1
|
Skelin Ilic J, Bódi I, Milkovic L, Prodan Z, Belina D, Heckel D, Cicin-Sain L, Grčević D, Delfino DV, Radic Kristo D, Matulić M, Antica M. The Cellular and Molecular Characteristics of Postnatal Human Thymus Stromal Stem Cells. Biomedicines 2025; 13:1004. [PMID: 40299654 PMCID: PMC12024710 DOI: 10.3390/biomedicines13041004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 04/12/2025] [Indexed: 05/01/2025] Open
Abstract
Background: The thymus is the central hub of T-cell differentiation, where epithelial cells guide the process of their maturation. Objective: Our goal was to identify and describe progenitor cells within the human thymus that can differentiate into epithelial cells. Methods: When we plated enriched thymic cells in 3D culture conditions, rare individual cells capable of self-renewal and differentiation formed spheroids. Results: Both neonatal and adult thymuses produced similar numbers of spheroids, suggesting that progenitor potential remains consistent across age groups. Some cells within the spheres express genes typical of mature epithelial cells, while others express genes associated with the immature compartment active during thymic organogenesis. However, there were also cells expressing PDGFRβ. We treated the tissues with 2-deoxyguanosine before digestion, which improved the yield of progenitor cells. We also cultured the enriched stromal thymocytes with Cyr61 and Interleukin-22, which affected the spheroid size. Conclusions: Our efforts towards thymic reconstitution are ongoing, but our research uncovers previously unknown characteristics of the elusive epithelial progenitor population.
Collapse
Affiliation(s)
- Josipa Skelin Ilic
- Division of Molecular Mediicne, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Ildikó Bódi
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1085 Budapest, Hungary
| | - Lidija Milkovic
- Division of Molecular Mediicne, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Zsolt Prodan
- Kids Heart Center Budapest, 1096 Budapest, Hungary
| | - Dražen Belina
- Department of Cardiac Surgery, University Hospital Centre, 10000 Zagreb, Croatia
| | - Darko Heckel
- Division of Molecular Mediicne, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Lipa Cicin-Sain
- Division of Molecular Mediicne, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
| | - Danka Grčević
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domenico Vittorio Delfino
- Foligno Nursing School, Department of Medicine and Surgery, University of Perugia, 06034 Foligno, Italy
- Section of Pharmacology, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | | | - Maja Matulić
- Department of Biology, Faculty of Science, 10000 Zagreb, Croatia
| | - Mariastefania Antica
- Division of Molecular Mediicne, Rudjer Boskovic Institute, 10000 Zagreb, Croatia
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Iqbal S, Andersson S, Nesta E, Pentinmikko N, Kumar A, Kumar Jha S, Borshagovski D, Webb A, Gebert N, Viitala EW, Ritchie A, Scharaw S, Kuuluvainen E, Larsen HL, Saarinen T, Juuti A, Ristimäki A, Jeltsch M, Ori A, Varjosalo M, Pietiläinen KH, Ollila S, Jensen KB, Oudhoff MJ, Katajisto P. Fetal-like reversion in the regenerating intestine is regulated by mesenchymal asporin. Cell Stem Cell 2025; 32:613-626.e8. [PMID: 40054463 DOI: 10.1016/j.stem.2025.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/03/2024] [Accepted: 02/12/2025] [Indexed: 04/06/2025]
Abstract
Mesenchymal cells and the extracellular matrix (ECM) support epithelium during homeostasis and regeneration. However, the role of the mesenchyme in epithelial conversion into a fetal-like regenerative state after damage is not known. We modeled epithelial regeneration by culturing intestinal epithelium on decellularized small intestinal scaffolds (iECM) and identify asporin (Aspn), an ECM-bound proteoglycan, as a critical mediator of epithelial fetal-like reprogramming. After damage, transient increase in Aspn expression by the pericryptal fibroblasts induces epithelial transforming growth factor β (TGF-β)-signaling via CD44 and promotes timely epithelial reprogramming. Temporal control of Aspn is lost in old mice, and after damage, the persistently high level of Aspn stagnates epithelium in the regenerative state. Increase in Wnt signaling can resolve the stagnated regenerative program of the old epithelium, promoting restoration of tissue function. In summary, we establish a platform for modeling epithelial injury responses ex vivo and show that the mesenchymal Aspn-producing niche modulates tissue repair by regulating epithelial fetal-like reprogramming.
Collapse
Affiliation(s)
- Sharif Iqbal
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Simon Andersson
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ernesta Nesta
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Nalle Pentinmikko
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ashish Kumar
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel Borshagovski
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Webb
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Nadja Gebert
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Emma W Viitala
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Alexandra Ritchie
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sandra Scharaw
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Emilia Kuuluvainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Hjalte L Larsen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Tuure Saarinen
- Helsinki University Hospital, Abdominal Center, Department of Endocrinology, Obesity Center, Helsinki, Finland
| | - Anne Juuti
- Helsinki University Hospital, Abdominal Center, Department of Endocrinology, Obesity Center, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, HUSLAB, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00290 Helsinki, Finland; Applied Tumor Genomics Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00140 Helsinki, Finland
| | - Michael Jeltsch
- Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland; Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
| | - Alessandro Ori
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Markku Varjosalo
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Helsinki University Hospital, Abdominal Center, Department of Endocrinology, Obesity Center, Helsinki, Finland; Obesity Research Unit, Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Saara Ollila
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Kim B Jensen
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Menno J Oudhoff
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, Trondheim, Norway; Department of Health Sciences, Carleton University, Ottawa, ON, Canada
| | - Pekka Katajisto
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland; Molecular and Integrative Bioscience Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland; Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
3
|
Chantanaskul T, Patumcharoenpol P, Roytrakul S, Kingkaw A, Vongsangnak W. Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis. Int J Mol Sci 2024; 25:13533. [PMID: 39769296 PMCID: PMC11676981 DOI: 10.3390/ijms252413533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein-protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome-mycobiome-human gut studies associated with AD and other allergic diseases in infants.
Collapse
Affiliation(s)
- Thanawit Chantanaskul
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Sittirak Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 144 Thailand Science Park, Phaholyothin Road, Pathum Thani 12120, Thailand;
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
4
|
Chen J, Horiuchi S, Kuramochi S, Kawasaki T, Kawasumi H, Akiyama S, Arai T, Morinaga K, Kimura T, Kiyono T, Akutsu H, Ishida S, Umezawa A. Human intestinal organoid-derived PDGFRα + mesenchymal stroma enables proliferation and maintenance of LGR4 + epithelial stem cells. Stem Cell Res Ther 2024; 15:16. [PMID: 38229108 PMCID: PMC10792855 DOI: 10.1186/s13287-023-03629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/27/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Intestinal epithelial cells derived from human pluripotent stem cells (hPSCs) are generally maintained and cultured as organoids in vitro because they do not exhibit adhesion when cultured. However, the three-dimensional structure of organoids makes their use in regenerative medicine and drug discovery difficult. Mesenchymal stromal cells are found near intestinal stem cells in vivo and provide trophic factors to regulate stem cell maintenance and proliferation, such as BMP inhibitors, WNT, and R-spondin. In this study, we aimed to use mesenchymal stromal cells isolated from hPSC-derived intestinal organoids to establish an in vitro culture system that enables stable proliferation and maintenance of hPSC-derived intestinal epithelial cells in adhesion culture. METHODS We established an isolation protocol for intestinal epithelial cells and mesenchymal stromal cells from hPSCs-derived intestinal organoids and a co-culture system for these cells. We then evaluated the intestinal epithelial cells and mesenchymal stromal cells' morphology, proliferative capacity, chromosomal stability, tumorigenicity, and gene expression profiles. We also evaluated the usefulness of the cells for pharmacokinetic and toxicity studies. RESULTS The proliferating intestinal epithelial cells exhibited a columnar form, microvilli and glycocalyx formation, cell polarity, and expression of drug-metabolizing enzymes and transporters. The intestinal epithelial cells also showed barrier function, transporter activity, and drug-metabolizing capacity. Notably, small intestinal epithelial stem cells cannot be cultured in adherent culture without mesenchymal stromal cells and cannot replaced by other feeder cells. Organoid-derived mesenchymal stromal cells resemble the trophocytes essential for maintaining small intestinal epithelial stem cells and play a crucial role in adherent culture. CONCLUSIONS The high proliferative expansion, productivity, and functionality of hPSC-derived intestinal epithelial cells may have potential applications in pharmacokinetic and toxicity studies and regenerative medicine.
Collapse
Affiliation(s)
- JunLong Chen
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Shinichiro Horiuchi
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
| | - So Kuramochi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Hayato Kawasumi
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Saeko Akiyama
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Tomoki Arai
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kenichi Morinaga
- 1st Section, 1st Development Department, Food and Healthcare Business Development Unit, Business Development Division, Research & Business Development Center, Dai Nippon Printing Co., Ltd., Tokyo, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of BioSciences, Kitasato University School of Science, Kanagawa, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Seiichi Ishida
- Division of Pharmacology, National Institute of Health Sciences, Kawasaki, Japan
- Graduate School of Engineering, Sojo University, Kumamoto, Japan
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan.
- Department of Advanced Pediatric Medicine, Tohoku University School of Medicine, Sendai, Japan.
| |
Collapse
|
5
|
van Dinther M, Cunningham KT, Singh SP, White MPJ, Campion T, Ciancia C, van Veelen PA, de Ru AH, González-Prieto R, Mukundan A, Byeon CH, Staggers SR, Hinck CS, Hinck AP, Dijke PT, Maizels RM. CD44 acts as a coreceptor for cell-specific enhancement of signaling and regulatory T cell induction by TGM1, a parasite TGF-β mimic. Proc Natl Acad Sci U S A 2023; 120:e2302370120. [PMID: 37590410 PMCID: PMC10450677 DOI: 10.1073/pnas.2302370120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/25/2023] [Indexed: 08/19/2023] Open
Abstract
Long-lived parasites evade host immunity through highly evolved molecular strategies. The murine intestinal helminth, Heligmosomoides polygyrus, down-modulates the host immune system through release of an immunosuppressive TGF-β mimic, TGM1, which is a divergent member of the CCP (Sushi) protein family. TGM1 comprises 5 domains, of which domains 1-3 (D1/2/3) bind mammalian TGF-β receptors, acting on T cells to induce Foxp3+ regulatory T cells; however, the roles of domains 4 and 5 (D4/5) remain unknown. We noted that truncated TGM1, lacking D4/5, showed reduced potency. Combination of D1/2/3 and D4/5 as separate proteins did not alter potency, suggesting that a physical linkage is required and that these domains do not deliver an independent signal. Coprecipitation from cells treated with biotinylated D4/5, followed by mass spectrometry, identified the cell surface protein CD44 as a coreceptor for TGM1. Both full-length and D4/5 bound strongly to a range of primary cells and cell lines, to a greater degree than D1/2/3 alone, although some cell lines did not respond to TGM1. Ectopic expression of CD44 in nonresponding cells conferred responsiveness, while genetic depletion of CD44 abolished enhancement by D4/5 and ablated the ability of full-length TGM1 to bind to cell surfaces. Moreover, CD44-deficient T cells showed attenuated induction of Foxp3 by full-length TGM1, to levels similar to those induced by D1/2/3. Hence, a parasite protein known to bind two host cytokine receptor subunits has evolved a third receptor specificity, which serves to raise the avidity and cell type-specific potency of TGF-β signaling in mammalian cells.
