in co-infected patients. Objectives Compare demographic, clinical, laboratory and radiographic features, as well as outcome (length of hospital stay, complications and mortality) between HIV-infected and HIV-uninfected adult patients admitted with confirmed measles. Methods We conducted a retrospective record review of adult patients with confirmed measles who were admitted to the Infectious Diseases Unit at the Charlotte Maxeke Johannesburg Academic Hospital during the peak of the 2009 and 2010 South African measles outbreak. The data collected included demographic, clinical and laboratory parameters, as well as outcomes. Results Of the 33 confirmed measles cases admitted, 24 patients were tested for HIV infection and 18 tested seropositive. There were no significant differences in the demographics, clinical findings or laboratory data when comparing the HIV-positive and HIV-negative cases. Serious clinical manifestations were seen more frequently in HIV-positive patients (odds ratio [OR] 5, 95% confidence interval [CI] 0.48-51.8, p = 0.34). One of the six patients testing HIV-negative developed pneumonia, while six of the 18 HIV-positive patients had a course complicated by pneumonia. Five of these HIV-positive patients required admission to the intensive care unit, three developing respiratory failure necessitating mechanical ventilation. HIV-positive patients had several other manifestations, including acute kidney injury, purulent conjunctivitis, pancreatitis and encephalitis. HIV-positive patients had a significantly longer hospital stay (p = 0.03). There were three deaths in the HIV-positive group, but none in the HIV-negative group (OR 2.9, 95% CI 0.13-65.3, p = 0.55). Conclusion Our study provides data on the largest series of hospitalised adults infected with HIV and co-infected with measles. More severe consequences seemed to occur in hospitalised HIV-positive patients.
Collapse
Affiliation(s)
- Nina E Diana
- Division of Nephrology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles Feldman
- Division of Pulmonology, Department of Internal Medicine, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Kim J, Kim JE, Bae JM. Incidence of varicella in children in Jeju-do, Korea, 2005-2016: age-period-cohort analysis. Epidemiol Health 2018; 40:e2018054. [PMID: 30428643 PMCID: PMC6302224 DOI: 10.4178/epih.e2018054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/08/2018] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVES Although the nationwide inoculation rate of varicella vaccine was approximately 95% in Korean children recently, the number of notified varicella cases is unexpectedly continuously increasing till now. To suggest some hypotheses regarding this discrepancy, an age-period-cohort (APC) analysis as a descriptive epidemiology study was conducted for children residing in Jeju-do, Korea. METHODS The raw data were obtained from the nationwide database for insurance claim of healthcare fee provided by the National Health Insurance Service, Korea. The selection criteria were children aged 2-13 years who visited any healthcare center due to varicella from 2005 to 2016 while residing in Jeju-do. After calculating the birth cohort-specific crude incidence rates by age and year, the intrinsic estimator method was used to perform the APC analysis. RESULTS As the annual crude incidence rates decreased with increasing age between 2005 and 2016, the age and period effects also decreased. The intrinsic estimator coefficients suggesting the cohort effect shifted from positive to negative in 2011, the starting year of free varicella vaccine program in Jeju-do. CONCLUSIONS The results suggested that inoculated varicella vaccines have preventive effects. However, further studies to evaluate waning immunity would be needed.
Collapse
Affiliation(s)
- Jinhee Kim
- Jeju Center for Infection Control, Jeju, Korea
| | - Ji-Eun Kim
- Jeju Center for Infection Control, Jeju, Korea
| | - Jong-Myon Bae
- Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
12
|
Coleman S. The historical association between measles and pertussis: A case of immune suppression? SAGE Open Med 2015; 3:2050312115621315. [PMID: 27092263 PMCID: PMC4821208 DOI: 10.1177/2050312115621315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 11/11/2015] [Indexed: 01/31/2023] Open
Abstract
Objectives: According to historical medical reports, many children with measles subsequently contracted pertussis, often with fatal results. The likelihood of a child contracting pertussis after a measles infection is increased by its immune-suppressing effects. This research aims to verify the historical reports. Methods: The analysis examines statistically the historical relationship between average measles and pertussis incidence rates in the United States from 1938 to 1954 at the state level and in average weekly rates. Analysis of incidence rates is cross-sectional at the state level using public health data. Results: The results show that, on average and over time, states with higher measles rates have higher pertussis rates, and the peaks and nadirs of average weekly incidence rates of pertussis lag measles by a delay of about 3–4 weeks, well within the duration of immune suppression. Measles and pertussis have similar geographical distributions. Conclusion: The research tentatively supports the hypothesis that because of its immune-suppressing effects, measles causes an increase in pertussis, but other factors may be involved. Epidemic models should give more attention to the possibility of immune suppression for diseases such as measles where that might be a risk factor. The findings reemphasize the importance of measles vaccination for the prevention of other diseases.
Collapse
Affiliation(s)
- Stephen Coleman
- Metropolitan State University (Retired), Minneapolis, MN, USA
| |
Collapse
|
13
|
Romanets-Korbut O, Kovalevska LM, Seya T, Sidorenko SP, Horvat B. Measles virus hemagglutinin triggers intracellular signaling in CD150-expressing dendritic cells and inhibits immune response. Cell Mol Immunol 2015; 13:828-838. [PMID: 26073466 DOI: 10.1038/cmi.2015.55] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/17/2015] [Accepted: 05/17/2015] [Indexed: 01/22/2023] Open
Abstract
Measles virus (MV) is highly contagious pathogen, which causes a profound immunosuppression, resulting in high infant mortality. This virus infects dendritic cells (DCs) following the binding of MV hemagglutinin (MV-H) to CD150 receptor and alters DC functions by a mechanism that is not completely understood. We have analyzed the effect of MV-H interaction with CD150-expressing DCs on the DC signaling pathways and consequent phenotypic and functional changes in the absence of infectious context. We demonstrated that contact between CD150 on human DCs and MV-H expressed on membrane of transfected CHO cells was sufficient to modulate the activity of two major regulatory pathways of DC differentiation and function: to stimulate Akt and inhibit p38 MAPK phosphorylation, without concomitant ERK1/2 activation. Furthermore, interaction with MV-H decreased the expression level of DC activation markers CD80, CD83, CD86, and HLA-DR and strongly downregulated IL-12 production but did not modulate IL-10 secretion. Moreover, contact with MV-H suppressed DC-mediated T-cell alloproliferation, demonstrating profound alteration of DC maturation and functions. Finally, engagement of CD150 by MV-H in mice transgenic for human CD150 decreased inflammatory responses, showing the immunosuppressive effect of CD150-MV-H interaction in vivo. Altogether, these results uncover novel mechanism of MV-induced immunosuppression, implicating modulation of cell signaling pathways following MV-H interaction with CD150-expressing DCs and reveal anti-inflammatory effects of CD150 stimulation.
