1
|
Dissection of a rice OsMac1 mRNA 5' UTR to uncover regulatory elements that are responsible for its efficient translation. PLoS One 2021; 16:e0253488. [PMID: 34242244 PMCID: PMC8270207 DOI: 10.1371/journal.pone.0253488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/07/2021] [Indexed: 11/19/2022] Open
Abstract
The untranslated regions (UTRs) of mRNAs are involved in many posttranscriptional regulatory pathways. The rice OsMac1 mRNA has three splicing variants of the 5' UTR (UTRa, UTRb, and UTRc), which include a CU-rich region and three upstream open reading frames (uORFs). UTRc contains an additional 38-nt sequence, termed sp38, which acts as a strong translational enhancer of the downstream ORF; reporter analysis revealed translational efficiencies >15-fold higher with UTRc than with the other splice variants. Mutation analysis of UTRc demonstrated that an optimal sequence length of sp38, rather than its nucleotide sequence is essential for UTRc to promote efficient translation. In addition, the 5' 100 nucleotides of CU-rich region contribute to UTRc translational enhancement. Strikingly, three uORFs did not reveal their inhibitory potential within the full-length leader, whereas deletion of the 5' leader fragment preceding the leader region with uORFs nearly abolished translation. Computational prediction of UTRc structural motifs revealed stem-loop structures, termed SL1-SL4, and two regions, A and B, involved in putative intramolecular interactions. Our data suggest that SL4 binding to Region-A and base pairing between Region-B and the UTRc 3'end are critically required for translational enhancement. Since UTRc is not capable of internal initiation, we presume that the three-dimensional leader structures can allow translation of the leader downstream ORF, likely allowing the bypass of uORFs.
Collapse
|
2
|
Jong WD, Leal L, Buyze J, Pannus P, Guardo A, Salgado M, Mothe B, Molto J, Moron-Lopez S, Gálvez C, Florence E, Vanham G, Gorp EV, Brander C, Allard S, Thielemans K, Martinez-Picado J, Plana M, García F, Gruters RA. Therapeutic Vaccine in Chronically HIV-1-Infected Patients: A Randomized, Double-Blind, Placebo-Controlled Phase IIa Trial with HTI-TriMix. Vaccines (Basel) 2019; 7:E209. [PMID: 31817794 PMCID: PMC6963294 DOI: 10.3390/vaccines7040209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/15/2022] Open
Abstract
Therapeutic vaccinations aim to re-educate human immunodeficiency virus (HIV)-1-specific immune responses to achieve durable control of HIV-1 replication in virally suppressed infected individuals after antiretroviral therapy (ART) is interrupted. In a double blinded, placebo-controlled phase IIa multicenter study, we investigated the safety and immunogenicity of intranodal administration of the HIVACAT T cell Immunogen (HTI)-TriMix vaccine. It consists of naked mRNA based on cytotoxic T lymphocyte (CTL) targets of subdominant and conserved HIV-1 regions (HTI), in combination with mRNAs encoding constitutively active TLR4, the ligand for CD40 and CD70 as adjuvants (TriMix). We recruited HIV-1-infected individuals under stable ART. Study-arms HTI-TriMix, TriMix or Water for Injection were assigned in an 8:3:3 ratio. Participants received three vaccinations at weeks 0, 2, and 4 in an inguinal lymph node. Two weeks after the last vaccination, immunogenicity was evaluated using ELISpot assay. ART was interrupted at week 6 to study the effect of the vaccine on viral rebound. The vaccine was considered safe and well tolerated. Eighteen percent (n = 37) of the AEs were considered definitely related to the study product (grade 1 or 2). Three SAEs occurred: two were unrelated to the study product, and one was possibly related to ART interruption (ATI). ELISpot assays to detect T cell responses using peptides covering the HTI sequence showed no significant differences in immunogenicity between groups. There were no significant differences in viral load rebound dynamics after ATI between groups. The vaccine was safe and well tolerated. We were not able to demonstrate immunogenic effects of the vaccine.
Collapse
Affiliation(s)
- Wesley de Jong
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Lorna Leal
- Infectious Diseases Department, Hospital Clínic-HIVACAT, University of Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Jozefien Buyze
- Clinical trials unit, Clinical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Pieter Pannus
- Virology Unit, Biomedical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Alberto Guardo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Maria Salgado
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Beatriz Mothe
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- University of Vic - Central University of Catalonia (UVic-UCC), 085000 Vic, Spain
| | - Jose Molto
- Fundació Lluita contra la Sida, Infectious Diseases Department, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Sara Moron-Lopez
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Cristina Gálvez
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
| | - Eric Florence
- Virology Unit, Biomedical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Guido Vanham
- Virology Unit, Biomedical Sciences Department, Institute of Tropical Medicine of Antwerp, 2000 Antwerp, Belgium
| | - Eric van Gorp
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
- Department of Infectious Diseases, Erasmus MC, 3015 Rotterdam, The Netherlands
| | - Christian Brander
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- University of Vic - Central University of Catalonia (UVic-UCC), 085000 Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
| | - Sabine Allard
- Department of Internal Medicine and Infectious Diseases, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium
| | - Kris Thielemans
- eTheRNA, BVBA (eTheRNA), 2845 Niel, Belgium
- Laboratory of Molecular and Cellular Therapy, Vrije Universiteit Brussel (VUB), 1090 Brussels, Belgium
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute- HIVACAT, Hospital Germans Trias i Pujol, 08916 Badalona, Spain
- University of Vic - Central University of Catalonia (UVic-UCC), 085000 Vic, Spain
- eTheRNA, BVBA (eTheRNA), 2845 Niel, Belgium
| | - Montserrat Plana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Felipe García
- Infectious Diseases Department, Hospital Clínic-HIVACAT, University of Barcelona, 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-HIVACAT, 08036 Barcelona, Spain
| | - Rob A Gruters
- Department of Viroscience, Erasmus MC, 3015 Rotterdam, The Netherlands
| |
Collapse
|
3
|
Wang C, Buolamwini JK. A novel RNA variant of human concentrative nucleoside transporter 1 (hCNT1) that is a potential cancer biomarker. Exp Hematol Oncol 2019; 8:18. [PMID: 31440421 PMCID: PMC6704654 DOI: 10.1186/s40164-019-0144-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 08/16/2019] [Indexed: 02/05/2023] Open
Abstract
Background The human concentrative nucleoside transporter 1 (hCNT1) a product of the SLC28A1 gene is one of the three concentrative nucleoside transporters, with a substrate specificity for physiological pyrimidine nucleosides. It has recently been implicated in tumor suppression. We have unraveled a splice variant RNA transcript that is overexpressed in some tumor tissues and some cancer cells. This study established that observation. Methods We examined several clones of hCNT1 generated from RT-PCR of total RNA from human kidney tissue purchased from Ambion. The resulting cDNA clones were then sequenced, and a variant that retained intron 4, and skipped some exons fully or partly, specifically exons 5 and 13 were completely missed and only part of exon 6 was spliced. Tissue expression analysis by PCR indicated a similar distribution of expression of RNA of the splice variant hCNT1-IR as that of the dominant variant hCNT1, particularly in the small intestine, kidney and liver. Further, analysis of various tumor samples with PCR primers designed from this novel hCNT1 splice variant (hCNT1-IR) revealed interestingly that it is overexpressed in some cancer tissues relative to normal tissues, particularly kidney, liver and pancreatic cancers. Conclusion We have identified a novel intron retaining and exon skipping splice variant of the hCNT1 nucleoside transporter, and designated it hCNT1-IR, which has a similar tissue expression distribution as the normal hCNT1 variant, but unlike the normal transcript, hCNT1-IR is overexpressed in some cancers and may serve as a potential cancer biomarker.
Collapse
Affiliation(s)
- Chunmei Wang
- 1Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Sciences Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - John K Buolamwini
- 1Department of Pharmaceutical Science, College of Pharmacy, University of Tennessee Health Sciences Center, 881 Madison Avenue, Memphis, TN 38163 USA.,2Department of Pharmaceutical Sciences, College of Pharmacy, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| |
Collapse
|
4
|
Rotwein P. Gene Mapping by RNA-sequencing: A Direct Way to Characterize Genes and Gene Expression through Targeted Queries of Large Public Databases. Bio Protoc 2019; 9:e3129. [PMID: 32699811 DOI: 10.21769/bioprotoc.3129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Recent advances in genomics present new opportunities for enhancing knowledge about gene regulation and function across a wide spectrum of organisms and species. Understanding and evaluating this information at the individual gene level is challenging, and not only requires extracting, collating and interpreting data from public genetic repositories, but also recognizing that much of the information has been developed through implementation of computationally based exon-calling algorithms, and thus may be inaccurate. Moreover, as these data usually have not been validated experimentally, results also may be incomplete and incorrect. This has created a quality-control problem for scientists who want to use individual gene-specific information in their research. Here, I describe a simple experimental strategy that takes advantage of the large amounts of untapped primary experimental data for characterizing gene expression that have been deposited in the Sequence Read Archive of the National Center for Biotechnology Information. The approach consists of a readily adaptable pipeline that may be used to confirm exons, to define 5' and 3' un-translated regions and the beginnings and ends of individual genes, and to quantify alternative RNA splicing. The series of experimental strategies described offers effective replacements for older molecular biological methods, and can rapidly and reproducibly resolve major gene mapping problems.
Collapse
Affiliation(s)
- Peter Rotwein
- Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905, USA
| |
Collapse
|
5
|
Rotwein P. The insulin-like growth factor 2 gene and locus in nonmammalian vertebrates: Organizational simplicity with duplication but limited divergence in fish. J Biol Chem 2018; 293:15912-15932. [PMID: 30154247 DOI: 10.1074/jbc.ra118.004861] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/16/2018] [Indexed: 01/28/2023] Open
Abstract
The small, secreted peptide, insulin-like growth factor 2 (IGF2), is essential for fetal and prenatal growth in humans and other mammals. Human IGF2 and mouse Igf2 genes are located within a conserved linkage group and are regulated by parental imprinting, with IGF2/Igf2 being expressed from the paternally derived chromosome, and H19 from the maternal chromosome. Here, data retrieved from genomic and gene expression repositories were used to examine the Igf2 gene and locus in 8 terrestrial vertebrates, 11 ray-finned fish, and 1 lobe-finned fish representing >500 million years of evolutionary diversification. The analysis revealed that vertebrate Igf2 genes are simpler than their mammalian counterparts, having fewer exons and lacking multiple gene promoters. Igf2 genes are conserved among these species, especially in protein-coding regions, and IGF2 proteins also are conserved, although less so in fish than in terrestrial vertebrates. The Igf2 locus in terrestrial vertebrates shares additional genes with its mammalian counterparts, including tyrosine hydroxylase (Th), insulin (Ins), mitochondrial ribosomal protein L23 (Mrpl23), and troponin T3, fast skeletal type (Tnnt3), and both Th and Mrpl23 are present in the Igf2 locus in fish. Taken together, these observations support the idea that a recognizable Igf2 was present in the earliest vertebrate ancestors, but that other features developed and diversified in the gene and locus with speciation, especially in mammals. This study also highlights the need for correcting inaccuracies in genome databases to maximize our ability to accurately assess contributions of individual genes and multigene families toward evolution, physiology, and disease.
