1
|
Ferguson R, Subramanian V. Targeted Deletion in the Basal Body Protein Talpid3 Leads to Loss of Primary Cilia in Embryonic Stem Cells and Defective Lineage-Specific Differentiation. Cells 2024; 13:1957. [PMID: 39682705 PMCID: PMC11639927 DOI: 10.3390/cells13231957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/14/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Talpid3 is a basal body protein required for the formation of primary cilia, an organelle involved in signal transduction. Here, we asked if Talpid3 has a role in the regulation of differentiation and/or self-renewal of ES cells and whether cells lacking cilia due to a deletion in Talpid3 can be reprogrammed to induced pluripotent stem (iPS) cells. We show that mouse embryonic limb fibroblasts which lack primary cilia with a targeted deletion in the Talpid3 (Ta3) gene can be efficiently reprogrammed to iPS cells. Furthermore, vector-free Ta3-/- iPS cells retain ES cell features and are able to self-renew. However, both Ta3-/- iPS and ES cells are unable to form visceral endoderm and differentiate poorly into neurons. The observed defects are not a consequence of reprogramming since Ta3-/- ES cells also exhibit this phenotype. Thus, Talpid3 and primary cilia are required for some differentiation events but appear to be dispensable for stem cell self-renewal and reprogramming.
Collapse
Affiliation(s)
| | - Vasanta Subramanian
- Department of Life Sciences, University of Bath, Building 4 South, Bath BA2 7AY, UK;
| |
Collapse
|
2
|
Astro V, Ramirez-Calderon G, Pennucci R, Caroli J, Saera-Vila A, Cardona-Londoño K, Forastieri C, Fiacco E, Maksoud F, Alowaysi M, Sogne E, Andrea Falqui, Gonzàlez F, Montserrat N, Battaglioli E, Andrea Mattevi, Adamo A. Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism. iScience 2022; 25:104665. [PMID: 35856020 PMCID: PMC9287196 DOI: 10.1016/j.isci.2022.104665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
The histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A−/− hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a−/− hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells. ubKDM1A and KDM1A+2a isoforms are fine-tuned during fetal cardiac development Depletion of KDM1A isoforms impairs hESC differentiation into cardiac cells KDM1A+2a ablation enhances the expression of key cardiac markers KDM1A isoforms exhibit enzymatic-independent divergent roles during cardiogenesis
Collapse
|
3
|
Neuroserpin Inclusion Bodies in a FENIB Yeast Model. Microorganisms 2021; 9:microorganisms9071498. [PMID: 34361933 PMCID: PMC8305157 DOI: 10.3390/microorganisms9071498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
FENIB (familial encephalopathy with neuroserpin inclusion bodies) is a human monogenic disease caused by point mutations in the SERPINI1 gene, characterized by the intracellular deposition of polymers of neuroserpin (NS), which leads to proteotoxicity and cell death. Despite the different cell and animal models developed thus far, the exact mechanism of cell toxicity elicited by NS polymers remains unclear. Here, we report that human wild-type NS and the polymerogenic variant G392E NS form protein aggregates mainly localized within the endoplasmic reticulum (ER) when expressed in the yeast S. cerevisiae. The expression of NS in yeast delayed the exit from the lag phase, suggesting that NS inclusions cause cellular stress. The cells also showed a higher resistance following mild oxidative stress treatments when compared to control cells. Furthermore, the expression of NS in a pro-apoptotic mutant strain-induced cell death during aging. Overall, these data recapitulate phenotypes observed in mammalian cells, thereby validating S. cerevisiae as a model for FENIB.
Collapse
|
4
|
Tau Exon 10 Inclusion by PrP C through Downregulating GSK3β Activity. Int J Mol Sci 2021; 22:ijms22105370. [PMID: 34065232 PMCID: PMC8161268 DOI: 10.3390/ijms22105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/17/2022] Open
Abstract
Tau protein is largely responsible for tauopathies, including Alzheimer’s disease (AD), where it accumulates in the brain as insoluble aggregates. Tau mRNA is regulated by alternative splicing, and inclusion or exclusion of exon 10 gives rise to the 3R and 4R isoforms respectively, whose balance is physiologically regulated. In this sense, one of the several factors that regulate alternative splicing of tau is GSK3β, whose activity is inhibited by the cellular prion protein (PrPC), which has different physiological functions in neuroprotection and neuronal differentiation. Moreover, a relationship between PrPC and tau expression levels has been reported during AD evolution. For this reason, in this study we aimed to analyze the role of PrPC and the implication of GSK3β in the regulation of tau exon 10 alternative splicing. We used AD human samples and mouse models of PrPC ablation and tau overexpression. In addition, we used primary neuronal cultures to develop functional studies. Our results revealed a paralleled association between PrPC expression and tau 4R isoforms in all models analyzed. In this sense, reduction or ablation of PrPC levels induces an increase in tau 3R/4R balance. More relevantly, our data points to GSK3β activity downstream from PrPC in this phenomenon. Our results indicate that PrPC plays a role in tau exon 10 inclusion through the inhibitory capacity of GSK3β.
Collapse
|
5
|
Li R, Ng TS, Garlin MA, Weissleder R, Miller MA. Understanding the in vivo Fate of Advanced Materials by Imaging. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910369. [PMID: 38545084 PMCID: PMC10972611 DOI: 10.1002/adfm.201910369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/09/2020] [Indexed: 11/13/2024]
Abstract
Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution. In this review, the authors survey developments in imaging the in situ behavior of systemically and locally administered materials, with a particular focus on using microscopy to understand transport, target engagement, and downstream host responses at a single-cell level. The themes of microenvironmental influence, controlled drug release, on-target molecular action, and immune response, especially as mediated by macrophages and other myeloid cells are examined. Finally, the future directions of how new imaging technologies may propel efficient clinical translation of next-generation therapeutics and medical devices are proposed.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Thomas S.C. Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Michelle A. Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
- Department of Systems Biology, Harvard Medical School
| | - Miles A. Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School
| |
Collapse
|
6
|
Tau Protein as a New Regulator of Cellular Prion Protein Transcription. Mol Neurobiol 2020; 57:4170-4186. [PMID: 32683652 DOI: 10.1007/s12035-020-02025-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Cellular prion protein (PrPC) is largely responsible for transmissible spongiform encephalopathies (TSEs) when it becomes the abnormally processed and protease resistant form PrPSC. Physiological functions of PrPC include protective roles against oxidative stress and excitotoxicity. Relevantly, PrPC downregulates tau levels, whose accumulation and modification are a hallmark in the advance of Alzheimer's disease (AD). In addition to the accumulation of misfolded proteins, in the initial stages of AD-affected brains display both increased reactive oxygen species (ROS) markers and levels of PrPC. However, the factors responsible for the upregulation of PrPC are unknown. Thus, the aim of this study was to uncover the different molecular actors promoting PrPC overexpression. In order to mimic early stages of AD, we used β-amyloid-derived diffusible ligands (ADDLs) and tau cellular treatments, as well as ROS generation, to elucidate their particular roles in human PRNP promoter activity. In addition, we used specific chemical inhibitors and site-specific mutations of the PRNP promoter sequence to analyze the contribution of the main transcription factors involved in PRNP transcription under the analyzed conditions. Our results revealed that tau is a new modulator of PrPC expression independently of ADDL treatment and ROS levels. Lastly, we discovered that the JNK/c-jun-AP-1 pathway is involved in increased PRNP transcription activity by tau but not in the promoter response to ROS.
Collapse
|
7
|
Fernandes MB, Costa M, Ribeiro MF, Siquenique S, Sá Santos S, Martins J, Coelho AV, Silva MFB, Rodrigues CMP, Solá S. Reprogramming of Lipid Metabolism as a New Driving Force Behind Tauroursodeoxycholic Acid-Induced Neural Stem Cell Proliferation. Front Cell Dev Biol 2020; 8:335. [PMID: 32582686 PMCID: PMC7286385 DOI: 10.3389/fcell.2020.00335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recent evidence suggests that neural stem cell (NSC) fate is highly dependent on mitochondrial bioenergetics. Tauroursodeoxycholic acid (TUDCA), an endogenous neuroprotective bile acid and a metabolic regulator, stimulates NSC proliferation and enhances adult NSC pool in vitro and in vivo. In this study, we dissected the mechanism triggered by this proliferation-inducing molecule, namely in mediating metabolic reprogramming. Liquid chromatography coupled with mass spectrometry (LC-MS) based detection of differential proteomics revealed that TUDCA reduces the mitochondrial levels of the long-chain acyl-CoA dehydrogenase (LCAD), an enzyme crucial for β-oxidation of long-chain fatty acids (FA). TUDCA impact on NSC mitochondrial proteome was further confirmed, including in neurogenic regions of adult rats. We show that LCAD raises throughout NSC differentiation, while its silencing promotes NSC proliferation. In contrast, nuclear levels of sterol regulatory element-binding protein (SREBP-1), a major transcription factor of lipid biosynthesis, changes in the opposite manner of LCAD, being upregulated by TUDCA. In addition, alterations in some metabolic intermediates, such as palmitic acid, also supported the TUDCA-induced de novo lipogenesis. More interestingly, a metabolic shift from FA to glucose catabolism appears to occur in TUDCA-treated NSCs, since mitochondrial levels of pyruvate dehydrogenase E1-α (PDHE1-α) were significant enhanced by TUDCA. At last, the mitochondria-nucleus translocation of PDHE1-α was potentiated by TUDCA, associated with an increase of H3-histones and acetylated forms. In conclusion, TUDCA-induced proliferation of NSCs involves metabolic plasticity and mitochondria-nucleus crosstalk, in which nuclear PDHE1-α might be required to assure pyruvate-derived acetyl-CoA for histone acetylation and NSC cycle progression.
