1
|
Kidder BL, Ruden X, Singh A, Marben TA, Rass L, Chakravarty A, Xie Y, Puscheck EE, Awonuga AO, Harris S, Ruden DM, Rappolee DA. Novel high throughput screen reports that benzo(a)pyrene overrides mouse trophoblast stem cell multipotency, inducing SAPK activity, HAND1 and differentiated trophoblast giant cells. Placenta 2024; 152:72-85. [PMID: 38245404 DOI: 10.1016/j.placenta.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
INTRODUCTION Cultured mouse trophoblast stem cells (mTSC) maintain proliferation/normal stemness (NS) under FGF4, which when removed, causes normal differentiation (ND). Hypoxic, or hyperosmotic stress forces trophoblast giant cells (TGC) differentiate. Hypoxic, hyperosmotic, and genotoxic benzo(a)pyrene (BaP), which is found in tobacco smoke, force down-regulation of inhibitor of differentiation (Id)2, enabling TGC differentiation. Hypoxic and hyperosmotic stress induce TGC by SAPK-dependent HAND1 increase. Here we test whether BaP forces mTSC-to-TGC while inducing SAPK and HAND1. METHODS Hand1 and SAPK activity were assayed by immunoblot, mTSC-to-TGC growth and differentiation were assayed at Tfinal after 72hr exposure of BaP, NS, ND, Retinoic acid (RA), or sorbitol. Nuclear-stained cells were micrographed automatically by a live imager, and assayed by ImageJ/FIJI, Biotek Gen 5, AIVIA proprietary artificial intelligence (AI) software or open source, CellPose artificial intelligence/AI software. RESULTS BaP (0.05-1μM) activated SAPK and HAND1 without diminishing growth. TSC-to-TGC differentiation was assayed with increasingly accuracy for 2-4 N cycling nuclei and >4 N differentiating TGC nuclei, using ImageJ/FIJI, Gen 5, AIVIA, or CellPose AI software. The AIVIA and Cellpose AI software matches human accuracy. The lowest BaP effects on SAPK activation/HAND1 increase are >10-fold more sensitive than similar effects for mESC. RA induces 44-47% 1st lineage TGC differentiation, but the same RA dose induces only 1% 1st lineage mESC differentiation. DISCUSSION First, these pilot data suggest that mTSC can be used in high throughput screens (HTS) to predict toxicant exposures that force TGC differentiation. Second, mTSC differentiated more cells than mESC for similar stress exposures, Third, open source AI can replace human micrograph quantitation and enable a miscarriage-predicting HTS.
Collapse
Affiliation(s)
- B L Kidder
- Department of Oncology, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, MI, USA
| | - X Ruden
- CS Mott Center/WSU Ob/gyn Department, USA; Reproductive Stress Inc, Grosse Pointe Farms, MI, USA
| | - A Singh
- CS Mott Center/WSU Ob/gyn Department, USA; WSU CMMG, USA
| | - T A Marben
- University of Detroit, Mercy (NIH Build Fellow), USA
| | - L Rass
- Barber Foundation Fellows/WSU, USA
| | | | - Y Xie
- Western Fertility, Los Angeles, CA, USA
| | - E E Puscheck
- CS Mott Center/WSU Ob/gyn Department, USA; Invia Infertility, Chicago, IL, USA
| | | | - S Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - D M Ruden
- CS Mott Center/WSU Ob/gyn Department, USA; IEHS, WSU, USA
| | - D A Rappolee
- CS Mott Center/WSU Ob/gyn Department, USA; Reproductive Stress Inc, Grosse Pointe Farms, MI, USA; Dept of Physiology, WSU, USA.
| |
Collapse
|
2
|
Lawless L, Qin Y, Xie L, Zhang K. Trophoblast Differentiation: Mechanisms and Implications for Pregnancy Complications. Nutrients 2023; 15:3564. [PMID: 37630754 PMCID: PMC10459728 DOI: 10.3390/nu15163564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Placental development is a tightly controlled event, in which cell expansion from the trophectoderm occurs in a spatiotemporal manner. Proper trophoblast differentiation is crucial to the vitality of this gestational organ. Obstructions to its development can lead to pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm birth, posing severe health risks to both the mother and offspring. Currently, the only known treatment strategy for these complications is delivery, making it an important area of research. The aim of this review was to summarize the known information on the development and mechanistic regulation of trophoblast differentiation and highlight the similarities in these processes between the human and mouse placenta. Additionally, the known biomarkers for each cell type were compiled to aid in the analysis of sequencing technologies.
Collapse
Affiliation(s)
- Lauren Lawless
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Yushu Qin
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Linglin Xie
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Ke Zhang
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX 77030, USA;
- Department of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Buss G, Stratton MB, Milenkovic L, Stearns T. Postmitotic centriole disengagement and maturation leads to centrosome amplification in polyploid trophoblast giant cells. Mol Biol Cell 2022; 33:ar118. [PMID: 36001376 PMCID: PMC9634975 DOI: 10.1091/mbc.e22-05-0182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA replication is normally coupled with centriole duplication in the cell cycle. Trophoblast giant cells (TGCs) of the placenta undergo endocycles resulting in polyploidy but their centriole state is not known. We used a cell culture model for TGC differentiation to examine centriole and centrosome number and properties. Before differentiation, trophoblast stem cells (TSCs) have either two centrioles before duplication or four centrioles after. We find that the average nuclear area increases approximately eight-fold over differentiation, but most TGCs do not have more than four centrioles. However, these centrioles become disengaged, acquire centrosome proteins, and can nucleate microtubules. In addition, some TGCs undergo further duplication and disengagement of centrioles, resulting in substantially higher numbers. Live imaging revealed that disengagement and separation are centriole autonomous and can occur asynchronously. Centriole amplification, when present, occurs by the standard mechanism of one centriole generating one procentriole. PLK4 inhibition blocks centriole formation in differentiating TGCs but does not affect endocycle progression. In summary, centrioles in TGC endocycles undergo disengagement and conversion to centrosomes. This increases centrosome number but to a limited extent compared with DNA reduplication.
Collapse
Affiliation(s)
- Garrison Buss
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305
| | | | | | - Tim Stearns
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305,Department of Biology, Stanford University, Stanford, CA 94305,*Address correspondence to: Tim Stearns ()
| |
Collapse
|
4
|
Nishitani K, Hayakawa K, Minatomoto M, Tanaka K, Ogawa H, Kojima H, Tanaka S. N-Oleoyldopamine promotes the differentiation of mouse trophoblast stem cells into parietal trophoblast giant cells. Biochem Biophys Res Commun 2022; 636:205-212. [DOI: 10.1016/j.bbrc.2022.10.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/25/2022]
|
5
|
Listeria monocytogenes Infection Alters the Content and Function of Extracellular Vesicles Produced by Trophoblast Stem Cells. Infect Immun 2022; 90:e0034722. [PMID: 36154271 DOI: 10.1128/iai.00347-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Placental immunity is critical for fetal health during pregnancy, as invading pathogens spread from the parental blood to the fetus through this organ. However, inflammatory responses in the placenta can adversely affect both the fetus and the pregnant person, and the balance between protective placental immune response and detrimental inflammation is poorly understood. Extracellular vesicles (EVs) are membrane-enclosed vesicles that play a critical role in placental immunity. EVs produced by placental trophoblasts mediate immune tolerance to the fetus and to the placenta itself, but these EVs can also activate detrimental inflammatory responses. The regulation of these effects is not well characterized, and the role of trophoblast EVs (tEVs) in the response to infection has yet to be defined. The Gram-positive bacterial pathogen Listeria monocytogenes infects the placenta, serving as a model to study tEV function in this context. We investigated the effect of L. monocytogenes infection on the production and function of tEVs, using a trophoblast stem cell (TSC) model. We found that tEVs from infected TSCs can induce the production of the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) in recipient cells. Surprisingly, this tEV treatment could confer increased susceptibility to subsequent L. monocytogenes infection, which has not been reported previously as an effect of EVs. Proteomic analysis and RNA sequencing revealed that tEVs from infected TSCs had altered cargo compared with those from uninfected TSCs. However, no L. monocytogenes proteins were detected in tEVs from infected TSCs. Together, these results suggest an immunomodulatory role for tEVs during prenatal infection.
Collapse
|
6
|
Dong Z, Fan C, Hou W, Rui C, Wang X, Fan Y, Zhao L, Wang Q, Wang Z, Zeng X, Feng S, Li P. Vaginal Exposure to Candida albicans During Early Gestation Results in Adverse Pregnancy Outcomes via Inhibiting Placental Development. Front Microbiol 2022; 12:816161. [PMID: 35281308 PMCID: PMC8908259 DOI: 10.3389/fmicb.2021.816161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) is considered the second most common cause of vaginitis after bacterial vaginosis and the most common lower genital tract infection during pregnancy. Candida albicans (C. albicans), an opportunistic pathogen, is the major species causing VVC. Recently, increasing researches have shown that lower reproductive tract infection during pregnancy can lead to various adverse pregnancy outcomes. However, the underlying mechanisms are not fully understood. Hence, we successfully established a mouse model of vaginal C. albicans infection and characterized the adverse pregnancy outcomes. C. albicans infection strikingly increased abortion rate and decreased litter size. Further analysis of placental development demonstrated that placental structure was abnormal, including that the area of spongiotrophoblast (Spo) and labyrinth (Lab) was reduced, and the formation of placental vessel was decreased in Lab zone. Accordingly, the expression of marker genes during placental development was downregulated. Collectively, the above findings revealed that vaginal C. albicans infection during pregnancy can inhibit placental development and ultimately lead to adverse pregnancy outcomes. This study enhances our comprehension of the effect of VVC on pregnancy, and placental dysplasia as a feasible orientation to explore VVC during pregnancy.