Collapse
Affiliation(s)
- Maarten van Dinther
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Kyle T. Cunningham
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Shashi Prakash Singh
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Madeleine P. J. White
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Tiffany Campion
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Claire Ciancia
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, GlasgowG12 8TA, United Kingdom
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden2333 ZC, The Netherlands
| | - Román González-Prieto
- Andalusian Center for Molecular Biology and Regenerative Medicine, Universidad de Sevilla - CSIC - Universidad Pablo de Olavide, 41092Sevilla, Spain
- Department of Cell Biology, Faculty of Biology, University of Sevilla, 41013Sevilla, Spain
| | - Ananya Mukundan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15260
| | - Chang-Hyeock Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15260
| | - Sophia R. Staggers
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15260
| | - Cynthia S. Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15260
| | - Andrew P. Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15260
| | - Peter ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden2300 RC, The Netherlands
| | - Rick M. Maizels
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, GlasgowG12 8TA, United Kingdom
| |
Collapse
|
6
|
Rizzo G, Pineda Chavez SE, Vandenkoornhuyse E, Cárdenas Rincón CL, Cento V, Garlatti V, Wozny M, Sammarco G, Di Claudio A, Meanti L, Elangovan S, Romano A, Roda G, Loy L, Dal Buono A, Gabbiadini R, Lovisa S, Rusconi R, Repici A, Armuzzi A, Vetrano S. Pomegranate Extract Affects Gut Biofilm Forming Bacteria and Promotes Intestinal Mucosal Healing Regulating the Crosstalk between Epithelial Cells and Intestinal Fibroblasts. Nutrients 2023; 15:nu15071771. [PMID: 37049615 PMCID: PMC10097402 DOI: 10.3390/nu15071771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Pomegranate (Punica granatum) can be used to prepare a bioactive extract exerting anti-inflammatory activities. Clinical studies demonstrated an improvement in clinical response in inflammatory bowel disease (IBD) patients when pomegranate extract (PG) was taken as a complement to standard medications. However, the molecular mechanisms underlying its beneficial effects are still scarcely investigated. This study investigates the effect of PG on bacterial biofilm formation and the promotion of mucosal wound healing. Methods: The acute colitis model was induced in C57BL/6N mice by 3% dextran sodium sulfate administration in drinking water for 5 days. During the recovery phase of colitis, mice received saline or PG (200 mg/kg body weight) by oral gavage for 11 days. Colitis was scored daily by evaluating body weight loss, bleeding, and stool consistency. In vivo intestinal permeability was evaluated by fluorescein isothiocyanate-conjugated dextran assay, bacterial translocation was assessed by fluorescence in situ hybridization on tissues, whereas epithelial and mucus integrity were monitored by immunostaining for JAM-A and MUC-2 markers. Bacterial biofilm formation was assessed using microfluidic devices for 24 or 48 h. Primary fibroblasts were isolated from healthy and inflamed areas of 8 IBD patients, and Caco-2 cells were stimulated with or without PG (5 μg/mL). Inflammatory mediators were measured at the mRNA and protein level by RT-PCR, WB, or Bio-plex multiplex immunoassay, respectively. Results: In vivo, PG boosted the recovery phase of colitis, promoting a complete restoration of the intestinal barrier with the regeneration of the mucus layer, as also demonstrated by the absence of bacterial spread into the mucosa and the enrichment of crypt-associated fibroblasts. Microfluidic experiments did not highlight a specific effect of PG on Enterobacterales biofilm formation, even though Citrobacter freundii biofilm was slightly impaired in the presence of PG. In vitro, inflamed fibroblasts responded to PG by downregulating the release of metalloproteinases, IL-6, and IL-8 and upregulating the levels of HGF. Caco-2 cells cultured in a medium supplemented with PG increased the expression of SOX-9 and CD44, whereas in the presence of HGF or plated with a fibroblast-conditioned medium, they displayed a decrease in SOX-9 and CD44 expression and an increase in AXIN2, a negative regulator of Wnt signaling. Conclusions: These data provide new insight into the manifold effects of PG on promoting mucosal homeostasis in IBD by affecting pathogen biofilm formation and favoring the regeneration of the intestinal barrier through the regulation of the crosstalk between epithelial and stromal cells.
Collapse
Affiliation(s)
- Giulia Rizzo
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | | | - Elisa Vandenkoornhuyse
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | | | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Unit of Microbiology and Virology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Valentina Garlatti
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “Amedeo Avogadro”, Largo Guido Donegani, 28100 Novara, Italy
| | - Marek Wozny
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Giusy Sammarco
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Alessia Di Claudio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Lisa Meanti
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Sudharshan Elangovan
- Wipro Life Sciences Lab, Wipro Limited, SJP2, Sarjapur Road, Bangalore 560035, Karnataka, India
| | - Andrea Romano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Giulia Roda
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Laura Loy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Arianna Dal Buono
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Roberto Gabbiadini
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Sara Lovisa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Roberto Rusconi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Alessandro Repici
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- Digestive Endoscopy Unit, Department of Gastroenterology, Humanitas Clinical and Research Center-IRCCS, Rozzano, 20089 Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
- IBD Unit, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Stefania Vetrano
- Laboratory of Gastrointestinal Immunopathology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| |
Collapse
|
7
|
Šimek M, Turková K, Schwarzer M, Nešporová K, Kubala L, Hermannová M, Foglová T, Šafránková B, Šindelář M, Šrůtková D, Chatzigeorgiou S, Novotná T, Hudcovic T, Velebný V. Molecular weight and gut microbiota determine the bioavailability of orally administered hyaluronic acid. Carbohydr Polym 2023; 313:120880. [PMID: 37182970 DOI: 10.1016/j.carbpol.2023.120880] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
The ability of hyaluronan as a dietary supplement to increase skin moisture and relieve knee pain has been demonstrated in several clinical studies. To understand the mechanism of action, determining hyaluronan's bioavailability and in vivo fate is crucial. Here, we used 13C-hyaluronan combined with LC-MS analysis to compare the absorption and metabolism of oral hyaluronan in germ-free and conventional wild-type mice. The presence of Bacteroides spp. in the gut was crucial for hyaluronan absorption. Specific microorganisms cleave hyaluronan into unsaturated oligosaccharides (<3 kDa) which are partially absorbed through the intestinal wall. The remaining hyaluronan fragments are metabolized into short-chain fatty acids, which are only metabolites available to the host. The poor bioavailability (~0.2 %) of oral hyaluronan indicates that the mechanism of action is the result of the systematic regulatory function of hyaluronan or its metabolites rather than the direct effects of hyaluronan at distal sites of action (skin, joints).
Collapse
|
8
|
Doyle ME, Premathilake HU, Yao Q, Mazucanti CH, Egan JM. Physiology of the tongue with emphasis on taste transduction. Physiol Rev 2023; 103:1193-1246. [PMID: 36422992 PMCID: PMC9942923 DOI: 10.1152/physrev.00012.2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The tongue is a complex multifunctional organ that interacts and senses both interoceptively and exteroceptively. Although it is easily visible to almost all of us, it is relatively understudied and what is in the literature is often contradictory or is not comprehensively reported. The tongue is both a motor and a sensory organ: motor in that it is required for speech and mastication, and sensory in that it receives information to be relayed to the central nervous system pertaining to the safety and quality of the contents of the oral cavity. Additionally, the tongue and its taste apparatus form part of an innate immune surveillance system. For example, loss or alteration in taste perception can be an early indication of infection as became evident during the present global SARS-CoV-2 pandemic. Here, we particularly emphasize the latest updates in the mechanisms of taste perception, taste bud formation and adult taste bud renewal, and the presence and effects of hormones on taste perception, review the understudied lingual immune system with specific reference to SARS-CoV-2, discuss nascent work on tongue microbiome, as well as address the effect of systemic disease on tongue structure and function, especially in relation to taste.
Collapse
Affiliation(s)
- Máire E Doyle
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Hasitha U Premathilake
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Qin Yao
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Caio H Mazucanti
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Josephine M Egan
- Diabetes Section/Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
9
|
Retinoic Acid Promotes the In Vitro Growth, Patterning and Improves the Cellular Composition of Human Pluripotent Stem-Cell-Derived Intestinal Organoids. Int J Mol Sci 2022; 23:ijms23158624. [PMID: 35955755 PMCID: PMC9368900 DOI: 10.3390/ijms23158624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Human intestinal organoids (HIOs) generated from human pluripotent stem cells hold great promise for modeling human development and as a possible source of tissue for transplantation. HIOs generate all of the main epithelial and mesenchymal cell types found in the developing human intestine and mature into intestinal tissue with crypts and villi following transplantation into immunocompromised mice. However, incomplete in vitro patterning and the presence of contaminating neurons could hinder their use for regenerative medicine in humans. Based on studies in model organisms, we hypothesized that the treatment of HIOs with all trans retinoic acid (ATRA) would improve their in vitro growth and patterning. We found that ATRA not only improved the patterning of HIOs, ATRA also increased organoid forming efficiency, improved epithelial growth, enriched intestinal subepithelial myofibroblasts (ISEMFs) and reduced neuronal contamination in HIOs. Taken together, our studies demonstrate how the manipulation of a single developmental signaling pathway can be used to improve the survival, patterning and cellular composition of HIOs.
Collapse
|
10
|
HOPX: A Unique Homeodomain Protein in Development and Tumor Suppression. Cancers (Basel) 2022; 14:cancers14112764. [PMID: 35681746 PMCID: PMC9179269 DOI: 10.3390/cancers14112764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 12/05/2022] Open
Abstract
Simple Summary Homeobox (HOX) genes encode homeodomain proteins that regulate a wide range of molecular pathways. The homeodomain is highly conserved and binds to DNA. One exception is homeodomain-only protein (HOPX) that lacks DNA-binding capacity. HOPX plays a crucial role in development and its functional impairment is associated with a variety of diseases, including cancer. Loss of HOPX function occurs in a wide range of cancer types, where it functions as a tumor suppressor gene. Understanding the molecular mechanisms by which HOPX regulates carcinogenesis will likely lead to the development of new therapeutic approaches. Abstract Homeobox genes are master regulators of morphogenesis and differentiation by acting at the top of genetic hierarchies and their deregulation is associated with a variety of human diseases. They usually contain a highly conserved sequence that codes for the homeodomain of the protein, a specialized motif with three α helices and an N-terminal arm that aids in DNA binding. However, one homeodomain protein, HOPX, is unique among its family members in that it lacks the capacity to bind DNA and instead functions by interacting with transcriptional regulators. HOPX plays crucial roles in organogenesis and is expressed in both embryonic and adult stem cells. Loss of HOPX expression is common in cancer, where it functions primarily as a tumor suppressor gene. In this review, we describe the function of HOPX in development and discuss its role in carcinogenesis.
Collapse
|
11
|
Xie L, Fletcher RB, Bhatia D, Shah D, Phipps J, Deshmukh S, Zhang H, Ye J, Lee S, Le L, Newman M, Chen H, Sura A, Gupta S, Sanman LE, Yang F, Meng W, Baribault H, Vanhove GF, Yeh WC, Li Y, Lu C. Robust Colonic Epithelial Regeneration and Amelioration of Colitis via FZD-Specific Activation of Wnt Signaling. Cell Mol Gastroenterol Hepatol 2022; 14:435-464. [PMID: 35569814 PMCID: PMC9305022 DOI: 10.1016/j.jcmgh.2022.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Current management of inflammatory bowel disease leaves a clear unmet need to treat the severe epithelial damage. Modulation of Wnt signaling might present an opportunity to achieve histological remission and mucosal healing when treating IBD. Exogenous R-spondin, which amplifies Wnt signals by maintaining cell surface expression of Frizzled (Fzd) and low-density lipoprotein receptor-related protein receptors, not only helps repair intestine epithelial damage, but also induces hyperplasia of normal epithelium. Wnt signaling may also be modulated with the recently developed Wnt mimetics, recombinant antibody-based molecules mimicking endogenous Wnts. METHODS We first compared the epithelial healing effects of RSPO2 and a Wnt mimetic with broad Fzd specificity in an acute dextran sulfate sodium mouse colitis model. Guided by Fzd expression patterns in the colon epithelium, we also examined the effects of Wnt mimetics with subfamily Fzd specificities. RESULTS In the DSS model, Wnt mimetics repaired damaged colon epithelium and reduced disease activity and inflammation and had no apparent effect on uninjured tissue. We further identified that the FZD5/8 and LRP6 receptor-specific Wnt mimetic, SZN-1326-p, was associated with the robust repair effect. Through a range of approaches including single-cell transcriptome analyses, we demonstrated that SZN-1326-p directly impacted epithelial cells, driving transient expansion of stem and progenitor cells, promoting differentiation of epithelial cells, histologically restoring the damaged epithelium, and secondarily to epithelial repair, reducing inflammation. CONCLUSIONS It is feasible to design Wnt mimetics such as SZN-1326-p that impact damaged intestine epithelium specifically and restore its physiological functions, an approach that holds promise for treating epithelial damage in inflammatory bowel disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Chenggang Lu
- Correspondence Address correspondence to: Chenggang Lu, PhD, Surrozen, Inc., 171 Oyster Point Boulevard, Suite 400, South San Francisco, CA 94080.
| |
Collapse
|
12
|
Häfliger J, Morsy Y, Scharl M, Wawrzyniak M. From Patient Material to New Discoveries: a Methodological Review and Guide for Intestinal Stem Cell Researchers. Stem Cell Rev Rep 2022; 18:1309-1321. [PMID: 35038103 DOI: 10.1007/s12015-021-10307-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2021] [Indexed: 10/19/2022]
Abstract
Intestinal stem cells (ISC) are characterized by their ability to continuously self-renew and differentiate into various functionally distinct intestinal epithelial cell types. Impaired stem cell proliferation and differentiation can cause severe dysfunction of the gastrointestinal tract and lead to the development of several clinical disorders. Animal mouse models provide a valuable platform to study ISC function, disease mechanisms, and the intestinal epithelium's regenerative capacity upon tissue damage. However, advanced in vitro systems that are more relevant to human physiology are needed to understand better the diverse disease-triggering factors and the heterogeneity in clinical manifestations. Intestinal biopsies from patients might serve as potent starting material for such "gut-in-a-dish" approaches. While many promising tools for intestinal tissue processing, in vitro expansion, and downstream analysis have been developed in recent years, a comprehensive guide with recommendations to successfully launch or improve intestinal stem cell culture is missing. In this review, we present a selection of currently established methods, highlight recent publications and discuss the potential and limitations of those methodological approaches to facilitate and support the future design of novel and more personalized therapeutic options.