Collapse
Affiliation(s)
- Marta B Fernandes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Márcia Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Filipe Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Siquenique
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Sá Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ana V Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Margarida F B Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
8
|
Clegg J, Pratt T. Organotypic Slice Culture of the Embryonic Mouse Brain. Bio Protoc 2020; 10:e3674. [DOI: 10.21769/bioprotoc.3674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/31/2020] [Accepted: 05/20/2020] [Indexed: 11/02/2022] Open
|
9
|
Navabpour S, Kwapis JL, Jarome TJ. A neuroscientist's guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 2020; 108:732-748. [PMID: 31843544 PMCID: PMC8049509 DOI: 10.1016/j.neubiorev.2019.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The past decade has produced an explosion in the number and variety of genetic tools available to neuroscientists, resulting in an unprecedented ability to precisely manipulate the genome and epigenome in behaving animals. However, no single resource exists that describes all of the tools available to neuroscientists. Here, we review the genetic, transgenic, and viral techniques that are currently available to probe the complex relationship between genes and cognition. Topics covered include types of traditional transgenic mouse models (knockout, knock-in, reporter lines), inducible systems (Cre-loxP, Tet-On, Tet-Off) and cell- and circuit-specific systems (TetTag, TRAP, DIO-DREADD). Additionally, we provide details on virus-mediated and siRNA/shRNA approaches, as well as a comprehensive discussion of the myriad manipulations that can be made using the CRISPR-Cas9 system, including single base pair editing and spatially- and temporally-regulated gene-specific transcriptional control. Collectively, this review will serve as a guide to assist neuroscientists in identifying and choosing the appropriate genetic tools available to study the complex relationship between the brain and behavior.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, College Park, PA, USA; Center for the Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, College Park, PA, USA.
| | - Timothy J Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Menzorov AG, Orishchenko KE, Fishman VS, Shevtsova AA, Mungalov RV, Pristyazhnyuk IE, Kizilova EA, Matveeva NM, Alenina N, Bader M, Rubtsov NB, Serov OL. Targeted genomic integration of EGFP under tubulin beta 3 class III promoter and mEos2 under tryptophan hydroxylase 2 promoter does not produce sufficient levels of reporter gene expression. J Cell Biochem 2019; 120:17208-17218. [PMID: 31106442 DOI: 10.1002/jcb.28981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023]
Abstract
Neuronal tracing is a modern technology that is based on the expression of fluorescent proteins under the control of cell type-specific promoters. However, random genomic integration of the reporter construct often leads to incorrect spatial and temporal expression of the marker protein. Targeted integration (or knock-in) of the reporter coding sequence is supposed to provide better expression control by exploiting endogenous regulatory elements. Here we describe the generation of two fluorescent reporter systems: enhanced green fluorescent protein (EGFP) under pan-neural marker class III β-tubulin (Tubb3) promoter and mEos2 under serotonergic neuron-specific tryptophan hydroxylase 2 (Tph2) promoter. Differentiation of Tubb3-EGFP embryonic stem (ES) cells into neurons revealed that though Tubb3-positive cells express EGFP, its expression level is not sufficient for the neuronal tracing by routine fluorescent microscopy. Similarly, the expression levels of mEos2-TPH2 in differentiated ES cells was very low and could be detected only on messenger RNA level using polymerase chain reaction-based methods. Our data shows that the use of endogenous regulatory elements to control transgene expression is not always beneficial compared with the random genomic integration.
Collapse
Affiliation(s)
- Aleksei G Menzorov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin E Orishchenko
- Laboratory of Molecular Genetic Technologies of the Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Cell Biology Department, Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Veniamin S Fishman
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia A Shevtsova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Roman V Mungalov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Inna E Pristyazhnyuk
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena A Kizilova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.,Cell Biology Department, Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia M Matveeva
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Alenina
- Laboratory of Molecular Biology of Peptide Hormones, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Laboratory of Molecular Biology of Peptide Hormones, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikolai B Rubtsov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.,Cell Biology Department, Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
11
|
Amaral JD, Silva D, Rodrigues CMP, Solá S, Santos MMM. A Novel Small Molecule p53 Stabilizer for Brain Cell Differentiation. Front Chem 2019; 7:15. [PMID: 30766866 PMCID: PMC6365904 DOI: 10.3389/fchem.2019.00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Brain tumor, as any type of cancer, is assumed to be sustained by a small subpopulation of stem-like cells with distinctive properties that allow them to survive conventional therapies and drive tumor recurrence. Thus, the identification of new molecules capable of controlling stemness properties may be key in developing effective therapeutic strategies for cancer by inducing stem-like cells differentiation. Spiropyrazoline oxindoles have previously been shown to induce apoptosis and cell cycle arrest, as well as upregulate p53 steady-state levels, while decreasing its main inhibitor MDM2 in the HCT116 human colorectal carcinoma cell line. In this study, we made modifications in this scaffold by including combinations of different substituents in the pyrazoline ring in order to obtain novel small molecules that could modulate p53 activity and act as differentiation inducer agents. The antiproliferative activity of the synthesized compounds was assessed using the isogenic pair of HCT116 cell lines differing in the presence or absence of the p53 gene. Among the tested spirooxindoles, spiropyrazoline oxindole 1a was selective against the cancer cell line expressing wild-type p53 and presented low cytotoxicity. This small molecule induced neural stem cell (NSC) differentiation through reduced SOX2 (marker of multipotency) and increased βIII-tubulin (marker of neural differentiation) which suggests a great potential as a non-toxic inducer of cell differentiation. More importantly, in glioma cancer cells (GL-261), compound 1a reduced stemness, by decreasing SOX2 protein levels, while also promoting chemotherapy sensitization. These results highlight the potential of p53 modulators for brain cell differentiation, with spirooxindole 1a representing a promising lead molecule for the development of new brain antitumor drugs.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dário Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Noakes Z, Keefe F, Tamburini C, Kelly CM, Cruz Santos M, Dunnett SB, Errington AC, Li M. Human Pluripotent Stem Cell-Derived Striatal Interneurons: Differentiation and Maturation In Vitro and in the Rat Brain. Stem Cell Reports 2019; 12:191-200. [PMID: 30661995 PMCID: PMC6373547 DOI: 10.1016/j.stemcr.2018.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 01/28/2023] Open
Abstract
Striatal interneurons are born in the medial and caudal ganglionic eminences (MGE and CGE) and play an important role in human striatal function and dysfunction in Huntington's disease and dystonia. MGE/CGE-like neural progenitors have been generated from human pluripotent stem cells (hPSCs) for studying cortical interneuron development and cell therapy for epilepsy and other neurodevelopmental disorders. Here, we report the capacity of hPSC-derived MGE/CGE-like progenitors to differentiate into functional striatal interneurons. In vitro, these hPSC neuronal derivatives expressed cortical and striatal interneuron markers at the mRNA and protein level and displayed maturing electrophysiological properties. Following transplantation into neonatal rat striatum, progenitors differentiated into striatal interneuron subtypes and were consistently found in the nearby septum and hippocampus. These findings highlight the potential for hPSC-derived striatal interneurons as an invaluable tool in modeling striatal development and function in vitro or as a source of cells for regenerative medicine. hPSCs differentiate into cortical and striatal interneuron-like cells in vitro They present mature electrophysiological and morphological properties in vitro They express striatal interneuron subtype markers upon transplantation in rat brain hPSC-interneuron-like cells adopt region-specific morphologies in vivo
Collapse
Affiliation(s)
- Zoe Noakes
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| | - Francesca Keefe
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Claudia Tamburini
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Claire M Kelly
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Maria Cruz Santos
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | | | - Adam C Errington
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK
| | - Meng Li
- Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff University, Cardiff CF24 4HQ, UK; School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
13
|
Heparan Sulfate Sulfation by Hs2st Restricts Astroglial Precursor Somal Translocation in Developing Mouse Forebrain by a Non-Cell-Autonomous Mechanism. J Neurosci 2019; 39:1386-1404. [PMID: 30617207 PMCID: PMC6381258 DOI: 10.1523/jneurosci.1747-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Heparan sulfate (HS) is a cell surface and extracellular matrix carbohydrate extensively modified by differential sulfation. HS interacts physically with canonical fibroblast growth factor (FGF) proteins that signal through the extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK) pathway. At the embryonic mouse telencephalic midline, FGF/ERK signaling drives astroglial precursor somal translocation from the ventricular zone of the corticoseptal boundary (CSB) to the induseum griseum (IG), producing a focus of Slit2-expressing astroglial guidepost cells essential for interhemispheric corpus callosum (CC) axon navigation. Here, we investigated the cell and molecular function of a specific form of HS sulfation, 2-O HS sulfation catalyzed by the enzyme Hs2st, in midline astroglial development and in regulating FGF protein levels and interaction with HS. Hs2st−/− embryos of either sex exhibit a grossly enlarged IG due to precocious astroglial translocation and conditional Hs2st mutagenesis and ex vivo culture experiments show that Hs2st is not required cell autonomously by CC axons or by the IG astroglial cell lineage, but rather acts non-cell autonomously to suppress the transmission of translocation signals to astroglial precursors. Rescue of the Hs2st−/− astroglial translocation phenotype by pharmacologically inhibiting FGF signaling shows that the normal role of Hs2st is to suppress FGF-mediated astroglial translocation. We demonstrate a selective action of Hs2st on FGF protein by showing that Hs2st (but not Hs6st1) normally suppresses the levels of Fgf17 protein in the CSB region in vivo and use a biochemical assay to show that Hs2st (but not Hs6st1) facilitates a physical interaction between the Fgf17 protein and HS. SIGNIFICANCE STATEMENT We report a novel non-cell-autonomous mechanism regulating cell signaling in developing brain. Using the developing mouse telencephalic midline as an exemplar, we show that the specific sulfation modification of the cell surface and extracellular carbohydrate heparan sulfate (HS) performed by Hs2st suppresses the supply of translocation signals to astroglial precursors by a non-cell-autonomous mechanism. We further show that Hs2st modification selectively facilitates a physical interaction between Fgf17 and HS and suppresses Fgf17 protein levels in vivo, strongly suggesting that Hs2st acts selectively on Fgf17 signaling. HS interacts with many signaling proteins potentially encoding numerous selective interactions important in development and disease, so this class of mechanism may apply more broadly to other biological systems.