Collapse
Affiliation(s)
- Zhiyong Dong
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Chong Fan
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wenwen Hou
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Can Rui
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyan Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yuru Fan
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhao
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Qing Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhichong Wang
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
- *Correspondence: Xin Zeng,
| | - Shanwu Feng
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Shanwu Feng,
| | - Ping Li
- Nanjing Maternity and Child Health Care Hospital, Women’s Hospital of Nanjing Medical University, Nanjing, China
- Ping Li,
| |
Collapse
|
7
|
Sun S, Yano S, Nakanishi MO, Hirose M, Nakabayashi K, Hata K, Ogura A, Tanaka S. Maintenance of mouse trophoblast stem cells in KSR-based medium allows conventional 3D culture. J Reprod Dev 2021; 67:197-205. [PMID: 33746143 PMCID: PMC8238679 DOI: 10.1262/jrd.2020-119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse trophoblast stem cells (TSCs) can differentiate into trophoblast cells, which constitute the placenta. Under conventional culture conditions, in a medium supplemented with 20% fetal bovine serum (FBS), fibroblast growth factor 4 (FGF4), and heparin and in the presence of mouse embryonic fibroblast cells (MEFs) as feeder cells, TSCs maintain their undifferentiated, proliferative status. MEFs can be replaced by a 70% MEF-conditioned medium (MEF-CM) or by TGF-ß/activin A. To find out if KnockOutTM Serum Replacement (KSR) can replace FBS for TSC maintenance, we cultured mouse TSCs in KSR-based, FBS-free medium and investigated their proliferation capacity, stemness, and differentiation potential. The results indicated that fibronectin, vitronectin, or laminin coating was necessary for adhesion of TSCs under KSR-based conditions but not for their survival or proliferation. While the presence of FGF4, heparin, and activin A was not sufficient to support the proliferation of TSCs, the addition of a pan-retinoic acid receptor inverse agonist and a ROCK-inhibitor yielded a proliferation rate comparable to that obtained under the conventional FBS-based conditions. TSCs cultured under the KSR-based conditions had a gene expression and DNA methylation profile characteristic of TSCs and exhibited a differentiation potential. Moreover, under KSR-based conditions, we could obtain a suspension culture of TSCs using extracellular matrix (ECM) coating-free dishes. Thus, we have established here, KSR-based culture conditions for the maintenance of TSCs, which should be useful for future studies.
Collapse
Affiliation(s)
- Shuai Sun
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Shota Yano
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Momo O Nakanishi
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, Research Institute, National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Atsuo Ogura
- RIKEN BRC, University of Tsukuba, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Satoshi Tanaka
- Department of Animal Resource Sciences/Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
8
|
Ullah R, Naz A, Akram HS, Ullah Z, Tariq M, Mithani A, Faisal A. Transcriptomic analysis reveals differential gene expression, alternative splicing, and novel exons during mouse trophoblast stem cell differentiation. Stem Cell Res Ther 2020; 11:342. [PMID: 32762732 PMCID: PMC7409654 DOI: 10.1186/s13287-020-01848-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Differentiation of mouse trophoblast stem cells (TSCs) to trophoblast giant cells (TGCs) has been widely used as a model system to study placental development and function. While several differentially expressed genes, including regulators of TSC differentiation, have been identified, a comprehensive analysis of the global expression of genes and splice variants in the two cell types has not been reported. RESULTS Here, we report ~ 7800 differentially expressed genes in TGCs compared to TSCs which include regulators of the cell cycle, apoptosis, cytoskeleton, cell mobility, embryo implantation, metabolism, and various signaling pathways. We show that several mitotic proteins, including Aurora A kinase, were downregulated in TGCs and that the activity of Aurora A kinase is required for the maintenance of TSCs. We also identify hitherto undiscovered, cell-type specific alternative splicing events in 31 genes in the two cell types. Finally, we also report 19 novel exons in 12 genes which are expressed in both TSCs and TGCs. CONCLUSIONS Overall, our results uncover several potential regulators of TSC differentiation and TGC function, thereby providing a valuable resource for developmental and molecular biologists interested in the study of stem cell differentiation and embryonic development.
Collapse
Affiliation(s)
- Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Ambreen Naz
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hafiza Sara Akram
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zakir Ullah
- Virginia Commonwealth University, Richmond, USA
| | - Muhammad Tariq
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
9
|
Persistent Human KIT Receptor Signaling Disposes Murine Placenta to Premature Differentiation Resulting in Severely Disrupted Placental Structure and Functionality. Int J Mol Sci 2020; 21:ijms21155503. [PMID: 32752102 PMCID: PMC7432075 DOI: 10.3390/ijms21155503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Activating mutations in the human KIT receptor is known to drive severe hematopoietic disorders and tumor formation spanning various entities. The most common mutation is the substitution of aspartic acid at position 816 to valine (D816V), rendering the receptor constitutively active independent of ligand binding. As the role of the KIT receptor in placental signaling cascades is poorly understood, we analyzed the impact of KITD816V expression on placental development using a humanized mouse model. Placentas from KITD816V animals present with a grossly changed morphology, displaying a reduction in labyrinth and spongiotrophoblast layer and an increase in the Parietal Trophoblast Giant Cell (P-TGC) layer. Elevated differentiation to P-TGCs was accompanied with reduced differentiation to other Trophoblast Giant Cell (TGC) subtypes and by severe decrease in proliferation. The embryos display growth retardation and die in utero. KITD816V-trophoblast stem cells (TSC) differentiate much faster compared to wild type (WT) controls. In undifferentiated KITD816V-TSCs, levels of Phosphorylated Extracellular-signal Regulated Kinase (P-ERK) and Phosphorylated Protein Kinase B (P-AKT) are comparable to wildtype cultures differentiating for 3–6 days. Accordingly, P-TGC markers Placental Lactogen 1 (PL1) and Proliferin (PLF) are upregulated as well. The results reveal that KIT signaling orchestrates the fine-tuned differentiation of the placenta, with special emphasis on P-TGC differentiation. Appropriate control of KIT receptor action is therefore essential for placental development and nourishment of the embryo.
Collapse
|
10
|
Wang P, Yan F, Li Z, Yu Y, Parnell SE, Xiong Y. Impaired plasma membrane localization of ubiquitin ligase complex underlies 3-M syndrome development. J Clin Invest 2019; 129:4393-4407. [PMID: 31343991 DOI: 10.1172/jci129107] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
3-M primordial dwarfism is an inherited disease characterized by severe pre- and postnatal growth retardation and by mutually exclusive mutations in three genes, CUL7, OBSL1, and CCDC8. The mechanism underlying 3-M dwarfism is not clear. We showed here that CCDC8, derived from a retrotransposon Gag protein in placental mammals, exclusively localized on the plasma membrane and was phosphorylated by CK2 and GSK3. Phosphorylation of CCDC8 resulted in its binding first with OBSL1, and then CUL7, leading to the membrane assembly of the 3-M E3 ubiquitin ligase complex. We identified LL5β, a plasma membrane protein that regulates cell migration, as a substrate of 3-M ligase. Wnt inhibition of CCDC8 phosphorylation or patient-derived mutations in 3-M genes disrupted membrane localization of the 3-M complex and accumulated LL5β. Deletion of Ccdc8 in mice impaired trophoblast migration and placental development, resulting in intrauterine growth restriction and perinatal lethality. These results identified a mechanism regulating cell migration and placental development that underlies the development of 3-M dwarfism.
Collapse
Affiliation(s)
- Pu Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Feng Yan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA
| | - Yanbao Yu
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Scott E Parnell
- Bowles Center for Alcohol Studies.,Department of Cell Biology and Physiology
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina, USA.,Department of Biochemistry and Biophysics, and.,Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Kalisch-Smith JI, Steane SE, Simmons DG, Pantaleon M, Anderson ST, Akison LK, Wlodek ME, Moritz KM. Periconceptional alcohol exposure causes female-specific perturbations to trophoblast differentiation and placental formation in the rat. Development 2019; 146:dev172205. [PMID: 31182432 DOI: 10.1242/dev.172205] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022]
Abstract
The development of pathologies during pregnancy, including pre-eclampsia, hypertension and fetal growth restriction (FGR), often originates from poor functioning of the placenta. In vivo models of maternal stressors, such as nutrient deficiency, and placental insufficiency often focus on inadequate growth of the fetus and placenta in late gestation. These studies rarely investigate the origins of poor placental formation in early gestation, including those affecting the pre-implantation embryo and/or the uterine environment. The current study characterises the impact on blastocyst, uterine and placental outcomes in a rat model of periconceptional alcohol exposure, in which 12.5% ethanol is administered in a liquid diet from 4 days before until 4 days after conception. We show female-specific effects on trophoblast differentiation, embryo-uterine communication, and formation of the placental vasculature, resulting in markedly reduced placental volume at embryonic day 15. Both sexes exhibited reduced trophectoderm pluripotency and global hypermethylation, suggestive of inappropriate epigenetic reprogramming. Furthermore, evidence of reduced placental nutrient exchange and reduced pre-implantation maternal plasma choline levels offers significant mechanistic insight into the origins of FGR in this model.
