1
|
Holloway K, Neherin K, Song Y, Sato K, Houston A, Chen F, Ding L, Zhang H. Elevated p16Ink4a Expression Enhances Tau Phosphorylation in Neurons Differentiated From Human-Induced Pluripotent Stem Cells. Aging Cell 2025; 24:e14472. [PMID: 39757785 DOI: 10.1111/acel.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Increased expression of the cyclin-dependent kinase inhibitor p16Ink4a (p16) is detected in neurons of human Alzheimer's disease (AD) brains and during normal aging. Importantly, selective eliminating p16-expressing cells in AD mouse models attenuates tau pathologies and improves cognition. But whether and how p16 contributes to AD pathogenesis remains unclear. To address this question, we tested whether induction of p16 expression in neurons exacerbates AD pathologies. We created a doxycycline-inducible system to trigger p16 up-regulation in human-induced pluripotent stem cells (iPSCs) and neurons differentiated from iPSCs. We demonstrated that up-regulated p16 expression in iPSCs reduces cell proliferation, down-regulates cell cycle genes, and up-regulates genes involved in focal adhesion, interferon α response and PI3K-Akt signaling. Our approach enables temporal control of p16 induction upon differentiation from iPSCs to neurons. In differentiated cortical neurons, we found that up-regulation of p16 increases tau phosphorylation at Ser202/Thr205 and Thr231 in a cell-autonomous manner, while amyloid beta secretion is not affected. These data suggest a critical role of p16 in regulating tau phosphorylation in neurons, and thereby contributing to pathological progression of AD. As pathological tau tangles have been shown to induce p16 expression, our studies suggest a positive feedback loop between p16 and tau to exacerbate tau pathologies.
Collapse
Affiliation(s)
- Kristopher Holloway
- Department of Pediatrics, 3 NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Kashfia Neherin
- Department of Pediatrics, 3 NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Yingduo Song
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kazuhito Sato
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew Houston
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Feng Chen
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Li Ding
- Department of Medicine, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hong Zhang
- Department of Pediatrics, 3 NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Ly J, Tao YF, Di Bernardo M, Khalizeva E, Giuliano CJ, Lourido S, Fleming MD, Cheeseman IM. Alternative start codon selection shapes mitochondrial function during evolution, homeostasis, and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645657. [PMID: 40196624 PMCID: PMC11974929 DOI: 10.1101/2025.03.27.645657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Mitochondrial endosymbiosis was a pivotal event in eukaryotic evolution, requiring core proteins to adapt to function both within the mitochondria and in the host cell. Here, we systematically profile the localization of protein isoforms generated by alternate start codon selection during translation. We identify hundreds of pairs of differentially-localized protein isoforms, many of which affect mitochondrial targeting and are essential for mitochondrial function. The emergence of dual-localized mitochondrial protein isoforms coincides with mitochondrial acquisition during early eukaryotic evolution. We further reveal that eukaryotes use diverse mechanisms-such as leaky ribosome scanning, alternative transcription, and paralog duplication-to maintain the production of dual-localized isoforms. Finally, we identify multiple isoforms that are specifically dysregulated by rare disease patient mutations and demonstrate how these mutations can help explain unique clinical presentations. Together, our findings illuminate the evolutionary and pathological relevance of alternative translation initiation, offering new insights into the molecular underpinnings of mitochondrial biology.
Collapse
Affiliation(s)
- Jimmy Ly
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Yi Fei Tao
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Matteo Di Bernardo
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Ekaterina Khalizeva
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Christopher J. Giuliano
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - Mark D. Fleming
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, United States
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
3
|
Ashmore-Harris C, Ayabe H, Yoshizawa E, Arisawa T, Takada Y, Takebe T, Fruhwirth GO. Gene editing enables non-invasive in vivo PET imaging of human induced pluripotent stem cell-derived liver bud organoids. Mol Ther Methods Clin Dev 2025; 33:101406. [PMID: 39927149 PMCID: PMC11803834 DOI: 10.1016/j.omtm.2025.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived liver cell therapies such as hepatocyte-like cells and liver organoids could provide unlimited therapeutic cells for clinical transplantation, but an inadequate understanding of their in vivo fate impedes translation. Whole body in vivo imaging could enable monitoring of transplanted cell survival and/or expansion non-invasively over time, permitting robust comparisons between emerging therapies to identify those most effective. The human sodium iodide symporter (hNIS) is a radionuclide reporter gene facilitating whole body in vivo cell tracking by positron emission tomography (PET). We gene-edited a clinical Good Manufacturing Practice-compliant hiPSC line at the AAVS1 safe harbor locus enabling constitutive expression of a hNIS-monomeric(m)GFP fusion reporter in hiPSCs and their differentiated progeny. We confirmed reporter integration did not impact pluripotency or differentiation capacity, and radiotracer uptake capacity was retained post-differentiation. In vivo trackable liver bud (LB) organoids were generated from traceable hNIS fused to monomeric GFP (hNIS-mGFP)-hiPSCs and transplanted into healthy and liver-injured mice. LB were imaged quantitatively by 18FBF4 --PET with imaging results confirmed histologically. We report, for the first time, hNIS-mGFP-hiPSC progeny retain differentiated function and PET trackability in vivo using LB. In vivo monitoring could accelerate regenerative cell therapy development by identifying efficacious candidate cells, successful engraftment/survival strategies and addressing safety concerns.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 1UL, UK
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Hiroaki Ayabe
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Emi Yoshizawa
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Tetsu Arisawa
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Yuuki Takada
- Department of Physiology, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| | - Takanori Takebe
- Department of Regenerative Medicine, Graduate School of Medicine, Yokohama City University, Yokohama, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
- Center for Stem Cell & Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), and Division of Stem Cell and Organoid Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 1UL, UK
| |
Collapse
|
4
|
Lissek T. Enhancement of physiology via adaptive transcription. Pflugers Arch 2025; 477:187-199. [PMID: 39482558 PMCID: PMC11761519 DOI: 10.1007/s00424-024-03037-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
The enhancement of complex physiological functions such as cognition and exercise performance in healthy individuals represents a challenging goal. Adaptive transcription programs that are naturally activated in animals to mediate cellular plasticity in response to stimulation can be leveraged to enhance physiological function above wild-type levels in young organisms and counteract complex functional decline in aging. In processes such as learning and memory and exercise-dependent muscle remodeling, a relatively small number of molecules such as certain stimulus-responsive transcription factors and immediate early genes coordinate widespread changes in cellular physiology. Adaptive transcription can be targeted by various methods including pharmaceutical compounds and gene transfer technologies. Important problems for leveraging adaptive transcription programs for physiological enhancement include a better understanding of their dynamical organization, more precise methods to influence the underlying molecular components, and the integration of adaptive transcription into multi-scale physiological enhancement concepts.
Collapse
Affiliation(s)
- Thomas Lissek
- Interdisciplinary Center for Neurosciences, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Heyza JR, Mikhova M, Perez GI, Broadbent DG, Schmidt JC. The PST repeat region of MDC1 is a tunable multivalent chromatin tethering domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632395. [PMID: 39868091 PMCID: PMC11761366 DOI: 10.1101/2025.01.10.632395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
DNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown. Here we demonstrate that the PST repeat region of MDC1 is a mutlivalent nucleosome binding domain, sufficient to tether chromatin in multiple contexts. In mitotic cells the affinity of the PST repeats for chromatin is downregulated by phosphorylation to prevent chromosome missegregation, while still contributing to DNA break tethering by the MDC1-TOPBP1-CIP2A complex. In interphase, the PST repeat region is critical for RAD51 focus formation but not the recruitment of 53BP1 to DNA breaks, consistent with a chromatin tethering function. In total, this work demonstrates that the PST repeat region of MDC1 is a multivalent chromatin binding domain with tunable affinity that contributes to DNA break tethering during HR and in mitosis.
Collapse
Affiliation(s)
- Joshua R. Heyza
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - Maria Mikhova
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- College of Osteopathic Medicine, Michigan State University, East Lansing
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing
| |
Collapse
|
6
|
Chen X, Sun G, Feng L, Tian E, Shi Y. Human iPSC-derived microglial cells protect neurons from neurodegeneration in long-term cultured adhesion brain organoids. Commun Biol 2025; 8:30. [PMID: 39789340 PMCID: PMC11718079 DOI: 10.1038/s42003-024-07401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture. However, only short-term microglia-organoid co-cultures can be established, and it remains challenging to have long-lasting survival of microglia in organoids to mimic long-term residency of microglia in the brain. In this study, we developed an adhesion brain organoid (ABO) platform that allows prolonged culture of brain organoids (greater than a year). Moreover, the long-term (LT)-ABO system contains abundant astrocytes and can support prolonged survival and ramification of microglia. Furthermore, we showed that microglia in the LT-ABO could protect neurons from neurodegeneration by increasing synaptic density and reducing p-Tau level and cell death in the LT-ABO. Therefore, the microglia-containing LT-ABO platform generated in this study provides a promising human cellular model for studying neuron-glia and glia-glia interactions in brain development and the pathogenesis of neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Xianwei Chen
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Guoqiang Sun
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Lizhao Feng
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - E Tian
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA
| | - Yanhong Shi
- Department of Neurodegenerative Diseases, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Tarasovetc EV, Sissoko GB, Maiorov A, Mukhina AS, Ataullakhanov FI, Cheeseman IM, Grishchuk EL. Binding Site Maturation Modulated by Molecular Density Underlies Ndc80 Binding to Kinetochore Receptor CENP-T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.25.581584. [PMID: 38464265 PMCID: PMC10925139 DOI: 10.1101/2024.02.25.581584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Macromolecular assembly depends on tightly regulated pairwise binding interactions that are selectively favored at assembly sites while being disfavored in the soluble phase. This selective control can arise due to molecular density-enhanced binding, as recently found for the kinetochore scaffold protein CENP-T. When clustered, CENP-T recruits markedly more Ndc80 complexes than its monomeric counterpart, but the underlying molecular basis remains elusive. Here, we use quantitative in vitro assays to reveal two distinct mechanisms driving this behavior. First, Ndc80 binding to CENP-T is a two-step process: initially, Ndc80 molecules rapidly associate and dissociate from disordered N-terminal binding sites on CENP-T. Over time, these sites undergo maturation, resulting in stronger Ndc80 retention. Second, we find that this maturation transition is regulated by a kinetic barrier that is sensitive to the molecular environment. In the soluble phase, binding site maturation is slow, but within CENP-T clusters, this process is markedly accelerated. Notably, the two Ndc80 binding sites in human CENP-T exhibit distinct maturation rates and environmental sensitivities, which correlate with their different amino-acid content and predicted binding conformations. This clustering-induced maturation is evident in dividing human cells, suggesting a distinct regulatory entry point for controlling kinetochore assembly. We propose that the tunable acceleration of binding site maturation by molecular crowding may represent a general mechanism for promoting the formation of macromolecular structures.