Collapse
Affiliation(s)
- Peter Rotwein
- From the Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech Health University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
6
|
Chen L, Liang Z, Tian Q, Li C, Ma X, Zhang Y, Yang Z, Wang P, Li Y. Overexpression of LCMR1 is significantly associated with clinical stage in human NSCLC. J Exp Clin Cancer Res 2011; 30:18. [PMID: 21306606 PMCID: PMC3045976 DOI: 10.1186/1756-9966-30-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/09/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most common human cancers and the leading cause of cancer death worldwide. The identification of lung cancer associated genes is essential for lung cancer diagnosis and treatment. METHODS Differential Display-PCR technique was used to achieve the novel cDNA, which were then verified by real-time PCR. Northern blot was utilized to observe the expression of LCMR1 in different human tissues. 84 cases human NSCLC tissues and normal counterparts were analyzed for the expression of LCMR1 by immunohistochemistry. RESULTS A novel 778-bp cDNA fragment from human large cell lung carcinoma cell lines 95C and 95D was obtained, and named LCMR1 (Lung Cancer Metastasis Related protein 1). LCMR1 was differentially expressed in different human tissues. LCMR1 was strongly overexpressed in NSCLC and its expression was significantly associated with clinical stage. CONCLUSION Our data indicated that LCMR1, strongly overexpressed in NSCLC, might have applications in the clinical diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Liangan Chen
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Zhixin Liang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Qing Tian
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Chunsun Li
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Xiuqing Ma
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yu Zhang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Zhen Yang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Ping Wang
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| | - Yanqin Li
- Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing 100853, PR China
| |
Collapse
|
7
|
Siegel TN, Hekstra DR, Wang X, Dewell S, Cross GAM. Genome-wide analysis of mRNA abundance in two life-cycle stages of Trypanosoma brucei and identification of splicing and polyadenylation sites. Nucleic Acids Res 2010; 38:4946-57. [PMID: 20385579 PMCID: PMC2926603 DOI: 10.1093/nar/gkq237] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcription of protein-coding genes in trypanosomes is polycistronic and gene expression is primarily regulated by post-transcriptional mechanisms. Sequence motifs in the untranslated regions regulate mRNA trans-splicing and RNA stability, yet where UTRs begin and end is known for very few genes. We used high-throughput RNA-sequencing to determine the genome-wide steady-state mRNA levels (‘transcriptomes’) for ∼90% of the genome in two stages of the Trypanosoma brucei life cycle cultured in vitro. Almost 6% of genes were differentially expressed between the two life-cycle stages. We identified 5′ splice-acceptor sites (SAS) and polyadenylation sites (PAS) for 6959 and 5948 genes, respectively. Most genes have between one and three alternative SAS, but PAS are more dispersed. For 488 genes, SAS were identified downstream of the originally assigned initiator ATG, so a subsequent in-frame ATG presumably designates the start of the true coding sequence. In some cases, alternative SAS would give rise to mRNAs encoding proteins with different N-terminal sequences. We could identify the introns in two genes known to contain them, but found no additional genes with introns. Our study demonstrates the usefulness of the RNA-seq technology to study the transcriptional landscape of an organism whose genome has not been fully annotated.
Collapse
Affiliation(s)
- Tim Nicolai Siegel
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
8
|
The sound of silence: human beta-defensin-1 gene untranslated SNPs change the predicted mRNA secondary structure in a length-dependent manner. Immunol Lett 2010; 129:53-5. [PMID: 20060856 DOI: 10.1016/j.imlet.2009.12.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/17/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
This study investigated how 5'-UTR of DEFB1 gene (encoding for the human beta-defensin-1) affects mRNA secondary structure and its correlation with translation efficiency in the susceptibility of diseases. It was possible to determine DEFB1 mRNA folding under the influence of 5'-UTR SNPs haplotypes and putative alternative transcript lengths. Different DEFB1 mRNAs that fold in a pattern that is haplotype and length-dependent are potentially able to drive changes in peptide expression dynamics.
Collapse
|
9
|
Shah MAA, Xu L, Yan R, Song X, Li X. Cross immunity of DNA vaccine pVAX1-cSZ2-IL-2 to Eimeria tenella, E. necatrix and E. maxima. Exp Parasitol 2009; 124:330-3. [PMID: 19944687 DOI: 10.1016/j.exppara.2009.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 11/20/2009] [Accepted: 11/23/2009] [Indexed: 11/19/2022]
Abstract
The study describes cross protection experiments with chimeric DNA vaccine pVAX1-cSZ2-IL-2 to determine its efficacy against four important Eimeria species. Seven-day-old chickens were randomly divided into nine groups; group 1 negative control, groups 2, 3, 4, 5 positive controls; and groups 6, 7, 8 and 9 experimental groups. On days 7 and 14, groups 1-5 were injected with TE buffer, and groups 6-9 with the vaccine. At 21 days of age, all chickens were inoculated with 5 x 10(4) sporulated oocysts except for the negative control. Groups 2 and 6 were inoculated with Eimeria tenella, groups 3 and 7 with Eimerianecatrix, groups 4 and 8 with Eimeria acervulina and groups 5 and 9 with Eimeria maxima. Seven days later, all chickens were weighed and slaughtered to obtain intestinal samples. Efficacy of immunization was evaluated on the basis of oocyst decrease ratio, lesion score, body-weight gain and anti-coccidial index. The results indicated that the recombinant plasmid can induce host immune responses by alleviating intestinal lesions, body weight loss and oocyst ratio and imparting good protection against E. tenella and E.acervulina, medium protection against E. necatrix but little effect against E. maxima. It is concluded that the conserved antigen can provide cross protection and should be explored further.
Collapse
Affiliation(s)
- Mohammed Ali A Shah
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | | | | | | | | |
Collapse
|
10
|
Rufener L, Mäser P, Roditi I, Kaminsky R. Haemonchus contortus acetylcholine receptors of the DEG-3 subfamily and their role in sensitivity to monepantel. PLoS Pathog 2009; 5:e1000380. [PMID: 19360096 PMCID: PMC2662886 DOI: 10.1371/journal.ppat.1000380] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/16/2009] [Indexed: 11/27/2022] Open
Abstract
Gastro-intestinal nematodes in ruminants, especially Haemonchus contortus, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with Caenorhabditis elegans suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from H. contortus and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant H. contortus populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible H. contortus and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (Hco-mptl-1, formerly named Hc-acr-23H), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene Hco-des-2H, the same 135 bp insertion in the 5′ UTR created additional, out of frame start codons in 2 independent H. contortus AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes Hco-mptl-1, Hco-des-2H and Hco-deg-3H as quantified by real-time PCR. These results indicate that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against H. contortus and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs. Worldwide, sheep and cattle farming are threatened by anthelmintic-resistant gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics was recently discovered, the Amino-Acetonitrile Derivatives (AADs), which exhibit excellent efficacy against various species of livestock-pathogenic nematodes and, more importantly, overcome existing resistances to the currently available anthelmintics. Haemonchus contortus, the largest nematode found in the abomasum of sheep and cattle, is a blood-feeding parasite that causes severe anemia that can lead to the sudden death of the infected animal; H. contortus is highly susceptible to AADs. In order to elucidate the mode of action of the AADs, we have developed 2 independent H. contortus mutants with reduced sensitivity to monepantel (AAD-1566). Both mutants were affected in their acetylcholine receptor (ACR) genes of the DEG-3 subfamily. In particular, we discovered a panel of mutations in the gene monepantel-1 (Hco-mptl-1) including deletions leading to mis-splicing, insertions and point mutations leading to premature termination of translation of the protein. These findings support the notion that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily are targets of the AADs. The fact that the DEG-3 subfamily of acetylcholine receptors is nematode-specific may explain the good therapeutic index of AADs in mammals.
Collapse
Affiliation(s)
- Lucien Rufener
- Novartis Centre de Recherche Santé Animale, St. Aubin (FR), Switzerland
- Institute of Cell Biology, University of Bern, Switzerland
| | - Pascal Mäser
- Institute of Cell Biology, University of Bern, Switzerland
- * E-mail:
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Switzerland
| | - Ronald Kaminsky
- Novartis Centre de Recherche Santé Animale, St. Aubin (FR), Switzerland
| |
Collapse
|
11
|
Hashimoto M, Tan S, Mori N, Cheng H, Cheng PW. Mucin biosynthesis: Molecular cloning and expression of mouse mucus-type core 2 β1,6 N-acetylglucosaminyltransferase. Glycobiology 2007; 17:994-1006. [PMID: 17591617 DOI: 10.1093/glycob/cwm068] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Secreted mucins protect the underlying epithelium by serving as the major determinant of the rheological property of mucus secretion and the receptors for pathogens. These functions can be affected by the three branch structures, including core 2, core 4, and blood group I, which are synthesized by the mucus-type core 2 beta1,6 N-acetylglucosaminyltransferase (C2GnT-M). Decreased activity of this enzyme and expression of this gene have been found in colorectal cancer, which supports the important role of this enzyme in the protective functions of secreted mucins. We cloned full-length mouse (m) C2GnT-M cDNAs and showed that the deduced amino acid sequence was homologous to those of other C2GnT-Ms. The recombinant protein generated by mC2GnT-M cDNA exhibited core 2, core 4, and blood group I enzyme activities with a ratio of 1.00:0.46:1.05. We identified two different size transcripts by rapid amplification of cDNA ends and RT-PCR. Derived from the 6.6 kb mC2GnT-M gene composed of three exons and two introns, these two transcripts were intronless and differed by the length of the 3' untranslated region. In addition, exon 2 was found to be heterogeneous in size. This gene was highly expressed in the gastrointestinal tract, including colon, stomach, and small intestine. Antibodies generated against mC2GnT-M identified this enzyme in the goblet cells and other mucus cells/glands. This report provides the basis for further characterization of the regulation of mC2GnT-M gene expression and the biological functions of this gene.