Collapse
Affiliation(s)
- Jacinta I Kalisch-Smith
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Sarah E Steane
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - David G Simmons
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Marie Pantaleon
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Stephen T Anderson
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Lisa K Akison
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| | - Mary E Wlodek
- Department of Physiology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, QLD 4072, Australia
- Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
12
|
Efficient Induction of Syncytiotrophoblast Layer II Cells from Trophoblast Stem Cells by Canonical Wnt Signaling Activation. Stem Cell Reports 2017; 9:2034-2049. [PMID: 29153986 PMCID: PMC5785677 DOI: 10.1016/j.stemcr.2017.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/01/2023] Open
Abstract
The syncytiotrophoblast layer is the most critical and prominent tissue in placenta. SynT cells are differentiated from trophoblast stem cells (TSCs) during early embryogenesis. Mouse TSCs can spontaneously differentiate into cells of mixed lineages in vitro upon withdrawal of stemness-maintaining factors. However, differentiation into defined placental cell lineages remains challenging. We report here that canonical Wnt signaling activation robustly induces expression of SynT-II lineage-specific genes Gcm1 and SynB and suppresses markers of other placental lineages. In contrast to mouse TSCs, the induced SynT-II cells are migratory. More importantly, the migration depends on hepatocyte growth factor (HGF) and the c-MET signaling axis. Furthermore, HGF-expressing cells lie adjacent to SynT-II cells in developing murine placenta, suggesting that HGF/c-MET signaling plays a critical role in SynT-II cell morphogenesis during the labyrinth branching process. The availability of SynT-II cells in vitro will facilitate molecular understanding of labyrinth layer development. Wnt is sufficient to induce SynT-II cells from trophoblast stem cells Induced SynT-II cells are migratory and are independent on EMT Hepatocyte growth factor/c-MET is essential for SynT-II cell migration
Collapse
|
13
|
Kalisch-Smith JI, Moritz KM. Detrimental effects of alcohol exposure around conception: putative mechanisms. Biochem Cell Biol 2017; 96:107-116. [PMID: 29112458 DOI: 10.1139/bcb-2017-0133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In western countries, alcohol consumption is widespread in women of reproductive age, and in binge quantities. These countries also continue to have high incidences of unplanned pregnancies, with women often reported to cease drinking after discovering their pregnancy. This suggests the early embryo may be highly exposed to the detrimental effects of alcohol during the periconception period. The periconception and pre-implantation windows, which include maturation of the oocyte, fertilisation, and morphogenesis of the pre-implantation embryo, are particularly sensitive times of development. Within the oviduct and uterus, the embryo is exposed to a unique nutritional environment to facilitate its development and establish de-novo expression of the genome through epigenetic reprogramming. Alcohol has wide-ranging effects on cellular stress, as well as hormonal, and nutrient signalling pathways, which may affect the development and metabolism of the early embryo. In this review, we summarise the adverse developmental outcomes of early exposure to alcohol (prior to implantation in animal models) and discuss the potential mechanisms for these outcomes that may occur within the protected oviductal and uterine environment. One interesting candidate is reduced retinoic acid synthesis, as it is implicated in the control of epigenetic reprogramming and cell lineage commitment, processes that have adverse consequences for the formation of the placenta, and subsequently, fetal programming.
Collapse
Affiliation(s)
- J I Kalisch-Smith
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - K M Moritz
- a School of Biomedical Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia.,b Child Health Research Centre, The University of Queensland, South Brisbane, QLD 4101, Australia
| |
Collapse
|
14
|
Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 2016; 66:68-83. [PMID: 27693483 DOI: 10.1016/j.reprotox.2016.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations. VPA elevated expression levels of various developmental regulators, including Cdx1 and Hoxa1, known transcriptional targets of retinoic acid (RA) signaling. Co-treatment of EBs with VPA and BMS493, an RA receptor antagonist, partially rescued axial elongation as well as gene expression profiles. These results suggest that VPA requires active RA signaling to interfere with EB morphogenesis.
Collapse
|
15
|
Novel O-GlcNAcylation on Ser(40) of canonical H2A isoforms specific to viviparity. Sci Rep 2016; 6:31785. [PMID: 27615797 PMCID: PMC5018834 DOI: 10.1038/srep31785] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
We report here newly discovered O-linked-N-acetylglucosamine (O-GlcNAc) modification of histone H2A at Ser40 (H2AS40Gc). The mouse genome contains 18 H2A isoforms, of which 13 have Ser40 and the other five have Ala40. The combination of production of monoclonal antibody and mass spectrometric analyses with reverse-phase (RP)-high performance liquid chromatography (HPLC) fractionation indicated that the O-GlcNAcylation is specific to the Ser40 isoforms. The H2AS40Gc site is in the L1 loop structure where two H2A molecules interact in the nucleosome. Targets of H2AS40Gc are distributed genome-wide and are dramatically changed during the process of differentiation in mouse trophoblast stem cells. In addition to the mouse, H2AS40Gc was also detected in humans, macaques and cows, whereas non-mammalian species possessing only the Ala40 isoforms, such as silkworms, zebrafish and Xenopus showed no signal. Genome database surveys revealed that Ser40 isoforms of H2A emerged in Marsupialia and persisted thereafter in mammals. We propose that the emergence of H2A Ser40 and its O-GlcNAcylation linked a genetic event to genome-wide epigenetic events that correlate with the evolution of placental animals.
Collapse
|
16
|
Garg V, Morgani S, Hadjantonakis AK. Capturing Identity and Fate Ex Vivo: Stem Cells from the Mouse Blastocyst. Curr Top Dev Biol 2016; 120:361-400. [PMID: 27475857 DOI: 10.1016/bs.ctdb.2016.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During mouse preimplantation development, three molecularly, morphologically, and spatially distinct lineages are formed, the embryonic epiblast, the extraembryonic primitive endoderm, and the trophectoderm. Stem cell lines representing each of these lineages have now been derived and can be indefinitely maintained and expanded in culture, providing an unlimited source of material to study the interplay of tissue-specific transcription factors and signaling pathways involved in these fundamental cell fate decisions. Here we outline our current understanding of the derivation, maintenance, and properties of these in vitro stem cell models representing the preimplantation embryonic lineages.
Collapse
Affiliation(s)
- V Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States
| | - S Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, United States.
| |
Collapse
|
17
|
The histone variant H2A.Z is dynamically expressed in the developing mouse placenta and in differentiating trophoblast stem cells. Placenta 2015; 36:1325-8. [PMID: 26363621 DOI: 10.1016/j.placenta.2015.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
The histone variant H2A.Z is important in establishing new chromatin environments necessary for permitting changes in gene expression and thus differentiation in mouse embryonic stem (mES) cells. In this study we show that H2A.Z is highly expressed in the early mouse placenta, and is specifically limited to progenitor-like trophoblast cells. Using in vitro models, we revealed distinct differences in H2A.Z abundance between undifferentiated, differentiating and differentiated mouse trophoblast stem (mTS) cells. Our work supports the hypothesis that in addition to roles in differentiating mES cells, H2A.Z is also involved in the differentiation of extra-embryonic tissues.
Collapse
|
18
|
Nishiyama M, Nita A, Yumimoto K, Nakayama KI. FBXL12-Mediated Degradation of ALDH3 is Essential for Trophoblast Differentiation During Placental Development. Stem Cells 2015; 33:3327-40. [DOI: 10.1002/stem.2088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/20/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Masaaki Nishiyama
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| | - Akihiro Nita
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| | - Kanae Yumimoto
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation, Kyushu University; Higashi-ku Fukuoka, Fukuoka Japan
| |
Collapse
|
19
|
Abnormal development of placenta in HtrA1-deficient mice. Dev Biol 2015; 397:89-102. [DOI: 10.1016/j.ydbio.2014.10.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 10/14/2014] [Accepted: 10/18/2014] [Indexed: 01/31/2023]
|
20
|
Outhwaite JE, Natale BV, Natale DRC, Simmons DG. Expression of aldehyde dehydrogenase family 1, member A3 in glycogen trophoblast cells of the murine placenta. Placenta 2014; 36:304-11. [PMID: 25577283 DOI: 10.1016/j.placenta.2014.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Retinoic acid (RA) signaling is a well known regulator of trophoblast differentiation and placental development, and maternal decidual cells are recognized as the source of much of this RA. We explored possible trophoblast-derived sources of RA by examining the expression of RA synthesis enzymes in the developing mouse placenta, as well as addressed potential sites of RA action by examining the ontogeny of gene expression for other RA metabolizing and receptor genes. Furthermore, we investigated the effects of endogenous RA production on trophoblast differentiation. METHODS Placental tissues were examined by in situ hybridization and assayed for RARE-LacZ transgene activity to locate sites of RAR signaling. Trophoblast stem cell cultures were differentiated in the presence of ALDH1 inhibitors (DEAB and citral), and expression of labyrinth (Syna, Ctsq) and junctional zone (Tpbpa, Prl7b1, Prl7a2) marker genes were analyzed by qRT-PCR. RESULTS We show Aldh1a3 is strongly expressed in a subset of ectoplacental cone cells and in glycogen trophoblast cells of the definitive murine placenta. Most trophoblast subtypes of the placenta express RA receptor combinations that would enable them to respond to RA signaling. Furthermore, expression of junctional zone markers decrease in differentiating trophoblast cultures when endogenous ALDH1 enzymes are inhibited. DISCUSSION Aldh1a3 is a novel marker for glycogen trophoblast cells and their precursors and may play a role in the differentiation of junctional zone cell types via production of a local source of RA.
Collapse
Affiliation(s)
- J E Outhwaite
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - B V Natale
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - D R C Natale
- Department of Reproductive Medicine, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - D G Simmons
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
21
|
Rai A, Cross JC. Three-dimensional cultures of trophoblast stem cells autonomously develop vascular-like spaces lined by trophoblast giant cells. Dev Biol 2014; 398:110-9. [PMID: 25499676 DOI: 10.1016/j.ydbio.2014.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/12/2014] [Accepted: 11/26/2014] [Indexed: 10/24/2022]
Abstract
The maternal blood space in the mouse placenta is lined not by endothelial cells but rather by various subtypes of trophoblast giant cells (TGCs), defined by their location and different patterns of gene expression. While TGCs invade the spiral arteries to displace the maternal endothelium, the rest of the vascular space is created de novo but the mechanisms are not well understood. We cultured mouse trophoblast stem (TS) cells in suspension and found that they readily form spheroids (trophospheres). Compared to cells grown in monolayer, differentiating trophospheres showed accelerated expression of TGC-specific genes. Morphological and gene expression studies showed that cavities form within the trophospheres that are primarily lined by Prl3d1/Pl1α-positive cells analogous to parietal-TGCs (P-TGCs) which line the maternal venous blood within the placenta. Lumen formation in trophospheres and in vivo was associated with cell polarization including CD34 sialomucin deposition on the apical side and cytoskeletal rearrangement. While P-TGCs preferentially formed in trophospheres at atmospheric oxygen levels (19%), decreasing oxygen to 3% shifted differentiation towards Ctsq-positive sinusoidal and/or channel TGCs. These studies show that trophoblast cells have the intrinsic ability to form vascular channels in ways analogous to endothelial cells. The trophosphere system will be valuable for assessing mechanisms that regulate specification of different TGC subtypes and their morphogenesis into vascular spaces.
