1
|
Russo M, Ferrecchi C, Rebella S, Capra V, Ameli F, Pacetti M, Di Feo MF, De Biasio P, Arioni C. Congenital Nasal Bones Agenesis: Report of a Rare Malformation. Case Rep Med 2024; 2024:1849957. [PMID: 39742135 PMCID: PMC11685316 DOI: 10.1155/carm/1849957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 01/03/2025] Open
Abstract
Congenital arhinia and hyporhinia are rare facial anomalies whose knowledge usually comes from case reports. The severity of each case described in literature is variable; it also depends on associated malformations too. Since the newborns are obligate nasal breathers, babies with arhinia or hyporhinia usually have respiratory distress and need airway stabilization. In addition, most of these children present difficulties in feeding and this impairment must be managed early. We describe an unusual case of partial congenital arhinia, the baby did not have other anomalies or any specific complication such as respiratory and feeding issues, so the major problem was the aesthetic and psychological issues for the family. Even if the neonatal course was uncomplicated, a coordinated approach of the pediatrician with the pediatric otolaryngologist, the geneticists and the neurosurgeons was necessary because the management of these malformations is always very complex; due to the lack of reports described in literature, an univocal management and also the best timing and technique for reconstructive surgery are still not defined.
Collapse
Affiliation(s)
- Monica Russo
- Operative Unit of Neonatology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Ferrecchi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Silvia Rebella
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Child Sciences (DINOGMI), University of Genoa, Genoa, Italy
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Franco Ameli
- Otorhinolaringology Department, Casa di Cura Villa Montallegro, Genoa, Italy
| | - Mattia Pacetti
- Department of Neurosurgery, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Cesare Arioni
- Operative Unit of Neonatology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
2
|
Washio A, Kérourédan O, Tabata Y, Kokabu S, Kitamura C. Effect of Bioactive Glasses and Basic Fibroblast Growth Factor on Dental Pulp Cells. J Funct Biomater 2023; 14:568. [PMID: 38132822 PMCID: PMC10744375 DOI: 10.3390/jfb14120568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023] Open
Abstract
Ideal regeneration of hard tissue and dental pulp has been reported with the use of a combination of bioactive glass and basic fibroblast growth factor (bFGF). However, no previous study has investigated the molecular mechanisms underlying the processes induced by this combination in dental pulp cells. This study aimed to examine the cellular phenotype and transcriptional changes induced by the combination of bioactive glass solution (BG) and bFGF in dental pulp cells using phase-contrast microscopy, a cell counting kit-8 assay, alkaline phosphatase staining, and RNA sequence analysis. bFGF induced elongation of the cell process and increased the number of cells. Whereas BG did not increase ALP activity, it induced extracellular matrix-related genes in the dental pulp. In addition, the combination of BG and bFGF induces gliogenesis-related genes in the nervous system. This is to say, bFGF increased the viability of dental pulp cells, bioactive glass induced odontogenesis, and a dual stimulation with bioactive glass and bFGF induced the wound healing of the nerve system in the dental pulp. Taken together, bioactive glass and bFGF may be useful for the regeneration of the dentin-pulp complex.
Collapse
Affiliation(s)
- Ayako Washio
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Olivia Kérourédan
- National Institute of Health and Medical Research (INSERM), U1026 BIOTIS, University of Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France;
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| | - Chiaki Kitamura
- Division of Endodontics and Restorative Dentistry, Department of Oral Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan;
| |
Collapse
|
3
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
4
|
Deuper L, Meuser M, Thiesler H, Jany UWH, Rudat C, Hildebrandt H, Trowe MO, Kispert A. Mesenchymal FGFR1 and FGFR2 control patterning of the ureteric mesenchyme by balancing SHH and BMP4 signaling. Development 2022; 149:276592. [DOI: 10.1242/dev.200767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The coordinated development of the mesenchymal and epithelial progenitors of the murine ureter depends on a complex interplay of diverse signaling activities. We have recently shown that epithelial FGFR2 signaling regulates stratification and differentiation of the epithelial compartment by enhancing epithelial Shh expression, and mesenchymal SHH and BMP4 activity. Here, we show that FGFR1 and FGFR2 expression in the mesenchymal primordium impinges on the SHH/BMP4 signaling axis to regulate mesenchymal patterning and differentiation. Mouse embryos with conditional loss of Fgfr1 and Fgfr2 in the ureteric mesenchyme exhibited reduced mesenchymal proliferation and prematurely activated lamina propria formation at the expense of the smooth muscle cell program. They also manifested hydroureter at birth. Molecular profiling detected increased SHH, WNT and retinoic acid signaling, whereas BMP4 signaling in the mesenchyme was reduced. Pharmacological activation of SHH signaling in combination with inhibition of BMP4 signaling recapitulated the cellular changes in explant cultures of wild-type ureters. Additional experiments suggest that mesenchymal FGFR1 and FGFR2 act as a sink for FGF ligands to dampen activation of Shh and BMP receptor gene expression by epithelial FGFR2 signaling.
Collapse
Affiliation(s)
- Lena Deuper
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Max Meuser
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover 2 , 30625 Hannover , Germany
| | - Ulrich W. H. Jany
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Carsten Rudat
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Herbert Hildebrandt
- Institute of Clinical Biochemistry, Medizinische Hochschule Hannover 2 , 30625 Hannover , Germany
| | - Mark-Oliver Trowe
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| | - Andreas Kispert
- Institute of Molecular Biology, Medizinische Hochschule Hannover 1 , 30625 Hannover , Germany
| |
Collapse
|
5
|
Sporkova A, Ghosh S, Al-Hasani J, Hecker M. Lin11-Isl1-Mec3 Domain Proteins as Mechanotransducers in Endothelial and Vascular Smooth Muscle Cells. Front Physiol 2021; 12:769321. [PMID: 34867475 PMCID: PMC8640458 DOI: 10.3389/fphys.2021.769321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Arterial hypertension is the leading risk factor for cardiovascular morbidity and mortality worldwide. However, little is known about the cellular mechanisms underlying it. In small arteries and arterioles, a chronic increase in blood pressure raises wall tension and hence stretches, namely, the medial vascular smooth muscle cells (VSMC) but also endothelial cell (EC) to cell contacts. Initially compensated by an increase in vascular tone, the continuous biomechanical strain causes a prominent change in gene expression in both cell types, frequently driving an arterial inward remodeling process that ultimately results in a reduction in lumen diameter, stiffening of the vessel wall, and fixation of blood pressure, namely, diastolic blood pressure, at the elevated level. Sensing and propagation of this supraphysiological stretch into the nucleus of VSMC and EC therefore seems to be a crucial step in the initiation and advancement of hypertension-induced arterial remodeling. Focal adhesions (FA) represent an important interface between the extracellular matrix and Lin11-Isl1-Mec3 (LIM) domain-containing proteins, which can translocate from the FA into the nucleus where they affect gene expression. The varying biomechanical cues to which vascular cells are exposed can thus be rapidly and specifically propagated to the nucleus. Zyxin was the first protein described with such mechanotransducing properties. It comprises 3 C-terminal LIM domains, a leucine-rich nuclear export signal, and N-terminal features that support its association with the actin cytoskeleton. In the cytoplasm, zyxin promotes actin assembly and organization as well as cell motility. In EC, zyxin acts as a transcription factor, whereas in VSMC, it has a less direct effect on mechanosensitive gene expression. In terms of homology and structural features, lipoma preferred partner is the nearest relative of zyxin among the LIM domain proteins. It is almost exclusively expressed by smooth muscle cells in the adult, resides like zyxin at FA but seems to affect mechanosensitive gene expression indirectly, possibly via altering cortical actin dynamics. Here, we highlight what is currently known about the role of these LIM domain proteins in mechanosensing and transduction in vascular cells.
Collapse
Affiliation(s)
- Alexandra Sporkova
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Subhajit Ghosh
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research) Partner Site, Heidelberg/Mannheim, Germany
| |
Collapse
|
6
|
Ratzan EM, Moon AM, Deans MR. Fgf8 genetic labeling reveals the early specification of vestibular hair cell type in mouse utricle. Development 2020; 147:dev.192849. [PMID: 33046506 DOI: 10.1242/dev.192849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023]
Abstract
FGF8 signaling plays diverse roles in inner ear development, acting at multiple stages from otic placode induction to cellular differentiation in the organ of Corti. As a secreted morphogen with diverse functions, Fgf8 expression is likely to be spatially restricted and temporally dynamic throughout inner ear development. We evaluated these characteristics using genetic labeling mediated by Fgf8 mcm gene-targeted mice and determined that Fgf8 expression is a specific and early marker of Type-I vestibular hair cell identity. Fgf8 mcm expression initiates at E11.5 in the future striolar region of the utricle, labeling hair cells following EdU birthdating, and demonstrates that sub-type identity is determined shortly after terminal mitosis. This early fate specification is not apparent using markers or morphological criteria that are not present before birth in the mouse. Although analyses of Fgf8 conditional knockout mice did not reveal developmental phenotypes, the restricted pattern of Fgf8 expression suggests that functionally redundant FGF ligands may contribute to vestibular hair cell differentiation and supports a developmental model in which Type-I and Type-II hair cells develop in parallel rather than from an intermediate precursor.