Collapse
|
14
|
Tang PC, MacKay GE, Flockhart JH, Keighren MA, Kopakaki A, West JD. Selection against BALB/c strain cells in mouse chimaeras. Biol Open 2018; 7:7/1/bio030189. [PMID: 29330350 PMCID: PMC5829504 DOI: 10.1242/bio.030189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has been shown previously that BALB/c strain embryos tend to contribute poorly to mouse aggregation chimaeras. In the present study we showed that BALB/c cells were not preferentially allocated to any extraembryonic lineages of mouse aggregation chimaeras, but their contribution decreased during the early postimplantation period and they were significantly depleted by E8.5. The development of BALB/c strain preimplantation embryos lagged behind embryos from some other strains and the contribution that BALB/c and other embryos made to chimaeras correlated with their developmental stage at E2.5. This relationship suggests that the poor contribution of BALB/c embryos to aggregation chimaeras is at least partly a consequence of generalised selection related to slow or delayed preimplantation development. The suitability of BALB/c embryos for maximising the ES cell contribution to mouse ES cell chimaeras is also discussed. Summary: BALB/c strain embryos contributed poorly to mouse aggregation chimaeras by E8.5. Selection appears linked to slow BALB/c development and might also explain the good ES cell contribution in BALB/c↔ES-cell chimaeras.
Collapse
Affiliation(s)
- Pin-Chi Tang
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Gillian E MacKay
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Jean H Flockhart
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Margaret A Keighren
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Anna Kopakaki
- Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - John D West
- Genes and Development Group, Centre for Integrative Physiology, Clinical Sciences, University of Edinburgh Medical School, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK .,Obstetrics and Gynaecology Section, Clinical Sciences, University of Edinburgh Medical School, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
15
|
Alternative dominance of the parental genomes in hybrid cells generated through the fusion of mouse embryonic stem cells with fibroblasts. Sci Rep 2017; 7:18094. [PMID: 29273752 PMCID: PMC5741742 DOI: 10.1038/s41598-017-18352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
Collapse
|
16
|
Guadagno NA, Moriconi C, Licursi V, D'Acunto E, Nisi PS, Carucci N, De Jaco A, Cacci E, Negri R, Lupo G, Miranda E. Neuroserpin polymers cause oxidative stress in a neuronal model of the dementia FENIB. Neurobiol Dis 2017; 103:32-44. [PMID: 28363799 PMCID: PMC5439028 DOI: 10.1016/j.nbd.2017.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 03/10/2017] [Accepted: 03/26/2017] [Indexed: 01/20/2023] Open
Abstract
The serpinopathies are human pathologies caused by mutations that promote polymerisation and intracellular deposition of proteins of the serpin superfamily, leading to a poorly understood cell toxicity. The dementia FENIB is caused by polymerisation of the neuronal serpin neuroserpin (NS) within the endoplasmic reticulum (ER) of neurons. With the aim of understanding the toxicity due to intracellular accumulation of neuroserpin polymers, we have generated transgenic neural progenitor cell (NPC) cultures from mouse foetal cerebral cortex, stably expressing the control protein GFP (green fluorescent protein), or human wild type, G392E or delta NS. We have characterised these cell lines in the proliferative state and after differentiation to neurons. Our results show that G392E NS formed polymers that were mostly retained within the ER, while wild type NS was correctly secreted as a monomeric protein into the culture medium. Delta NS was absent at steady state due to its rapid degradation, but it was easily detected upon proteasomal block. Looking at their intracellular distribution, wild type NS was found in partial co-localisation with ER and Golgi markers, while G392E NS was localised within the ER only. Furthermore, polymers of NS were detected by ELISA and immunofluorescence in neurons expressing the mutant but not the wild type protein. We used control GFP and G392E NPCs differentiated to neurons to investigate which cellular pathways were modulated by intracellular polymers by performing RNA sequencing. We identified 747 genes with a significant upregulation (623) or downregulation (124) in G392E NS-expressing cells, and we focused our attention on several genes involved in the defence against oxidative stress that were up-regulated in cells expressing G392E NS (Aldh1b1, Apoe, Gpx1, Gstm1, Prdx6, Scara3, Sod2). Inhibition of intracellular anti-oxidants by specific pharmacological reagents uncovered the damaging effects of NS polymers. Our results support a role for oxidative stress in the cellular toxicity underlying the neurodegenerative dementia FENIB.
Collapse
Affiliation(s)
- Noemi A Guadagno
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Claudia Moriconi
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Valerio Licursi
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy; Institute for Systems Analysis and Computer Science 'Antonio Ruberti', National Research Council, Rome, Italy
| | - Emanuela D'Acunto
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Paola S Nisi
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Nicoletta Carucci
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Antonella De Jaco
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Emanuele Cacci
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Rodolfo Negri
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy; Institute of Biology and Molecular Pathology (IBPM), National Research Council, Rome, Italy
| | - Giuseppe Lupo
- Dpt. of Chemistry, Sapienza University of Rome, Italy.
| | - Elena Miranda
- Dpt. of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy; Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Italy.
| |
Collapse
|
17
|
Comparison of two related lines of tauGFP transgenic mice designed for lineage tracing. BMC DEVELOPMENTAL BIOLOGY 2017; 17:8. [PMID: 28662681 PMCID: PMC5492368 DOI: 10.1186/s12861-017-0149-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/01/2017] [Indexed: 12/18/2022]
Abstract
Background The tauGFP reporter fusion protein is produced nearly ubiquitously by the TgTP6.3 transgene in TP6.3 mice and its localisation to microtubules offers some advantages over soluble GFP as a lineage marker. However, TgTP6.3Tg/Tg homozygotes are not viable and TgTP6.3Tg/− hemizygotes are smaller than wild-type. TP6.4 mice carry the TgTP6.4 transgene, which was produced with the same construct used to generate TgTP6.3, so we investigated whether TgTP6.4 had any advantages over TgTP6.3. Results Although TgTP6.4Tg/Tg homozygotes died before weaning, TgTP6.4Tg/− hemizygotes were viable and fertile and only males were significantly lighter than wild-type. The TgTP6.4 transgene produced the tauGFP fusion protein by the 2-cell stage and it was widely expressed in adults but tauGFP fluorescence was weak or absent in several tissues, including some neural tissues. The TgTP6.4 transgene expression pattern changed over several years of breeding and mosaic transgene expression became increasingly common in all expressing tissues. This mosaicism was used to visualise clonal lineages in the adrenal cortex of TgTP6.4Tg/− hemizygotes and these were qualitatively and quantitatively comparable to lineages reported previously for other mosaic transgenic mice, X-inactivation mosaics and chimaeras. Mosaicism occurred less frequently in TP6.3 than TP6.4 mice and was only observed in the corneal epithelium and adrenal cortex. Conclusions Mosaic expression makes the TgTP6.4 transgene unsuitable for use as a conventional cell lineage marker but such mosaicism provides a useful system for visualising clonal lineages that arise during development or maintenance of adult tissues. Differences in the occurrence of mosaicism between related transgenic lines, such as that described for lines TP6.3 and TP6.4, might provide a useful system for investigating the mechanism of transgene silencing. Electronic supplementary material The online version of this article (doi:10.1186/s12861-017-0149-x) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Stewart R, Lako M, Horrocks GM, Przyborski SA. Neural Development by Transplanted Human Embryonal Carcinoma Stem Cells Expressing Green Fluorescent Protein. Cell Transplant 2017; 14:339-51. [PMID: 16180653 DOI: 10.3727/000000005783982945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For many years, researchers have investigated the fate and potential of neuroectodermal cells during the development of the central nervous system. Although several key factors that regulate neural differentiation have been identified, much remains unknown about the molecular mechanisms that control the fate and specification of neural subtypes, especially in humans. Human embryonal carcinoma (EC) stem cells are valuable research tools for the study of neural development; however, existing in vitro experiments are limited to inducing the differentiation of EC cells into only a handful of cell types. In this study, we developed and characterized a novel EC cell line (termed TERA2.cl.SP12-GFP) that carries the reporter molecule, green fluorescent protein (GFP). We demonstrate that TERA2.cl.SP12-GFP stem cells and their differentiated neural derivatives constitutively express GFP in cells grown both in vitro and in vivo. Cellular differentiation does not appear to be affected by insertion of the transgene. We propose that TERA2.cl.SP12-GFP cells provide a valuable research tool to track the fate of cells subsequent to transplantation into alternative environments and that this approach may be particularly useful to investigate the differentiation of human neural tissues in response to local environmental signals.
Collapse
Affiliation(s)
- R Stewart
- School of Biological and Biomedical Science, University of Durham, South Road, Durham DH1 3LE, UK.
| | | | | | | |
Collapse
|
19
|
Borkowska M, Millar JK, Price DJ. Altered Disrupted-in-Schizophrenia-1 Function Affects the Development of Cortical Parvalbumin Interneurons by an Indirect Mechanism. PLoS One 2016; 11:e0156082. [PMID: 27244370 PMCID: PMC4886955 DOI: 10.1371/journal.pone.0156082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 05/09/2016] [Indexed: 01/01/2023] Open
Abstract
Disrupted-in-Schizophrenia-1 (DISC1) gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse Disc1 sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated in utero into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons.
Collapse
Affiliation(s)
- Malgorzata Borkowska
- University of Edinburgh Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh EH8 9XD, United Kingdom
- * E-mail:
| | - J. Kirsty Millar
- University of Edinburgh Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - David J. Price
- University of Edinburgh Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
20
|
Morgado AL, Rodrigues CMP, Solá S. MicroRNA-145 Regulates Neural Stem Cell Differentiation Through the Sox2-Lin28/let-7 Signaling Pathway. Stem Cells 2016; 34:1386-95. [PMID: 26849971 DOI: 10.1002/stem.2309] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 12/05/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs or miRs) regulate several biological functions, including cell fate determination and differentiation. Although miR-145 has already been described to regulate glioma development, its precise role in neurogenesis has never been addressed. miR-145 represses sex-determining region Y-box 2 (Sox2), a core transcription factor of embryonic stem cells (ESCs), to inhibit pluripotency and self-renewal in human ESCs. In addition, the Sox2-Lin28/let-7 signaling pathway regulates proliferation and neurogenesis of neural precursors. In this study, we aimed to investigate the precise role of miR-145 in neural stem cell (NSC) fate decision, and the possible involvement of the Sox2-Lin28/let-7 signaling pathway in miR-145 regulatory network. Our results show for the first time that miR-145 expression significantly increased after induction of mouse NSC differentiation, remaining elevated throughout this process. Forced miR-145 downregulation decreased neuronal markers, namely βIII-tubulin, NeuN, and MAP2. Interestingly, throughout NSC differentiation, protein levels of Sox2 and Lin28, a well-known suppressor of let-7 biogenesis, decreased. Of note, neuronal differentiation also resulted in let-7a and let-7b upregulation. Transfection of NSCs with anti-miR-145, in turn, increased both Sox2 and Lin28 protein levels, while decreasing both let-7a and let-7b. More importantly, Sox2 and Lin28 silencing partially rescued the impairment of neuronal differentiation induced by miR-145 downregulation. In conclusion, our results demonstrate a novel role for miR-145 during NSC differentiation, where miR-145 modulation of Sox2-Lin28/let-7 network is crucial for neurogenesis progression. Stem Cells 2016;34:1386-1395.