Collapse
Affiliation(s)
- Anshita Rai
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - James C Cross
- Departments of Biochemistry and Molecular Biology, Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
22
|
Abstract
The trophoblast is the first lineage to undergo differentiation during mammalian development. In the preimplantation blastocyst embryo, two cell types are present including the inner cell mass (ICM) and the trophectoderm (TE). ICM cells exhibit pluripotent potential, or the capacity to give rise to all cells represented in the adult organism, while TE cells are multipotent and are therefore only capable of differentiating into trophoblast lineages represented in the placenta. The TE is essential for implantation of the embryo into the uterine tissue, formation of trophoblast lineages represented in the placenta, and exchange of nutrients and waste between the embryo and the mother. Trophoblast stem (TS) cells, which can be derived from the TE of preimplantation embryos in the presence of external signals such as FGF4, can self-renew indefinitely, and because they are capable of differentiating into epithelial lineages of the trophoblast, TS cells are a useful in vitro model to study the biology of the trophoblast including epigenetic regulation of gene expression. In this chapter we describe protocols for derivation of TS cells from mouse blastocysts, culture conditions that promote self-renewal and differentiation, and methods to transduce TS cells with lentiviral particles encoding shRNAs. These protocols are sufficient for efficient derivation of TS cells and robust RNAi knockdown of target genes in TS cells.
Collapse
Affiliation(s)
- Benjamin L Kidder
- Systems Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, 10 Center Dr., Bldg 10, 7B04, Bethesda, MD, 20892, USA,
| |
Collapse
|
23
|
Donnison M, Broadhurst R, Pfeffer PL. Elf5 and Ets2 maintain the mouse extraembryonic ectoderm in a dosage dependent synergistic manner. Dev Biol 2014; 397:77-88. [PMID: 25446535 DOI: 10.1016/j.ydbio.2014.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 01/14/2023]
Abstract
The ETS superfamily transcription factors Elf5 and Ets2 have both been implicated in the maintenance of the extraembryonic ectoderm (ExE) of the mouse embryo. While homozygous mutants of either gene result in various degrees of ExE tissue loss, heterozygotes are without phenotype. We show here that compound heterozygous mutants exhibit a phenotype intermediate to that of the more severe Elf5-/- and the milder Ets2-/- mutants. Functional redundancy is shown via commonalities in expression patterns, in target gene expression, and by partial rescue of Elf5-/- mutants through overexpressing Ets2 in an Elf5-like fashion. A model is presented suggesting the functional division of the ExE region into a proximal and distal domain based on gene expression patterns and the proximal to distal increasing sensitivity to threshold levels of combined Elf5 and Ets2 activity.
Collapse
Affiliation(s)
- Martyn Donnison
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand
| | - Ric Broadhurst
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand
| | - Peter L Pfeffer
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
24
|
Hannibal RL, Chuong EB, Rivera-Mulia JC, Gilbert DM, Valouev A, Baker JC. Copy number variation is a fundamental aspect of the placental genome. PLoS Genet 2014; 10:e1004290. [PMID: 24785991 PMCID: PMC4006706 DOI: 10.1371/journal.pgen.1004290] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/20/2014] [Indexed: 11/19/2022] Open
Abstract
Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication. Generally, every mammalian cell has the same complement of each part of its genome. However, copy number variation (CNV) can occur, where, compared to the rest of its genome, a cell has either more or less of a specific genomic region. It is unknown whether CNVs cause disease, or whether they are a normal aspect of cell biology. We investigated CNVs in polyploid trophoblast giant cells (TGCs) of the mouse placenta, which have up to 1,000 copies of the genome in each cell. We found that there are 47 regions with decreased copy number in TGCs, which we call underrepresented (UR) domains. These domains are marked in the TGC progenitor cells and we suggest that they gradually form during gestation due to slow replication versus fast replication of the rest of the genome. While UR domains contain cell adhesion and neuronal genes, they also contain significantly fewer genes than other genomic regions. Our results demonstrate that CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during pregnancy.
Collapse
Affiliation(s)
- Roberta L. Hannibal
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Edward B. Chuong
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Juan Carlos Rivera-Mulia
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - David M. Gilbert
- Department of Biological Science, Florida State University, Tallahassee, Tallahassee Florida, United States of America
| | - Anton Valouev
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Julie C. Baker
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Rai A, Cross JC. Development of the hemochorial maternal vascular spaces in the placenta through endothelial and vasculogenic mimicry. Dev Biol 2014; 387:131-41. [PMID: 24485853 DOI: 10.1016/j.ydbio.2014.01.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/14/2014] [Accepted: 01/19/2014] [Indexed: 11/27/2022]
Abstract
The maternal vasculature within the placenta in primates and rodents is unique because it is lined by fetal cells of the trophoblast lineage and not by maternal endothelial cells. In addition to trophoblast cells that invade the uterine spiral arteries that bring blood into the placenta, other trophoblast subtypes sit at different levels of the vascular space. In mice, at least five distinct subtypes of trophoblast cells have been identified which engage maternal endothelial cells on the arterial and venous frontiers of the placenta, but which also form the channel-like spaces within it through a process analogous to formation of blood vessels (vasculogenic mimicry). These cells are all large, post-mitotic trophoblast giant cells. In addition to assuming endothelial cell-like characteristics (endothelial mimicry), they produce dozens of different hormones that are thought to regulate local and systemic maternal adaptations to pregnancy. Recent work has identified distinct molecular pathways in mice that regulate the morphogenesis of trophoblast cells on the arterial and venous sides of the vascular circuit that may be analogous to specification of arterial and venous endothelial cells.
Collapse
Affiliation(s)
- Anshita Rai
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | - James C Cross
- Department of Biochemistry and Molecular Biology, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada; Department of Comparative Biology and Experimental Medicine, Obstetrics and Gynecology, and Medical Genetics, University of Calgary, HSC Room 2279, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1.
| |
Collapse
|
26
|
Lee TTY, Tsai CF, Hsieh TH, Chen JJJ, Wang YC, Kao MC, Wu RM, Singh S, Tsai EM, Lee JN. Ectopic pregnancy-derived human trophoblastic stem cells regenerate dopaminergic nigrostriatal pathway to treat parkinsonian rats. PLoS One 2012; 7:e52491. [PMID: 23285066 PMCID: PMC3528662 DOI: 10.1371/journal.pone.0052491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/14/2012] [Indexed: 11/18/2022] Open
Abstract
Background Stem cell therapy is a potential strategy to treat patients with Parkinson’s disease (PD); however, several practical limitations remain. As such, finding the appropriate stem cell remains the primary issue in regenerative medicine today. We isolated a pre-placental pluripotent stem cell from the chorionic villi of women with early tubal ectopic pregnancies. Our objectives in this study were (i) to identify the characteristics of hTS cells as a potential cell source for therapy; and (ii) to test if hTS cells can be used as a potential therapeutic strategy for PD. Methods and Findings hTS cells expressed gene markers of both the trophectoderm (TE) and the inner cell mass (ICM). hTS cells exhibited genetic and biological characteristics similar to that of hES cells, yet genetically distinct from placenta-derived mesenchymal stem cells. All-trans retinoic acid (RA) efficiently induced hTS cells into trophoblast neural stem cells (tNSCs) in 1-day. Overexpression of transcription factor Nanog was possibly achieved through a RA-induced non-genomic c-Src/Stat3/Nanog signaling pathway mediated by the subcellular c-Src mRNA localization for the maintenance of pluripotency in tNSCs. tNSC transplantation into the lesioned striatum of acute and chronic PD rats not only improved behavioral deficits but also regenerated dopaminergic neurons in the nigrostriatal pathway, evidenced by immunofluorescent and immunohistological analyses at 18-weeks. Furthermore, tNSCs showed immunological advantages for the application in regenerative medicine. Conclusions We successfully isolated and characterized the unique ectopic pregnancy-derived hTS cells. hTS cells are pluripotent stem cells that can be efficiently induced to tNSCs with positive results in PD rat models. Our data suggest that the hTS cell is a dynamic stem cell platform that is potentially suitable for use in disease models, drug discovery, and cell therapy such as PD.
Collapse
Affiliation(s)
- Tony Tung-Yin Lee
- Department of Obstetrics and Gynecology and Center of Excellence for Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Cheng-Fang Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
| | - Tsung-Hsun Hsieh
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Jin Jason Chen
- Institute of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chih Wang
- Department of Obstetrics and Gynecology and Center of Excellence for Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Mi-Chun Kao
- Department of Obstetrics and Gynecology and Center of Excellence for Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sher Singh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology and Center of Excellence for Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Graduate Institute of Medicine, Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan
- * E-mail: (JNL) (ET); (EMT) (JL)
| | - Jau-Nan Lee
- Department of Obstetrics and Gynecology and Center of Excellence for Environmental Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- * E-mail: (JNL) (ET); (EMT) (JL)
| |
Collapse
|
27
|
All-trans retinoic acid and basic fibroblast growth factor synergistically direct pluripotent human embryonic stem cells to extraembryonic lineages. Stem Cell Res 2012; 10:228-40. [PMID: 23314291 DOI: 10.1016/j.scr.2012.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 11/21/2022] Open
Abstract
Human embryonic stem cells (hESCs) can be used to model the cellular and molecular mechanisms that underlie embryonic development. Understanding the cellular mechanisms and pathways involved in extraembryonic (ExE) differentiation is of great interest because of the important role of this process in maternal health and fertility. Fibroblast growth factor 2 (FGF-2) is widely used to maintain the self-renewal of hESCs and induced pluripotent stem cells, while all trans retinoic acid (RA) is used to facilitate the directed differentiation of hESCs. Here, we monitored the RA induced differentiation of hESCs to the ExE lineage with and without FGF-2 over a 7-day period via global transcriptional profiling. The stemness markers POU5F1, NANOG and TDGF1 were markedly downregulated, whereas an upregulation of the ExE markers KRT7, CGA, DDAH2 and IGFBP3 was observed. Many of the differentially expressed genes were involved in WNT and TGF-β signaling. RA inactivated WNT signaling even in the presence of exogenous FGF-2, which that promotes the maintenance of the pluripotent state. We also show that BMP4 was upregulated and that RA was able to modulate the TGF-β signaling pathway and direct hESCs toward the ExE lineage. In addition, an epigenetic study revealed hypermethylation of the DDAH2, TDGF1 and GATA3 gene promoters, suggesting a role for epigenetic regulation during ExE differentiation. These data reveals that the effect of RA prevails in the presence of exogenous FGF-2 thus resulting in the direction of hESCs toward the ExE lineage.
