1
|
Morelli M, Madonna S, Albanesi C. SOCS1 and SOCS3 as key checkpoint molecules in the immune responses associated to skin inflammation and malignant transformation. Front Immunol 2024; 15:1393799. [PMID: 38975347 PMCID: PMC11224294 DOI: 10.3389/fimmu.2024.1393799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
SOCS are a family of negative inhibitors of the molecular cascades induced by cytokines, growth factors and hormones. At molecular level, SOCS proteins inhibit the kinase activity of specific sets of receptor-associated Janus Activated Kinases (JAKs), thereby suppressing the propagation of intracellular signals. Of the eight known members, SOCS1 and SOCS3 inhibit activity of JAKs mainly induced by cytokines and can play key roles in regulation of inflammatory and immune responses. SOCS1 and SOCS3 are the most well-characterized SOCS members in skin inflammatory diseases, where their inhibitory activity on cytokine activated JAKs and consequent anti-inflammatory action has been widely investigated in epidermal keratinocytes. Structurally, SOCS1 and SOCS3 share the presence of a N-terminal domain containing a kinase inhibitory region (KIR) motif able to act as a pseudo-substrate for JAK and to inhibit its activity. During the last decades, the design and employment of SOCS1 and SOCS3-derived peptides mimicking KIR domains in experimental models of dermatoses definitively established a strong anti-inflammatory and ameliorative impact of JAK inhibition on skin inflammatory responses. Herein, we discuss the importance of the findings collected in the past on SOCS1 and SOCS3 function in the inflammatory responses associated to skin immune-mediated diseases and malignancies, for the development of the JAK inhibitor drugs. Among them, different JAK inhibitors have been introduced in the clinical practice for treatment of atopic dermatitis and psoriasis, and others are being investigated for skin diseases like alopecia areata and vitiligo.
Collapse
Affiliation(s)
| | - Stefania Madonna
- Laboratory of Experimental Immunology, Istituto Dermopatico dell'Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Rome, Italy
| | | |
Collapse
|
2
|
Carolina Costa Veras A, da Silva Bruzasco L, Beatriz Profiro Lopes A, da Silva Franco B, Spencer de Souza Holanda A, Maculano Esteves A, Milanski M, Souza Torsoni A, Martins Ignacio-Souza L, Alberto Torsoni M. Supplementation with CO induces lipogenesis in adipose tissue, leptin and insulin resistance in healthy Swiss mice. J Funct Foods 2023; 106:105600. [DOI: 10.1016/j.jff.2023.105600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Liu W, Wang X. Research Advances on Suppressor of Cytokine Signaling 3 (SOCS3) in Animal Carbohydrate and Lipid Metabolism Processes. Pak J Biol Sci 2022; 25:1100-1108. [PMID: 36978278 DOI: 10.3923/pjbs.2022.1100.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The SOCS3 proteins played important roles in regulating the energy metabolism processes. They are crucial intracellular inhibitors related to animal obesity, immunity and inflammation. This makes SOCS3 genes very important in animal genetics and breeding. The research was conducted to investigate and explore the recent advance in the present studies on SOCS3 in animal energy and lipid metabolism processes. All the references were carefully retrieved from the PubMed database by searching key words "suppressor of cytokine signaling (SOCS)", "SOCS3", "animal carbohydrate metabolism", "animal lipid metabolism", "animal energy metabolism", "insulin resistance", "leptin", "obesity", "SOCS*" and "AMPK". All the related references retrieved were initially screened and fully reviewed for manual inspection. This effort intends to get a quick understanding and make insights into the mechanisms of Suppressor of Cytokine Signaling 3 (SOCS3) and their molecular interactions with the other cellular proteins. In this review, it was found that SOCS3 proteins could regulate cytokine receptors' signal transduction mainly through the JAK/STAT and GH/IGF-I and mTOR-STAT3-SOCS3 signaling pathways, whereas the genetic mutations or knockouts of SOCS3 genes had significant effects on animal energy metabolism. The review summarized all the relevant research reports on SOCS3 in the animal carbohydrate and lipid metabolism processes, which can provide practical reference for the genetic breeding of high-quality domestic animal breeds. It is also of great significance to further research on the genetic regulation mechanism of SOCS3 genes affecting energy metabolism and the well development of the animal breeding system.
Collapse
|
4
|
Clark KA, Shin AC, Sirivelu MP, MohanKumar RC, Maddineni SR, Ramachandran R, MohanKumar PS, MohanKumar SMJ. Evaluation of the Central Effects of Systemic Lentiviral-Mediated Leptin Delivery in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2021; 22:ijms222413197. [PMID: 34947993 PMCID: PMC8703968 DOI: 10.3390/ijms222413197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Type 1 diabetes (T1D) is characterized by hyperphagia, hyperglycemia and activation of the hypothalamic-pituitary-adrenal (HPA) axis. We have reported previously that daily leptin injections help to alleviate these symptoms. Therefore, we hypothesized that leptin gene therapy could help to normalize the neuroendocrine dysfunction seen in T1D. Adult male Sprague Dawley rats were injected i.v. with a lentiviral vector containing the leptin gene or green fluorescent protein. Ten days later, they were injected with the vehicle or streptozotocin (STZ). HPA function was assessed by measuring norepinephrine (NE) levels in the paraventricular nucleus (PVN) and serum corticosterone (CS). Treatment with the leptin lentiviral vector (Lepvv) increased leptin and insulin levels in non-diabetic rats, but not in diabetic animals. There was a significant reduction in blood glucose levels in diabetic rats due to Lepvv treatment. Both NE levels in the PVN and serum CS were reduced in diabetic rats treated with Lepvv. Results from this study provide evidence that leptin gene therapy in STZ-induced diabetic rats was able to partially normalize some of the neuroendocrine abnormalities, but studies with higher doses of the Lepvv are needed to develop this into a viable option for treating T1D.
Collapse
MESH Headings
- Animals
- Corticosterone/blood
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/chemically induced
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/therapy
- Disease Models, Animal
- Genetic Therapy
- Genetic Vectors/administration & dosage
- Injections, Intravenous
- Lentivirus/genetics
- Leptin/genetics
- Male
- Norepinephrine/metabolism
- Paraventricular Hypothalamic Nucleus/metabolism
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Kimberly A. Clark
- Neuroscience Graduate Program, Michigan State University, E. Lansing, MI 48824, USA; (K.A.C.); (P.S.M.)
| | - Andrew C. Shin
- Neurobiology of Nutrition Laboratory, Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | - Madhu P. Sirivelu
- Pathobiology and Diagnostic Investigation, Michigan State University, E. Lansing, MI 48824, USA;
| | - Ramya C. MohanKumar
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA 30602, USA;
| | - Sreenivasa R. Maddineni
- Department of Poultry Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.R.M.); (R.R.)
| | - Ramesh Ramachandran
- Department of Poultry Science, College of Agricultural Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (S.R.M.); (R.R.)
| | - Puliyur S. MohanKumar
- Neuroscience Graduate Program, Michigan State University, E. Lansing, MI 48824, USA; (K.A.C.); (P.S.M.)
- Pathobiology and Diagnostic Investigation, Michigan State University, E. Lansing, MI 48824, USA;
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA 30602, USA;
- Department of Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sheba M. J. MohanKumar
- Neuroscience Graduate Program, Michigan State University, E. Lansing, MI 48824, USA; (K.A.C.); (P.S.M.)
- Neuroendocrine Research Laboratory, University of Georgia, Athens, GA 30602, USA;
- Department of Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-542-1945
| |
Collapse
|
5
|
Son M, Oh S, Choi J, Jang JT, Choi CH, Park KY, Son KH, Byun K. The Phlorotannin-Rich Fraction of Ecklonia cava Extract Attenuated the Expressions of the Markers Related with Inflammation and Leptin Resistance in Adipose Tissue. Int J Endocrinol 2020; 2020:9142134. [PMID: 32215011 PMCID: PMC7081028 DOI: 10.1155/2020/9142134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/26/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is associated with systemic chronic inflammation, and it induces central leptin resistance which blocks the appetite-suppressing effect of leptin and leptin resistance in adipocytes. In the present study, we evaluated the effects of Ecklonia cava extract (ECE), which contained rich phlorotannins, on inflammation and leptin resistance in the adipose tissue of a diet-induced obese model. Effects of ECE on fat deposition, inflammation, M1/M2 macrophage, and T-cell infiltrations were investigated, and leptin resistance and SOCS3 were also measured in adipose tissue. Furthermore, ECE attenuated the expression of inflammation-related receptors such as TLR4 and RAGE and leptin resistance by reducing SOCS3 expression, increasing expression of leptin receptor in adipose tissue, and increasing lipolysis. ECE showed antiadiposity and anti-inflammatory effects, attenuated leptin resistance, and increased lipolysis in the diet-induced obese model. This study shows that ECE is a suitable dietary supplement candidate for the prevention or treatment of obesity or obesity-associated diseases, especially inflammation-related diseases.