Collapse
Affiliation(s)
- Janine Häfliger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Yasser Morsy
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Sternwartstrasse 14, 8091, Zurich, Switzerland.
| |
Collapse
|
13
|
Boby N, Cao X, Ransom A, Pace BT, Mabee C, Shroyer MN, Das A, Didier PJ, Srivastav SK, Porter E, Sha Q, Pahar B. Identification, Characterization, and Transcriptional Reprogramming of Epithelial Stem Cells and Intestinal Enteroids in Simian Immunodeficiency Virus Infected Rhesus Macaques. Front Immunol 2021; 12:769990. [PMID: 34887863 PMCID: PMC8650114 DOI: 10.3389/fimmu.2021.769990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Epithelial cell injury and impaired epithelial regeneration are considered key features in HIV pathogenesis and contribute to HIV-induced generalized immune activation. Understanding the molecular mechanisms underlying the disrupted epithelial regeneration might provide an alternative approach for the treatment of HIV-mediated enteropathy and immune activation. We have observed a significant increased presence of α defensin5+ (HD5) Paneth cells and proliferating Ki67+ epithelial cells as well as decreased expression of E-cadherin expression in epithelial cells during SIV infection. SIV infection did not significantly influence the frequency of LGR5+ stem cells, but the frequency of HD5+ cells was significantly higher compared to uninfected controls in jejunum. Our global transcriptomics analysis of enteroids provided novel information about highly significant changes in several important pathways like metabolic, TCA cycle, and oxidative phosphorylation, where the majority of the differentially expressed genes were downregulated in enteroids grown from chronically SIV-infected macaques compared to the SIV-uninfected controls. Despite the lack of significant reduction in LGR5+ stem cell population, the dysregulation of several intestinal stem cell niche factors including Notch, mTOR, AMPK and Wnt pathways as well as persistence of inflammatory cytokines and chemokines and loss of epithelial barrier function in enteroids further supports that SIV infection impacts on epithelial cell proliferation and intestinal homeostasis.
Collapse
Affiliation(s)
- Nongthombam Boby
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Xuewei Cao
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Alyssa Ransom
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Barcley T Pace
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Christopher Mabee
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Monica N Shroyer
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, United States
| | - Arpita Das
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA, United States
| | - Peter J Didier
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Sudesh K Srivastav
- Department of Biostatistics, Tulane University, New Orleans, LA, United States
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Qiuying Sha
- Department of Mathematical Sciences, Michigan Technological University, Houghton, MI, United States
| | - Bapi Pahar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States.,Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States.,Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, United States
| |
Collapse
|
14
|
Kosar K, Cornuet P, Singh S, Lee E, Liu S, Gayden J, Sato T, Freyberg Z, Arteel G, Nejak‐Bowen K. WNT7B Regulates Cholangiocyte Proliferation and Function During Murine Cholestasis. Hepatol Commun 2021; 5:2019-2034. [PMID: 34558852 PMCID: PMC8631094 DOI: 10.1002/hep4.1784] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
We previously identified an up-regulation of specific Wnt proteins in the cholangiocyte compartment during cholestatic liver injury and found that mice lacking Wnt secretion from hepatocytes and cholangiocytes showed fewer proliferating cholangiocytes and high mortality in response to a 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet, a murine model of primary sclerosing cholangitis. In vitro studies demonstrated that Wnt7b, one of the Wnts up-regulated during cholestasis, induces proliferation of cholangiocytes in an autocrine manner and increases secretion of proinflammatory cytokines. We hypothesized that loss of Wnt7b may exacerbate some of the complications of cholangiopathies by decreasing the ability of bile ducts to induce repair. Wnt7b-flox mice were bred with Krt19-cre mice to deplete Wnt7b expression in only cholangiocytes (CC) or with albumin-Cre mice to delete Wnt7b expression in both hepatocytes and cholangiocytes (HC + CC). These mice were placed on a DDC diet for 1 month then killed for evaluation. Contrary to our expectations, we found that mice lacking Wnt7b from CC and HC + CC compartments had improved biliary injury, decreased cellular senescence, and lesser bile acid accumulation after DDC exposure compared to controls, along with decreased expression of inflammatory cytokines. Although Wnt7b knockout (KO) resulted in fewer proliferating cholangiocytes, CC and HC + CC KO mice on a DDC diet also had more hepatocytes expressing cholangiocyte markers compared to wild-type mice on a DDC diet, indicating that Wnt7b suppression promotes hepatocyte reprogramming. Conclusion: Wnt7b induces a proproliferative proinflammatory program in cholangiocytes, and its loss is compensated for by conversion of hepatocytes to a biliary phenotype during cholestatic injury.
Collapse
Affiliation(s)
- Karis Kosar
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Pamela Cornuet
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Sucha Singh
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Elizabeth Lee
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
| | - Silvia Liu
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| | - Jenesis Gayden
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
| | - Toshifumi Sato
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Zachary Freyberg
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPAUSA
- Department of Cell BiologyUniversity of PittsburghPittsburghPAUSA
| | - Gavin Arteel
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
- Department of MedicineGastroenterology DivisionUniversity of PittsburghPittsburghPAUSA
| | - Kari Nejak‐Bowen
- Department of PathologyUniversity of PittsburghPittsburghPAUSA
- Pittsburgh Liver Research CenterUniversity of PittsburghPittsburghPAUSA
| |
Collapse
|
15
|
Heino S, Fang S, Lähde M, Högström J, Nassiri S, Campbell A, Flanagan D, Raven A, Hodder M, Nasreddin N, Xue HH, Delorenzi M, Leedham S, Petrova TV, Sansom O, Alitalo K. Lef1 restricts ectopic crypt formation and tumor cell growth in intestinal adenomas. SCIENCE ADVANCES 2021; 7:eabj0512. [PMID: 34788095 PMCID: PMC8598008 DOI: 10.1126/sciadv.abj0512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Somatic mutations in APC or CTNNB1 genes lead to aberrant Wnt signaling and colorectal cancer (CRC) initiation and progression via-catenin–T cell factor/lymphoid enhancer binding factor TCF/LEF transcription factors. We found that Lef1 was expressed exclusively in Apc-mutant, Wnt ligand–independent tumors, but not in ligand-dependent, serrated tumors. To analyze Lef1 function in tumor development, we conditionally deleted Lef1 in intestinal stem cells of Apcfl/fl mice or broadly from the entire intestinal epithelium of Apcfl/fl or ApcMin/+ mice. Loss of Lef1 markedly increased tumor initiation and tumor cell proliferation, reduced the expression of several Wnt antagonists, and increased Myc proto-oncogene expression and formation of ectopic crypts in Apc-mutant adenomas. Our results uncover a previously unknown negative feedback mechanism in CRC, in which ectopic Lef1 expression suppresses intestinal tumorigenesis by restricting adenoma cell dedifferentiation to a crypt-progenitor phenotype and by reducing the formation of cancer stem cell niches.
Collapse
Affiliation(s)
- Sarika Heino
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Shentong Fang
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, P.R. China
| | - Marianne Lähde
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Jenny Högström
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sina Nassiri
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Andrew Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Dustin Flanagan
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Alexander Raven
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Michael Hodder
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Nadia Nasreddin
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110, USA
| | - Mauro Delorenzi
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Simon Leedham
- Intestinal Stem Cell Biology Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Owen Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, Garscube Estate, Glasgow G61 1QH, UK
| | - Kari Alitalo
- Translational Cancer Medicine Program (CAN-PRO), iCAN Digital Precision Cancer Medicine Flagship and Wihuri Research Institute, Faculty of Medicine, HiLIFE-Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Chiu K, Bashir ST, Chiu J, Nowak RA, Flaws JA. The Impact of Di-Isononyl Phthalate Exposure on Specialized Epithelial Cells in the Colon. Toxicol Sci 2021; 184:142-153. [PMID: 34453847 PMCID: PMC8677456 DOI: 10.1093/toxsci/kfab105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Di-isononyl phthalate (DiNP) is a high-molecular-weight phthalate commonly used as a plasticizer for polyvinyl chloride and other end products, such as medical devices and construction materials. Most of our initial exposure to DiNP occurs by ingestion of DiNP-contaminated foods. However, little is known about the effects of DiNP on the colon. Therefore, the goal of this study was to test the hypothesis that DiNP exposure alters immune responses and impacts specialized epithelial cells in the colon. To test this hypothesis, adult female mice were orally dosed with corn-oil vehicle control or doses of DiNP ranging from 20 µg/kg/d to 200 mg/kg/d for 10-14 days. After the dosing period, mice were euthanized in diestrus, and colon tissues and sera were collected for histological, genomic, and proteomic analysis of various immune factors and specialized epithelial cells. Subacute exposure to DiNP significantly increased protein levels of Ki67 and MUC2, expression of a Paneth cell marker (Lyz1), and estradiol levels in sera compared with control. Gene expression of mucins (Muc1, Muc2, Muc3a, and Muc4), Toll-like receptors (Tlr4 and Tlr5), and specialized epithelial cells (ChgA, Lgr5, Cd24a, and Vil1) were not significantly different between treatment groups and control. Cytokine levels of IL-1RA and CXCL12 were also not significantly different between DiNP treatment groups and control. These data reveal that DiNP exposure increases circulating estradiol levels and gene expression in specialized epithelial cells with immune response capabilities (eg, goblet and Paneth cells) in the mouse colon, which may initiate immune responses to prevent further damage in the colon.
Collapse
Affiliation(s)
- Karen Chiu
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802-6178, USA
| | - Shah Tauseef Bashir
- Department of Molecular and Integrative Physiology, College of Liberal Arts and Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3732, USA
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
| | - Justin Chiu
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802-6178, USA
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
| | - Romana A Nowak
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
| | - Jodi A Flaws
- Division of Nutritional Sciences, College of Agricultural, Consumer, and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802-6178, USA
- Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL 61801-4733, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801-3832, USA
| |
Collapse
|
17
|
Poirier EZ, Buck MD, Chakravarty P, Carvalho J, Frederico B, Cardoso A, Healy L, Ulferts R, Beale R, Reis e Sousa C. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 2021; 373:231-236. [PMID: 34244417 PMCID: PMC7611482 DOI: 10.1126/science.abg2264] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.
Collapse
Affiliation(s)
- Enzo Z Poirier
- Immunobiology laboratory, Francis Crick Institute, London NW1 1AT, UK.
| | - Michael D Buck
- Immunobiology laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, Francis Crick Institute, London NW1 1AT, UK
| | - Joana Carvalho
- Experimental Histopathology, Francis Crick Institute, London NW1 1AT, UK
| | - Bruno Frederico
- Immunobiology laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Lyn Healy
- Human Embryo and Stem Cell Unit, Francis Crick Institute, London NW1 1AT, UK
| | - Rachel Ulferts
- Cell Biology of Infection Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Rupert Beale
- Cell Biology of Infection Laboratory, Francis Crick Institute, London NW1 1AT, UK
- Division of Medicine, University College London, London WC1E 6BT, UK
| | | |
Collapse
|
18
|
Man L, Lustgarten-Guahmich N, Kallinos E, Redhead-Laconte Z, Liu S, Schattman B, Redmond D, Hancock K, Zaninovic N, Schattman G, Rosenwaks Z, James D. Comparison of Human Antral Follicles of Xenograft versus Ovarian Origin Reveals Disparate Molecular Signatures. Cell Rep 2021; 32:108027. [PMID: 32783948 DOI: 10.1016/j.celrep.2020.108027] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
The activation, growth, and maturation of oocytes to an ovulatory phase, termed folliculogenesis, is governed by the orchestrated activity of multiple specialized cell types within the ovary; yet, the mechanisms governing diversification and behavior of discrete cellular sub-populations within follicles are poorly understood. We use bulk and single-cell RNA sequencing to distinguish the transcriptional signature of prospectively isolated granulosa and theca/stroma cell subsets within human antral follicles derived from xenografts or ovaries. The analysis deconstructs phenotypic diversification within small (<4 mm) antral follicles, identifying secreted factors that are differentially enriched between mural and oophorus granulosa cells, and segregating stromal/support and steroidal activity between theca externa and interna, respectively. Multiple factors are differentially expressed in follicles of xenograft versus ovarian origin. These data capture a high-resolution transcriptional signature of granulosa and theca subpopulations and provide a systems-level portrait of cellular diversification in early antral human follicles.
