1
|
Ishii T, Kobayakawa T, Matsuda K, Tsuji K, Ohashi N, Nakahata S, Noborio A, Yoshimura K, Mitsuya H, Maeda K, Tamamura H. Synthesis and evaluation of DAG-lactone derivatives with HIV-1 latency reversing activity. Eur J Med Chem 2023; 256:115449. [PMID: 37224601 PMCID: PMC10683555 DOI: 10.1016/j.ejmech.2023.115449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Cells latently infected with human immunodeficiency virus type 1 (HIV-1) prevent people living with HIV-1 from obtaining a cure to the infectious disease. Latency reversing agents (LRAs) such as protein kinase C (PKC) activators and histone deacetylase (HDAC) inhibitors can reactivate cells latently infected with HIV-1. Several trials based on treatment with HDAC inhibitors alone, however, failed to reduce the number of latent HIV-1 reservoirs. Herein, we have focused on a diacylglycerol (DAG)-lactone derivative, YSE028 (1), which is a PKC activator with latency reversing activity and no significant cytotoxicity. Caspase-3 activation of YSE028 (1) led to cell apoptosis, specifically in HIV-1 latently infected cells. Structure-activity relationship studies of YSE028 (1) have produced several useful derivatives. Among these, compound 2 is approximately ten times more potent than YSE028 (1) in reactivation of cells latently infected with HIV-1. The activity of DAG-lactone derivatives was correlated with the binding affinity for PKC and the stability against esterase-mediated hydrolysis.
Collapse
Affiliation(s)
- Takahiro Ishii
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kouki Matsuda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan; AIDS Clinical Center, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kohei Tsuji
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Nami Ohashi
- Laboratory of Drug Design and Medicinal Chemistry, Showa Pharmaceutical University, Machida, Tokyo, 194-8543, Japan
| | - Shingo Nakahata
- Division of HTLV-1/ATL Carcinogenesis and Therapeutics, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Airi Noborio
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Kazuhisa Yoshimura
- Institute of Public Health, Bureau of Social Welfare and Public Health, Tokyo Metropolitan Government, Shinjuku-ku, Tokyo, 169-0073, Japan
| | - Hiroaki Mitsuya
- Department of Refractory Viral Infections, National Center for Global Health and Medicine Research Institute, Shinjuku-ku, Tokyo, 162-8655, Japan; Experimental Retrovirology Section, HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States; Department of Clinical Sciences, Kumamoto University Hospital, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kenji Maeda
- Division of Antiviral Therapy, Joint Research Center for Human Retrovirus Infection, Kagoshima University, Kagoshima, 890-8544, Japan
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo, 101-0062, Japan.
| |
Collapse
|
2
|
Lai SSM, Ng KY, Koh RY, Chok KC, Chye SM. Endosomal-lysosomal dysfunctions in Alzheimer's disease: Pathogenesis and therapeutic interventions. Metab Brain Dis 2021; 36:1087-1100. [PMID: 33881723 DOI: 10.1007/s11011-021-00737-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
The endosomal-lysosomal system mediates the process of protein degradation through endocytic pathway. This system consists of early endosomes, late endosomes, recycling endosomes and lysosomes. Each component in the endosomal-lysosomal system plays individual crucial role and they work concordantly to ensure protein degradation can be carried out functionally. Dysregulation in the endosomal-lysosomal system can contribute to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). In AD endosomal-lysosomal abnormalities are the earliest pathological features to note and hence it is important to understand the involvement of endosomal-lysosomal dysfunction in the pathogenesis of AD. In-depth understanding of this dysfunction can allow development of new therapeutic intervention to prevent and treat AD.
Collapse
Affiliation(s)
- Shereen Shi Min Lai
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Kian Chung Chok
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Sen A, Nelson TJ, Alkon DL, Hongpaisan J. Loss in PKC Epsilon Causes Downregulation of MnSOD and BDNF Expression in Neurons of Alzheimer's Disease Hippocampus. J Alzheimers Dis 2018; 63:1173-1189. [PMID: 29710707 DOI: 10.3233/jad-171008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Oxidative stress and amyloid-β (Aβ) oligomers have been implicated in Alzheimer's disease (AD). The growth and maintenance of neuronal networks are influenced by brain derived neurotrophic factor (BDNF) expression, which is promoted by protein kinase C epsilon (PKCɛ). We investigated the reciprocal interaction among oxidative stress, Aβ, and PKCɛ levels and subsequent PKCɛ-dependent MnSOD and BDNF expression in hippocampal pyramidal neurons. Reduced levels of PKCɛ, MnSOD, and BDNF and an increased level of Aβ were also found in hippocampal neurons from autopsy-confirmed AD patients. In cultured human primary hippocampal neurons, spherical aggregation of Aβ (amylospheroids) decreased PKCɛ and MnSOD. Treatment with t-butyl hydroperoxide (TBHP) increased superoxide, the oxidative DNA/RNA damage marker, 8-OHG, and Aβ levels, but reduced PKCɛ, MnSOD, BDNF, and cultured neuron density. These changes were reversed with the PKCɛ activators, bryostatin and DCPLA-ME. PKCɛ knockdown suppressed PKCɛ, MnSOD, and BDNF but increased Aβ. In cultured neurons, the increase in reactive oxygen species (ROS) associated with reduced PKCɛ during neurodegeneration was inhibited by the SOD mimetic MnTMPyP and the ROS scavenger NAc, indicating that strong oxidative stress suppresses PKCɛ level. Reduction of PKCɛ and MnSOD was prevented with the PKCɛ activator bryostatin in 5-6-month-old Tg2576 AD transgenic mice. In conclusion, oxidative stress and Aβ decrease PKCɛ expression. Reciprocally, a depression of PKCɛ reduces BDNF and MnSOD, resulting in oxidative stress. These changes can be prevented with the PKCɛ-specific activators.
Collapse
Affiliation(s)
- Abhik Sen
- Center for Neurodegenerative Diseases, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, USA
| | - Thomas J Nelson
- Center for Neurodegenerative Diseases, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, USA
| | | | - Jarin Hongpaisan
- Center for Neurodegenerative Diseases, Rockefeller Neurosciences Institute, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
4
|
Yan X, Hu G, Yan W, Chen T, Yang F, Zhang X, Zhao G, Liu J. Ginsenoside Rd promotes non-amyloidogenic pathway of amyloid precursor protein processing by regulating phosphorylation of estrogen receptor alpha. Life Sci 2016; 168:16-23. [PMID: 27825720 DOI: 10.1016/j.lfs.2016.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022]
Abstract
AIMS Previous study demonstrated that Ginsenoside Rd. (GS-Rd) could improve cognitive and memory function in animal model of Alzheimer's disease. This study was aimed to investigate whether GS-Rd could improve non-amyloidogenic pathway by activating estrogen receptor (ER). MAIN METHODS 10mg/kg GS-Rd in ovariectomy (OVX)+GS-Rd group and equivalent volume of saline in sham operated group and OVX group were administrated intraperitoneally for two months, respectively. The Morris Water Maze was used to examine cognitive function of rats, with sAPPα and Aβ levels in the hippocampi measured. The culture medium of HT22 hippocampal neuronal cells were incubated with GS-Rd, ER antagonist ICI182.780, MAPK inhibitor PD98059, or PI3Kinhibitor LY294002, respectively. sAPPα levels was measured, and expression of α-secretase, sAPPα, β-secretase, Aβ, phosphorylation form of AKT (p-AKT), total AKT, p-ERK, total ERK, p-ERα, total ERα, p-ERβ and total ERβ were examined by Western blot to explore the estrogenic-like activity of GS-Rd. KEY FINDINGS GS-Rd attenuate cognitive and memory impairment, increased levels of sAPPα and reduced extracellular Aβ of OVX rats. In HT22, GS-Rd could upregulate sAPPα level, which can be inhibited by inhibitor of MAPK and PI3K pathway. In addition, inhibitor of estrogen receptor prevented GS-Rd triggered release of sAPPα and activation of MAPK and PI3K pathways. GS-Rd could increase expression of α-secretase and sAPPα, while decrease expression of β-secretase and Aβ. Besides, GS-Rd promoted phosphorylation of estrogen receptor alpha at Ser118 residue. SIGNIFICANCE Our findings show that GS-Rd enhances learning and memory function of OVX rats by activating estrogen-like activity.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Gengyao Hu
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Weiming Yan
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Tao Chen
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China; Department of Health Service, Faculty of Aerospace, The Fourth Military Medical University, Xi'an 710032, China
| | - Feng Yang
- Department of Orthopaedics, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710032, China; Diagnosis, Treatment and Rehabilitation Center of Neurological Diseases, Second Sanatorium, Qingdao 266071, China
| | - Xiao Zhang
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Juanfang Liu
- Department of Clinical Aerospace Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
5
|
Duarte AC, Hrynchak MV, Gonçalves I, Quintela T, Santos CRA. Sex Hormone Decline and Amyloid β Synthesis, Transport and Clearance in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27632792 DOI: 10.1111/jne.12432] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
Sex hormones (SH) are essential regulators of the central nervous system. The decline in SH levels along with ageing may contribute to compromised neuroprotection and set the grounds for neurodegeneration and cognitive impairments. In Alzheimer's disease, besides other pathological features, there is an imbalance between amyloid β (Aβ) production and clearance, leading to its accumulation in the brain of older subjects. Aβ accumulation is a primary cause for brain inflammation and degeneration, as well as concomitant cognitive decline. There is mounting evidence that SH modulate Aβ production, transport and clearance. Importantly, SH regulate most of the molecules involved in the amyloidogenic pathway, their transport across brain barriers for elimination, and their degradation in the brain interstitial fluid. This review brings together data on the regulation of Aβ production, metabolism, degradation and clearance by SH.