Collapse
Affiliation(s)
- Evan M Ratzan
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.,Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Anne M Moon
- Departments of Molecular and Functional Genomics and Pediatrics, Weis Center for Research, Geisinger Clinic and Geisinger Commonwealth School of Medicine, Danville, PA 17822, USA.,Departments of Pediatrics and Human Genetics, University of Utah, Salt Lake City, UT 84112 USA
| | - Michael R Deans
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA .,Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
7
|
Mesenchymal ETV transcription factors regulate cochlear length. Hear Res 2020; 396:108039. [PMID: 32866767 DOI: 10.1016/j.heares.2020.108039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/22/2020] [Accepted: 07/02/2020] [Indexed: 11/22/2022]
Abstract
Mammalian cochlear development encompasses a series of morphological and molecular events that results in the formation of a highly intricate structure responsible for hearing. One remarkable event occurs during development is the cochlear lengthening that starts with cochlear outgrowth around E11 and continues throughout development. Different mechanisms contribute to this process including cochlear progenitor proliferation and convergent extension. We previously identified that FGF9 and FGF20 promote cochlear lengthening by regulating auditory sensory epithelial proliferation through FGFR1 and FGFR2 in the periotic mesenchyme. Here, we provide evidence that ETS-domain transcription factors ETV4 and ETV5 are downstream of mesenchymal FGF signaling to control cochlear lengthening. Next generation RNA sequencing identified that Etv1, Etv4 and Etv5 mRNAs are decreased in the Fgf9 and Fgf20 double mutant periotic mesenchyme. Deleting both Etv4 and Etv5 in periotic mesenchyme resulted in shortening of cochlear length but maintaining normal patterning of organ of Corti and density of hair cells and supporting cells. This recapitulates phenotype of mesenchymal-specific Fgfr1 and Fgfr2 deleted inner ear. Furthermore, analysis of Etv1/4/5 triple conditional mutants revealed that ETV1 does not contribute in this process. Our study reveals that ETV4 and ETV5 function downstream of mesenchymal FGF signaling to promote cochlear lengthening.
Collapse
|
8
|
Exploitation of phage display for the development of anti-cancer agents targeting fibroblast growth factor signaling pathways: New strategies to tackle an old challenge. Cytokine Growth Factor Rev 2019; 46:54-65. [DOI: 10.1016/j.cytogfr.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 01/20/2023]
|
9
|
Yang LM, Ornitz DM. Sculpting the skull through neurosensory epithelial-mesenchymal signaling. Dev Dyn 2018; 248:88-97. [PMID: 30117627 DOI: 10.1002/dvdy.24664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate skull is a complex structure housing the brain and specialized sensory organs, including the eye, the inner ear, and the olfactory system. The close association between bones of the skull and the sensory organs they encase has posed interesting developmental questions about how the tissues scale with one another. Mechanisms that regulate morphogenesis of the skull are hypothesized to originate in part from the encased neurosensory organs. Conversely, the developing skull is hypothesized to regulate the growth of neurosensory organs, through mechanical forces or molecular signaling. Here, we review studies of epithelial-mesenchymal interactions during inner ear and olfactory system development that may coordinate the growth of the two sensory organs with their surrounding bone. We highlight recent progress in the field and provide evidence that mechanical forces arising from bone growth may affect olfactory epithelium development. Developmental Dynamics 248:88-97, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lu M Yang
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Xie H, Zhang E, Hong N, Fu Q, Li F, Chen S, Yu Y, Sun K. Identification of TBX2 and TBX3 variants in patients with conotruncal heart defects by target sequencing. Hum Genomics 2018; 12:44. [PMID: 30223900 PMCID: PMC6142335 DOI: 10.1186/s40246-018-0176-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022] Open
Abstract
Background Conotruncal heart defects (CTDs) are heterogeneous congenital heart malformations that result from outflow tract dysplasia; however, the genetic determinants underlying CTDs remain unclear. Increasing evidence demonstrates that dysfunctional TBX2 and TBX3 result in outflow tract malformations, implying that both of them are involved in CTD pathogenesis. We screened for TBX2 and TBX3 variants in a large cohort of CTD patients (n = 588) and population-matched healthy controls (n = 300) by target sequencing and genetically analyzed the expression and function of these variants. Results The probably damaging variants p.R608W, p.T249I, and p.R616Q of TBX2 and p.A192T, p.M65L, and p.A562V of TBX3 were identified in CTD patients, but none in controls. All altered amino acids were highly conserved evolutionarily. Moreover, our data suggested that mRNA and protein expressions of TBX2 and TBX3 variants were altered compared with those of the wild-type. We screened PEA3 and MEF2C as novel downstream genes of TBX2 and TBX3, respectively. Functional analysis revealed that TBX2R608W and TBX2R616Q variant proteins further activated HAS2 promoter but failed to activate PEA3 promoter and that TBX3A192T and TBX3A562V variant proteins showed a reduced transcriptional activity over MEF2C promoter. Conclusions Our results indicate that the R608W and R616Q variants of TBX2 as well as the A192T and A562V variants of TBX3 contribute to CTD etiology; this was the first association of variants of TBX2 and TBX3 to CTDs based on a large population. Electronic supplementary material The online version of this article (10.1186/s40246-018-0176-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huilin Xie
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Erge Zhang
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Nanchao Hong
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Qihua Fu
- Medical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fen Li
- Department of Pediatric Cardiology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sun Chen
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
| | - Yu Yu
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| | - Kun Sun
- Department of Pediatric Cardiovascular, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China.
| |
Collapse
|
11
|
Secretome Screening Reveals Fibroblast Growth Factors as Novel Inhibitors of Viral Replication. J Virol 2018; 92:JVI.00260-18. [PMID: 29899088 DOI: 10.1128/jvi.00260-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins, such as type I interferons, interleukin-6 (IL-6), or tumor necrosis factor alpha (TNF-α). In the present study, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for the capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSVs) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication, not entry. Importantly, an antiviral interferon signature was completely absent in FGF16-treated cells. Nevertheless, the antiviral effect of FGF16 is broad, as it was evident on multiple cell types and also on infection by coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy.IMPORTANCE Viruses infect human cells in order to replicate, while human cells aim to resist infection. Several cellular antiviral programs have therefore evolved to resist infection. Knowledge of these programs is essential for the design of antiviral therapeutics in the future. The induction of antiviral programs is often initiated by secreted proteins, such as interferons. We hypothesized that other secreted proteins may also promote resistance to viral infection. Thus, we tested 756 human secreted proteins for the capacity to inhibit two pseudotypes of vesicular stomatitis virus (VSV). In this secretome screen on viral infection, we identified fibroblast growth factor 16 (FGF16) as a novel antiviral against multiple VSV pseudotypes as well as coxsackievirus. Subsequent testing of other FGF family members revealed that FGF signaling generally inhibits viral infection. This finding may lead to the development of new antivirals and may also be applicable for enhancing oncolytic virus therapy.
Collapse
|
12
|
Abashev TM, Metzler MA, Wright DM, Sandell LL. Retinoic acid signaling regulates Krt5 and Krt14 independently of stem cell markers in submandibular salivary gland epithelium. Dev Dyn 2018; 246:135-147. [PMID: 27884045 DOI: 10.1002/dvdy.24476] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Retinoic acid (RA), the active metabolite of vitamin A, has been demonstrated to be important for growth and branching morphogenesis of mammalian embryonic salivary gland epithelium. However, it is not known whether RA functions directly within epithelial cells or in associated tissues that influence morphogenesis of salivary epithelium. Moreover, downstream targets of RA regulation have not been identified. RESULTS Here, we show that canonical RA signaling occurs in multiple tissues of embryonic mouse salivary glands, including epithelium, associated parasympathetic ganglion neurons, and nonneuronal mesenchyme. By culturing epithelium explants in isolation from other tissues, we demonstrate that RA influences epithelium morphogenesis by direct action in that tissue. Moreover, we demonstrate that inhibition of RA signaling represses cell proliferation and expression of FGF10 signaling targets, and upregulates expression of basal epithelial keratins Krt5 and Krt14. Importantly, we show that the stem cell gene Kit is regulated inversely from Krt5/Krt14 by RA signaling. CONCLUSIONS RA regulates Krt5 and Krt14 expression independently of stem cell character in developing salivary epithelium. RA, or chemical inhibitors of RA signaling, could potentially be used for modulating growth and differentiation of epithelial stem cells for the purpose of re-populating damaged glands or generating bioengineered organs. Developmental Dynamics 246:135-147, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timur M Abashev
- University of Louisville, School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, Kentucky
| | - Melissa A Metzler
- University of Louisville, School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, Kentucky
| | - Diana M Wright
- University of Louisville, School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, Kentucky
| | - Lisa L Sandell
- University of Louisville, School of Dentistry, Department of Molecular, Cellular and Craniofacial Biology, Louisville, Kentucky
| |
Collapse
|
13
|
Cates J, Nevell L, Prajapati SI, Nelon LD, Chang JY, Randolph ME, Wood B, Keller C, Whitaker RT. Shape analysis of the basioccipital bone in Pax7-deficient mice. Sci Rep 2017; 7:17955. [PMID: 29263370 PMCID: PMC5738401 DOI: 10.1038/s41598-017-18199-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
We compared the cranial base of newborn Pax7-deficient and wildtype mice using a computational shape modeling technology called particle-based modeling (PBM). We found systematic differences in the morphology of the basiooccipital bone, including a broadening of the basioccipital bone and an antero-inferior inflection of its posterior edge in the Pax7-deficient mice. We show that the Pax7 cell lineage contributes to the basioccipital bone and that the location of the Pax7 lineage correlates with the morphology most effected by Pax7 deficiency. Our results suggest that the Pax7-deficient mouse may be a suitable model for investigating the genetic control of the location and orientation of the foramen magnum, and changes in the breadth of the basioccipital.