Collapse
Affiliation(s)
- Limor Man
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nicole Lustgarten-Guahmich
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Eleni Kallinos
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zachary Redhead-Laconte
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Sally Liu
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Benjamin Schattman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - David Redmond
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Kolbe Hancock
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Nikica Zaninovic
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Glenn Schattman
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Zev Rosenwaks
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA
| | - Daylon James
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY 10065, USA; Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY 10065, USA; Tri-Institutional Stem Cell Derivation Laboratory, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
19
|
Jennelle LT, Dampier CH, Tring S, Powell S, Casey G. Colon Crypts of Subjects With Familial Adenomatous Polyposis Show an Increased Number of LGR5+ Ectopic Stem Cells. Clin Transl Gastroenterol 2021; 12:e00353. [PMID: 33999013 PMCID: PMC8133103 DOI: 10.14309/ctg.0000000000000353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/29/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Familial adenomatous polyposis (FAP) is a hereditary colorectal cancer (CRC) syndrome characterized by accelerated adenoma development due to inherited (or de novo) mutations in the APC regulator of WNT signaling pathway (APC) gene. The mechanism underlying this accelerated polyp development in subjects with FAP has not been defined. Given that LGR5+ stem cells drive crypt cell proliferation, we hypothesized that FAP crypts would demonstrate aberrant leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5) staining patterns. METHODS Biopsies were taken from 11 healthy subjects, 7 subjects with Lynch syndrome, 4 subjects with FAP, and 1 subject with MUTYH-associated polyposis syndrome during routine screening or surveillance colonoscopy. Crypt staining was evaluated by immunohistochemistry of paraffin-embedded tissue sections. Stem cell numbers were estimated by immunofluorescence staining of isolated crypts using antibodies against LGR5 and other proteins. RESULTS Subjects with FAP exhibited a greater number of LGR5+ stem cells in their crypts than healthy subjects and subjects with Lynch syndrome and MUTYH-associated polyposis syndrome. Most crypts of subjects with FAP harbored LGR5+ cells located above the lower third of the crypts. DISCUSSION These findings support a model in which inactivation of one copy of APC leads to increased numbers of LGR5+ stem cells, many of which are ectopic, in colon crypts of subjects with FAP. Overabundant and ectopic LGR5+ stem cells could lead to an expanded proliferative zone of dividing cells more likely to develop mutations that would contribute to the accelerated adenoma development observed in FAP.
Collapse
Affiliation(s)
- Lucas T. Jennelle
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher H. Dampier
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
- Department of General Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Stephanie Tring
- USC Genomics Core, University of Southern California, Los Angeles, California, USA
| | - Steven Powell
- Division of Gastroenterology & Hepatology, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
20
|
Hunt DR, Klett KC, Mascharak S, Wang H, Gong D, Lou J, Li X, Cai PC, Suhar RA, Co JY, LeSavage BL, Foster AA, Guan Y, Amieva MR, Peltz G, Xia Y, Kuo CJ, Heilshorn SC. Engineered Matrices Enable the Culture of Human Patient-Derived Intestinal Organoids. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004705. [PMID: 34026461 PMCID: PMC8132048 DOI: 10.1002/advs.202004705] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Indexed: 05/05/2023]
Abstract
Human intestinal organoids from primary human tissues have the potential to revolutionize personalized medicine and preclinical gastrointestinal disease models. A tunable, fully defined, designer matrix, termed hyaluronan elastin-like protein (HELP) is reported, which enables the formation, differentiation, and passaging of adult primary tissue-derived, epithelial-only intestinal organoids. HELP enables the encapsulation of dissociated patient-derived cells, which then undergo proliferation and formation of enteroids, spherical structures with polarized internal lumens. After 12 rounds of passaging, enteroid growth in HELP materials is found to be statistically similar to that in animal-derived matrices. HELP materials also support the differentiation of human enteroids into mature intestinal cell subtypes. HELP matrices allow stiffness, stress relaxation rate, and integrin-ligand concentration to be independently and quantitatively specified, enabling fundamental studies of organoid-matrix interactions and potential patient-specific optimization. Organoid formation in HELP materials is most robust in gels with stiffer moduli (G' ≈ 1 kPa), slower stress relaxation rate (t1/2 ≈ 18 h), and higher integrin ligand concentration (0.5 × 10-3-1 × 10-3 m RGD peptide). This material provides a promising in vitro model for further understanding intestinal development and disease in humans and a reproducible, biodegradable, minimal matrix with no animal-derived products or synthetic polyethylene glycol for potential clinical translation.
Collapse
Affiliation(s)
- Daniel R. Hunt
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Katarina C. Klett
- Department of Stem Cell Biology and Regenerative MedicineStanford UniversityStanfordCA94305USA
| | - Shamik Mascharak
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Huiyuan Wang
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Diana Gong
- Department of BioengineeringStanford UniversityStanfordCA94305USA
| | - Junzhe Lou
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Xingnan Li
- Department of Medicine and HematologyStanford University School of MedicineStanfordCA94305USA
| | - Pamela C. Cai
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Riley A. Suhar
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Julia Y. Co
- Department of Pediatrics (Infectious Diseases) and of Microbiology and ImmunologyStanford UniversityStanfordCA94305USA
| | | | - Abbygail A. Foster
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| | - Yuan Guan
- Department of AnesthesiologyStanford University School of MedicineStanfordCA94305USA
| | - Manuel R. Amieva
- Department of Pediatrics (Infectious Diseases) and of Microbiology and ImmunologyStanford UniversityStanfordCA94305USA
| | - Gary Peltz
- Department of AnesthesiologyStanford University School of MedicineStanfordCA94305USA
| | - Yan Xia
- Department of ChemistryStanford UniversityStanfordCA94305USA
| | - Calvin J. Kuo
- Department of Medicine and HematologyStanford University School of MedicineStanfordCA94305USA
| | - Sarah C. Heilshorn
- Department of Materials Science & EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
21
|
The Molecular Basis of Different Approaches for the Study of Cancer Stem Cells and the Advantages and Disadvantages of a Three-Dimensional Culture. Molecules 2021; 26:molecules26092615. [PMID: 33947095 PMCID: PMC8124970 DOI: 10.3390/molecules26092615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/13/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a rare tumor subpopulation with high differentiation, proliferative and tumorigenic potential compared to the remaining tumor population. CSCs were first discovered by Bonnet and Dick in 1997 in acute myeloid leukemia. The identification and isolation of these cells in this pioneering study were carried out through the flow cytometry, exploiting the presence of specific cell surface molecular markers (CD34+/CD38−). In the following years, different strategies and projects have been developed for the study of CSCs, which are basically divided into surface markers assays and functional assays; some of these techniques also allow working with a cellular model that better mimics the tumor architecture. The purpose of this mini review is to summarize and briefly describe all the current methods used for the identification, isolation and enrichment of CSCs, describing, where possible, the molecular basis, the advantages and disadvantages of each technique with a particular focus on those that offer a three-dimensional culture.
Collapse
|
22
|
Pompili S, Latella G, Gaudio E, Sferra R, Vetuschi A. The Charming World of the Extracellular Matrix: A Dynamic and Protective Network of the Intestinal Wall. Front Med (Lausanne) 2021; 8:610189. [PMID: 33937276 PMCID: PMC8085262 DOI: 10.3389/fmed.2021.610189] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal extracellular matrix (ECM) represents a complex network of proteins that not only forms a support structure for resident cells but also interacts closely with them by modulating their phenotypes and functions. More than 300 molecules have been identified, each of them with unique biochemical properties and exclusive biological functions. ECM components not only provide a scaffold for the tissue but also afford tensile strength and limit overstretch of the organ. The ECM holds water, ensures suitable hydration of the tissue, and participates in a selective barrier to the external environment. ECM-to-cells interaction is crucial for morphogenesis and cell differentiation, proliferation, and apoptosis. The ECM is a dynamic and multifunctional structure. The ECM is constantly renewed and remodeled by coordinated action among ECM-producing cells, degrading enzymes, and their specific inhibitors. During this process, several growth factors are released in the ECM, and they, in turn, modulate the deposition of new ECM. In this review, we describe the main components and functions of intestinal ECM and we discuss their role in maintaining the structure and function of the intestinal barrier. Achieving complete knowledge of the ECM world is an important goal to understand the mechanisms leading to the onset and the progression of several intestinal diseases related to alterations in ECM remodeling.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology Unit, University of L'Aquila, L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine, and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
23
|
Volz NB, Hanna DL, Stintzing S, Zhang W, Yang D, Cao S, Ning Y, Matsusaka S, Sunakawa Y, Berger MD, Cremolini C, Loupakis F, Falcone A, Lenz HJ. Polymorphisms within Immune Regulatory Pathways Predict Cetuximab Efficacy and Survival in Metastatic Colorectal Cancer Patients. Cancers (Basel) 2020; 12:2947. [PMID: 33065994 PMCID: PMC7601940 DOI: 10.3390/cancers12102947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Cetuximab, an IgG1 EGFR-directed antibody, promotes antibody-dependent cell-mediated cytotoxicity. We hypothesized that single-nucleotide polymorphisms (SNPs) in immune regulatory pathways may predict outcomes in patients with metastatic colorectal cancer treated with cetuximab-based regimens. A total of 924 patients were included: 105 received cetuximab in IMCL-0144 and cetuximab/irinotecan in GONO-ASL608LIOM01 (training cohort), 225 FOLFIRI/cetuximab in FIRE-3 (validation cohort 1), 74 oxaliplatin/cetuximab regimens in JACCRO CC-05/06 (validation cohort 2), and 520 FOLFIRI/bevacizumab in FIRE-3 and TRIBE (control cohorts). Twelve SNPs in five genes (IDO1; PD-L1; PD-1; CTLA-4; CD24) were evaluated by PCR-based direct sequencing. We analyzed associations between genotype and clinical outcomes. In the training cohort; patients with the CD24 rs52812045 A/A genotype had a significantly shorter median PFS and OS than those with the G/G genotype (PFS 1.3 vs. 3.6 months; OS 2.3 vs. 7.8 months) in univariate (PFS HR 3.62; p = 0.001; OS HR 3.27; p = 0.0004) and multivariate (PFS HR 3.18; p = 0.009; OS HR 4.93; p = 0.001) analyses. Similarly; any A allele carriers in the JACCRO validation cohort had a significantly shorter PFS than G/G carriers (9.2 vs. 11.8 months; univariate HR 1.90; p = 0.011; multivariate HR 2.12; p = 0.018). These associations were not demonstrated in the control cohorts. CD24 genetic variants may help select patients with metastatic colorectal cancer most likely to benefit from cetuximab-based therapy.
Collapse
Affiliation(s)
- Nico B. Volz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
- Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana L. Hanna
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Sebastian Stintzing
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
- Department of Medicine III, University Hospital LMU Munich, 80539 Munich, Germany
| | - Wu Zhang
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Dongyun Yang
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (D.Y.); (S.C.)
| | - Shu Cao
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (D.Y.); (S.C.)
| | - Yan Ning
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Satoshi Matsusaka
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Yu Sunakawa
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Martin D. Berger
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| | - Chiara Cremolini
- U.O. Oncologia Medica 2—Aziendo Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.C.); (F.L.); (A.F.)
| | - Fotios Loupakis
- U.O. Oncologia Medica 2—Aziendo Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.C.); (F.L.); (A.F.)
| | - Alfredo Falcone
- U.O. Oncologia Medica 2—Aziendo Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (C.C.); (F.L.); (A.F.)