Collapse
Affiliation(s)
- Myeongjoo Son
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Junwon Choi
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Ji Tae Jang
- Aqua Green Technology Co., Ltd., Smart Bldg., Jeju Science Park, Jeju 63309, Republic of Korea
| | - Chang Hu Choi
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kook Yang Park
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, Gachon University College of Medicine, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, College of Medicine, Department of Medicine, Graduate School and Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
6
|
Goldstein N, Haim Y, Mattar P, Hadadi-Bechor S, Maixner N, Kovacs P, Blüher M, Rudich A. Leptin stimulates autophagy/lysosome-related degradation of long-lived proteins in adipocytes. Adipocyte 2019; 8:51-60. [PMID: 30676227 PMCID: PMC6768270 DOI: 10.1080/21623945.2019.1569447] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity, a condition most commonly associated with hyper-leptinemia, is also characterized by increased expression of autophagy genes and likely autophagic activity in human adipose tissue (AT). Indeed, circulating leptin levels were previously shown to positively associate with the expression levels of autophagy genes such as Autophagy related gene-5 (ATG5). Here we hypothesized that leptin acts in an autocrine-paracrine manner to increase autophagy in two major AT cell populations, adipocytes and macrophages. We followed the dynamics of autophagosomes following acute leptin administration with or without a leptin receptor antagonist (SMLA) using high-throughput live-cell imaging in murine epididymal adipocyte and macrophage (RAW264.7) cell-lines. In macrophages leptin exerted only a mild effect on autophagy dynamics, tending to attenuate autophagosomes growth rate. In contrast, leptin-treated adipocytes exhibited a moderate, ~20% increase in the rate of autophagosome growth, an effect that was blocked by SMLA. This finding corresponded to mild increases in mRNA and protein expression of key autophagy genes. Interestingly, a long-lived proteins degradation assay uncovered a robust, >2-fold leptin-mediated stimulation of the autophagy/lysosome-related (bafilomycin-inhibited) activity, which was entirely blocked by SMLA. Collectively, leptin regulates autophagy in a cell-type specific manner. In adipocytes, autophagosome dynamics is moderately enhanced, but even more pronounced stimulation is seen in autophagy-related long-lived protein degradation. These findings suggest a causal link between obesity-associated hyperleptinemia and elevated adipocyte and AT autophagy-related processes.
Collapse
Affiliation(s)
- Nir Goldstein
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Haim
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Pamela Mattar
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sapir Hadadi-Bechor
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nitzan Maixner
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Kovacs
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
7
|
Monteiro L, Pereira JADS, Palhinha L, Moraes-Vieira PMM. Leptin in the regulation of the immunometabolism of adipose tissue-macrophages. J Leukoc Biol 2019; 106:703-716. [PMID: 31087711 DOI: 10.1002/jlb.mr1218-478r] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/19/2019] [Accepted: 04/26/2019] [Indexed: 01/03/2025] Open
Abstract
Obesity is a pandemic disease affecting around 15% of the global population. Obesity is a major risk factor for other conditions, such as type 2 diabetes and cardiovascular diseases. The adipose tissue is the main secretor of leptin, an adipokine responsible for the regulation of food intake and energy expenditure. Obese individuals become hyperleptinemic due to increased adipogenesis. Leptin acts through the leptin receptor and induces several immunometabolic changes in different cell types, including adipocytes and Mϕs. Adipose tissue resident Mϕs (ATMs) are the largest leukocyte population in the adipose tissue and these ATMs are in constant contact with the excessive leptin levels secreted in obese conditions. Leptin activates both the JAK2-STAT3 and the PI3K-AKT-mTOR pathways. The activation of these pathways leads to intracellular metabolic changes, with increased glucose uptake, upregulation of glycolytic enzymes, and disruption of mitochondrial function, as well as immunologic alterations, such as increased phagocytic activity and proinflammatory cytokines secretion. Here, we discuss the immunometabolic effects of leptin in Mϕs and how hyperleptinemia can contribute to the low-grade systemic inflammation in obesity.
Collapse
Affiliation(s)
- Lauar Monteiro
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
| | - Jéssica Aparecida da Silva Pereira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Lohanna Palhinha
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Manoel M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Sao Paulo, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
McGregor G, Harvey J. Leptin Regulation of Synaptic Function at Hippocampal TA-CA1 and SC-CA1 Synapses: Implications for Health and Disease. Neurochem Res 2019; 44:650-660. [PMID: 28819795 PMCID: PMC6420429 DOI: 10.1007/s11064-017-2362-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/05/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022]
Abstract
Growing evidence indicates that the endocrine hormone leptin regulates hippocampal synaptic function in addition to its established role as a hypothalamic satiety signal. Indeed, numerous studies show that leptin facilitates the cellular events that underlie hippocampal learning and memory including activity-dependent synaptic plasticity and glutamate receptor trafficking, indicating that leptin may be a potential cognitive enhancer. Although there has been extensive investigation into the modulatory role of leptin at hippocampal Schaffer collateral (SC)-CA1 synapses, recent evidence indicates that leptin also potently regulates excitatory synaptic transmission at the anatomically distinct temporoammonic (TA) input to hippocampal CA1 neurons. The cellular mechanisms underlying activity-dependent synaptic plasticity at TA-CA1 synapses differ from those at SC-CA1 synapses and the TA input is implicated in spatial and episodic memory formation. Furthermore, the TA input is an early target for neurodegeneration in Alzheimer's disease (AD) and aberrant leptin function is linked to AD. Here, we review the evidence that leptin regulates hippocampal synaptic function at both SC- and TA-CA1 synapses and discuss the consequences for neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Gemma McGregor
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jenni Harvey
- Division of Neuroscience, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
9
|
Postnatal High-Fat Diet Increases Liver Steatosis and Apoptosis Threatened by Prenatal Dexamethasone through the Oxidative Effect. Int J Mol Sci 2016; 17:369. [PMID: 26978357 PMCID: PMC4813229 DOI: 10.3390/ijms17030369] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/01/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to investigate cellular apoptosis in prenatal glucocorticoid overexposure and a postnatal high fat diet in rats. Pregnant Sprague-Dawley rats at gestational days 14 to 21 were administered saline (vehicle) or dexamethasone and weaned onto either a normal fat diet or a high fat diet for 180 days; in total four experimental groups were designated, i.e., vehicle treated group (VEH), dexamethasone treated group (DEX), vehicle treated plus high-fat diet (VHF), and dexamethasone treated plus high-fat diet (DHF). Chronic effects of prenatal liver programming were assessed at postnatal day 180. The apoptotic pathways involved proteins were analyzed by Western blotting for their expressions. Apoptosis and liver steatosis were also examined by histology. We found that liver steatosis and apoptosis were increased in the DHF, DEX, and VHF treated groups, and that the DHF treated group was increased at higher levels than the DEX and VHF treated groups. The expression of leptin was decreased more in the DHF treated group than in the DEX and VHF treated groups. Decreased peroxisome proliferator-activated receptor-gamma coactivator 1α, phosphoinositide-3-kinase, manganese superoxide dismutase and increased malondialdehyde expression levels were seen in DHF treated group relative to the DEX treated group. The DHF treated group exhibited higher levels of oxidative stress, apoptosis and liver steatosis than the DEX treated group. These results indicate that the environment of high-fat diet plays an important role in the development of liver injury after prenatal stress.
Collapse
|
10
|
SOCS3 promotes inflammation and apoptosis via inhibiting JAK2/STAT3 signaling pathway in 3T3-L1 adipocyte. Immunobiology 2015; 220:947-53. [DOI: 10.1016/j.imbio.2015.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/06/2015] [Accepted: 02/06/2015] [Indexed: 11/18/2022]
|
11
|
Miana M, Galán M, Martínez-Martínez E, Varona S, Jurado-López R, Bausa-Miranda B, Antequera A, Luaces M, Martínez-González J, Rodríguez C, Cachofeiro V. The lysyl oxidase inhibitor β-aminopropionitrile reduces body weight gain and improves the metabolic profile in diet-induced obesity in rats. Dis Model Mech 2015; 8:543-51. [PMID: 26035864 PMCID: PMC4457038 DOI: 10.1242/dmm.020107] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/28/2015] [Indexed: 12/31/2022] Open
Abstract
Extracellular matrix (ECM) remodelling of the adipose tissue plays a pivotal role in the pathophysiology of obesity. The lysyl oxidase (LOX) family of amine oxidases, including LOX and LOX-like (LOXL) isoenzymes, controls ECM maturation, and upregulation of LOX activity is essential in fibrosis; however, its involvement in adipose tissue dysfunction in obesity is unclear. In this study, we observed that LOX is the main isoenzyme expressed in human adipose tissue and that its expression is strongly upregulated in samples from obese individuals that had been referred to bariatric surgery. LOX expression was also induced in the adipose tissue from male Wistar rats fed a high-fat diet (HFD). Interestingly, treatment with β-aminopropionitrile (BAPN), a specific and irreversible inhibitor of LOX activity, attenuated the increase in body weight and fat mass that was observed in obese animals and shifted adipocyte size toward smaller adipocytes. BAPN also ameliorated the increase in collagen content that was observed in adipose tissue from obese animals and improved several metabolic parameters – it ameliorated glucose and insulin levels, decreased homeostasis model assessment (HOMA) index and reduced plasma triglyceride levels. Furthermore, in white adipose tissue from obese animals, BAPN prevented the downregulation of adiponectin and glucose transporter 4 (GLUT4), as well as the increase in suppressor of cytokine signaling 3 (SOCS3) and dipeptidyl peptidase 4 (DPP4) levels, triggered by the HFD. Likewise, in the TNFα-induced insulin-resistant 3T3-L1 adipocyte model, BAPN prevented the downregulation of adiponectin and GLUT4 and the increase in SOCS3 levels, and consequently normalised insulin-stimulated glucose uptake. Therefore, our data provide evidence that LOX plays a pathologically relevant role in the metabolic dysfunction induced by obesity and emphasise the interest of novel pharmacological interventions that target adipose tissue fibrosis and LOX activity for the clinical management of this disease. Highlighted Article: Lysyl oxidase (LOX) could play a role in the metabolic dysfunction induced by obesity, and consequently the inhibition of LOX activity could be a valuable strategy to ameliorate obesity-related metabolic disturbances.