Collapse
Affiliation(s)
- Joshua Cates
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA
| | - Lisa Nevell
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA.
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Suresh I Prajapati
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Laura D Nelon
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jerry Y Chang
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Bernard Wood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington DC, USA
| | - Charles Keller
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX, USA.
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA.
| | - Ross T Whitaker
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
14
|
Delgado I, Torres M. Coordination of limb development by crosstalk among axial patterning pathways. Dev Biol 2017; 429:382-386. [DOI: 10.1016/j.ydbio.2017.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/28/2017] [Accepted: 03/05/2017] [Indexed: 10/20/2022]
|
15
|
Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, Farin HF, Moon A, Christoffels VM, Kispert A. Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Dev Cell 2016; 39:239-253. [PMID: 27720610 DOI: 10.1016/j.devcel.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfβ signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anne Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
| |
Collapse
|
16
|
Tillo M, Charoy C, Schwarz Q, Maden CH, Davidson K, Fantin A, Ruhrberg C. 2- and 6-O-sulfated proteoglycans have distinct and complementary roles in cranial axon guidance and motor neuron migration. Development 2016; 143:1907-13. [PMID: 27048738 PMCID: PMC4920156 DOI: 10.1242/dev.126854] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The correct migration and axon extension of neurons in the developing nervous system is essential for the appropriate wiring and function of neural networks. Here, we report that O-sulfotransferases, a class of enzymes that modify heparan sulfate proteoglycans (HSPGs), are essential to regulate neuronal migration and axon development. We show that the 6-O-sulfotransferases HS6ST1 and HS6ST2 are essential for cranial axon patterning, whilst the 2-O-sulfotransferase HS2ST (also known as HS2ST1) is important to regulate the migration of facial branchiomotor (FBM) neurons in the hindbrain. We have also investigated how HS2ST interacts with other signals in the hindbrain and show that fibroblast growth factor (FGF) signalling regulates FBM neuron migration in an HS2ST-dependent manner. Summary: 2-O-sulfated proteoglycans are essential for cranial motor neuron migration, whereas 6-O-sulfated proteoglycans regulate cranial axon guidance.
Collapse
Affiliation(s)
- Miguel Tillo
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Camille Charoy
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Quenten Schwarz
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Charlotte H Maden
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Kathryn Davidson
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Alessandro Fantin
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Christiana Ruhrberg
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK Yale Cardiovascular Research Centre, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
17
|
Kiecker C. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 2016; 415:314-325. [PMID: 26777098 DOI: 10.1016/j.ydbio.2016.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/28/2015] [Accepted: 01/13/2016] [Indexed: 12/15/2022]
Abstract
Prenatal exposure to ethanol results in fetal alcohol spectrum disorder (FASD), a syndrome characterised by a broad range of clinical manifestations including craniofacial dysmorphologies and neurological defects. The characterisation of the mechanisms by which ethanol exerts its teratogenic effects is difficult due to the pleiotropic nature of its actions. Different experimental model systems have been employed to investigate the aetiology of FASD. Here, I will review studies using these different model organisms that have helped to elucidate how ethanol causes the craniofacial abnormalities characteristic of FASD. In these studies, ethanol was found to impair the prechordal plate-an important embryonic signalling centre-during gastrulation and to negatively affect the induction, migration and survival of the neural crest, a cell population that generates the cartilage and most of the bones of the skull. At the cellular level, ethanol appears to inhibit Sonic hedgehog signalling, alter levels of retionoic acid activity, trigger a Ca(2+)-CamKII-dependent pathway that antagonises WNT signalling, affect cytoskeletal dynamics and increase oxidative stress. Embryos of the domestic chick Gallus gallus domesticus have played a central role in developing a working model for the effects of ethanol on craniofacial development because they are easily accessible and because key steps in craniofacial development are particularly well established in the avian embryo. I will finish this review by highlighting some potential future avenues of fetal alcohol research.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, 4th Floor, Hodgkin Building, Guy's Hospital Campus, King's College London, UK.
| |
Collapse
|
18
|
Birol O, Ohyama T, Edlund RK, Drakou K, Georgiades P, Groves AK. The mouse Foxi3 transcription factor is necessary for the development of posterior placodes. Dev Biol 2015; 409:139-151. [PMID: 26550799 DOI: 10.1016/j.ydbio.2015.09.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 02/01/2023]
Abstract
The inner ear develops from the otic placode, one of the cranial placodes that arise from a region of ectoderm adjacent to the anterior neural plate called the pre-placodal domain. We have identified a Forkhead family transcription factor, Foxi3, that is expressed in the pre-placodal domain and down-regulated when the otic placode is induced. We now show that Foxi3 mutant mice do not form otic placodes as evidenced by expression changes in early molecular markers and the lack of thickened placodal ectoderm, an otic cup or otocyst. Some preplacodal genes downstream of Foxi3-Gata3, Six1 and Eya1-are not expressed in the ectoderm of Foxi3 mutant mice, and the ectoderm exhibits signs of increased apoptosis. We also show that Fgf signals from the hindbrain and cranial mesoderm, which are necessary for otic placode induction, are received by pre-placodal ectoderm in Foxi3 mutants, but do not initiate otic induction. Finally, we show that the epibranchial placodes that develop in close proximity to the otic placode and the mandibular division of the trigeminal ganglion are missing in Foxi3 mutants. Our data suggest that Foxi3 is necessary to prime pre-placodal ectoderm for the correct interpretation of inductive signals for the otic and epibranchial placodes.
Collapse
Affiliation(s)
- Onur Birol
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Takahiro Ohyama
- USC Caruso Department of Otolaryngology - Head & Neck Surgery, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA; Zilkha Neurogenetic Institute, Keck Medicine of USC, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA
| | - Renée K Edlund
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Katerina Drakou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Pantelis Georgiades
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, P.O. Box 20537, 1678 Nicosia, Cyprus
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA; Department of Neurosc ience, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Li ASW, Marikawa Y. An in vitro gastrulation model recapitulates the morphogenetic impact of pharmacological inhibitors of developmental signaling pathways. Mol Reprod Dev 2015; 82:1015-36. [PMID: 26387793 DOI: 10.1002/mrd.22585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Certain chemical agents act as teratogens, causing birth defects and fetal deaths when pregnant women are exposed to them. The establishment of in vitro models that recapitulate crucial embryonic events is therefore vital to facilitate screening of potential teratogens. Previously, we created a three-dimensional culture method for mouse P19C5 embryonal carcinoma stem cells that, when cultured as embryoid bodies, display elongation morphogenesis resembling gastrulation, which is the critical event resulting in the germ layers and major body axes. Determination of how well this in vitro morphogenesis represents in vivo gastrulation is essential to assess its applicability as well as to identify limitations of the model for detecting teratogenic agents. Here, we investigated the morphological and molecular characteristics of P19C5 morphogenesis using pharmacological agents that are known to cause abnormal patterning in the embryo in vivo by inhibiting major developmental signaling--e.g., involving Wnt, Nodal, Bone morphogenic protein (Bmp), Fibroblast growth factor (Fgf), Retinoic acid, Notch, and Hedgehog pathways. Inhibitors of Wnt, Nodal, Bmp, Fgf, and Retinoic acid signaling caused distinct changes in P19C5 morphogenesis that were quantifiable using morphometric parameters. These five inhibitors, plus the Notch inhibitor, also altered temporal expression profiles of developmental regulator genes in a manner consistent with the in vivo roles of the corresponding signaling pathways. In contrast, the Hedgehog inhibitor did not have any impact on the process, suggesting an absence of active Hedgehog signaling in these embryoid bodies. These results indicate that the P19C5 in vitro gastrulation model is a promising tool to screen for teratogenic agents that interfere with many of the key developmental signals.
Collapse
Affiliation(s)
- Aileen S W Li
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| |
Collapse
|
20
|
Kwon MC, Proost N, Song JY, Sutherland KD, Zevenhoven J, Berns A. Paracrine signaling between tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes Dev 2015. [PMID: 26215568 PMCID: PMC4536306 DOI: 10.1101/gad.262998.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Kwon et al. show that paracrine signaling between SCLC subclones is a critical requirement in the early steps of the metastatic process. Paracrine signaling via Fgf2 and MAPK between these diverged tumor subclones causes enhanced expression of the Pea3 transcription factor, resulting in metastatic dissemination of the neuroendocrine tumor subclones. Tumor heterogeneity can create a unique symbiotic tumor microenvironment. Earlier, we showed that clonal evolution in mouse small cell lung cancer (SCLC) can result in subclones that, upon cografting, endow the neuroendocrine tumor cells with metastatic potential. We now show that paracrine signaling between SCLC subclones is a critical requirement in the early steps of the metastatic process, such as local invasion and intravasation. We further show evidence that paracrine signaling via fibroblast growth factor 2 (Fgf2) and Mapk between these diverged tumor subclones causes enhanced expression of the Pea3 (polyomavirus enhancer activator 3) transcription factor, resulting in metastatic dissemination of the neuroendocrine tumor subclones. Our data reveal for the first time paracrine signaling between tumor cell subclones in SCLC that results in metastatic spread of SCLC.