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA; (N.B.V.); (D.L.H.); (S.S.); (W.Z.); (Y.N.); (S.M.); (Y.S.); (M.D.B.)
| |
Collapse
|
24
|
LIF is essential for ISC function and protects against radiation-induced gastrointestinal syndrome. Cell Death Dis 2020; 11:588. [PMID: 32719388 PMCID: PMC7385639 DOI: 10.1038/s41419-020-02790-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 11/24/2022]
Abstract
Leukemia inhibitory factor (LIF) is a cytokine essential for maintaining pluripotency of mouse embryonic stem cells. However, its role in adult intestinal stem cells (ISCs) is unclear. The adult intestinal epithelium has a high self-renewal rate driven by ISCs in crypts. Here, we find that LIF is present in the ISC niche in crypts and critical for the function of ISCs in maintaining the intestinal epithelial homeostasis and regeneration. Mechanistically, LIF maintains β-catenin activity through the AKT/GSK3β signaling to regulate ISC functions. LIF deficiency in mice impairs the renewal of the intestinal epithelium under the physiological condition. Further, LIF deficiency in mice impairs the regeneration of intestinal epithelium in response to radiation and shortens the lifespan of mice after high doses of radiation due to gastrointestinal (GI) syndrome, which can be rescued by administering recombinant LIF (rLIF). Importantly, LIF exhibits a radioprotective role in wild-type (WT) mice by protecting mice from lethal radiation-induced GI syndrome; administering rLIF promotes intestinal epithelial regeneration and prolongs survival in WT mice after radiation. These results reveal a previously unidentified and a crucial role of LIF in ensuring ISC function, promoting regeneration of the intestinal epithelium in response to radiation and protecting against radiation-induced GI syndrome.
Collapse
|
25
|
Kim Y, de la Motte CA. The Role of Hyaluronan Treatment in Intestinal Innate Host Defense. Front Immunol 2020; 11:569. [PMID: 32411124 PMCID: PMC7201044 DOI: 10.3389/fimmu.2020.00569] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Hyaluronan (HA) is best known as an abundantly present extracellular matrix component found throughout the body of all vertebrates, including humans. Recent evidence, however, has demonstrated benefits of providing HA exogenously as a therapeutic modality for several medical conditions. Here we discuss the effects of providing HA treatment to increase innate host defense of the intestine, elucidate the size specific effects of HA, and discuss the role of various HA receptors as potential mediators of the HA effects in the intestine. This review especially focuses on HA interaction with the epithelium because it is the primary cellular barrier of the intestine and these cells play a critical balancing role between allowing water and nutrient absorption while excluding microbes and harmful dietary metabolites that are constantly in that organ's environment.
Collapse
Affiliation(s)
- Yeojung Kim
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Carol A de la Motte
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
26
|
Luo H, Zheng J, Chen Y, Wang T, Zhang Z, Shan Y, Xu J, Yue M, Fang W, Li X. Utility Evaluation of Porcine Enteroids as PDCoV Infection Model in vitro. Front Microbiol 2020; 11:821. [PMID: 32390999 PMCID: PMC7191032 DOI: 10.3389/fmicb.2020.00821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a novel emerging enteric coronavirus found in pigs. Intestinal enteroids, which partially recreate the structure and function of intestinal villi-crypts, have many physiological similarities to the intestinal tissues in vivo. Enteroids exhibit advantages in studying the interactions between intestines and enteric pathogens. To create a novel infection model for PDCoV, we developed an in vitro system to generate porcine intestinal enteroids from crypts of duodenum, jejunum, and ileum of pigs. Enterocytes, enteroendocrine cells, Paneth cells, stem cells, proliferating cells, and goblet cells were found in the differentiated enteroids. Replication of PDCoV was detected in the cultured enteroids by immunofluorescence and quantitative RT-PCR. Double immunofluorescence labeling demonstrated that PDCoV was present in Sox9-positive intestinal cells and Villin1-positive enterocytes. There were multiple cellular responses shown as changes of transcription of genes related to mucosal immunity, antiviral genes, and marker genes of stem cells and other cells in the enteroids infected with PDCoV. We conclude that the 2-D enteroids derived from porcine jejunum can be used as an in vitro multicellular model for the investigation of pathogenesis and host immune responses to porcine enteric pathogens, such as PDCoV.
Collapse
Affiliation(s)
- Hao Luo
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jingyou Zheng
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yunlu Chen
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Tingjun Wang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zhenning Zhang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying Shan
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Jidong Xu
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min Yue
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Weihuan Fang
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoliang Li
- Zhejiang Provincial Key Lab of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. ANNUAL REVIEW OF PATHOLOGY 2020; 15:23-50. [PMID: 31399003 PMCID: PMC7212705 DOI: 10.1146/annurev-pathmechdis-012419-032824] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a complex organ performing numerous vital physiological functions. For that reason, it possesses immense regenerative potential. The capacity for repair is largely attributable to the ability of its differentiated epithelial cells, hepatocytes and biliary epithelial cells, to proliferate after injury. However, in cases of extreme acute injury or prolonged chronic insult, the liver may fail to regenerate or do so suboptimally. This often results in life-threatening end-stage liver disease for which liver transplantation is the only effective treatment. In many forms of liver injury, bipotent liver progenitor cells are theorized to be activated as an additional tier of liver repair. However, the existence, origin, fate, activation, and contribution to regeneration of liver progenitor cells is hotly debated, especially since hepatocytes and biliary epithelial cells themselves may serve as facultative stem cells for one another during severe liver injury. Here, we discuss the evidence both supporting and refuting the existence of liver progenitor cells in a variety of experimental models. We also debate the validity of developing therapies harnessing the capabilities of these cells as potential treatments for patients with severe and chronic liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Laura M Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
28
|
Lu L, Li W, Chen L, Su Q, Wang Y, Guo Z, Lu Y, Liu B, Qin S. Radiation-induced intestinal damage: latest molecular and clinical developments. Future Oncol 2019; 15:4105-4118. [PMID: 31746639 DOI: 10.2217/fon-2019-0416] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To systematically review the prophylactic and therapeutic interventions for reducing the incidence or severity of intestinal symptoms among cancer patients receiving radiotherapy. Materials & methods: A literature search was conducted in the PubMed database using various search terms, including 'radiation enteritis', 'radiation enteropathy', 'radiation-induced intestinal disease', 'radiation-induced intestinal damage' and 'radiation mucositis'. The search was limited to in vivo studies, clinical trials and meta-analyses published in English with no limitation on publication date. Other relevant literature was identified based on the reference lists of selected studies. Results: The pathogenesis of acute and chronic radiation-induced intestinal damage as well as the prevention and treatment approaches were reviewed. Conclusion: There is inadequate evidence to strongly support the use of a particular strategy to reduce radiation-induced intestinal damage. More high-quality randomized controlled trials are required for interventions with limited evidence suggestive of potential benefits.
Collapse
Affiliation(s)
- Lina Lu
- School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.,School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Wenjun Li
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Lihua Chen
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Qiong Su
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Yanbin Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Zhong Guo
- Medical College of Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Yongjuan Lu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou 730000, Gansu, PR China
| | - Bin Liu
- School of Nuclear Science & Technology, Lanzhou University, Lanzhou 730000, Gansu, PR China.,School of Stomatology, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Song Qin
- Key Laboratory of Biology & Bioresource Utilization, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
29
|
Kolawole AO, Mirabelli C, Hill DR, Svoboda SA, Janowski AB, Passalacqua KD, Rodriguez BN, Dame MK, Freiden P, Berger RP, Vu DL, Hosmillo M, O'Riordan MXD, Schultz-Cherry S, Guix S, Spence JR, Wang D, Wobus CE. Astrovirus replication in human intestinal enteroids reveals multi-cellular tropism and an intricate host innate immune landscape. PLoS Pathog 2019; 15:e1008057. [PMID: 31671153 PMCID: PMC6957189 DOI: 10.1371/journal.ppat.1008057] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 01/13/2020] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Human astroviruses (HAstV) are understudied positive-strand RNA viruses that cause gastroenteritis mostly in children and the elderly. Three clades of astroviruses, classic, MLB-type and VA-type have been reported in humans. One limitation towards a better understanding of these viruses has been the lack of a physiologically relevant cell culture model that supports growth of all clades of HAstV. Herein, we demonstrate infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts. A detailed investigation of infection of VA1, a member of the non-canonical HAstV-VA/HMO clade, showed robust replication in HIE derived from different patients and from different intestinal regions independent of the cellular differentiation status. Flow cytometry and immunofluorescence analysis revealed that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes, in HIE cultures. RNA profiling of VA1-infected HIE uncovered that the host response to infection is dominated by interferon (IFN)-mediated innate immune responses. A comparison of the antiviral host response in non-transformed HIE and transformed human colon carcinoma Caco-2 cells highlighted significant differences between these cells, including an increased magnitude of the response in HIE. Additional studies confirmed the sensitivity of VA1 to exogenous IFNs, and indicated that the endogenous IFN response of HIE to curtail the growth of strains from all three clades. Genotypic variation in the permissiveness of different HIE lines to HAstV could be overcome by pharmacologic inhibition of JAK/STAT signaling. Collectively, our data identify HIE as a universal infection model for HAstV and an improved model of the intestinal epithelium to investigate enteric virus-host interactions. Human astroviruses (HAstV) are understudied positive-strand RNA viruses that typically cause gastroenteritis mostly in children and the elderly, but more recent studies also implicate them in neurological disease in immunocompromised patients. To better understand these viruses, a physiologically relevant cell culture model that supports growth of all clades of HAstV would be highly beneficial. Herein, we demonstrated robust infection of HAstV strains belonging to all three clades in epithelium-only human intestinal enteroids (HIE) isolated from biopsy-derived intestinal crypts from different patients and intestinal regions, making HIE a valuable model to study HAstV biology. Using this system, we identify for the first time that VA1 infects several cell types, including intestinal progenitor cells and mature enterocytes. Analysis of the antiviral host response to infection demonstrated that HIE respond to infection with a type I and III interferon response. This response reduced HAstV replication and when blocked resulted in increased infection. Establishment of the HIE system for HAstV research lays the foundation for future basic and translational discoveries.
Collapse
Affiliation(s)
- Abimbola O Kolawole
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carmen Mirabelli
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David R Hill
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sophia A Svoboda
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew B Janowski
- Department of Pediatrics, Washington University, St. Louis, Missouri, United States of America
| | - Karla D Passalacqua
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benancio N Rodriguez
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michael K Dame
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Pamela Freiden
- St. Jude Children's Hospital, Memphis, Tennessee, United States of America
| | - Ryan P Berger
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Diem-Lan Vu
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Mary X D O'Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Susana Guix
- Enteric Virus Laboratory, Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Jason R Spence
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America.,Department of Biomedical Engineering, University of Michigan, Ann arbor, Michigan, United States of America
| | - David Wang
- Departments of Molecular Microbiology, and Pathology and Immunology, Washington University, St. Louis, Missouri, United States of America
| | - Christiane E Wobus
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
30
|
Raj D, Yang MH, Rodgers D, Hampton EN, Begum J, Mustafa A, Lorizio D, Garces I, Propper D, Kench JG, Kocher HM, Young TS, Aicher A, Heeschen C. Switchable CAR-T cells mediate remission in metastatic pancreatic ductal adenocarcinoma. Gut 2019; 68:1052-1064. [PMID: 30121627 PMCID: PMC6580747 DOI: 10.1136/gutjnl-2018-316595] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC) is a disease of unmet medical need. While immunotherapy with chimeric antigen receptor T (CAR-T) cells has shown much promise in haematological malignancies, their efficacy for solid tumours is challenged by the lack of tumour-specific antigens required to avoid on-target, off-tumour effects. Switchable CAR-T cells whereby activity of the CAR-T cell is controlled by dosage of a tumour antigen-specific recombinant Fab-based 'switch' to afford a fully tunable response may overcome this translational barrier. DESIGN In this present study, we have used conventional and switchable CAR-T cells to target the antigen HER2, which is upregulated on tumour cells, but also present at low levels on normal human tissue. We used patient-derived xenograft models derived from patients with stage IV PDAC that mimic the most aggressive features of PDAC, including severe liver and lung metastases. RESULTS Switchable CAR-T cells followed by administration of the switch directed against human epidermal growth factor receptor 2 (HER2)-induced complete remission in difficult-to-treat, patient-derived advanced pancreatic tumour models. Switchable HER2 CAR-T cells were as effective as conventional HER2 CAR-T cells in vivo testing a range of different CAR-T cell doses. CONCLUSION These results suggest that a switchable CAR-T system is efficacious against aggressive and disseminated tumours derived from patients with advanced PDAC while affording the potential safety of a control switch.