Collapse
Affiliation(s)
- María Miana
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - María Galán
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain Cardiovascular Translational Research, NavarraBiomed (Fundación Miguel Servet), Pamplona 31008, Spain
| | - Saray Varona
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Belén Bausa-Miranda
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| | - Alfonso Antequera
- Upper Gastroenterology & Bariatric Surgery Department, Fuenlabrada University Hospital, Madrid 28942, Spain
| | - María Luaces
- Cardiology Department, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid 28040, Spain
| | - José Martínez-González
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Cristina Rodríguez
- Centro de Investigación Cardiovascular (CSIC-ICCC), IIB-Sant Pau, Barcelona 08025, Spain
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid 28007, Spain
| |
Collapse
|
12
|
Clinicotherapeutic Potential of Leptin in Alzheimer’s Disease and Parkinson’s Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/181325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chronic neurodegenerative diseases are a group of devastating neurological disorders that result in significant morbidity and mortality in the elderly population worldwide. Recent researches have shown some interesting associations of the classical antiobesity hormone leptin with two most important neurodegenerative diseases—Alzheimer’s disease (AD) and Parkinson’s disease (PD). Although several clinical studies have found the procognitive and memory-enhancing role of this peptide hormone in leptin-deficient patients, surprisingly it has not been used in any clinical trials involving patients with developing or full-blown neurodegenerative conditions. This review article is an attempt to bring together the existing information about the clinical associations of leptin with AD and PD. It starts with the basic understanding of leptin action in the brain and its derangements in these diseases and eventually discusses the potential of this hormone as a neuroprotective agent in clinical scenario.
Collapse
|
13
|
The role of suppressors of cytokine signalling in human neoplasms. Mol Biol Int 2014; 2014:630797. [PMID: 24757565 PMCID: PMC3976820 DOI: 10.1155/2014/630797] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/28/2022] Open
Abstract
Suppressors of cytokine signalling 1-7 (SOCS1-7) and cytokine-inducible SH2-containing protein (CIS) are a group of intracellular proteins that are well known as JAK-STAT and several other signalling pathways negative feedback regulators. More recently several members have been identified as tumour suppressors and dysregulation of their biological roles in controlling cytokine and growth factor signalling may contribute to the development of many solid organ and haematological malignancies. This review explores their biological functions and their possible tumour suppressing role in human neoplasms.
Collapse
|
14
|
Guerra B, Ponce-González JG, Morales-Alamo D, Guadalupe-Grau A, Kiilerich K, Fuentes T, Ringholm S, Biensø RS, Santana A, Lundby C, Pilegaard H, Calbet JAL. Leptin signaling in skeletal muscle after bed rest in healthy humans. Eur J Appl Physiol 2013; 114:345-57. [PMID: 24292882 DOI: 10.1007/s00421-013-2779-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/18/2013] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed at determining the effects of bed rest on the skeletal muscle leptin signaling system. METHODS Deltoid and vastus lateralis muscle biopsies and blood samples were obtained from 12 healthy young men (mean ± SD, BMI 22.8 ± 2.7 kg/m(2)) before and after 7 days of bed rest. Leptin receptor isoforms (OB-Rs), suppressor of cytokine signaling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) protein expression and signal transducer and activator of transcription 3 (STAT3) phosphorylation were analyzed by Western blot. RESULTS After bed rest basal insulin concentration was increased by 53% (P < 0.05), the homeostasis model assessment (HOMA) by 40% (P < 0.05), and serum leptin concentration by 35% (P < 0.05) with no changes in body fat mass. Although the soluble isoform of the leptin receptor (s-OBR) remained unchanged, the molar excess of leptin over sOB-R was increased by 1.4-fold after bed rest (P < 0.05). OB-Rs and SOCS3 protein expression, and STAT3 phosphorylation level remained unaffected in deltoid and vastus lateralis by bed rest, as PTP1B in the deltoid. PTP1B was increased by 90% with bed rest in the vastus lateralis (P < 0.05). There was a linear relationship between the increase in vastus lateralis PTP1B and the increase in both basal insulin concentrations (r = 0.66, P < 0.05) and HOMA (r = 0.68, P < 0.05) with bed rest. CONCLUSIONS One week of bed rest is associated with increased leptin levels without augmenting STAT3 phosphorylation indicating some degree of leptin resistance in skeletal muscle, which can be explained, at least in part, by an elevation of PTP1B protein content in the vastus lateralis muscle.
Collapse
Affiliation(s)
- Borja Guerra
- Departamento de Educación Física, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017, Las Palmas de Gran Canaria, Canary Island, Spain,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Feng H, Zheng L, Feng Z, Zhao Y, Zhang N. The role of leptin in obesity and the potential for leptin replacement therapy. Endocrine 2013; 44:33-9. [PMID: 23274948 DOI: 10.1007/s12020-012-9865-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/15/2012] [Indexed: 12/13/2022]
Abstract
Leptin (from the Greek word "lepto'' meaning "thin") is a 167-amino acid peptide hormone encoded by the obesity (ob) gene and secreted by white adipocytes. Blood leptin concentrations are increased in obese individuals. Leptin is a satiety hormone that provides negative feedback to the hypothalamus, controlling appetite and energy expenditure. Leptin binds to presynaptic GABAergic neurons to produce its effect, raising the distinct possibility that GABAergic axon terminals are the ultimate subcellular site of action for its effects. Released into the circulation, leptin crosses the blood-brain barrier and binds to leptin receptors, influencing the activity of various hypothalamic neurons, as well as encoding orexigenic and anorexigenic neuropeptides. Moreover, leptin affects a wide range of metabolic functions in the peripheral tissue. In this review, we discuss some physiologic functions of leptin, including effects on obesity and some effects of leptin replacement therapy.
Collapse
Affiliation(s)
- Helin Feng
- Department of Orthopedics, The Fourth Affiliated Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, 050011, China.
| | | | | | | | | |
Collapse
|
16
|
Harris RBS. Direct and indirect effects of leptin on adipocyte metabolism. Biochim Biophys Acta Mol Basis Dis 2013; 1842:414-23. [PMID: 23685313 DOI: 10.1016/j.bbadis.2013.05.009] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/18/2013] [Accepted: 05/06/2013] [Indexed: 12/22/2022]
Abstract
Leptin is hypothesized to function as a negative feedback signal in the regulation of energy balance. It is produced primarily by adipose tissue and circulating concentrations correlate with the size of body fat stores. Administration of exogenous leptin to normal weight, leptin responsive animals inhibits food intake and reduces the size of body fat stores whereas mice that are deficient in either leptin or functional leptin receptors are hyperphagic and obese, consistent with a role for leptin in the control of body weight. This review discusses the effect of leptin on adipocyte metabolism. Because adipocytes express leptin receptors there is the potential for leptin to influence adipocyte metabolism directly. Adipocytes also are insulin responsive and receive sympathetic innervation, therefore leptin can also modify adipocyte metabolism indirectly. Studies published to date suggest that direct activation of adipocyte leptin receptors has little effect on cell metabolism in vivo, but that leptin modifies adipocyte sensitivity to insulin to inhibit lipid accumulation. In vivo administration of leptin leads to a suppression of lipogenesis, an increase in triglyceride hydrolysis and an increase in fatty acid and glucose oxidation. Activation of central leptin receptors also contributes to the development of a catabolic state in adipocytes, but this may vary between different fat depots. Leptin reduces the size of white fat depots by inhibiting cell proliferation both through induction of inhibitory circulating factors and by contributing to sympathetic tone which suppresses adipocyte proliferation. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Georgia Regents University, USA.
| |
Collapse
|
17
|
Timing of maternal exposure to a high fat diet and development of obesity and hyperinsulinemia in male rat offspring: same metabolic phenotype, different developmental pathways? J Nutr Metab 2013; 2013:517384. [PMID: 23762542 PMCID: PMC3666195 DOI: 10.1155/2013/517384] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/08/2013] [Accepted: 04/20/2013] [Indexed: 12/22/2022] Open
Abstract
Objective. Offspring born to mothers either fed an obesogenic diet throughout their life or restricted to pregnancy and lactation demonstrate obesity, hyperinsulinemia, and hyperleptinemia, irrespective of their postweaning diet. We examined whether timing of a maternal obesogenic diet results in differential regulation of pancreatic adipoinsular and inflammatory signaling pathways in offspring. Methods. Female Wistar rats were randomized into 3 groups: (1) control (CONT): fed a control diet preconceptionally and during pregnancy and lactation; (2) maternal high fat (MHF): fed an HF diet throughout their life and during pregnancy and lactation; (3) pregnancy and lactation HF (PLHF): fed a control diet throughout life until mating, then HF diet during pregnancy and lactation. Male offspring were fed the control diet postweaning. Plasma and pancreatic tissue were collected, and mRNA concentrations of key factors regulating adipoinsular axis signaling were determined. Results. MHF and PLHF offspring exhibited increased adiposity and were hyperinsulinemic and hyperleptinemic compared to CONT. Despite a similar anthropometric phenotype, MHF and PLHF offspring exhibited distinctly different expression for key pancreatic genes, dependent upon maternal preconceptional nutritional background. Conclusions. These data suggest that despite using differential signaling pathways, obesity in offspring may be an adaptive outcome of early life exposure to HF during critical developmental windows.