Collapse
|
28
|
Nagao T, Kagawa N, Saito Y, Komada M. Developmental effects of oral exposure to diethylstilbestrol on mouse placenta. J Appl Toxicol 2012; 33:1213-21. [PMID: 22733484 DOI: 10.1002/jat.2766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/09/2012] [Accepted: 03/19/2012] [Indexed: 11/05/2022]
Abstract
Placental growth and function are of biological significance in that placental tissue promotes prenatal life and the maintenance of pregnancy. Exposure to synthetic estrogens causes embryonic mortality and placental growth restriction in mice. The aim of the present study was to examine the effects of diethylstilbestrol (DES) on placenta in mice. DES at 1, 5, 10 or 15 µg kg(-1) day(-1) , or 17β-estradiol (E2 ) at 50 µg kg(-1) day(-1) , was administered orally to ICR mice on days 4 through to 8 of gestation. Expression of ERα, ERβ, ERRβ or ERRγ mRNA in the junctional or labyrinth zone of the placentas on day 13 was assessed using RT-PCR, as well as the embrynic mortality, embryonic and placental weight, histological changes of labyrinth and ultrastructural changes of the trophoblast giant cells (TGCs). Embryo mortalities in the DES 10 and 15 µg kg(-1) day(-1) groups were markedly increased. No significant changes in embryonic and placental weight were observed in any DES- or E2 -exposed groups. Expression of ERα mRNA in the junctional zone with male embryos in the 5 µg kg(-1) day(-1) group was significantly higher than that in the control, whereas expression was not determined in the 15 µg kg(-1) day(-1) group. Histological observation revealed that the placentas exposed to DES at 10 µg kg(-1) day(-1) lacked the developing labyrinth. Ultrastructural observation of the TGCs showed poor rough-surfaced endoplasmic reticulum in the DES 10 µg kg(-1) day(-1) group. The present data suggest that developmental changes induced by DES may be related to interference with the nutrition and oxygen exchange between mother and embryo or decreased protein synthesis, resulting in a high frequency of embryo mortality.
Collapse
Affiliation(s)
- Tetsuji Nagao
- Laboratory of Developmental Biology, Department of Life Science, Kinki University, Osaka, 577-8502, Japan
| | | | | | | |
Collapse
|
29
|
Abstract
This review summarises current knowledge about the specification, commitment and maintenance of the trophoblast lineage in mice and cattle. Results from gene expression studies, in vivo loss-of-function models and in vitro systems using trophoblast and embryonic stem cells have been assimilated into a model seeking to explain trophoblast ontogeny via gene regulatory networks. While trophoblast differentiation is quite distinct between cattle and mice, as would be expected from their different modes of implantation, recent studies have demonstrated that differences arise much earlier during trophoblast development.
Collapse
|
30
|
Stem cells giving rise to extraembryonic tissues. Bull Exp Biol Med 2012; 150:504-14. [PMID: 22268054 DOI: 10.1007/s10517-011-1179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The review is devoted to characterization of stem cells involved in the formation of extraembryonic tissues during the early development of mammalian embryos. Here we present our results of characterization of stem cells from the trophoblast and extraembryonic endoderm of voles and comparative analysis of these cells and the corresponding mouse cells and discuss possible signal pathways maintaining these cells in undifferentiated state.
Collapse
|
31
|
PPAR Signaling in Placental Development and Function. PPAR Res 2011; 2008:142082. [PMID: 18288278 PMCID: PMC2225458 DOI: 10.1155/2008/142082] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 08/28/2007] [Indexed: 11/17/2022] Open
Abstract
With the major attention to the pivotal roles of PPARs in diverse aspects of energy metabolism, the essential functions of PPARγ and PPARβ/δ in placental development came as a surprise and were often considered a nuisance en route to their genetic analysis. However, these findings provided an opportune entrée into placental biology. Genetic and pharmacological studies, primarily of knockout animal models and cell culture, uncovered networks of PPARγ and PPARδ, their heterodimeric RXR partners, associated transcriptional coactivators, and target genes, that regulate various aspects of placental development and function. These studies furnish both specific information about trophoblasts and the placenta and potential hints about the functions of PPARs in other tissues and cell types. They reveal that the remarkable versatility of PPARs extends beyond the orchestration of metabolism to the regulation of cellular differentiation, tissue development, and trophoblast-specific functions. This information and its implications are the subject of this review.
Collapse
|
32
|
Katayama K, Furuki R, Yokoyama H, Kaneko M, Tachibana M, Yoshida I, Nagase H, Tanaka K, Sakurai F, Mizuguchi H, Nakagawa S, Nakanishi T. Enhanced in vivo gene transfer into the placenta using RGD fiber-mutant adenovirus vector. Biomaterials 2011; 32:4185-93. [PMID: 21411139 DOI: 10.1016/j.biomaterials.2011.02.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 02/19/2011] [Indexed: 11/19/2022]
Abstract
Among viral vectors, the fiber-mutant adenovirus vector carrying the Arg-Gly-Asp (RGD) peptide sequence (Ad-RGD) seems to have potential for both clinical gene therapy and basic research. As a part of a thorough evaluation of Ad-RGD in preclinical studies, we designed an experiment to investigate in detail the distribution of Ad-RGD compared with conventional adenovirus vector (WT-Ad) in pregnant mice. Surprisingly, Ad-RGD had substantial placental tropism, at 10-100 times that of WT-Ad. Transgene expression was sustained for at least 7 days, and Ad-RGD expressing firefly luciferase or red fluorescent protein has so far caused no placental dysfunction leading to fetal death. Ad-RGD showed high levels of transduction efficiency in in vitro-differentiated trophoblast stem cells, in which higher expression of αvβ3 integrin than in undifferentiated cells was observed. Our results suggest that the use of Ad-RGD or another RGD-mediated targeting strategy holds promise for drug delivery to the placenta.
Collapse
Affiliation(s)
- Kazufumi Katayama
- Department of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McConaha ME, Eckstrum K, An J, Steinle JJ, Bany BM. Microarray assessment of the influence of the conceptus on gene expression in the mouse uterus during decidualization. Reproduction 2011; 141:511-27. [PMID: 21300692 PMCID: PMC3076716 DOI: 10.1530/rep-10-0358] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
During pregnancy in several species including humans and rodents, the endometrium undergoes decidualization. This process of differentiation from endometrial to decidual tissue occurs only after the onset of implantation in mice. It can also be artificially induced causing the formation of deciduomal tissue. The purpose of this study was to compare the gene expression profile of the developing decidua in pregnant mice with the deciduoma formed after artificial induction in an effort to identify conceptus-influenced changes in uterine gene expression during decidualization. We induced decidualization artificially by transferring blastocyst-sized ConA-coated agarose beads into the uterus on day 2.5 of pseudopregnancy. Recently published work has found this model to be more 'physiological' than other methods. Total RNA was isolated from blastocyst and bead-induced 'implantation' sites of the uteri of day 7.5 pregnant (decidua) and pseudopregnant (deciduoma) mice respectively. This RNA was then used for microarray analysis using Mouse Illumina BeadArray chips. This analysis revealed potential differential mRNA levels of only 45 genes between the decidua and bead-induced deciduoma tissues. We confirmed the differential mRNA levels of 31 of these genes using quantitative RT-PCR. Finally, the level and localization of some of the mRNAs for select genes (Aldh3a1, Bcmo1, Guca2b, and Inhbb) identified by our microarray analysis were examined in more detail. This study provides the identity of a small set of genes whose expression in the uterus during decidualization may be influenced by molecular signals from the conceptus.
Collapse
Affiliation(s)
- ME McConaha
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - K Eckstrum
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - J An
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| | - JJ Steinle
- Department of Ophthalmology, University of Tennessee School of Medicine, Memphis, TN, USA
| | - BM Bany
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, IL, USA
- Department of Obstetrics & Gynecology, Southern Illinois University School of Medicine, Carbondale, IL, USA
| |
Collapse
|
34
|
Zhong W, Xie Y, Abdallah M, Awonuga AO, Slater JA, Sipahi L, Puscheck EE, Rappolee DA. Cellular stress causes reversible, PRKAA1/2-, and proteasome-dependent ID2 protein loss in trophoblast stem cells. Reproduction 2010; 140:921-30. [PMID: 20876741 DOI: 10.1530/rep-10-0268] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stress reduces fertility, but the mechanisms mediating this are not understood. For a successful pregnancy, placental trophoblast stem cells (TSCs) in the implanting embryo proliferate and then a subpopulation differentiates to produce hormones. Normally, differentiation occurs when inhibitor of differentiation 2 (ID2) protein is lost in human and mouse placental stem cells. We hypothesize that stress enzyme-dependent differentiation occurs in association with insufficient TSC accumulation. We studied a well-defined model where TSC differentiation requires ID2 loss. The loss of ID2 derepresses the promoter of chorionic somatomammotropin hormone 1 (CSH1), the first hormone after implantation. Csh1 mRNA is known to be induced in stressed TSCs. In this study, we demonstrate that AMP-activated protein kinase (PRKAA1/2, aka AMPK) mediates the stress-induced proteasome-dependent loss of ID2 at high stress levels. At very low stress levels, PRKAA1/2 mediates metabolic adaptation exemplified by the inactivation of acetyl coA carboxylase by phosphorylation without ID2 loss. At the highest stress levels, irreversible TSC differentiation as defined by ID2 loss and slower cell accumulation occurs. However, lower stress levels lead to reversible differentiation accompanied by metabolic adaptation. These data support the hypothesis that PRKAA1/2 mediates preparation for differentiation that is induced by stress at levels where a significant decrease in cell accumulation occurs. This supports the interpretation that enzyme-mediated increases in differentiation may compensate when insufficient numbers of stem cells accumulate.