Collapse
Affiliation(s)
- Olga Romanets-Korbut
- CIRI, International Center for Infectiology Research, IbIV team, Université de Lyon, Lyon, France.,R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
| | - Larysa M Kovalevska
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
| | - Tsukasa Seya
- Department of Microbiology and Immunology, Graduate School of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Svetlana P Sidorenko
- R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, Kyiv, Ukraine
| | - Branka Horvat
- CIRI, International Center for Infectiology Research, IbIV team, Université de Lyon, Lyon, France.,Inserm, U1111, Lyon, France.,CNRS, UMR5308, Lyon, France.,Université Lyon 1, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
14
|
|
15
|
Qeska V, Barthel Y, Herder V, Stein VM, Tipold A, Urhausen C, Günzel-Apel AR, Rohn K, Baumgärtner W, Beineke A. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription. PLoS One 2014; 9:e96121. [PMID: 24769532 PMCID: PMC4000198 DOI: 10.1371/journal.pone.0096121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.
Collapse
Affiliation(s)
- Visar Qeska
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Yvonne Barthel
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Veronika M. Stein
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Andrea Tipold
- Center for Systems Neuroscience, Hannover, Germany
- Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Carola Urhausen
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Anne-Rose Günzel-Apel
- Unit for Reproductive Medicine, Small Animal Clinic, University of Veterinary Medicine Hannover, Germany
| | - Karl Rohn
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Beineke
- Department of Pathology, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
16
|
Christensen LD, Eriksen HB, Biering-Sørensen S, Balé C, Do VA, Andersen A, Martins CL, Sodemann M, Aaby P, Benn CS. The effect of early measles vaccination on thymic size. A randomized study from Guinea-Bissau. Vaccine 2014; 32:1641-4. [PMID: 24522160 DOI: 10.1016/j.vaccine.2014.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/05/2014] [Accepted: 01/14/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED In low-income countries early measles vaccine (MV) is associated with reduced child mortality which cannot be explained by prevention of measles. A large thymus gland in infancy is also associated with reduced mortality. We hypothesized that early MV is associated with increased thymic size. Within a randomized trial providing MV at age 4.5 and 9 months or MV only at age 9 months, thymic size was assessed by ultrasound at age 4.5 months, before randomization to early MV or no early MV, and 4 weeks later. Among 656 children, there was no effect of early MV on thymic size, the geometric mean size ratio being 0.99 (95% CI: 0.96-1.02). In a post hoc analysis early MV was associated with a negative effect in healthy children but a positive effect in ill children. In conclusion, early MV at age 4.5 months had no overall effect on thymus size 4 weeks later. TRIAL REGISTRATION http://clinicaltrials.gov, NCT01486355.
Collapse
Affiliation(s)
| | - Helle Brander Eriksen
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institute, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital Hvidovre, Denmark.
| | - Sofie Biering-Sørensen
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institute, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau.
| | - Carlitos Balé
- Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau.
| | - Vu An Do
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institute, Denmark.
| | - Andreas Andersen
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institute, Denmark.
| | | | - Morten Sodemann
- Faculty of Health Sciences, University of Southern Denmark, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau.
| | - Peter Aaby
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institute, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau.
| | - Christine Stabell Benn
- Research Center for Vitamins and Vaccines (CVIVA), Statens Serum Institute, Denmark; Bandim Health Project, INDEPTH Network, Bissau, Guinea-Bissau; OPEN, Institute for Clinical Research, University of Southern Denmark and Odense University Hospital, Denmark.
| |
Collapse
|
17
|
Liu YP, Russell SP, Ayala-Breton C, Russell SJ, Peng KW. Ablation of nectin4 binding compromises CD46 usage by a hybrid vesicular stomatitis virus/measles virus. J Virol 2014; 88:2195-204. [PMID: 24335299 PMCID: PMC3911550 DOI: 10.1128/jvi.02628-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/03/2013] [Indexed: 01/18/2023] Open
Abstract
Measles virus (MV) immunosuppression is due to infection of SLAM-positive immune cells, whereas respiratory shedding and virus transmission are due to infection of nectin4-positive airway epithelial cells. The vaccine lineage MV strain Edmonston (MV-Edm) acquired an additional tropism for CD46 which is the basis of its oncolytic specificity. VSVFH is a vesicular stomatitis virus (VSV) encoding the MV-Edm F and H entry proteins in place of G. The virus spreads faster than MV-Edm and is highly fusogenic and a potent oncolytic. To determine whether ablating nectin4 tropism from VSVFH might prevent shedding, increasing its safety profile as an oncolytic, or might have any effect on CD46 binding, we generated VSVFH viruses with H mutations that disrupt attachment to SLAM and/or nectin4. Disruption of nectin4 binding reduced release of VSVFH from the basolateral side of differentiated airway epithelia composed of Calu-3 cells. However, because nectin4 and CD46 have substantially overlapping receptor binding surfaces on H, disruption of nectin4 binding compromised CD46 binding and greatly diminished the oncolytic potency of these viruses on human cancer cells. Thus, our results support continued preclinical development of VSVFH without ablation of nectin4 binding.
Collapse
Affiliation(s)
- Yu-Ping Liu
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Samuel P. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- University of Wisconsin—Madison, Madison, Wisconsin, USA
| | | | - Stephen J. Russell
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kah-Whye Peng
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Vijayan M, Seo YJ, Pritzl CJ, Squires SA, Alexander S, Hahm B. Sphingosine kinase 1 regulates measles virus replication. Virology 2013; 450-451:55-63. [PMID: 24503067 DOI: 10.1016/j.virol.2013.11.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/21/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Measles virus (MV) manipulates host factors to facilitate virus replication. Sphingosine kinase (SK) is an enzyme catalyzing the formation of sphingosine 1-phosphate and modulates multiple cellular processes including the host defense system. Here, we determined the role of SK1 in MV replication. Overexpression of SK1 enhanced MV replication. In contrast, inhibition of SK impaired viral protein expression and infectious virus production from cells expressing MV receptor, SLAM or Nectin-4. The inhibition of virus replication was observed when the cells were infected by vaccine strain or wild type MV or V/C gene-deficient MV. Importantly, SK inhibition suppressed MV-induced activation of NF-κB. The inhibitors specific to NF-κB signal pathway repressed the synthesis of MV proteins, revealing the importance of NF-κB activation for efficient MV replication. Therefore, SK inhibition restricts MV replication and modulates the NF-κB signal pathway, demonstrating that SK is a cellular factor critical for MV replication.