Collapse
Affiliation(s)
- Ekaterina V. Tarasovetc
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Gunter B. Sissoko
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Aleksandr Maiorov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Anna S. Mukhina
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Fazoil I. Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Ekaterina L. Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Pang W, Zhu J, Yang K, Zhu X, Zhou W, Jiang L, Zhuang X, Liu Y, Wei J, Lu X, Yin Y, Chen Z, Xiang Y. Generation of human region-specific brain organoids with medullary spinal trigeminal nuclei. Cell Stem Cell 2024; 31:1501-1512.e8. [PMID: 39208804 DOI: 10.1016/j.stem.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/16/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Brain organoids with nucleus-specific identities provide unique platforms for studying human brain development and diseases at a finer resolution. Despite its essential role in vital body functions, the medulla of the hindbrain has seen a lack of in vitro models, let alone models resembling specific medullary nuclei, including the crucial spinal trigeminal nucleus (SpV) that relays peripheral sensory signals to the thalamus. Here, we report a method to differentiate human pluripotent stem cells into region-specific brain organoids resembling the dorsal domain of the medullary hindbrain. Importantly, organoids specifically recapitulated the development of the SpV derived from the dorsal medulla. We also developed an organoid system to create the trigeminothalamic projections between the SpV and the thalamus by fusing these organoids, namely human medullary SpV-like organoids (hmSpVOs), with organoids representing the thalamus (hThOs). Our study provides a platform for understanding SpV development, nucleus-based circuit organization, and related disorders in the human brain.
Collapse
Affiliation(s)
- Wei Pang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jinkui Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaona Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Linlin Jiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuran Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yantong Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jianfeng Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoxiang Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yao Yin
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziling Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yangfei Xiang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| |
Collapse
|
9
|
Chi Y, Lu X, Li S, Wang J, Xi J, Zhou X, Tang C, Chen M, Yuan H, Lin S, Xiao Y, Lai L, Zou Q. A compact, versatile drug-induced splicing switch system with minimal background expression. CELL REPORTS METHODS 2024; 4:100842. [PMID: 39236714 PMCID: PMC11440066 DOI: 10.1016/j.crmeth.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/07/2024]
Abstract
Gene-switch techniques hold promising applications in contemporary genetics research, particularly in disease treatment and genetic engineering. Here, we developed a compact drug-induced splicing system that maintains low background using a human ubiquitin C (hUBC) promoter and optimized drug (LMI070) binding sequences based on the Xon switch system. To ensure precise subcellular localization of the protein of interest (POI), we inserted a 2A self-cleaving peptide between the extra N-terminal peptide and POI. This streamlined and optimized switch system, named miniXon2G, effectively regulated POIs in different subcellular localizations both in vitro and in vivo. Furthermore, miniXon2G could be integrated into endogenous gene loci, resulting in precise, reversible regulation of target genes by both endogenous regulators and drugs. Overall, these findings highlight the performance of miniXon2G in controlling protein expression with great potential for general applicability to diverse biological scenarios requiring precise and delicate regulation.
Collapse
Affiliation(s)
- Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xuan Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuangpeng Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Jiahui Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Hui Yuan
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shuo Lin
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yingying Xiao
- Jiangmen Wuyi Traditional Chinese Medicine Hospital, Jiangmen 529000, China
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, South China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
10
|
Shin SW, Min H, Kim J, Lee JS. A precise and sustainable doxycycline-inducible cell line development platform for reliable mammalian cell engineering with gain-of-function mutations. Metab Eng 2024; 86:12-28. [PMID: 39242074 DOI: 10.1016/j.ymben.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
For mammalian synthetic biology research, multiple orthogonal and tunable gene expression systems have been developed, among which the tetracycline (Tet)-inducible system is a key tool for gain-of-function mutations. Precise and long-lasting regulation of genetic circuits is necessary for the effective use of these systems in genetically engineered stable cell lines. However, current cell line development strategies, which depend on either random or site-specific integration along with antibiotic selection, are unpredictable and unsustainable, limiting their widespread use. To overcome these issues, we aimed to establish a Robust Overexpression via Site-specific integration of Effector (ROSE) system, a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9-mediated streamlined Tet-On3G-inducible master cell line (MCL) development platform. ROSE MCLs equipped with a landing pad facilitated the transcriptional regulation of various effector genes via recombinase-mediated cassette exchange. Long-term investigation revealed that the modular design of genetic payloads and integration sites significantly affected the induction capacity and stability, with ROSE MCLs exhibiting exceptional induction performance. To demonstrate the versatility of our platform, we explored its efficiency for the precise regulation of selection stringency, manufacturing of therapeutic antibodies with tunable expression levels and timing, and transcription factor engineering. Overall, this study demonstrated the effectiveness and reliability of the ROSE platform, highlighting its potential for various biological and biotechnological applications.
Collapse
Affiliation(s)
- Sung Wook Shin
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Honggi Min
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jiwon Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea; Advanced College of Bio-convergence Engineering, Ajou University, Suwon, 16499, Republic of Korea.
| |
Collapse
|
11
|
Qiao A, Wei Y, Liu Y, Kahn-Krell A, Ye L, Nguyen T, Zhang J. Doxycycline-Mediated Control of Cyclin D2 Overexpression in Human-Induced Pluripotent Stem Cells. Int J Mol Sci 2024; 25:8714. [PMID: 39201401 PMCID: PMC11354523 DOI: 10.3390/ijms25168714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Previous studies have demonstrated that when the cyclin D2 (CCND2), a cell-cycle regulatory protein, is overexpressed in human-induced pluripotent stem cells (hiPSCs), cardiomyocytes (CMs) differentiated from these CCND2-overexpressing hiPSCs can proliferate after transplantation into infarcted hearts, which significantly improves the cells' potency for myocardial regeneration. However, persistent CM proliferation could lead to tumor growth or the development of arrhythmogenic complications; thus, the goal of the current study was to generate a line of hiPSCs in which CCND2 overexpression could be tightly controlled. First, we transfected hiPSCs with vectors coding for a doxycycline-inducible Tet-On transactivator and S. pyogenes dCas9 fused to the VPR activation domain; then, the same hiPSCs were engineered to express guide RNAs targeting the CCND2 promotor. Thus, treatment with doxycycline (dox) activated dCas9-VPR expression, and the guide RNAs directed dCas9-VPR to the CCND2 promoter, which activated CCND2 expression. Subsequent experiments confirmed that CCND2 expression was dox-dependent in this newly engineered line of hiPSCs (doxCCND2-hiPSCs): CCND2 protein was abundantly expressed after 48 h of treatment with dox and declined to near baseline level ~96 h after dox treatment was discontinued.
Collapse
Affiliation(s)
- Aijun Qiao
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Yuhua Wei
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Yanwen Liu
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Asher Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Lei Ye
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Thanh Nguyen
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.Q.); (Y.W.); (Y.L.); (A.K.-K.); (L.Y.); (T.N.)
- Department of Medicine/Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
12
|
Barnaba C, Broadbent DG, Kaminsky EG, Perez GI, Schmidt JC. AMPK regulates phagophore-to-autophagosome maturation. J Cell Biol 2024; 223:e202309145. [PMID: 38775785 PMCID: PMC11110907 DOI: 10.1083/jcb.202309145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/28/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024] Open
Abstract
Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example, by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK-mediated inhibition of phagophore tethering to donor membrane. Our results clarify AMPKs regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.
Collapse
Affiliation(s)
- Carlo Barnaba
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Emily G. Kaminsky
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
13
|
Yang H, Wang H, He Y, Yang Y, Thompson EW, Xia D, Burke LJ, Cao L, Hooper JD, Roberts MS, Crawford DHG, Liang X. Identification and characterization of TM4SF1 + tumor self-seeded cells. Cell Rep 2024; 43:114512. [PMID: 39003738 DOI: 10.1016/j.celrep.2024.114512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/30/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Tumor self-seeding is a process whereby circulating tumor cells (CTCs) recolonize the primary tumor, which promotes tumor growth, angiogenesis, and invasion. However, the detailed nature and functions of tumor self-seeded cells (TSCs) have not been well defined due to challenges in tracking and isolating TSCs. Here, we report an accurate animal model using photoconvertible tagging to recapitulate the spontaneous process of tumor self-seeding and identify TSCs as a subpopulation of primary tumor cells with enhanced invasiveness and survival. We demonstrate transmembrane-4-L-six-family-1 (TM4SF1) as a marker of TSCs, which promotes migration, invasion, and anchorage-independent survival in cancer cells. By analyzing single-cell RNA sequencing datasets, we identify a potential TSC population with a metastatic profile in patients with cancer, which is detectable in early-stage disease and expands during cancer progression. In summary, we establish a framework to study TSCs and identify emerging cell targets with diagnostic, prognostic, or therapeutic potential in cancers.
Collapse
Affiliation(s)
- Haotian Yang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Haolu Wang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Yaowu He
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Yang Yang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Queensland University of Technology and Translational Research Institute, Brisbane, QLD 4000, Australia
| | - Di Xia
- Genome Innovation Hub, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leslie J Burke
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - Lu Cao
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia
| | - John D Hooper
- Mater Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Michael S Roberts
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Darrell H G Crawford
- Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Xiaowen Liang
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia; Gallipoli Medical Research, Greenslopes Private Hospital, Brisbane, QLD 4120, Australia.
| |
Collapse
|
14
|
Kreutz A, Oyetade OB, Chang X, Hsieh JH, Behl M, Allen DG, Kleinstreuer NC, Hogberg HT. Integrated Approach for Testing and Assessment for Developmental Neurotoxicity (DNT) to Prioritize Aromatic Organophosphorus Flame Retardants. TOXICS 2024; 12:437. [PMID: 38922117 PMCID: PMC11209292 DOI: 10.3390/toxics12060437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
Organophosphorus flame retardants (OPFRs) are abundant and persistent in the environment but have limited toxicity information. Their similarity in structure to organophosphate pesticides presents great concern for developmental neurotoxicity (DNT). However, current in vivo testing is not suitable to provide DNT information on the amount of OPFRs that lack data. Over the past decade, an in vitro battery was developed to enhance DNT assessment, consisting of assays that evaluate cellular processes in neurodevelopment and function. In this study, behavioral data of small model organisms were also included. To assess if these assays provide sufficient mechanistic coverage to prioritize chemicals for further testing and/or identify hazards, an integrated approach to testing and assessment (IATA) was developed with additional information from the Integrated Chemical Environment (ICE) and the literature. Human biomonitoring and exposure data were identified and physiologically-based toxicokinetic models were applied to relate in vitro toxicity data to human exposure based on maximum plasma concentration. Eight OPFRs were evaluated, including aromatic OPFRs (triphenyl phosphate (TPHP), isopropylated phenyl phosphate (IPP), 2-ethylhexyl diphenyl phosphate (EHDP), tricresyl phosphate (TMPP), isodecyl diphenyl phosphate (IDDP), tert-butylphenyl diphenyl phosphate (BPDP)) and halogenated FRs ((Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(2-chloroethyl) phosphate (TCEP)). Two representative brominated flame retardants (BFRs) (2,2'4,4'-tetrabromodiphenyl ether (BDE-47) and 3,3',5,5'-tetrabromobisphenol A (TBBPA)) with known DNT potential were selected for toxicity benchmarking. Data from the DNT battery indicate that the aromatic OPFRs have activity at similar concentrations as the BFRs and should therefore be evaluated further. However, these assays provide limited information on the mechanism of the compounds. By integrating information from ICE and the literature, endocrine disruption was identified as a potential mechanism. This IATA case study indicates that human exposure to some OPFRs could lead to a plasma concentration similar to those exerting in vitro activities, indicating potential concern for human health.