Collapse
Affiliation(s)
- Min-chul Kwon
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Natalie Proost
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Ji-Ying Song
- Department of Experimental Animal Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Kate D Sutherland
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - John Zevenhoven
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands; Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia
| |
Collapse
|
21
|
Ornitz DM, Itoh N. The Fibroblast Growth Factor signaling pathway. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:215-66. [PMID: 25772309 PMCID: PMC4393358 DOI: 10.1002/wdev.176] [Citation(s) in RCA: 1461] [Impact Index Per Article: 146.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/23/2014] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of MedicineSt. Louis, MO, USA
- *
Correspondence to:
| | - Nobuyuki Itoh
- Graduate School of Pharmaceutical Sciences, Kyoto UniversitySakyo, Kyoto, Japan
| |
Collapse
|
22
|
Huh SH, Warchol ME, Ornitz DM. Cochlear progenitor number is controlled through mesenchymal FGF receptor signaling. eLife 2015; 4. [PMID: 25915623 PMCID: PMC4434254 DOI: 10.7554/elife.05921] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 04/25/2015] [Indexed: 12/16/2022] Open
Abstract
The sensory and supporting cells (SCs) of the organ of Corti are derived from a limited number of progenitors. The mechanisms that regulate the number of sensory progenitors are not known. Here, we show that Fibroblast Growth Factors (FGF) 9 and 20, which are expressed in the non-sensory (Fgf9) and sensory (Fgf20) epithelium during otic development, regulate the number of cochlear progenitors. We further demonstrate that Fgf receptor (Fgfr) 1 signaling within the developing sensory epithelium is required for the differentiation of outer hair cells and SCs, while mesenchymal FGFRs regulate the size of the sensory progenitor population and the overall cochlear length. In addition, ectopic FGFR activation in mesenchyme was sufficient to increase sensory progenitor proliferation and cochlear length. These data define a feedback mechanism, originating from epithelial FGF ligands and mediated through periotic mesenchyme that controls the number of sensory progenitors and the length of the cochlea. DOI:http://dx.doi.org/10.7554/eLife.05921.001 Mammalian ears contain several structures that are involved in hearing. Within the inner ear is a spiral-shaped structure called the cochlea. This contains an array of cells called sensory hair cells that convert sound vibrations into electrical signals, which are then conveyed to the brain. Sounds of differing pitch are detected at different points along the cochlea, so its overall length helps to determine the range of sounds that an individual can hear. In the embryo, sensory hair cells and their associated supporting cells develop from ‘cochlear progenitor’ cells. The final length of the cochlea is determined by the numbers of progenitor cells that commit to becoming either sensory hair cells or supporting cells. Two proteins called FGF9 and FGF20 are involved in the formation of the cochlea. FGF20 promotes the formation of the hair cells and supporting cells, but the precise roles of both proteins are not clear. Here, Huh et al. studied FGF9 and FGF20 in the inner ear of mice at an early stage of development. The experiments show that these proteins work together to control the number of progenitor cells and the length of the cochlea. FGF20 is produced by the same tissue structure (called an ‘epithelium’) that gives rise to the hair cells and supporting cells. In contrast, FGF9 is produced in another epithelium tissue that produces the cells that line the fluid-filled tubes of the inner ear. The experiments also show that both FGF9 and FGF20 act as signals to cells in an adjacent tissue called the mesenchyme, where they activate other proteins known as FGF receptors. These receptors, in turn, regulate an unknown molecule in the mesenchyme that influences the growth of progenitor cells and the length of the cochlea. Sensory hair cells can be injured or lost by excessive sound exposure, some medications and as part of normal aging. These cells are not replaced, and so their loss is a major cause of permanent hearing loss. Understanding the signals that produce the progenitor cells will take us one step closer to being able to grow these cells in the laboratory for use in therapies to replace or repair damaged sensory hair cells. DOI:http://dx.doi.org/10.7554/eLife.05921.002
Collapse
Affiliation(s)
- Sung-Ho Huh
- Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
| |
Collapse
|
23
|
Abramyan J, Thivichon-Prince B, Richman JM. Diversity in primary palate ontogeny of amniotes revealed with 3D imaging. J Anat 2015; 226:420-33. [PMID: 25904546 DOI: 10.1111/joa.12291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2015] [Indexed: 12/23/2022] Open
Abstract
The amniote primary palate encompasses the upper lip and the nasal cavities. During embryonic development, the primary palate forms from the fusion of the maxillary, medial nasal and lateral nasal prominences. In mammals, as the primary palate fuses, the nasal and oral cavities become completely separated. Subsequently, the tissue demarcating the future internal nares (choanae) thins and becomes the bucconasal membrane, which eventually ruptures and allows for the essential connection of the oral and nasal cavities to form. In reptiles (including birds), the other major amniote group, primary palate ontogeny is poorly studied with respect to prominence fusion, especially the formation of a bucconasal membrane. Using 3D optical projection tomography, we found that the prominences that initiate primary palate formation are similar between mammals and crocodilians but distinct from turtles and lizards, which are in turn similar to each other. Chickens are distinct from all non-avian lineages and instead resemble human embryos in this aspect. The majority of reptiles maintain a communication between the oral and nasal cavities via the choanae during primary palate formation. However, crocodiles appear to have a transient separation between the oral and nasal cavities. Furthermore, the three lizard species examined here, exhibit temporary closure of their external nares via fusion of the lateral nasal prominences with the frontonasal mass, subsequently reopening them just before hatching. The mechanism of the persistent choanal opening was examined in chicken embryos. The mesenchyme posterior/dorsal to the choana had a significant decline in proliferation index, whereas the mesenchyme of the facial processes remained high. This differential proliferation allows the choana to form a channel between the oral and nasal cavities as the facial prominences grow and fuse around it. Our data show that primary palate ontogeny has been modified extensively to support the array of morphological diversity that has evolved among amniotes.
Collapse
Affiliation(s)
- John Abramyan
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Beatrice Thivichon-Prince
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Joy Marion Richman
- Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Okazawa M, Murashima A, Harada M, Nakagata N, Noguchi M, Morimoto M, Kimura T, Ornitz DM, Yamada G. Region-specific regulation of cell proliferation by FGF receptor signaling during the Wolffian duct development. Dev Biol 2015; 400:139-47. [PMID: 25678108 PMCID: PMC4382079 DOI: 10.1016/j.ydbio.2015.01.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/19/2015] [Accepted: 01/22/2015] [Indexed: 02/01/2023]
Abstract
The Wolffian duct (WD) is a primordium of the male reproductive tract and kidney collecting duct system. Fibroblast growth factor receptors (FGFRs), members of the receptor tyrosine kinase (RTK) family, are essential for kidney development. Although the functions of FGFR signaling in kidney morphogenesis have been analyzed, their function in WD development has not been comprehensively investigated. Here, we demonstrate that Fgfr2 is the major Fgfr gene expressed throughout the WD epithelia and that it is essential for the maintenance of the WD, specifically in the caudal part of the WD. Hoxb7-Cre mediated inactivation of Fgfr2 in the mouse WD epithelia resulted in the regression of the caudal part of the WD and abnormal male reproductive tract development. Cell proliferation and expression of the downstream target genes of RTK signaling (Etv4 and Etv5) were decreased in the caudal part of the WD epithelia in the mutant embryos. Cranial (rostral) WD formation and ureteric budding were not affected. Ret, Etv4, and Etv5 expression were sustained in the ureteric bud of the mutant embryos. Taken together, these data suggest region-specific requirements for FGFR2 signaling in the developing caudal WD epithelia.
Collapse
Affiliation(s)
- Mika Okazawa
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Aki Murashima
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Masayo Harada
- Department of Clinical Anatomy, Graduate School of Medical and Dental Sciences, Tokyo, Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku 113-8519, Tokyo, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan
| | - Masafumi Noguchi
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe 650-0047, Hyogo, Japan
| | - Mitsuru Morimoto
- Laboratory for Lung Development, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuou-ku, Kobe 650-0047, Hyogo, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gen Yamada
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| |
Collapse
|
25
|
Firulli BA, Fuchs RK, Vincentz JW, Clouthier DE, Firulli AB. Hand1 phosphoregulation within the distal arch neural crest is essential for craniofacial morphogenesis. Development 2014; 141:3050-61. [PMID: 25053435 DOI: 10.1242/dev.107680] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In this study we examine the consequences of altering Hand1 phosphoregulation in the developing neural crest cells (NCCs) of mice. Whereas Hand1 deletion in NCCs reveals a nonessential role for Hand1 in craniofacial development and embryonic survival, altering Hand1 phosphoregulation, and consequently Hand1 dimerization affinities, in NCCs results in severe mid-facial clefting and neonatal death. Hand1 phosphorylation mutants exhibit a non-cell-autonomous increase in pharyngeal arch cell death accompanied by alterations in Fgf8 and Shh pathway expression. Together, our data indicate that the extreme distal pharyngeal arch expression domain of Hand1 defines a novel bHLH-dependent activity, and that disruption of established Hand1 dimer phosphoregulation within this domain disrupts normal craniofacial patterning.