Collapse
Affiliation(s)
- A C Duarte
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - M V Hrynchak
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - I Gonçalves
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - T Quintela
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| | - C R A Santos
- Health Sciences Research Centre - CICS-UBI, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
6
|
Tam JHK, Cobb MR, Seah C, Pasternak SH. Tyrosine Binding Protein Sites Regulate the Intracellular Trafficking and Processing of Amyloid Precursor Protein through a Novel Lysosome-Directed Pathway. PLoS One 2016; 11:e0161445. [PMID: 27776132 PMCID: PMC5077117 DOI: 10.1371/journal.pone.0161445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/07/2016] [Indexed: 01/18/2023] Open
Abstract
The amyloid hypothesis posits that the production of β-amyloid (Aβ) aggregates leads to neurodegeneration and cognitive decline associated with AD. Aβ is produced by sequential cleavage of the amyloid precursor protein (APP) by β- and γ-secretase. While nascent APP is well known to transit to the endosomal/ lysosomal system via the cell surface, we have recently shown that APP can also traffic to lysosomes intracellularly via its interaction with AP-3. Because AP-3 interacts with cargo protein via interaction with tyrosine motifs, we mutated the three tyrosines motif in the cytoplasmic tail of APP. Here, we show that the YTSI motif interacts with AP-3, and phosphorylation of the serine in this motif disrupts the interaction and decreases APP trafficking to lysosomes. Furthermore, we show that phosphorylation at this motif can decrease the production of neurotoxic Aβ 42. This demonstrates that reducing APP trafficking to lysosomes may be a strategy to reduce Aβ 42 in Alzheimer’s disease.
Collapse
Affiliation(s)
- Joshua H. K. Tam
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6A 5B7
| | - M. Rebecca Cobb
- Program in Neuroscience, Western University, London, Ontario, Canada, N6A 5B7
| | - Claudia Seah
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
| | - Stephen H. Pasternak
- J. Allyn Taylor Centre for Cell Biology, Molecular Medicine Research Group, Robarts Research Institute, Western University, London Ontario, Canada, N6A 5B7
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada, N6A 5B7
- Program in Neuroscience, Western University, London, Ontario, Canada, N6A 5B7
- Department of Clinical Neurological Sciences, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A 5B7
- * E-mail:
| |
Collapse
|
7
|
Herbst-Robinson KJ, Liu L, James M, Yao Y, Xie SX, Brunden KR. Inflammatory Eicosanoids Increase Amyloid Precursor Protein Expression via Activation of Multiple Neuronal Receptors. Sci Rep 2015; 5:18286. [PMID: 26672557 PMCID: PMC4682150 DOI: 10.1038/srep18286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/26/2015] [Indexed: 01/27/2023] Open
Abstract
Senile plaques comprised of Aβ peptides are a hallmark of Alzheimer's disease (AD) brain, as are activated glia that release inflammatory molecules, including eicosanoids. Previous studies have demonstrated that amyloid precursor protein (APP) and Aβ levels can be increased through activation of thromboxane A2-prostanoid (TP) receptors on neurons. We demonstrate that TP receptor regulation of APP expression depends on Gαq-signaling and conventional protein kinase C isoforms. Importantly, we discovered that Gαq-linked prostaglandin E2 and leukotriene D4 receptors also regulate APP expression. Prostaglandin E2 and thromboxane A2, as well as total APP levels, were found to be elevated in the brains of aged 5XFAD transgenic mice harboring Aβ plaques and activated glia, suggesting that increased APP expression resulted from eicosanoid binding to Gαq-linked neuronal receptors. Notably, inhibition of eicosanoid synthesis significantly lowered brain APP protein levels in aged 5XFAD mice. These results provide new insights into potential AD therapeutic strategies.
Collapse
Affiliation(s)
- Katie J. Herbst-Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Li Liu
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Michael James
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Yuemang Yao
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Sharon X. Xie
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| | - Kurt R. Brunden
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
8
|
Xu YQ, Sun ZQ, Wang YT, Xiao F, Chen MW. Function of Nogo-A/Nogo-A receptor in Alzheimer's disease. CNS Neurosci Ther 2015; 21:479-85. [PMID: 25732725 DOI: 10.1111/cns.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Nogo-A is a protein inhibiting axonal regeneration, which is considered a major obstacle to nerve regeneration after injury in mammals. Rapid progress has been achieved in new physiopathological function of Nogo-A in Alzheimer's disease in the past decade. Recent research shows that through binding to Nogo-A receptor, Nogo-A plays an important role in Alzheimer's disease (AD) pathogenesis. Particularly, Nogo-A/Nogo-A receptors modulate the generation of amyloid β-protein (Aβ), which is thought to be a major cause of AD. This review describes the recent development of Nogo-A, Nogo-A receptor, and downstream signaling involved in AD and pharmacological basis of therapeutic drugs. We concluded the Nogo-A/Nogo-A receptor provide new insight into potential mechanisms and promising therapy strategies in AD.
Collapse
Affiliation(s)
- Ying-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhong-Qing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
9
|
Park BH, Kim HG, Jin SW, Song SG, Jeong HG. Metallothionein-III increases ADAM10 activity in association with furin, PC7, and PKCα during non-amyloidogenic processing. FEBS Lett 2014; 588:2294-300. [DOI: 10.1016/j.febslet.2014.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
10
|
Tanabe F, Nakajima T, Ito M. The thiol proteinase inhibitor E-64-d ameliorates amyloid-β-induced reduction of sAPPα secretion by reversing ceramide-induced protein kinase C down-regulation in SH-SY5Y neuroblastoma cells. Biochem Biophys Res Commun 2013; 441:256-61. [PMID: 24141119 DOI: 10.1016/j.bbrc.2013.10.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
Abstract
In Alzheimer's disease (AD), enhancing α-secretase processing of amyloid precursor protein (APP) is an important pathway to decrease neurotoxic amyloid β (Aβ) secretion. The α-secretase is reported to be regulated by protein kinase C (PKC) and various endogenous proteins or cell surface receptors. In this report, we first examined whether Aβ reduces α-secretase activity, and showed that Aβ peptide 1-40 (0.001 and 0.01 μM) reduced the secretion of soluble amyloid precursor protein α (sAPPα) in carbachol-stimulated SH-SY5Y neuroblastoma cells. E-64-d (3 μM), which is a potent calpain inhibitor that prevents PKC degradation, ameliorated the Aβ-induced reduction of sAPPα secretion. In addition, we observed that Aβ significantly enhanced ceramide production by activating neutral sphingomyelinase. The cell-permeable ceramide analog, C2-ceramide (1 μg/mL), also reduced sAPPα secretion, and in addition, E-64-d eliminated the observed decrease of sAPPα secretion. C2-ceramide induced down-regulation of PKC-α, -β1, and -β2 isozymes in SH-SY5Y cells. These findings suggest that ceramide may play an important role in sAPPα processing by modulating PKC activity.
Collapse
Affiliation(s)
- Fuminori Tanabe
- Department of Human Science, Interdisciplinary Graduate School of Medicine and Engineering, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | | | | |
Collapse
|
11
|
Shi J, Dong Y, Cui MZ, Xu X. Lysophosphatidic acid induces increased BACE1 expression and Aβ formation. Biochim Biophys Acta Mol Basis Dis 2012; 1832:29-38. [PMID: 23036978 DOI: 10.1016/j.bbadis.2012.09.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/19/2012] [Accepted: 09/25/2012] [Indexed: 01/08/2023]
Abstract
The abnormal production and accumulation of β-amyloid peptide (Aβ), which is produced from amyloid precursor protein (APP) by the sequential actions of β-secretase and γ-secretase, are thought to be the initial causative events in the development of Alzheimer's disease (AD). Accumulating evidence suggests that vascular factors play an important role in the pathogenesis of AD. Specifically, studies have suggested that one vascular factor in particular, oxidized low density lipoprotein (oxLDL), may play an important role in regulating Aβ formation in AD. However, the mechanism by which oxLDL modulates Aβ formation remains elusive. In this study, we report several new findings that provide biochemical evidence suggesting that the cardiovascular risk factor oxLDL may contribute to Alzheimer's disease by increasing Aβ production. First, we found that lysophosphatidic acid (LPA), the most bioactive component of oxLDL induces increased production of Aβ. Second, our data strongly indicate that LPA induces increased Aβ production via upregulating β-secretase expression. Third, our data strongly support the notion that different isoforms of protein kinase C (PKC) may play different roles in regulating APP processing. Specifically, most PKC members, such as PKCα, PKCβ, and PKCε, are implicated in regulating α-secretase-mediated APP processing; however, PKCδ, a member of the novel PKC subfamily, is involved in LPA-induced upregulation of β-secretase expression and Aβ production. These findings may contribute to a better understanding of the mechanisms by which the cardiovascular risk factor oxLDL is involved in Alzheimer's disease.