Collapse
Affiliation(s)
- W Zhong
- CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Grigor'eva EV, Shevchenko AI, Mazurok NA, Elisaphenko EA, Zhelezova AI, Shilov AG, Dyban PA, Dyban AP, Noniashvili EM, Slobodyanyuk SY, Nesterova TB, Brockdorff N, Zakian SM. FGF4 independent derivation of trophoblast stem cells from the common vole. PLoS One 2009; 4:e7161. [PMID: 19777059 PMCID: PMC2744875 DOI: 10.1371/journal.pone.0007161] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/21/2009] [Indexed: 12/02/2022] Open
Abstract
The derivation of stable multipotent trophoblast stem (TS) cell lines from preimplantation, and early postimplantation mouse embryos has been reported previously. FGF4, and its receptor FGFR2, have been identified as embryonic signaling factors responsible for the maintenance of the undifferentiated state of multipotent TS cells. Here we report the derivation of stable TS-like cell lines from the vole M. rossiaemeridionalis, in the absence of FGF4 and heparin. Vole TS-like cells are similar to murine TS cells with respect to their morphology, transcription factor gene expression and differentiation in vitro into derivatives of the trophectoderm lineage, and with respect to their ability to invade and erode host tissues, forming haemorrhagic tumours after subcutaneous injection into nude mice. Moreover, vole TS-like cells carry an inactive paternal X chromosome, indicating that they have undergone imprinted X inactivation, which is characteristic of the trophoblast lineage. Our results indicate that an alternative signaling pathway may be responsible for the establishment and stable proliferation of vole TS-like cells.
Collapse
Affiliation(s)
- Elena V. Grigor'eva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Alexander I. Shevchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Nina A. Mazurok
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Eugeny A. Elisaphenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Antonina I. Zhelezova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Alexander G. Shilov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | - Pavel A. Dyban
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Andrey P. Dyban
- Institute of Experimental Medicine, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | - Sergey Ya. Slobodyanyuk
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| | | | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Suren M. Zakian
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Department, Novosibirsk, Russia
| |
Collapse
|
36
|
Itoh K, Hiromori Y, Kato N, Yoshida I, Itoh N, Ike M, Nagase H, Tanaka K, Nakanishi T. Placental steroidogenesis in rats is independent of signaling pathways induced by retinoic acids. Gen Comp Endocrinol 2009; 163:285-91. [PMID: 19409899 DOI: 10.1016/j.ygcen.2009.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 04/08/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
We investigated the effects of retinoic acids (RAs) on steroid hormone production and mRNA expression of steroidogenic enzymes in rat placenta in vitro and in vivo. In the rat trophoblast giant cell line Rcho-1, the natural retinoid X receptor (RXR) agonist 9-cis retinoic acid (9cRA) and synthetic RXR agonist LG100268 slightly promoted production of progesterone and androgen, whereas the natural retinoic acid receptor (RAR) agonist all-trans retinoic acid (atRA) and synthetic RAR agonist TTNPB did not. Furthermore, although administration of atRA and 9cRA into the rat uterus at 13.5days postcoitum robustly induced mRNA expression of cellular retinol binding protein II, the gene for which is targeted by RAR and/or RXR, in the placenta, neither RA affected the expression of placental steroidogenic enzymes, and both had little effect on progesterone and androgen levels in the placenta and embryo, suggesting that placental steroidogenesis is not regulated by RAs in rats.
Collapse
Affiliation(s)
- Kenji Itoh
- Department of Toxicology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
El-Hashash AHK, Warburton D, Kimber SJ. Genes and signals regulating murine trophoblast cell development. Mech Dev 2009; 127:1-20. [PMID: 19755154 DOI: 10.1016/j.mod.2009.09.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Revised: 09/05/2009] [Accepted: 09/08/2009] [Indexed: 11/25/2022]
Abstract
A fundamental step in embryonic development is cell differentiation whereby highly specialised cell types are developed from a single undifferentiated, fertilised egg. One of the earliest lineages to form in the mammalian conceptus is the trophoblast, which contributes exclusively to the extraembryonic structures that form the placenta. Trophoblast giant cells (TGCs) in the rodent placenta form the outermost layer of the extraembryonic compartment, establish direct contact with maternal cells, and produce a number of pregnancy-specific cytokine hormones. Giant cells differentiate from proliferative trophoblasts as they exit the cell cycle and enter a genome-amplifying endocycle. Normal differentiation of secondary TGCs is a critical step toward the formation of the placenta and normal embryonic development. Trophoblast development is also of particular interest to the developmental biologist and immunobiologist, as these cells constitute the immediate cellular boundary between the embryonic and maternal tissues. Abnormalities in the development of secondary TGCs results in severe malfunction of the placenta. Herein we review new information that has been accumulated recently regarding the molecular and cellular regulation of trophoblast and placenta development. In particular, we discuss the molecular aspects of murine TGC differentiation. We also focus on the role of growth and transcription factors in TGC development.
Collapse
Affiliation(s)
- Ahmed H K El-Hashash
- Developmental Biology, Saban Research Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA 90027, USA
| | | | | |
Collapse
|
38
|
Choi JC, Holtz R, Murphy SP. Histone deacetylases inhibit IFN-gamma-inducible gene expression in mouse trophoblast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:6307-15. [PMID: 19414784 DOI: 10.4049/jimmunol.0802454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Trophoblast cells are the first cells to differentiate from the developing mammalian embryo, and they subsequently form the blastocyst-derived component of the placenta. IFN-gamma plays critical roles in activating innate and adaptive immunity, as well as apoptosis. In mice, IFN-gamma is produced in the pregnant uterus, and is essential for formation of the decidual layer of the placenta and remodeling of the uterine vasculature. Responses of mouse trophoblast cells to IFN-gamma appear to be selective, for IFN-gamma activates MHC class I expression and enhances phagocytosis, but fails to activate either MHC class II expression or apoptosis in these cells. To investigate the molecular basis for the selective IFN-gamma responsiveness of mouse trophoblast cells, IFN-gamma-inducible gene expression was examined in the trophoblast cell lines SM9 and M-11, trophoblast stem cells, and trophoblast stem cell-derived giant cells. IFN-gamma-inducible expression of multiple genes, including IFN regulatory factor-1 (IRF-1), was significantly reduced in trophoblast cells compared with fibroblast cells. Decreased IRF-1 mRNA expression in trophoblast cells was due to a reduced rate of IRF-1 transcription relative to fibroblast cells. However, no impairment of STAT-1 tyrosine phosphorylation or DNA-binding capacity was observed in IFN-gamma-treated mouse trophoblast cells. Importantly, histone deacetylase (HDAC) inhibitors significantly enhanced IFN-gamma-inducible gene expression in trophoblast cells, but not fibroblasts. Our collective studies demonstrate that IFN-gamma-inducible gene expression is repressed in mouse trophoblast cells by HDACs. We propose that HDAC-mediated inhibition of IFN-gamma-inducible gene expression in mouse trophoblast cells may contribute to successful pregnancy by preventing activation of IFN-gamma responses that might otherwise facilitate the destruction of the placenta.
Collapse
|
39
|
Liu J, Xu W, Sun T, Wang F, Puscheck E, Brigstock D, Wang QT, Davis R, Rappolee DA. Hyperosmolar stress induces global mRNA responses in placental trophoblast stem cells that emulate early post-implantation differentiation. Placenta 2009; 30:66-73. [PMID: 19036436 PMCID: PMC3343317 DOI: 10.1016/j.placenta.2008.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 01/13/2023]
Abstract
Hyperosmolar stress acts in two ways on the implanting embryo and its major constituent, placental trophoblast stem cells (TSC). Stress causes homeostasis that slows development with lesser cell accumulation, increased cell cycle arrest, and apoptosis. Stress may also cause placental differentiation at implantation. To test for the homeostatic and differentiation-inducing consequences of stress, TSC were exposed to hyperosmolar stress for 24 h and tested using whole mouse genome arrays and Real-time quantitative (Q)PCR. At 0.5 h, all 31 highly changing mRNA (>1.5-fold compared with unstressed TSC) decreased, but by 24 h 158/288 genes were upregulated. Many genes upregulated at 24 h were near baseline levels in unstressed TSC, suggesting new transcription. Thus few genes change during the early stress response, but by 24 h TSC have adapted to start new transcription with large gene sets. Types of genes upregulated at 24 h included homeostatic genes regulating growth and DNA damage induced (GADD45beta/gamma), activator protein (AP)-1 (junB/junC/ATF3/4), heat shock proteins (HSP22/68), and cyclin-dependent kinase inhibitor [CDKI; p15, p21]. But, stress also induced transcription factors that mediate TSC differentiation to trophoblast giant cells (TGC) (Stra13, HES1, GATA-binding2), placental hormones [proliferin, placental lactogen (PL)1, prolactin-like protein (PLP)M], and extracellular matrix genes (CCN1/2). Transcription factors for later placental cell lineages, spongiotrophoblast (MASH2, TPBPalpha) and syncytiotrophoblast (GCM1, TEF5) and placental hormones (PLPA, PLII) were not induced by 24 h stress. Thus stress induced the temporal and spatial placental differentiation normal after implantation. Although differentiation was induced, markers of TSC stemness such as inhibitor of differentiation (ID)2 remained at 100% of levels of unstressed TSC, suggesting that retained mRNA might mediate dedifferentiation were stress to subside.