Collapse
|
18
|
Palanivel R, Fullerton MD, Galic S, Honeyman J, Hewitt KA, Jorgensen SB, Steinberg GR. Reduced Socs3 expression in adipose tissue protects female mice against obesity-induced insulin resistance. Diabetologia 2012; 55:3083-93. [PMID: 22872213 PMCID: PMC5233443 DOI: 10.1007/s00125-012-2665-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/18/2012] [Indexed: 01/08/2023]
Abstract
AIMS/HYPOTHESIS Inflammation in obesity increases the levels of the suppressor of cytokine signalling-3 (SOCS3) protein in adipose tissue, but the physiological importance of this protein in regulating whole-body insulin sensitivity in obesity is not known. METHODS We generated Socs3 floxed (wild-type, WT) and Socs3 aP2 (also known as Fabp4)-Cre null (Socs3 AKO) mice. Mice were maintained on either a regular chow or a high-fat diet (HFD) for 16 weeks during which time body mass, adiposity, glucose homeostasis and insulin sensitivity were assessed. RESULTS The HFD increased SOCS3 levels in adipose tissue of WT but not Socs3 AKO mice. WT and Socs3 AKO mice had similar body mass and adiposity, assessed using computed tomography (CT) imaging, irrespective of diet or sex. On a control chow diet there were no differences in insulin sensitivity or glucose tolerance. When fed a HFD, female but not male Socs3 AKO mice had improved glucose tolerance as well as lower fasting glucose and insulin levels compared with WT littermates. Hyperinsulinaemic-euglycaemic clamps and positron emission tomography (PET) imaging demonstrated that improved insulin sensitivity was due to elevated adipose tissue glucose uptake. Increased insulin-stimulated glucose uptake in adipose tissue was associated with enhanced levels and activating phosphorylation of insulin receptor substrate-1 (IRS1). CONCLUSIONS/INTERPRETATION These data demonstrate that inhibiting SOCS3 production in adipose tissue of female mice is effective for improving whole-body insulin sensitivity in obesity.
Collapse
Affiliation(s)
- R Palanivel
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, 1280 Main St West, Hamilton, ON, Canada L8N 3Z5
| | | | | | | | | | | | | |
Collapse
|
19
|
Luo B, Zou T, Lu N, Chai F, Ye X, Wang Y, Qi Y. Role of suppressor of cytokine signaling 3 in lipid metabolism: analysis based on a phage-display human liver cDNA library. Biochem Biophys Res Commun 2011; 416:39-44. [PMID: 22093833 DOI: 10.1016/j.bbrc.2011.10.129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 10/28/2011] [Indexed: 01/01/2023]
Abstract
Suppressor of cytokine signaling 3 (SOCS3) is a likely mediator of feedback inhibition on the leptin receptor and may cause physiological leptin-resistance, leading to the development of obesity. The aim of this study was to identify potential peptides interacting with purified SOCS3 by using a phage-display human liver cDNA library. We developed a T7 select phage-display system with purified SOCS3 as bait to screen a human liver cDNA library. After 4 rounds of screening and sequencing analysis, we found that phage-presenting peptide RGGVVTSNPLGF show significant binding to SOCS3. The peptide sequence was similar to the sequence of amino acids 644-655 of C-terminal extra-polypeptide of very-long-chain acyl-CoA dehydrogenase (VLCAD), which is 1 of 4 flavoproteins that catalyzing the initial step of the mitochondrial fatty acid β-oxidation, implying a close relationship between SOCS3 and VLCAD. We identified VLCAD as a novel SOCS3 interacting protein both in vitro and vivo, and found that SOCS3 mediates the ubiquitination pathway for proteasomal degradation of VLCAD C-terminal extra-polypeptide via its SOCS-box. Animal experimentation demonstrated that VLCAD is functionally involved in SOCS3 binding and thus, SOCS3 play an important role in the regulation of fatty acid β-oxidation. In conclusion, SOCS3 is an important factor for lipid metabolism and a potential drug-target for treatment of widespread obesity.
Collapse
Affiliation(s)
- Bin Luo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
20
|
Obesity and the ageing brain: could leptin play a role in neurodegeneration? Curr Gerontol Geriatr Res 2011; 2011:708154. [PMID: 22013440 PMCID: PMC3195276 DOI: 10.1155/2011/708154] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/15/2011] [Indexed: 01/19/2023] Open
Abstract
Obesity and ageing are both characteristics of the human population that are on the increase across the globe. It has long been established that ageing is the major risk factor for neurodegenerative conditions such as Alzheimer's disease, and it is becoming increasingly evident that obesity is another such factor. Leptin resistance or insensitivity has been uncovered as a cause of obesity, and in addition the leptin signalling system is less potent in the elderly. Taken together, these findings reveal that this molecule may be a link between neurodegeneration and obesity or ageing. It is now known that leptin has beneficial effects on both the survival and neurophysiology of the neurons that are lost in Alzheimer's disease suggesting that it may be an important research target in the quest for strategies to prevent, halt, or cure this condition.
Collapse
|
21
|
Zhang XY, Zhang Q, Wang DH. Litter size variation in hypothalamic gene expression determines adult metabolic phenotype in Brandt's voles (Lasiopodomys brandtii). PLoS One 2011; 6:e19913. [PMID: 21637839 PMCID: PMC3102676 DOI: 10.1371/journal.pone.0019913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 04/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10–12) and small (3–4) litter sizes, of Brandt's voles (Lasiopodomys brandtii), a rodent species from Inner Mongolia grassland in China. Methodology/Principal Findings Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb) mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3) mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP) mRNA increased in the offspring from small litters. Conclusions/Significance These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance. World J Gastroenterol 2010; 16:4773-4783. [PMID: 20939105 PMCID: PMC2955246 DOI: 10.3748/wjg.v16.i38.4773] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 06/15/2010] [Accepted: 06/22/2010] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), a further expression of metabolic syndrome, strictly linked to obesity and diabetes mellitus, is characterized by insulin resistance (IR), elevated serum levels of free fatty acids and fatty infiltration of the liver, which is known as hepatic steatosis. Hepatocyte apoptosis is a key feature of this disease and correlates with its severity. Free-fatty-acid-induced toxicity represents one of mechanisms for the pathogenesis of NAFLD and hormones, growth factors and adipokines influence also play a key role. This review highlights the various pathways that contribute to the development of hepatic steatosis. Circulating concentrations of inflammatory cytokines are reckoned to be the most important factor in causing and maintaining IR. Low-grade chronic inflammation is fundamental in the progression of NAFLD toward higher risk cirrhotic states.
Collapse
|
23
|
Yuan K, Yu J, Shah A, Gao S, Kim SY, Kim SZ, Park BH, Kim SH. Leptin reduces plasma ANP level via nitric oxide-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1007-16. [DOI: 10.1152/ajpregu.00598.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptin is a circulating adipocyte-derived hormone that influences blood pressure (BP) and metabolism. This study was designed to define the possible role of leptin in regulation of the atrial natriuretic peptide (ANP) system using acute and chronic experiments. Intravenous infusion of rat leptin (250 μg/kg injection plus 2 μg·kg−1·min−1 for 20 min) into Sprague-Dawley rats increased BP by 25 mmHg and decreased plasma level of ANP from 80.3 ± 3.45 to 51.8 ± 3.3 pg/ml. Reserpinization attenuated the rise in BP, but not the reduction of plasma ANP during leptin infusion. Nω-nitro-l-arginine methyl ester prevented the effects of leptin on the reduction of ANP level. In hyperleptinemic rats that received adenovirus containing rat leptin cDNA (AdCMV-leptin), BP increased during first 2 days and then recovered to control value. Plasma concentration of ANP and expression of ANP mRNA, but not of atrial ANP, in hyperleptinemic rats were lower than in the control groups on the first and second week after administration of AdCMV-leptin. These effects were not observed by the pretreatment with Nω-nitro-l-arginine methyl ester. No differences in renal function and ANP receptor density in the kidney were found between hyperleptinemic and control rats. Basal ANP secretion and isoproterenol-induced suppression of ANP secretion from isolated, perfused atria of hyperleptinemic rats were not different from those of other control groups. These data suggest that leptin inhibits ANP secretion indirectly through nitric oxide without changing basal or isoproterenol-induced ANP secretion.
Collapse
Affiliation(s)
| | - Jiahua Yu
- Biochemistry, Diabetic Research Center and Medical School, Chonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | | | | | | | | | - Byung-Hyun Park
- Biochemistry, Diabetic Research Center and Medical School, Chonbuk National University, Jeonju, Jeonbuk, Republic of Korea
| | | |
Collapse
|
24
|
Postnatal early overfeeding induces hypothalamic higher SOCS3 expression and lower STAT3 activity in adult rats. J Nutr Biochem 2010; 22:109-17. [PMID: 20303731 DOI: 10.1016/j.jnutbio.2009.11.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 11/16/2009] [Accepted: 11/30/2009] [Indexed: 11/21/2022]
Abstract
Postnatal early overnutrition (EO) is a risk factor for future obesity and metabolic disorders. Rats raised in small litters (SLs) develop overweight, hyperphagia, hyperleptinemia, hyperinsulinemia and hypertension when adults. As obesity is related to hyperleptinemia, leptin resistance and metabolic syndrome, we aimed to investigate body composition, plasma hormone levels, glucose tolerance and the leptin signaling pathway in hypothalamus from early overfed animals at weaning and adulthood. To induce postnatal EO, we reduced litter size to three pups/litter (SL), and the groups with normal litter size (10 pups/litter) were used as control. Rats had free access to standard diet and water postweaning. Body weight and food intake were monitored daily, and offspring were killed at 21 (weaning) and 180 days old (adulthood). Postnatal EO group had higher body weight and total and visceral fat mass at both periods. Lean mass and serum high-density lipoprotein cholesterol (HDL-C) were higher at 21 days and lower at 180 days. Small litter rats presented higher levels of globulins at both periods, while albumin levels were higher at weaning and lower at adulthood. There was higher leptin, insulin and glucose serum concentrations at 21 days old, while no glucose intolerance was observed in adulthood. Leptin signaling pathway was unaffected at weaning. However, postnatal EO induced lower JAK2 and p-STAT3, and higher SOCS3 expression in adult animals, indicating central leptin resistance in adulthood. In conclusion, postnatal EO induces obesity, higher total and visceral fat mass, lower HDL-C and central leptin resistance in adult life.