Collapse
Affiliation(s)
- Madhuvanthi Vijayan
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Young-Jin Seo
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Curtis John Pritzl
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Sarah Angela Squires
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
| | - Stephen Alexander
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA.
| |
Collapse
|
19
|
Gupta M, Lo MK, Spiropoulou CF. Activation and cell death in human dendritic cells infected with Nipah virus. Virology 2013; 441:49-56. [PMID: 23587249 DOI: 10.1016/j.virol.2013.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/13/2012] [Accepted: 03/04/2013] [Indexed: 01/23/2023]
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes pulmonary disease and encephalitis in humans with 40-70% fatality. Interactions between NiV and the human immune system remain poorly understood. Here, we demonstrate the effects of NiV infection on DC and T cell function. Using an in vitro system, we found that NiV infects and replicates at low levels in DCs and induces the expression of TNF-α, IL-1α, IL-1β, IL-8, and IP-10. NiV infection activates DCs, and upregulates the expression of CD40, CD80, and CD86. Also have reduced levels of bcl2 and high levels of active caspase 3, suggesting the induction of apoptosis. DCs infected by NiV are unable to efficiently prime CD4 and CD8 T cells, but instead induce apoptosis in T cells. Interestingly, DCs treated with inactivated NiV also show signs of apoptosis. These findings indicate that NiV infected DCs could play an important role in NiV pathogenesis.
Collapse
Affiliation(s)
- Manisha Gupta
- Viral Special Pathogens Branch, NCEZID, DHCPP, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | |
Collapse
|
20
|
Riedel A, Mofolo B, Avota E, Schneider-Schaulies S, Meintjes A, Mulder N, Kneitz S. Accumulation of splice variants and transcripts in response to PI3K inhibition in T cells. PLoS One 2013; 8:e50695. [PMID: 23383294 PMCID: PMC3562341 DOI: 10.1371/journal.pone.0050695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 10/23/2012] [Indexed: 12/17/2022] Open
Abstract
Background Measles virus (MV) causes T cell suppression by interference with phosphatidylinositol-3-kinase (PI3K) activation. We previously found that this interference affected the activity of splice regulatory proteins and a T cell inhibitory protein isoform was produced from an alternatively spliced pre-mRNA. Hypothesis Differentially regulated and alternatively splice variant transcripts accumulating in response to PI3K abrogation in T cells potentially encode proteins involved in T cell silencing. Methods To test this hypothesis at the cellular level, we performed a Human Exon 1.0 ST Array on RNAs isolated from T cells stimulated only or stimulated after PI3K inhibition. We developed a simple algorithm based on a splicing index to detect genes that undergo alternative splicing (AS) or are differentially regulated (RG) upon T cell suppression. Results Applying our algorithm to the data, 9% of the genes were assigned as AS, while only 3% were attributed to RG. Though there are overlaps, AS and RG genes differed with regard to functional regulation, and were found to be enriched in different functional groups. AS genes targeted extracellular matrix (ECM)-receptor interaction and focal adhesion pathways, while RG genes were mainly enriched in cytokine-receptor interaction and Jak-STAT. When combined, AS/RG dependent alterations targeted pathways essential for T cell receptor signaling, cytoskeletal dynamics and cell cycle entry. Conclusions PI3K abrogation interferes with key T cell activation processes through both differential expression and alternative splicing, which together actively contribute to T cell suppression.
Collapse
Affiliation(s)
- Alice Riedel
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher, Wuerzburg, Germany
| | - Boitumelo Mofolo
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher, Wuerzburg, Germany
| | | | - Ayton Meintjes
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Nicola Mulder
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Susanne Kneitz
- Department of Physiological Chemistry I, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- * E-mail:
| |
Collapse
|
21
|
Chinen J, Shearer WT. External factors inducing immune deficiency. Clin Immunol 2013. [DOI: 10.1016/b978-0-7234-3691-1.00021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Coughlin MM, Bellini WJ, Rota PA. Contribution of dendritic cells to measles virus induced immunosuppression. Rev Med Virol 2012; 23:126-38. [DOI: 10.1002/rmv.1735] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 12/19/2022]
Affiliation(s)
- Melissa M. Coughlin
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| | - William J. Bellini
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| | - Paul A. Rota
- Centers for Disease Control and Prevention, Measles, Mumps, Rubella and Herpesvirus Laboratory Branch; Atlanta GA USA
| |
Collapse
|
23
|
Avota E, Koethe S, Schneider-Schaulies S. Membrane dynamics and interactions in measles virus dendritic cell infections. Cell Microbiol 2012; 15:161-9. [PMID: 22963539 DOI: 10.1111/cmi.12025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 09/04/2012] [Accepted: 09/04/2012] [Indexed: 12/14/2022]
Abstract
Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Str. 7, 97878 Wuerzburg, Germany
| | | | | |
Collapse
|
24
|
Measles virus transmission from dendritic cells to T cells: formation of synapse-like interfaces concentrating viral and cellular components. J Virol 2012; 86:9773-81. [PMID: 22761368 DOI: 10.1128/jvi.00458-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transmission of measles virus (MV) to T cells by its early CD150(+) target cells is considered to be crucial for viral dissemination within the hematopoietic compartment. Using cocultures involving monocyte-derived dendritic cells (DCs) and T cells, we now show that T cells acquire MV most efficiently from cis-infected DCs rather than DCs having trapped MV (trans-infection). Transmission involves interactions of the viral glycoprotein H with its receptor CD150 and is therefore more efficient to preactivated T cells. In addition to rare association with actin-rich filopodial structures, the formation of contact interfaces consistent with that of virological synapses (VS) was observed where viral proteins accumulated and CD150 was redistributed in an actin-dependent manner. In addition to these molecules, activated LFA-1, DC-SIGN, CD81, and phosphorylated ezrin-radixin-moesin proteins, which also mark the HIV VS, redistributed toward the MV VS. Most interestingly, moesin and substance P receptor, both implicated earlier in assisting MV entry or cell-to-cell transmission, also partitioned to the transmission structure. Altogether, the MV VS shares important similarities to the HIV VS in concentrating cellular components potentially regulating actin dynamics, conjugate stability, and membrane fusion as required for efficient entry of MV into target T cells.