Collapse
Affiliation(s)
- Mitsuyoshi Hashimoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | |
Collapse
|
12
|
Manfield IW, Devlin PF, Jen CH, Westhead DR, Gilmartin PM. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family. PLANT PHYSIOLOGY 2007; 143:941-58. [PMID: 17208962 PMCID: PMC1803723 DOI: 10.1104/pp.106.090761] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
In vitro analyses of plant GATA transcription factors have implicated some proteins in light-mediated and circadian-regulated gene expression, and, more recently, the analysis of mutants has uncovered further diverse roles for plant GATA factors. To facilitate function discovery for the 29 GATA genes in Arabidopsis (Arabidopsis thaliana), we have experimentally verified gene structures and determined expression patterns of all family members across adult tissues and suspension cell cultures, as well as in response to light and signals from the circadian clock. These analyses have identified two genes that are strongly developmentally light regulated, expressed predominantly in photosynthetic tissue, and with transcript abundance peaking before dawn. In contrast, several GATA factor genes are light down-regulated. The products of these light-regulated genes are candidates for those proteins previously implicated in light-regulated transcription. Coexpression of these genes with well-characterized light-responsive transcripts across a large microarray data set supports these predictions. Other genes show additional tissue-specific expression patterns suggesting novel and unpredicted roles. Genome-wide analysis using coexpression scatter plots for paralogous gene pairs reveals unexpected differences in cocorrelated gene expression profiles. Clustering the Arabidopsis GATA factor gene family by similarity of expression patterns reveals that genes of recent descent do not uniformly show conserved current expression profiles, yet some genes showing more distant evolutionary origins have acquired common expression patterns. In addition to defining developmental and environmental dynamics of GATA transcript abundance, these analyses offer new insights into the evolution of gene expression profiles following gene duplication events.
Collapse
Affiliation(s)
- Iain W Manfield
- Centre for Plant Sciences, Institute for Integrative and Comparative Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | | | | | | | | |
Collapse
|
13
|
Furukawa T, Maekawa M, Oki T, Suda I, Iida S, Shimada H, Takamure I, Kadowaki KI. The Rc and Rd genes are involved in proanthocyanidin synthesis in rice pericarp. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:91-102. [PMID: 17163879 DOI: 10.1111/j.1365-313x.2006.02958.x] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Different colors, such as purple, brown, red and white, occur in the pericarp of rice. Here, two genes affecting proanthocyanidin synthesis in red- and brown-colored rice were elucidated. Genetic segregation analysis suggested that the Rd and A loci are identical, and both encode dihydroflavonol-4-reductase (DFR). The introduction of the DFR gene into an Rcrd mutant resulted in red-colored rice, which was brown in the original mutant, demonstrating that the Rd locus encodes the DFR protein. Accumulation of proanthocyanidins was observed in the transformants by the introduction of the Rd gene into the rice Rcrd line. Protein blot analysis showed that the DFR gene was translated in seeds with alternative translation initiation. A search for the Rc gene, which encodes a transacting regulatory factor, was conducted using available DNA markers and the Rice Genome Automated Annotation System program. Three candidate genes were identified and cloned from a rice RcRd line and subsequently introduced into a rice rcrd line. Brown-colored seeds were obtained from transgenic plants by the introduction of a gene containing the basic helix-loop-helix (bHLH) motif, demonstrating that the Rc gene encodes a bHLH protein. Comparison of the Rc locus among rice accessions showed that a 14-bp deletion occurred only in the rc locus.
Collapse
Affiliation(s)
- Tsutomu Furukawa
- Genetic Diversity Department, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chappell SA, Edelman GM, Mauro VP. Ribosomal tethering and clustering as mechanisms for translation initiation. Proc Natl Acad Sci U S A 2006; 103:18077-82. [PMID: 17110442 PMCID: PMC1838709 DOI: 10.1073/pnas.0608212103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic mRNAs often recruit ribosomal subunits some distance upstream of the initiation codon; however, the mechanisms by which they reach the initiation codon remain to be fully elucidated. Although scanning is a widely accepted model, evidence for alternative mechanisms has accumulated. We previously suggested that this process may involve tethering of ribosomal complexes to the mRNA, in which the intervening mRNA is bypassed, or clustering, in which the initiation codon is reached by dynamic binding and release of ribosomal subunits at internal sites. The present studies tested the feasibility of these ideas by using model mRNAs and revealed that translation efficiency varied with the distance between the site of ribosomal recruitment and the initiation codon. The present studies also showed that translation could initiate efficiently at AUG codons located upstream of an internal site. These observations are consistent with ribosomal tethering at the cap structure and clustering at internal sites.
Collapse
Affiliation(s)
- Stephen A. Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Gerald M. Edelman
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail: or
| | - Vincent P. Mauro
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
15
|
Chappell SA, Dresios J, Edelman GM, Mauro VP. Ribosomal shunting mediated by a translational enhancer element that base pairs to 18S rRNA. Proc Natl Acad Sci U S A 2006; 103:9488-93. [PMID: 16769881 PMCID: PMC1480434 DOI: 10.1073/pnas.0603597103] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In eukaryotes, 40S ribosomal subunits move from their recruitment site on the mRNA to the initiation codon by an as yet poorly understood process. One postulated mechanism involves ribosomal shunting, in which ribosomal subunits completely bypass regions of the 5' leader. For some mRNAs, shunting has been shown to require various mRNA elements, some of which are thought to base pair to 18S rRNA; however, the role of base pairing has not yet been tested directly. In earlier studies, we demonstrated that a short mRNA element in the 5' leader of the Gtx homeodomain mRNA functioned as a ribosomal recruitment site by base pairing to the 18S rRNA. Using a model system to assess translation in transfected cells, we now show that this intermolecular interaction also facilitates ribosomal shunting across two types of obstacles: an upstream AUG codon in excellent context or a stable hairpin structure. Highly efficient shunting occurred when multiple Gtx elements were present upstream of the obstacles, and a single Gtx element was present downstream. Shunting was less efficient, however, when the multiple Gtx elements were present only upstream of the obstacles. In addition, control experiments with mRNAs lacking the upstream elements showed that these results could not be attributed to recruitment by the single downstream element. Experiments in yeast in which the mRNA elements and 18S rRNA sequences were both mutated indicated that shunting required an intact complementary match. The data obtained by this model system provide direct evidence that ribosomal shunting can be mediated by mRNA-rRNA base pairing, a finding that may have general implications for mechanisms of ribosome movement.
Collapse
Affiliation(s)
- Stephen A. Chappell
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - John Dresios
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Gerald M. Edelman
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail:
or
| | - Vincent P. Mauro
- Department of Neurobiology, The Scripps Research Institute, and The Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, CA 92037
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
16
|
Puel A, Reichenbach J, Bustamante J, Ku CL, Feinberg J, Döffinger R, Bonnet M, Filipe-Santos O, Beaucoudrey LD, Durandy A, Horneff G, Novelli F, Wahn V, Smahi A, Israel A, Niehues T, Casanova JL. The NEMO mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation. Am J Hum Genet 2006; 78:691-701. [PMID: 16532398 PMCID: PMC1424680 DOI: 10.1086/501532] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 01/13/2006] [Indexed: 11/04/2022] Open
Abstract
Amorphic mutations in the NF- kappa B essential modulator (NEMO) cause X-dominant incontinentia pigmenti, which is lethal in males in utero, whereas hypomorphic mutations cause X-recessive anhidrotic ectodermal dysplasia with immunodeficiency, a complex developmental disorder and life-threatening primary immunodeficiency. We characterized the NEMO mutation 110_111insC, which creates the most-upstream premature translation termination codon (at codon position 49) of any known NEMO mutation. Surprisingly, this mutation is associated with a pure immunodeficiency. We solve this paradox by showing that a Kozakian methionine codon located immediately downstream from the insertion allows the reinitiation of translation. The residual production of an NH(2)-truncated NEMO protein was sufficient for normal fetal development and for the subsequent normal development of skin appendages but was insufficient for the development of protective immune responses.
Collapse
Affiliation(s)
- Anne Puel
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Janine Reichenbach
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Jacinta Bustamante
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Cheng-Lung Ku
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Jacqueline Feinberg
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Rainer Döffinger
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Marion Bonnet
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Orchidée Filipe-Santos
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Ludovic de Beaucoudrey
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Anne Durandy
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Gerd Horneff
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Francesco Novelli
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Volker Wahn
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Asma Smahi
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Alain Israel
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Tim Niehues
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| | - Jean-Laurent Casanova
- Laboratoire de Génétique Humaine des Maladies Infectieuses, INSERM U550, Faculté de Médecine Necker-Enfants Malades, Développement Normal et Pathologique du Système Immunitaire, INSERM U429, Unité de Recherches sur les Handicaps Génétiques de l’Enfant, INSERM U393, and Unité d’Immunologie et d’Hématologie Pédiatriques, Hôpital Necker-Enfants Malades, and Unité de Signalisation Moléculaire et Activation Cellulaire, URA 2582 Centre National de la Recherche Scientifique, Institut Pasteur, Paris; and Pädiatrische Immunologie und Rheumatologie, Zentrum für Kinderheilkunde, Heinrich Heine Universität, Düsseldorf, Germany
| |
Collapse
|
17
|
Fededa JP, Petrillo E, Gelfand MS, Neverov AD, Kadener S, Nogués G, Pelisch F, Baralle FE, Muro AF, Kornblihtt AR. A polar mechanism coordinates different regions of alternative splicing within a single gene. Mol Cell 2005; 19:393-404. [PMID: 16061185 DOI: 10.1016/j.molcel.2005.06.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 03/14/2005] [Accepted: 06/30/2005] [Indexed: 11/20/2022]
Abstract
Alternative splicing plays a key role in generating protein diversity. Transfections with minigenes revealed coordination between two distant, alternatively spliced exons in the same gene. Mutations that either inhibit or stimulate inclusion of the upstream alternative exon deeply affect inclusion of the downstream one. However, similar mutations at the downstream alternative exon have little effect on the upstream one. This polar effect is promoter specific and is enhanced by inhibition of transcriptional elongation. Consistently, cells from mutant mice with either constitutive or null inclusion of a fibronectin alternative exon revealed coordination with a second alternative splicing region, located far downstream. Using allele-specific RT-PCR, we demonstrate that this coordination occurs in cis and is also affected by transcriptional elongation rates. Bioinformatics supports the generality of these findings, indicating that 25% of human genes contain multiple alternative splicing regions and identifying several genes with nonrandom distribution of mRNA isoforms at two alternative regions.