Collapse
Affiliation(s)
- Ana L Morgado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
21
|
Moriconi C, Ordoñez A, Lupo G, Gooptu B, Irving JA, Noto R, Martorana V, Manno M, Timpano V, Guadagno NA, Dalton L, Marciniak SJ, Lomas DA, Miranda E. Interactions between N-linked glycosylation and polymerisation of neuroserpin within the endoplasmic reticulum. FEBS J 2015; 282:4565-79. [PMID: 26367528 PMCID: PMC4949553 DOI: 10.1111/febs.13517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 07/26/2015] [Accepted: 09/10/2015] [Indexed: 01/04/2023]
Abstract
The neuronal serpin neuroserpin undergoes polymerisation as a consequence of point mutations that alter its conformational stability, leading to a neurodegenerative dementia called familial encephalopathy with neuroserpin inclusion bodies (FENIB). Neuroserpin is a glycoprotein with predicted glycosylation sites at asparagines 157, 321 and 401. We used site-directed mutagenesis, transient transfection, western blot, metabolic labelling and ELISA to probe the relationship between glycosylation, folding, polymerisation and degradation of neuroserpin in validated cell models of health and disease. Our data show that glycosylation at N157 and N321 plays an important role in maintaining the monomeric state of neuroserpin, and we propose this is the result of steric hindrance or effects on local conformational dynamics that can contribute to polymerisation. Asparagine residue 401 is not glycosylated in wild type neuroserpin and in several polymerogenic variants that cause FENIB, but partial glycosylation was observed in the G392E mutant of neuroserpin that causes severe, early-onset dementia. Our findings indicate that N401 glycosylation reports lability of the C-terminal end of neuroserpin in its native state. This C-terminal lability is not required for neuroserpin polymerisation in the endoplasmic reticulum, but the additional glycan facilitates degradation of the mutant protein during proteasomal impairment. In summary, our results indicate how normal and variant-specific N-linked glycosylation events relate to intracellular folding, misfolding, degradation and polymerisation of neuroserpin.
Collapse
Affiliation(s)
- Claudia Moriconi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Adriana Ordoñez
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - Giuseppe Lupo
- Department of Chemistry, Sapienza University of Rome, Italy
| | - Bibek Gooptu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - James A Irving
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Rosina Noto
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Vincenzo Martorana
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Mauro Manno
- National Research Council of Italy, Institute of Biophysics, Palermo, Italy
| | - Valentina Timpano
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Noemi A Guadagno
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
| | - Lucy Dalton
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - Stefan J Marciniak
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, UK
| | - David A Lomas
- Wolfson Institute for Biomedical Research, University College London, UK
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Sapienza University of Rome, Italy
| |
Collapse
|
22
|
Clegg JM, Li Z, Molinek M, Caballero IM, Manuel MN, Price DJ. Pax6 is required intrinsically by thalamic progenitors for the normal molecular patterning of thalamic neurons but not the growth and guidance of their axons. Neural Dev 2015; 10:26. [PMID: 26520399 PMCID: PMC4628245 DOI: 10.1186/s13064-015-0053-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/23/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In mouse embryos, the Pax6 transcription factor is expressed in the progenitors of thalamic neurons but not in thalamic neurons themselves. Its null-mutation causes early mis-patterning of thalamic progenitors. It is known that thalamic neurons generated by Pax6 (-/-) progenitors do not develop their normal connections with the cortex, but it is not clear why. We investigated the extent to which defects intrinsic to the thalamus are responsible. RESULTS We first confirmed that, in constitutive Pax6 (-/-) mutants, the axons of thalamic neurons fail to enter the telencephalon and, instead, many of them take an abnormal path to the hypothalamus, whose expression of Slits would normally repel them. We found that thalamic neurons show reduced expression of the Slit receptor Robo2 in Pax6 (-/-) mutants, which might enhance the ability of their axons to enter the hypothalamus. Remarkably, however, in chimeras comprising a mixture of Pax6 (-/-) and Pax6 (+/+) cells, Pax6 (-/-) thalamic neurons are able to generate axons that exit the diencephalon, take normal trajectories through the telencephalon and avoid the hypothalamus. This occurs despite abnormalities in their molecular patterning (they express Nkx2.2, unlike normal thalamic neurons) and their reduced expression of Robo2. In conditional mutants, acute deletion of Pax6 from the forebrain at the time when thalamic axons are starting to grow does not prevent the development of the thalamocortical tract, suggesting that earlier extra-thalamic patterning and /or morphological defects are the main cause of thalamocortical tract failure in Pax6 (-/-) constitutive mutants. CONCLUSIONS Our results indicate that Pax6 is required by thalamic progenitors for the normal molecular patterning of the thalamic neurons that they generate but thalamic neurons do not need normal Pax6-dependent patterning to become competent to grow axons that can be guided appropriately.
Collapse
Affiliation(s)
- James M Clegg
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Ziwen Li
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Michael Molinek
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - Isabel Martín Caballero
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
- Current address: Laboratory of Molecular Neurobiology, Karolinska Institute, 17177, Scheeles Väg 1, Sweden.
| | - Martine N Manuel
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| | - David J Price
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
23
|
Adutwum-Ofosu KK, Magnani D, Theil T, Price DJ, Fotaki V. The molecular and cellular signatures of the mouse eminentia thalami support its role as a signalling centre in the developing forebrain. Brain Struct Funct 2015; 221:3709-27. [PMID: 26459142 PMCID: PMC5009181 DOI: 10.1007/s00429-015-1127-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 09/30/2015] [Indexed: 12/20/2022]
Abstract
The mammalian eminentia thalami (EmT) (or thalamic eminence) is an embryonic forebrain structure of unknown function. Here, we examined the molecular and cellular properties of the mouse EmT. We first studied mRNA expression of signalling molecules and found that the EmT is a structure, rich in expression of secreted factors, with Wnts being the most abundantly detected. We then examined whether EmT tissue could induce cell fate changes when grafted ectopically. For this, we transplanted EmT tissue from a tau-GFP mouse to the ventral telencephalon of a wild type host, a telencephalic region where Wnt signalling is not normally active but which we showed in culture experiments is competent to respond to Wnts. We observed that the EmT was able to induce in adjacent ventral telencephalic cells ectopic expression of Lef1, a transcriptional activator and a target gene of the Wnt/β-catenin pathway. These Lef1-positive;GFP-negative cells expressed the telencephalic marker Foxg1 but not Ascl1, which is normally expressed by ventral telencephalic cells. These results suggest that the EmT has the capacity to activate Wnt/β-catenin signalling in the ventral telencephalon and to suppress ventral telencephalic gene expression. Altogether, our data support a role of the EmT as a signalling centre in the developing mouse forebrain.
Collapse
Affiliation(s)
- Kevin Kofi Adutwum-Ofosu
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,Department of Anatomy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Dario Magnani
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.,MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Thomas Theil
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - David J Price
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK
| | - Vassiliki Fotaki
- The University of Edinburgh, Centre for Integrative Physiology, Hugh Robson Building, George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
24
|
Morgan S, Campbell L, Allison V, Murray A, Spears N. Culture and co-culture of mouse ovaries and ovarian follicles. J Vis Exp 2015. [PMID: 25867892 PMCID: PMC4401360 DOI: 10.3791/52458] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The mammalian ovary is composed of ovarian follicles, each follicle consisting of a single oocyte surrounded by somatic granulosa cells, enclosed together within a basement membrane. A finite pool of follicles is laid down during embryonic development, when oocytes in meiotic arrest form a close association with flattened granulosa cells, forming primordial follicles. By or shortly after birth, mammalian ovaries contain their lifetime's supply of primordial follicles, from which point onwards there is a steady release of follicles into the growing follicular pool. The ovary is particularly amenable to development in vitro, with follicles growing in a highly physiological manner in culture. This work describes the culture of whole neonatal ovaries containing primordial follicles, and the culture of individual ovarian follicles, a method which can support the development of follicles from an immature through to the preovulatory stage, after which their oocytes are able to undergo fertilization in vitro. The work outlined here uses culture systems to determine how the ovary is affected by exposure to external compounds. We also describe a co-culture system, which allows investigation of the interactions that occur between growing follicles and the non-growing pool of primordial follicles.
Collapse
Affiliation(s)
| | - Lisa Campbell
- Centre for Integrative Physiology, University of Edinburgh
| | - Vivian Allison
- Centre for Integrative Physiology, University of Edinburgh
| | - Alison Murray
- MRC Centre for Reproductive Health, University of Edinburgh
| | - Norah Spears
- Centre for Integrative Physiology, University of Edinburgh;
| |
Collapse
|
25
|
Matveeva NM, Kizilova EA, Serov OL. Generation of mouse chimeras with high contribution of tetraploid embryonic stem cells and embryonic stem cell-fibroblast hybrid cells. Methods Mol Biol 2015; 1313:61-71. [PMID: 25947656 DOI: 10.1007/978-1-4939-2703-6_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The in vitro long-term cultivation of embryonic stem (ES) cells derived from pre-implantation embryos offers the unique possibility of combining ES cells with pre-implantation embryos to generate chimeras, thus facilitating the creation of a bridge between in vitro and in vivo investigations. Genomic manipulation using ES cells and homologous recombination is one of the most outstanding scientific achievements, resulting in the generation of animals with desirable genome modifications. As such, the generation of ES cells with different ploidy via cell fusion also deserves much attention because this approach allows for the production of chimeras that contain somatic cells with various ploidy. Therefore, this is a powerful tool that can be used to study the role of polyploidy in the normal development of mammals.