Collapse
|
25
|
Bossart GD, Romano TA, Peden-Adams MM, Schaefer A, McCulloch S, Goldstein JD, Rice CD, Saliki JT, Fair PA, Reif JS. Clinicoimmunopathologic findings in Atlantic bottlenose dolphins Tursiops truncatus with positive cetacean morbillivirus antibody titers. DISEASES OF AQUATIC ORGANISMS 2011; 97:103-112. [PMID: 22303627 DOI: 10.3354/dao02410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sera from free-ranging Atlantic bottlenose dolphins Tursiops truncatus inhabiting the Indian River Lagoon (IRL), Florida were tested for antibodies to cetacean morbilliviruses from 2003 to 2007 as part of a multidisciplinary study of individual and population health. A suite of clinicoimmunopathologic variables were evaluated in morbillivirus-seropositive dolphins (n = 14) and seronegative healthy dolphins (n = 49). Several important differences were found. Serum alkaline phosphatase, creatine phosphokinase, chloride, albumin and albumin/globulin ratios were significantly lower in seropositive dolphins. Innate immunity appeared to be upregulated with significant increases in lysozyme concentration and marginally significant increases in monocytic phagocytosis. Adaptive immunity was also impacted in dolphins with positive morbillivirus antibody titers. Mitogen-induced T lymphocyte proliferation responses were significantly reduced in dolphins with positive morbillivirus antibody titers, and marginally significant decreases were found for absolute numbers of CD4+ lymphocytes. The findings suggest impairment of cell-mediated adaptive immunity, similar to the immunologic pattern reported with acute morbillivirus infection in other species. In contrast, dolphins with positive morbillivirus antibody titers appeared to have at least a partially upregulated humoral immune response with significantly higher levels of gamma globulins than healthy dolphins, which may represent an antibody response to morbillivirus infection or other pathogens. These data suggest that subclinical dolphin morbillivirus infection in IRL dolphins may produce clinicoimmunopathologic perturbations that impact overall health.
Collapse
|
26
|
Wild-type measles virus interferes with short-term engraftment of human CD34+ hematopoietic progenitor cells. J Virol 2011; 85:7710-8. [PMID: 21593150 DOI: 10.1128/jvi.00532-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transient lymphopenia is a hallmark of measles virus (MV)-induced immunosuppression. To address to what extent replenishment of the peripheral lymphocyte compartment from bone marrow (BM) progenitor/stem cells might be affected, we analyzed the interaction of wild-type MV with hematopoietic stem and progenitor cells (HS/PCs) and stroma cells in vitro. Infection of human CD34(+) HS/PCs or stroma cells with wild-type MV is highly inefficient yet noncytolytic. It occurs independently of CD150 in stroma cells but also in HS/PCs, where infection is established in CD34(+) CD150(-) and CD34(+) CD150(+) (in humans representing HS/PC oligopotent precursors) subsets. Stroma cells and HS/PCs can mutually transmit MV and may thereby create a possible niche for continuous viral exchange in the BM. Infected lymphocytes homing to this compartment may serve as sources for HS/PC or stroma cell infection, as reflected by highly efficient transmission of MV from both populations in cocultures with MV-infected B or T cells. Though MV exposure does not detectably affect the viability, expansion, and colony-forming activity of either CD150(+) or CD150(-) HS/PCs in vitro, it efficiently interferes with short- but not long-term hematopoietic reconstitution in NOD/SCID mice. Altogether, these findings support the hypothesis that MV accession of the BM compartment by infected lymphocytes may contribute to peripheral blood mononuclear cell lymphopenia at the level of BM suppression.
Collapse
|
27
|
Cytoskeletal dynamics: concepts in measles virus replication and immunomodulation. Viruses 2011; 3:102-117. [PMID: 22049305 PMCID: PMC3206598 DOI: 10.3390/v3020102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/20/2011] [Accepted: 01/20/2011] [Indexed: 12/17/2022] Open
Abstract
In common with most viruses, measles virus (MV) relies on the integrity of the cytoskeleton of its host cells both with regard to efficient replication in these cells, but also retention of their motility which favors viral dissemination. It is, however, the surface interaction of the viral glycoprotein (gp) complex with receptors present on lymphocytes and dendritic cells (DCs), that signals effective initiation of host cell cytoskeletal dynamics. For DCs, these may act to regulate processes as diverse as viral uptake and sorting, but also the ability of these cells to successfully establish and maintain functional immune synapses (IS) with T cells. In T cells, MV signaling causes actin cytoskeletal paralysis associated with a loss of polarization, adhesion and motility, which has been linked to activation of sphingomyelinases and subsequent accumulation of membrane ceramides. MV modulation of both DC and T cell cytoskeletal dynamics may be important for the understanding of MV immunosuppression at the cellular level.
Collapse
|
28
|
Isolation and complete nucleotide sequence of the measles virus IMB-1 strain in China. Virol Sin 2010; 25:381-9. [PMID: 21221916 DOI: 10.1007/s12250-010-3158-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 09/27/2010] [Indexed: 10/18/2022] Open
Abstract
The complete nucleotide sequence of the measles virus strain IMB-1, which was isolated in China, was determined. As in other measles viruses, its genome is 15,894 nucleotides in length and encodes six proteins. The full-length nucleotide sequence of the IMB-1 isolate differed from vaccine strains (including wild-type Edmonston strain) by 4%-5% at the nucleotide sequence level. This isolate has amino acid variations over the full genome, including in the hemagglutinin and fusion genes. This report is the first to describe the full-length genome of a genotype H1 strain and provide an overview of the diversity of genetic characteristics of a circulating measles virus.