Collapse
Affiliation(s)
- Beth A Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - Robyn K Fuchs
- Department of Physical Therapy and the Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Science, Indiana University, Indianapolis, IN 46202, USA
| | - Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, 12801 E 17th Avenue, Rm. 11-109, MS 8120, Aurora, CO 80045, USA
| | - Anthony B Firulli
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatric Cardiology, Departments of Anatomy and Medical, Biochemistry, and Molecular Genetics, Indiana Medical School, 1044 W. Walnut Street, Indianapolis, IN 46202-5225, USA
| |
Collapse
|
26
|
Kandemir B, Caglayan B, Hausott B, Erdogan B, Dag U, Demir O, Sogut MS, Klimaschewski L, Kurnaz IA. Pea3 transcription factor promotes neurite outgrowth. Front Mol Neurosci 2014; 7:59. [PMID: 25018694 PMCID: PMC4072091 DOI: 10.3389/fnmol.2014.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/08/2014] [Indexed: 01/13/2023] Open
Abstract
Pea3 subfamily of E–twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3.
Collapse
Affiliation(s)
- Basak Kandemir
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Berrak Caglayan
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey ; Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Barbara Hausott
- Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Burcu Erdogan
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Ugur Dag
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Ozlem Demir
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Melis S Sogut
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| | - Lars Klimaschewski
- Division of Neuroanatomy, Innsbruck Medical University Innsbruck, Austria
| | - Isil A Kurnaz
- Molecular Neurobiology Laboratory, Department of Genetics and Bioengineering, Yeditepe University Istanbul, Turkey
| |
Collapse
|
27
|
Zhang J, Wright KD, Mahoney Rogers AA, Barrett MM, Shim K. Compensatory regulation of the size of the inner ear in response to excess induction of otic progenitors by fibroblast growth factor signaling. Dev Dyn 2014; 243:1317-27. [PMID: 24847848 DOI: 10.1002/dvdy.24148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/28/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The otic placode comprises the progenitors of the inner ear and the neurons that convey hearing and balance information to the brain. Transplantation studies in birds and amphibians demonstrate that when the otic placode is morphologically visible as a thickened patch of ectoderm, it is first committed to an otic fate. Fibroblast growth factor (FGF) signaling initiates induction of the otic placode, and levels of FGF signaling are fine-tuned by the Sprouty family of antagonists of receptor tyrosine kinase signaling. RESULTS Here, we examined the size of the otic placode and cup by combinatorial inactivation of the Sprouty1 and Sprouty2 genes. Interestingly, in a Sprouty gene dosage series, early enlargement of the otic placode was progressively restored to normal. Restoration of otic size was preceded by normal levels of FGF signaling, reduced cell proliferation and reduced cell death. CONCLUSIONS Our study demonstrates that excess otic placode cells, which form in response to increased FGF signaling, are not maintained in mammals. This suggests that growth plasticity exists in the mammalian otic placode and cup, and that FGF signaling may not be sufficient to induce the genetic program that maintains otic fate.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | | | | |
Collapse
|
28
|
Tabler JM, Barrell WB, Szabo-Rogers HL, Healy C, Yeung Y, Perdiguero EG, Schulz C, Yannakoudakis BZ, Mesbahi A, Wlodarczyk B, Geissmann F, Finnell RH, Wallingford JB, Liu KJ. Fuz mutant mice reveal shared mechanisms between ciliopathies and FGF-related syndromes. Dev Cell 2013; 25:623-35. [PMID: 23806618 PMCID: PMC3697100 DOI: 10.1016/j.devcel.2013.05.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 03/29/2013] [Accepted: 05/23/2013] [Indexed: 12/25/2022]
Abstract
Ciliopathies are a broad class of human disorders with craniofacial dysmorphology as a common feature. Among these is high arched palate, a condition that affects speech and quality of life. Using the ciliopathic Fuz mutant mouse, we find that high arched palate does not, as commonly suggested, arise from midface hypoplasia. Rather, increased neural crest expands the maxillary primordia. In Fuz mutants, this phenotype stems from dysregulated Gli processing, which in turn results in excessive craniofacial Fgf8 gene expression. Accordingly, genetic reduction of Fgf8 ameliorates the maxillary phenotypes. Similar phenotypes result from mutation of oral-facial-digital syndrome 1 (Ofd1), suggesting that aberrant transcription of Fgf8 is a common feature of ciliopathies. High arched palate is also a prevalent feature of fibroblast growth factor (FGF) hyperactivation syndromes. Thus, our findings elucidate the etiology for a common craniofacial anomaly and identify links between two classes of human disease: FGF-hyperactivation syndromes and ciliopathies. A genetic model for high arched palate, commonly seen in human craniofacial syndromes In ciliopathic mice, Fgf8 overexpression leads to cranial neural crest hyperplasia Enlargement of the maxillary primordia underlies high arched palate in Fuz mutants An etiological link between ciliopathies and FGF-hyperactivation syndromes
Collapse
Affiliation(s)
- Jacqueline M Tabler
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hu D, Marcucio RS. Neural crest cells pattern the surface cephalic ectoderm during FEZ formation. Dev Dyn 2013; 241:732-40. [PMID: 22411554 DOI: 10.1002/dvdy.23764] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Multiple fibroblast growth factor (Fgf) ligands are expressed in the forebrain and facial ectoderm, and vascular endothelial growth factor (VEGF) is expressed in the facial ectoderm. Both pathways activate the MAP kinase cascade and can be suppressed by SU5402. We placed a bead soaked in SU5402 into the brain after emigration of neural crest cells was complete. RESULTS Within 24 hr we observed reduced pMEK and pERK staining that persisted for at least 48 hr. This was accompanied by significant apoptosis in the face. By day 15, the upper beaks were truncated. Molecular changes in the FNP were also apparent. Normally, Shh is expressed in the frontonasal ectodermal zone and controls patterned growth of the upper jaw. In treated embryos, Shh expression was reduced. Both the structural and molecular deficits were mitigated after transplantation of FNP-derived mesenchymal cells. CONCLUSIONS Thus, mesenchymal cells actively participate in signaling interactions of the face, and the absence of neural crest cells in neurocristopathies may not be merely structural.
Collapse
Affiliation(s)
- Diane Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, The University of California San Francisco, School of Medicine, San Francisco, California 94110, USA
| | | |
Collapse
|
30
|
Clanton JA, Hope KD, Gamse JT. Fgf signaling governs cell fate in the zebrafish pineal complex. Development 2013; 140:323-32. [PMID: 23250206 DOI: 10.1242/dev.083709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Left-right (L-R) asymmetries in neuroanatomy exist throughout the animal kingdom, with implications for function and behavior. The molecular mechanisms that control formation of such asymmetries are beginning to be understood. Significant progress has been made by studying the zebrafish parapineal organ, a group of neurons on the left side of the epithalamus. Parapineal cells arise from the medially located pineal complex anlage and migrate to the left side of the brain. We have found that Fgf8a regulates a fate decision among anterior pineal complex progenitors that occurs just prior to the initiation of leftward migration. Cell fate analysis shows that in the absence of Fgf8a a subset of cells in the anterior pineal complex anlage differentiate as cone photoreceptors rather than parapineal neurons. Fgf8a acts permissively to promote parapineal fate in conjunction with the transcription factor Tbx2b, but might also block cone photoreceptor fate. We conclude that this subset of anterior pineal complex precursors, which normally become parapineal cells, are bipotential and require Fgf8a to maintain parapineal identity and/or prevent cone identity.
Collapse
Affiliation(s)
- Joshua A Clanton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37205, USA
| | | | | |
Collapse
|
31
|
Liu F, Cao J, Lv J, Dong L, Pier E, Xu GX, Wang RA, Xu Z, Goding C, Cui R. TBX2 expression is regulated by PAX3 in the melanocyte lineage. Pigment Cell Melanoma Res 2013; 26:67-77. [PMID: 23020925 PMCID: PMC3527652 DOI: 10.1111/pcmr.12029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/25/2012] [Indexed: 11/28/2022]
Abstract
The paired box homeotic gene 3 (PAX3) is a crucial regulator for the maintenance of melanocytic progenitor cells and has a poorly defined role in melanoma. To understand how PAX3 affects melanocyte and melanoma proliferation, we identified potential PAX3 downstream targets through gene expression profiling. Here, we identify T-box 2 (TBX2), a key developmental regulator of cell identity and an antisenescence factor in melanoma, as a directly regulated PAX3 target. We also found that TBX2 is involved in the survival of melanoma cells and is overexpressed in some melanoma specimens. The identification of TBX2 as a target for PAX3 provides a key insight into how PAX3 may contribute to melanoma evolution and may provide opportunities for prosenescence therapeutic intervention aimed at disrupting the ability of PAX3 to regulate TBX2.