Collapse
Affiliation(s)
- Jing Shi
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | |
Collapse
|
12
|
Yi P, Schrott L, Castor TP, Alexander JS. Bryostatin-1 vs. TPPB: dose-dependent APP processing and PKC-α, -δ, and -ε isoform activation in SH-SY5Y neuronal cells. J Mol Neurosci 2012; 48:234-44. [PMID: 22700373 PMCID: PMC3413820 DOI: 10.1007/s12031-012-9816-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 05/16/2012] [Indexed: 01/17/2023]
Abstract
Activation of the α-secretase processing pathway of amyloid precursor protein (APP) is recognized as an important mechanism which diverts APP processing from production of beta-amyloid (Aβ) to non toxic sAPPα, decreasing Alzheimer’s disease (AD) plaque formation and AD-associated cognitive deficits. Two potent classes of PKC modulators can activate the α-secretase pathway, the benzo/indolactams and bryostatin/bryologues. While both modulate PKC-dependent APP processing, no direct comparisons of their relative pharmacological potencies have been accomplished which could assist in the development of AD therapies. In this study, we measured the activation of α-secretase APP processing and PKC-α, -δ, and -ε induced by the benzolactam-APP modulator TPPB and bryostatin-1 in the neuroblastoma cell line SH-SY5Y which expresses APP and α- and β-secretase processing mechanisms. Bryostatin-1 produced a more rapid, potent, and sustained activation of α-secretase APP processing than TPPB and selectively activated PKC-δ and PKC-ε. Although TPPB also activated α-secretase, its potency was approximately 10- to 100-fold lower, possibly reflecting lower PKC-δ and -ε activation. Because bryostatin-1 is a highly potent PKC-δ and -ε activator which activates α-secretase APP processing, further characterization of bryostatin-1/bryologues may help refine their use as important tools for the clinical management of AD.
Collapse
Affiliation(s)
- P. Yi
- Department of Molecular and Cellular Physiology, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| | - L. Schrott
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| | | | - J. S. Alexander
- Department of Molecular and Cellular Physiology, LSU Health, 1501 Kings Hwy, Shreveport, LA 71130 USA
| |
Collapse
|
13
|
Sen A, Alkon DL, Nelson TJ. Apolipoprotein E3 (ApoE3) but not ApoE4 protects against synaptic loss through increased expression of protein kinase C epsilon. J Biol Chem 2012; 287:15947-58. [PMID: 22427674 DOI: 10.1074/jbc.m111.312710] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic loss is the earliest pathological change in Alzheimer disease (AD) and is the pathological change most directly correlated with the degree of dementia. ApoE4 is the major genetic risk factor for the age-dependent form of AD, which accounts for 95% of cases. Here we show that in synaptic networks formed from primary hippocampal neurons in culture, apoE3, but not apoE4, prevents the loss of synaptic networks produced by amyloid β oligomers (amylospheroids). Specific activators of PKCε, such as 8-(2-(2-pentyl-cyclopropylmethyl)-cyclopropyl)-octanoic acid methyl ester and bryostatin 1, protected against synaptic loss by amylospheroids, whereas PKCε inhibitors blocked this synaptic protection and also blocked the protection by apoE3. Blocking LRP1, an apoE receptor on the neuronal membrane, also blocked the protection by apoE. ApoE3, but not apoE4, induced the synthesis of PKCε mRNA and expression of the PKCε protein. Amyloid β specifically blocked the expression of PKCε but had no effect on other isoforms. These results suggest that protection against synaptic loss by apoE is mediated by a novel intracellular PKCε pathway. This apoE pathway may account for much of the protective effect of apoE and reduced risk for the age-dependent form of AD. This finding supports the potential efficacy of newly developed therapeutics for AD.
Collapse
Affiliation(s)
- Abhik Sen
- Blanchette Rockefeller Neurosciences Institute, Morgantown, West Virginia 26505, USA
| | | | | |
Collapse
|
14
|
Sun MK, Alkon DL. Activation of protein kinase C isozymes for the treatment of dementias. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:273-302. [PMID: 22840750 DOI: 10.1016/b978-0-12-394816-8.00008-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Memories are much more easily impaired than improved. Dementias, a lasting impairment of memory function, occur in a variety of cognitive disorders and become more clinically dominant as the population ages. Protein kinase C is one of the "cognitive kinases," and plays an essential role in both memory acquisition and maintenance. Deficits in protein kinase C (PKC) signal cascades in neurons represent one of the earliest changes in the brains of patients with Alzheimer's disease (AD) and other types of memory impairment, including those related to cerebral ischemia and ischemic stroke. Inhibition or impairment of PKC activity results in compromised learning and memory, whereas an appropriate activation of certain PKC isozymes leads to an enhancement of learning and memory and/or antidementic effects. In preclinical studies, PKC activators have been shown to increase the expression and activity of PKC isozymes, thereby restoring PKC signaling and downstream activity, including stimulation of neurotrophic activity, synaptic/structural remodeling, and synaptogenesis in the hippocampus and related cortical areas. PKC activators also reduce the accumulation of neurotoxic amyloid and tau protein hyperphosphorylation and support anti-apoptotic processes in the brain. These observations strongly suggest that PKC pharmacology may represent an attractive area for the development of effective cognition-enhancing therapeutics for the treatment of dementias.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Morgantown, WV, USA
| | | |
Collapse
|
15
|
Shi C, Zheng DD, Fang L, Wu F, Kwong WH, Xu J. Ginsenoside Rg1 promotes nonamyloidgenic cleavage of APP via estrogen receptor signaling to MAPK/ERK and PI3K/Akt. Biochim Biophys Acta Gen Subj 2011; 1820:453-60. [PMID: 22178929 DOI: 10.1016/j.bbagen.2011.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 12/19/2022]
Abstract
BACKGROUND The pathogenic accumulation of amyloid β peptide (Aβ), a natural occurring peptide processed from beta-amyloid precursor protein (APP), is considered to play a key role in the development of Alzheimer's disease (AD). Ginsenoside Rg1, an active component in ginseng, has been identified as a phytoestrogen and also found to be neuroprotective. However, it is unknown whether Rg1-induced estrogenic activity intervenes in APP processing, and improves memory performance. METHODS Using HT22 cells and SH-SY5Y cells stably expressing the Swedish mutant APP (APPsw), this study investigated whether Rg1 intervened in APP metabolism through estrogenic activity. Using the ovariectomized (OVX) rats to mimic age-related changes in postmenopausal females, this study also tested the long-term effect of Rg1 on APP metabolism. RESULTS The in vitro study demonstrated that Rg1 increased extracellular secretion of soluble amyloid precursor protein α (sAPPα), enhanced α-secretase activity and decreased extracellular release of Aβ. These effects of Rg1 could be prevented by inhibitors of protein kinase C (PKC), Extracellular-Signal Regulated Kinase/Mitogen-Activated Protein Kinase (ERK/MAPK) and Phosphoinositide-3 kinase (PI3K)/Akt pathways. Inhibition of endogenous estrogen receptor (ER) activity abrogated Rg1-triggered release of sAPPα, increase of α-secretase activity, and activation of ERK and Akt signaling. In addition, Rg1 promoted phosphorylation of ERα at Ser118 residue. The in vivo study demonstrated that 8-week Rg1 treatment of OVX rats increased sAPPα levels and decreased Aβ content in the hippocampi, and improved the spatial learning and memory. GENERAL SIGNIFICANCE Rg1 might be used to slow or prevent AD, in particular in postmenopausal females.
Collapse
Affiliation(s)
- Chun Shi
- Department of Anatomy, Guangzhou Medical University, Guangzhou 510182, China
| | | | | | | | | | | |
Collapse
|
16
|
Bilobalide regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase-dependent pathway. Neurochem Int 2011; 59:59-64. [DOI: 10.1016/j.neuint.2011.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 03/30/2011] [Indexed: 01/11/2023]
|
17
|
Kim T, Hinton DJ, Choi DS. Protein kinase C-regulated aβ production and clearance. Int J Alzheimers Dis 2011; 2011:857368. [PMID: 21274428 PMCID: PMC3026967 DOI: 10.4061/2011/857368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 12/03/2010] [Accepted: 12/13/2010] [Indexed: 11/20/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid β-peptide (Aβ) in the brain. A growing body of recent studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPα) via the activation of α-secretase activity, which reduces the accumulation of pathogenic Aβ levels in the brain. Moreover, activation of PKCα and mitogen-activated protein kinase (MAPK) is known to increase sAPPα. A novel type of PKC, PKCε, activates the Aβ degrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase Aβ levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in Aβ production and clearance and its implication in AD.