Collapse
|
25
|
Knobelspies H, Zeidler J, Hekerman P, Bamberg-Lemper S, Becker W. Mechanism of attenuation of leptin signaling under chronic ligand stimulation. BMC BIOCHEMISTRY 2010; 11:2. [PMID: 20059770 PMCID: PMC2821298 DOI: 10.1186/1471-2091-11-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 01/08/2010] [Indexed: 01/04/2023]
Abstract
Background Leptin is an adipocyte-derived hormone that acts via its hypothalamic receptor (LEPRb) to regulate energy balance. A downstream effect essential for the weight-regulatory action of leptin is the phosphorylation and activation of the latent transcription factor STAT3 by LEPRb-associated Janus kinases (JAKs). Obesity is typically associated with chronically elevated leptin levels and a decreased ability of LEPRb to activate intracellular signal transduction pathways (leptin resistance). Here we have studied the roles of the intracellular tyrosine residues in the negative feedback regulation of LEPRb-signaling under chronic leptin stimulation. Results Mutational analysis showed that the presence of either Tyr985 and Tyr1077 in the intracellular domain of LEPRb was sufficient for the attenuation of STAT3 phosphorylation, whereas mutation of both tyrosines rendered LEPRb resistant to feedback regulation. Overexpression and RNA interference-mediated downregulation of suppressor of cytokine signaling 3 (SOCS3) revealed that both Tyr985 and Tyr1077 were capable of supporting the negative modulatory effect of SOCS3 in reporter gene assays. In contrast, the inhibitory effect of SOCS1 was enhanced by the presence of Tyr985 but not Tyr1077. Finally, the reduction of the STAT-phosphorylating activity of the LEPRb complex after 2 h of leptin stimulation was not accompanied by the dephosphorylation or degradation of LEPRb or the receptor-associated JAK molecule, but depended on Tyr985 and/or Tyr1077. Conclusions Both Tyr985 and Tyr1077 contribute to the negative regulation of LEPRb signaling. The inhibitory effects of SOCS1 and SOCS3 differ in the dependence on the tyrosine residues in the intracellular domain of LEPRb.
Collapse
Affiliation(s)
- Holger Knobelspies
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Gu H, Liu L, Ma S, Liu Y, Ren Y, Zhai L, Yu F, An L, Yang J. Inhibition of SOCS-3 in adipocytes of rats with diet-induced obesity increases leptin-mediated fatty acid oxidation. Endocrine 2009; 36:546-54. [PMID: 19862646 DOI: 10.1007/s12020-009-9253-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 10/12/2009] [Indexed: 11/25/2022]
Abstract
Rats with diet-induced obesity (DIO) usually experience hyperleptinemia. Thus, leptin produced by adipocytes does not deplete adipocyte fat, which implying a leptin resistance in adipocytes during overnutrition. Here, we induced hyperleptinemia in rats by feeding them a diet consisting of 45% fat. In epididymal adipose tissues, the mRNA and protein levels of a putative leptin resistant factor, suppressor of cytokine signaling 3 (SOCS-3), were increased. The mRNA levels of SOCS-3 in adipocytes differentiated from adipose-derived stromal cells (ADSCs) were higher in DIO rats than in rats on a 10% fat diet. Using SOCS-3 short hairpin RNA lentivirus interference, we found decreased expression of acetyl-CoA carboxylase mRNA (a marker of de novo lipogenesis) and increased expression of acetyl-CoA oxidase mRNA (a marker of fat oxidation) in SOCS-3-knockdown adipocytes after incubation with 50 nM leptin for 6 h. We conclude that the SOCS-3 knockdown may have increased the leptin-mediated in situ fatty acid oxidation in the DIO adipocytes, and therefore, SOCS-3 might be an excellent target for therapeutic intervention for obesity.
Collapse
Affiliation(s)
- Hailun Gu
- Department of Orthopaedics, Shengjing Hospital, China Medical University, Shenyang 110004, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guha P, Aneja KK, Shilpi RY, Haldar D. Transcriptional regulation of mitochondrial glycerophosphate acyltransferase is mediated by distal promoter via ChREBP and SREBP-1. Arch Biochem Biophys 2009; 490:85-95. [PMID: 19682972 PMCID: PMC2761506 DOI: 10.1016/j.abb.2009.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
Abstract
We have recently identified two promoters, distal and proximal for rat mitochondrial glycerophosphate acyltransferase (mtGPAT). Here we are reporting further characterization of the promoters. Insulin and epidermal growth factor (EGF) stimulated while leptin and glucagon inhibited the luciferase activity of the distal promoter and the amounts of the distal transcript. Conversely, luciferase activity of the proximal promoter and proximal transcript remained unchanged due to these treatments. Only the distal promoter has binding sites for carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1 (SREBP-1). Electromobility shift assays and chromatin immunoprecipitation assays demonstrated that ChREBP and SREBP-1 bind to the mtGPAT distal promoter. Insulin and EGF increased while glucagon and leptin decreased the binding of SREBP-1 and ChREBP to the distal promoter. Thus, the distal promoter is the regulatory promoter while the proximal promoter acts constitutively for rat mtGPAT gene under the influence of hormones and growth factor.
Collapse
Affiliation(s)
- Prajna Guha
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
29
|
Dixon D, Meng H, Goldberg R, Schneiderman N, Delamater A. Stress and body mass index each contributes independently to tumor necrosis factor-alpha production in prepubescent Latino children. J Pediatr Nurs 2009; 24:378-88. [PMID: 19782896 PMCID: PMC2776709 DOI: 10.1016/j.pedn.2008.02.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2008] [Revised: 02/26/2008] [Accepted: 02/26/2008] [Indexed: 10/21/2022]
Abstract
This investigation extended prior work by determining if stress and body mass index (BMI) contributed independently to tumor necrosis factor-alpha (TNF-alpha) levels among prepubescent Latino children and if sex and family history of type 2 diabetes mellitus (T2DM) modified these relationships. Data were collected in South Florida from 112 nondiabetic school-aged Hispanic children, of whom 43.8% were obese (BMI >/= 95th percentile) and 51.8% presented with a family history of T2DM. Stressful life events were assessed via parental report using a life events scale. Plasma TNF-alpha levels were determined with enzyme-linked immunosorbent assay. The relative contributions of stress and BMI with TNF-alpha levels and the potential interaction effects of sex and family history of T2DM were analyzed with multiple linear regression analyses. Stress and BMI each accounted for a significant proportion of the unique variance associated with TNF-alpha. The association between stress and TNF-alpha was not modified by sex or family history of T2DM. These findings implicate BMI and stress as independent determinants of TNF-alpha (an inflammatory cytokine and adipocytokine) among Latino children. Future investigations should examine the potential roles of exercise, nutritional status, age, and growth hormone in explicating the relationship between TNF-alpha production and psychosocial distress and risk for infection among obese children.
Collapse
Affiliation(s)
- Denise Dixon
- University of Miami Behavioral Medicine Research Center, c/o VA Medical Center, Miami, FL, USA.
| | | | | | | | | |
Collapse
|
30
|
Fuentes T, Ara I, Guadalupe-Grau A, Larsen S, Stallknecht B, Olmedillas H, Santana A, Helge JW, Calbet JAL, Guerra B. Leptin receptor 170 kDa (OB-R170) protein expression is reduced in obese human skeletal muscle: a potential mechanism of leptin resistance. Exp Physiol 2009; 95:160-71. [PMID: 19717488 DOI: 10.1113/expphysiol.2009.049270] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To examine whether obesity-associated leptin resistance could be due to down-regulation of leptin receptors (OB-Rs) and/or up-regulation of suppressor of cytokine signalling 3 (SOCS3) and protein tyrosine phosphatase 1B (PTP1B) in skeletal muscle, which blunt janus kinase 2-dependent leptin signalling and signal transducer and activator of transcription 3 (STAT3) phosphorylation and reduce AMP-activated protein kinase (AMPK) and acetyl-coenzyme A carboxylase (ACC) phosphorylation. Deltoid and vastus lateralis muscle biopsies were obtained from 20 men: 10 non-obese control subjects (mean +/- s.d. age, 31 +/- 5 years; height, 184 +/- 9 cm; weight, 91 +/- 13 kg; and percentage body fat, 24.8 +/- 5.8%) and 10 obese (age, 30 +/- 7 years; height, 184 +/- 8 cm; weight, 115 +/- 8 kg; and percentage body fat, 34.9 +/- 5.1%). Skeletal muscle OB-R170 (OB-R long isoform) protein expression was 28 and 25% lower (both P < 0.05) in arm and leg muscles, respectively, of obese men compared with control subjects. In normal-weight subjects, SOCS3 protein expression, and STAT3, AMPKalpha and ACCbeta phosphorylation, were similar in the deltoid and vastus lateralis muscles. In obese subjects, the deltoid muscle had a greater amount of leptin receptors than the vastus lateralis, whilst SOCS3 protein expression was increased and basal STAT3, AMPKalpha and ACCbeta phosphorylation levels were reduced in the vastus lateralis compared with the deltoid muscle (all P < 0.05). In summary, skeletal muscle leptin receptors and leptin signalling are reduced in obesity, particularly in the leg muscles.