Collapse
|
29
|
Prodhomme EJF, Fack F, Revets D, Pirrotte P, Kremer JR, Muller CP. Extensive Phosphorylation Flanking the C-Terminal Functional Domains of the Measles Virus Nucleoprotein. J Proteome Res 2010; 9:5598-609. [DOI: 10.1021/pr100407w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Emmanuel J. F. Prodhomme
- Institute of Immunology, Laboratoire National de Santé and Centre de Recherche Public-Santé, 20A rue Auguste Lumière, L-1011 Luxembourg, Grand-Duchy of Luxembourg
| | - Fred Fack
- Institute of Immunology, Laboratoire National de Santé and Centre de Recherche Public-Santé, 20A rue Auguste Lumière, L-1011 Luxembourg, Grand-Duchy of Luxembourg
| | - Dominique Revets
- Institute of Immunology, Laboratoire National de Santé and Centre de Recherche Public-Santé, 20A rue Auguste Lumière, L-1011 Luxembourg, Grand-Duchy of Luxembourg
| | - Patrick Pirrotte
- Institute of Immunology, Laboratoire National de Santé and Centre de Recherche Public-Santé, 20A rue Auguste Lumière, L-1011 Luxembourg, Grand-Duchy of Luxembourg
| | - Jacques R. Kremer
- Institute of Immunology, Laboratoire National de Santé and Centre de Recherche Public-Santé, 20A rue Auguste Lumière, L-1011 Luxembourg, Grand-Duchy of Luxembourg
| | - Claude P. Muller
- Institute of Immunology, Laboratoire National de Santé and Centre de Recherche Public-Santé, 20A rue Auguste Lumière, L-1011 Luxembourg, Grand-Duchy of Luxembourg
| |
Collapse
|
30
|
Hawkins ED, Oliaro J. CD46 signaling in T cells: Linking pathogens with polarity. FEBS Lett 2010; 584:4838-44. [DOI: 10.1016/j.febslet.2010.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 08/19/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
|
31
|
Sasseville VG, Mansfield KG. Overview of known non-human primate pathogens with potential to affect colonies used for toxicity testing. J Immunotoxicol 2010; 7:79-92. [PMID: 19909217 DOI: 10.3109/15476910903213521] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The increased demand for non-human primates (NHPs) in biomedical research has resulted in alternative sources of animals being used, which has allowed for importation of animals with varying background incidences of bacterial, viral, parasitic, and fungal pathogens. This can be of minimal consequence when animals from different sources are kept isolated. However, when NHPs from different sources with varying incidences of primary and opportunistic pathogens are mixed, there can be a rapid spread of these pathogens and an increase in the seroconversion of susceptible animals. If this process occurs during the conduct of a study, interpretation of that study can be confounded. Furthermore, NHPs imported from areas enzootic for pathogens such as Plasmodium or with high incidences of human diseases such as measles and tuberculosis can introduce diseases that can be a threat to colony health, have zoonotic risk, and can severely impact study outcome. Thus, knowledge of the common primary and opportunistic NHP infections, as well as reemerging pathogens, enables the toxicologist to use information on disease status for pre-study animal selection and intelligent study design. This is particularly important when immunomodulatory compounds are being investigated. Moreover, the toxicologic pathologist well versed in the common spontaneous infections, opportunistic pathogens, and background lesions in NHPs is able to assess possible drug-related effects in drug safety studies. This review identifies the common primary and opportunistic pathogens, as well as newly emerging infections of NHPs, that can directly or indirectly affect colony health and the interpretation of drug safety studies.
Collapse
Affiliation(s)
- Vito G Sasseville
- Bristol-Myers Squibb Research and Development, Discovery Toxicology, Princeton, NJ 08543, USA.
| | | |
Collapse
|
32
|
Measles virus-induced immunosuppression: from effectors to mechanisms. Med Microbiol Immunol 2010; 199:227-37. [DOI: 10.1007/s00430-010-0152-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Indexed: 12/11/2022]
|
33
|
Abstract
Measles virus (MV) causes transient severe immunosuppression in patients, which may lead to secondary viral and bacterial infections, largely accounting for measles-related morbidity and mortality. MV is known to infect immune cells by using the human signaling lymphocyte activation molecule (SLAM; also called CD150) as a cellular receptor, but the mechanism by which MV causes immunosuppression is not well understood. We show that MV infection of SLAM knock-in mice, in which the V domain of mouse SLAM was replaced by the V domain of human SLAM, crossed with alpha/beta-interferon receptor knockout mice, reproduced many immunological alterations observed in human patients. These included lymphopenia, inhibition of T-cell proliferation and antibody production, increased production of the Th2 cytokine interleukin-4 (IL-4) and the immunosuppressive cytokine IL-10, and suppression of contact hypersensitivity. Gross redistribution of lymphocytes among lymphoid tissues was not apparent in infected mice, nor was an increase of regulatory T cells. The numbers of lymphocytes in lymph nodes remained almost unchanged after MV infection, despite enhanced apoptosis, suggesting that lymph nodes were replenished with lymphocytes from the peripheral blood, which may have contributed to the observed lymphopenia in the spleen. Blocking of IL-10 by use of an anti-IL-10 receptor antibody ameliorated suppression of contact hypersensitivity in infected mice. These results indicate that SLAM knock-in mice lacking the expression of the alpha/beta-interferon receptor serve as a useful small animal model with which to elucidate MV-induced immunosuppression.
Collapse
|
34
|
Gassert E, Avota E, Harms H, Krohne G, Gulbins E, Schneider-Schaulies S. Induction of membrane ceramides: a novel strategy to interfere with T lymphocyte cytoskeletal reorganisation in viral immunosuppression. PLoS Pathog 2009; 5:e1000623. [PMID: 19834551 PMCID: PMC2757718 DOI: 10.1371/journal.ppat.1000623] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 09/17/2009] [Indexed: 01/16/2023] Open
Abstract
Silencing of T cell activation and function is a highly efficient strategy of immunosuppression induced by pathogens. By promoting formation of membrane microdomains essential for clustering of receptors and signalling platforms in the plasma membrane, ceramides accumulating as a result of membrane sphingomyelin breakdown are not only essential for assembly of signalling complexes and pathogen entry, but also act as signalling modulators, e. g. by regulating relay of phosphatidyl-inositol-3-kinase (PI3K) signalling. Their role in T lymphocyte functions has not been addressed as yet. We now show that measles virus (MV), which interacts with the surface of T cells and thereby efficiently interferes with stimulated dynamic reorganisation of their actin cytoskeleton, causes ceramide accumulation in human T cells in a neutral (NSM) and acid (ASM) sphingomyelinase-dependent manner. Ceramides induced by MV, but also bacterial sphingomyelinase, efficiently interfered with formation of membrane protrusions and T cell spreading and front/rear polarisation in response to beta1 integrin ligation or alphaCD3/CD28 activation, and this was rescued upon pharmacological or genetic ablation of ASM/NSM activity. Moreover, membrane ceramide accumulation downmodulated chemokine-induced T cell motility on fibronectin. Altogether, these findings highlight an as yet unrecognised concept of pathogens able to cause membrane ceramide accumulation to target essential processes in T cell activation and function by preventing stimulated actin cytoskeletal dynamics.