Collapse
Affiliation(s)
- Anna Kreutz
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Oluwakemi B. Oyetade
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Xiaoqing Chang
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | - Jui-Hua Hsieh
- NIH/NIEHS/DTT/PTB, Research Triangle Park, NC 27560, USA;
| | - Mamta Behl
- Neurocrine Biosciences Inc., San Diego, CA 92130, USA;
| | - David G. Allen
- Inotiv, Research Triangle Park, NC 27560, USA; (A.K.); (O.B.O.); (X.C.); (D.G.A.)
| | | | | |
Collapse
|
15
|
McLean ZL, Gao D, Correia K, Roy JCL, Shibata S, Farnum IN, Valdepenas-Mellor Z, Kovalenko M, Rapuru M, Morini E, Ruliera J, Gillis T, Lucente D, Kleinstiver BP, Lee JM, MacDonald ME, Wheeler VC, Mouro Pinto R, Gusella JF. Splice modulators target PMS1 to reduce somatic expansion of the Huntington's disease-associated CAG repeat. Nat Commun 2024; 15:3182. [PMID: 38609352 PMCID: PMC11015039 DOI: 10.1038/s41467-024-47485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Huntington's disease (HD) is a dominant neurological disorder caused by an expanded HTT exon 1 CAG repeat that lengthens huntingtin's polyglutamine tract. Lowering mutant huntingtin has been proposed for treating HD, but genetic modifiers implicate somatic CAG repeat expansion as the driver of onset. We find that branaplam and risdiplam, small molecule splice modulators that lower huntingtin by promoting HTT pseudoexon inclusion, also decrease expansion of an unstable HTT exon 1 CAG repeat in an engineered cell model. Targeted CRISPR-Cas9 editing shows this effect is not due to huntingtin lowering, pointing instead to pseudoexon inclusion in PMS1. Homozygous but not heterozygous inactivation of PMS1 also reduces CAG repeat expansion, supporting PMS1 as a genetic modifier of HD and a potential target for therapeutic intervention. Although splice modulation provides one strategy, genome-wide transcriptomics also emphasize consideration of cell-type specific effects and polymorphic variation at both target and off-target sites.
Collapse
Affiliation(s)
- Zachariah L McLean
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - Dadi Gao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennie C L Roy
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Shota Shibata
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - Iris N Farnum
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Zoe Valdepenas-Mellor
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Manasa Rapuru
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Elisabetta Morini
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jayla Ruliera
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Benjamin P Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA, 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, 02142, USA.
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
16
|
Stephan T, Stoldt S, Barbot M, Carney TD, Lange F, Bates M, Bou Dib P, Inamdar K, Shcherbata HR, Meinecke M, Riedel D, Dennerlein S, Rehling P, Jakobs S. Drosophila MIC10b can polymerize into cristae-shaping filaments. Life Sci Alliance 2024; 7:e202302177. [PMID: 38253420 PMCID: PMC10803214 DOI: 10.26508/lsa.202302177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Cristae are invaginations of the mitochondrial inner membrane that are crucial for cellular energy metabolism. The formation of cristae requires the presence of a protein complex known as MICOS, which is conserved across eukaryotic species. One of the subunits of this complex, MIC10, is a transmembrane protein that supports cristae formation by oligomerization. In Drosophila melanogaster, three MIC10-like proteins with different tissue-specific expression patterns exist. We demonstrate that CG41128/MINOS1b/DmMIC10b is the major MIC10 orthologue in flies. Its loss destabilizes MICOS, disturbs cristae architecture, and reduces the life span and fertility of flies. We show that DmMIC10b has a unique ability to polymerize into bundles of filaments, which can remodel mitochondrial crista membranes. The formation of these filaments relies on conserved glycine and cysteine residues, and can be suppressed by the co-expression of other Drosophila MICOS proteins. These findings provide new insights into the regulation of MICOS in flies, and suggest potential mechanisms for the maintenance of mitochondrial ultrastructure.
Collapse
Affiliation(s)
- Till Stephan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Mariam Barbot
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Travis D Carney
- Institute of Cell Biochemistry, Hannover Medical School, Hanover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, USA
| | - Felix Lange
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Mark Bates
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Optical Nanoscopy, Institute for Nanophotonics, Göttingen, Germany
| | - Peter Bou Dib
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Kaushik Inamdar
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hanover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME, USA
| | - Michael Meinecke
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Clinic of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology, Translational Neuroinflammation and Automated Microscopy, Göttingen, Germany
| |
Collapse
|
17
|
Schneider N, Steinberg R, Ben-David A, Valensi J, David-Kadoch G, Rosenwasser Z, Banin E, Levanon EY, Sharon D, Ben-Aroya S. A pipeline for identifying guide RNA sequences that promote RNA editing of nonsense mutations that cause inherited retinal diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102130. [PMID: 38375504 PMCID: PMC10875612 DOI: 10.1016/j.omtn.2024.102130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Adenosine deaminases acting on RNA (ADARs) are endogenous enzymes catalyzing the deamination of adenosines to inosines, which are then read as guanosines during translation. This ability to recode makes ADAR an attractive therapeutic tool to edit genetic mutations and reprogram genetic information at the mRNA level. Using the endogenous ADARs and guiding them to a selected target has promising therapeutic potential. Indeed, different studies have reported several site-directed RNA-editing approaches for making targeted base changes in RNA molecules. The basic strategy has been to use guide RNAs (gRNAs) that hybridize and form a double-stranded RNA (dsRNA) structure with the desired RNA target because of ADAR activity in regions of dsRNA formation. Here we report on a novel pipeline for identifying disease-causing variants as candidates for RNA editing, using a yeast-based screening system to select efficient gRNAs for editing of nonsense mutations, and test them in a human cell line reporter system. We have used this pipeline to modify the sequence of transcripts carrying nonsense mutations that cause inherited retinal diseases in the FAM161A, KIZ, TRPM1, and USH2A genes. Our approach can serve as a basis for gene therapy intervention in knockin mouse models and ultimately in human patients.
Collapse
Affiliation(s)
- Nina Schneider
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Ricky Steinberg
- The Nano Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Room B-840, Ramat Gan 52900, Israel
| | - Amit Ben-David
- The Nano Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Room B-840, Ramat Gan 52900, Israel
| | - Johanna Valensi
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Galit David-Kadoch
- The Nano Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Room B-840, Ramat Gan 52900, Israel
| | - Zohar Rosenwasser
- The Nano Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Room B-840, Ramat Gan 52900, Israel
| | - Eyal Banin
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Erez Y. Levanon
- The Nano Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Room B-840, Ramat Gan 52900, Israel
| | - Dror Sharon
- Division of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shay Ben-Aroya
- The Nano Center, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 206, Room B-840, Ramat Gan 52900, Israel
| |
Collapse
|
18
|
Sissoko GB, Tarasovetc EV, Marescal O, Grishchuk EL, Cheeseman IM. Higher-order protein assembly controls kinetochore formation. Nat Cell Biol 2024; 26:45-56. [PMID: 38168769 PMCID: PMC10842828 DOI: 10.1038/s41556-023-01313-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent outer kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells. Although individual CENP-T molecules interact poorly with outer kinetochore proteins, oligomers that mimic centromeric CENP-T density trigger the robust formation of functional, cytoplasmic kinetochore-like particles. Both in cells and in vitro, each molecule of oligomerized CENP-T recruits substantially higher levels of outer kinetochore components than monomeric CENP-T molecules. Our work suggests that the density dependence of CENP-T restricts outer kinetochore recruitment to centromeres, where densely packed CENP-A recruits a high local concentration of inner kinetochore proteins.
Collapse
Affiliation(s)
- Gunter B Sissoko
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ekaterina V Tarasovetc
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Océane Marescal
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
19
|
Mojica-Perez SP, Stokes K, Jaklic DC, Jahagirdar S, Uhler M, Parent JM, Niu W. Protocol for selecting single human pluripotent stem cells using a modified micropipetter. STAR Protoc 2023; 4:102629. [PMID: 37804512 PMCID: PMC10565870 DOI: 10.1016/j.xpro.2023.102629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/09/2023] Open
Abstract
Single-cell clonal selection is a critical procedure for generating a homogeneous population of human pluripotent stem cells. Here, we present a protocol that repurposes the STRIPPER Micropipetter, normally used for in vitro fertilization, to pick single stem cells. We describe steps for tool and reagent preparation, single-cell picking, and colony passaging. We then detail procedures for amplification and analysis. Our protocol does not require cell sorting and produces homogenous clonal cultures with more than 50% survival rate. For complete details on the use and execution of this protocol, please refer to Deng et al.1.
Collapse
Affiliation(s)
- Sandra P Mojica-Perez
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; The Human Stem Cell and Gene Editing Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kyle Stokes
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel C Jaklic
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sheetal Jahagirdar
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Uhler
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; The Human Stem Cell and Gene Editing Core, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jack M Parent
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; The Human Stem Cell and Gene Editing Core, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Wei Niu
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; The Human Stem Cell and Gene Editing Core, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
20
|
Schwarzová B, Stüdemann T, Sönmez M, Rössinger J, Pan B, Eschenhagen T, Stenzig J, Wiegert JS, Christ T, Weinberger F. Modulating cardiac physiology in engineered heart tissue with the bidirectional optogenetic tool BiPOLES. Pflugers Arch 2023; 475:1463-1477. [PMID: 37863976 PMCID: PMC10730631 DOI: 10.1007/s00424-023-02869-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023]
Abstract
Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.
Collapse
Affiliation(s)
- Barbora Schwarzová
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tim Stüdemann
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Muhammed Sönmez
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Bangfen Pan
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Justus Stenzig
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - J Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- German Centre for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Berlin, Germany.
| |
Collapse
|
21
|
Xu T, Cao L, Duan J, Li Y, Li Y, Hu Z, Li S, Zhang M, Wang G, Guo F, Lu J. Uncovering the role of FOXA2 in the Development of Human Serotonin Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303884. [PMID: 37679064 PMCID: PMC10646255 DOI: 10.1002/advs.202303884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Directed differentiation of serotonin neurons (SNs) from human pluripotent stem cells (hPSCs) provides a valuable tool for uncovering the mechanism of human SN development and the associated neuropsychiatric disorders. Previous studies report that FOXA2 is expressed by serotonergic progenitors (SNPs) and functioned as a serotonergic fate determinant in mouse. However, in the routine differentiation experiments, it is accidentally found that less SNs and more non-neuronal cells are obtained from SNP stage with higher percentage of FOXA2-positive cells. This phenomenon prompted them to question the role of FOXA2 as an intrinsic fate determinant for human SN differentiation. Herein, by direct differentiation of engineered hPSCs into SNs, it is found that the SNs are not derived from FOXA2-lineage cells; FOXA2-knockout hPSCs can still differentiate into mature and functional SNs with typical serotonergic identity; FOXA2 overexpression suppresses the SN differentiation, indicating that FOXA2 is not intrinsically required for human SN differentiation. Furthermore, repressing FOXA2 expression by retinoic acid (RA) and dynamically modulating Sonic Hedgehog (SHH) signaling pathway promotes human SN differentiation. This study uncovers the role of FOXA2 in human SN development and improves the differentiation efficiency of hPSCs into SNs by repressing FOXA2 expression.