Collapse
Affiliation(s)
- T Fuentes
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira, 35017 Las Palmas de Gran Canaria, Canary Island, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Adipogenic differentiation is not influenced by lentivirus-mediated shRNA targeting the SOCS3 gene in adipose-derived stromal cells. Mol Biol Rep 2009; 37:2455-62. [DOI: 10.1007/s11033-009-9757-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 08/07/2009] [Indexed: 11/27/2022]
|
32
|
Abstract
The present study was designed to determine whether porcine leptin can alter the proliferation and differentiation of the porcine preadipocyte. The stromal vascular cell fraction of neonatal pig s.c. adipose tissue was isolated by collagenase digestion, filtration, and subsequent centrifugation. For differentiation studies, cells were seeded on six-well tissue culture plates and proliferated to confluency in 10% (vol/vol) fetal bovine serum (FBS) in Dulbecco's modified Eagle medium/F12 (DMEM/F12; 50:50). Cultures were differentiated using 2.5% pig serum (vol/vol) and recombinant porcine leptin at concentrations of 0 to 1,000 ng/mL alone or in combination with porcine insulin (100 nM), dexamethasone (1 microM), or IGF-1 (250 ng/mL). After 7 d of lipid filling, cultures were harvested for analysis of sn-glycerol 3 phosphate dehydrogenase (GPDH) and lipoprotein lipase (LPL). The GPDH and LPL activities are measures of preadipocyte differentiation. Data were corrected for protein content of the cultures. For proliferation experiments, 24 h after seeding cells with 10% FBS in DMEM/F12 in 25-cm2 tissue culture flasks, cells were switched to 5% FBS and supplemented with 0 to 1,000 ng of porcine leptin or 1,000 ng of murine leptin. Cell proliferation was measured by 3H-thymidine incorporation in preconfluent cultures over 24 h on d 4 of culture. At confluency, cells were switched to a medium to promote differentiation and lipid filling (2.5% pig serum, 100 nM insulin, 1 microM dexamethasone) for 7 d. Cells were harvested from the flasks and adipocytes were separated from stromal cells by Percoll gradient centrifugation. In a series of experiments, leptin alone or in combination with insulin, dexamethasone, or IGF-I did not affect differentiation as measured by the activity of GPDH and LPL. Leptin at any concentration did not inhibit differentiation induced by insulin, dexamethasone, or IGF-I; however, leptin at 1,000 ng/mL stimulated a 30% increase in preadipocyte proliferation (P = 0.007; n = 6) and a 27% increase in stromal cell proliferation (P < 0.001; n = 6). These results indicate that, at most, porcine leptin may contribute to the recruitment of new adipocytes within the adipose tissue.
Collapse
Affiliation(s)
- T G Ramsay
- ARS, USDA, Growth Biology Laboratory, Beltsville, MD 20705, USA.
| |
Collapse
|
33
|
Qureshi K, Abrams GA. Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2007; 13:3540-53. [PMID: 17659704 PMCID: PMC4146793 DOI: 10.3748/wjg.v13.i26.3540] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly recognized cause of liver-related morbidity and mortality. It can develop secondary to numerous causes but a great majority of NAFLD cases occur in patients who are obese or present with other components of metabolic syndrome (hypertension, dyslipidemia, diabetes). This is called primary NAFLD and insulin resistance plays a key role in its pathogenesis. Obesity is characterized by expanded adipose tissue, which is under a state of chronic inflammation. This disturbs the normal storage and endocrine functions of adipose tissue. In obesity, the secretome (adipokines, cytokines, free fatty acids and other lipid moieties) of fatty tissue is amplified, which through its autocrine, paracrine actions in fat tissue and systemic effects especially in the liver leads to an altered metabolic state with insulin resistance (IR). IR leads to hyperglycemia and reactive hyperinsulinemia, which stimulates lipid-accumulating processes and impairs hepatic lipid metabolism. IR enhances free fatty acid delivery to liver from the adipose tissue storage due to uninhibited lipolysis. These changes result in hepatic abnormal fat accumulation, which may initiate the hepatic IR and further aggravate the altered metabolic state of whole body. Hepatic steatosis can also be explained by the fact that there is enhanced dietary fat delivery and physical inactivity. IR and NAFLD are also seen in various lipodystrophic states in contrary to popular belief that these problems only occur due to excessive adiposity in obesity. Hence, altered physiology of adipose tissue is central to development of IR, metabolic syndrome and NAFLD.
Collapse
Affiliation(s)
- Kamran Qureshi
- Department of Medicine, University of Alabama at Birmingham, 1918 University Blvd 286 MCLM Birmingham, AL 35294, USA
| | | |
Collapse
|
34
|
Noland RC, Thyfault JP, Henes ST, Whitfield BR, Woodlief TL, Evans JR, Lust JA, Britton SL, Koch LG, Dudek RW, Dohm GL, Cortright RN, Lust RM. Artificial selection for high-capacity endurance running is protective against high-fat diet-induced insulin resistance. Am J Physiol Endocrinol Metab 2007; 293:E31-41. [PMID: 17341547 DOI: 10.1152/ajpendo.00500.2006] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated oxidative capacity, such as occurs via endurance exercise training, is believed to protect against the development of obesity and diabetes. Rats bred both for low (LCR)- and high (HCR)-capacity endurance running provide a genetic model with inherent differences in aerobic capacity that allows for the testing of this supposition without the confounding effects of a training stimulus. The purpose of this investigation was to determine the effects of a high-fat diet (HFD) on weight gain patterns, insulin sensitivity, and fatty acid oxidative capacity in LCR and HCR male rats in the untrained state. Results indicate chow-fed LCR rats were heavier, hypertriglyceridemic, less insulin sensitive, and had lower skeletal muscle oxidative capacity compared with HCR rats. Upon exposure to an HFD, LCR rats gained more weight and fat mass, and their insulin resistant condition was exacerbated, despite consuming similar amounts of metabolizable energy as chow-fed controls. These metabolic variables remained unaltered in HCR rats. The HFD increased skeletal muscle oxidative capacity similarly in both strains, whereas hepatic oxidative capacity was diminished only in LCR rats. These results suggest that LCR rats are predisposed to obesity and that expansion of skeletal muscle oxidative capacity does not prevent excess weight gain or the exacerbation of insulin resistance on an HFD. Elevated basal skeletal muscle oxidative capacity and the ability to preserve liver oxidative capacity may protect HCR rats from HFD-induced obesity and insulin resistance.
Collapse
Affiliation(s)
- Robert C Noland
- Department of Physiology, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wu J, Wang B, Zhang H, Yu T, Yang G. Different transcription profiles of SOCS-3, ob and IGF-I genes and their possible correlations in obese and lean pigs. Acta Biochim Biophys Sin (Shanghai) 2007; 39:305-10. [PMID: 17417687 DOI: 10.1111/j.1745-7270.2007.00274.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Pig breeds have significant differences in fat deposition and muscle development ability. However, the molecular mechanism behind these differences is still unknown. In this study, the expression patterns of three candidate genes, suppressor of cytokine signaling 3 (SOCS-3), obesity (ob) and insulin-like growth factor I (IGF-I), which are involved in adipose metabolism or muscle development, were analyzed. Total RNA was extracted from dorsal subcutaneous adipose tissue and longissimus of 8-month-old Bamei and Largewhite pigs. Semiquantitative reverse transcription-polymerase chain reaction was used to determine the expression levels of the SOCS-3 and ob genes in adipose tissue, and SOCS-3 and IGF-I genes in muscle tissue. The results showed that in adipose tissue the expression level of SOCS-3 was significantly higher in Bamei (obese) pigs than that in Largewhite (lean) pigs (P<0.01). However, in muscle tissue it was significantly lower in Bamei than that in Largewhite pigs (P<0.01). Furthermore, the expression of SOCS-3 was positively correlated to that of ob in adipose tissue and that of IGF-I in muscle tissue. These findings suggest that the difference in SOCS-3 gene expression levels in adipose and muscle tissues, the relationship between SOCS-3 and ob in adipose tissue, and that between SOCS-3 and IGF-I in muscle tissue, might contribute to the different fat deposition and muscle development ability between obese and lean pigs.
Collapse
Affiliation(s)
- Jiangwei Wu
- Laboratory of Animal Fat Deposition and Muscle Development, Northwest A&F University, Yangling 712100, China
| | | | | | | | | |
Collapse
|
36
|
Eguchi M, Gillis LC, Liu Y, Lyakhovsky N, Du M, McDermott JC, Sweeney G. Regulation of SOCS-3 expression by leptin and its co-localization with insulin receptor in rat skeletal muscle cells. Mol Cell Endocrinol 2007; 267:38-45. [PMID: 17223256 DOI: 10.1016/j.mce.2006.11.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 11/28/2006] [Indexed: 01/12/2023]
Abstract
Obesity is a well-defined risk factor for the development of insulin resistance in target tissues, such as skeletal muscle, and thus type 2 diabetes. This may occur due to endocrine effects mediated by adipokines including leptin, the product of the obese (ob) gene, whose circulating levels positively correlate with body mass index. Induction of suppressor of cytokine-3 (SOCS-3) protein expression has been implicated as a possible mechanism of leptin-induced insulin resistance. Here, we show that treatment of rat skeletal muscle cells with leptin activated the SOCS-3 gene promoter and caused a time-dependent increase in both SOCS-3 mRNA and protein content. Confocal microscopy demonstrated increased co-localization of SOCS-3 with insulin receptor in leptin-treated cells and we confirmed a direct interaction between these two proteins by showing increased coimmunoprecipitation of SOCS-3 and insulin receptor after exposure of cells to leptin. However, the expected functional consequences were not observed, as we saw no change in basal or insulin-stimulated glucose uptake and phosphorylation of GSK3beta, Akt (T308 and S473) or ERK1/2. In summary, leptin induced SOCS-3 expression and its association with the insulin receptor in rat skeletal muscle cells but functional significance of this increase was not apparent upon measuring glucose uptake.