Collapse
Affiliation(s)
- Deepak Raj
- Stem Cells in Cancer and Ageing, Barts Cancer Institute (BCI), Queen Mary University of London, London, UK
| | - Ming-Hsin Yang
- Stem Cells in Cancer and Ageing, Barts Cancer Institute (BCI), Queen Mary University of London, London, UK
| | - David Rodgers
- Biologics, California Institute for Biomedical Research, La Jolla, California, USA
| | - Eric N Hampton
- Biologics, California Institute for Biomedical Research, La Jolla, California, USA
| | - Julfa Begum
- Stem Cells in Cancer and Ageing, Barts Cancer Institute (BCI), Queen Mary University of London, London, UK
| | - Arif Mustafa
- Biological Service Unit, Barts Cancer Institute, London, UK
| | - Daniela Lorizio
- Stem Cells in Cancer and Ageing, Barts Cancer Institute (BCI), Queen Mary University of London, London, UK
| | - Irene Garces
- Stem Cells in Cancer and Ageing, Barts Cancer Institute (BCI), Queen Mary University of London, London, UK
| | - David Propper
- Cancer and Inflammation, Barts Cancer Institute, London, UK
| | - James G Kench
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - H M Kocher
- Director of the Barts Pancreatic Cancer Tissue Bank, Barts Cancer Institute (BCI), Queen Mary University of London, London, UK
| | - Travis S Young
- Biologics, California Institute for Biomedical Research, La Jolla, California, USA
| | - Alexandra Aicher
- Stem Cells in Cancer and Ageing, Barts Cancer Institute (BCI), Queen Mary University of London, London, UK
| | - Christopher Heeschen
- School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
31
|
Glal D, Sudhakar JN, Lu HH, Liu MC, Chiang HY, Liu YC, Cheng CF, Shui JW. ATF3 Sustains IL-22-Induced STAT3 Phosphorylation to Maintain Mucosal Immunity Through Inhibiting Phosphatases. Front Immunol 2018; 9:2522. [PMID: 30455690 PMCID: PMC6230592 DOI: 10.3389/fimmu.2018.02522] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022] Open
Abstract
In gut epithelium, IL-22 transmits signals through STAT3 phosphorylation (pSTAT3) which provides intestinal immunity. Many components in the IL-22-pSTAT3 pathway have been identified as risk factors for inflammatory bowel disease (IBD) and some of them are considered as promising therapeutic targets. However, new perspectives are still needed to understand IL-22-pSTAT3 signaling for effective clinical interventions in IBD patients. Here, we revealed activating transcription factor 3 (ATF3), recently identified to be upregulated in patients with active IBD, as a crucial player in the epithelial IL-22-pSTAT3 signaling cascade. We found ATF3 is central to intestinal homeostasis and provides protection during colitis. Loss of ATF3 led to decreased crypt numbers, more shortened colon length, impaired ileal fucosylation at the steady state, and lethal disease activity during DSS-induced colitis which can be effectively ameliorated by rectal transplantation of wild-type colonic organoids. Epithelial stem cells and Paneth cells form a niche to orchestrate epithelial regeneration and host-microbe interactions, and IL-22-pSTAT3 signaling is a key guardian for this niche. We found ATF3 is critical for niche maintenance as ATF3 deficiency caused compromised stem cell growth and regeneration, as well as Paneth cell degeneration and loss of anti-microbial peptide (AMP)-producing granules, indicative of malfunction of Paneth/stem cell network. Mechanistically, we found IL-22 upregulates ATF3, which is required to relay IL-22 signaling leading to STAT3 phosphorylation and subsequent AMP induction. Intriguingly, ATF3 itself does not act on STAT3 directly, instead ATF3 regulates pSTAT3 by negatively targeting protein tyrosine phosphatases (PTPs) including SHP2 and PTP-Meg2. Furthermore, we identified ATF3 is also involved in IL-6-mediated STAT3 activation in T cells and loss of ATF3 leads to reduced capacity of Th17 cells to produce their signature cytokine IL-22 and IL-17A. Collectively, our results suggest that via IL-22-pSTAT3 signaling in the epithelium and IL-6-pSTAT3 signaling in Th17 cells, ATF3 mediates a cross-regulation in the barrier to maintain mucosal homeostasis and immunity.
Collapse
Affiliation(s)
- Doaa Glal
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program (TIGP) in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | | | - Hsueh-Han Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ming-Che Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hung-Yu Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Chun Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Jr-Wen Shui
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Bankaitis ED, Ha A, Kuo CJ, Magness ST. Reserve Stem Cells in Intestinal Homeostasis and Injury. Gastroenterology 2018; 155:1348-1361. [PMID: 30118745 PMCID: PMC7493459 DOI: 10.1053/j.gastro.2018.08.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/17/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023]
Abstract
Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.
Collapse
Affiliation(s)
- Eric D. Bankaitis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Andrew Ha
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305
| | - Calvin J. Kuo
- Department of Medicine, Hematology Division, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| | - Scott T. Magness
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC,Joint Departments of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, NC,Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC,Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC,Co-Corresponding Authors: Calvin J. Kuo: , Scott T. Magness: , Calvin J. Kuo: Stanford University School of Medicine, Lokey Stem Cell Research Building G2034A, 265 Campus Drive, Stanford, CA 94305; Scott T. Magness, University of North Carolina at Chapel Hill, 111 Mason Farm Rd. CB# 7032, MBRB Rm 4337, Chapel Hill, NC, 27599
| |
Collapse
|
33
|
Williamson IA, Arnold JW, Samsa LA, Gaynor L, DiSalvo M, Cocchiaro JL, Carroll I, Azcarate-Peril MA, Rawls JF, Allbritton NL, Magness ST. A High-Throughput Organoid Microinjection Platform to Study Gastrointestinal Microbiota and Luminal Physiology. Cell Mol Gastroenterol Hepatol 2018; 6:301-319. [PMID: 30123820 PMCID: PMC6092482 DOI: 10.1016/j.jcmgh.2018.05.004] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/14/2018] [Indexed: 12/16/2022]
Abstract
Background & Aims The human gut microbiota is becoming increasingly recognized as a key factor in homeostasis and disease. The lack of physiologically relevant in vitro models to investigate host-microbe interactions is considered a substantial bottleneck for microbiota research. Organoids represent an attractive model system because they are derived from primary tissues and embody key properties of the native gut lumen; however, access to the organoid lumen for experimental perturbation is challenging. Here, we report the development and validation of a high-throughput organoid microinjection system for cargo delivery to the organoid lumen and high-content sampling. Methods A microinjection platform was engineered using off-the-shelf and 3-dimensional printed components. Microinjection needles were modified for vertical trajectories and reproducible injection volumes. Computer vision (CVis) and microfabricated CellRaft Arrays (Cell Microsystems, Research Triangle Park, NC) were used to increase throughput and enable high-content sampling of mock bacterial communities. Modeling preformed using the COMSOL Multiphysics platform predicted a hypoxic luminal environment that was functionally validated by transplantation of fecal-derived microbial communities and monocultures of a nonsporulating anaerobe. Results CVis identified and logged locations of organoids suitable for injection. Reproducible loads of 0.2 nL could be microinjected into the organoid lumen at approximately 90 organoids/h. CVis analyzed and confirmed retention of injected cargos in approximately 500 organoids over 18 hours and showed the requirement to normalize for organoid growth for accurate assessment of barrier function. CVis analyzed growth dynamics of a mock community of green fluorescent protein- or Discosoma sp. red fluorescent protein-expressing bacteria, which grew within the organoid lumen even in the presence of antibiotics to control media contamination. Complex microbiota communities from fecal samples survived and grew in the colonoid lumen without appreciable changes in complexity. Conclusions High-throughput microinjection into organoids represents a next-generation in vitro approach to investigate gastrointestinal luminal physiology and the gastrointestinal microbiota.
Collapse
Key Words
- 2D, 2-dimensional
- 3D, 3-dimensional
- Anaerobic
- Barrier Function
- CAG, chicken beta-actin promoter with CMV enhancer
- CFU, colony-forming unit
- CRA, CellRaft Array
- CVis, computer vision
- EGFP, enhanced green fluorescent protein
- FITC, fluorescein isothiocyanate
- Fecal Microbiota
- GFP, green fluorescent protein
- GI, gastrointestinal
- HF, hydrogen fluoride
- High-Content Sampling
- High-Throughput
- Microinjection
- OUT, operational taxonomic unit
- Organoid
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- QIIME, Quantitative Insights Into Microbial Ecology
- WT, wild-type
- hiPS, Human Induced Pluripotent Stem Cell
- rRNA, ribosomal RNA
Collapse
Affiliation(s)
- Ian A. Williamson
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Jason W. Arnold
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Leigh Ann Samsa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Liam Gaynor
- Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts
| | - Matthew DiSalvo
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
| | - Jordan L. Cocchiaro
- Department of Molecular Genetics and Microbiology Medicine, Duke University, Durham, North Carolina
| | - Ian Carroll
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - M. Andrea Azcarate-Peril
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology Medicine, Duke University, Durham, North Carolina
| | - Nancy L. Allbritton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott T. Magness
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill/North Carolina State University, Chapel Hill, North Carolina
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
34
|
Abstract
Tissues that undergo rapid cellular turnover, such as the mammalian haematopoietic system or the intestinal epithelium, are dependent on stem and progenitor cells that proliferate to provide differentiated cells to maintain organismal health. Stem and progenitor cells, in turn, are thought to rely on signals and growth factors provided by local niche cells to support their function and self-renewal. Several cell types have been hypothesized to provide the signals required for the proliferation and differentiation of the intestinal stem cells in intestinal crypts1-6. Here we identify subepithelial telocytes as an important source of Wnt proteins, without which intestinal stem cells cannot proliferate and support epithelial renewal. Telocytes are large but rare mesenchymal cells that are marked by expression of FOXL1 and form a subepithelial plexus that extends from the stomach to the colon. While supporting the entire epithelium, FOXL1+ telocytes compartmentalize the production of Wnt ligands and inhibitors to enable localized pathway activation. Conditional genetic ablation of porcupine (Porcn), which is required for functional maturation of all Wnt proteins, in mouse FOXL1+ telocytes causes rapid cessation of Wnt signalling to intestinal crypts, followed by loss of proliferation of stem and transit amplifying cells and impaired epithelial renewal. Thus, FOXL1+ telocytes are an important source of niche signals to intestinal stem cells.
Collapse
|
35
|
Shoshkes-Carmel M, Wang YJ, Wangensteen KJ, Tóth B, Kondo A, Massasa EE, Itzkovitz S, Kaestner KH. Subepithelial telocytes are an important source of Wnts that supports intestinal crypts. Nature 2018; 557:242-246. [PMID: 29720649 PMCID: PMC5966331 DOI: 10.1038/s41586-018-0084-4] [Citation(s) in RCA: 385] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 02/27/2018] [Indexed: 12/03/2022]
Abstract
Tissues with rapid cellular turnover, such as the mammalian hematopoietic system or the intestinal epithelium, are dependent upon stem and progenitor cells, which through proliferation provide differentiated cells to maintain organismal health. Stem and progenitor cells, in turn, are thought to rely upon signals and growth factors provided by local niche cells to support their function and self-renewal. Several cell types have been proposed to provide the signals required for the proliferation and differentiation of the ISC in the crypt1–6. Here, we identify subepithelial telocytes as an important source of Wnt proteins, without which intestinal stem cells cannot proliferate and support epithelial renewal. Telocytes are large but rare mesenchymal cells that are marked by Foxl1 and PDGFRα expression and form a subepithelial plexus that extends from the stomach to the colon. While supporting the entire epithelium, Foxl1+ telocytes compartmentalize the production of Wnt ligands and inhibitors to enable localized pathway activation. Conditional gene ablation of Porcupine (Porcn), which is required for functional maturation of all Wnt proteins, in Foxl1+ telocytes causes rapid cessation of Wnt signaling to intestinal crypts, followed by loss of stem and transit amplifying cell proliferation and impaired epithelial renewal. Thus, Foxl1+ telocytes are an important source of niche signals to intestinal stem cells.