Collapse
Affiliation(s)
- Ting Xu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
| | - Fei Guo
- Key Laboratory of Receptor ResearchShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Frontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghai200092China
- Suzhou Institute of Tongji UniversitySuzhou215101China
| |
Collapse
|
22
|
Barnaba C, Broadbent DG, Perez GI, Schmidt JC. AMPK Regulates Phagophore-to-Autophagosome Maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.28.559981. [PMID: 37808644 PMCID: PMC10557706 DOI: 10.1101/2023.09.28.559981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Autophagy is an important metabolic pathway that can non-selectively recycle cellular material or lead to targeted degradation of protein aggregates or damaged organelles. Autophagosome formation starts with autophagy factors accumulating on lipid vesicles containing ATG9. These phagophores attach to donor membranes, expand via ATG2-mediated lipid transfer, capture cargo, and mature into autophagosomes, ultimately fusing with lysosomes for their degradation. Autophagy can be activated by nutrient stress, for example by a reduction in the cellular levels of amino acids. In contrast, how autophagy is regulated by low cellular ATP levels via the AMP-activated protein kinase (AMPK), an important therapeutic target, is less clear. Using live-cell imaging and an automated image analysis pipeline, we systematically dissect how nutrient starvation regulates autophagosome biogenesis. We demonstrate that glucose starvation downregulates autophagosome maturation by AMPK mediated inhibition of phagophores tethering to donor membranes. Our results clarify AMPK's regulatory role in autophagy and highlight its potential as a therapeutic target to reduce autophagy.
Collapse
Affiliation(s)
- Carlo Barnaba
- Institute for Quantitative Health Science and Engineering
| | - David G. Broadbent
- Institute for Quantitative Health Science and Engineering
- College of Osteopathic Medicine
- Department of Physiology
| | | | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, East Lansing, USA
| |
Collapse
|
23
|
Balmas E, Sozza F, Bottini S, Ratto ML, Savorè G, Becca S, Snijders KE, Bertero A. Manipulating and studying gene function in human pluripotent stem cell models. FEBS Lett 2023; 597:2250-2287. [PMID: 37519013 DOI: 10.1002/1873-3468.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
Human pluripotent stem cells (hPSCs) are uniquely suited to study human development and disease and promise to revolutionize regenerative medicine. These applications rely on robust methods to manipulate gene function in hPSC models. This comprehensive review aims to both empower scientists approaching the field and update experienced stem cell biologists. We begin by highlighting challenges with manipulating gene expression in hPSCs and their differentiated derivatives, and relevant solutions (transfection, transduction, transposition, and genomic safe harbor editing). We then outline how to perform robust constitutive or inducible loss-, gain-, and change-of-function experiments in hPSCs models, both using historical methods (RNA interference, transgenesis, and homologous recombination) and modern programmable nucleases (particularly CRISPR/Cas9 and its derivatives, i.e., CRISPR interference, activation, base editing, and prime editing). We further describe extension of these approaches for arrayed or pooled functional studies, including emerging single-cell genomic methods, and the related design and analytical bioinformatic tools. Finally, we suggest some directions for future advancements in all of these areas. Mastering the combination of these transformative technologies will empower unprecedented advances in human biology and medicine.
Collapse
Affiliation(s)
- Elisa Balmas
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Federica Sozza
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Sveva Bottini
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Maria Luisa Ratto
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Giulia Savorè
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Silvia Becca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Kirsten Esmee Snijders
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| | - Alessandro Bertero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Turin, Torino, Italy
| |
Collapse
|
24
|
McLean ZL, Gao D, Correia K, Roy JCL, Shibata S, Farnum IN, Valdepenas-Mellor Z, Rapuru M, Morini E, Ruliera J, Gillis T, Lucente D, Kleinstiver BP, Lee JM, MacDonald ME, Wheeler VC, Pinto RM, Gusella JF. PMS1 as a target for splice modulation to prevent somatic CAG repeat expansion in Huntington's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550489. [PMID: 37547003 PMCID: PMC10402039 DOI: 10.1101/2023.07.25.550489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder whose motor, cognitive, and behavioral manifestations are caused by an expanded, somatically unstable CAG repeat in the first exon of HTT that lengthens a polyglutamine tract in huntingtin. Genome-wide association studies (GWAS) have revealed DNA repair genes that influence the age-at-onset of HD and implicate somatic CAG repeat expansion as the primary driver of disease timing. To prevent the consequent neuronal damage, small molecule splice modulators (e.g., branaplam) that target HTT to reduce the levels of huntingtin are being investigated as potential HD therapeutics. We found that the effectiveness of the splice modulators can be influenced by genetic variants, both at HTT and other genes where they promote pseudoexon inclusion. Surprisingly, in a novel hTERT-immortalized retinal pigment epithelial cell (RPE1) model for assessing CAG repeat instability, these drugs also reduced the rate of HTT CAG expansion. We determined that the splice modulators also affect the expression of the mismatch repair gene PMS1, a known modifier of HD age-at-onset. Genome editing at specific HTT and PMS1 sequences using CRISPR-Cas9 nuclease confirmed that branaplam suppresses CAG expansion by promoting the inclusion of a pseudoexon in PMS1, making splice modulation of PMS1 a potential strategy for delaying HD onset. Comparison with another splice modulator, risdiplam, suggests that other genes affected by these splice modulators also influence CAG instability and might provide additional therapeutic targets.
Collapse
Affiliation(s)
- Zachariah L. McLean
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Dadi Gao
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Kevin Correia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jennie C. L. Roy
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Shota Shibata
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Iris N. Farnum
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zoe Valdepenas-Mellor
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Manasa Rapuru
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Elisabetta Morini
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jayla Ruliera
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Tammy Gillis
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Diane Lucente
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Min Lee
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Marcy E. MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - Vanessa C. Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Ricardo Mouro Pinto
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
25
|
Broadbent DG, Barnaba C, Perez GI, Schmidt JC. Quantitative analysis of autophagy reveals the role of ATG9 and ATG2 in autophagosome formation. J Cell Biol 2023; 222:e202210078. [PMID: 37115157 PMCID: PMC10148237 DOI: 10.1083/jcb.202210078] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/03/2023] [Accepted: 03/17/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a catabolic pathway required for the recycling of cytoplasmic materials. To define the mechanisms underlying autophagy it is critical to quantitatively characterize the dynamic behavior of autophagy factors in living cells. Using a panel of cell lines expressing HaloTagged autophagy factors from their endogenous loci, we analyzed the abundance, single-molecule dynamics, and autophagosome association kinetics of autophagy proteins involved in autophagosome biogenesis. We demonstrate that autophagosome formation is inefficient and ATG2-mediated tethering to donor membranes is a key commitment step in autophagosome formation. Furthermore, our observations support the model that phagophores are initiated by the accumulation of autophagy factors on mobile ATG9 vesicles, and that the ULK1 complex and PI3-kinase form a positive feedback loop required for autophagosome formation. Finally, we demonstrate that the duration of autophagosome biogenesis is ∼110 s. In total, our work provides quantitative insight into autophagosome biogenesis and establishes an experimental framework to analyze autophagy in human cells.
Collapse
Affiliation(s)
- David G. Broadbent
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Carlo Barnaba
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Gloria I. Perez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C. Schmidt
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics and Gynecology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
26
|
Choi J, Shin E, Lee J, Devarasou S, Kim D, Shin JH, Choi JH, Heo WD, Han YM. Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells. Mol Ther 2023; 31:1480-1495. [PMID: 36932674 PMCID: PMC10188912 DOI: 10.1016/j.ymthe.2023.03.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/06/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
Optogenetic techniques permit non-invasive, spatiotemporal, and reversible modulation of cellular activities. Here, we report a novel optogenetic regulatory system for insulin secretion in human pluripotent stem cell (hPSC)-derived pancreatic islet-like organoids using monSTIM1 (monster-opto-Stromal interaction molecule 1), an ultra-light-sensitive OptoSTIM1 variant. The monSTIM1 transgene was incorporated at the AAVS1 locus in human embryonic stem cells (hESCs) by CRISPR-Cas9-mediated genome editing. Not only were we able to elicit light-induced intracellular Ca2+ concentration ([Ca2+]i) transients from the resulting homozygous monSTIM1+/+-hESCs, but we also successfully differentiated them into pancreatic islet-like organoids (PIOs). Upon light stimulation, the β-cells in these monSTIM1+/+-PIOs displayed reversible and reproducible [Ca2+]i transient dynamics. Furthermore, in response to photoexcitation, they secreted human insulin. Light-responsive insulin secretion was similarly observed in monSTIM1+/+-PIOs produced from neonatal diabetes (ND) patient-derived induced pluripotent stem cells (iPSCs). Under LED illumination, monSTIM1+/+-PIO-transplanted diabetic mice produced human c-peptide. Collectively, we developed a cellular model for the optogenetic control of insulin secretion using hPSCs, with the potential to be applied to the amelioration of hyperglycemic disorders.
Collapse
Affiliation(s)
- Jieun Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Eunji Shin
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jinsu Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | | | - Dongkyu Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jin-Ho Choi
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea.
| | - Yong-Mahn Han
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea; Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Republic of Korea.
| |
Collapse
|
27
|
Wen J, Zellner A, Braun NC, Bajaj T, Gassen NC, Peitz M, Brüstle O. Loss of function of FIP200 in human pluripotent stem cell-derived neurons leads to axonal pathology and hyperactivity. Transl Psychiatry 2023; 13:143. [PMID: 37137886 PMCID: PMC10156752 DOI: 10.1038/s41398-023-02432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/05/2023] Open
Abstract
FIP200 plays important roles in homeostatic processes such as autophagy and signaling pathways such as focal adhesion kinase (FAK) signaling. Furthermore, genetic studies suggest an association of FIP200 mutations with psychiatric disorders. However, its potential connections to psychiatric disorders and specific roles in human neurons are not clear. We set out to establish a human-specific model to study the functional consequences of neuronal FIP200 deficiency. To this end, we generated two independent sets of isogenic human pluripotent stem cell lines with homozygous FIP200KO alleles, which were then used for the derivation of glutamatergic neurons via forced expression of NGN2. FIP200KO neurons exhibited pathological axonal swellings, showed autophagy deficiency, and subsequently elevated p62 protein levels. Moreover, monitoring the electrophysiological activity of neuronal cultures on multi-electrode arrays revealed that FIP200KO resulted in a hyperactive network. This hyperactivity could be abolished by glutamatergic receptor antagonist CNQX, suggesting a strengthened glutamatergic synaptic activation in FIP200KO neurons. Furthermore, cell surface proteomic analysis revealed metabolic dysregulation and abnormal cell adhesion-related processes in FIP200KO neurons. Interestingly, an ULK1/2-specific autophagy inhibitor could recapitulate axonal swellings and hyperactivity in wild-type neurons, whereas inhibition of FAK signaling was able to normalize the hyperactivity of FIP200KO neurons. These results suggest that impaired autophagy and presumably also disinhibition of FAK can contribute to the hyperactivity of FIP200KO neuronal networks, whereas pathological axonal swellings are primarily due to autophagy deficiency. Taken together, our study reveals the consequences of FIP200 deficiency in induced human glutamatergic neurons, which might, in the end, help to understand cellular pathomechanisms contributing to neuropsychiatric conditions.