Collapse
Affiliation(s)
- Megumi Eguchi
- Department of Biology, York University, Toronto, M3J 1P3 Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Obesity and type 2 diabetes are serious health issues in the developed world and are becoming increasingly important on a global scale. Furthermore, the marked increases in both childhood obesity and type 2 diabetes will translate to further increases in adult obesity, diabetes and associated co-morbidities in the near future; as such it has been ranked as a critical public health threat. It is a widely held view that the primary cause of obesity is the development of an obesogenic environment, due to ease of access to highly calorific food and reduced energy expenditure in work and leisure activities. In addition there is strong evidence for a genetic component to human obesity with the identification of a number of genes associated with human obesity. However, on its own the genetic component of this condition cannot account for the dramatic increase in the prevalence of obesity in recent years. Of relevance and as highlighted by epidemiological and experimental studies, is the relationship between the periconceptual, fetal and early infant phases of life and the subsequent development of adult obesity. The terms “developmental programming” and the “Developmental Origins of Adult Health and Disease” are preferentially used to describe these relationships. Despite initial controversy when these relationships were first suggested, both prospective clinical and experimental studies have clearly shown that the propensity to develop abnormalities of cardiovascular, endocrine and metabolic homeostasis in adulthood are increased when fetal development has been adversely affected. This pathogenesis is not based on genetic defects but on altered gene expression seen as a result of fetal adaptation to an adverse intrauterine environment. The relative role of genetic versus environmental factors and the mechanisms underlying developmental programming remain speculative. It is generally argued that in response to an adverse intrauterine environment, the fetus adapts its physiological development to maximise its immediate chances for survival. Owing to the plasticity of the fetus, these adaptations may include resetting of metabolic homeostasis and endocrine systems and the down-regulation of growth, commonly reflected in an altered birth phenotype. It is thought that whilst these changes in fetal physiology (i.e. the prenatal environment) may be beneficial for short term survivalin uterothey may be maladaptive in postnatal life, contributing to poor health outcomes when offspring are exposed to catch-up growth, diet-induced obesity and other factors. The “predictive adaptive response” hypothesis proposes that the degree of mismatch between the pre- and postnatal environments is a major determinant of subsequent disease. This review will address recent work in animal models and observations in the clinical and epidemiological settings onin uteroadaptations and subsequent development of obesity and type 2 diabetes.
Collapse
|
38
|
Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins. Trends Endocrinol Metab 2006; 17:365-71. [PMID: 17010638 DOI: 10.1016/j.tem.2006.09.007] [Citation(s) in RCA: 257] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 09/08/2006] [Accepted: 09/19/2006] [Indexed: 12/13/2022]
Abstract
Leptin and insulin are key hormones involved in the regulation of energy balance and glucose homeostasis. Development of resistance to the action of these hormones, which can occur with age, obesity and inflammation, appears to have a prime role in the pathogenesis of obesity and type 2 diabetes. Specific members of the suppressor of cytokine signaling (SOCS) family of proteins are now thought to have a role in the development of leptin and insulin resistance owing to their ability to inhibit leptin and insulin signaling pathways. In the case of leptin, current evidence suggests that SOCS3 appears to be of particular importance in the development of leptin resistance, whereas the ability to diminish insulin action has been described for several SOCS proteins (SOCS1, SOCS3, SOCS6 and SOCS7).
Collapse
Affiliation(s)
- Jane K Howard
- Endocrine Unit, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 ONN, UK
| | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW In the USA, 8-10 million people are morbidly obese, which is associated with a high frequency of comorbidities. The most effective treatment is surgery. Of around 180,000 bariatric operations performed in 2005, 80% were Roux-en-Y gastric bypass, consisting of a small gastric pouch to minimize food intake and a Roux-en-Y of distal small bowel bypassing the upper gastrointestinal tract. The precise mechanisms whereby Roux-en-Y gastric bypass achieves sustained weight loss remain unknown. To gain insight into the catabolic events of sustained weight loss we developed a diet-induced obese Roux-en-Y gastric bypass rat model. We review our rat model data from the novel viewpoint of the catabolic state, comparing it with the limited human data available and the catabolic events occurring in cancer anorexia/cachexia syndrome. RECENT FINDINGS Current data suggest the involvement of mechanisms other than restrictive and malabsorptive factors of the Roux-en-Y gastric bypass, classically thought of as the mechanisms responsible for weight loss. Based on available data, gastrointestinal hormones and cytokines play a key role in reducing food intake and regulating energy homeostasis. Because of the cross talk between peripheral modulators and the hypothalamus, a critical role for their interaction in the outcome of Roux-en-Y gastric bypass is emerging. SUMMARY In our Roux-en-Y gastric bypass rat model many of the changes in gastrointestinal hormones, adipokines and cytokines as well as in hypothalamic neuropeptides and neurotransmitters resemble the changes observed in the anorexia/cachexia rat model, suggesting that Roux-en-Y gastric bypass triggers a catabolic state responsible for loss of appetite and prolonged body weight reduction.
Collapse
Affiliation(s)
- Ana Guijarro
- Surgical Metabolism and Nutrition Laboratory, Department of Surgery, SUNY Upstate Medical University, Syracuse, New York 13021, USA
| | | | | |
Collapse
|
40
|
Abstract
Adipose tissue secretes bioactive peptides, termed 'adipokines', which act locally and distally through autocrine, paracrine and endocrine effects. In obesity, increased production of most adipokines impacts on multiple functions such as appetite and energy balance, immunity, insulin sensitivity, angiogenesis, blood pressure, lipid metabolism and haemostasis, all of which are linked with cardiovascular disease. Enhanced activity of the tumour necrosis factor and interleukin 6 are involved in the development of obesity-related insulin resistance. Angiotensinogen has been implicated in hypertension and plasminogen activating inhibitor-1 (PAI-1) in impaired fibrinolysis. Other adipokines like adiponectin and leptin, at least in physiological concentrations, are insulin sparing as they stimulate beta oxidation of fatty acids in skeletal muscle. The role of resistin is less understood. It is implicated in insulin resistance in rats, but probably not in humans. Reducing adipose tissue mass, through weight loss in association with exercise, can lower TNF-alpha and IL-6 levels and increase adiponectin concentrations, whereas drugs such as thiazolinediones increase endogenous adiponectin production. In-depth understanding of the pathophysiology and molecular actions of adipokines may, in the coming years, lead to effective therapeutic strategies designed to protect against atherosclerosis in obese patients.
Collapse
Affiliation(s)
- Tiziana Ronti
- Internal Medicine, Angiology and Atherosclerosis, Department of Clinical and Experimental Medicine, University of Perugia, Italy
| | | | | |
Collapse
|
41
|
Wang MY, Orci L, Ravazzola M, Unger RH. Fat storage in adipocytes requires inactivation of leptin's paracrine activity: implications for treatment of human obesity. Proc Natl Acad Sci U S A 2005; 102:18011-6. [PMID: 16326804 PMCID: PMC1312408 DOI: 10.1073/pnas.0509001102] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperleptinemia rapidly depletes adipocyte fat in lean rats, whereas comparable hyperleptinemia produced by adipocytes in diet-induced obesity does not, implying a leptinergic blockade in adipocytes during overnutrition. Indeed, activated STAT-3 in white adipose tissue (WAT) of normal rats was less on a 60% high fat diet (HFD) than on 4% fat, despite a 10-fold higher plasma leptin. In 6 days of a HFD, mRNA of the postreceptor leptin inhibitor, suppressor of cytokine signaling-3, increased 22-fold in WAT, while leptin receptor (Lepr-b) mRNA gradually disappeared, implying leptinergic blockade at both postreceptor and receptor levels. Adipocyte-specific Lepr-b overexpression of a Lepr-b transgene completely prevented the adipocyte hypertrophy and hyperplasia and the increase in body fat induced in wild-type mice by HFD. Activated STAT-3 and AMP-activated protein kinase (AMPK), and the mRNA of lipooxidative enzymes, peroxisome proliferator-activated receptor-gamma-coactivator-1alpha, and uncoupling protein-1 and -2 were increased in WAT. Body temperature was elevated in the transgenic mice, suggesting uncoupled fatty acid oxidation of surplus fatty acids. In conclusion, storage of surplus calories in WAT and the development of diet-induced obesity require the blockade of a latent leptin-stimulated caloric sump in white adipocytes.
Collapse
Affiliation(s)
- May-Yun Wang
- Gifford Laboratories, Touchstone Center for Diabetes Research and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, 75390-8854, USA
| | | | | | | |
Collapse
|
42
|
Muzumdar RH, Ma X, Yang X, Atzmon G, Barzilai N. Central resistance to the inhibitory effects of leptin on stimulated insulin secretion with aging. Neurobiol Aging 2005; 27:1308-14. [PMID: 16122839 DOI: 10.1016/j.neurobiolaging.2005.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 07/07/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Aging is associated with resistance to the effects of leptin on food intake and energy homeostasis. We examined if old rats were resistant to the effects of leptin on glucose stimulated insulin secretion. When leptin was infused intravenously (0.5 microg/kg/min) under hyperglycemic clamp conditions (11 mM) in young (n=5) and old rats (n=10, 5 ad libitum fed and five with surgical removal of visceral fat), glucose stimulated insulin secretion was significantly decreased by 44% in the young rats, but not in old rats (31.8+/-2.8 to 17.9+/-1.0 versus 33.7+/-1.4 versus 31.0+/-1.7 and 24.7+/-1.6 versus 21.0+/-2.8 in young versus old versus old VF- respectively, p<0.01). To identify if the resistance to leptin is secondary to impaired transport across the blood brain barrier (BBB), we infused leptin into the third ventricle (intra-cerebro ventricular, ICV). ICV infusion of leptin elicited a partial effect on glucose stimulated insulin secretion in the old (25.7+/-2.5 to 15.4+/-2.4 versus 24.4+/-2.4 to 19.0+/-2.0 in young versus old, respectively) suggesting that part of the leptin resistance was beyond the BBB. Resistance to the effects of leptin on insulin secretion in aging may protect against the onset of diabetes in old subjects.