Collapse
Affiliation(s)
- Fang Liu
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
- Department of Dermatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China,100020
| | - Juxiang Cao
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| | - Jinghu Lv
- Rizhao General Hospital, Rizhao, Shandong Province, China
| | - Liang Dong
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| | - Eric Pier
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| | - George X. Xu
- Department of Pathology and Lab Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Rui-an Wang
- Department of Pathology, Fourth Military Medical University, Xian, Shanxi, China
| | - Zhixiang Xu
- Division of Hematology/Oncology, Department of Medicine, University of Alabama at Birmingham School of Medicine, 17 Ave S, Birmingham, Al 35233
| | - Colin Goding
- Ludwig Institute for Cancer Research, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Rutao Cui
- Department of Dermatology, Boston University School of Medicine 609 Albany St, Boston, MA 02118
| |
Collapse
|
32
|
Abstract
Craniofacial development requires an exquisitely timed and positioned cross-talk between the embryonic cephalic epithelia and mesenchyme. This cross-talk underlies the precise translation of patterning processes and information into distinct, appropriate skeletal morphologies. The molecular and cellular dialogue includes communication via secreted signaling molecules, including Fgf8, and effectors of their interpretation. Herein, we use genetic attenuation of Fgf8 in mice and perform gain-of-function mouse-chick chimeric experiments to demonstrate that significant character states of the frontonasal and optic skeletons are dependent on Fgf8. Notably, we show that the normal orientation and polarity of the nasal capsules and their developing primordia are dependent on Fgf8. We further demonstrate that Fgf8 is required for midfacial integration, and provide evidence for a role for Fgf8 in optic capsular development. Taken together, our data highlight Fgf8 signaling in craniofacial development as a plausible target for evolutionary selective pressures.
Collapse
|
33
|
Jiang Z, Price CA. Differential actions of fibroblast growth factors on intracellular pathways and target gene expression in bovine ovarian granulosa cells. Reproduction 2012; 144:625-32. [PMID: 22956519 DOI: 10.1530/rep-12-0199] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Several fibroblast growth factors (FGFs), including FGF1, FGF4 and FGF10, alter ovarian granulosa cell function. These ligands exhibit different patterns of receptor activation, and their mechanisms of action on granulosa cells remain unknown. The objective of this study was to identify the major pathways and target genes activated by FGF1, FGF4 and FGF10 in primary oestrogenic granulosa cells cultured under serum-free conditions. FGF1 and FGF4 increased levels of mRNA encoding Sprouty family members, SPRY2 and SPRY4, and the orphan nuclear receptors NR4A1 and NR4A3. Both FGF1 and FGF4 decreased levels of mRNA encoding SPRY3 and the pro-apoptotic factor BAX. FGF1 but not FGF4 stimulated expression of the cell cycle regulator, GADD45B. In contrast, FGF10 altered the expression of none of these genes. Western blot demonstrated that FGF4 activated ERK1/2 and Akt signalling rapidly and transiently, whereas FGF10 elicited a modest and delayed activation of ERK1/2. These data show that FGF1 and FGF4 activate typical FGF signalling pathways in granulosa cells, whereas FGF10 activates atypical pathways.
Collapse
Affiliation(s)
- Zhongliang Jiang
- College of Animal Science and Technology, Northwestern A&F University, Yangling, ShaanXi, China
| | | |
Collapse
|
34
|
Arora R, Metzger RJ, Papaioannou VE. Multiple roles and interactions of Tbx4 and Tbx5 in development of the respiratory system. PLoS Genet 2012; 8:e1002866. [PMID: 22876201 PMCID: PMC3410851 DOI: 10.1371/journal.pgen.1002866] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 06/12/2012] [Indexed: 11/19/2022] Open
Abstract
Normal development of the respiratory system is essential for survival and is regulated by multiple genes and signaling pathways. Both Tbx4 and Tbx5 are expressed throughout the mesenchyme of the developing lung and trachea; and, although multiple genes are known to be required in the epithelium, only Fgfs have been well studied in the mesenchyme. In this study, we investigated the roles of Tbx4 and Tbx5 in lung and trachea development using conditional mutant alleles and two different Cre recombinase transgenic lines. Loss of Tbx5 leads to a unilateral loss of lung bud specification and absence of tracheal specification in organ culture. Mutants deficient in Tbx4 and Tbx5 show severely reduced lung branching at mid-gestation. Concordant with this defect, the expression of mesenchymal markers Wnt2 and Fgf10, as well as Fgf10 target genes Bmp4 and Spry2, in the epithelium is downregulated. Lung branching undergoes arrest ex vivo when Tbx4 and Tbx5 are both completely lacking. Lung-specific Tbx4 heterozygous;Tbx5 conditional null mice die soon after birth due to respiratory distress. These pups have small lungs and show severe disruptions in tracheal/bronchial cartilage rings. Sox9, a master regulator of cartilage formation, is expressed in the trachea; but mesenchymal cells fail to condense and consequently do not develop cartilage normally at birth. Tbx4;Tbx5 double heterozygous mutants show decreased lung branching and fewer tracheal cartilage rings, suggesting a genetic interaction. Finally, we show that Tbx4 and Tbx5 interact with Fgf10 during the process of lung growth and branching but not during tracheal/bronchial cartilage development.
Collapse
Affiliation(s)
- Ripla Arora
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
| | - Ross J. Metzger
- Department of Anatomy, School of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Virginia E. Papaioannou
- Department of Genetics and Development, Columbia University Medical Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mahoney Rogers AA, Zhang J, Shim K. Sprouty1 and Sprouty2 limit both the size of the otic placode and hindbrain Wnt8a by antagonizing FGF signaling. Dev Biol 2011; 353:94-104. [PMID: 21362415 PMCID: PMC3075364 DOI: 10.1016/j.ydbio.2011.02.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/18/2011] [Accepted: 02/20/2011] [Indexed: 11/21/2022]
Abstract
Multiple signaling molecules, including Fibroblast Growth Factor (FGF) and Wnt, induce two patches of ectoderm on either side of the hindbrain to form the progenitor cell population for the inner ear, or otic placode. Here we report that in Spry1, Spry2 compound mutant embryos (Spry1⁻/⁻; Spry2⁻/⁻ embryos), the otic placode is increased in size. We demonstrate that the otic placode is larger due to the recruitment of cells, normally destined to become cranial epidermis, into the otic domain. The enlargement of the otic placode observed in Spry1⁻/⁻; Spry2⁻/⁻ embryos is preceded by an expansion of a Wnt8a expression domain in the adjacent hindbrain. We demonstrate that both the enlargement of the otic placode and the expansion of the Wnt8a expression domain can be rescued in Spry1⁻/⁻; Spry2⁻/⁻ embryos by reducing the gene dosage of Fgf10. Our results define a FGF-responsive window during which cells can be continually recruited into the otic domain and uncover SPRY regulation of the size of a putative Wnt inductive center.
Collapse
Affiliation(s)
- Amanda A Mahoney Rogers
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
36
|
Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 2011; 138:971-81. [PMID: 21303850 DOI: 10.1242/dev.053694] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian foregut gives rise to the dorsally located esophagus and stomach and the ventrally located trachea and lung. Proper patterning and morphogenesis of the common foregut tube and its derived organs is essential for viability of the organism at birth. Here, we show that conditional inactivation of BMP type I receptor genes Bmpr1a and Bmpr1b (Bmpr1a;b) in the ventral endoderm leads to tracheal agenesis and ectopic primary bronchi. Molecular analyses of these mutants reveal a reduction of ventral endoderm marker NKX2-1 and an expansion of dorsal markers SOX2 and P63 into the prospective trachea and primary bronchi. Subsequent genetic experiments show that activation of canonical WNT signaling, previously shown to induce ectopic respiratory fate in otherwise wild-type mice, is incapable of promoting respiratory fate in the absence of Bmpr1a;b. Furthermore, we find that inactivation of Sox2 in Bmpr1a;b mutants does not suppress ectopic lung budding but does rescue trachea formation and NKX2-1 expression. Together, our data suggest that signaling through BMPR1A;B performs at least two roles in early respiratory development: first, it promotes tracheal formation through repression of Sox2; and second, it restricts the site of lung bud initiation.
Collapse
Affiliation(s)
- Eric T Domyan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
37
|
Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis 2011; 49:177-89. [PMID: 21381182 PMCID: PMC3086711 DOI: 10.1002/dvg.20710] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/15/2010] [Accepted: 12/23/2010] [Indexed: 12/11/2022]
Abstract
The effect of the brain on the morphology of the face has long been recognized in both evolutionary biology and clinical medicine. In this work, we describe factors that are active between the development of the brain and face and how these might impact craniofacial variation. First, there is the physical influence of the brain, which contributes to overall growth and morphology of the face through direct structural interactions. Second, there is the molecular influence of the brain, which signals to facial tissues to establish signaling centers that regulate patterned growth. Importantly, subtle alterations to these physical or molecular interactions may contribute to both normal and abnormal variation. These interactions are therefore critical to our understanding of how a diversity of facial morphologies can be generated both within species and across evolutionary time.