Collapse
Affiliation(s)
- Juan P Fededa
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Churbanov A, Rogozin IB, Babenko VN, Ali H, Koonin EV. Evolutionary conservation suggests a regulatory function of AUG triplets in 5'-UTRs of eukaryotic genes. Nucleic Acids Res 2005; 33:5512-20. [PMID: 16186132 PMCID: PMC1236974 DOI: 10.1093/nar/gki847] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
By comparing sequences of human, mouse and rat orthologous genes, we show that in 5′-untranslated regions (5′-UTRs) of mammalian cDNAs but not in 3′-UTRs or coding sequences, AUG is conserved to a significantly greater extent than any of the other 63 nt triplets. This effect is likely to reflect, primarily, bona fide evolutionary conservation, rather than cDNA annotation artifacts, because the excess of conserved upstream AUGs (uAUGs) is seen in 5′-UTRs containing stop codons in-frame with the start AUG and many of the conserved AUGs are found in different frames, consistent with the location in authentic non-coding sequences. Altogether, conserved uAUGs are present in at least 20–30% of mammalian genes. Qualitatively similar results were obtained by comparison of orthologous genes from different species of the yeast genus Saccharomyces. Together with the observation that mammalian and yeast 5′-UTRs are significantly depleted in overall AUG content, these findings suggest that AUG triplets in 5′-UTRs are subject to the pressure of purifying selection in two opposite directions: the uAUGs that have no specific function tend to be deleterious and get eliminated during evolution, whereas those uAUGs that do serve a function are conserved. Most probably, the principal role of the conserved uAUGs is attenuation of translation at the initiation stage, which is often additionally regulated by alternative splicing in the mammalian 5′-UTRs. Consistent with this hypothesis, we found that open reading frames starting from conserved uAUGs are significantly shorter than those starting from non-conserved uAUGs, possibly, owing to selection for optimization of the level of attenuation.
Collapse
Affiliation(s)
| | - Igor B. Rogozin
- National Center for Biotechnology Information NLM, National Institutes of HealthBethesda MD 20894, USA
| | - Vladimir N. Babenko
- National Center for Biotechnology Information NLM, National Institutes of HealthBethesda MD 20894, USA
| | | | - Eugene V. Koonin
- National Center for Biotechnology Information NLM, National Institutes of HealthBethesda MD 20894, USA
- To whom correspondence should be addressed. Tel: +1 301 435 5913; Fax: +1 301 435 7794;
| |
Collapse
|
20
|
Iacono M, Mignone F, Pesole G. uAUG and uORFs in human and rodent 5′untranslated mRNAs. Gene 2005; 349:97-105. [PMID: 15777708 DOI: 10.1016/j.gene.2004.11.041] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 10/28/2004] [Accepted: 11/24/2004] [Indexed: 11/21/2022]
Abstract
The control of translation is a fundamental mechanism in the regulation of gene expression. Among the cis-acting elements that play a role in translation regulation are upstream open reading frames (uORFs) and upstream AUG (uAUGs) located in the 5'UTR of mRNAs. We present here a genome-wide analysis of uAUGs and uORFs in a curated set of human and rodent mRNAs. Our study shows that the occurrence of uAUGs is suppressed more strongly than that of uORFs and that in-frame uAUGs are more strongly suppressed than out-of-frame uAUGs. A very similar pattern of uAUG/uORF frequency was also observed in mouse mRNAs. The analysis of orthologous 5'UTR sequences revealed a remarkable degree of evolutionary conservation only of those uORFs which acquired some functional activity. Our data suggest that besides leaky scanning and reinitiation, which likely occur with variable and gene-specific efficiency, the ribosome-shunt mechanism, eventually coupled to reinitiation after uORF translation, may be a widespread mode of translation regulation in eukaryotes.
Collapse
Affiliation(s)
- Michele Iacono
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università di Milano, Via Celoria, 26, 20133 Milano, Italy
| | | | | |
Collapse
|
21
|
Lahousse S, Smorowski AL, Denis C, Lantoine D, Kerckaert JP, Galiègue-Zouitina S. Structural features of hematopoiesis-specific RhoH/ARHH gene: high diversity of 5'-UTR in different hematopoietic lineages suggests a complex post-transcriptional regulation. Gene 2005; 343:55-68. [PMID: 15563831 DOI: 10.1016/j.gene.2004.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Revised: 08/09/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
The hematopoiesis-specific RhoH gene is thought to be deregulated in B-cell non-Hodgkin's lymphoma (B-NHL), by either a chromosomal translocation or mutations, which affect its 5' regulatory region. The encoded Rho protein, always GTP-bound in vivo, was hypothesized to behave as a Rac antagonist. Extensive expression analysis allowed the detection of RhoH transcripts in all hematopoietic lineages (lymphoid, erythroid, myeloid), with a high level in lymphoid cells. To initiate investigations on the molecular mechanisms that regulate RhoH gene expression, Race-PCR and primer extension were conducted in the B-cell line Raji, which allowed (i) the establishment of RhoH complex intron/exon organization and (ii) the detection of several transcription initiation sites. In addition, a high 5' end heterogeneity of RhoH mRNAs was observed, due to alternative splicing of some 5' exons and to the use of these different transcription start sites. RT-PCR analysis led to the identification of this 5' end heterogeneity in different hematopoietic lineages. Discrepancies were particularly observed between B and T cells, due to an alternative splicing of one 5' exon (1b), which might be an important element in RhoH gene regulation. Such specific features have never been described for any Rho family member gene. They provide a molecular basis to study complex mechanisms involved in the control of RhoH expression.
Collapse
Affiliation(s)
- Sébastien Lahousse
- U. 524 Inserm, Institut de Recherches sur le Cancer de Lille, Place de Verdun, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
22
|
Pastorcic M, Das HK. Alternative initiation of transcription of the human presenilin 1 gene in SH-SY5Y and SK-N-SH cells. The role of Ets factors in the regulation of presenilin 1. ACTA ACUST UNITED AC 2005; 271:4485-94. [PMID: 15560789 DOI: 10.1111/j.1432-1033.2004.04453.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have identified DNA sequences required for the expression of the presenilin 1 (PS1) gene. A promoter region has been mapped in SK-N-SH cells and includes sequences between -118 and +178 flanking the major initiation site (+1). The PS1 gene is also efficiently transcribed in the SH-SY5Y subclone of SK-N-SH cells. However the promoter appears to be utilized in alternative ways in both cell types. Sequences both upstream as well as downstream from the initiation site mapped in SK-N-SH cells were shown by 5'- and 3'-deletion analysis to play a crucial role in both cell lines. However, in SH-SY5Y cells either upstream or downstream sequences are sufficient to direct transcription, whereas in SK-N-SH cells 5'-deletions past the +1 site eliminate over 95% of transcription. Several Ets motifs (GGAA) as well as Sp1 motifs [(G/T)GGCGGRRY] are juxtaposed both upstream and downstream from +1. To understand how the promoter may be utilized alternatively in different cell types we have examined the effect of point mutations in these elements. Altering an Ets motif at -10 eliminates 80% of transcription in SK-N-SH cells whereas the same mutation has only a minor effect in SH-SY5Y cells. Conversely, mutation of the Ets element at +90, which eliminates 70% of transcription in SH-SY5Y cells, has a lesser effect in SK-N-SH cells. In both cell types a promoter including mutations at both -10 and +90 sites loses over 90% transcription activity indicating the crucial importance of these two Ets motifs. The effect of Sp1 mutations appears to be similar in both cell types. Hence the differential expression in each cell type may be at least partially determined by Ets factors and the -10/+90 sites. We have identified several Ets factors that recognize specifically the -10 Ets motif by the yeast one-hybrid selection including avian erythroblastosis virus E26 oncogene homologue 2, Ets-like gene 1, Ets translocation variant 1 and Ets related molecule (ERM). We show here that ERM specifically recognizes Ets motifs on the PS1 promoter located at -10 as well as downstream at +90, +129 and +165 and activates PS1 transcription with promoter fragments containing or not the -10 Ets site.
Collapse
Affiliation(s)
- Martine Pastorcic
- Department of Pharmacology & Neuroscience, University of North Texas Health Science Center at Fort Worth, TX 76107, USA
| | | |
Collapse
|
23
|
Voon DC, Subrata LS, Baltic S, Leu MP, Whiteway JM, Wong A, Knight SA, Christiansen FT, Daly JM. Use of mRNA- and protein-destabilizing elements to develop a highly responsive reporter system. Nucleic Acids Res 2005; 33:e27. [PMID: 15716309 PMCID: PMC549429 DOI: 10.1093/nar/gni030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Reporter assays are widely used in applications that require measurement of changes in gene expression over time (e.g. drug screening). With standard reporter vectors, the measurable effect of a treatment or compound (altered reporter activity) is substantially diluted and delayed, compared with its true effect (altered transcriptional activity). This problem is caused by the relatively long half-lives of both the reporter protein and its mRNA. As a result, the activities of compounds, ligands or treatments that have a relatively minor effect, or a substantial but transient effect, often remain undetected. To circumvent this problem, we introduced modular protein- and mRNA-destabilizing elements into a range of commonly used reporters. Our data show that both elements are required for maximal responses to both increases and decreases in transcriptional activity. The double-destabilized reporter vectors showed markedly improved performance in drug screening, kinetic assays and dose–response titrations.
Collapse
Affiliation(s)
- Dominic C. Voon
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Lily S. Subrata
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Svetlana Baltic
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Marco P. Leu
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Joanna M. Whiteway
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Agnes Wong
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - Samuel A. Knight
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
| | - Frank T. Christiansen
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- School of Surgery and Pathology, The University of Western AustraliaCrawley WA 6009, Australia
| | - John M. Daly
- GeneStream Pty Ltd96 Chipping Road, City Beach, WA 6015, Australia
- Department of Clinical Immunology and Biochemical Genetics, Royal Perth HospitalWellington Street, Perth WA 6000, Australia
- To whom correspondence should be addressed. Tel/Fax: +61 8 92051149;
| |
Collapse
|
24
|
Vladychenskaya IP, Dergunova LV, Dmitrieva VG, Limborska SA. Human gene MOB: structure specification and aspects of transcriptional activity. Gene 2004; 338:257-65. [PMID: 15315829 DOI: 10.1016/j.gene.2004.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Revised: 04/15/2004] [Accepted: 06/01/2004] [Indexed: 11/27/2022]
Abstract
Prior investigation of human brain cDNA libraries revealed an evolutionarily conserved gene MOB that has been cloned in silico on chromosome 10. To elucidate its biological role, we performed structural and functional analysis of its transcripts. Applying an expressed sequence tag (EST) approach, we specified the sequence of the predicted MOB transcript and found another four exons to belong to the 5'- end of the MOB gene; the newly constructed MOB transcript was detected in vitro. Here, we report MOB to comprise at least 11 exons and 10 introns and to span more than 320 kb of the genomic sequence. We propose complex regulation of MOB gene activity at a transcriptional level, based on its expression pattern. Thus, in the human cerebellum, we discovered multiple alternatively spliced products of MOB differing in their coding portion; one of the alternative transcripts was demonstrated to lack the longest coding exon VII. MOB was expressed at very low levels in a wide spectrum of human tissues: most abundantly in the brain and in the kidney. Two transcription initiation sites were found for MOB and two alternative promoters were suggested to govern its expression. We believe that MOB activity is also regulated at the posttranscriptional level. In the constructed MOB transcript, the extended multiexon 5'-untranslated region (UTR) together with the weak context of the translation start ATG codon are considered as potent translator inhibitors. Modulation of MOB translation efficiency is proposed based on the appropriate alternative splicing events within the 5'-UTR. The MOB 3'-UTR is anticipated to mediate message instability. We thus suggest that this MOB transcript may be a labile short-lived molecule with strong regulation of its translational efficiency. We believe that MOB gene activity is controlled at least at the transcriptional and the posttranscriptional levels, strictly regulating the amount of the encoded protein product.