Collapse
Affiliation(s)
- Jianbin Wen
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas Zellner
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Braun
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Nils Christian Gassen
- Research Group Neurohomeostasis, Clinic and Polyclinic for Psychiatry and Psychotherapy, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
- Cell Programming Core Facility, University of Bonn Medical Faculty, Bonn, Germany.
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty & University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
28
|
Tsang MJ, Cheeseman IM. Alternative CDC20 translational isoforms tune mitotic arrest duration. Nature 2023; 617:154-161. [PMID: 37100900 PMCID: PMC10461078 DOI: 10.1038/s41586-023-05943-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/13/2023] [Indexed: 04/28/2023]
Abstract
Mitotic defects activate the spindle-assembly checkpoint, which inhibits the anaphase-promoting complex co-activator CDC20 to induce a prolonged cell cycle arrest1,2. Once errors are corrected, the spindle-assembly checkpoint is silenced, allowing anaphase onset to occur. However, in the presence of persistent unresolvable errors, cells can undergo 'mitotic slippage', exiting mitosis into a tetraploid G1 state and escaping the cell death that results from a prolonged arrest. The molecular logic that enables cells to balance these duelling mitotic arrest and slippage behaviours remains unclear. Here we demonstrate that human cells modulate the duration of their mitotic arrest through the presence of conserved, alternative CDC20 translational isoforms. Downstream translation initiation results in a truncated CDC20 isoform that is resistant to spindle-assembly-checkpoint-mediated inhibition and promotes mitotic exit even in the presence of mitotic perturbations. Our study supports a model in which the relative levels of CDC20 translational isoforms control the duration of mitotic arrest. During a prolonged mitotic arrest, new protein synthesis and differential CDC20 isoform turnover create a timer, with mitotic exit occurring once the truncated Met43 isoform achieves sufficient levels. Targeted molecular changes or naturally occurring cancer mutations that alter CDC20 isoform ratios or its translational control modulate mitotic arrest duration and anti-mitotic drug sensitivity, with potential implications for the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Mary-Jane Tsang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
29
|
Andrade da Silva LH, Heuer RA, Roque CB, McGuire TL, Hosoya T, Kimura H, Tamura K, Matsuoka AJ. Enhanced survival of hypoimmunogenic otic progenitors following intracochlear xenotransplantation: repercussions for stem cell therapy in hearing loss models. Stem Cell Res Ther 2023; 14:83. [PMID: 37046329 PMCID: PMC10099643 DOI: 10.1186/s13287-023-03304-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Stem cell replacement holds the potential for sensorineural hearing loss (SNHL) treatment. However, its translation into clinical practice requires strategies for improving stem cell survival following intracochlear transplantation. Considering recent findings showing that the inner ear contains a resident population of immune cells, we hypothesized that immune evasion would improve the survival and residence time of transplanted stem cells in the cochlea, potentially leading to better outcomes. To test this, we leveraged genetic engineering techniques to develop hypoimmunogenic human-induced pluripotent stem cells (hi-iPSC), which lack human leukocyte antigen expression. We found that gene editing does not affect the biological properties of hi-iPSCs, including their capacity to differentiate into otic neural progenitors (ONPs). Compared to wild-type ONPs, more hypoimmunogenic ONPs (derived from hi-iPSCs) were found in the inner ear of immunocompetent mice ten days following cochlear xenotransplantation. This approach may open a new avenue for experimental and clinical SNHL treatments.
Collapse
Affiliation(s)
- Luisa H Andrade da Silva
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Rachel A Heuer
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christian B Roque
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | - Kouichi Tamura
- Kobe Research Institute, HEALIOS K.K., Kobe, Hyogo, Japan
| | - Akihiro J Matsuoka
- Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA.
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Evanston, IL, USA.
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, USA.
- Department of Otolaryngology and Head and Neck Surgery, University of California San Diego, 9444 Medical Center Drive, MC7895, La Jolla, CA, 92037, USA.
| |
Collapse
|
30
|
Berzanskyte I, Riccio F, Machado CB, Bradbury EJ, Lieberam I. Enrichment of human embryonic stem cell-derived V3 interneurons using an Nkx2-2 gene-specific reporter. Sci Rep 2023; 13:2008. [PMID: 36737643 PMCID: PMC9898512 DOI: 10.1038/s41598-023-29165-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
V3 spinal interneurons are a key element of the spinal circuits, which control motor function. However, to date, there are no effective ways of deriving a pure V3 population from human pluripotent stem cells. Here, we report a method for differentiation and isolation of spinal V3 interneurons, combining extrinsic factor-mediated differentiation and magnetic activated cell sorting. We found that differentiation of V3 progenitors can be enhanced with a higher concentration of Sonic Hedgehog agonist, as well as culturing cells in 3D format. To enable V3 progenitor purification from mixed differentiation cultures, we developed a transgene reporter, with a part of the regulatory region of V3-specific gene Nkx2-2 driving the expression of a membrane marker CD14. We found that in human cells, NKX2-2 initially exhibited co-labelling with motor neuron progenitor marker, but V3 specificity emerged as the differentiation culture progressed. At these later differentiation timepoints, we were able to enrich V3 progenitors labelled with CD14 to ~ 95% purity, and mature them to postmitotic V3 interneurons. This purification tool for V3 interneurons will be useful for in vitro disease modeling, studies of normal human neural development and potential cell therapies for disorders of the spinal cord.
Collapse
Affiliation(s)
- Ieva Berzanskyte
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK.
- The Wolfson Centre for Age-Related Diseases, King's College London, London, UK.
| | - Federica Riccio
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK
| | - Carolina Barcellos Machado
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK
| | | | - Ivo Lieberam
- Centre for Gene Therapy and Regenerative Medicine, Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College London, 28th Floor Tower Wing, Guy's Campus, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
31
|
Miao Y, Djeffal Y, De Simone A, Zhu K, Lee JG, Lu Z, Silberfeld A, Rao J, Tarazona OA, Mongera A, Rigoni P, Diaz-Cuadros M, Song LMS, Di Talia S, Pourquié O. Reconstruction and deconstruction of human somitogenesis in vitro. Nature 2023; 614:500-508. [PMID: 36543321 PMCID: PMC10018515 DOI: 10.1038/s41586-022-05655-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
The vertebrate body displays a segmental organization that is most conspicuous in the periodic organization of the vertebral column and peripheral nerves. This metameric organization is first implemented when somites, which contain the precursors of skeletal muscles and vertebrae, are rhythmically generated from the presomitic mesoderm. Somites then become subdivided into anterior and posterior compartments that are essential for vertebral formation and segmental patterning of the peripheral nervous system1-4. How this key somitic subdivision is established remains poorly understood. Here we introduce three-dimensional culture systems of human pluripotent stem cells called somitoids and segmentoids, which recapitulate the formation of somite-like structures with anteroposterior identity. We identify a key function of the segmentation clock in converting temporal rhythmicity into the spatial regularity of anterior and posterior somitic compartments. We show that an initial 'salt and pepper' expression of the segmentation gene MESP2 in the newly formed segment is transformed into compartments of anterior and posterior identity through an active cell-sorting mechanism. Our research demonstrates that the major patterning modules that are involved in somitogenesis, including the clock and wavefront, anteroposterior polarity patterning and somite epithelialization, can be dissociated and operate independently in our in vitro systems. Together, we define a framework for the symmetry-breaking process that initiates somite polarity patterning. Our work provides a platform for decoding general principles of somitogenesis and advancing knowledge of human development.
Collapse
Affiliation(s)
- Yuchuan Miao
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yannis Djeffal
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Kongju Zhu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jong Gwan Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Andrew Silberfeld
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jyoti Rao
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar A Tarazona
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Alessandro Mongera
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Pietro Rigoni
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Margarete Diaz-Cuadros
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Laura Min Sook Song
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Olivier Pourquié
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Theme 05 - Human Cell Biology and Pathology (including iPSC studies). Amyotroph Lateral Scler Frontotemporal Degener 2022. [DOI: 10.1080/21678421.2022.2120681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Rodriguez-Gatica JE, Iefremova V, Sokhranyaeva L, Yeung SWCA, Breitkreuz Y, Brüstle O, Schwarz MK, Kubitscheck U. Imaging three-dimensional brain organoid architecture from meso- to nanoscale across development. Development 2022; 149:276135. [DOI: 10.1242/dev.200439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Organoids are stem cell-derived three-dimensional cultures offering a new avenue to model human development and disease. Brain organoids allow the study of various aspects of human brain development in the finest details in vitro in a tissue-like context. However, spatial relationships of subcellular structures, such as synaptic contacts between distant neurons, are hardly accessible by conventional light microscopy. This limitation can be overcome by systems that quickly image the entire organoid in three dimensions and in super-resolution. To that end we have developed a system combining tissue expansion and light-sheet fluorescence microscopy for imaging and quantifying diverse spatial parameters during organoid development. This technique enables zooming from a mesoscopic perspective into super-resolution within a single imaging session, thus revealing cellular and subcellular structural details in three spatial dimensions, including unequivocal delineation of mitotic cleavage planes as well as the alignment of pre- and postsynaptic proteins. We expect light-sheet fluorescence expansion microscopy to facilitate qualitative and quantitative assessment of organoids in developmental and disease-related studies.