Collapse
Affiliation(s)
- Evelyn Gassert
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Harry Harms
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Georg Krohne
- Department of Electron Microscopy, University of Würzburg, Würzburg, Germany
| | - Erich Gulbins
- Department for Molecular Biology, University of Essen, Essen, Germany
| | | |
Collapse
|
35
|
Almeida AS, Lago PM, Boechat N, Huard RC, Lazzarini LCO, Santos AR, Nociari M, Zhu H, Perez-Sweeney BM, Bang H, Ni Q, Huang J, Gibson AL, Flores VC, Pecanha LR, Kritski AL, Lapa e Silva JR, Ho JL. Tuberculosis Is Associated with a Down-Modulatory Lung Immune Response That Impairs Th1-Type Immunity. THE JOURNAL OF IMMUNOLOGY 2009; 183:718-31. [DOI: 10.4049/jimmunol.0801212] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Sellin CI, Jégou JF, Renneson J, Druelle J, Wild TF, Marie JC, Horvat B. Interplay between virus-specific effector response and Foxp3 regulatory T cells in measles virus immunopathogenesis. PLoS One 2009; 4:e4948. [PMID: 19319188 PMCID: PMC2655717 DOI: 10.1371/journal.pone.0004948] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 02/24/2009] [Indexed: 12/21/2022] Open
Abstract
Measles is a highly contagious childhood disease associated with an immunological paradox: although a strong virus-specific immune response results in virus clearance and the establishment of a life-long immunity, measles infection is followed by an acute and profound immunosuppression leading to an increased susceptibility to secondary infections and high infant mortality. In certain cases, measles is followed by fatal neurological complications. To elucidate measles immunopathology, we have analyzed the immune response to measles virus in mice transgenic for the measles virus receptor, human CD150. These animals are highly susceptible to intranasal infection with wild-type measles strains. Similarly to what has been observed in children with measles, infection of suckling transgenic mice leads to a robust activation of both T and B lymphocytes, generation of virus-specific cytotoxic T cells and antibody responses. Interestingly, Foxp3(+)CD25(+)CD4(+) regulatory T cells are highly enriched following infection, both in the periphery and in the brain, where the virus intensively replicates. Although specific anti-viral responses develop in spite of increased frequency of regulatory T cells, the capability of T lymphocytes to respond to virus-unrelated antigens was strongly suppressed. Infected adult CD150 transgenic mice crossed in an interferon receptor type I-deficient background develop generalized immunosuppression with an increased frequency of CD4(+)CD25(+)Foxp3(+) T cells and strong reduction of the hypersensitivity response. These results show that measles virus affects regulatory T-cell homeostasis and suggest that an interplay between virus-specific effector responses and regulatory T cells plays an important role in measles immunopathogenesis. A better understanding of the balance between measles-induced effector and regulatory T cells, both in the periphery and in the brain, may be of critical importance in the design of novel approaches for the prevention and treatment of measles pathology.
Collapse
Affiliation(s)
- Caroline I. Sellin
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Jean-François Jégou
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Joëlle Renneson
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Johan Druelle
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - T. Fabian Wild
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Julien C. Marie
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
| | - Branka Horvat
- Immunobiology of Viral Infections, Inserm, U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- IFR128 BioSciences Lyon-Gerland Lyon-Sud, Lyon, France
- Université Lyon 1, Lyon, France
- * E-mail:
| |
Collapse
|
37
|
Abt M, Gassert E, Schneider-Schaulies S. Measles virus modulates chemokine release and chemotactic responses of dendritic cells. J Gen Virol 2009; 90:909-914. [PMID: 19264619 DOI: 10.1099/vir.0.008581-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Interference with dendritic cell (DC) maturation and function is considered to be central to measles virus (MV)-induced immunosuppression. Temporally ordered production of chemokines and switches in chemokine receptor expression are essential for pathogen-driven DC maturation as they are prerequisites for chemotaxis and T cell recruitment. We found that MV infection of immature monocyte-derived DCs induced transcripts specific for CCL-1, -2, -3, -5, -17 and -22, CXCL-10 and CXCL-11, yet did not induce CXCL-8 (interleukin-8) and CCL-20 at the mRNA and protein level. Within 24 h post-infection, T cell attraction was not detectably impaired by these cells. MV infection failed to promote the switch from CCR5 to CCR7 expression and this correlated with chemotactic responses of MV-matured DC cultures to CCL-3 rather than to CCL-19. Moreover, the chemotaxis of MV-infected DCs to either chemokine was compromised, indicating that MV also interferes with this property independently of chemokine receptor modulation.
Collapse
Affiliation(s)
- Marion Abt
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Evelyn Gassert
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| | - Sibylle Schneider-Schaulies
- Institute for Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, D-97078 Würzburg, Germany
| |
Collapse
|
38
|
Weingartl HM, Berhane Y, Czub M. Animal models of henipavirus infection: a review. Vet J 2008; 181:211-20. [PMID: 19084436 DOI: 10.1016/j.tvjl.2008.10.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 10/27/2008] [Accepted: 10/28/2008] [Indexed: 11/24/2022]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) form a separate genus Henipavirus within the family Paramyxoviridae, and are classified as biosafety level four pathogens due to their high case fatality rate following human infection and because of the lack of effective vaccines or therapy. Both viruses emerged from their natural reservoir during the last decade of the 20th century, causing severe disease in humans, horses and swine, and infecting a number of other mammalian species. The current review summarises current published data relating to experimental infection of small and large animals, including the natural reservoir species, the Pteropus bat, with HeV or NiV. Susceptibility to infection and virus distribution in the individual species is discussed, along with the pathogenesis, pathological changes, and potential routes of transmission.