Collapse
Affiliation(s)
- Michal Shoshkes-Carmel
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yue J Wang
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirk J Wangensteen
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beáta Tóth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ayano Kondo
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Efi E Massasa
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Klaus H Kaestner
- Department of Genetics and Center for Molecular Studies in Digestive and Liver Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
36
|
Tang R, Jing L, Willard VP, Wu CL, Guilak F, Chen J, Setton LA. Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Res Ther 2018. [PMID: 29523190 PMCID: PMC5845143 DOI: 10.1186/s13287-018-0797-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Background Intervertebral disc (IVD) degeneration is characterized by an early decrease in cellularity of the nucleus pulposus (NP) region, and associated extracellular matrix changes, reduced hydration, and progressive degeneration. Cell-based IVD therapy has emerged as an area of great interest, with studies reporting regenerative potential for many cell sources, including autologous or allogeneic chondrocytes, primary IVD cells, and stem cells. Few approaches, however, have clear strategies to promote the NP phenotype, in part due to a limited knowledge of the defined markers and differentiation protocols for this lineage. Here, we developed a new protocol for the efficient differentiation of human induced pluripotent stem cells (hiPSCs) into NP-like cells in vitro. This differentiation strategy derives from our knowledge of the embryonic notochordal lineage of NP cells as well as strategies used to support healthy NP cell phenotypes for primary cells in vitro. Methods An NP-genic phenotype of hiPSCs was promoted in undifferentiated hiPSCs using a stepwise, directed differentiation toward mesodermal, and subsequently notochordal, lineages via chemically defined medium and growth factor supplementation. Fluorescent cell imaging was used to test for pluripotency markers in undifferentiated cells. RT-PCR was used to test for potential cell lineages at the early stage of differentiation. Cells were checked for NP differentiation using immunohistochemistry and histological staining at the end of differentiation. To enrich notochordal progenitor cells, hiPSCs were transduced using lentivirus containing reporter constructs for transcription factor brachyury (T) promoter and green fluorescent protein (GFP) fluorescence, and then sorted on T expression based on GFP intensity by flow cytometry. Results Periods of pellet culture following initial induction were shown to promote the vacuolated NP cell morphology and NP surface marker expression, including CD24, LMα5, and Basp1. Enrichment of brachyury (T) positive cells using fluorescence-activated cell sorting was shown to further enhance the differentiation efficiency of NP-like cells. Conclusions The ability to efficiently differentiate human iPSCs toward NP-like cells may provide insights into the processes of NP cell differentiation and provide a cell source for the development of new therapies for IVD diseases. Electronic supplementary material The online version of this article (10.1186/s13287-018-0797-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ruhang Tang
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Liufang Jing
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA
| | | | - Chia-Lung Wu
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA.,Shriners Hospitals for Children-St. Louis, St. Louis, MO, USA.,Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.,Cytex Therapeutics, Inc., Durham, NC, USA
| | - Jun Chen
- Department of Orthopaedic Surgery, Duke University, Durham, NC, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA. .,Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO, 63130, USA.
| |
Collapse
|
37
|
Cheng ZF, Cartwright CA. Rack1 maintains intestinal homeostasis by protecting the integrity of the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2018; 314:G263-G274. [PMID: 29025732 PMCID: PMC5866421 DOI: 10.1152/ajpgi.00241.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/31/2023]
Abstract
Previously, we generated mouse models of Rack1 deficiency to identify key functions for Rack1 in regulating growth of intestinal epithelia: suppressing crypt cell proliferation and regeneration, promoting differentiation and apoptosis, and repressing development of neoplasia. However, other than low body weight, we did not detect an overt phenotype in mice constitutively deleted of Rack1 in intestinal epithelia ( vil-Cre: Rack1fl/fl mice), presumably because Rack1 was deleted in <10% of the total surface area of the epithelia. To assess the effect of Rack1 loss throughout the entire intestinal epithelia, we generated another mouse model of Rack1 deficiency, vil-Cre-ERT2: Rack1fl/fl. Within 5-10 days of the initial tamoxifen treatment, the mice lost over 20% of their body weight, developed severe diarrhea that for some was bloody, became critically ill, and died, if not euthanized. Necropsies revealed mildly distended, fluid-, gas-, and sometimes blood-filled loops of small and large bowel, inguinal lymphadenopathy, and thrombocytosis. Rack1 was deleted in nearly 100% of the epithelia in both the small intestine and colon when assessed by immunofluorescent or immunoblot analyses. Rack1 expression in other tissues and organs was not different than in control mice, indicating tissue specificity of the recombination. Histopathology revealed a patchy, erosive, hemorrhagic, inflammatory enterocolitis with denuded, sloughed off surface epithelium, and crypt hyperplasia. These results suggest a protective function for Rack1 in maintaining the integrity of intestinal epithelia and for survival. NEW & NOTEWORTHY Our findings reveal a novel function for Rack1 in maintaining intestinal homeostasis by protecting the epithelial barrier. Rack1 loss results in a patchy, erosive, hemorrhagic, inflammatory enterocolitis, which resembles that of inflammatory bowel diseases (IBD) in humans. Understanding mechanisms that protect barrier function in normal intestine and how loss of that protection contributes to the pathogenesis of IBD could lead to improved therapies for these and other erosive diseases of the gastrointestinal tract.
Collapse
Affiliation(s)
- Zhuan-Fen Cheng
- Department of Medicine, Stanford University , Stanford, California
| | | |
Collapse
|
38
|
Impaired bone healing at tooth extraction sites in CD24-deficient mice: A pilot study. PLoS One 2018; 13:e0191665. [PMID: 29390019 PMCID: PMC5794094 DOI: 10.1371/journal.pone.0191665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/09/2018] [Indexed: 01/06/2023] Open
Abstract
AIM To use a micro-computed tomography (micro-CT) to quantify bone healing at maxillary first molar extraction sites, and test the hypothesis that bone healing is impaired in CD24-knockout mice as compared with wild-type C57BL/6J mice. MATERIALS AND METHODS Under ketamine-xylazine general anaesthesia, mice had either extraction of the right maxillary first molar tooth or sham operation. Mice were sacrificed 1 (n = 12/group), 2 (n = 6/group) or 4 (n = 6/group) weeks postoperatively. The right maxillae was disected. Micro-CT was used to quantify differences in bone microstructural features at extrction sites, between CD24-knockout mice and wild-type mice. RESULTS CD24-Knockout mice displayed impaired bone healing at extraction sites that was manifested as decreased trabecular bone density, and decreased number and thickness of trabeculae. CONCLUSIONS This pilot study suggests that CD24 plays an important role in extraction socket bone healing and may be used as a novel biomarker of bone quality and potential therapeutic target to improve bone healing and density following alveolar bone injury.
Collapse
|
39
|
Samsa LA, Williamson IA, Magness ST. Quantitative Analysis of Intestinal Stem Cell Dynamics Using Microfabricated Cell Culture Arrays. Methods Mol Biol 2018; 1842:139-166. [PMID: 30196407 DOI: 10.1007/978-1-4939-8697-2_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Regeneration of intestinal epithelium is fueled by a heterogeneous population of rapidly proliferating stem cells (ISCs) found in the base of the small intestine and colonic crypts. ISCs populations can be enriched by fluorescence-activated cell sorting (FACS) based on expression of combinatorial cell surface markers, and fluorescent transgenes. Conventional ISC culture is performed by embedding single ISCs or whole crypt units in a matrix and culturing in conditions that stimulate or repress key pathways to recapitulate ISC niche signaling. Cultured ISCs form organoid, which are spherical, epithelial monolayers that are self-renewing, self-patterning, and demonstrate the full complement of intestinal epithelial cell lineages. However, this conventional "bulk" approach to studying ISC biology is often semiquantitative, low throughput, and masks clonal effects and ISC phenotypic heterogeneity. Our group has recently reported the construction, long-term biocompatibility, and use of microfabricated cell raft arrays (CRA) for high-throughput analysis of single ISCs and organoids. CRAs are composed of thousands of indexed and independently retrievable microwells, which in combination with time-lapse microscopy and/or gene-expression analyses are a powerful tool for studying clonal ISC dynamics and micro-niches. In this protocol, we describe how CRAs are used as an adaptable experimental platform to study the effect of exogenous factors on clonal stem cell behavior.
Collapse
Affiliation(s)
- Leigh A Samsa
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian A Williamson
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott T Magness
- Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- NC State/UNC Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
40
|
Cheng ZF, Pai RK, Cartwright CA. Rack1 function in intestinal epithelia: regulating crypt cell proliferation and regeneration and promoting differentiation and apoptosis. Am J Physiol Gastrointest Liver Physiol 2018; 314:G1-G13. [PMID: 28935684 PMCID: PMC5866376 DOI: 10.1152/ajpgi.00240.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 01/31/2023]
Abstract
Previously, we showed that receptor for activated C kinase 1 (Rack1) regulates growth of colon cells in vitro, partly by suppressing Src kinase activity at key cell cycle checkpoints, in apoptotic and cell survival pathways and at cell-cell adhesions. Here, we generated mouse models of Rack1 deficiency to assess Rack1's function in intestinal epithelia in vivo. Intestinal Rack1 deficiency resulted in proliferation of crypt cells, diminished differentiation of crypt cells into enterocyte, goblet, and enteroendocrine cell lineages, and expansion of Paneth cell populations. Following radiation injury, the morphology of Rack1-deleted small bowel was strikingly abnormal with development of large polypoid structures that contained many partly formed villi, numerous back-to-back elongated and regenerating crypts, and high-grade dysplasia in surface epithelia. These abnormalities were not observed in Rack1-expressing areas of intestine or in control mice. Following irradiation, apoptosis of enterocytes was strikingly reduced in Rack1-deleted epithelia. These novel findings reveal key functions for Rack1 in regulating growth of intestinal epithelia: suppressing crypt cell proliferation and regeneration, promoting differentiation and apoptosis, and repressing development of neoplasia. NEW & NOTEWORTHY Our findings reveal novel functions for receptor for activated C kinase 1 (Rack1) in regulating growth of intestinal epithelia: suppressing crypt cell proliferation and regeneration, promoting differentiation and apoptosis, and repressing development of neoplasia.
Collapse
Affiliation(s)
- Zhuan-Fen Cheng
- Department of Medicine, Stanford University , Stanford, California
| | - Reetesh K Pai
- Department of Pathology, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | |
Collapse
|
41
|
Kim CK, Yang VW, Bialkowska AB. The Role of Intestinal Stem Cells in Epithelial Regeneration Following Radiation-Induced Gut Injury. CURRENT STEM CELL REPORTS 2017; 3:320-332. [PMID: 29497599 PMCID: PMC5818549 DOI: 10.1007/s40778-017-0103-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of Review Intestinal epithelial cells show remarkable plasticity in regenerating the epithelium following radiation injury. In this review, we explore the regenerative capacity and mechanisms of various populations of intestinal stem cells (ISCs) in response to ionizing radiation. Recent Findings Ionizing radiation targets mitotic cells that include “active” ISCs and progenitor cells. Lineage-tracing experiments showed that several different cell types identified by a single or combination of markers are capable of regenerating the epithelium, confirming that ISCs exhibit a high degree of plasticity. However, the identities of the contributing cells marked by various markers require further validation. Summary Following radiation injury, quiescent and/or radioresistant cells become active stem cells to regenerate the epithelium. Looking forward, understanding the mechanisms by which ISCs govern tissue regeneration is crucial to determine therapeutic approaches to promote intestinal epithelial regeneration following injury.