Collapse
Affiliation(s)
- Taehyun Kim
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | |
Collapse
|
18
|
Batarseh A, Papadopoulos V. Regulation of translocator protein 18 kDa (TSPO) expression in health and disease states. Mol Cell Endocrinol 2010; 327:1-12. [PMID: 20600583 PMCID: PMC2922062 DOI: 10.1016/j.mce.2010.06.013] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 06/17/2010] [Indexed: 01/12/2023]
Abstract
Translocator protein (TSPO) is an 18 kDa high affinity cholesterol- and drug-binding protein found primarily in the outer mitochondrial membrane. Although TSPO is found in many tissue types, it is expressed at the highest levels under normal conditions in tissues that synthesize steroids. TSPO has been associated with cholesterol import into mitochondria, a key function in steroidogenesis, and directly or indirectly with multiple other cellular functions including apoptosis, cell proliferation, differentiation, anion transport, porphyrin transport, heme synthesis, and regulation of mitochondrial function. Aberrant expression of TSPO has been linked to multiple diseases, including cancer, brain injury, neurodegeneration, and ischemia-reperfusion injury. There has been an effort during the last decade to understand the mechanisms regulating tissue- and disease-specific TSPO expression and to identify pharmacological means to control its expression. This review focuses on the current knowledge regarding the chemicals, hormones, and molecular mechanisms regulating Tspo gene expression under physiological conditions in a tissue- and disease-specific manner. The results described here provide evidence that the PKCepsilon-ERK1/2-AP-1/STAT3 signal transduction pathway is the primary regulator of Tspo gene expression in normal and pathological tissues expressing high levels of TSPO.
Collapse
Affiliation(s)
- Amani Batarseh
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C. 20057, USA
- The Research Institute of the McGill University Health Centre and the Department of Medicine, Biochemistry, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | - Vassilios Papadopoulos
- Department of Biochemistry and Molecular and Cell Biology, Georgetown University Medical Center, Washington, D.C. 20057, USA
- The Research Institute of the McGill University Health Centre and the Department of Medicine, Biochemistry, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
- Department of Pharmacology and Therapeutics, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| |
Collapse
|
19
|
Sun MK, Alkon DL. Protein kinase C activators as synaptogenic and memory therapeutics. Arch Pharm (Weinheim) 2010; 342:689-98. [PMID: 19899099 DOI: 10.1002/ardp.200900050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The last decade has witnessed a rapid progress in understanding of the molecular cascades that may underlie memory and memory disorders. Among the critical players, activity of protein kinase C (PKC) isoforms is essential for many types of learning and memory and their dysfunction, and is critical in memory disorders. PKC inhibition and functional deficits lead to an impairment of various types of learning and memory, consistent with the observations that neurotoxic amyloid inhibits PKC activity and that transgenic animal models with PKCbeta deficit exhibit impaired capacity in cognition. In addition, PKC isozymes play a regulatory role in amyloid production and accumulation. Restoration of the impaired PKC signal pathway pharmacologically results in an enhanced memory capacity and synaptic remodeling / repair and synaptogenesis, and, therefore, represents a potentially important strategy for the treatment of memory disorders, including Alzheimer's dementia. The PKC activators, especially those that are isozyme-specific, are a new class of drug candidates that may be developed as future memory therapeutics.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Rockville, MD 20850, USA.
| | | |
Collapse
|
20
|
da Cruz e Silva OAB, Rebelo S, Vieira SI, Gandy S, da Cruz e Silva EF, Greengard P. Enhanced generation of Alzheimer's amyloid-beta following chronic exposure to phorbol ester correlates with differential effects on alpha and epsilon isozymes of protein kinase C. J Neurochem 2009; 108:319-30. [PMID: 19012746 PMCID: PMC2911029 DOI: 10.1111/j.1471-4159.2008.05770.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Alzheimer's amyloid precursor protein (APP) sorting and processing are modulated through signal transduction mechanisms regulated by protein phosphorylation. Notably, protein kinase C (PKC) appears to be an important component in signaling pathways that control APP metabolism. PKCs exist in at least 11 conventional and unconventional isoforms, and PKCalpha and PKCepsilon isoforms have been specifically implicated in controlling the generation of soluble APP and amyloid-beta (Abeta) fragments of APP, although identification of the PKC substrate phospho-state-sensitive effector proteins remains challenging. In the current study, we present evidence that chronic application of phorbol esters to cultured cells in serum-free medium is associated with several phenomena, namely: (i) PKCalpha down-regulation; (ii) PKCepsilon up-regulation; (iii) accumulation of APP and/or APP carboxyl-terminal fragments in the trans Golgi network; (iv) disappearance of fluorescence from cytoplasmic vesicles bearing a green fluorescent protein tagged form of APP; (v) insensitivity of soluble APP release following acute additional phorbol application; and (vi) elevated cellular APP mRNA levels and holoprotein, and secreted Abeta. These data indicate that, unlike acute phorbol ester application, which is accompanied by lowered Abeta generation, chronic phorbol ester treatment causes differential regulation of PKC isozymes and increased Abeta generation. These data have implications for the design of amyloid-lowering strategies based on modulating PKC activity.
Collapse
|
21
|
Duan D, Sigano DM, Kelley JA, Lai CC, Lewin NE, Kedei N, Peach ML, Lee J, Abeyweera TP, Rotenberg SA, Kim H, Kim YH, Kazzouli SE, Chung JU, Young HA, Young MR, Baker A, Colburn NH, Haimovitz-Friedman A, Truman JP, Parrish DA, Deschamps JR, Perry NA, Surawski RJ, Blumberg PM, Marquez VE. Conformationally constrained analogues of diacylglycerol. 29. Cells sort diacylglycerol-lactone chemical zip codes to produce diverse and selective biological activities. J Med Chem 2008; 51:5198-220. [PMID: 18698758 PMCID: PMC2574997 DOI: 10.1021/jm8001907] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Diacylglycerol-lactone (DAG-lactone) libraries generated by a solid-phase approach using IRORI technology produced a variety of unique biological activities. Subtle differences in chemical diversity in two areas of the molecule, the combination of which generates what we have termed "chemical zip codes", are able to transform a relatively small chemical space into a larger universe of biological activities, as membrane-containing organelles within the cell appear to be able to decode these "chemical zip codes". It is postulated that after binding to protein kinase C (PKC) isozymes or other nonkinase target proteins that contain diacylglycerol responsive, membrane interacting domains (C1 domains), the resulting complexes are directed to diverse intracellular sites where different sets of substrates are accessed. Multiple cellular bioassays show that DAG-lactones, which bind in vitro to PKCalpha to varying degrees, expand their biological repertoire into a larger domain, eliciting distinct cellular responses.
Collapse
Affiliation(s)
- Dehui Duan
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Dina M. Sigano
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - James A. Kelley
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Christopher C. Lai
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Nancy E. Lewin
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institute s of Health, Bethesda, MD 20892
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institute s of Health, Bethesda, MD 20892
| | - Megan L. Peach
- Basic Research Program SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Thushara P. Abeyweera
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367
| | - Susan A. Rotenberg
- Department of Chemistry and Biochemistry, Queens College, City University of New York, Flushing, New York 11367
| | - Hee Kim
- Digital Biotech, 1227 Sin Gil Dong, Danwon-Ku, Ansa-Si, Kyonggi-Do 425-839, South Korea
| | - Young Ho Kim
- Digital Biotech, 1227 Sin Gil Dong, Danwon-Ku, Ansa-Si, Kyonggi-Do 425-839, South Korea
| | - Saïd El Kazzouli
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Jae-Uk Chung
- Laboratory of Medicinal Chemistry, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea
| | - Howard A. Young
- Laboratory of Experimental Immunology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702
| | - Matthew R. Young
- Laboratory of Cancer Prevention, National Cancer Institute at Frederick, National Institutes of Health, Frederick MD, 21702
| | - Alyson Baker
- Laboratory of Cancer Prevention, National Cancer Institute at Frederick, National Institutes of Health, Frederick MD, 21702
| | - Nancy H. Colburn
- Laboratory of Cancer Prevention, National Cancer Institute at Frederick, National Institutes of Health, Frederick MD, 21702
| | - Adriana Haimovitz-Friedman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY, 10021
| | - Jean-Philip Truman
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY, 10021
| | | | | | - Nicholas A. Perry
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institute s of Health, Bethesda, MD 20892
| | - Robert J. Surawski
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institute s of Health, Bethesda, MD 20892
| | - Peter M. Blumberg
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institute s of Health, Bethesda, MD 20892
| | - Victor E. Marquez
- Laboratory of Medicinal Chemistry, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland 21702
| |
Collapse
|
22
|
Yang HQ, Pan J, Ba MW, Sun ZK, Ma GZ, Lu GQ, Xiao Q, Chen SD. New protein kinase C activator regulates amyloid precursor protein processing in vitro by increasing alpha-secretase activity. Eur J Neurosci 2007; 26:381-91. [PMID: 17650113 DOI: 10.1111/j.1460-9568.2007.05648.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The beta amyloid (Abeta) cascade has been at the forefront of the hypothesis used to describe the pathogenesis of Alzheimer's disease (AD). It is generally accepted that drugs that can regulate the processing of the amyloid precursor protein (APP) toward the non-amyloidogenic pathway may have a therapeutic potential. Previous studies have shown that protein kinase C (PKC) hypofunction has an important role in AD pathophysiology. Therefore, the effects of a new PKC activator, alpha-APP modulator [(2S,5S)-(E,E)-8-(5-(4-(trifluoromethyl)phenyl)-2,4-pentadienoylamino)benzolactam (TPPB)], on APP processing were investigated. Using PC12 cells and SH-SY5Y(APP695) cells, it was found that TPPB promoted the secretion of sAPPalpha without affecting full-length expression of APP. The increase in sAPPalpha by TPPB was blocked by inhibitors of PKC, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and tyrosine kinase, suggesting the involvement of these signal transduction pathways. TPPB increased alpha-secretase activity [a disintegrin and metalloproteinase (ADAM)10 and 17], as shown by direct fluorescence activity detection and Western blot analysis. TPPB-induced sAPPalpha release was blocked by the metalloproteinase inhibitor TAPI-2, furin inhibitor CMK and by the protein-trafficking inhibitor brefeldin. The results also showed that TPPB decreased beta-secretase activity, Abeta40 release and beta site APP-cleaving enzyme 1 (BACE1) expression, but did not significantly affect neprilysin (NEP) and insulin-degrading enzyme (IDE) expression. Our data indicate that TPPB could direct APP processing towards the non-amyloidogenic pathway by increasing alpha-secretase activity, and suggest its therapeutic potential in AD.