Collapse
Affiliation(s)
- Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, 1015 Arlington St., MB, Canada R3E 3M4.
| | | | | |
Collapse
|
39
|
Abstract
Measles virus (MV) was isolated in 1954 (Enders and Peeble 1954). It is among the most contagious of viruses and a leading cause of mortality in children in developing countries (Murray and Lopez 1997; Griffin 2001; Bryce et al. 2005). Despite intense research over decades on the biology and pathogenesis of the virus and the successful development in 1963 of an effective MV vaccine (Cutts and Markowitz 1994), cell entry receptor(s) for MV remained unidentified until 1993. Two independent studies showed that transfection of nonsusceptible rodent cells with human CD46 renders these cells permissive to infection with the Edmonston and Halle vaccine strains of measles virus (Dorig et al. 1993; Naniche et al. 1993). A key finding in these investigations was that MV binding and infection was inhibited by monoclonal and polyclonal antibodies to CD46. These reports established CD46 as a MV cell entry receptor. This chapter summarizes the role of CD46 in measles virus infection.
Collapse
Affiliation(s)
- C Kemper
- Division of Rheumatology, St. Louis, MO 63110, USA
| | | |
Collapse
|
40
|
Disease-Associated Novel CD46 Splicing Variants and Pathologic Bone Remodeling in Otosclerosis. Laryngoscope 2008; 118:1669-76. [DOI: 10.1097/mlg.0b013e31817c133d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Koff WC, Parks CL, Berkhout B, Ackland J, Noble S, Gust ID. Replicating viral vectors as HIV vaccines Summary Report from IAVI Sponsored Satellite Symposium, International AIDS Society Conference, July 22, 2007. Biologicals 2008; 36:277-86. [PMID: 18555698 DOI: 10.1016/j.biologicals.2008.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 04/19/2008] [Indexed: 10/21/2022] Open
Abstract
At the International AIDS Society Conference on Pathogenesis, Treatment and Prevention held in Sydney, Australia, in July 2007, the International AIDS Vaccine Initiative (IAVI) convened a satellite symposium entitled 'Accelerating the Development of Replicating Viral Vectors for AIDS Vaccines.' Its purpose was to highlight the rationale for accelerating the development of replicating viral vectors for use as vaccines against HIV-1, and to bring together vaccine scientists, regulatory officials, and public health specialists from industrialized and developing nations to discuss the major issues facing the development and testing of replicating viral vector-based vaccines.
Collapse
Affiliation(s)
- W C Koff
- International AIDS Vaccine Initiative, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
42
|
Xagorari A, Chlichlia K. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J 2008; 2:49-59. [PMID: 19088911 PMCID: PMC2593046 DOI: 10.2174/1874285800802010049] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 04/30/2008] [Accepted: 05/02/2008] [Indexed: 01/21/2023] Open
Abstract
Induction of antiviral innate immune responses depends on a family of innate immune receptors, the Toll-like receptors (TLR). TLR mediate the antiviral immune responses by recognizing virus infection, activating signaling pathways and inducing the production of antiviral cytokines and chemokines. ssRNA and dsRNA viruses can be recognized by TLR7/8 and TLR3, respectively. TLR receptors are also involved in the recognition of viruses containing genomes rich in CpG DNA motifs as well as envelope glycoproteins. Cytoplasmic recognition of dsRNA by RNA helicases such as RIG-I and MDA5 provides another means of recognizing viral nucleic acid. In order to counteract the innate host immune system viruses evolved mechanisms that block recognition and signaling through pattern recognition receptors, such as TLRs and RNA helicases. Recently, TLR agonists represent a promising approach for the treatment of infectious diseases. This review will focus on the current knowledge of TLR-mediated immune responses to several viral infections.
Collapse
Affiliation(s)
- Angeliki Xagorari
- Cell and Gene Therapy Laboratory, Dept. of Hematology/BMT, Gen. Hospital G. Papanikolaou, 57010 Exochi, Thes-saloniki, Greece
| | | |
Collapse
|
43
|
Wachtman LM, Mansfield KG. Opportunistic Infections in Immunologically Compromised Nonhuman Primates. ILAR J 2008; 49:191-208. [DOI: 10.1093/ilar.49.2.191] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
44
|
Chinen J, Shearer WT. Immunodeficiency due to congenital, metabolic, infectious, surgical and environmental factors. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Sips GJ, Chesik D, Glazenburg L, Wilschut J, De Keyser J, Wilczak N. Involvement of morbilliviruses in the pathogenesis of demyelinating disease. Rev Med Virol 2007; 17:223-44. [PMID: 17410634 DOI: 10.1002/rmv.526] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Two members of the morbillivirus genus of the family Paramyxoviridae, canine distemper virus (CDV) and measles virus (MV), are well-known for their ability to cause a chronic demyelinating disease of the CNS in their natural hosts, dogs and humans, respectively. Both viruses have been studied for their potential involvement in the neuropathogenesis of the human demyelinating disease multiple sclerosis (MS). Recently, three new members of the morbillivirus genus, phocine distemper virus (PDV), porpoise morbillivirus (PMV) and dolphin morbillivirus (DMV), have been discovered. These viruses have also been shown to induce multifocal demyelinating disease in infected animals. This review focuses on morbillivirus-induced neuropathologies with emphasis on aetiopathogenesis of CNS demyelination. The possible involvement of a morbillivirus in the pathogenesis of multiple sclerosis is discussed.
Collapse
Affiliation(s)
- G J Sips
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
McCoy K, Tatsis N, Korioth-Schmitz B, Lasaro MO, Hensley SE, Lin SW, Li Y, Giles-Davis W, Cun A, Zhou D, Xiang Z, Letvin NL, Ertl HCJ. Effect of preexisting immunity to adenovirus human serotype 5 antigens on the immune responses of nonhuman primates to vaccine regimens based on human- or chimpanzee-derived adenovirus vectors. J Virol 2007; 81:6594-604. [PMID: 17428852 PMCID: PMC1900096 DOI: 10.1128/jvi.02497-06] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In this study we compared a prime-boost regimen with two serologically distinct replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes C68 and C1 expressing Gag, Pol, gp140, and Nef of human immunodeficiency virus type 1 with a regimen in which replication-defective Ad vectors of the human serotype 5 (AdHu5) were given twice. Experiments were conducted in rhesus macaques that had or had not been preexposed to antigens of AdHu5. There was no significant difference in T-cell responses tested from peripheral blood of the different groups, although responses were overall highest in nonpreexposed animals immunized with the chimpanzee Ad vectors. Preexisting immunity to AdHu5 completely inhibited induction of transgene product-specific antibodies by the AdHu5 vectors without affecting antibody responses to the chimpanzee vectors. Upon euthanasia, T-cell responses were tested from a number of tissues. Preexisting immunity to AdHu5, commonly found in humans, changed the homing pattern of vaccine-induced T cells. In AdHu5-preexposed animals vaccinated with the chimpanzee Ad vectors, frequencies of transgene-specific T cells were higher in spleens than in blood, and in most preexposed animals vaccinated either with AdHu5 vectors or chimpanzee adenovirus vectors, frequencies of such T cells were exceptionally high in livers. The latter results indicate that analysis of T-cell responses solely from blood mononuclear cells of vaccine recipients may not suffice to compare the potencies of different vaccine regimens.