Collapse
Affiliation(s)
| | - Vira Iefremova
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn 2 , Venusberg-Campus 1, 53127 Bonn , Germany
| | - Liubov Sokhranyaeva
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn Medical School 3 , Sigmund-Freud-Str. 25, 53127 Bonn , Germany
| | - Si Wah Christina Au Yeung
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn 2 , Venusberg-Campus 1, 53127 Bonn , Germany
| | - Yannik Breitkreuz
- LIFE & BRAIN GmbH 4 , Cellomics Unit, Venusberg-Campus 1, D-53127 Bonn , Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn Medical Faculty and University Hospital Bonn 2 , Venusberg-Campus 1, 53127 Bonn , Germany
- LIFE & BRAIN GmbH 4 , Cellomics Unit, Venusberg-Campus 1, D-53127 Bonn , Germany
| | - Martin Karl Schwarz
- Institute of Experimental Epileptology and Cognition Research (IEECR), University of Bonn Medical School 3 , Sigmund-Freud-Str. 25, 53127 Bonn , Germany
- LIFE & BRAIN GmbH 4 , Cellomics Unit, Venusberg-Campus 1, D-53127 Bonn , Germany
| | - Ulrich Kubitscheck
- Institute of Physical and Theoretical Chemistry, University of Bonn 1 , Wegelerstr. 12, 53115 Bonn , Germany
| |
Collapse
|
34
|
Stüdemann T, Rössinger J, Manthey C, Geertz B, Srikantharajah R, von Bibra C, Shibamiya A, Köhne M, Wiehler A, Wiegert JS, Eschenhagen T, Weinberger F. Contractile Force of Transplanted Cardiomyocytes Actively Supports Heart Function After Injury. Circulation 2022; 146:1159-1169. [PMID: 36073365 PMCID: PMC9555755 DOI: 10.1161/circulationaha.122.060124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transplantation of pluripotent stem cell-derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function. METHODS We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model. RESULTS Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation. CONCLUSIONS Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.
Collapse
Affiliation(s)
- Tim Stüdemann
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Christoph Manthey
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Rajiven Srikantharajah
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Constantin von Bibra
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Aya Shibamiya
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Maria Köhne
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,Surgery for Congenital Heart Disease, University Heart & Vascular Center Hamburg, Germany (M.K.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Antonius Wiehler
- Department of Psychiatry, Service Hospitalo-Universitaire, Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Universite de Paris, France (A.W.)
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Centre for Molecular Neurobiology Hamburg, Germany (J.S.W.)
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| |
Collapse
|
35
|
Schmidt A, Frei J, Poetsch A, Chittka A, Zhang H, Aßmann C, Lehmkuhl A, Bauer UM, Nuber UA, Cardoso MC. MeCP2 heterochromatin organization is modulated by arginine methylation and serine phosphorylation. Front Cell Dev Biol 2022; 10:941493. [PMID: 36172281 PMCID: PMC9510713 DOI: 10.3389/fcell.2022.941493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
Rett syndrome is a human intellectual disability disorder that is associated with mutations in the X-linked MECP2 gene. The epigenetic reader MeCP2 binds to methylated cytosines on the DNA and regulates chromatin organization. We have shown previously that MECP2 Rett syndrome missense mutations are impaired in chromatin binding and heterochromatin reorganization. Here, we performed a proteomics analysis of post-translational modifications of MeCP2 isolated from adult mouse brain. We show that MeCP2 carries various post-translational modifications, among them phosphorylation on S80 and S421, which lead to minor changes in either heterochromatin binding kinetics or clustering. We found that MeCP2 is (di)methylated on several arginines and that this modification alters heterochromatin organization. Interestingly, we identified the Rett syndrome mutation site R106 as a dimethylation site. In addition, co-expression of protein arginine methyltransferases (PRMT)1 and PRMT6 lead to a decrease of heterochromatin clustering. Altogether, we identified and validated novel modifications of MeCP2 in the brain and show that these can modulate its ability to bind as well as reorganize heterochromatin, which may play a role in the pathology of Rett syndrome.
Collapse
Affiliation(s)
- Annika Schmidt
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Jana Frei
- Stem Cell and Developmental Biology, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Ansgar Poetsch
- Queen Mary School, Medical College, Nanchang University, Nanchang, China
- Plant Biochemistry, Ruhr University Bochum, Bochum, Germany
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Alexandra Chittka
- Division of Medicine, The Wolfson Institute for Biomedical Research, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Hui Zhang
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Chris Aßmann
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Marburg, Germany
| | - Anne Lehmkuhl
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research, Philipps University Marburg, Marburg, Germany
| | - Ulrike A. Nuber
- Stem Cell and Developmental Biology, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Ulrike A. Nuber, ; M. Cristina Cardoso,
| | - M. Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
- *Correspondence: Ulrike A. Nuber, ; M. Cristina Cardoso,
| |
Collapse
|
36
|
Upadhya D, Attaluri S, Liu Y, Hattiangady B, Castro OW, Shuai B, Dong Y, Zhang SC, Shetty AK. Grafted hPSC-derived GABA-ergic interneurons regulate seizures and specific cognitive function in temporal lobe epilepsy. NPJ Regen Med 2022; 7:38. [PMID: 35915118 PMCID: PMC9343458 DOI: 10.1038/s41536-022-00234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
Interneuron loss/dysfunction contributes to spontaneous recurrent seizures (SRS) in chronic temporal lobe epilepsy (TLE), and interneuron grafting into the epileptic hippocampus reduces SRS and improves cognitive function. This study investigated whether graft-derived gamma-aminobutyric acid positive (GABA-ergic) interneurons directly regulate SRS and cognitive function in a rat model of chronic TLE. Human pluripotent stem cell-derived medial ganglionic eminence-like GABA-ergic progenitors, engineered to express hM4D(Gi), a designer receptor exclusively activated by designer drugs (DREADDs) through CRISPR/Cas9 technology, were grafted into hippocampi of chronically epileptic rats to facilitate the subsequent silencing of graft-derived interneurons. Such grafting substantially reduced SRS and improved hippocampus-dependent cognitive function. Remarkably, silencing of graft-derived interneurons with a designer drug increased SRS and induced location memory impairment but did not affect pattern separation function. Deactivation of DREADDs restored both SRS control and object location memory function. Thus, transplanted GABA-ergic interneurons could directly regulate SRS and specific cognitive functions in TLE.
Collapse
Affiliation(s)
- Dinesh Upadhya
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Yan Liu
- Waisman Center, Departments of Neuroscience and Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Olagide W Castro
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.,Institute of Biological Sciences and Health, Federal Univ of Alagoas (UFAL), Maceio, AL, Brazil
| | - Bing Shuai
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA.,Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA
| | - Yi Dong
- Waisman Center, Departments of Neuroscience and Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Su-Chun Zhang
- Waisman Center, Departments of Neuroscience and Neurology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA. .,Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College of Medicine, College Station, TX, USA. .,Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, TX, USA.
| |
Collapse
|
37
|
Logviniuk D, Jaber QZ, Dobrovetsky R, Kozer N, Ksiezopolska E, Gabaldón T, Carmeli S, Fridman M. Benzylic Dehydroxylation of Echinocandin Antifungal Drugs Restores Efficacy against Resistance Conferred by Mutated Glucan Synthase. J Am Chem Soc 2022; 144:5965-5975. [PMID: 35347986 PMCID: PMC8991007 DOI: 10.1021/jacs.2c00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Each year, infections caused by fungal pathogens claim the lives of about 1.6 million people and affect the health of over a billion people worldwide. Among the most recently developed antifungal drugs are the echinocandins, which noncompetitively inhibit β-glucan synthase, a membrane-bound protein complex that catalyzes the formation of the main polysaccharide component of the fungal cell wall. Resistance to echinocandins is conferred by mutations in FKS genes, which encode the catalytic subunit of the β-glucan synthase complex. Here, we report that selective removal of the benzylic alcohol of the nonproteinogenic amino acid 3S,4S-dihydroxy-l-homotyrosine of the echinocandins anidulafungin and rezafungin, restored their efficacy against a large panel of echinocandin-resistant Candida strains. The dehydroxylated compounds did not significantly affect the viability of human-derived cell culture lines. An analysis of the efficacy of the dehydroxylated echinocandins against resistant Candida strains, which contain mutations in the FKS1 and/or FKS2 genes of the parental strains, identified amino acids of the Fks proteins that are likely to reside in proximity to the l-homotyrosine residue of the bound drug. This study describes the first example of a chemical modification strategy to restore the efficacy of echinocandin drugs, which have a critical place in the arsenal of antifungal drugs, against resistant fungal pathogens.
Collapse
Affiliation(s)
- Dana Logviniuk
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Qais Z Jaber
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Roman Dobrovetsky
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noga Kozer
- The Wohl Drug Discovery institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ewa Ksiezopolska
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, Barcelona 08034, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Jordi Girona, 29, Barcelona 08034, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, Barcelona 08010, Spain.,Centro Investigación Biomédica En Red de Enfermedades Infecciosas, Madrid 28029, Spain
| | - Shmuel Carmeli
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
38
|
Xi J, Xu Y, Guo Z, Li J, Wu Y, Sun Q, Wang Y, Chen M, Zhu S, Bian S, Kang J. LncRNA SOX1-OT V1 acts as a decoy of HDAC10 to promote SOX1-dependent hESC neuronal differentiation. EMBO Rep 2022; 23:e53015. [PMID: 34927789 PMCID: PMC8811645 DOI: 10.15252/embr.202153015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are abundantly expressed in the nervous system, but their regulatory roles in neuronal differentiation are poorly understood. Using a human embryonic stem cell (hESC)-based 2D neural differentiation approach and a 3D cerebral organoid system, we show that SOX1-OT variant 1 (SOX1-OT V1), a SOX1 overlapping noncoding RNA, plays essential roles in both dorsal cortical neuron differentiation and ventral GABAergic neuron differentiation by facilitating SOX1 expression. SOX1-OT V1 physically interacts with HDAC10 through its 5' region, acts as a decoy to block HDAC10 binding to the SOX1 promoter, and thus maintains histone acetylation levels at the SOX1 promoter. SOX1 in turn activates ASCL1 expression and promotes neuronal differentiation. Taken together, we identify a SOX1-OT V1/HDAC10-SOX1-ASCL1 axis, which promotes neurogenesis, highlighting a role for lncRNAs in hESC neuronal differentiation.
Collapse
Affiliation(s)
- Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhenming Guo
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yuxi Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Mengxia Chen
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shan Bian
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyFrontier Science Center for Stem Cell ResearchTongji UniversityShanghaiChina
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant HospitalShanghai Key Laboratory of Maternal Fetal MedicineShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchNational Stem Cell Translational Resource CenterSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
39
|
Gu J, Rollo B, Sumer H, Cromer B. Targeting the AAVS1 Site by CRISPR/Cas9 with an Inducible Transgene Cassette for the Neuronal Differentiation of Human Pluripotent Stem Cells. Methods Mol Biol 2022; 2495:99-114. [PMID: 35696030 DOI: 10.1007/978-1-0716-2301-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CRISPR/Cas9 system is a powerful genome-editing technology for studying genetics and cell biology. Safe harbor sites are ideal genomic locations for transgene integration with minimal interference in cellular functions. Gene targeting of the AAVS1 locus enables stable transgene expression without phenotypic effects in host cells. Here, we describe the strategy for targeting the AAVS1 site with an inducible Neurogenin-2 (Ngn2) donor template by CRISPR/Cas9 in hiPSCs, which facilitates generation of an inducible cell line that can rapidly and homogenously differentiate into excitatory neurons.