Collapse
Affiliation(s)
- Hong-Qi Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200025, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Lim JS, Cho H, Hong HS, Kwon H, Mook-Jung I, Kwon YK. Upregulation of amyloid precursor protein by platelet-derived growth factor in hippocampal precursor cells. Neuroreport 2007; 18:1225-9. [PMID: 17632272 DOI: 10.1097/wnr.0b013e3281ac2306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Amyloid precursor protein generates the secreted amyloid precursor protein alpha, which protects hippocampal neurons from ischemic injury and facilitates neuronal survival and synaptogenesis in the developing nervous system. Here, we examined whether platelet-derived growth factor regulates the generation of secreted amyloid precursor protein alpha during the neuronal differentiation of hippocampal precursor cells, HiB5. We showed that platelet-derived growth factor promoted amyloid precursor protein production and secreted amyloid precursor protein alpha secretion. These effects of platelet-derived growth factor were diminished by the PI3K-specific inhibitor wortmannin and the protein kinase C-specific inhibitor GF109203X, suggesting the involvement of the PI3K and protein kinase C-signaling pathway. Furthermore, the conditioned media enriched with secreted amyloid precursor protein alpha promoted the survival of HiB5 cells during neuronal differentiation. These results suggest that the neurotrophic effect of platelet-derived growth factor is mediated in part via upregulation of the expression and release of secreted amyloid precursor protein alpha.
Collapse
Affiliation(s)
- Jung Su Lim
- Department of Biology and Life and Nanopharmaceutical Science, Institute of Age-related and Brain Disease, Kyunghee University, Korea
| | | | | | | | | | | |
Collapse
|
24
|
Moran JM, Smith SS, Hager KM. Toxoplasma gondii possesses a receptor for activated C kinase ortholog. Biochem Biophys Res Commun 2007; 363:680-6. [PMID: 17900535 DOI: 10.1016/j.bbrc.2007.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 11/17/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) has been implicated in multiple protein-protein interactions including functioning as a scaffolding protein for signaling molecules. We report the cloning and cellular localization of a RACK1 ortholog (TgRACK1) in the opportunistic pathogen Toxoplasma gondii. The full-length transcript possesses a predicted ORF of 966 bp and codes for a protein of approximately 35 kDa molecular weight. Molecular analysis of TgRACK1 reveals the presence of seven WD40 repeat motifs. TgRACK1 was tagged with a FLAG epitope and stably expressed in RH parasites. FLAG-TgRACK1 localizes to the parasite cytoplasm and nucleus. Immunoprecipitation (IP) of FLAG-TgRACK1 from highly purified extracellular parasites followed by immunoblot analysis reveals an interaction between TgbetaCOP and FLAG-TgRACK1. This is the first demonstration of an interaction between a betaCOP subunit and the RACK1 protein. This result is of interest given that a signaling event precedes protein secretion and parasite invasion.
Collapse
Affiliation(s)
- Jennifer M Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556-0369, USA
| | | | | |
Collapse
|
25
|
Liron T, Seraya CB, Ish-Shalom M, Souroujon MC, Neumann D. Overexpression of amyloid precursor protein reduces epsilon protein kinase C levels. Neuroscience 2007; 146:152-9. [PMID: 17321053 DOI: 10.1016/j.neuroscience.2007.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 12/12/2006] [Accepted: 01/07/2007] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is characterized by extracellular deposits of amyloid beta peptide (Abeta), a peptide that is generated upon proteolytic cleavage of amyloid precursor protein (APP). The events leading to the development of AD and their sequence are not yet fully understood. Protein kinase C (PKC) has been suggested to have a significant role in controlling neuronal degeneration and in the aberrant signal transduction taking place in AD. Several studies document a deficit in PKC levels and activity in brains of AD patients when compared with those of normal controls. Such a decrease in PKC could have serious implications since certain PKC isozymes were shown to drive the APP proteolytic cleavage into a non-amyloidogenic pathway. Reduced levels of distinct PKC isozymes could thus contribute to driving APP processing toward an amyloidogenic pathway. The direct cause for the down-regulation of PKC in AD brains is still unknown. In that respect, we tested in this study whether APP may play a role in PKC reduction. We show in three different cell lines (CHO, COS and BOSC) that overexpression of APP leads to decreased PKC levels. This decrease was found to be specific for the epsilon PKC isozyme whereas the levels of delta, alpha and conventional PKC remained unchanged. Furthermore, we observed this decrease for both active, membrane-associated and inactive, cytosolic epsilon PKC. APP-driven decrease in epsilon PKC is most likely mediated by a factor in the culture medium, since transfer of medium from cultured cells overexpressing APP to naïve, non-overexpressing cells, has also led to the selective decrease in epsilon PKC levels. Taken together, our results suggest that APP expression levels may play a role in the decrease of epsilon PKC levels in AD brains and could thus affect the responsiveness of AD brain tissues to growth factors and neurotransmitters.
Collapse
Affiliation(s)
- T Liron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
26
|
Yang HQ, Ba MW, Ren RJ, Zhang YH, Ma JF, Pan J, Lu GQ, Chen SD. Mitogen activated protein kinase and protein kinase C activation mediate promotion of sAPPα secretion by deprenyl. Neurochem Int 2007; 50:74-82. [PMID: 16973242 DOI: 10.1016/j.neuint.2006.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 06/29/2006] [Accepted: 07/10/2006] [Indexed: 12/14/2022]
Abstract
The beta amyloid cascade plays a crucial role in the pathogenesis of Alzheimer's disease (AD). Therefore, drugs that regulate amyloid precursor protein (APP) processing toward the nonamyloidgenic pathway may have therapeutic potential. Many anti-dementia drugs can regulate APP processing in addition to their pharmacological properties. Deprenyl is a neuroprotective agent used to treat some neurodegenerative diseases, including AD. In the present study, the effects of deprenyl on APP processing were investigated. Using SK-N-SH and PC12 cells, it was demonstrated that deprenyl stimulated the release of the nonamyloidogenic alpha-secretase form of soluble APP (sAPPalpha) in a dose-dependent manner without affecting cellular APP expression. The increase of sAPPalpha secretion by deprenyl was blocked by the mitogen activated protein (MAP) kinase inhibitor U0126 and PD98059, and by the protein kinase C (PKC) inhibitor GF109203X and staurosporine, suggesting the involvement of these signal transduction pathways. Deprenyl induced phosphorylation of p42/44 MAP kinase, which was abolished by specific inhibitors of MAP kinase and PKC. Deprenyl also phosphorylated PKC and its major substrate, and myristoylated alanine-rich C kinase (MARCKS) at specific amino acid residues. The data also indicated that 10microM deprenyl successfully induced two PKC isoforms involved in the pathogenesis of AD, PKCalpha and PKCepsilon, to translocate from the cytosolic to the membrane fraction. This phenomenon was substantiated by immunocytochemistry staining. These data suggest a novel pharmacological mechanism in which deprenyl regulates the processing of APP via activation of the MAP kinase and PKC pathways, and that this mechanism may underlie the clinical efficacy of the drug in some AD patients.
Collapse
Affiliation(s)
- Hong-Qi Yang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Bryostatin-1 is a powerful protein kinase C (PKC) agonist, activating PKC isozymes at nanomolar concentrations. Pharmacological studies of bryostatin-1 have mainly been focused on its action in preventing tumor growth. Emerging evidence suggests, however, that bryostatin-1 exhibits additional important pharmacological activities. In preclinical studies bryostatin-1 has been shown at appropriate doses to have cognitive restorative and antidepressant effects. The underlying pharmacological mechanisms may involve an activation of PKC isozymes, induction of synthesis of proteins required for long-term memory, restoration of stress-evoked inhibition of PKC activity, and reduction of neurotoxic amyloid accumulation and tau protein hyperphosphorylation. The therapeutic potential of bryostatin-1 as a CNS drug should be further explored.