Collapse
Affiliation(s)
- Natalia M Matveeva
- Institute of Cytology and Genetics, Lavrentiev Prospect, 10, Novosibirsk, 630090, Russia
| | | | | |
Collapse
|
26
|
Xavier JM, Morgado AL, Solá S, Rodrigues CMP. Mitochondrial translocation of p53 modulates neuronal fate by preventing differentiation-induced mitochondrial stress. Antioxid Redox Signal 2014; 21:1009-24. [PMID: 24329038 PMCID: PMC4123470 DOI: 10.1089/ars.2013.5417] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Apoptosis regulatory proteins, such as p53, play a pivotal role in neural differentiation, through mechanisms independent of cell death. In addition, p53 has been identified as an important regulator of mitochondrial survival response, maintaining mitochondrial DNA (mtDNA) integrity and oxidative protection. The aim of this study was to determine the role of mitochondrial p53 in organelle damage and neural differentiation. RESULTS Our results show that mitochondrial apoptotic events such as reactive oxygen species production, mitochondrial membrane permeabilization, and cytochrome c release are typical of early-stage mouse neural stem cell differentiation, which occurs 3-18 h after induction of differentiation, with no evidence of cell death. In addition, decreased mtDNA content, lipidated LC3 (LC3-II), colocalization of mitochondria and LC3-II puncta, and mitochondria-associated Parkin are consistent with activation of mitophagy. Importantly, at early stages of neural differentiation, p53 was actively translocated to mitochondria and attenuated mitochondrial oxidative stress, cytochrome c release, and mitophagy. Forced mitochondrial translocation of p53 increased neurogenic potential and neurite outgrowth. INNOVATION AND CONCLUSION In conclusion, our results reveal a novel role for mitochondrial p53, which modulates mitochondrial damage and apoptosis-related events in the context of neural differentiation, thus enhancing neuronal fate.
Collapse
Affiliation(s)
- Joana M Xavier
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa , Lisboa, Portugal
| | | | | | | |
Collapse
|
27
|
MicroRNA-34a Modulates Neural Stem Cell Differentiation by Regulating Expression of Synaptic and Autophagic Proteins. Mol Neurobiol 2014; 51:1168-83. [PMID: 24973144 DOI: 10.1007/s12035-014-8794-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/15/2014] [Indexed: 02/07/2023]
Abstract
We have previously demonstrated the involvement of specific apoptosis-associated microRNAs (miRNAs), including miR-34a, in mouse neural stem cell (NSC) differentiation. In addition, a growing body of evidence points to a critical role for autophagy during neuronal differentiation, as a response-survival mechanism to limit oxidative stress and regulate synaptogenesis associated with this process. The aim of this study was to further investigate the precise role of miR-34a during NSC differentiation. Our results showed that miR-34a expression was markedly downregulated during neurogenesis. Neuronal differentiation and cell morphology, synapse function, and electrophysiological maturation were significantly impaired in miR-34a-overexpressing NSCs. In addition, synaptotagmin 1 (Syt1) and autophagy-related 9a (Atg9a) significantly increased during neurogenesis. Pharmacological inhibition of autophagy impaired both neuronal differentiation and cell morphology. Notably, we showed that Syt1 and Atg9a are miR-34a targets in neural differentiation context, markedly decreasing after miR-34a overexpression. Syt1 overexpression and rapamycin-induced autophagy partially rescued the impairment of neuronal differentiation by miR-34a. In conclusion, our results demonstrate a novel role for miR-34a regulation of NSC differentiation, where miR-34a downregulation and subsequent increase of Syt1 and Atg9a appear to be crucial for neurogenesis progression.
Collapse
|
28
|
Vergara C, Ordóñez-Gutiérrez L, Wandosell F, Ferrer I, del Río JA, Gavín R. Role of PrP(C) Expression in Tau Protein Levels and Phosphorylation in Alzheimer's Disease Evolution. Mol Neurobiol 2014; 51:1206-20. [PMID: 24965601 DOI: 10.1007/s12035-014-8793-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
Abstract
Alzheimer's disease (AD) is characterized by the presence of amyloid plaques mainly consisting of hydrophobic β-amyloid peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed principally of hyperphosphorylated tau. Aβ oligomers have been described as the earliest effectors to negatively affect synaptic structure and plasticity in the affected brains, and cellular prion protein (PrP(C)) has been proposed as receptor for these oligomers. The most widely accepted theory holds that the toxic effects of Aβ are upstream of change in tau, a neuronal microtubule-associated protein that promotes the polymerization and stabilization of microtubules. However, tau is considered decisive for the progression of neurodegeneration, and, indeed, tau pathology correlates well with clinical symptoms such as dementia. Different pathways can lead to abnormal phosphorylation, and, as a consequence, tau aggregates into paired helical filaments (PHF) and later on into NFTs. Reported data suggest a regulatory tendency of PrP(C) expression in the development of AD, and a putative relationship between PrP(C) and tau processing is emerging. However, the role of tau/PrP(C) interaction in AD is poorly understood. In this study, we show increased susceptibility to Aβ-derived diffusible ligands (ADDLs) in neuronal primary cultures from PrP(C) knockout mice, compared to wild-type, which correlates with increased tau expression. Moreover, we found increased PrP(C) expression that paralleled with tau at early ages in an AD murine model and in early Braak stages of AD in affected individuals. Taken together, these results suggest a protective role for PrP(C) in AD by downregulating tau expression, and they point to this protein as being crucial in the molecular events that lead to neurodegeneration in AD.
Collapse
Affiliation(s)
- C Vergara
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Pauklin S, Vallier L. The cell-cycle state of stem cells determines cell fate propensity. Cell 2013; 155:135-47. [PMID: 24074866 PMCID: PMC3898746 DOI: 10.1016/j.cell.2013.08.031] [Citation(s) in RCA: 454] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 06/22/2013] [Accepted: 08/19/2013] [Indexed: 12/21/2022]
Abstract
Self-renewal and differentiation of stem cells are fundamentally associated with cell-cycle progression to enable tissue specification, organ homeostasis, and potentially tumorigenesis. However, technical challenges have impaired the study of the molecular interactions coordinating cell fate choice and cell-cycle progression. Here, we bypass these limitations by using the FUCCI reporter system in human pluripotent stem cells and show that their capacity of differentiation varies during the progression of their cell cycle. These mechanisms are governed by the cell-cycle regulators cyclin D1–3 that control differentiation signals such as the TGF-β-Smad2/3 pathway. Conversely, cell-cycle manipulation using a small molecule directs differentiation of hPSCs and provides an approach to generate cell types with a clinical interest. Our results demonstrate that cell fate decisions are tightly associated with the cell-cycle machinery and reveal insights in the mechanisms synchronizing differentiation and proliferation in developing tissues. Cell fate decisions are cell-cycle dependent Control of endoderm versus neuroectoderm differentiation by cyclin D-CDK4/6 Cyclin Ds control TGF-β-Smad2/3 transcriptional activity Differentiation of hPSCs can be directed by manipulation of the cell cycle
Collapse
Affiliation(s)
- Siim Pauklin
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0SZ, UK.
| | | |
Collapse
|
30
|
Mi D, Huang YT, Kleinjan DA, Mason JO, Price DJ. Identification of genomic regions regulating Pax6 expression in embryonic forebrain using YAC reporter transgenic mouse lines. PLoS One 2013; 8:e80208. [PMID: 24223221 PMCID: PMC3819282 DOI: 10.1371/journal.pone.0080208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/28/2013] [Indexed: 11/28/2022] Open
Abstract
The transcription factor Pax6 is a crucial regulator of eye and central nervous system development. Both the spatiotemporal patterns and the precise levels of Pax6 expression are subject to tight control, mediated by an extensive set of cis-regulatory elements. Previous studies have shown that a YAC reporter transgene containing 420Kb of genomic DNA spanning the human PAX6 locus drives expression of a tau-tagged GFP reporter in mice in a pattern that closely resembles that of endogenous Pax6. Here we have closely compared the pattern of tau-GFP reporter expression at the cellular level in the forebrains and eyes of transgenic mice carrying either complete or truncated versions of the YAC reporter transgene with endogenous Pax6 expression and found several areas where expression of tau-GFP and Pax6 diverge. Some discrepancies are due to differences between the intracellular localization or perdurance of tau-GFP and Pax6 proteins, while others are likely to be a consequence of transcriptional differences. We show that cis-regulatory elements that lie outside the 420kb fragment of PAX6 are required for correct expression around the pallial-subpallial boundary, in the amygdala and the prethalamus. Further, we found that the YAC reporter transgene effectively labels cells that contribute to the lateral cortical stream, including cells that arise from the pallium and subpallium, and therefore represents a useful tool for studying lateral cortical stream migration.