Collapse
Affiliation(s)
- Jinchao Gu
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Brett Cromer
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia.
| |
Collapse
|
40
|
Maier NK, Ma J, Lampson MA, Cheeseman IM. Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Dev Cell 2021; 56:2192-2206.e8. [PMID: 34331869 PMCID: PMC8355204 DOI: 10.1016/j.devcel.2021.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022]
Abstract
To generate haploid gametes, germ cells undergo two consecutive meiotic divisions requiring key changes to the cell division machinery. Here, we demonstrate that the protease separase rewires key cell division processes at the meiosis I/II transition by cleaving the meiosis-specific protein Meikin. Separase proteolysis does not inactivate Meikin but instead alters its function to create a distinct activity state. Full-length Meikin and the C-terminal Meikin separase cleavage product both localize to kinetochores, bind to Plk1 kinase, and promote Rec8 cleavage, but our results reveal distinct roles for these proteins in controlling meiosis. Mutations that prevent Meikin cleavage or that conditionally inactivate Meikin at anaphase I result in defective meiosis II chromosome alignment in mouse oocytes. Finally, as oocytes exit meiosis, C-Meikin is eliminated by APC/C-mediated degradation prior to the first mitotic division. Thus, multiple regulatory events irreversibly modulate Meikin activity during successive meiotic divisions to rewire the cell division machinery at two distinct transitions.
Collapse
Affiliation(s)
- Nolan K Maier
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jun Ma
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
41
|
Nafria M, Keane P, Ng ES, Stanley EG, Elefanty AG, Bonifer C. Expression of RUNX1-ETO Rapidly Alters the Chromatin Landscape and Growth of Early Human Myeloid Precursor Cells. Cell Rep 2021; 31:107691. [PMID: 32460028 PMCID: PMC7262600 DOI: 10.1016/j.celrep.2020.107691] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/12/2020] [Accepted: 05/05/2020] [Indexed: 01/03/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy caused by recurrent mutations in genes encoding transcriptional, chromatin, and/or signaling regulators. The t(8;21) translocation generates the aberrant transcription factor RUNX1-ETO (RUNX1-RUNX1T1), which by itself is insufficient to cause disease. t(8;21) AML patients show extensive chromatin reprogramming and have acquired additional mutations. Therefore, the genomic and developmental effects directly and solely attributable to RUNX1-ETO expression are unclear. To address this, we employ a human embryonic stem cell differentiation system capable of forming definitive myeloid progenitor cells to express RUNX1-ETO in an inducible fashion. Induction of RUNX1-ETO causes extensive chromatin reprogramming by interfering with RUNX1 binding, blocks differentiation, and arrests cellular growth, whereby growth arrest is reversible following RUNX1-ETO removal. Single-cell gene expression analyses show that RUNX1-ETO induction alters the differentiation of early myeloid progenitors, but not of other progenitor types, indicating that oncoprotein-mediated transcriptional reprogramming is highly target cell specific. RUNX1-ETO reversibly arrests the growth of human ESC-derived early myeloid cells RUNX1-ETO disrupts global RUNX1 binding and deregulates RUNX1 target genes RUNX1-ETO blocks myeloid differentiation by rapidly downregulating SPI1 and CEBPA The impact of RUNX1-ETO induction is cell type specific
Collapse
Affiliation(s)
- Monica Nafria
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK; Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia
| | - Peter Keane
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK
| | - Elizabeth S Ng
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - Edouard G Stanley
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Andrew G Elefanty
- Murdoch Children's Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3052, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia.
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
42
|
Xin C, Zhu C, Jin Y, Li H. Discovering the role of VEGF signaling pathway in mesendodermal induction of human embryonic stem cells. Biochem Biophys Res Commun 2021; 553:58-64. [PMID: 33756346 DOI: 10.1016/j.bbrc.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Human embryonic stem cells (hESCs) have the unique feature of unlimited self-renewal and differentiation into derivatives of all three germ layers in human body, providing a powerful in vitro model for studying cell differentiation. FGF2, BMP4 and TGF-β signaling have been shown to play crucial roles in mesendodermal differentiation of hESCs. However, their underlying molecular mechanisms and other signaling pathways potentially involved in mesendodermal differentiation of hESCs remain to be further investigated. In this study, we uncover that VEGF signaling pathway plays a critical role in the mesendodermal induction of hESCs. Treating hESCs with Lenvatinib, a pan-inhibitor of VEGF receptors (VEGFRs), impedes their mesendodermal induction. Conversely, overexpression of VEGFA165, a major human VEGF isoform, promotes the mesendodermal differentiation. Similar to the VEGFR inhibitor, MEK inhibitor PD0325901 hinders mesendodermal induction of hESCs. In contrast, overexpression of ERK2GOF, an intrinsically active ERK2 mutant, markedly reduces the inhibitory effect of the VEGFR inhibitor. Thus, the MEK-ERK cascade plays an important role for the function of VEGF signaling pathway in the mesendodermal induction of hESCs. All together, this study identifies the critical role of VEGF signaling pathway as well as potential crosstalk of VEGF signaling pathway with other known signaling pathways in mesendodermal differentiation of hESCs.
Collapse
Affiliation(s)
- Chenge Xin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaonan Zhu
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jin
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Hui Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Basic Clinical Research Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
43
|
Xu Y, Xi J, Wang G, Guo Z, Sun Q, Lu C, Ma L, Wu Y, Jia W, Zhu S, Guo X, Bian S, Kang J. PAUPAR and PAX6 sequentially regulate human embryonic stem cell cortical differentiation. Nucleic Acids Res 2021; 49:1935-1950. [PMID: 33544864 PMCID: PMC7913681 DOI: 10.1093/nar/gkab030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 01/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play a wide range of roles in the epigenetic regulation of crucial biological processes, but the functions of lncRNAs in cortical development are poorly understood. Using human embryonic stem cell (hESC)-based 2D neural differentiation approach and 3D cerebral organoid system, we identified that the lncRNA PAUPAR, which is adjacent to PAX6, plays essential roles in cortical differentiation by interacting with PAX6 to regulate the expression of a large number of neural genes. Mechanistic studies showed that PAUPAR confers PAX6 proper binding sites on the target neural genes by directly binding the genomic regions of these genes. Moreover, PAX6 recruits the histone methyltransferase NSD1 through its C-terminal PST enrichment domain, then regulate H3K36 methylation and the expression of target genes. Collectively, our data reveal that the PAUPAR/PAX6/NSD1 complex plays a critical role in the epigenetic regulation of hESC cortical differentiation and highlight the importance of PAUPAR as an intrinsic regulator of cortical differentiation.
Collapse
Affiliation(s)
- Yanxin Xu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiajie Xi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhenming Guo
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China.,Bio-X Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaoyi Sun
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chenqi Lu
- Department of Biostatistics and Computational Biology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Li Ma
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenwen Jia
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Songcheng Zhu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xudong Guo
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, Frontier Science Center for Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
44
|
Li S, Zhang L, Huang R, Xu T, Parham F, Behl M, Xia M. Evaluation of chemical compounds that inhibit neurite outgrowth using GFP-labeled iPSC-derived human neurons. Neurotoxicology 2021; 83:137-145. [PMID: 33508353 PMCID: PMC9444042 DOI: 10.1016/j.neuro.2021.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/02/2020] [Accepted: 01/19/2021] [Indexed: 01/16/2023]
Abstract
Due to the increasing number of drugs and untested environmental compounds introduced into commercial use, there is recognition for a need to develop reliable and efficient screening methods to identify compounds that may adversely impact the nervous system. One process that has been implicated in neurodevelopment is neurite outgrowth; the disruption of which can result in adverse outcomes that persist later in life. Here, we developed a green fluorescent protein (GFP) labeled neurite outgrowth assay in a high-content, high-throughput format using induced pluripotent stem cell (iPSC) derived human spinal motor neurons and cortical glutamatergic neurons. The assay was optimized for use in a 1536-well plate format. Then, we used this assay to screen a set of 84 unique compounds that have previously been screened in other neurite outgrowth assays. This library consists of known developmental neurotoxicants, environmental compounds with unknown toxicity, and negative controls. Neurons were cultured for 40 h and then treated with compounds at 11 concentrations ranging from 1.56 nM to 92 μM for 24 and 48 h. Effects of compounds on neurite outgrowth were evaluated by quantifying total neurite length, number of segments, and maximum neurite length per cell. Among the 84 tested compounds, neurite outgrowth in cortical neurons and motor neurons were selectively inhibited by 36 and 31 compounds, respectively. Colchicine, rotenone, and methyl mercuric (II) chloride inhibited neurite outgrowth in both cortical and motor neurons. It is interesting to note that some compounds like parathion and bisphenol AF had inhibitory effects on neurite outgrowth specifically in the cortical neurons, while other compounds, such as 2,2',4,4'-tetrabromodiphenyl ether and caffeine, inhibited neurite outgrowth in motor neurons. The data gathered from these studies show that GFP-labeled iPSC-derived human neurons are a promising tool for identifying and prioritizing compounds with developmental neurotoxicity potential for further hazard characterization.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Li Zhang
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ruili Huang
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Tuan Xu
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Fred Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Menghang Xia
- Division for Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
45
|
Feng L, Chao J, Tian E, Li L, Ye P, Zhang M, Chen X, Cui Q, Sun G, Zhou T, Felix G, Qin Y, Li W, Meza ED, Klein J, Ghoda L, Hu W, Luo Y, Dang W, Hsu D, Gold J, Goldman SA, Matalon R, Shi Y. Cell-Based Therapy for Canavan Disease Using Human iPSC-Derived NPCs and OPCs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002155. [PMID: 33304759 PMCID: PMC7709977 DOI: 10.1002/advs.202002155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/22/2020] [Indexed: 06/12/2023]
Abstract
Canavan disease (CD) is a fatal leukodystrophy caused by mutation of the aspartoacylase (ASPA) gene, which leads to deficiency in ASPA activity, accumulation of the substrate N-acetyl-L-aspartate (NAA), demyelination, and spongy degeneration of the brain. There is neither a cure nor a standard treatment for this disease. In this study, human induced pluripotent stem cell (iPSC)-based cell therapy is developed for CD. A functional ASPA gene is introduced into patient iPSC-derived neural progenitor cells (iNPCs) or oligodendrocyte progenitor cells (iOPCs) via lentiviral transduction or TALEN-mediated genetic engineering to generate ASPA iNPC or ASPA iOPC. After stereotactic transplantation into a CD (Nur7) mouse model, the engrafted cells are able to rescue major pathological features of CD, including deficient ASPA activity, elevated NAA levels, extensive vacuolation, defective myelination, and motor function deficits, in a robust and sustainable manner. Moreover, the transplanted mice exhibit much prolonged survival. These genetically engineered patient iPSC-derived cellular products are promising cell therapies for CD. This study has the potential to bring effective cell therapies, for the first time, to Canavan disease children who have no treatment options. The approach established in this study can also benefit many other children who have deadly genetic diseases that have no cure.