Collapse
Affiliation(s)
- Miao-Kun Sun
- Blanchette Rockefeller Neurosciences Institute, Rockville, MD 20850, USA.
| | | |
Collapse
|
28
|
Choi DS, Wang D, Yu GQ, Zhu G, Kharazia VN, Paredes JP, Chang WS, Deitchman JK, Mucke L, Messing RO. PKCepsilon increases endothelin converting enzyme activity and reduces amyloid plaque pathology in transgenic mice. Proc Natl Acad Sci U S A 2006; 103:8215-20. [PMID: 16698938 PMCID: PMC1472455 DOI: 10.1073/pnas.0509725103] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deposition of plaques containing amyloid beta (Abeta) peptides is a neuropathological hallmark of Alzheimer's disease (AD). Here we demonstrate that neuronal overexpression of the epsilon isozyme of PKC decreases Abeta levels, plaque burden, and plaque-associated neuritic dystrophy and reactive astrocytosis in transgenic mice expressing familial AD-mutant forms of the human amyloid precursor protein (APP). Compared with APP singly transgenic mice, APP/PKCepsilon doubly transgenic mice had decreased Abeta levels but showed no evidence for altered cleavage of APP. Instead, PKCepsilon overexpression selectively increased the activity of endothelin-converting enzyme, which degrades Abeta. The activities of other Abeta-degrading enzymes, insulin degrading enzyme and neprilysin, were unchanged. These results indicate that increased neuronal PKCepsilon activity can promote Abeta clearance and reduce AD neuropathology through increased endothelin-converting enzyme activity.
Collapse
Affiliation(s)
- Doo-Sup Choi
- *Ernest Gallo Clinic and Research Center, Emeryville, CA 94608
| | - Dan Wang
- *Ernest Gallo Clinic and Research Center, Emeryville, CA 94608
| | - Gui-Qui Yu
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158; and
| | - Guofen Zhu
- *Ernest Gallo Clinic and Research Center, Emeryville, CA 94608
| | | | | | - Wesley S. Chang
- *Ernest Gallo Clinic and Research Center, Emeryville, CA 94608
| | | | - Lennart Mucke
- Gladstone Institute of Neurological Disease, San Francisco, CA 94158; and
- Department of Neurology and Graduate Program in Neuroscience, University of California, San Francisco, CA 94143
| | - Robert O. Messing
- *Ernest Gallo Clinic and Research Center, Emeryville, CA 94608
- Department of Neurology and Graduate Program in Neuroscience, University of California, San Francisco, CA 94143
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Mandel S, Weinreb O, Amit T, Youdim MBH. Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. ACTA ACUST UNITED AC 2005; 48:379-87. [PMID: 15850677 DOI: 10.1016/j.brainresrev.2004.12.027] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2004] [Accepted: 12/09/2004] [Indexed: 01/01/2023]
Abstract
The mitochondria are directly involved in cell survival and death. Drugs that protect mitochondria viability and prevent apoptotic cascade mechanisms involved in mitochondrial permeability transition pore (MPTp) will be cytoprotective. Rasagiline (N-propargyl-1R-aminoindan) is a novel, highly potent irreversible monoamine oxidase (MAO) B inhibitor, anti-Parkinson drug. Unlike selegiline, rasagiline is not derived from amphetamine, is not metabolized to neurotoxic l-methamphetamine derivative, nor does it have sympathomimetic activity. Rasagiline is effective as monotherapy or adjunct to L-dopa for patients with early and late Parkinson's disease (PD), and adverse events do not occur with greater frequency in subjects receiving rasagiline than those on placebo. Controlled studies indicate that it might have a disease-modifying effect in PD that may be related to neuroprotection. Its S-isomer, TVP1022, is a relatively inactive MAO inhibitor. However, both drugs have similar neuroprotective activities in neuronal cell cultures in response to various neurotoxins and in vivo (global ischemia, neurotrauma, head injury, anoxia, etc.), indicating that MAO inhibition is not a pre-requisite for neuroprotection. Structure activity studies have shown that the neuroprotective activity is associated with the propargyl moiety of rasagiline which protects mitochondrial viability and MPTp by activating Bcl-2 and protein kinase C (PKC), and down regulating pro-apoptotic FAS and Bax. Rasagiline and its derivatives also process amyloid precursor protein (APP) to the neuroprotective-neurotrophic soluble APP alpha (sAPPalpha) by PKC and MAP kinase-dependent activation of alpha-secretase. The neuroprotective activity of propargylamine has led us to develop novel bifunctional neuroprotective iron-chelating MAO-inhibiting drugs possessing propargyl moiety for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf and NPF Centers of Excellence for Neurodegenerative Diseases Research, Israel
| | | | | | | |
Collapse
|
30
|
Nasser MW, Marjoram RJ, Brown SL, Richardson RM. Cross-Desensitization among CXCR1, CXCR2, and CCR5: Role of Protein Kinase C-ε. THE JOURNAL OF IMMUNOLOGY 2005; 174:6927-33. [PMID: 15905535 DOI: 10.4049/jimmunol.174.11.6927] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The IL-8 (or CXCL8) chemokine receptors, CXCR1 and CXCR2, activate protein kinase C (PKC) to mediate leukocyte functions. To investigate the roles of different PKC isoforms in CXCL8 receptor activation and regulation, human mononuclear phagocytes were treated with CXCL8 or CXCL1 (melanoma growth-stimulating activity), which is specific for CXCR2. Plasma membrane association was used as a measure of PKC activation. Both receptors induced time-dependent association of PKCalpha, -beta1, and -beta2 to the membrane, but only CXCR1 activated PKCepsilon. CXCL8 also failed to activate PKCepsilon in RBL-2H3 cells stably expressing CXCR2. DeltaCXCR2, a cytoplasmic tail deletion mutant of CXCR2 that is resistant to internalization, activated PKCepsilon as well as CXCR1. Expression of the PKCepsilon inhibitor peptide epsilonV1 in RBL-2H3 cells blocked PKCepsilon translocation and inhibited receptor-mediated exocytosis, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization. epsilonV1 also inhibited CXCR1-, CCR5-, and DeltaCXCR2-mediated cross-regulatory signals for GTPase activity, Ca(2+) mobilization, and internalization. Peritoneal macrophages from PKCepsilon-deficient mice (PKCepsilon(-/-)) also showed decreased CCR5-mediated cross-desensitization of G protein activation and Ca(2+) mobilization. Taken together, the results indicate that CXCR1 and CCR5 activate PKCepsilon to mediate cross-inhibitory signals. Inhibition or deletion of PKCepsilon decreases receptor-induced exocytosis and cross-regulatory signals, but not phosphoinositide hydrolysis or peak intracellular Ca(2+) mobilization, suggesting that cross-regulation is a Ca(2+)-independent process. Because DeltaCXCR2, but not CXCR2, activates PKCepsilon and cross-desensitizes CCR5, the data further suggest that signal duration leading to activation of novel PKC may modulate receptor-mediated cross-inhibitory signals.
Collapse
MESH Headings
- Animals
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Cell Line, Tumor
- Endocytosis/genetics
- Endocytosis/immunology
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- Genetic Vectors
- Humans
- Isoenzymes/deficiency
- Isoenzymes/metabolism
- Isoenzymes/physiology
- Macrophages, Peritoneal/enzymology
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Mice
- Mice, Knockout
- Protein Kinase C/deficiency
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase C/physiology
- Protein Kinase C-epsilon
- Rats
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, CCR5/physiology
- Receptors, Interleukin-8A/metabolism
- Receptors, Interleukin-8A/physiology
- Receptors, Interleukin-8B/metabolism
- Receptors, Interleukin-8B/physiology
- Transfection
Collapse
Affiliation(s)
- Mohd W Nasser
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, 27707, USA
| | | | | | | |
Collapse
|
31
|
Zhang S, Huang Y, Zhu YC, Yao T. Estrogen stimulates release of secreted amyloid precursor protein from primary rat cortical neurons via protein kinase C pathway. Acta Pharmacol Sin 2005; 26:171-6. [PMID: 15663894 DOI: 10.1111/j.1745-7254.2005.00538.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM To investigate the mechanism of the action of estrogen, which stimulates the release of secreted amyloid precursor protein alpha (sAPP(alpha)) and decreases the generation of amyloid-beta protein (A(beta)), a dominant component in senile plaques in the brains of Alzheimer's disease patients. METHODS Experiments were carried out in primary rat cortical neurons, and Western blot was used to detect sAPP(alpha) in a culture medium and the total amount of cellular amyloid precursor protein (APP) in neurons. RESULTS 17beta-Estradiol (but not 17alpha-estradiol) and beta-estradiol 6-(O-carboxymethyl) oxime: BSA increased the secretion of sAPP(alpha) and this effect was blocked by protein kinase C (PKC) inhibitor calphostin C, but not by the classical estrogen receptor antagonist ICI 182,780. Meanwhile, 17beta-estradiol did not alter the synthesis of cellular APP. CONCLUSION The effect of 17beta-estradiol on sAPP(alpha) secretion is likely mediated through the membrane binding sites, and needs molecular configuration specificity of the ligand. Furthermore, the action of the PKC-dependent pathway might be involved in estrogen-induced sAPP(alpha) secretion.