Collapse
Affiliation(s)
- J Liu
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and, Gynecology, Wayne State University School of Medicine, Detroit MI 48201
| | - W Xu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine
| | - T Sun
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and, Gynecology, Wayne State University School of Medicine, Detroit MI 48201
| | - F Wang
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and, Gynecology, Wayne State University School of Medicine, Detroit MI 48201
| | - E Puscheck
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and, Gynecology, Wayne State University School of Medicine, Detroit MI 48201
| | - D Brigstock
- Departments of Surgery and Medical Biochemistry, Ohio State University and Children’s Hospital, Columbus, Ohio 43205
| | - QT Wang
- Department of Biochemistry and Department of Developmental Biology and Genetics, Stanford University, CA, 94305
| | - R Davis
- Department of Biochemistry and Department of Developmental Biology and Genetics, Stanford University, CA, 94305
| | - DA Rappolee
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and, Gynecology, Wayne State University School of Medicine, Detroit MI 48201
- Department of Reproductive Sciences and Physiology, Wayne State University School of Medicine
- Karmanos Cancer Institute, Wayne State University School of Medicine
- Institutes for Environmental Health Science, Wayne State University School of Medicine
- Department of Biology, University of Windsor, Windsor Ontario, Canada N9B 3P4
| |
Collapse
|
40
|
Rielland M, Hue I, Renard JP, Alice J. Trophoblast stem cell derivation, cross-species comparison and use of nuclear transfer: new tools to study trophoblast growth and differentiation. Dev Biol 2008; 322:1-10. [PMID: 18680738 DOI: 10.1016/j.ydbio.2008.07.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 07/04/2008] [Accepted: 07/09/2008] [Indexed: 12/25/2022]
Abstract
The trophoblast is a supportive tissue in mammals that plays key roles in embryonic patterning, foetal growth and nutrition. It shows an extensive growth up to the formation of the placenta. This growth is believed to be fed by trophoblast stem cells able to self-renew and to give rise to the differentiated derivatives present in the placenta. In this review, we summarize recent data on the molecular regulation of the trophoblast in vivo and in vitro. Most data have been obtained in the mouse, however, whenever relevant, we compare this model to other mammals. In ungulates, the growth of the trophoblast displays some striking features that make these species interesting alternative models for the study of trophoblast development. After the transfer of somatic nuclei into oocytes, studies in the mouse and the cow have both underlined that the trophoblast may be a direct target of reprogramming defects and that its growth seems specifically affected. We propose that the study of TS cells derived from nuclear transfer embryos may help to unravel some of the epigenetic abnormalities which occur therein.
Collapse
Affiliation(s)
- Maite Rielland
- INRA, UMR 1198 Biologie du Developpement et Reproduction, F-78350 Jouy en Josas, France
| | | | | | | |
Collapse
|
41
|
Bartholin L, Melhuish TA, Powers SE, Goddard-Léon S, Treilleux I, Sutherland AE, Wotton D. Maternal Tgif is required for vascularization of the embryonic placenta. Dev Biol 2008; 319:285-97. [PMID: 18508043 PMCID: PMC2517231 DOI: 10.1016/j.ydbio.2008.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/25/2022]
Abstract
The mammalian placenta is the site of exchange of nutrients and waste between mother and embryo. In humans, placental insufficiency can result in intrauterine growth retardation, perinatal death and spontaneous abortion. We show that in C57BL/6J mice a null mutation in the gene encoding the transcriptional corepressor, Tgif, causes placental defects. The major defects are decreased vascularization of the placenta, due to a decrease in the fetal blood vessels, and decreased expression of the gap junction protein Gjb2 (Cx26). These defects result in severe growth retardation in a proportion of Tgif null embryos in Tgif heterozygous mothers, and an overall growth delay in Tgif null animals. Placental defects are much more severe if the mother also completely lacks Tgif function, and placentas from heterozygous Tgif embryos are defective in a Tgif null mother. Embryo transfer experiments show that even the placenta from a wild type embryo is compromised in the absence of maternal Tgif. These results demonstrate that Tgif functions in the normal development of the placenta, and suggest a role for maternal factors in regulating the morphogenesis of embryonically-derived placental tissues.
Collapse
Affiliation(s)
- Laurent Bartholin
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
| | - Tiffany A. Melhuish
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
| | - Shannon E. Powers
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
| | | | | | | | - David Wotton
- Department of Biochemistry and Molecular Genetics and Center for Cell Signaling, University of Virginia
| |
Collapse
|
42
|
Xi J, Yang Z. Expression of RALDHs (ALDH1As) and CYP26s in human tissues and during the neural differentiation of P19 embryonal carcinoma stem cell. Gene Expr Patterns 2008; 8:438-442. [DOI: 10.1016/j.gep.2008.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/08/2008] [Accepted: 04/12/2008] [Indexed: 11/28/2022]
|
43
|
Ohno T, Hiroi H, Momoeda M, Hosokawa Y, Tsutsumi R, Koizumi M, Nakazawa F, Yano T, Tsutsumi O, Taketani Y. Evidence for the expression of alcohol dehydrogenase class I gene in rat uterus and its up-regulation by progesterone. Endocr J 2008; 55:83-90. [PMID: 18219182 DOI: 10.1507/endocrj.k07-082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The endometrium is one of the target tissues of the ovarian steroid hormones, estrogen and progesterone. In order to elucidate the mechanism of gene regulation in the endometrium, suppressive subtraction hybridization was performed to isolate the candidate genes controlled by progesterone in rat uterus. Alcohol dehydrogenase (ADH) class I gene was one of the candidate genes. Here we investigated the expression and regulation of ADH class I gene in rat uterus. The mRNA of ADH class I was detected in uterus by RT-PCR using specific primers. Using specific probe for ADH class I, in situ hybridization was performed to investigate localization in rat uterus. Positive signals were detected in the endometrial stromal cells of rat uterus by in situ hybridization and were not detected in endometrial epithelial cells and myometrium in rat uterus. Ovariectomized rats were treated with 17-beta estradiol and progesterone and the uteri of these rats were used for Northern blot analysis and assay of the ADH activity. Northern blot analysis revealed that the expression of ADH class I mRNA in rat uteri was up-regulated approximately two-fold after progesterone treatment, but not estrogen. Likewise, ADH activity was approximately two-fold higher in progesterone-treated rat uteri compared with controls. This study demonstrated that ADH class I gene is progesterone-responsive in the uterus. This implies that progesterone might be involved with retinoic acid synthesis in the uterus, since ADH is the key enzyme for retinoic acid synthesis.
Collapse
Affiliation(s)
- Tomoko Ohno
- Department of Obstetrics and Gynecology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wang H, Xie H, Sun X, Tranguch S, Zhang H, Jia X, Wang D, Das SK, Desvergne B, Wahli W, DuBois RN, Dey SK. Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success. J Biol Chem 2007; 282:37770-82. [PMID: 17965409 DOI: 10.1074/jbc.m706577200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Successful pregnancy depends on well coordinated developmental events involving both maternal and embryonic components. Although a host of signaling pathways participate in implantation, decidualization, and placentation, whether there is a common molecular link that coordinates these processes remains unknown. By exploiting genetic, molecular, pharmacological, and physiological approaches, we show here that the nuclear transcription factor peroxisome proliferator-activated receptor (PPAR) delta plays a central role at various stages of pregnancy, whereas maternal PPARdelta is critical to implantation and decidualization, and embryonic PPARdelta is vital for placentation. Using trophoblast stem cells, we further elucidate that a reciprocal relationship between PPARdelta-AKT and leukemia inhibitory factor-STAT3 signaling pathways serves as a cell lineage sensor to direct trophoblast cell fates during placentation. This novel finding of stage-specific integration of maternal and embryonic PPARdelta signaling provides evidence that PPARdelta is a molecular link that coordinates implantation, decidualization, and placentation crucial to pregnancy success. This study is clinically relevant because deferral of on time implantation leads to spontaneous pregnancy loss, and defective trophoblast invasion is one cause of preeclampsia in humans.
Collapse
Affiliation(s)
- Haibin Wang
- Department of Pediatrics, Division of Reproductive and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Petit FG, Jamin SP, Kurihara I, Behringer RR, DeMayo FJ, Tsai MJ, Tsai SY. Deletion of the orphan nuclear receptor COUP-TFII in uterus leads to placental deficiency. Proc Natl Acad Sci U S A 2007; 104:6293-8. [PMID: 17404209 PMCID: PMC1851059 DOI: 10.1073/pnas.0702039104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
COUP-TFII (NR2F2), chicken ovalbumin upstream promoter-transcription factor II, is an orphan nuclear receptor of the steroid/thyroid hormone receptor superfamily. The Coup-tfII-null mutant mice die during the early embryonic development because of angiogenesis and heart defects. To analyze the physiological function of COUP-TFII during organogenesis, we used the cre/loxP system to conditionally inactivate COUP-TFII in the ovary and uterus. Homozygous adult female mutants with specific inactivation of the Coup-tfII gene in uterine stromal and smooth muscle cells have severely impaired placental formation, leading to miscarriage at days 10-12 of pregnancy. Deletion of the Coup-tfII gene resulted in an increase in trophoblast giant cell differentiation, a reduction of the spongiotrophoblast layer, and an absence of labyrinth formation causing an improper vascularization of the placenta. This study describes an important maternal role of COUP-TFII in regulating the placentation. The endometrial COUP-TFII might modulate the signaling between the uterus and the extraembryonic tissue for the proper formation of the placenta.