Collapse
Affiliation(s)
- Irina P Vladychenskaya
- Department of Human Molecular Genetics, Institute of Molecular Genetics RAS, Kurchatov sq., 2, 123182 Moscow, Russia.
| | | | | | | |
Collapse
|
25
|
Wu SQ, Wang M, Liu Q, Zhu YJ, Suo X, Jiang JS. Construction of DNA vaccines and their induced protective immunity against experimental Eimeria tenella infection. Parasitol Res 2004; 94:332-6. [PMID: 15449177 DOI: 10.1007/s00436-004-1185-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 07/01/2004] [Indexed: 10/26/2022]
Abstract
In an attempt to construct a DNA vaccine against chicken coccidiosis, the TA4 gene of Eimeria tenella strain BJ was ligated to the mammalian expression vector pcDNA3.1/Zeo(+) to give pcDNA3.1-TA4 (pcDT). Then, Et1A (E. tenella refractile body gene) was ligated to it, upstream, aiming to be expressed in fusion with TA4, giving pcDNA3.1-Et1A-TA4 (pcDET). The constructed DNA vaccines were given to broilers intramuscularly 10-15 min after the breasts had been pre-treated with 25% sucrose solution. At 7 days after the second vaccination, chickens were challenged with 3 x 10(4) sporulated oocysts of E. tenella BJ. The chickens were killed and the lesion scores of the ceca, the relative body-weight gains and the numbers of oocysts in the ceca of each group of chickens were calculated at day 8 post-inoculation. Results indicated that both pcDT and pcDET could induce protective immunity against coccidial challenge. Their use could obviously reduce oocyst output and alleviate chicken body-weight decrease due to coccidial infection. An anti-coccidial index of 160 was achieved with a treatment of 50 microg pcDET and 100 microg pcDT.
Collapse
Affiliation(s)
- Shao-Qiang Wu
- Parasitology Laboratory, College of Veterinary Medicine, South China Agricultural University, 510642 Guangzhou, Guangdong Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Ji H, Zhang Y, Zheng W, Wu Z, Lee S, Sandberg K. Translational regulation of angiotensin type 1a receptor expression and signaling by upstream AUGs in the 5' leader sequence. J Biol Chem 2004; 279:45322-8. [PMID: 15319432 DOI: 10.1074/jbc.m407261200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rat angiotensin type 1a receptor (AT(1a)R) is regulated by four upstream AUGs present in the 5' leader sequence (5'-LS). Disruption of all four upstream AUGs (QM) results in 2-3-fold higher levels of angiotensin type 1 receptor (AT(1)R) densities in transiently transfected rat aortic smooth muscle cells (A10 cells) and stably transfected Chinese hamster ovary cells. Cells expressing QM have 5-fold higher levels of angiotensin II-induced inositol phosphate production than wild type (WT). Polysome analysis showed that QM mRNA is present in heavier fractions than the WT transcript, and 5.7-fold more AT(1)R protein is produced by in vitro translation from QM transcripts compared with WT transcripts. The AT(1a)R comprises 3 exons. Exon 3 (E3) encodes the entire open reading frame and 3'-untranslated region. Exons 1 and 2 (E1 and E2) and 52 nucleotides of E3 encode the 5'-LS. The AUGs in both exons contribute to the inhibitory effect on AT(1)R expression but not to the same degree. Disruption of the AUGs in exon 2 (DM2) relieves half of the inhibition, whereas disruption of the AUGs in exon 1 (DM1) is without effect. Disruption of the AUGs in exon 2 results in levels of receptor expression and translation that are indistinguishable from the alternative splice variant E1,3, which we previously showed was more efficiently translated than the E1,2,3 transcript. Individual mutations revealed that only the fourth AUG increased AT(1)R translation. In conclusion, all four AUGs present in the 5'-LS function cumulatively to suppress AT(1a)R expression and signaling by inhibiting translation. These data also show that both AUGs in E2 contribute to the inhibitory cis element present in this alternatively spliced exon.
Collapse
Affiliation(s)
- Hong Ji
- Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC 20057, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Cordell PA, Futers TS, Grant PJ, Pease RJ. The Human Hydroxyacylglutathione Hydrolase (HAGH) Gene Encodes Both Cytosolic and Mitochondrial Forms of Glyoxalase II. J Biol Chem 2004; 279:28653-61. [PMID: 15117945 DOI: 10.1074/jbc.m403470200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In yeast and higher plants, separate genes encode the cytosolic and mitochondrial forms of glyoxalase II. In contrast, although glyoxalase II activity has been detected both in the cytosol and mitochondria of mammals, only a single gene encoding glyoxalase II has been identified. Previously it was thought that this gene (the hydroxyacylglutathione hydrolase gene), comprised 8 exons that are transcribed into mRNA and that the resulting mRNA species encoded a single cytosolic form of glyoxalase II. Here we show that this gene gives rise to two distinct mRNA species transcribed from 9 and 10 exons, respectively. The 9-exon-derived transcript encodes two protein species: mitochondrially targeted glyoxylase II, which is initiated from an AUG codon in a previously uncharacterized part of the mRNA sequence, and cytosolic glyoxalase II, which is initiated by internal ribosome entry at a downstream AUG codon. The transcript deriving from 10 exons has an in-frame termination codon between the two initiating AUG codons and hence only encodes the cytosolic form of the protein. Confocal fluorescence microscopy indicates that the mitochondrially targeted form of glyoxalase II is directed to the mitochondrial matrix. Analysis of glyoxalase II mRNA sequences from a number of species indicates that dual initiation from alternative AUG codons is conserved throughout vertebrates.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Line
- Codon
- Cytosol/enzymology
- Cytosol/metabolism
- DNA, Complementary/metabolism
- Exons
- Genes, Reporter
- Humans
- Immunoblotting
- Luciferases/metabolism
- Microscopy, Confocal
- Microscopy, Fluorescence
- Mitochondria/enzymology
- Mitochondria/metabolism
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Plasmids/metabolism
- Promoter Regions, Genetic
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribosomes/metabolism
- Thiolester Hydrolases/chemistry
- Thiolester Hydrolases/genetics
Collapse
Affiliation(s)
- Paul A Cordell
- Academic Unit of Molecular Vascular Medicine, Leeds Institute for Genetics Health and Therapeutics, Faculty of Medicine and Health, University of Leeds, Leeds LS1 3EX, United Kingdom
| | | | | | | |
Collapse
|
28
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
29
|
Hanissian SH, Akbar U, Teng B, Janjetovic Z, Hoffmann A, Hitzler JK, Iscove N, Hamre K, Du X, Tong Y, Mukatira S, Robertson JH, Morris SW. cDNA cloning and characterization of a novel gene encoding the MLF1-interacting protein MLF1IP. Oncogene 2004; 23:3700-7. [PMID: 15116101 DOI: 10.1038/sj.onc.1207448] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myelodysplasia/acute myeloid leukemia (MDS/AML) is characterized by a t(3;5)(q25.1;q34) chromosomal translocation that forms a fusion gene between nucleophosmin (NPM) and MDS/myeloid leukemia factor 1 (MLF1). We identified a novel protein, MLF1-interacting protein (MLF1IP), that specifically associates with MLF1 by yeast two-hybrid analysis and in pulldown assays, and colocalizes with it in both the nuclei and cytoplasm of cells. The MLF1IP gene locus is at chromosome 4q35.1 and is composed of 14 exons spanning 75.8 kb of genomic DNA. The MLF1IP cDNA encodes a 46-kDa protein that contains two bipartite and two classical nuclear localization signals, two nuclear receptor-binding motifs (LXXLL), two leucine zippers, two PEST residues and several potential phosphorylation sites. MLF1IP transcripts are expressed in a variety of tissues (e.g. fetal liver, bone marrow, thymus and testis). MLF1IP appears to be a lineage-specific gene whose expression is confined exclusively to the CFU-E erythroid precursor cells, but not in mature erythrocytes. These observations, together with previous data demonstrating a role for MLF1 in suppressing red cell maturation, suggest a possible role for MLF1IP and MLF1 deregulation in the genesis of erythroleukemias.
Collapse
Affiliation(s)
- Silva H Hanissian
- Department of Neurosurgery, The University of Tennessee Health Science Center, 847 Monroe, Room 427, Memphis, TN 38163, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Davies WL, Vandenberg JI, Sayeed RA, Trezise AEO. Cardiac Expression of the Cystic Fibrosis Transmembrane Conductance Regulator Involves Novel Exon 1 Usage to Produce a Unique Amino-terminal Protein. J Biol Chem 2004; 279:15877-87. [PMID: 14754881 DOI: 10.1074/jbc.m313628200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which encodes a chloride channel present in many cells. In cardiomyocytes, we report that multiple exon 1 usage and alternative splicing produces four CFTR transcripts, with different 5'-untranslated regions, CFTR(TRAD-139), CFTR(-1C/-1A), CFTR(-1C), and CFTR(-1B). CFTR transcripts containing the novel upstream exons (exons -1C, -1B, and -1A) represent more than 90% of cardiac expressed CFTR mRNA. Regulation of cardiac CFTR expression, in response to developmental and pathological stimuli, is exclusively due to the modulation of CFTR(-1C) and CFTR(-1C/-1A) expression. Upstream open reading frames have been identified in the 5'-untranslated regions of all CFTR transcripts that, in conjunction with adjacent stem-loop structures, modulate the efficiency of translation initiation at the AUG codon of the main CFTR coding region in CFTR(TRAD-139) and CFTR(-1C/-1A) transcripts. Exon -1A, only present in CFTR(-1C/-1A) transcripts, encodes an AUG codon that is in-frame with the main CFTR open reading frame, the efficient translation of which produces a novel CFTR protein isoform with a curtailed amino terminus. As the expression of this CFTR transcript parallels the spatial and temporal distribution of the cAMP-activated whole-cell current density in normal and diseased hearts, we suggest that CFTR(-1C/-1A) provides the molecular basis for the cardiac cAMP-activated chloride channel. Our findings provide further insight into the complex nature of in vivo CFTR expression, to which multiple mRNA transcripts, protein isoforms, and post-transcriptional regulatory mechanisms are now added.