Collapse
Affiliation(s)
- Sun Zhang
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | | | | | | |
Collapse
|
32
|
Lanni C, Mazzucchelli M, Porrello E, Govoni S, Racchi M. Differential involvement of protein kinase C alpha and epsilon in the regulated secretion of soluble amyloid precursor protein. ACTA ACUST UNITED AC 2004; 271:3068-75. [PMID: 15233804 DOI: 10.1111/j.1432-1033.2004.04240.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the differential role of protein kinase C (PKC) isoforms in the regulated proteolytic release of soluble amyloid precursor protein (sAPPalpha) in SH-SY5Y neuroblastoma cells. We used cells stably transfected with cDNAs encoding either PKCalpha or PKCepsilon in the antisense orientation, producing a reduction of the expression of PKCalpha and PKCepsilon, respectively. Reduced expression of PKCalpha and/or PKCepsilon did not modify the response of the kinase to phorbol ester stimulation, demonstrating translocation of the respective isoforms from the cytosolic fraction to specific intracellular compartments with an interesting differential localization of PKCalpha to the plasma membrane and PKCepsilon to Golgi-like structures. Reduced expression of PKCalpha significantly impaired the secretion of sAPPalpha induced by treatment with phorbol esters. Treatment of PKCalpha-deficient cells with carbachol induced a significant release of sAPPalpha. These results suggest that the involvement of PKCalpha in carbachol-induced sAPPalpha release is negligible. The response to carbachol is instead completely blocked in PKCepsilon-deficient cells suggesting the importance of PKCepsilon in coupling cholinergic receptors with APP metabolism.
Collapse
Affiliation(s)
- Cristina Lanni
- Department of Experimental and Applied Pharmacology, Centre of Excellence in Applied Biology and School of Pharmacy, University of Pavia, Viale Taramelli 14, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
33
|
Etcheberrigaray R, Tan M, Dewachter I, Kuipéri C, Van der Auwera I, Wera S, Qiao L, Bank B, Nelson TJ, Kozikowski AP, Van Leuven F, Alkon DL. Therapeutic effects of PKC activators in Alzheimer's disease transgenic mice. Proc Natl Acad Sci U S A 2004; 101:11141-6. [PMID: 15263077 PMCID: PMC503753 DOI: 10.1073/pnas.0403921101] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease (AD) characteristically presents with early memory loss. Regulation of K(+) channels, calcium homeostasis, and protein kinase C (PKC) activation are molecular events that have been implicated during associative memory which are also altered or defective in AD. PKC is also involved in the processing of the amyloid precursor protein (APP), a central element in AD pathophysiology. In previous studies, we demonstrated that benzolactam (BL), a novel PKC activator, reversed K(+) channels defects and enhanced secretion of APP alpha in AD cells. In this study we present data showing that another PKC activator, bryostatin 1, at subnanomolar concentrations dramatically enhances the secretion of the alpha-secretase product sAPP alpha in fibroblasts from AD patients. We also show that BL significantly increased the amount of sAPP alpha and reduced A beta 40 in the brains of APP[V717I] transgenic mice. In a more recently developed AD double-transgenic mouse, bryostatin was effective in reducing both brain A beta 40 and A beta 42. In addition, bryostatin ameliorated the rate of premature death and improved behavioral outcomes. Collectively, these data corroborate PKC and its activation as a potentially important means of ameliorating AD pathophysiology and perhaps cognitive impairment, thus offering a promising target for drug development. Because bryostatin 1 is devoid of tumor-promoting activity and is undergoing numerous clinical studies for cancer treatment in humans, it might be readily tested in patients as a potential therapeutic agent for Alzheimer's disease.
Collapse
|
34
|
Jung YS, Ryu BR, Lee BK, Mook-Jung I, Kim SU, Lee SH, Baik EJ, Moon CH. Role for PKC-ε in neuronal death induced by oxidative stress. Biochem Biophys Res Commun 2004; 320:789-94. [PMID: 15240117 DOI: 10.1016/j.bbrc.2004.05.217] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Indexed: 11/23/2022]
Abstract
We investigated which isoforms of PKCs can be modulated and what their roles are during l-buthionine-S,R-sulfoximine (BSO)-induced neuronal death. We observed the isoform specific translocation of PKC-epsilon from the soluble fraction to the particulate in cortical neurons treated with 10 mM BSO. The translocation of PKC-epsilon by BSO was blocked by antioxidant trolox, suggesting the PKC-epsilon as a downstream of reactive oxygen species (ROS) elevated by BSO. Trolox inhibited the ROS elevation and the neuronal death in BSO-treated cortical cells. The BSO-induced neuronal death was remarkably inhibited by both the pharmacological inhibition of PKC-epsilon with epsilonV1-2 and the functional blockade for PKC-epsilon through overexpression of PKC-epsilon V1 region, suggesting the detrimental role of PKC-epsilon. These results suggest that PKC-epsilon is the major PKC isoform involved in the pathways triggered by ROS, leading to neuronal death in BSO-treated cortical neurons.
Collapse
Affiliation(s)
- Yi-Sook Jung
- Department of Physiology, School of Medicine, Ajou University, Suwon, Kyungkido 442-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee W, Boo JH, Jung MW, Park SD, Kim YH, Kim SU, Mook-Jung I. Amyloid beta peptide directly inhibits PKC activation. Mol Cell Neurosci 2004; 26:222-31. [PMID: 15207847 DOI: 10.1016/j.mcn.2003.10.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2002] [Revised: 10/14/2003] [Accepted: 10/30/2003] [Indexed: 10/26/2022] Open
Abstract
A putative protein kinase C (PKC) pseudosubstrate domain in beta amyloid (Abeta) suggests a potential interaction between Abeta and PKC. In this study, we investigated whether and how Abeta interacts with PKC. Abeta peptides inhibited PKC phosphorylation in a dose-dependent manner in cell-free in vitro condition, suggesting a direct interaction between Abeta and PKC. Experiments involving deletion of the Abeta sequence indicated that the putative PKC pseudosubstrate domain (Abeta 28-30) is critical for Abeta-PKC interaction. Addition of Abeta peptides to cultured B103 cells reduced the activated forms of PKCalpha and PKCepsilon. It also inhibited phorbol-12,13-dibutyrate (PDBu)-induced membrane translocation of PKCalpha and PKCepsilon without altering their expression levels, indicating that activation of intracellular PKC is inhibited by treatment of Abeta peptides. These results suggest that Abeta peptides inhibit PKC activation via direct interactions, which may play a role in pathogenesis of AD.
Collapse
Affiliation(s)
- Woojin Lee
- Department of Biology, College of Natural Sciences, Seoul National University, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Mandel S, Weinreb O, Amit T, Youdim MBH. Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 2004; 88:1555-69. [PMID: 15009657 DOI: 10.1046/j.1471-4159.2003.02291.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Accumulating evidence supports the hypothesis that brain iron misregulation and oxidative stress (OS), resulting in reactive oxygen species (ROS) generation from H2O2 and inflammatory processes, trigger a cascade of events leading to apoptotic/necrotic cell death in neurodegenerative disorders, such as Parkinson's (PD), Alzheimer's (AD) and Huntington's diseases, and amyotrophic lateral sclerosis (ALS). Thus, novel therapeutic approaches aimed at neutralization of OS-induced neurotoxicity, support the application of ROS scavengers, transition metals (e.g. iron and copper) chelators and non-vitamin natural antioxidant polyphenols, in monotherapy, or as part of antioxidant cocktail formulation for these diseases. Both experimental and epidemiological evidence demonstrate that flavonoid polyphenols, particularly from green tea and blueberries, improve age-related cognitive decline and are neuroprotective in models of PD, AD and cerebral ischemia/reperfusion injuries. However, recent studies indicate that the radical scavenger property of green tea polyphenols is unlikely to be the sole explanation for their neuroprotective capacity and in fact, a wide spectrum of cellular signaling events may well account for their biological actions. In this article, the currently established mechanisms involved in the beneficial health action and emerging studies concerning the putative novel molecular neuroprotective activity of green tea and its major polyphenol (-)-epigallocatechin-3-gallate (EGCG), will be reviewed and discussed.