Collapse
Affiliation(s)
- Fabrice G. Petit
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- Institut National de la Santé et de la Recherche Médicale, Unité 553, Hôpital Saint-Louis, 1, Avenue Claude Vellefaux, F-75010 Paris, France
- Institut National de la Santé et de la Recherche Médicale, Unité 782, Université de Paris-Sud, Hôpital Antoine Béclère, 32, Rue des Carnets, F-92140 Clamart, France; and
- To whom correspondence may be sent at the ‡ address. E-mail:
| | - Soazik P. Jamin
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Isao Kurihara
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Richard R. Behringer
- Department of Molecular Genetics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030
| | - Francesco J. DeMayo
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
| | - Ming-Jer Tsai
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- **To whom correspondence may be addressed. E-mail: or
| | - Sophia Y. Tsai
- *Department of Molecular and Cellular Biology, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030
- **To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
46
|
Simmons DG, Fortier AL, Cross JC. Diverse subtypes and developmental origins of trophoblast giant cells in the mouse placenta. Dev Biol 2007; 304:567-78. [PMID: 17289015 DOI: 10.1016/j.ydbio.2007.01.009] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Revised: 12/19/2006] [Accepted: 01/04/2007] [Indexed: 11/22/2022]
Abstract
Trophoblast giant cells (TGCs) are the first terminally differentiated subtype to form in the trophoblast cell lineage in rodents. In addition to mediating implantation, they are the main endocrine cells of the placenta, producing several hormones which regulate the maternal endocrine and immune systems and promote maternal blood flow to the implantation site. Generally considered a homogeneous population, TGCs have been identified by their expression of genes encoding placental lactogen 1 or proliferin. In the present study, we have identified a number of TGC subtypes, based on morphology and molecular criteria and demonstrated a previously underappreciated diversity of TGCs. In addition to TGCs that surround the implantation site and form the interface with the maternal deciduas, we demonstrate at least three other unique TGC subtypes: spiral artery-associated TGCs, maternal blood canal-associated TGCs and a TGC within the sinusoidal spaces of the labyrinth layer of the placenta. All four TGC subtypes could be identified based on the expression patterns of four genes: Pl1, Pl2, Plf (encoded by genes of the prolactin/prolactin-like protein/placental lactogen gene locus), and Ctsq (from a placental-specific cathepsin gene locus). Each of these subtypes was detected in differentiated trophoblast stem cell cultures and can be differentially regulated; treatment with retinoic acid induces Pl1/Plf+ TGCs preferentially. Furthermore, cell lineage tracing studies indicated unique origins for different TGC subtypes, in contrast with previous suggestions that secondary TGCs all arise from Tpbpa+ ectoplacental cone precursors.
Collapse
Affiliation(s)
- David G Simmons
- Department of Biochemistry and Molecular Biology, University of Calgary, Faculty of Medicine, Calgary, Alberta, and Department of Human Genetics, Montreal Children's Hospital Research Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
47
|
Winger QA, Guttormsen J, Gavin H, Bhushan F. Heat shock protein 1 and the mitogen-activated protein kinase 14 pathway are important for mouse trophoblast stem cell differentiation. Biol Reprod 2007; 76:884-91. [PMID: 17267699 DOI: 10.1095/biolreprod.106.056820] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Differentiation of trophoblast cells is a critical process for the proper establishment of the placenta and is, therefore, necessary to maintain embryonic development. Trophoblast stem (TS) cells grown in culture can differentiate into different trophoblast subtypes in vitro mimicking normal trophoblast cell differentiation. Therefore, TS cells are a valuable model system that can be used to elucidate genetic factors that regulate trophoblast cell differentiation. Several transcription factors, when analyzed by targeted gene mutation in mice, have resulted in embryonic lethality due to placental defects and, more specifically, defects of the trophoblast lineages. These studies have helped improve our knowledge about trophoblast cell differentiation, but much is still unknown about the specific mechanisms involved. This study uses TS cell culture to detect proteins with differential expression in proliferating and differentiating TS cells in order to identify proteins with potential roles in the differentiation process. We identified four proteins with differential expression: dimethylarginine dimethylaminohydrolase1 (DDAH1), keratin 8, keratin 18, and HSPB1 (also known as heat shock protein 25, HSP25). Further investigation confirmed the presence of HSPB1 protein during in vitro TS cell differentiation. In addition, we confirmed that phosphorylation of HSPB1 and MAP kinase-activated protein kinase 2 (MAPKAPK2) increased in TS cells during differentiation. Inhibition of MAPK14 (also known as p38 MAPK) resulted in a reduction of HSPB1 phosphorylation and an increase in cell death during TS cell differentiation. These results suggest that HSPB1 and the MAPK14 pathway are important during TS cell differentiation.
Collapse
Affiliation(s)
- Quinton A Winger
- Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah 84322-5600, USA.
| | | | | | | |
Collapse
|
48
|
Lei T, Hohn HP, Behr R, Denker HW. Influences of Extracellular Matrix and of Conditioned Media on Differentiation and Invasiveness of Trophoblast Stem Cells. Placenta 2007; 28:14-21. [PMID: 16563500 DOI: 10.1016/j.placenta.2006.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/12/2006] [Accepted: 01/28/2006] [Indexed: 11/17/2022]
Abstract
Embryo implantation in the human and rodents relies on the trophoblast's ability to invade into the uterine stroma, partly depending on proteinases degrading components of basement membrane and underlying extracellular matrix (ECM). We have utilized mouse trophoblast stem (TS) cells (Science, 1998, 282:2072) to study trophoblast invasion and trophoblast-ECM interactions in vitro. On plastic in fibroblast-conditioned medium containing fibroblast growth factor (FGF)-4 and heparin, the cells remain proliferative but display increased differentiation in media without these components. Marker gene expression (Eomes, Pl-1, Tpbp) and invasion assays showed that TS cells exhibit increased invasive capacity when differentiating into giant cells and spongiotrophoblasts in unconditioned media without FGF-4 and heparin. Concomitantly, an up-regulation of matrix metalloproteinases (MMP)-9 and -14 was observed. Culture on gels of the basement membrane-like Matrigel resulted in striking changes in morphology and gene expression. Differentiating TS cells invaded into this ECM in a three-dimensional culture, while in turn ECM contact enhanced differentiation of TS cells and up-regulated the expression of MMP-9 and its tissue inhibitor (TIMP)-3. These findings implicate that the TS cell culture system used in this study can be utilized as a model for studying the regulation of trophoblast-ECM interactions, differentiation, and invasion in vitro.
Collapse
Affiliation(s)
- T Lei
- Institut für Anatomie, Universitätsklinikum Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
49
|
Singh U, Sun T, Shi W, Schulz R, Nuber UA, Varanou A, Hemberger MC, Elliott RW, Ohta H, Wakayama T, Fundele R. Expression and functional analysis of genes deregulated in mouse placental overgrowth models: Car2 and Ncam1. Dev Dyn 2006; 234:1034-45. [PMID: 16247769 DOI: 10.1002/dvdy.20597] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Different causes, such as maternal diabetes, cloning by nuclear transfer, interspecific hybridization, and deletion of some genes such as Esx1, Ipl, or Cdkn1c, may underlie placental overgrowth. In a previous study, we carried out comparative gene expression analysis in three models of placental hyperplasias, cloning, interspecies hybridization (IHPD), and Esx1 deletion. This study identified a large number of genes that exhibited differential expression between normal and enlarged placentas; however, it remained unclear how altered expression of any specific gene was related to any specific placental phenotype. In the present study, we focused on two genes, Car2 and Ncam1, which both exhibited increased expression in interspecies and cloned hyperplastic placentas. Apart from a detailed expression analysis of both genes during normal murine placentation, we also assessed morphology of placentas that were null for Car2 or Ncam1. Finally, we attempted to rescue placental hyperplasia in a congenic model of IHPD by decreasing transcript levels of Car2 or Ncam1. In situ analysis showed that both genes are expressed mainly in the spongiotrophoblast, however, expression patterns exhibited significant variability during development. Contrary to expectations, homozygous deletion of either Car2 or Ncam1 did not result in placental phenotypes. However, expression analysis of Car3 and Ncam2, which can take over the function of Car2 and Ncam1, respectively, indicated a possible rescue mechanism, as Car3 and Ncam2 were expressed in spongiotrophoblast of Car2 and Ncam1 mutant placentas. On the other hand, downregulation of either Car2 or Ncam1 did not rescue any of the placental phenotypes of AT24 placentas, a congenic model for interspecies hybrid placentas. This strongly suggested that altered expression of Car2 and Ncam1 is a downstream event in placental hyperplasia.
Collapse
Affiliation(s)
- Umashankar Singh
- Department of Development and Genetics, Evolutionary Biology Center, Uppsala University, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chiu PM, Feng HC, Benbrook DM, Ngan HYS, Khoo US, Xue WC, Tsao SW, Chan KW, Cheung ANY. Effect of all-trans retinoic acid on tissue dynamics of choriocarcinoma cell lines: an organotypic model. J Clin Pathol 2006; 59:845-50. [PMID: 16461808 PMCID: PMC1860458 DOI: 10.1136/jcp.2005.025833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND All-trans retinoic acid (ATRA) is a natural vitamin A derivative that has a profound effect on the regulation of cell growth, differentiation and death. AIM To investigate the tissue dynamic and cellular invasion effects of ATRA in choriocarcinoma (CCA), an aggressive trophoblastic tumour, by using a three-dimensional organotypic culture model system and cell invasion assay, respectively. METHODS An organotypic culture model of two CCA cell lines, JAR and JEG, was established. The effects of 1 microM ATRA on proliferation, differentiation and apoptosis on this CCA model were assessed by morphological assessment of the mitotic and apoptotic figures as well as by Ki-67 and caspase-related M30 cytoDeath antibody immunohistochemistry and the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) assay. The effect of ATRA on p53 and its regulated protein product, WAF1/Cip1, was also evaluated with DO7 and p21(WAF1) antibodies, respectively. Moreover, the effect of ATRA on cellular (CCA) invasion was also investigated with Cell Invasion Kit on the JEG cell line. RESULTS ATRA was found to induce marked apoptosis in organotypic cultures of both cell lines, as evidenced by increased M30-positive cells (p<0.0001) and increased TUNEL-positive cells (p<0.0001) in treated cultures; to decrease proliferation, as evidenced by decreased Ki-67-positive cells (p<0.0001); and to decrease p53-DO7 immunoreactivity (p<0.0001) and increase p21(WAF1) (p<0.0001) immunoreactivity. 1.5 microM ATRA was found to effectively inhibit JEG cell invasion in the cell invasion assay. CONCLUSION ATRA treatment was found to inhibit invasion and proliferation and enhance apoptosis, probably by the activation of caspases and induction of differentiation. ATRA and synthetic retinoids may be alternative agents for the treatment of CCA.
Collapse
Affiliation(s)
- P M Chiu
- Department of Pathology, University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | |
Collapse
|