Collapse
Affiliation(s)
- Ralph S Marcucio
- University of California, San Francisco, Orthopaedic Trauma Institute, Department of Orthopaedic Surgery, UCSF, San Francisco General Hospital, San Francisco, California 94110, USA.
| | | | | | | |
Collapse
|
38
|
Tsai PS, Brooks LR, Rochester JR, Kavanaugh SI, Chung WCJ. Fibroblast growth factor signaling in the developing neuroendocrine hypothalamus. Front Neuroendocrinol 2011; 32:95-107. [PMID: 21129392 PMCID: PMC3050526 DOI: 10.1016/j.yfrne.2010.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/03/2010] [Accepted: 11/24/2010] [Indexed: 11/29/2022]
Abstract
Fibroblast growth factor (FGF) signaling is pivotal to the formation of numerous central regions. Increasing evidence suggests FGF signaling also directs the development of the neuroendocrine hypothalamus, a collection of neuroendocrine neurons originating primarily within the nose and the ventricular zone of the diencephalon. This review outlines evidence for a role of FGF signaling in the prenatal and postnatal development of several hypothalamic neuroendocrine systems. The emphasis is placed on the nasally derived gonadotropin-releasing hormone neurons, which depend on neurotrophic cues from FGF signaling throughout the neurons' lifetime. Although less is known about neuroendocrine neurons derived from the diencephalon, recent studies suggest they also exhibit variable levels of dependence on FGF signaling. Overall, FGF signaling provides a broad spectrum of cues that ranges from genesis, cell survival/death, migration, morphological changes, to hormone synthesis in the neuroendocrine hypothalamus. Abnormal FGF signaling will deleteriously impact multiple hypothalamic neuroendocrine systems, resulting in the disruption of diverse physiological functions.
Collapse
Affiliation(s)
- Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, CO 80309-0354, USA.
| | | | | | | | | |
Collapse
|
39
|
Matsumura K, Taketomi T, Yoshizaki K, Arai S, Sanui T, Yoshiga D, Yoshimura A, Nakamura S. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling. Biochem Biophys Res Commun 2010; 404:1076-82. [PMID: 21195053 DOI: 10.1016/j.bbrc.2010.12.116] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 12/21/2010] [Indexed: 01/22/2023]
Abstract
Cleft palate is one of the most common craniofacial deformities. The fibroblast growth factor (FGF) plays a central role in reciprocal interactions between adjacent tissues during palatal development, and the FGF signaling pathway has been shown to be inhibited by members of the Sprouty protein family. In this study, we report the incidence of cleft palate, possibly caused by failure of palatal shelf elevation, in Sprouty2-deficient (KO) mice. Sprouty2-deficient palates fused completely in palatal organ culture. However, palate mesenchymal cell proliferation estimated by Ki-67 staining was increased in Sprouty2 KO mice compared with WT mice. Sprouty2-null palates expressed higher levels of FGF target genes, such as Msx1, Etv5, and Ptx1 than WT controls. Furthermore, proliferation and the extracellular signal-regulated kinase (Erk) activation in response to FGF was enhanced in palate mesenchymal cells transfected with Sprouty2 small interfering RNA. These results suggest that Sprouty2 regulates palate mesenchymal cell proliferation via FGF signaling and is involved in palatal shelf elevation.
Collapse
Affiliation(s)
- Kaori Matsumura
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yu S, Poe B, Schwarz M, Elliot SA, Albertine KH, Fenton S, Garg V, Moon AM. Fetal and postnatal lung defects reveal a novel and required role for Fgf8 in lung development. Dev Biol 2010; 347:92-108. [PMID: 20727874 PMCID: PMC5133699 DOI: 10.1016/j.ydbio.2010.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 07/15/2010] [Accepted: 08/11/2010] [Indexed: 12/18/2022]
Abstract
The fibroblast growth factor, FGF8, has been shown to be essential for vertebrate cardiovascular, craniofacial, brain and limb development. Here we report that Fgf8 function is required for normal progression through the late fetal stages of lung development that culminate in alveolar formation. Budding, lobation and branching morphogenesis are unaffected in early stage Fgf8 hypomorphic and conditional mutant lungs. Excess proliferation during fetal development disrupts distal airspace formation, mesenchymal and vascular remodeling, and Type I epithelial cell differentiation resulting in postnatal respiratory failure and death. Our findings reveal a previously unknown, critical role for Fgf8 function in fetal lung development and suggest that this factor may also contribute to postnatal alveologenesis. Given the high number of premature infants with alveolar dysgenesis and lung dysplasia, and the accumulating evidence that short-term benefits of available therapies may be outweighed by long-term detrimental effects on postnatal alveologenesis, the therapeutic implications of identifying a factor or pathway that can be targeted to stimulate normal alveolar development are profound.
Collapse
Affiliation(s)
- Shibin Yu
- Department of Pediatrics, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Vitelli F, Lania G, Huynh T, Baldini A. Partial rescue of the Tbx1 mutant heart phenotype by Fgf8: genetic evidence of impaired tissue response to Fgf8. J Mol Cell Cardiol 2010; 49:836-40. [PMID: 20807544 PMCID: PMC2981862 DOI: 10.1016/j.yjmcc.2010.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/11/2010] [Accepted: 08/24/2010] [Indexed: 11/20/2022]
Abstract
Tbx1 is the candidate gene of DiGeorge syndrome and is required in humans and mice for the development of the cardiac outflow tract (OFT) and aortic arch arteries. Loss of function mutants present with reduced cell proliferation and premature differentiation of cardiac progenitor cells of the second heart field (SHF). Tbx1 regulates Fgf8 expression hence the hypothesis that the proliferation impairment may contribute to the heart phenotype of mutants. Here we show that forced Fgf8 expression modifies and partially rescues the OFT septation defects of Tbx1 mutants but only if there is some residual expression of Tbx1. This genetic experiment suggests that Tbx1, directly or indirectly, affects tissue response to Fgf8. Indeed, Tbx1(-/-) mouse embryonic fibroblasts were unable to respond to Fgf8 added to the culture media and showed defective response of Erk1/2 and Rsk1. Our data suggest a coordinated pathway modulating Fgf8 ligand expression and tissue response to it in the SHF.
Collapse
Affiliation(s)
- Francesca Vitelli
- Institute of Biosciences and Technologies, Texas A&M University, Houston, TX, USA
| | - Gabriella Lania
- Institute of Genetics and Biophysics of the National Research Council, Naples, Italy
| | - Tuong Huynh
- Institute of Biosciences and Technologies, Texas A&M University, Houston, TX, USA
| | - Antonio Baldini
- Institute of Biosciences and Technologies, Texas A&M University, Houston, TX, USA
- Institute of Genetics and Biophysics of the National Research Council, Naples, Italy
| |
Collapse
|
42
|
Fuchs A, Inthal A, Herrmann D, Cheng S, Nakatomi M, Peters H, Neubüser A. Regulation of Tbx22 during facial and palatal development. Dev Dyn 2010; 239:2860-74. [PMID: 20845426 DOI: 10.1002/dvdy.22421] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the gene encoding the T-box transcription factor TBX22 cause X-linked cleft palate and ankyloglossia in humans. Here we show that Tbx22 expression during facial and palatal development is regulated by FGF and BMP signaling. Our results demonstrate that FGF8 induces Tbx22 in the early face while BMP4 represses and thus restricts its expression. This regulation is conserved between chicken and mouse, although the Tbx22-expression patterns differ considerably between these two species. We suggest that these species-specific differences may result at least in part from differences in the spatiotemporal patterns of BMP activity, but we exclude a direct repression of Tbx22 by the BMP-inducible transcriptional repressor MSX1. Together these findings help to integrate Tbx22 into the molecular network of factors regulating facial development.
Collapse
Affiliation(s)
- Alisa Fuchs
- Developmental Biology, Institute of Biology 1, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
43
|
Giffoni SDA, Cendes F, Valente M, Gil-Da-Silva-Lopes VL. Malformations of Cortical Development in Patients with Midline Facial Defects and Ocular Hypertelorism. Cleft Palate Craniofac J 2010; 47:343-51. [DOI: 10.1597/08-167.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objectives We studied the neuroimaging and neurophysiological aspects of 17 patients with midline facial defects with ocular hypertelorism (MFDH). Methods The investigation protocol included a previous semistructured questionnaire about family history; gestational, neonatal, and postnatal development; and dysmorphologic and neurologic evaluation. Recognized monogenic disorders and individuals with other well-known conditions were excluded. All patients had high resolution magnetic resonance imaging (MRI) with multiplanar reconstruction (MPR) and routine electroencephalograms (EEGs). Results We detected abnormalities in five patients whose MRIs had been previously reported as normal. MRI showed central nervous system (CNS) structural abnormalities in all patients, which included commissural alterations in 16/17 (94%), malformations of cortical development in 10/17 (58%), disturbances of neural tube closure in 7/17 (42%), and posterior fossa anomalies in 6/17 (35%). Some patients had more than one type of malformation occurring at different stages of the embryonary process. EEGs showed epileptiform activity in 4/17 (24%) and background abnormalities in 5/17 (29%) of patients. Conclusion This study clearly demonstrated the presence of structural and functional neurologic alterations related to MFDH. Therefore, the CNS anomalies cannot be considered incidental findings but an intrinsic part of this condition, which could be related to environmental effects and/or genetic mutations. These findings would provide a basis for future investigations on MFDH and should also be considered when planning rehabilitation.