Collapse
Affiliation(s)
- Wayne L Davies
- School of Biomedical Science, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | |
Collapse
|
31
|
Minn AH, Kayton M, Lorang D, Hoffmann SC, Harlan DM, Libutti SK, Shalev A. Insulinomas and expression of an insulin splice variant. Lancet 2004; 363:363-7. [PMID: 15070567 DOI: 10.1016/s0140-6736(04)15438-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Insulinomas are beta-cell tumours characterised by uncontrolled insulin secretion even in the presence of hypoglycaemia. However, the mechanisms allowing such excessive insulin secretion are not known. Insulin secretion can occur only when the beta-cell insulin stores have been replenished by insulin biosynthesis, which is mainly controlled by translation. Such specific translational regulation often involves the 5' untranslated region. We have identified an insulin splice variant in isolated human pancreatic islets of non-diabetic donors that retains 26 bp of intron 1 and thereby changes the 5' untranslated region, but leaves the coding region unchanged. This splice variant has increased translation efficiency in vitro and in vivo compared with native insulin mRNA. However, splice variant expression is less than 1% of native insulin mRNA in normal islets. METHODS To test whether this splice variant is involved in insulin production by human insulinomas, we extracted RNA from nine laser-captured surgical insulinoma samples and from isolated islets of nine donors who did not have diabetes. We then determined the ratio of splice variant to native insulin mRNA by quantitative real-time RT-PCR. FINDINGS The mean ratio of the splice variant to native insulin mRNA was increased more than 50-fold in insulinomas compared with normal islets, and this difference was present in all nine human insulinomas. Overexpression of the splice variant therefore seems to be a general characteristic of insulinomas and is estimated to contribute about 90% to insulin synthesis by these tumours. INTERPRETATION Overexpression of the insulin splice variant with increased translation efficiency in insulinomas might explain how these tumours maintain high levels of insulin synthesis and secretion leading to hyperinsulinaemia-the hallmark of this disease.
Collapse
Affiliation(s)
- Alexandra H Minn
- Department of Medicine, Endocrinology Section, University of Wisconsin-Madison, Madison, WI 53792, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kozak M. Alternative ways to think about mRNA sequences and proteins that appear to promote internal initiation of translation. Gene 2004; 318:1-23. [PMID: 14585494 DOI: 10.1016/s0378-1119(03)00774-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Translation of some mRNAs is postulated to occur via an internal initiation mechanism which is said to be augmented by a variety of RNA-binding proteins. A pervasive problem is that the RNA sequences to which the proteins bind were not rigorously proven to function as internal ribosome entry sites (IRESs). Critical examination of the evidence reveals flaws that leave room for alternative interpretations, such as the possibility that IRES elements might function as cryptic promoters, splice sites, or sequences that modulate cleavage by RNases. The growing emphasis on IRES-binding proteins diverts attention from these fundamental unresolved issues. Many of the putative IRES-binding proteins are heterogeneous nuclear ribonucleoproteins that have recognized roles in RNA processing or stability and no recognized role in translation. Thus the mechanism whereby they promote internal initiation, if indeed they do, is not obvious. Some recent experiments were said to support the idea that IRES-binding proteins cause functionally important changes in folding of the RNA, but the evidence is not convincing when examined closely. The proteins that bind to some (not all) viral IRES elements include a subset of authentic initiation factors. This has not been demonstrated with any candidate IRES of cellular origin, however; and even with viral RNAs, the required chase experiment has not been done to prove that a pre-bound initiation factor actually mediates subsequent entry of ribosomes. In short, the focus on IRES-binding proteins has gotten us no closer to understanding the mechanism of internal initiation. Given the aforementioned uncertainty about whether other mechanisms (splicing, cryptic promoters) might underlie what-appears-to-be internal initiation, a temporary solution might be to redefine IRES to mean "internal regulatory expression sequence." This compromise would allow the sequences to be used for gene expression studies, for which they sometimes work, without asserting more than has been proven about the mechanism.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
33
|
Renbaum P, Beeri R, Gabai E, Amiel M, Gal M, Ehrengruber MU, Levy-Lahad E. Egr-1 upregulates the Alzheimer's disease presenilin-2 gene in neuronal cells. Gene 2003; 318:113-24. [PMID: 14585504 DOI: 10.1016/s0378-1119(03)00766-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regulation of the Alzheimer's disease (AD)-related gene, presenilin-2 (PSEN2), was analyzed in neuronal (SK-N-SH) and non-neuronal (human embryonic kidney 293, HEK293) cells. We show that the PSEN2 regulatory region includes two separate promoter elements, each located upstream of multiple transcription start sites in the first and second exons. The stronger upstream promoter, P1, has housekeeping characteristics: it resides in a CpG island, is TATA-less, and up to 83% of PSEN2-P1 activity depends on a stimulating protein 1 (Sp1) site at the most 5' initiation site. However, the downstream promoter P2 includes neuronal-specific elements and two sites for early growth response gene-1 (Egr-1), a transcription factor upregulated in learning paradigms and implicated in neuronal plasticity, in response to injury. We show that Egr-1 binds to PSEN-P2, and that PSEN-P2 activity is increased threefold by overexpression of Egr-1, and by 12-O-tetradecanoylphorbol-13-acetate (TPA), which induces physiological Egr-1 levels. Egr-1 represses PSEN2-P1 activity by 50% in neuronal cells, suggesting it partially shifts promoter usage from PSEN2-P1 to PSEN2-P2. This could lead to a relative increase in shorter exon 2 transcripts, which may be more efficiently translated than exon 1 transcripts. Identification of PSEN2 as an Egr-1 target suggests a link between PSEN2 expression and Egr-1-related processes, which may impact on understanding PSEN-2's physiological function and its role in Alzheimer's disease.
Collapse
Affiliation(s)
- Paul Renbaum
- Medical Genetics Unit, Shaare Zedek Medical Center, PO Box 3235, Jerusalem 91031, Israel
| | | | | | | | | | | | | |
Collapse
|
34
|
Lugli G, Krueger JM, Davis JM, Persico AM, Keller F, Smalheiser NR. Methodological factors influencing measurement and processing of plasma reelin in humans. BMC BIOCHEMISTRY 2003; 4:9. [PMID: 12959647 PMCID: PMC200967 DOI: 10.1186/1471-2091-4-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Accepted: 09/07/2003] [Indexed: 01/22/2023]
Abstract
BACKGROUND Reelin, intensively studied as an extracellular protein that regulates brain development, is also expressed in a variety of tissues and a circulating pool of reelin exists in adult mammals. Here we describe the methodological and biological foundation for carrying out and interpreting clinical studies of plasma reelin. RESULTS Reelin in human plasma was sensitive to proteolysis, freeze-thawing and heating during long-term storage, sample preparation and electrophoresis. Reelin in plasma was a dimer under denaturing conditions. Boiling of samples resulted in laddering, suggesting that each of the 8 repeats expressed in reelin contains a heat-labile covalent bond susceptible to breakage. Urinary-type and tissue-type plasminogen activator converted reelin to a discrete 310 kDa fragment co-migrating with the major immunoreactive reelin fragment seen in plasma and also detected in brain. (In contrast, plasmin produced a spectrum of smaller unstable reelin fragments.) We examined archival plasma of 10 pairs of age-matched male individuals differing in repeat length of a CGG repeat polymorphism of the 5'-untranslated region of the reelin gene (both alleles < 11 repeats vs. one allele having >11 repeats). Reelin 310 kDa band content was lower in subjects having the long repeats in all 10 pairs, by 25% on average (p < 0.001). In contrast, no difference was noted for amyloid precursor protein. CONCLUSIONS Our studies indicate the need for caution in measuring reelin in archival blood samples, and suggest that assays of plasma reelin should take into account three dimensions that might vary independently: a) the total amount of reelin protein; b) the relative amounts of reelin vs. its proteolytic processing products; and c) the aggregation state of the native protein. Reelin-plasminogen activator interactions may affect their roles in synaptic plasticity. Our results also suggest that the human CGG repeat polymorphism affects reelin gene expression, and may affect susceptibility to human disease.
Collapse
Affiliation(s)
- Giovanni Lugli
- Department of Psychiatry and Psychiatric Institute, University of Illinois at Chicago, MC 912, 1601 W. Taylor Street, Chicago, IL 60612 USA
| | - Jacqueline M Krueger
- Department of Psychiatry and Psychiatric Institute, University of Illinois at Chicago, MC 912, 1601 W. Taylor Street, Chicago, IL 60612 USA
| | - John M Davis
- Department of Psychiatry and Psychiatric Institute, University of Illinois at Chicago, MC 912, 1601 W. Taylor Street, Chicago, IL 60612 USA
| | - Antonio M Persico
- Laboratory of Molecular Psychiatry & Neurogenetics, University "Campus Bio-Medico", Via Longoni 83, 00155 Rome Italy
| | - Flavio Keller
- Laboratory of Developmental Neuroscience, University "Campus Bio-Medico", Via Longoni 83, 00155 Rome Italy
| | - Neil R Smalheiser
- Department of Psychiatry and Psychiatric Institute, University of Illinois at Chicago, MC 912, 1601 W. Taylor Street, Chicago, IL 60612 USA
| |
Collapse
|
35
|
Oyhenart J, Le Goffic R, Samson M, Jégou B, Raich N. Phtf1 is an integral membrane protein localized in an endoplasmic reticulum domain in maturing male germ cells. Biol Reprod 2003; 68:1044-53. [PMID: 12604659 DOI: 10.1095/biolreprod.102.009787] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Phtf1 is a gene evolutionarily conserved from Drosophila to human that is abundantly expressed in testis. In adult rat, transcripts were abundant in germinal meiotic and postmeiotic cells. Phtf1-specific antibodies revealed weak activity in a juxtanuclear region of early pachytene spermatocytes. Labeling progressively extended to the entire cytoplasm of step 2-3 spermatids, became intense from step 4, and persisted until the end of spermiogenesis, when it was eliminated in the residual bodies. Phtf1 displayed the properties of an integral membrane protein. In transfected cells and haploid cells of rat seminiferous epithelium, it colocalized with ER markers (calnexin and calmegin, respectively). By using both ER and Golgi markers (TGN-38, p58), we were able to show that, in pachytene spermatocytes and in Golgi phase spermatids, phtf1 labeled a region neighboring the cis-Golgi that probably corresponded to the peripheral Golgi region. Phtf1 staining was not related to beta-COP, AP1, or AP2 aptamers, indicating that it was not transported between Golgi saccules or between the Golgi complex and plasma membrane. However, aptamer labeling showed that chlatrin vesicles could be engaged in a new traffic route, raising the possibility of a meiotic proacrosomal vesicle origin. Colocalization between phtf1 and calmegin decreased during the acrosomal phase. During the maturation phase, phtf1 was able to identify different ER domains, as described previously for the peripheral Golgi region. Phtf1 provides a potential new marker for Golgi modifications as well as for many of the obscure transformations undergone by the endoplasmic reticulum. It could help to elucidate the morphogenic events connected with the transformation of spermatogenic cells.