Collapse
Affiliation(s)
- Silvia Mandel
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research and Department of Pharmacology, Technion-Faculty of Medicine, Haifa, Israel
| | | | | | | |
Collapse
|
37
|
Levites Y, Amit T, Mandel S, Youdim MBH. Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 2003; 17:952-4. [PMID: 12670874 DOI: 10.1096/fj.02-0881fje] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Green tea extract and its main polyphenol constituent (-)-epigallocatechin-3-gallate (EGCG) possess potent neuroprotective activity in cell culture and mice model of Parkinson's disease. The central hypothesis guiding this study is that EGCG may play an important role in amyloid precursor protein (APP) secretion and protection against toxicity induced by beta-amyloid (Abeta). The present study shows that EGCG enhances (approximately 6-fold) the release of the non-amyloidogenic soluble form of the amyloid precursor protein (sAPPalpha) into the conditioned media of human SH-SY5Y neuroblastoma and rat pheochromocytoma PC12 cells. sAPPalpha release was blocked by the hydroxamic acid-based metalloprotease inhibitor Ro31-9790, which indicated mediation via alpha-secretase activity. Inhibition of protein kinase C (PKC) with the inhibitor GF109203X, or by down-regulation of PKC, blocked the EGCG-induced sAPPalpha secretion, suggesting the involvement of PKC. Indeed, EGCG induced the phosphorylation of PKC, thus identifying a novel PKC-dependent mechanism of EGCG action by activation of the non-amyloidogenic pathway. EGCG is not only able to protect, but it can rescue PC12 cells against the beta-amyloid (Abeta) toxicity in a dose-dependent manner. In addition, administration of EGCG (2 mg/kg) to mice for 7 or 14 days significantly decreased membrane-bound holoprotein APP levels, with a concomitant increase in sAPPalpha levels in the hippocampus. Consistently, EGCG markedly increased PKCalpha and PKC in the membrane and the cytosolic fractions of mice hippocampus. Thus, EGCG has protective effects against Abeta-induced neurotoxicity and regulates secretory processing of non-amyloidogenic APP via PKC pathway.
Collapse
Affiliation(s)
- Yona Levites
- Eve Topf and USA National Parkinson Foundation, Centers of Excellence for Neurodegenerative Diseases Research, Technion Faculty of Medicine, Haifa, Israel
| | | | | | | |
Collapse
|
38
|
Goodenough S, Schäfer M, Behl C. Estrogen-induced cell signalling in a cellular model of Alzheimer's disease. J Steroid Biochem Mol Biol 2003; 84:301-5. [PMID: 12711016 DOI: 10.1016/s0960-0760(03)00043-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Alzheimer's disease (AD) is characterised by deposition of a 4 kDa amyloid-beta peptide (Abeta) into senile plaques of the affected brain. Abeta is a proteolytic product of the membrane protein, amyloid precursor protein (APP). An alternative cleavage pathway involves alpha-secretase activity and results in secretion of a 100 kDa non-amyloidogenic APP (sAPPalpha) and therefore a potential reduction in Abeta secretion. We have shown that estrogen induces alpha-cleavage and therefore results in the secretion of sAPPalpha. This secretion is signalled via MAP-kinase and PI-3 kinase signal-transduction pathways. These pathways also have the potential to inhibit the activation of glycogen synthase kinase 3beta (GSK), a protein involved in cell death. Therefore, the aim of this work was to further elucidate the estrogen-mediated signaling pathways involved in APP processing, with particular emphasis on GSK activity. By stimulating rat hypothalamic neuronal GT1-7 cells with estradiol, we found that estrogen decreases the activation state of GSK via the MAP kinase pathway. Moreover, the inhibition of GSK activity by LiCl causes enhanced sAPPalpha secretion in a pattern similar to that seen in response to estrogen, suggesting a pivotal role for this deactivation in APP processing. Further, inactivation of GSK by estrogen can be confirmed in an in vivo model. Elucidation of the signaling pathways involved in APP processing may help to understand the pathology of AD and may also prove beneficial in developing therapeutic strategies to combat AD.
Collapse
Affiliation(s)
- S Goodenough
- Institute of Physiological Chemistry and Pathobiochemistry, Johannes Gutenberg University, 55099 Mainz, Germany
| | | | | |
Collapse
|
39
|
Racchi M, Mazzucchelli M, Pascale A, Sironi M, Govoni S. Role of protein kinase Calpha in the regulated secretion of the amyloid precursor protein. Mol Psychiatry 2003; 8:209-16. [PMID: 12610653 DOI: 10.1038/sj.mp.4001204] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Protein kinase C (PKC) has a key role in the signal transduction machinery involved in the regulation of amyloid precursor protein (APP) metabolism. Direct and indirect receptor-mediated activation of PKC has been shown to increase the release of soluble APP (sAPPalpha) and reduce the secretion of beta-amyloid peptides. Experimental evidence suggests that specific isoforms of PKC, such as PKCalpha and PKC epsilon, are involved in the regulation of APP metabolism. In this study, we characterized the role of PKCalpha in the regulated secretion of APP using wild-type SH-SY5Y neuroblastoma cells and cells transfected with a plasmid expressing PKCalpha antisense cDNA. Cells expressing antisense PKCalpha secrete less sAPPalpha in response to phorbol esters. In contrast, carbachol increases the secretion of sAPPalpha to similar levels in wild-type cells and in cells transfected with antisense PKCalpha by acting on APP metabolism through an indirect pathway partially involving the activation of PKC. These results suggest that the direct PKC-dependent activation of the APP secretory pathway is compromised by reduced PKCalpha expression and a specific role of this isoform in these mechanisms. On the other hand, indirect pathways that are also partially dependent on the mitogen-activated protein kinase signal transduction mechanism remain unaffected and constitute a redundant, compensatory mechanism within the APP secretory pathway.
Collapse
Affiliation(s)
- M Racchi
- Department of Experimental and Applied Pharmacology, University of Pavia, Viale Taramelli 14, Pavia 27100, Italy
| | | | | | | | | |
Collapse
|
40
|
Liedtke CM, Yun CHC, Kyle N, Wang D. Protein kinase C epsilon-dependent regulation of cystic fibrosis transmembrane regulator involves binding to a receptor for activated C kinase (RACK1) and RACK1 binding to Na+/H+ exchange regulatory factor. J Biol Chem 2002; 277:22925-33. [PMID: 11956211 DOI: 10.1074/jbc.m201917200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase C (PKC) regulation of cystic fibrosis transmembrane regulator (CFTR) chloride function has been demonstrated in several cell lines, including Calu-3 cells that express native, wild-type CFTR. We demonstrated previously that PKC epsilon was required for cAMP-dependent CFTR function. The goal of this study was to determine whether PKC epsilon interacts directly with CFTR. Using overlay assay, immunoprecipitation, pulldown and binding assays, we show that PKC epsilon does not bind to CFTR, but does bind to a receptor for activated C kinase (RACK1), a 37-kDa scaffold protein, and that RACK1 binds to Na(+)/H(+) exchange regulatory factor (NHERF1), a binding partner of CFTR. In vitro binding assays demonstrate dose-dependent binding of PKC epsilon to RACK1 which is inhibited by an 8-amino acid peptide based on the sequence of the sixth Trp-Asp repeat in RACK1 or by an 8-amino acid sequence in the V1 region of PKC epsilon, epsilon V1-2. A 4-amino acid sequence INAL (70-73) expressed in CFTR shares 50% homology to the RACK1 inhibitory peptide, but it does not bind PKC epsilon. NHERF1 and RACK1 bind in a dose-dependent manner. Immunofluorescence and confocal microscopy of RACK1 and CFTR revealed colocalization of the proteins to the apical and lateral regions of Calu-3 cells. The results indicate the RACK1 binds PKC epsilon and NHERF1, thus serving as a scaffold protein to anchor the enzyme in proximity to CFTR.
Collapse
Affiliation(s)
- Carole M Liedtke
- Warren Alan Bernbaum, M.D. Center for Cystic Fibrosis Research, Department of Pediatrics, Rainbow Babies and Children Hospital and Case Western Reserve University, Cleveland, Ohio 44106-4948, USA.
| | | | | | | |
Collapse
|
41
|
Zhu G, Wang D, Lin YH, McMahon T, Koo EH, Messing RO. Protein kinase C epsilon suppresses Abeta production and promotes activation of alpha-secretase. Biochem Biophys Res Commun 2001; 285:997-1006. [PMID: 11467851 DOI: 10.1006/bbrc.2001.5273] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deposition of plaques containing Abeta is considered important in the pathogenesis of Alzheimer's disease. Phorbol esters that activate protein kinase C (PKC) promote alpha-secretase-mediated processing of the beta amyloid precursor protein (APP), which generally reduces formation of Abeta. To determine which PKC isozymes mediate this process, we studied CHO cells that express human APP751. Phorbol 12-myristate, 13-acetate (PMA)-stimulated APP secretion, which was reduced by a general PKC inhibitor bisindoylmaleimide I, but not by Gö 6976, which inhibits PKCalpha, beta, gamma, and mu. Since PKCdelta and epsilon were the only other PMA-sensitive isozymes present, we studied cells that express selective peptide inhibitors of these isozymes. Expression of the PKCepsilon inhibitor inhibited PMA-induced APPs secretion and suppression of Abeta production. In contrast, the PKCdelta inhibitor had no effect. These results provide evidence that PKCepsilon decreases Abeta production by promoting alpha-secretase mediated cleavage of APP.
Collapse
Affiliation(s)
- G Zhu
- Department of Neurology, University of California San Francisco, Emeryville, California 94608, USA
| | | | | | | | | | | |
Collapse
|