Collapse
Affiliation(s)
- Radhika H Muzumdar
- Division of Pediatric Endocrinology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
43
|
Ceddia RB. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int J Obes (Lond) 2005; 29:1175-83. [PMID: 16030519 DOI: 10.1038/sj.ijo.0803025] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In recent years, the adipose tissue has emerged as an important endocrine organ. It is now recognized that besides storing energy the adipocytes also secrete several bioactive peptides, collectively called adipocytokines. Among these adipocytokines, leptin, the product of the ob gene, has been extensively investigated over the last decade. Skeletal muscle and adipose tissue, two major tissues involved in the regulation of glucose and fatty acids metabolism, have been consistently demonstrated to be directly affected by leptin. By binding to its receptors located in skeletal muscle and fat cells, leptin promotes energy dissipation and prevents fatty acid accumulation and 'lipotoxicity' in these tissues. On the other hand, under conditions of peripheral leptin resistance, such as observed in obese humans, the activation of pathways involved in fatty acid oxidation may be impaired. This leads to intracellular accumulation of lipid intermediates and causes insulin resistance. This review examines the metabolic pathways that are directly activated by leptin and how it regulates glucose and fatty acids metabolism in skeletal muscle and fat tissue. Furthermore, the impact of peripheral leptin resistance in these tissues leading to dysfunctional metabolic adaptations is also discussed.
Collapse
Affiliation(s)
- R B Ceddia
- Department of Kinesiology and Health Science, York University, Toronto, Ontario, Canada.
| |
Collapse
|
44
|
Abstract
Resistin is an adipocyte hormone that modulates glucose homeostasis. Here we show that in 3T3-L1 adipocytes, resistin attenuates multiple effects of insulin, including insulin receptor (IR) phosphorylation, IR substrate 1 (IRS-1) phosphorylation, phosphatidylinositol-3-kinase (PI3K) activation, phosphatidylinositol triphosphate production, and activation of protein kinase B/Akt. Remarkably, resistin treatment markedly induces the gene expression of suppressor of cytokine signaling 3 (SOCS-3), a known inhibitor of insulin signaling. The 50% effective dose for resistin induction of SOCS-3 is approximately 20 ng/ml, close to levels of resistin in serum. Association of SOCS-3 protein with the IR is also increased by resistin. Inhibition of SOCS function prevented resistin from antagonizing insulin action in adipocytes. SOCS-3 induction is the first cellular effect of resistin that is independent of insulin and is a likely mediator of resistin's inhibitory effect on insulin signaling in adipocytes.
Collapse
Affiliation(s)
- Claire M Steppan
- Pfizer Inc., PRGD, MS220-3145, Eastern Point Rd., Groton, CT 06340, USA.
| | | | | | | | | |
Collapse
|
45
|
Zhang F, Chen Y, Heiman M, Dimarchi R. Leptin: structure, function and biology. VITAMINS AND HORMONES 2005; 71:345-72. [PMID: 16112274 DOI: 10.1016/s0083-6729(05)71012-8] [Citation(s) in RCA: 205] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Leptin is an adipocyte-derived hormone that acts as a major regulator for food intake and energy homeostasis. Leptin deficiency or resistance can result in profound obesity, diabetes, and infertility in humans. Since its discovery, our understanding of leptin's biological functions has expanded from anti-obesity to broad effects on reproduction, hematopoiesis, angiogenesis, blood pressure, bone mass, lymphoid organ homeostasis, and T lymphocyte systems. Leptin orchestrates complex biological effects through its receptors, expressed both centrally and peripherally. Leptin receptor belongs to the class I cytokine receptor superfamily. At least five isoforms of leptin receptor exist, primarily because of alternate splicing. The longest form is capable of full signal transduction. The short forms may serve as leptin binding proteins and play a role in leptin transporting across the blood-brain barrier. In this review, we present the crystal structure of leptin and the structural comparison with other four-helical cytokines, discuss the leptin-receptor binding models based on other cytokine-receptor complex structures, and summarize the most recent progress on leptin signal transduction pathways--especially its link to peripheral lipid metabolism through AMP-activated protein kinase and hepatic stearoyl-CoA desaturase-1 pathways. Furthermore, we propose the structure based design of leptin analogs with increased stability, improved potency, enhanced blood-brain barrier transport, and extended time action for future therapeutic application.
Collapse
Affiliation(s)
- Faming Zhang
- Department of Chemistry, Indiana University at Bloomington, Bloomington, Indiana 47405, USA
| | | | | | | |
Collapse
|
46
|
Tian DR, Li XD, Shi YS, Wan Y, Wang XM, Chang JK, Yang J, Han JS. Changes of hypothalamic alpha-MSH and CART peptide expression in diet-induced obese rats. Peptides 2004; 25:2147-53. [PMID: 15572204 DOI: 10.1016/j.peptides.2004.08.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 08/10/2004] [Accepted: 08/12/2004] [Indexed: 11/23/2022]
Abstract
Two hypothalamic peptides, cocaine and amphetamine-regulated transcript (CART) and alpha-melanocyte-stimulating hormone (alpha-MSH), recognized as anorexigenic neuropeptides to suppress the feeding behavior, were monitored in rats fed with a high-fat (HIF) diet for 14 weeks. While half of the rats developed obesity (diet-induced obese, DIO), some did not (diet resistant, DR). Compared to the DR rats and the control rats (fed with standard chow), DIO rats were accompanied by a markedly higher energy intake and a decrease in the number of neurons carrying alpha-MSH and CART peptide in the arcuate nucleus of the hypothalamus. Failure of hypothalamic anorexigenic peptides CART and alpha-MSH to increase their content in response to HIF diet may play a key role for overly high energy consumption, resulting in obesity.
Collapse
Affiliation(s)
- De-Run Tian
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, Beijing 100083, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjørbaek C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 2004; 10:734-8. [PMID: 15220914 DOI: 10.1038/nm1072] [Citation(s) in RCA: 361] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Accepted: 06/02/2004] [Indexed: 02/06/2023]
Abstract
Leptin is an adipocyte-derived hormone that regulates energy balance and neuroendocrine function primarily by acting on specific hypothalamic pathways. Resistance to the weight reducing effects of leptin is a feature of most cases of human and rodent obesity, yet the molecular basis of leptin resistance is poorly understood. We have previously identified suppressor of cytokine signaling-3 (Socs3) as a leptin-induced negative regulator of leptin receptor signaling and potential mediator of leptin resistance. However, due to the non-viability of mice with targeted disruption of Socs3 (ref. 6), the importance of Socs3 in leptin action in vivo was unclear. To determine the functional significance of Socs3 in energy balance in vivo we undertook studies in mice with heterozygous Socs3 deficiency (Socs3(+/-)). We report here that Socs3(+/-) mice display greater leptin sensitivity than wild-type control mice: Socs3(+/-) mice show both enhanced weight loss and increased hypothalamic leptin receptor signaling in response to exogenous leptin administration. Furthermore, Socs3(+/-) mice are significantly protected against the development of diet-induced obesity and associated metabolic complications. The level of Socs3 expression is thus a critical determinant of leptin sensitivity and obesity susceptibility in vivo and this molecule is a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Jane K Howard
- Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
48
|
Howard JK, Cave BJ, Oksanen LJ, Tzameli I, Bjørbæk C, Flier JS. Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nat Med 2004. [DOI: 10.1038/nm1072 nm1072 [pii]] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Shi H, Tzameli I, Bjørbaek C, Flier JS. Suppressor of cytokine signaling 3 is a physiological regulator of adipocyte insulin signaling. J Biol Chem 2004; 279:34733-40. [PMID: 15181014 DOI: 10.1074/jbc.m403886200] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Many proinflammatory cytokines and hormones have been demonstrated to be involved in insulin resistance. However, the molecular mechanisms whereby these cytokines and hormones inhibit insulin signaling are not completely understood. We observed that several cytokines and hormones that induce insulin resistance also stimulate SOCS3 expression in 3T3-L1 adipocytes and that SOCS3 mRNA is increased in adipose tissue of obese/diabetic mice. We then hypothesized that SOCS3 may mediate cytokine- and hormone-induced insulin resistance. By using SOCS3-deficient adipocytes differentiated from mouse embryonic fibroblasts, we found that SOCS3 deficiency increases insulin-stimulated IRS1 and IRS2 phosphorylation, IRS-associated phosphatidylinositol 3-kinase activity, and insulin-stimulated glucose uptake. Moreover, lack of SOCS3 substantially limits the inhibitory effects of tumor necrosis factor-alpha to suppress IRS1 and IRS2 tyrosine phosphorylation, phosphatidylinositol 3-kinase activity, and glucose uptake in adipocytes. The ameliorated insulin signaling in SOCS3-deficient adipocytes is mainly due to the suppression of tumor necrosis factor-alpha-induced IRS1 and IRS2 protein degradation. Therefore, our data suggest that endogenous SOCS3 expression is a key determinant of basal insulin signaling and is an important molecular mediator of cytokine-induced insulin resistance in adipocytes. We conclude that SOCS3 plays an important role in mediating insulin resistance and may be an excellent target for therapeutic intervention in insulin resistance and type II diabetes.
Collapse
Affiliation(s)
- Hang Shi
- Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
50
|
Abstract
The worldwide prevalence of obesity is increasing at an alarming rate, with major adverse consequences for human health. This "obesity epidemic" is paralleled by a rapid and substantive increase in our understanding of molecular pathways and physiologic systems underlying the regulation of energy balance. While efforts to address the environmental factors that are responsible for the recent "epidemic" must continue, new molecular and physiologic insights into this system offer exciting possibilities for future development of successful therapies.
Collapse
Affiliation(s)
- Jeffrey S Flier
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|