Collapse
Affiliation(s)
- J Oyhenart
- INSERM U.567 CNRS-UMR 8104, Institut Cochin, Departement d'Hematologie, Maternité de Port-Royal, Université Rene Descartes, 75014 Paris, France
| | | | | | | | | |
Collapse
|
36
|
Boissel JP, Zelenka M, Gödtel-Armbrust U, Feuerstein TJ, Förstermann U. Transcription of different exons 1 of the human neuronal nitric oxide synthase gene is dynamically regulated in a cell- and stimulus-specific manner. Biol Chem 2003; 384:351-62. [PMID: 12715886 DOI: 10.1515/bc.2003.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
An extensive screening of the human neuronal nitric oxide synthase (nNOS) mRNAs in various human tissues and cell lines unraveled an extreme complexity in the transcription of this gene. Using 5' rapid amplification of cDNA ends (5'-RACE), ten different exons 1 (named 1a-1l) were identified. They were spliced in a cell-specific manner to a common exon 2, which bears the translational start site. Three first exons (1d, 1g and 1f) were used predominantly for the transcription of the nNOS gene (146 out of 197 5'-RACE clones contained these exons). Exon 1k was found alone, but in many instances was interposed between exons 1b, 1d, 1g, 1i or 1j and the common exon 2. In addition to the cell-specific heterogeneity of human nNOS transcripts, nNOS is highly regulated at the transcriptional level. In resting A673 neuroepithelioma cells, the prevalent nNOS transcript was the exon 1g mRNA (with minor expression of exons 1d+1k and exon 1f mRNAs). When the cells were treated with dibutyryl-cAMP, nNOS mRNA was markedly upregulated. This upregulation was solely due to an increase in exon 1f mRNA, while the expression of the other mRNA species remained unchanged. Human HaCat keratinocyte-like cells expressed the exon 1i+1k and 1i nNOS transcripts under basal conditions. When stimulated with epidermal growth factor, only the exon 1i+1k transcript was upregulated. Although these nNOS transcripts do not differ in their translated region, the various mRNAs may trigger post-transcriptional effects such as changes in mRNA stability and translation efficiency.
Collapse
Affiliation(s)
- Jean-Paul Boissel
- Department of Pharmacology, Johannes Gutenberg University, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | | | | | | | |
Collapse
|
37
|
Thompson PM, Gotoh T, Kok M, White PS, Brodeur GM. CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system. Oncogene 2003; 22:1002-11. [PMID: 12592387 DOI: 10.1038/sj.onc.1206211] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatin remodeling is one of the mechanisms by which gene expression is regulated developmentally. Chromatin structure is controlled at least in part by post-translational modification of histones, as well as by chromodomain proteins. We have identified a novel gene encoding a protein with chromatin remodeling, helicase and DNA-binding motifs. This gene, called CHD5, is the fifth member of the CHD gene family identified in humans. This gene is most homologous to CHD3 and CHD4, which encode proteins that are part of the nucleosome remodeling and histone deacetylation (NuRD) complex. CHD5 is preferentially expressed in total brain, fetal brain, and cerebellum. It is also moderately expressed in the adrenal gland, but expression is undetectable in almost all other tissues examined. CHD5 maps within a small region of deletion on 1p36.3 in human neuroblastomas, a common pediatric tumor. We examined a panel of neuroblastoma cell lines for CHD5 expression, which was consistently low or undetectable in all these lines. Expression was also examined in a panel of 137 primary neuroblastomas, and low expression was highly correlated with 1p deletion, MYCN amplification, advanced stage, and unfavorable histology. These findings suggest that this gene may play a role in the development of the nervous system, and it may also play a role in the pathogenesis of neural tumors.
Collapse
Affiliation(s)
- Patricia M Thompson
- Division of Oncology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
38
|
Oertle T, Huber C, van der Putten H, Schwab ME. Genomic structure and functional characterisation of the promoters of human and mouse nogo/rtn4. J Mol Biol 2003; 325:299-323. [PMID: 12488097 DOI: 10.1016/s0022-2836(02)01179-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The reticulon-family member Nogo-A is a potent neurite growth inhibitory protein in vitro and may play a role in the restriction of axonal regeneration after injury and of structural plasticity in the CNS of higher vertebrates. Of the three major isoforms of Nogo, Nogo-A is mostly expressed in the brain, Nogo-B is found in a ubiquitous pattern, and Nogo-C is most highly expressed in muscle. Seven additional splice-variants derived both from differential splicing and differential promoter usage have been identified. Analysis of the TATA-less Nogo-A/B promoter (P1) shows that conserved GC-boxes and a CCAAT-box within the first 500bp upstream of the transcription start are responsible for its regulation. No major differences in the methylation status of the P1 CpG-island in tissues expressing or not expressing Nogo-A/B could be detected, suggesting that silencer elements are involved in the regulation. The specific expression pattern of Nogo-A/B is due to differential splicing. The basal Nogo-C promoter (P2) is regulated by a proximal and a distal element. The 5'UTR of Nogo-C harbours a negative control element. These data may help to identify factors that can modulate Nogo transcription, thus offering an alternative approach for Nogo neutralisation.
Collapse
Affiliation(s)
- Thomas Oertle
- Brain Research Institute, University of Zurich and Department of Biology, Swiss Federal Institute of Technology, Switzerland.
| | | | | | | |
Collapse
|
39
|
Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigó R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, et alWaterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P, Antonarakis SE, Attwood J, Baertsch R, Bailey J, Barlow K, Beck S, Berry E, Birren B, Bloom T, Bork P, Botcherby M, Bray N, Brent MR, Brown DG, Brown SD, Bult C, Burton J, Butler J, Campbell RD, Carninci P, Cawley S, Chiaromonte F, Chinwalla AT, Church DM, Clamp M, Clee C, Collins FS, Cook LL, Copley RR, Coulson A, Couronne O, Cuff J, Curwen V, Cutts T, Daly M, David R, Davies J, Delehaunty KD, Deri J, Dermitzakis ET, Dewey C, Dickens NJ, Diekhans M, Dodge S, Dubchak I, Dunn DM, Eddy SR, Elnitski L, Emes RD, Eswara P, Eyras E, Felsenfeld A, Fewell GA, Flicek P, Foley K, Frankel WN, Fulton LA, Fulton RS, Furey TS, Gage D, Gibbs RA, Glusman G, Gnerre S, Goldman N, Goodstadt L, Grafham D, Graves TA, Green ED, Gregory S, Guigó R, Guyer M, Hardison RC, Haussler D, Hayashizaki Y, Hillier LW, Hinrichs A, Hlavina W, Holzer T, Hsu F, Hua A, Hubbard T, Hunt A, Jackson I, Jaffe DB, Johnson LS, Jones M, Jones TA, Joy A, Kamal M, Karlsson EK, Karolchik D, Kasprzyk A, Kawai J, Keibler E, Kells C, Kent WJ, Kirby A, Kolbe DL, Korf I, Kucherlapati RS, Kulbokas EJ, Kulp D, Landers T, Leger JP, Leonard S, Letunic I, Levine R, Li J, Li M, Lloyd C, Lucas S, Ma B, Maglott DR, Mardis ER, Matthews L, Mauceli E, Mayer JH, McCarthy M, McCombie WR, McLaren S, McLay K, McPherson JD, Meldrim J, Meredith B, Mesirov JP, Miller W, Miner TL, Mongin E, Montgomery KT, Morgan M, Mott R, Mullikin JC, Muzny DM, Nash WE, Nelson JO, Nhan MN, Nicol R, Ning Z, Nusbaum C, O'Connor MJ, Okazaki Y, Oliver K, Overton-Larty E, Pachter L, Parra G, Pepin KH, Peterson J, Pevzner P, Plumb R, Pohl CS, Poliakov A, Ponce TC, Ponting CP, Potter S, Quail M, Reymond A, Roe BA, Roskin KM, Rubin EM, Rust AG, Santos R, Sapojnikov V, Schultz B, Schultz J, Schwartz MS, Schwartz S, Scott C, Seaman S, Searle S, Sharpe T, Sheridan A, Shownkeen R, Sims S, Singer JB, Slater G, Smit A, Smith DR, Spencer B, Stabenau A, Stange-Thomann N, Sugnet C, Suyama M, Tesler G, Thompson J, Torrents D, Trevaskis E, Tromp J, Ucla C, Ureta-Vidal A, Vinson JP, Von Niederhausern AC, Wade CM, Wall M, Weber RJ, Weiss RB, Wendl MC, West AP, Wetterstrand K, Wheeler R, Whelan S, Wierzbowski J, Willey D, Williams S, Wilson RK, Winter E, Worley KC, Wyman D, Yang S, Yang SP, Zdobnov EM, Zody MC, Lander ES. Initial sequencing and comparative analysis of the mouse genome. Nature 2002; 420:520-62. [PMID: 12466850 DOI: 10.1038/nature01262] [Show More Authors] [Citation(s) in RCA: 4938] [Impact Index Per Article: 214.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Accepted: 10/31/2002] [Indexed: 12/18/2022]
Abstract
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of the genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.
Collapse
MESH Headings
- Animals
- Base Composition
- Chromosomes, Mammalian/genetics
- Conserved Sequence/genetics
- CpG Islands/genetics
- Evolution, Molecular
- Gene Expression Regulation
- Genes/genetics
- Genetic Variation/genetics
- Genome
- Genome, Human
- Genomics
- Humans
- Mice/classification
- Mice/genetics
- Mice, Knockout
- Mice, Transgenic
- Models, Animal
- Multigene Family/genetics
- Mutagenesis
- Neoplasms/genetics
- Physical Chromosome Mapping
- Proteome/genetics
- Pseudogenes/genetics
- Quantitative Trait Loci/genetics
- RNA, Untranslated/genetics
- Repetitive Sequences, Nucleic Acid/genetics
- Selection, Genetic
- Sequence Analysis, DNA
- Sex Chromosomes/genetics
- Species Specificity
- Synteny
Collapse
|
40
|
Deng FM, Liang FX, Tu L, Resing KA, Hu P, Supino M, Hu CCA, Zhou G, Ding M, Kreibich G, Sun TT. Uroplakin IIIb, a urothelial differentiation marker, dimerizes with uroplakin Ib as an early step of urothelial plaque assembly. J Cell Biol 2002; 159:685-94. [PMID: 12446744 PMCID: PMC2173100 DOI: 10.1083/jcb.200204102] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urothelial plaques consist of four major uroplakins (Ia, Ib, II, and III) that form two-dimensional crystals covering the apical surface of urothelium, and provide unique opportunities for studying membrane protein assembly. Here, we describe a novel 35-kD urothelial plaque-associated glycoprotein that is closely related to uroplakin III: they have a similar overall type 1 transmembrane topology; their amino acid sequences are 34% identical; they share an extracellular juxtamembrane stretch of 19 amino acids; their exit from the ER requires their forming a heterodimer with uroplakin Ib, but not with any other uroplakins; and UPIII-knockout leads to p35 up-regulation, possibly as a compensatory mechanism. Interestingly, p35 contains a stretch of 80 amino acid residues homologous to a hypothetical human DNA mismatch repair enzyme-related protein. Human p35 gene is mapped to chromosome 7q11.23 near the telomeric duplicated region of Williams-Beuren syndrome, a developmental disorder affecting multiple organs including the urinary tract. These results indicate that p35 (uroplakin IIIb) is a urothelial differentiation product structurally and functionally related to uroplakin III, and that p35-UPIb interaction in the ER is an important early step in urothelial plaque assembly.