Collapse
Affiliation(s)
- Chang-Kyung Kim
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| | - Vincent W Yang
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA.,2Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY 11794 USA
| | - Agnieszka B Bialkowska
- 1Department of Medicine, Stony Brook University School of Medicine, HSC T-17, Rm. 090, Stony Brook, NY 11794 USA
| |
Collapse
|
42
|
The role of pparγ and autophagy in ros production, lipid droplets biogenesis and its involvement with colorectal cancer cells modulation. Cancer Cell Int 2017; 17:82. [PMID: 28932171 PMCID: PMC5603033 DOI: 10.1186/s12935-017-0451-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 08/31/2017] [Indexed: 12/15/2022] Open
Abstract
Background In cancer cells, autophagy can act as both tumor suppressor, when autophagic event eliminates cellular contends which exceeds the cellular capacity of regenerate promoting cell death, and as a pro-survival agent removing defective organelles and proteins and helping well-established tumors to maintain an accelerated metabolic state while still dealing with harsh conditions, such as inflammation. Many pathways can coordinate the autophagic process and one of them involves the transcription factors called PPARs, which also regulate cellular differentiation, proliferation and survival. The PPARγ activation and autophagy initiation seems to be interrelated in a variety of cell types. Methods Caco-2 cells were submitted to treatment with autophagy and PPARγ modulators and the relationship between both pathways was determined by western blotting and confocal microscopy. The effects of such modulations on Caco-2 cells, such as lipid bodies biogenesis, cell death, proliferation, cell cycle, ROS production and cancer stem cells profiling were analyzed by flow cytometry. Results PPARγ and autophagy pathways seem to be overlap in Caco-2 cells, modulating each other in different ways and determining the lipid bodies biogenesis. In general, inhibition of autophagy by 3-MA leaded to reduced cell proliferation, cell cycle arrest and, ultimately, cell death by apoptosis. In agreement with these results, ROS production was increased in 3-MA treated cells. Autophagy also seems to play an important role in cancer stem cells profiling. Rapamycin and 3-MA induced epithelial and mesenchymal phenotypes, respectively. Conclusions This study helps to elucidate in which way the induction or inhibition of these pathways regulate each other and affect cellular properties, such as ROS production, lipid bodies biogenesis and cell survive. We also consolidate autophagy as a key factor for colorectal cancer cells survival in vitro, pointing out a potential side effect of autophagic inhibition as a therapeutic application for this disease and demonstrate a novel regulation of PPARγ expression by inhibition of PI3K III. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0451-5) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Media from macrophages co-incubated with Enterococcus faecalis induces epithelial cell monolayer reassembly and altered cell morphology. PLoS One 2017; 12:e0182825. [PMID: 28793333 PMCID: PMC5549984 DOI: 10.1371/journal.pone.0182825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/25/2017] [Indexed: 12/24/2022] Open
Abstract
Signal exchange between intestinal epithelial cells, microbes and local immune cells is an important mechanism of intestinal homeostasis. Given that intestinal macrophages are in close proximity to both the intestinal epithelium and the microbiota, their pathologic interactions may result in epithelial damage. The present study demonstrates that co-incubation of murine macrophages with E. faecalis strains producing gelatinase (GelE) and serine protease (SprE) leads to resultant condition media (CM) capable of inducing reassembly of primary colonic epithelial cell monolayers. Following the conditioned media (CM) exposure, some epithelial cells are shed whereas adherent cells are observed to undergo dissolution of cell-cell junctions and morphologic transformation with actin cytoskeleton reorganization resulting in flattened and elongated shapes. These cells exhibit marked filamentous filopodia and lamellipodia formation. Cellular reorganization is not observed when epithelial monolayers are exposed to: CM from macrophages co-incubated with E. faecalis GelE/SprE-deficient mutants, CM from macrophages alone, or E. faecalis (GelE/SprE) alone. Flow cytometry analysis reveals increased expression of CD24 and CD44 in cells treated with macrophage/E. faecalis CM. This finding in combination with the appearance colony formation in matrigel demonstrate that the cells treated with macrophage/E. faecalis CM contain a higher proportion progenitor cells compared to untreated control. Taken together, these findings provide evidence for a triangulated molecular dialogue between E. faecalis, macrophages and colonic epithelial cells, which may have important implications for conditions in the gut that involve inflammation, injury or tumorigenesis.
Collapse
|
44
|
Fedele V, Dai F, Masilamani AP, Heiland DH, Kling E, Gätjens-Sanchez AM, Ferrarese R, Platania L, Soroush D, Kim H, Nelander S, Weyerbrock A, Prinz M, Califano A, Iavarone A, Bredel M, Carro MS. Epigenetic Regulation of ZBTB18 Promotes Glioblastoma Progression. Mol Cancer Res 2017; 15:998-1011. [PMID: 28512252 PMCID: PMC5967621 DOI: 10.1158/1541-7786.mcr-16-0494] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/07/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Glioblastoma (GBM) comprises distinct subtypes characterized by their molecular profile. Mesenchymal identity in GBM has been associated with a comparatively unfavorable prognosis, primarily due to inherent resistance of these tumors to current therapies. The identification of molecular determinants of mesenchymal transformation could potentially allow for the discovery of new therapeutic targets. Zinc Finger and BTB Domain Containing 18 (ZBTB18/ZNF238/RP58) is a zinc finger transcriptional repressor with a crucial role in brain development and neuronal differentiation. Here, ZBTB18 is primarily silenced in the mesenchymal subtype of GBM through aberrant promoter methylation. Loss of ZBTB18 contributes to the aggressive phenotype of glioblastoma through regulation of poor prognosis-associated signatures. Restitution of ZBTB18 expression reverses the phenotype and impairs tumor-forming ability. These results indicate that ZBTB18 functions as a tumor suppressor in GBM through the regulation of genes associated with phenotypically aggressive properties.Implications: This study characterizes the role of the putative tumor suppressor ZBTB18 and its regulation by promoter hypermethylation, which appears to be a common mechanism to silence ZBTB18 in the mesenchymal subtype of GBM and provides a new mechanistic opportunity to specifically target this tumor subclass. Mol Cancer Res; 15(8); 998-1011. ©2017 AACR.
Collapse
Affiliation(s)
- Vita Fedele
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Fangping Dai
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Anie Priscilla Masilamani
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Dieter Henrik Heiland
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Eva Kling
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Ana Maria Gätjens-Sanchez
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Roberto Ferrarese
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Leonardo Platania
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Doostkam Soroush
- Institute of Neuropathology, Neurocenter, and Comprehensive Cancer Center, University of Freiburg, D-79106 Freiburg, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Hyunsoo Kim
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology and Science for Life Laboratories, University of Uppsala, Uppsala, 75105, Sweden
| | - Astrid Weyerbrock
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Neurocenter, and Comprehensive Cancer Center, University of Freiburg, D-79106 Freiburg, BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Andrea Califano
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, USA
- Department of Systems Biology, Columbia University, New York, NY 10032, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
- Department of Pathology, Columbia University Medical Center, New York, New York, USA
- Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Markus Bredel
- Department of Radiation Oncology, Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35249, USA
- Department of Neurosurgery, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Stella Carro
- Dept. of Neurosurgery, Medical Center – University of Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
45
|
Chen Q, Suresh Kumar V, Finn J, Jiang D, Liang J, Zhao YY, Liu Y. CD44 high alveolar type II cells show stem cell properties during steady-state alveolar homeostasis. Am J Physiol Lung Cell Mol Physiol 2017; 313:L41-L51. [PMID: 28473330 DOI: 10.1152/ajplung.00564.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 11/22/2022] Open
Abstract
The alveolar epithelium is composed of type I cells covering most of the gas-blood exchange surface and type II cells secreting surfactant that lowers surface tension of alveoli to prevent alveolar collapse. Here, we have identified a subgroup of type II cells expressing a higher level of cell surface molecule CD44 (CD44high type II cells) that composed ~3% of total type II cells in 5-10-wk-old mice. These cells were preferentially apposed to lung capillaries. They displayed a higher proliferation rate and augmented differentiation capacity into type I cells and the ability to form alveolar organoids compared with CD44low type II cells. Moreover, in aged mice, 18-24 mo old, the percentage of CD44high type II cells among all type II cells was increased, but these cells showed decreased progenitor properties. Thus CD44high type II cells likely represent a type II cell subpopulation important for constitutive regulation of alveolar homeostasis.
Collapse
Affiliation(s)
- Qian Chen
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Varsha Suresh Kumar
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Johanna Finn
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Dianhua Jiang
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jiurong Liang
- Division of Pulmonary and Critical Care Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; and
| | - Yuru Liu
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois; and
| |
Collapse
|
46
|
Using 3D Organoid Cultures to Model Intestinal Physiology and Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2017; 13:183-191. [PMID: 29276469 DOI: 10.1007/s11888-017-0363-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The three-dimensional (3D) structure of the intestine is a key determinant of differentiation and function; thus, preserving this architecture is an important consideration for studies of intestinal homeostasis and disease. Over the past decade, a number of systems for 3D intestinal organoid cultures have been developed and adapted to model a wide variety of biological phenomenon. Purpose of this review We discuss the current state of intestinal and colorectal cancer (CRC) 3D modeling, the most common methods for generating organoid cultures, and how these have yielded insights into intestinal physiology and tumor biology. Recent findings Organoids have been used to model numerous aspects of intestinal physiology and disease. Recent adaptations have further improved disease modeling and high-throughput therapeutic screening. Summary These studies show intestinal organoid models are a robust, highly tractable system which maintains many vital features of intestinal tissue, making them a pivotal step forward in the field of gastroenterology.
Collapse
|
47
|
Kechele DO, Blue RE, Zwarycz B, Espenschied ST, Mah AT, Siegel MB, Perou CM, Ding S, Magness ST, Lund PK, Caron KM. Orphan Gpr182 suppresses ERK-mediated intestinal proliferation during regeneration and adenoma formation. J Clin Invest 2017; 127:593-607. [PMID: 28094771 DOI: 10.1172/jci87588] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 11/22/2016] [Indexed: 12/16/2022] Open
Abstract
Orphan GPCRs provide an opportunity to identify potential pharmacological targets, yet their expression patterns and physiological functions remain challenging to elucidate. Here, we have used a genetically engineered knockin reporter mouse to map the expression pattern of the Gpr182 during development and adulthood. We observed that Gpr182 is expressed at the crypt base throughout the small intestine, where it is enriched in crypt base columnar stem cells, one of the most active stem cell populations in the body. Gpr182 knockdown had no effect on homeostatic intestinal proliferation in vivo, but led to marked increases in proliferation during intestinal regeneration following irradiation-induced injury. In the ApcMin mouse model, which forms spontaneous intestinal adenomas, reductions in Gpr182 led to more adenomas and decreased survival. Loss of Gpr182 enhanced organoid growth efficiency ex vivo in an EGF-dependent manner. Gpr182 reduction led to increased activation of ERK1/2 in basal and challenge models, demonstrating a potential role for this orphan GPCR in regulating the proliferative capacity of the intestine. Importantly, GPR182 expression was profoundly reduced in numerous human carcinomas, including colon adenocarcinoma. Together, these results implicate Gpr182 as a negative regulator of intestinal MAPK signaling-induced proliferation, particularly during regeneration and adenoma formation.
Collapse
|
48
|
Prognostic Significance of CD24 in Clear Cell Renal Cell Carcinoma. Pathol Oncol Res 2016; 23:409-416. [DOI: 10.1007/s12253-016-0128-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/05/2016] [Indexed: 12/12/2022]
|
49
|
Cui S, Chang PY. Current understanding concerning intestinal stem cells. World J Gastroenterol 2016; 22:7099-7110. [PMID: 27610020 PMCID: PMC4988314 DOI: 10.3748/wjg.v22.i31.7099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 05/21/2016] [Accepted: 06/15/2016] [Indexed: 02/06/2023] Open
Abstract
In mammals, the intestinal epithelium is a tissue that contains two distinct pools of stem cells: active intestinal stem cells and reserve intestinal stem cells. The former are located in the crypt basement membrane and are responsible for maintaining epithelial homeostasis under intact conditions, whereas the latter exhibit the capacity to facilitate epithelial regeneration after injury. These two pools of cells can convert into each other, maintaining their quantitative balance. In terms of the active intestinal stem cells, their development into functional epithelium is precisely controlled by the following signaling pathways: Wnt/β-catenin, Ras/Raf/Mek/Erk/MAPK, Notch and BMP/Smad. However, mutations in some of the key regulator genes associated with these signaling pathways, such as APC, Kras and Smad4, are also highly associated with gut malformations. At this point, clarifying the biological characteristics of intestinal stem cells will increase the feasibility of preventing or treating some intestinal diseases, such as colorectal cancer. Moreover, as preclinical data demonstrate the therapeutic effects of colon stem cells on murine models of experimental colitis, the prospects of stem cell-based regenerative treatments for ulcerous lesions in the gastrointestinal tract will be improved all the same.
Collapse
|
50
|
Henning SJ, von Furstenberg RJ. GI stem cells - new insights into roles in physiology and pathophysiology. J Physiol 2016; 594:4769-79. [PMID: 27107928 DOI: 10.1113/jp271663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles.
Collapse
Affiliation(s)
- Susan J Henning
- Department of Medicine - Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7555, USA
| | | |
Collapse
|