Collapse
Affiliation(s)
- Da Mi
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DM); (DP)
| | - Yu-Ting Huang
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Dirk A. Kleinjan
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - John O. Mason
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David J. Price
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail: (DM); (DP)
| |
Collapse
|
31
|
Abe T, Fujimori T. Reporter mouse lines for fluorescence imaging. Dev Growth Differ 2013; 55:390-405. [PMID: 23621623 DOI: 10.1111/dgd.12062] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
The use of live imaging approaches to examine and understand the dynamic processes that take place during mouse development has become widespread. Several groups have reported their success in generating different reporter mouse lines that express a variety of fluorescent markers for imaging. However, there is currently no established database of the reporter mouse lines available for live imaging, such as the Cre transgenic lines (Cre-X-Mice). Researchers therefore often have difficulties in determining which reporter mouse line meets their research purposes. In this review, we summarize some of the reporter mouse lines that have been generated for live imaging studies, and discuss their characteristics.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | |
Collapse
|
32
|
Campbell L, Trendell J, Spears N. Identification of cells migrating from the thecal layer of ovarian follicles. Cell Tissue Res 2013; 353:189-94. [DOI: 10.1007/s00441-013-1621-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
33
|
Tabansky I, Lenarcic A, Draft RW, Loulier K, Keskin DB, Rosains J, Rivera-Feliciano J, Lichtman JW, Livet J, Stern JNH, Sanes JR, Eggan K. Developmental bias in cleavage-stage mouse blastomeres. Curr Biol 2013; 23:21-31. [PMID: 23177476 PMCID: PMC3543519 DOI: 10.1016/j.cub.2012.10.054] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 07/17/2012] [Accepted: 10/30/2012] [Indexed: 01/08/2023]
Abstract
BACKGROUND The cleavage-stage mouse embryo is composed of superficially equivalent blastomeres that will generate both the embryonic inner cell mass (ICM) and the supportive trophectoderm (TE). However, it remains unsettled whether the contribution of each blastomere to these two lineages can be accounted for by chance. Addressing the question of blastomere cell fate may be of practical importance, because preimplantation genetic diagnosis requires removal of blastomeres from the early human embryo. To determine whether blastomere allocation to the two earliest lineages is random, we developed and utilized a recombination-mediated, noninvasive combinatorial fluorescent labeling method for embryonic lineage tracing. RESULTS When we induced recombination at cleavage stages, we observed a statistically significant bias in the contribution of the resulting labeled clones to the trophectoderm or the inner cell mass in a subset of embryos. Surprisingly, we did not find a correlation between localization of clones in the embryonic and abembryonic hemispheres of the late blastocyst and their allocation to the TE and ICM, suggesting that TE-ICM bias arises separately from embryonic-abembryonic bias. Rainbow lineage tracing also allowed us to demonstrate that the bias observed in the blastocyst persists into postimplantation stages and therefore has relevance for subsequent development. CONCLUSIONS The Rainbow transgenic mice that we describe here have allowed us to detect lineage-dependent bias in early development. They should also enable assessment of the developmental equivalence of mammalian progenitor cells in a variety of tissues.
Collapse
Affiliation(s)
- Inna Tabansky
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University
- The Department of Molecular and Cellular Biology, Harvard University
| | - Alan Lenarcic
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Ryan W. Draft
- The Department of Molecular and Cellular Biology, Harvard University
- Center for Brain Science, Harvard University
| | - Karine Loulier
- Institut de la Vision, INSERM U968, UPMC Univ Paris 06 UMR_S 968 and CNRS UMR_7210, Paris, France
| | - Derin B Keskin
- Department of Developmental Biology, Harvard School of Dental Medicine
- Dana Farber Cancer Institute, Department of Medical Oncology, Harvard Medical School
| | | | - José Rivera-Feliciano
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University
| | - Jeff W. Lichtman
- The Department of Molecular and Cellular Biology, Harvard University
- Center for Brain Science, Harvard University
| | - Jean Livet
- Institut de la Vision, INSERM U968, UPMC Univ Paris 06 UMR_S 968 and CNRS UMR_7210, Paris, France
| | - Joel NH Stern
- Department of Developmental Biology, Harvard School of Dental Medicine
| | - Joshua R. Sanes
- The Department of Molecular and Cellular Biology, Harvard University
- Center for Brain Science, Harvard University
| | - Kevin Eggan
- The Howard Hughes Medical Institute, Harvard Stem Cell Institute and Department of Stem Cell and Regenerative Biology, Harvard University
- The Department of Molecular and Cellular Biology, Harvard University
| |
Collapse
|
34
|
Fonseca MB, Nunes AF, Morgado AL, Solá S, Rodrigues CMP. TAp63γ demethylation regulates protein stability and cellular distribution during neural stem cell differentiation. PLoS One 2012; 7:e52417. [PMID: 23251711 PMCID: PMC3522631 DOI: 10.1371/journal.pone.0052417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022] Open
Abstract
p63 is a close relative of the p53 tumor suppressor and transcription factor that modulates cell fate. The full-length isoform of p63, containing a transactivation (TA) domain (TAp63) is an essential proapoptotic protein in neural development. The role of p63 in epithelial development is also well established; however, its precise function during neural differentiation remains largely controversial. Recently, it has been demonstrated that several conserved elements of apoptosis are also integral components of cellular differentiation; p53 directly interacts with key regulators of neurogenesis. The aim of this study was to evaluate the role of p63 during mouse neural stem cell (NSC) differentiation and test whether the histone H3 lysine 27-specific demethylase JMJD3 interacts with p63 to redirect NSCs to neurogenesis. Our results showed that JMJD3 and TAp63γ are coordinately regulated to establish neural-specific gene expression programs in NSCs undergoing differentiation. JMJD3 overexpression increased TAp63γ levels in a demethylase activity-dependent manner. Importantly, overexpression of TAp63γ increased β-III tubulin whereas downregulation of TAp63γ by specific p63 siRNA decreased β-III tubulin. Immunoprecipitation assays demonstrated direct interaction between TAp63γ and JMJD3, and modulation of TAp63γ methylation status by JMJD3-demethylase activity. Importantly, the demethylase activity of JMJD3 influenced TAp63γ protein stabilization and cellular distribution, as well as TAp63γ-regulated neurogenesis. These findings clarify the role of p63 in adult neural progenitor cells and reveal TAp63γ as a direct target for JMJD3-mediated neuronal commitment.
Collapse
Affiliation(s)
- Maria B. Fonseca
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana F. Nunes
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana L. Morgado
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
35
|
Restriction of neural precursor ability to respond to Nurr1 by early regional specification. PLoS One 2012; 7:e51798. [PMID: 23240065 PMCID: PMC3519900 DOI: 10.1371/journal.pone.0051798] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/08/2012] [Indexed: 11/19/2022] Open
Abstract
During neural development, spatially regulated expression of specific transcription factors is crucial for central nervous system (CNS) regionalization, generation of neural precursors (NPs) and subsequent differentiation of specific cell types within defined regions. A critical role in dopaminergic differentiation in the midbrain (MB) has been assigned to the transcription factor Nurr1. Nurr1 controls the expression of key genes involved in dopamine (DA) neurotransmission, e.g. tyrosine hydroxylase (TH) and the DA transporter (DAT), and promotes the dopaminergic phenotype in embryonic stem cells. We investigated whether cells derived from different areas of the mouse CNS could be directed to differentiate into dopaminergic neurons in vitro by forced expression of the transcription factor Nurr1. We show that Nurr1 overexpression can promote dopaminergic cell fate specification only in NPs obtained from E13.5 ganglionic eminence (GE) and MB, but not in NPs isolated from E13.5 cortex (CTX) and spinal cord (SC) or from the adult subventricular zone (SVZ). Confirming previous studies, we also show that Nurr1 overexpression can increase the generation of TH-positive neurons in mouse embryonic stem cells. These data show that Nurr1 ability to induce a dopaminergic phenotype becomes restricted during CNS development and is critically dependent on the region of NPs derivation. Our results suggest that the plasticity of NPs and their ability to activate a dopaminergic differentiation program in response to Nurr1 is regulated during early stages of neurogenesis, possibly through mechanisms controlling CNS regionalization.
Collapse
|
36
|
Magnani D, Hasenpusch-Theil K, Benadiba C, Yu T, Basson MA, Price DJ, Lebrand C, Theil T. Gli3 controls corpus callosum formation by positioning midline guideposts during telencephalic patterning. ACTA ACUST UNITED AC 2012; 24:186-98. [PMID: 23042737 DOI: 10.1093/cercor/bhs303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The corpus callosum (CC) represents the major forebrain commissure connecting the 2 cerebral hemispheres. Midline crossing of callosal axons is controlled by several glial and neuronal guideposts specifically located along the callosal path, but it remains unknown how these cells acquire their position. Here, we show that the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn) displays agenesis of the CC and mislocation of the glial and neuronal guidepost cells. Using transplantation experiments, we demonstrate that agenesis of the CC is primarily caused by midline defects. These defects originate during telencephalic patterning and involve an up-regulation of Slit2 expression and altered Fgf and Wnt/β-catenin signaling. Mutations in sprouty1/2 which mimic the changes in these signaling pathways cause a disorganization of midline guideposts and CC agenesis. Moreover, a partial recovery of midline abnormalities in Pdn/Pdn;Slit2(-/-) embryos mutants confirms the functional importance of correct Slit2 expression levels for callosal development. Hence, Gli3 controlled restriction of Fgf and Wnt/β-catenin signaling and of Slit2 expression is crucial for positioning midline guideposts and callosal development.
Collapse
Affiliation(s)
- Dario Magnani
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Synthetic condensed 1,4-naphthoquinone derivative shifts neural stem cell differentiation by regulating redox state. Mol Neurobiol 2012; 47:313-24. [PMID: 23054678 DOI: 10.1007/s12035-012-8353-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/12/2012] [Indexed: 01/24/2023]
Abstract
Naphthoquinones are bioactive compounds widespread in nature that impact on several cellular pathways, including cell proliferation and survival, by acting as prooxidants and electrophiles. We have previously described the role of the synthetic isoxazole condensed 1,4-naphthoquinone derivative 1a in preventing apoptosis induced by distinct stimuli in several cell models. In addition, apoptosis regulators and executioners may control neural stem cell (NSC) fate, without involving cell death per se. Here, we hypothesize that 1a might also play a role in NSC fate decision. We found that exposure to 1a shifts NSC differentiation potential from neurogenic to gliogenic lineage and involves the generation of reactive oxygen species, without increasing cell death. Modulation of caspases and calpains, using cysteine protease inhibitors, failed to mimic 1a effects. In addition, incubation with the naphthoquinone derivative resulted in upregulation and nuclear translocation of antioxidant responsive proteins, Nrf2 and Sirt1, which in turn may mediate 1a-directed shift in NSC differentiation. In fact, antioxidants halted the shift in NSC differentiation potential from neurogenic to gliogenic lineage, while strongly reducing reactive oxygen species generation and Nrf2 and Sirt1 nuclear translocation in NSC exposed to 1a. Collectively, these data support a new role for a specific naphthoquinone derivative in NSC fate decision and underline the importance of redox environment control.