Collapse
Affiliation(s)
- Silvyo David Araújo Giffoni
- Department of Medical Genetics, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Fernando Cendes
- Department of Neurology, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| | - Marcelo Valente
- Department of Radiology, Instituto da Criança, Universidade de São Paulo (USP), São Paulo-SP, Brazil
| | - Vera Lucia Gil-Da-Silva-Lopes
- Department of Medical Genetics, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas-SP, Brazil
| |
Collapse
|
44
|
Weisinger K, Kayam G, Missulawin-Drillman T, Sela-Donenfeld D. Analysis of expression and function of FGF-MAPK signaling components in the hindbrain reveals a central role for FGF3 in the regulation of Krox20, mediated by Pea3. Dev Biol 2010; 344:881-95. [PMID: 20553903 DOI: 10.1016/j.ydbio.2010.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 05/24/2010] [Accepted: 06/01/2010] [Indexed: 12/18/2022]
Abstract
The development of the vertebrate hindbrain requires multiple coordinated signals which act via several pathways. One such signal is Fibroblast Growth Factor (FGF), which is necessary for the patterning of a major transcription factor in the hindbrain, Krox20. However, in the chick, it is still not known which specific FGF ligand is responsible for the regulation of Krox20 and how the signal is dispatched. The most characterized signaling pathway which FGF acts through in the nervous system is the MAPK/Erk1/2 pathway. Nevertheless, a detailed analysis of the hindbrain distribution of various components of this pathway has not been fully described. In this study we present a comprehensive atlas of the FGF ligands, receptors and members of the MAPK/Erk1/2 signaling components in subsequent stages of avian hindbrain development. Moreover, we show that FGF is a major signaling pathway that contributes to the activation of ERK1/2 and expression of the downstream targets Pea3 and Erm. Central to this study, we provide multiple evidence that FGF3 is required for the upregulation of Pea3 that in turn is necessary for Krox20 distribution in rhombomeres 3 and 5. These results show for the first time that Pea3 mediates the FGF3 signal to regulate the hindbrain expression of Krox20.
Collapse
Affiliation(s)
- Karen Weisinger
- Koret School of Veterinary Medicine, The Hebrew University of Jerusalem, Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
45
|
Kuure S, Chi X, Lu B, Costantini F. The transcription factors Etv4 and Etv5 mediate formation of the ureteric bud tip domain during kidney development. Development 2010; 137:1975-9. [PMID: 20463033 DOI: 10.1242/dev.051656] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Signaling by the Ret receptor tyrosine kinase promotes cell movements in the Wolffian duct that give rise to the first ureteric bud tip, initiating kidney development. Although the ETS transcription factors Etv4 and Etv5 are known to be required for mouse kidney development and to act downstream of Ret, their specific functions are unclear. Here, we examine their role by analyzing the ability of Etv4 Etv5 compound mutant cells to contribute to chimeric kidneys. Etv4(-/-);Etv5(+/-) cells show a limited distribution in the caudal Wolffian duct and ureteric bud, similar to Ret(-/-) cells, revealing a cell-autonomous role for Etv4 and Etv5 in the cell rearrangements promoted by Ret. By contrast, Etv4(-/-);Etv5(-/-) cells display more severe developmental limitations, suggesting a broad role for Etv4 and Etv5 downstream of multiple signals, which are together important for Wolffian duct and ureteric bud morphogenesis.
Collapse
Affiliation(s)
- Satu Kuure
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | |
Collapse
|
46
|
Herrmann D, Ferrer-Vaquer A, Lahsnig C, Firnberg N, Leibbrandt A, Neubüser A. Expression and regulation of ANTXR1 in the chick embryo. Dev Dyn 2010; 239:680-7. [PMID: 20034073 DOI: 10.1002/dvdy.22194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Anthrax Toxin Receptor 1 (ANTXR1; also known as Tumor Endothelial Marker 8, TEM8) is one of several genes that was recently found to be up-regulated in tumor-associated endothelial cells. In vitro, the protein can link extracellular matrix components with the actin cytoskeleton to promote cell adhesion and cell spreading. Both, ANTXR1 and the closely related ANTXR2 can bind anthrax toxin and interact with lipoprotein receptor-related protein 5 and 6, which also work as coreceptors in the WNT signaling pathway. Here, we report the cloning of chick ANTXR1 from a suppression subtractive hybridization screen for fibroblast growth factor (FGF) -inducible genes in chicken embryonic facial mesenchyme. We show that chicken ANTXR1 is dynamically expressed throughout embryogenesis, starting from Hamburger and Hamilton stage 10. Furthermore, we demonstrate that FGF signaling is sufficient, but not necessary, to induce ANTXR1 expression in chicken facial mesenchyme.
Collapse
Affiliation(s)
- David Herrmann
- Developmental Biology Unit, Institute of Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Higashihori N, Buchtová M, Richman JM. The function and regulation of TBX22 in avian frontonasal morphogenesis. Dev Dyn 2010; 239:458-73. [PMID: 20033915 DOI: 10.1002/dvdy.22182] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The frontonasal mass gives rise to the facial midline and fuses with the maxillary prominence to form the upper lip. Here we focus on the regulation and function of TBX22, a repressor dynamically expressed in the frontonasal mass. Both FGF and Noggin (a BMP antagonist) strongly induce gTBX22, however, each has opposite effects on morphogenesis - Noggin inhibits whereas FGF stimulates growth. To determine whether TBX22 mediates these effects, we used retroviruses to locally increase expression levels. RCAS::hTBX22 decreased proliferation, reduced expression of MSX2 and DLX5 and caused cleft lip. Decreased levels of endogenous gTBX22 were also observed but were not the primary cause of the phenotype as determined in rescue experiments. Our data suggest that genetic or environmental insults such as those affecting the BMP pathway could lead to a gain-of-function of TBX22 and predispose an individual to cleft lip.
Collapse
Affiliation(s)
- Norihisa Higashihori
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
48
|
Aragon F, Pujades C. FGF signaling controls caudal hindbrain specification through Ras-ERK1/2 pathway. BMC DEVELOPMENTAL BIOLOGY 2009; 9:61. [PMID: 19958530 PMCID: PMC2794271 DOI: 10.1186/1471-213x-9-61] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 12/03/2009] [Indexed: 11/10/2022]
Abstract
Background During early steps of embryonic development the hindbrain undergoes a regionalization process along the anterior-posterior (AP) axis that leads to a metameric organization in a series of rhombomeres (r). Refinement of the AP identities within the hindbrain requires the establishment of local signaling centers, which emit signals that pattern territories in their vicinity. Previous results demonstrated that the transcription factor vHnf1 confers caudal identity to the hindbrain inducing Krox20 in r5 and MafB/Kreisler in r5 and r6, through FGF signaling [1]. Results We show that in the chick hindbrain, Fgf3 is transcriptionally activated as early as 30 min after mvHnf1 electroporation, suggesting that it is a direct target of this transcription factor. We also analyzed the expression profiles of FGF activity readouts, such as MKP3 and Pea3, and showed that both are expressed within the hindbrain at early stages of embryonic development. In addition, MKP3 is induced upon overexpression of mFgf3 or mvHnf1 in the hindbrain, confirming vHnf1 is upstream FGF signaling. Finally, we addressed the question of which of the FGF-responding intracellular pathways were active and involved in the regulation of Krox20 and MafB in the hindbrain. While Ras-ERK1/2 activity is necessary for MKP3, Krox20 and MafB induction, PI3K-Akt is not involved in that process. Conclusion Based on these observations we propose that vHnf1 acts directly through FGF3, and promotes caudal hindbrain identity by activating MafB and Krox20 via the Ras-ERK1/2 intracellular pathway.
Collapse
Affiliation(s)
- Ferran Aragon
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, PRBB, Barcelona, Spain.
| | | |
Collapse
|
49
|
Barembaum M, Bronner-Fraser M. Pax2 and Pea3 synergize to activate a novel regulatory enhancer for spalt4 in the developing ear. Dev Biol 2009; 340:222-31. [PMID: 19913005 DOI: 10.1016/j.ydbio.2009.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 12/11/2022]
Abstract
The transcription factor spalt4 is a key early-response gene in otic placode induction. Here, we characterize the cis-regulatory regions of spalt4 responsible for activation of its expression in the developing otic placode and report the isolation of a novel core enhancer. Identification and mutational analysis of putative transcription factor binding sites reveal that Pea3, a downstream effector of FGF signaling, and Pax2 directly activate spalt4 during ear development. Morpholino-mediated knock-down of each factor reduces or eliminates reporter expression. In contrast, combined over-expression of Pea3 and Pax2 drives ectopic reporter expression, suggesting that they function synergistically. These studies expand the gene regulatory network underlying early otic development by identifying direct inputs that mediate spalt4 expression.
Collapse
Affiliation(s)
- Meyer Barembaum
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
50
|
Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 2009; 41:1295-302. [PMID: 19898483 PMCID: PMC2787691 DOI: 10.1038/ng.476] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 09/29/2009] [Indexed: 11/08/2022]
Abstract
Glial cell line-derived neurotrophic factor signaling through the Ret receptor tyrosine kinase is crucial for ureteric bud branching morphogenesis during kidney development, yet few of the downstream genes are known. Here we show that the ETS transcription factors Etv4 and Etv5 are positively regulated by Ret signaling in the ureteric bud tips. Mice lacking both Etv4 alleles and one Etv5 allele show either renal agenesis or severe hypodysplasia, whereas kidney development fails completely in double homozygotes. We identified several genes whose expression in the ureteric bud depends on Etv4 and Etv5, including Cxcr4, Myb, Met and Mmp14. Thus, Etv4 and Etv5 are key components of a gene network downstream of Ret that promotes and controls renal branching morphogenesis.
Collapse
|