Collapse
Affiliation(s)
- Lizhao Feng
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jianfei Chao
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - E Tian
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Li Li
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Peng Ye
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Mi Zhang
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Xianwei Chen
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Qi Cui
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Guihua Sun
- Diabetes and Metabolism Research Institute at City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Tao Zhou
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Gerardo Felix
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
- Irell & Manella Graduate School of Biological SciencesBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yue Qin
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Wendong Li
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Edward David Meza
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Jeremy Klein
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Lucy Ghoda
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Weidong Hu
- Department of Molecular Imaging and TherapyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Yonglun Luo
- Department of BiomedicineAarhus UniversityAarhus8000Denmark
| | - Wei Dang
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - David Hsu
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Joseph Gold
- Center for Biomedicine and GeneticsBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| | - Steven A. Goldman
- Center for Translational NeuromedicineUniversity of Rochester Medical CenterRochesterNY14642USA
- Center for Translational NeuromedicineFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDK‐2200Denmark
| | - Reuben Matalon
- Department of Pediatricsthe University of Texas Medical Branch at Galveston301 University BlvdGalvestonTX77555‐0359USA
| | - Yanhong Shi
- Division of Stem Cell Biology ResearchDepartment of Developmental and Stem Cell BiologyBeckman Research Institute of City of Hope1500 E. Duarte Rd.DuarteCA91010USA
| |
Collapse
|
46
|
Sapoznik E, Chang BJ, Huh J, Ju RJ, Azarova EV, Pohlkamp T, Welf ES, Broadbent D, Carisey AF, Stehbens SJ, Lee KM, Marín A, Hanker AB, Schmidt JC, Arteaga CL, Yang B, Kobayashi Y, Tata PR, Kruithoff R, Doubrovinski K, Shepherd DP, Millett-Sikking A, York AG, Dean KM, Fiolka RP. A versatile oblique plane microscope for large-scale and high-resolution imaging of subcellular dynamics. eLife 2020; 9:e57681. [PMID: 33179596 PMCID: PMC7707824 DOI: 10.7554/elife.57681] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/09/2020] [Indexed: 12/31/2022] Open
Abstract
We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.
Collapse
Affiliation(s)
- Etai Sapoznik
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bo-Jui Chang
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jaewon Huh
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Robert J Ju
- Institute for Molecular Bioscience, University of QueenslandQueenslandAustralia
| | - Evgenia V Azarova
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical CenterDallasUnited States
| | - Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| | - David Broadbent
- Institute for Quantitative Health Sciences and Engineering, Michigan State UniversityEast LansingUnited States
| | - Alexandre F Carisey
- William T. Shearer Center for Human Immunobiology, Baylor College of Medicine and Texas Children’s HospitalHoustonUnited States
| | - Samantha J Stehbens
- Institute for Molecular Bioscience, University of QueenslandQueenslandAustralia
| | - Kyung-Min Lee
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Arnaldo Marín
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of ChileSantiagoChile
| | - Ariella B Hanker
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State UniversityEast LansingUnited States
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State UniversityEast LansingUnited States
| | - Carlos L Arteaga
- Harold C. Simmons Comprehensive Cancer Center and the Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Bin Yang
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Yoshihiko Kobayashi
- Department of Cell Biology, Duke University School of MedicineDurhamUnited States
| | | | - Rory Kruithoff
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States
| | - Konstantin Doubrovinski
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Douglas P Shepherd
- Center for Biological Physics and Department of Physics, Arizona State UniversityTempeUnited States
| | | | - Andrew G York
- Calico Life Sciences LLCSouth San FranciscoUnited States
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Reto P Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
47
|
Li L, Meng H, Zhang J, Liu Y, Zou Q, Gao Y, Yang H, Lai L. A tunable, rapid, and precise drug control of protein expression by combining transcriptional and post-translational regulation systems. J Genet Genomics 2020; 47:705-712. [PMID: 33549479 DOI: 10.1016/j.jgg.2020.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Rapid, precise, and tunable regulation of protein abundance would be significantly useful in a variety of biotechnologies and biomedical applications. Here, we describe a system that allows tunable and rapid drug control of gene expression for either gene activation or inactivation in mammalian cells. We construct the system by coupling Tet-on 3G and small molecule-assisted shutoff systems, which can respectively induce transcriptional activation and protein degradation in the presence of corresponding small molecules. This dual-input drug inducer regulation system facilitates a bidirectional control of gene expression. The gene of interest can be precisely controlled by dual small molecules in a broad dynamic range of expression from overexpression to complete silence, allowing gene function study in a comprehensive expression profile. Our results reveal that the bidirectional control system enables sensitive dosage- and time-dependent regulation for either turn-on or shutoff of gene expression. We also apply this system for inducible genome editing and gene activation mediated by clustered regularly interspaced short palindromic repeats. The system provides an integrated platform for studying multiple biological processes by manipulating gene expression in a more flexible way.
Collapse
Affiliation(s)
- Li Li
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Hongyi Meng
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianmin Zhang
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Yang Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingjian Zou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| | - Huaqiang Yang
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Liangxue Lai
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China.
| |
Collapse
|
48
|
Xiong M, Tao Y, Gao Q, Feng B, Yan W, Zhou Y, Kotsonis TA, Yuan T, You Z, Wu Z, Xi J, Haberman A, Graham J, Block J, Zhou W, Chen Y, Zhang SC. Human Stem Cell-Derived Neurons Repair Circuits and Restore Neural Function. Cell Stem Cell 2020; 28:112-126.e6. [PMID: 32966778 DOI: 10.1016/j.stem.2020.08.014] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/11/2020] [Accepted: 08/21/2020] [Indexed: 02/02/2023]
Abstract
Although cell transplantation can rescue motor defects in Parkinson's disease (PD) models, whether and how grafts functionally repair damaged neural circuitry in the adult brain is not known. We transplanted hESC-derived midbrain dopamine (mDA) or cortical glutamate neurons into the substantia nigra or striatum of a mouse PD model and found extensive graft integration with host circuitry. Axonal pathfinding toward the dorsal striatum was determined by the identity of the grafted neurons, and anatomical presynaptic inputs were largely dependent on graft location, whereas inhibitory versus excitatory input was dictated by the identity of grafted neurons. hESC-derived mDA neurons display A9 characteristics and restore functionality of the reconstructed nigrostriatal circuit to mediate improvements in motor function. These results indicate similarity in cell-type-specific pre- and post-synaptic integration between transplant-reconstructed circuit and endogenous neural networks, highlighting the capacity of hPSC-derived neuron subtypes for specific circuit repair and functional restoration in the adult brain.
Collapse
Affiliation(s)
- Man Xiong
- Institute of Pediatrics, Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yezheng Tao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore
| | - Qinqin Gao
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ban Feng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Yan
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Zhou
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Thomas A Kotsonis
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tingli Yuan
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhiwen You
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyan Wu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiajie Xi
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Julia Graham
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jasper Block
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenhao Zhou
- Institute of Pediatrics, Children's Hospital, Fudan University, 399 Wanyuan Road, Shanghai 201102, China
| | - Yuejun Chen
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| | - Su-Chun Zhang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Program in Neuroscience & Behavioral Disorders, Duke-NUS Medical School, 169857 Singapore, Singapore
| |
Collapse
|
49
|
Eghbalsaied S, Hyder I, Kues WA. A versatile bulk electrotransfection protocol for murine embryonic fibroblasts and iPS cells. Sci Rep 2020; 10:13332. [PMID: 32770110 PMCID: PMC7414887 DOI: 10.1038/s41598-020-70258-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Although electroporation has been widely accepted as the main gene transfer tool, there is still considerable scope to improve the electroporation efficiency of exogenous DNAs into primary cells. Here, we developed a square-wave pulsing protocol using OptiMEM-GlutaMAX for highly efficient transfection of murine embryonic fibroblasts (MEF) and induced pluripotency stem (iPS) cells using reporter genes as well as gRNA/Cas9-encoding plasmids. An electrotransfection efficiency of > 95% was achieved for both MEF and iPS cells using reporter-encoding plasmids. The protocol was efficient for plasmid sizes ranging from 6.2 to 13.5 kb. Inducing the error prone non-homologous end joining repair by gRNA/Cas9 plasmid transfection, a high rate of targeted gene knockouts of up to 98% was produced in transgenic cells carrying a single-copy of Venus reporter. Targeted deletions in the Venus transgene were efficiently (up to 67% deletion rate) performed by co-electroporation of two gRNA-encoding plasmids. We introduced a plasmid electrotransfection protocol which is straight-forward, cost-effective, and efficient for CRISPRing murine primary cells. This protocol is promising to make targeted genetic engineering using the CRISPR/Cas9 plasmid system.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt, Germany
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Iqbal Hyder
- Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt, Germany
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt, Germany.
| |
Collapse
|
50
|
Meijer M, Rehbach K, Brunner JW, Classen JA, Lammertse HCA, van Linge LA, Schut D, Krutenko T, Hebisch M, Cornelisse LN, Sullivan PF, Peitz M, Toonen RF, Brüstle O, Verhage M. A Single-Cell Model for Synaptic Transmission and Plasticity in Human iPSC-Derived Neurons. Cell Rep 2020; 27:2199-2211.e6. [PMID: 31091456 DOI: 10.1016/j.celrep.2019.04.058] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/05/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022] Open
Abstract
Synaptic dysfunction is associated with many brain disorders, but robust human cell models to study synaptic transmission and plasticity are lacking. Instead, current in vitro studies on human neurons typically rely on spontaneous synaptic events as a proxy for synapse function. Here, we describe a standardized in vitro approach using human neurons cultured individually on glia microdot arrays that allow single-cell analysis of synapse formation and function. We show that single glutamatergic or GABAergic forebrain neurons differentiated from human induced pluripotent stem cells form mature synapses that exhibit robust evoked synaptic transmission. These neurons show plasticity features such as synaptic facilitation, depression, and recovery. Finally, we show that spontaneous events are a poor predictor of synaptic maturity and do not correlate with the robustness of evoked responses. This methodology can be deployed directly to evaluate disease models for synaptic dysfunction and can be leveraged for drug development and precision medicine.
Collapse
Affiliation(s)
- Marieke Meijer
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Kristina Rehbach
- Institute of Reconstructive Neurobiology, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany; LIFE&BRAIN GmbH, Cellomics Unit, 53127 Bonn, Germany
| | - Jessie W Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Jessica A Classen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Hanna C A Lammertse
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Lola A van Linge
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Desiree Schut
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Tamara Krutenko
- Institute of Reconstructive Neurobiology, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Matthias Hebisch
- Institute of Reconstructive Neurobiology, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany
| | - L Niels Cornelisse
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Patrick F Sullivan
- UNC Center for Psychiatric Genomics, University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC 27599-7160, USA; Karolinska Institutet, Department of Medical Epidemiology and Biostatistics and Department of (Clinical) Genetics, Nobels Väg 12A, 171 77 Stockholm, Sweden
| | - Michael Peitz
- Institute of Reconstructive Neurobiology, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany; Cell Programming Core Facility, University of Bonn School of Medicine, Bonn, Germany.
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, University of Bonn School of Medicine & University Hospital Bonn, Bonn, Germany.
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and VU Medical Center, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands.
| |
Collapse
|