Collapse
|
38
|
Battulin NR, Khabarova AA, Boyarskikh UA, Menzorov AG, Filipenko ML, Serov OL. Reprogramming somatic cells by fusion with embryonic stem cells does not cause silencing of the Dlk1-Dio3 region in mice. World J Stem Cells 2012; 4. [PMID: 23189213 PMCID: PMC3506971 DOI: 10.4252/wjsc.v4.i8.87] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To examine the imprinted Dlk1-Dio3 locus in pluripotent embryonic stem (ES) cell/fibroblast hybrid cells. METHODS Gtl2, Rian, and Mirg mRNA expression in mouse pluripotent ES cell/fibroblast hybrid cells was examined by real-time reverse transcription-polymerase chain reaction. Pyrosequencing and bisulfate sequencing were used to determine the DNA methylation level of the Dlk1-Dio3 locus imprinting control region. RESULTS The selected hybrid clones had a near-tetraploid karyotype and were highly pluripotent judging from their capacity to generate chimeric embryos and adult chimeras. Our data clearly demonstrate that Gtl2, Rian, and Mirg, which are imprinted genes within the Dlk1-Dio3 locus, are active in all examined ES cell/fibroblast hybrid clones. In spite of interclonal variability, the expression of the imprinted genes is comparable to that of ES cells and fibroblasts. Quantitative analysis of the DNA methylation status of the intergenic differentially methylated region (IG DMR) within the Dlk1-Dio3 locus by pyrosequencing and bisulfite sequencing clearly showed that the DNA methylation status of the imprinted region in the tested hybrid clones was comparable to that of both ES cells and fibroblasts. CONCLUSION Reprogramming process in a hybrid cell system is achieved without marked alteration of the imprinted Dlk1-Dio3 locus.
Collapse
Affiliation(s)
- Nariman R Battulin
- Nariman R Battulin, Anna A Khabarova, Aleksey G Menzorov, Oleg L Serov, Institute of Cytology and Genetics SD RAS, Lavrentyeva 10, Novosibirsk 630090, Russian
| | | | | | | | | | | |
Collapse
|
39
|
Magnani D, Hasenpusch-Theil K, Theil T. Gli3 controls subplate formation and growth of cortical axons. ACTA ACUST UNITED AC 2012; 23:2542-51. [PMID: 22903314 DOI: 10.1093/cercor/bhs237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The formation of a functional cortical circuitry requires the coordinated growth of cortical axons to their target areas. While the mechanisms guiding cortical axons to their targets have extensively been studied, very little is known about the processes which promote their growth in vivo. Gli3 encodes a zinc finger transcription factor which is expressed in cortical progenitor cells and has crucial roles in cortical development. Here, we characterize the Gli3 compound mutant Gli3(Xt/Pdn), which largely lacks Neurofilament(+) fibers in the rostral and intermediate neocortex. DiI labeling and Golli-τGFP immunofluorescence indicate that Gli3(Xt/Pdn) cortical neurons form short and stunted axons. Using transplantation experiments we demonstrate that this axon growth defect is primarily caused by a nonpermissive cortical environment. Furthermore, in Emx1Cre;Gli3(Pdn/fl) conditional mutants, which mimic the reduction of Gli3 expression in the dorsal telencephalon of Gli3(Xt/Pdn) embryos, the growth of cortical axons is not impaired, suggesting that Gli3 controls this process early in telencephalic development. In contrast to cortical plate neurons, Gli3(Xt/Pdn) embryos largely lack subplate (SP) neurons which normally pioneer cortical projections. Collectively, these findings show that Gli3 specifies a cortical environment permissive to the growth of cortical axons at the progenitor level by controlling the formation of SP neurons.
Collapse
Affiliation(s)
- Dario Magnani
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
40
|
Palmgren B, Jiao Y, Novozhilova E, Stupp SI, Olivius P. Survival, migration and differentiation of mouse tau-GFP embryonic stem cells transplanted into the rat auditory nerve. Exp Neurol 2012; 235:599-609. [DOI: 10.1016/j.expneurol.2012.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 02/18/2012] [Accepted: 03/25/2012] [Indexed: 01/13/2023]
|
41
|
Santos DM, Xavier JM, Morgado AL, Solá S, Rodrigues CMP. Distinct regulatory functions of calpain 1 and 2 during neural stem cell self-renewal and differentiation. PLoS One 2012; 7:e33468. [PMID: 22432027 PMCID: PMC3303840 DOI: 10.1371/journal.pone.0033468] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/09/2012] [Indexed: 12/21/2022] Open
Abstract
Calpains are calcium regulated cysteine proteases that have been described in a wide range of cellular processes, including apoptosis, migration and cell cycle regulation. In addition, calpains have been implicated in differentiation, but their impact on neural differentiation requires further investigation. Here, we addressed the role of calpain 1 and calpain 2 in neural stem cell (NSC) self-renewal and differentiation. We found that calpain inhibition using either the chemical inhibitor calpeptin or the endogenous calpain inhibitor calpastatin favored differentiation of NSCs. This effect was associated with significant changes in cell cycle-related proteins and may be regulated by calcium. Interestingly, calpain 1 and calpain 2 were found to play distinct roles in NSC fate decision. Calpain 1 expression levels were higher in self-renewing NSC and decreased with differentiation, while calpain 2 increased throughout differentiation. In addition, calpain 1 silencing resulted in increased levels of both neuronal and glial markers, β-III Tubulin and glial fibrillary acidic protein (GFAP). Calpain 2 silencing elicited decreased levels of GFAP. These results support a role for calpain 1 in repressing differentiation, thus maintaining a proliferative NSC pool, and suggest that calpain 2 is involved in glial differentiation.
Collapse
Affiliation(s)
- Daniela M. Santos
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Joana M. Xavier
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ana L. Morgado
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- * E-mail:
| | - Cecília M. P. Rodrigues
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
42
|
Pratt T, Davey JW, Nowakowski TJ, Raasumaa C, Rawlik K, McBride D, Clinton M, Mason JO, Price DJ. The expression and activity of β-catenin in the thalamus and its projections to the cerebral cortex in the mouse embryo. BMC Neurosci 2012; 13:20. [PMID: 22360971 PMCID: PMC3347985 DOI: 10.1186/1471-2202-13-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background The mammalian thalamus relays sensory information from the periphery to the cerebral cortex for cognitive processing via the thalamocortical tract. The thalamocortical tract forms during embryonic development controlled by mechanisms that are not fully understood. β-catenin is a nuclear and cytosolic protein that transduces signals from secreted signaling molecules to regulate both cell motility via the cytoskeleton and gene expression in the nucleus. In this study we tested whether β-catenin is likely to play a role in thalamocortical connectivity by examining its expression and activity in developing thalamic neurons and their axons. Results At embryonic day (E)15.5, the time when thalamocortical axonal projections are forming, we found that the thalamus is a site of particularly high β-catenin mRNA and protein expression. As well as being expressed at high levels in thalamic cell bodies, β-catenin protein is enriched in the axons and growth cones of thalamic axons and its growth cone concentration is sensitive to Netrin-1. Using mice carrying the β-catenin reporter BAT-gal we find high levels of reporter activity in the thalamus. Further, Netrin-1 induces BAT-gal reporter expression and upregulates levels of endogenous transcripts encoding β-actin and L1 proteins in cultured thalamic cells. We found that β-catenin mRNA is enriched in thalamic axons and its 3'UTR is phylogenetically conserved and is able to direct heterologous mRNAs along the thalamic axon, where they can be translated. Conclusion We provide evidence that β-catenin protein is likely to be an important player in thalamocortcial development. It is abundant both in the nucleus and in the growth cones of post-mitotic thalamic cells during the development of thalamocortical connectivity and β-catenin mRNA is targeted to thalamic axons and growth cones where it could potentially be translated. β-catenin is involved in transducing the Netrin-1 signal to thalamic cells suggesting a mechanism by which Netrin-1 guides thalamocortical development.
Collapse
Affiliation(s)
- Thomas Pratt
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mort RL, Douvaras P, Morley SD, Dorà N, Hill RE, Collinson JM, West JD. Stem cells and corneal epithelial maintenance: insights from the mouse and other animal models. Results Probl Cell Differ 2012; 55:357-94. [PMID: 22918816 PMCID: PMC3471528 DOI: 10.1007/978-3-642-30406-4_19] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Maintenance of the corneal epithelium is essential for vision and is a dynamic process incorporating constant cell production, movement and loss. Although cell-based therapies involving the transplantation of putative stem cells are well advanced for the treatment of human corneal defects, the scientific understanding of these interventions is poor. No definitive marker that discriminates stem cells that maintain the corneal epithelium from the surrounding tissue has been discovered and the identity of these elusive cells is, therefore, hotly debated. The key elements of corneal epithelial maintenance have long been recognised but it is still not known how this dynamic balance is co-ordinated during normal homeostasis to ensure the corneal epithelium is maintained at a uniform thickness. Most indirect experimental evidence supports the limbal epithelial stem cell (LESC) hypothesis, which proposes that the adult corneal epithelium is maintained by stem cells located in the limbus at the corneal periphery. However, this has been challenged recently by the corneal epithelial stem cell (CESC) hypothesis, which proposes that during normal homeostasis the mouse corneal epithelium is maintained by stem cells located throughout the basal corneal epithelium with LESCs only contributing during wound healing. In this chapter we review experimental studies, mostly based on animal work, that provide insights into how stem cells maintain the normal corneal epithelium and consider the merits of the alternative LESC and CESC hypotheses. Finally, we highlight some recent research on other stem cell systems and consider how this could influence future research directions for identifying the stem cells that maintain the corneal epithelium.
Collapse
|
44
|
Kalisz M, Winzi M, Bisgaard HC, Serup P. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression. Dev Biol 2011; 362:94-103. [PMID: 22178155 DOI: 10.1016/j.ydbio.2011.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1 (EVX1) and GOOSECOID (GSC) regulate cell fate decisions in streak-like progenitors derived from human ES cells exposed to BMP4 and/or activin. We found that EVX1 repressed GSC expression and promoted formation of posterior streak-like progeny in response to BMP4, and conversely that GSC repressed EVX1 expression and was required for development of anterior streak-like progeny in response to activin. Chromatin immunoprecipitation assays showed that EVX1 bound to the GSC 5'-flanking region in BMP4 treated human ES cells, and band shift assays identified two EVX1 binding sites in the GSC 5'-region. Significantly, we found that intact EVX1 binding sites were required for BMP4-mediated repression of GSC reporter constructs. We conclude that BMP4-induced EVX1 repress GSC directly and the two genes form the core of a gene regulatory network (GRN) controlling cell fates in streak-like human ES cell progeny.