Collapse
Affiliation(s)
- Kimberly McCoy
- The Wistar Institute, 3601 Spruce St., Philadelphia PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Shishkova Y, Harms H, Krohne G, Avota E, Schneider-Schaulies S. Immune synapses formed with measles virus-infected dendritic cells are unstable and fail to sustain T cell activation. Cell Microbiol 2007; 9:1974-86. [PMID: 17394561 DOI: 10.1111/j.1462-5822.2007.00928.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Interaction with dendritic cells (DCs) is considered as central to immunosuppression induced by viruses, including measles virus (MV). Commonly, viral infection of DCs abrogates their ability to promote T cell expansion, yet underlying mechanisms at a cellular level are undefined. We found that MV-infected DCs only subtly differed from LPS-matured with regard to integrin activation, acquisition of a migratory phenotype and motility. Similarly, the organization of MV-DC/T cell interfaces was consistent with that of functional immune synapses with regard to CD3 clustering and MHC class II surface recruitment. The majority of MV-DC/T cell conjugates was, however, unstable and only promoted abortive T cell activation. Thus, MV-infected DCs retain activities required for initiating, but not sustaining T cell conjugation and activation. This is partially rescued if surface expression of the MV glycoproteins on DCs is abolished by infection with a recombinant MV encoding VSV G protein instead, indicating that these contribute directly to synapse destabilization and thereby act as effectors of T cell inhibition.
Collapse
Affiliation(s)
- Yoanna Shishkova
- University of Würzburg, Institute for Virology and Immunobiology, Versbacher Street 7, D-97078 Würzburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Karosi T, Jókay I, Kónya J, Petkó M, Szabó LZ, Sziklai I. Expression of measles virus receptors in otosclerotic, non-otosclerotic and in normal stapes footplates. Eur Arch Otorhinolaryngol 2007; 264:607-13. [PMID: 17294206 DOI: 10.1007/s00405-007-0247-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 01/10/2007] [Indexed: 10/23/2022]
Abstract
Otosclerosis is a bone remodeling disorder of complex etiology. Persistent measles virus infection of the otic capsule could increase the expression level of measles virus receptors (CD46) on the osteoclasts and endothelial cells of the otosclerotic foci. Presence of measles virus RNA was demonstrated in the footplates of histologically diagnosed otosclerotic patients by RT-PCR; however, no reports were available about the CD46 expression pattern and level in otosclerosis. Nucleic acid was extracted from stapes footplates of clinically otosclerotic patients (N = 116). Genomic RNA of measles virus was amplified by RT-PCR. Amplification results were correlated with postoperative histologic and CD46 specific immunhistologic findings. Among 116 stapes fixation cases, 87 otosclerotic stapes contained measles virus RNA. Histology for virus negative stapes (N = 29) represented degenerative disorders with heterogeneous histopathology. Active otosclerosis was featured by increased numbers of osteoclasts showing strong CD46 expression. In virus negative, non-otosclerotic stapes fixation and in normal stapes footplates weak CD46 immunoreaction was demonstrated on the osteocytes and fibroblasts. In otosclerosis, it is reasonable to assume that measles virus increases the expression level of its own cellular receptor. Furthermore, intensive CD46 reaction could relate to active virus replication and continuous receptor internalisation. Otosclerosis is a disease of disturbed osteoid turnover due to persistent measles virus infection and special CD46 receptor pattern of the otic capsule.
Collapse
Affiliation(s)
- Tamás Karosi
- Department of Otolaryngology Head & Neck Surgery, University Medical School of Debrecen, Nagyerdei Krt. 98, Debrecen, 4032, Hungary
| | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Yanagi Y, Takeda M, Ohno S. Measles virus: cellular receptors, tropism and pathogenesis. J Gen Virol 2006; 87:2767-2779. [PMID: 16963735 DOI: 10.1099/vir.0.82221-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Measles virus(MV), a member of the genusMorbillivirusin the familyParamyxoviridae, is an enveloped virus with a non-segmented, negative-strand RNA genome. It has two envelope glycoproteins, the haemagglutinin (H) and fusion proteins, which are responsible for attachment and membrane fusion, respectively. Human signalling lymphocyte activation molecule (SLAM; also called CD150), a membrane glycoprotein of the immunoglobulin superfamily, acts as a cellular receptor for MV. SLAM is expressed on immature thymocytes, activated lymphocytes, macrophages and dendritic cells and regulates production of interleukin (IL)-4 and IL-13 by CD4+T cells, as well as production of IL-12, tumour necrosis factor alpha and nitric oxide by macrophages. The distribution of SLAM is in accord with the lymphotropism and immunosuppressive nature of MV.Canine distemper virusandRinderpest virus, other members of the genusMorbillivirus, also use canine and bovine SLAM as receptors, respectively. Laboratory-adapted MV strains may use the ubiquitously expressed CD46, a complement-regulatory molecule, as an alternative receptor through amino acid substitutions in the H protein. Furthermore, MV can infect SLAM−cells, albeit inefficiently, via the SLAM- and CD46-independent pathway, which may account for MV infection of epithelial, endothelial and neuronal cellsin vivo. MV infection, however, is not determined entirely by the H protein–receptor interaction, and other MV proteins can also contribute to its efficient growth by facilitating virus replication at post-entry steps. Identification of SLAM as the principal receptor for MV has provided us with an important clue for better understanding of MV tropism and pathogenesis.
Collapse
Affiliation(s)
- Yusuke Yanagi
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Takeda
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinji Ohno
- Department of Virology, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|