Collapse
Affiliation(s)
- Mark Kalisz
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | |
Collapse
|
45
|
Electrophysiological properties of embryonic stem cell-derived neurons. PLoS One 2011; 6:e24169. [PMID: 21887381 PMCID: PMC3162611 DOI: 10.1371/journal.pone.0024169] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/01/2011] [Indexed: 11/19/2022] Open
Abstract
In vitro generation of functional neurons from embryonic stem (ES) cells and induced pluripotent stem cells offers exciting opportunities for dissecting gene function, disease modelling, and therapeutic drug screening. To realize the potential of stem cells in these biomedical applications, a complete understanding of the cell models of interest is required. While rapid advances have been made in developing the technologies for directed induction of defined neuronal subtypes, most published works focus on the molecular characterization of the derived neural cultures. To characterize the functional properties of these neural cultures, we utilized an ES cell model that gave rise to neurons expressing the green fluorescent protein (GFP) and conducted targeted whole-cell electrophysiological recordings from ES cell-derived neurons. Current-clamp recordings revealed that most neurons could fire single overshooting action potentials; in some cases multiple action potentials could be evoked by depolarization, or occurred spontaneously. Voltage-clamp recordings revealed that neurons exhibited neuronal-like currents, including an outward current typical of a delayed rectifier potassium conductance and a fast-activating, fast-inactivating inward current, typical of a sodium conductance. Taken together, these results indicate that ES cell-derived GFP(+) neurons in culture display functional neuronal properties even at early stages of differentiation.
Collapse
|
46
|
Thomas JA, Pope C, Wojtacha D, Robson AJ, Gordon-Walker TT, Hartland S, Ramachandran P, Van Deemter M, Hume DA, Iredale JP, Forbes SJ. Macrophage therapy for murine liver fibrosis recruits host effector cells improving fibrosis, regeneration, and function. Hepatology 2011; 53:2003-15. [PMID: 21433043 DOI: 10.1002/hep.24315] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED Clinical studies of bone marrow (BM) cell therapy for liver cirrhosis are under way but the mechanisms of benefit remain undefined. Cells of the monocyte-macrophage lineage have key roles in the development and resolution of liver fibrosis. Therefore, we tested the therapeutic effects of these cells on murine liver fibrosis. Advanced liver fibrosis was induced in female mice by chronic administration of carbon tetrachloride. Unmanipulated, syngeneic macrophages, their specific BM precursors, or unfractionated BM cells were delivered during liver injury. Mediators of inflammation, fibrosis, and regeneration were measured. Donor cells were tracked by sex-mismatch and green fluorescent protein expression. BM-derived macrophage (BMM) delivery resulted in early chemokine up-regulation with hepatic recruitment of endogenous macrophages and neutrophils. These cells delivered matrix metalloproteinases-13 and -9, respectively, into the hepatic scar. The effector cell infiltrate was accompanied by increased levels of the antiinflammatory cytokine interleukin 10. A reduction in hepatic myofibroblasts was followed by reduced fibrosis detected 4 weeks after macrophage infusion. Serum albumin levels were elevated at this time. Up- regulation of the liver progenitor cell mitogen tumor necrosis factor-like weak inducer of apoptosis (TWEAK) preceded expansion of the progenitor cell compartment. Increased expression of colony stimulating factor-1, insulin-like growth factor-1, and vascular endothelial growth factor also followed BMM delivery. In contrast to the effects of differentiated macrophages, liver fibrosis was not significantly altered by the application of macrophage precursors and was exacerbated by whole BM. CONCLUSION Macrophage cell therapy improves clinically relevant parameters in experimental chronic liver injury. Paracrine signaling to endogenous cells amplifies the effect. The benefits from this single, defined cell type suggest clinical potential.
Collapse
Affiliation(s)
- James A Thomas
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Adamo A, Sesé B, Boue S, Castaño J, Paramonov I, Barrero MJ, Izpisua Belmonte JC. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 2011; 13:652-9. [PMID: 21602794 DOI: 10.1038/ncb2246] [Citation(s) in RCA: 255] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 03/30/2011] [Indexed: 12/14/2022]
Abstract
We identify LSD1 (lysine-specific demethylase 1; also known as KDM1A and AOF2) as a key histone modifier that participates in the maintenance of pluripotency through the regulation of bivalent domains, a chromatin environment present at the regulatory regions of developmental genes that contains both H3K4 di/trimethylation and H3K27 trimethylation marks. LSD1 occupies the promoters of a subset of developmental genes that contain bivalent domains and are co-occupied by OCT4 and NANOG in human embryonic stem cells, where it controls the levels of H3K4 methylation through its demethylase activity. Thus, LSD1 has a role in maintaining the silencing of several developmental genes in human embryonic stem cells by regulating the critical balance between H3K4 and H3K27 methylation at their regulatory regions.
Collapse
Affiliation(s)
- Antonio Adamo
- Center of Regenerative Medicine in Barcelona, Dr. Aiguader, 88, 08003 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Generation of human embryonic stem cell reporter lines expressing GFP specifically in neural progenitors. Stem Cell Rev Rep 2010; 6:438-49. [PMID: 20506046 DOI: 10.1007/s12015-010-9159-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Generation of lineage-specific human embryonic stem cell (hESC) reporter lines will facilitate the real time monitoring of differentiation in live cells and the identification of factors governing these processes. It will also enable researchers to purify specific cell populations from heterogeneous differentiated hESC progeny. Here we report the generation of clonally derived nestin-EGFP reporter hESC lines that express GFP under the control of the neuroepithelial specific nestin 2nd intron enhancer. We show that the nestin-EGFP hESC reporter lines retain the features of undifferentiated hESCs, are able to self-renew in hESC culture conditions and to differentiate into cells of all three germ layers. The nestin-EGFP reporter exhibited high expression in neural progenitor cells upon differentiation, although it is detectable at a low level in the undifferentiated state. Furthermore, the expression of the transgene is exclusively confined to the neural progenitors after differentiation. The specific expression of the transgene is determined by collaborative binding motifs of POU and SOX transcription factors in the nestin enhancer. Deletion of either of the binding elements resulted in a significant reduction of enhancer/promoter activity. Taken together, the nestin-EGFP reporter hESC lines are invaluable not only for the study of the neural differentiation process from hESCs but also for the enrichment of neural progenitor cells from other cell lineages.
Collapse
|
49
|
Bidirectional reprogramming of mouse embryonic stem cell/fibroblast hybrid cells is initiated at the heterokaryon stage. Cell Tissue Res 2010; 342:377-89. [PMID: 21103994 DOI: 10.1007/s00441-010-1085-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/28/2010] [Indexed: 01/18/2023]
Abstract
Immunofluorescent analysis of markers specific for parental genomes was used to study heterokaryons and hybrid cells soon after the fusion of diploid embryonic stem (ES) cells marked with green fluorescent protein and diploid fibroblasts labeled by blue fluorescent beads. Heterokaryons were identified by an analysis of parental mitochondrial DNAs. Within 20 h after fusion, most heterokaryons (up to 80%) had a fibroblast-like phenotype, being positive for typical fibroblast markers (collagen type I, fibronectin, lamin A/C) and for the modification me3H3K27 chromatin marking the inactive X chromosome but being negative for Oct4 and Nanog. Approximately 20% of heterokaryons had an alternative ES-like phenotype being positive for Oct4 and Nanog, with signs of reactivation of the previously inactive X-chromosome but negative for fibroblast markers. Hybrid cells having alternative phenotypes were easily identified from 24-48 h. The level of DNA methylation at the promoter of the fibroblast Oct4 allele in the ES-like hybrid cells at day 4 was similar to that of ES cells but at the same time, both parental Oct4 alleles were heavily methylated in fibroblast-like hybrid cells. Thus, bidirectional reprogramming initiated at the heterokaryon stage seems to lead to the formation of two types of hybrid cells with alternative dominance of the parental genomes. However, the further fates of two types of hybrid cells are different: ES-like hybrid cells form colonies at 4-6 days but no colonies are derived from the fibroblast-like hybrid cells. The latter grow as disconnected single cells and are unable to form colonies, like mouse embryonic fibroblasts.
Collapse
|
50
|
The Gli3 hypomorphic mutation Pdn causes selective impairment in the growth, patterning, and axon guidance capability of the lateral ganglionic eminence. J Neurosci 2010; 30:13883-94. [PMID: 20943929 DOI: 10.1523/jneurosci.3650-10.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Previous studies have defined a requirement for Sonic hedgehog (Shh) signaling in patterning the ventral telencephalon, a major source of the neuronal diversity found in the mature telencephalon. The zinc finger transcription factor Gli3 is a critical component of the Shh signaling pathway and its loss causes major defects in telencephalic development. Gli3 is expressed in a graded manner along the dorsoventral axis of the telencephalon but it is unknown whether Gli3 expression levels are important for dorsoventral telencephalic patterning. To address this, we used the Gli3 hypomorphic mouse mutant Polydactyly Nagoya (Pdn). We show that in Pdn/Pdn embryos, the telencephalic expression of Gli3 remains graded, but Gli3 mRNA and protein levels are reduced, resulting in an upregulation of Shh expression and signaling. These changes mainly affect the development of the lateral ganglionic eminence (LGE), with some disorganization of the medial ganglionic eminence mantle zone. The pallial/subpallial boundary is shifted dorsally and the production of postmitotic neurons is reduced. Moreover, LGE pioneer neurons that guide corticofugal axons into the LGE do not form properly, delaying the entry of corticofugal axons into the ventral telencephalon. Pdn/Pdn mutants also show severe pathfinding defects of thalamocortical axons in the ventral telencephalon. Transplantation experiments demonstrate that the intrinsic ability of the Pdn ventral telencephalon to guide thalamocortical axons is compromised. We conclude that correct Gli3 levels are particularly important for the LGE's growth, patterning, and development of axon guidance capabilities.
Collapse
|