Collapse
Affiliation(s)
- Fang-Ming Deng
- Epithelial Biology Unit, Ronald O. Perelman Department of Dermatology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Choo KB, Chen HH, Liu TYC, Chang CP. Different modes of regulation of transcription and pre-mRNA processing of the structurally juxtaposed homologs, Rnf33 and Rnf35, in eggs and in pre-implantation embryos. Nucleic Acids Res 2002; 30:4836-44. [PMID: 12433986 PMCID: PMC137171 DOI: 10.1093/nar/gkf623] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Molecular events involved in gene expression in unfertilized eggs and pre-implantation embryos are beginning to be understood. In this work, we investigated the transcription and processing of two structurally juxtaposed mouse RING finger protein genes, Rnf33 and Rnf35. Transcripts of these genes are detected only in eggs and in pre-implantation embryos. Both genes are intronless except for a solitary intron in the 5'-untranslated region. Here, we showed by rapid amplification of cDNA ends (RACE) and reverse transcription experiments that Rnf35 transcription uses a single promoter and a terminating site. On the other hand, Rnf33 is transcribed using multiple promoters. At the four-cell stage, however, Rnf33 mRNA with a single transcription start site derived from the proximal promoter is detected, indicating that it is the major promoter. Sequences upstream of the Rnf35 and the major Rnf33 transcription start sites carry no TATA boxes but a putative transcription initiator (Inr) element is discernible in each case. The processing of the 3'-end of the Rnf33 mRNA is also in disarray with multiple 3'-ends, an event that may be related to the absence of the AAUAAA element and the utilization of AAUAAA-like proxies. The multiplicity of the 3'-untranslated region is partially amended at the four-cell stage when only two major 3'-ends are in use. This work demonstrates that expression of some maternal and early zygotic genes may be opportunistic until a stringent transcriptional regulation mechanism is imposed.
Collapse
Affiliation(s)
- Kong-Bung Choo
- Department of Medical Research and Education, Taipei Veterans General Hospital, Shih Pai, Taipei 11217, Taiwan.
| | | | | | | |
Collapse
|
42
|
Abstract
Selection of the translational initiation site in most eukaryotic mRNAs appears to occur via a scanning mechanism which predicts that proximity to the 5' end plays a dominant role in identifying the start codon. This "position effect" is seen in cases where a mutation creates an AUG codon upstream from the normal start site and translation shifts to the upstream site. The position effect is evident also in cases where a silent internal AUG codon is activated upon being relocated closer to the 5' end. Two mechanisms for escaping the first-AUG rule--reinitiation and context-dependent leaky scanning--enable downstream AUG codons to be accessed in some mRNAs. Although these mechanisms are not new, many new examples of their use have emerged. Via these escape pathways, the scanning mechanism operates even in extreme cases, such as a plant virus mRNA in which translation initiates from three start sites over a distance of 900 nt. This depends on careful structural arrangements, however, which are rarely present in cellular mRNAs. Understanding the rules for initiation of translation enables understanding of human diseases in which the expression of a critical gene is reduced by mutations that add upstream AUG codons or change the context around the AUG(START) codon. The opposite problem occurs in the case of hereditary thrombocythemia: translational efficiency is increased by mutations that remove or restructure a small upstream open reading frame in thrombopoietin mRNA, and the resulting overproduction of the cytokine causes the disease. This and other examples support the idea that 5' leader sequences are sometimes structured deliberately in a way that constrains scanning in order to prevent harmful overproduction of potent regulatory proteins. The accumulated evidence reveals how the scanning mechanism dictates the pattern of transcription--forcing production of monocistronic mRNAs--and the pattern of translation of eukaryotic cellular and viral genes.
Collapse
Key Words
- translational control
- aug context
- 5′ untranslated region
- reinitiation
- leaky scanning
- dicistronic mrna
- internal ribosome entry site
- adometdc, s-adenosylmethionine decarboxylase
- a2ar, a2a adenosine receptor
- c/ebp, ccaat/enhancer binding protein
- ctl, cytotoxic t-lymphocyte
- egfp, enhanced green fluorescent protein
- eif, eukaryotic initiation factor
- hiv-1, human immunodeficiency virus 1
- ires, internal ribosome entry site
- lef1, lymphoid enhancer factor-1
- ogp, osteogenic growth peptide
- orf, open reading frame
- r, purine
- tpo, thrombopoietin
- uporf, upstream open reading frame
- utr, untranslated region
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
43
|
Sharkov NV, Ramsay G, Katzen AL. The DNA replication-related element-binding factor (DREF) is a transcriptional regulator of the Drosophila myb gene. Gene 2002; 297:209-19. [PMID: 12384302 DOI: 10.1016/s0378-1119(02)00890-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Drosophila melanogaster possesses a single gene, Dm myb, that is closely related to the vertebrate proto-oncogene c-Myb, and its other family members (A-Myb and B-Myb), all of which encode transcription factors. Dm myb is expressed in all proliferating cells throughout development, and previous studies demonstrate that Dm myb promotes both S-phase and M-phase in proliferating cells, while preserving diploidy by suppressing endoreduplication. We have initiated a characterization of the mechanisms that regulate Dm myb expression, and we report here that the transcriptional activator DREF (the DNA replication-related element binding factor) activates Dm myb transcription via two binding sites located in the 5' flanking region; that the Dm myb promoter lacks a prototypical TATA box sequence and instead appears to use an initiator/downstream promoter element (Inr/DPE) type promoter; and that Dm myb expression is regulated at the translational as well as transcriptional level.
Collapse
Affiliation(s)
- Nikolai V Sharkov
- Department of Molecular Genetics (M/C 669), University of Illinois at Chicago, College of Medicine, 900 South Ashland Avenue, Room 2368, Chicago, IL 60607-7170, USA
| | | | | |
Collapse
|
44
|
Pendleton LC, Goodwin BL, Flam BR, Solomonson LP, Eichler DC. Endothelial argininosuccinate synthase mRNA 5'-untranslated region diversity. Infrastructure for tissue-specific expression. J Biol Chem 2002; 277:25363-9. [PMID: 11967259 DOI: 10.1074/jbc.m111677200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on the integral role that argininosuccinate synthase (AS) plays in the production of nitric oxide in vascular endothelial cells and urea in liver, an analysis was carried out to determine whether signals reside in the AS mRNA to account for tissue differences in AS function and location. Reverse transcriptase-PCR and sequence analysis showed that the AS mRNA coding region was the same for both endothelial cells and liver; however, 5'-RACE analysis (rapid amplification of cDNA ends) identified AS mRNA species in endothelial cells in addition to a major 43-nucleotide (nt) 5'-untranslated region (UTR) AS mRNA with overlapping extended 5'-UTRs of 66 and 92 nt. Comparison to the genomic sequence immediately upstream of the reported transcription start site for the human and mouse AS gene suggested that expression of all three species of bovine endothelial AS mRNA are driven by a common promoter and that 5'-UTR diversity in endothelial cells results from three transcriptional initiation sites within exon 1. RNase protection analysis and real-time reverse transcriptase-PCR verified and quantitated the differential expression of the extended 5'-UTR species relative to the major 43-nt 5'-UTR AS mRNA. In vitro translation studies showed a less pronounced but similar discordant expression. Sequential deletions starting from the 5' terminus of the 92-nt 5'-UTR construct resulted in a corresponding increase in translational efficiency, but the most pronounced effect resulted from mutation of an upstream open reading frame, which restored translational efficiency of the 92-nt 5'-UTR AS mRNA. When the different AS mRNA 5'-UTRs, cloned in front of a luciferase reporter gene, were transfected into endothelial cells, the pattern of luciferase expression was nearly identical to that observed for the different 5'-UTR AS mRNAs in endothelial cells. Given the different roles ascribed for argininosuccinate synthase, urea versus NO production, these results suggest that sequence in the AS gene represented by position -92 to -43 nt from the translation start site in the extended AS mRNA 5'-UTRs plays an important role in differential and tissue-specific expression.
Collapse
Affiliation(s)
- Laura C Pendleton
- Department of Biochemistry and Molecular Biology, University of South Florida, College of Medicine, Tampa 33612, USA
| | | | | | | | | |
Collapse
|
45
|
Shalev A, Blair PJ, Hoffmann SC, Hirshberg B, Peculis BA, Harlan DM. A proinsulin gene splice variant with increased translation efficiency is expressed in human pancreatic islets. Endocrinology 2002; 143:2541-7. [PMID: 12072386 DOI: 10.1210/endo.143.7.8920] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
As glucose-induced insulin expression is mainly regulated at the translational level, and such regulation often involves the 5'-untranslated region (5'UTR), we examined the human proinsulin gene 5'UTR. RT-PCR and sequencing demonstrated that a proinsulin splice variant (SPV) generated from a cryptic 5'-splice site and retaining the first 26 bp of intron 1 was present in human pancreatic islets from normal donors. The expression of this SPV was metabolically regulated, as shown by quantitative real-time RT-PCR, revealing a more than 10-fold increase in the SPV in isolated human islets incubated at 16.7 mM compared with 1.67 mM glucose. In vitro wheat-germ translation and in vivom transfection studies demonstrated that the altered 5'UTR of the SPV increased translation. The SPV yielded 4-fold more in vitro translated preproinsulin protein than the native proinsulin mRNA, and the SPV 5'UTR inserted upstream from a luciferase reporter gene resulted in a more than 6-fold higher luciferase activity, suggesting enhanced translation in vivo. Retention of the 26 bp changed the proposed secondary RNA structure of the SPV, which may facilitate ribosomal binding and explain the increase in translation efficiency. These results suggest a novel mechanism by which metabolic changes can modulate the expression of 5'UTR SPVs and thereby regulate translation efficiency.
Collapse
Affiliation(s)
- Anath Shalev
- Transplantation and Autoimmunity Branch and Genetics and Biochemistry Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20889-5603, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Durkin ME, Yuan BZ, Thorgeirsson SS, Popescu NC. Gene structure, tissue expression, and linkage mapping of the mouse DLC-1 gene (Arhgap7). Gene 2002; 288:119-27. [PMID: 12034501 DOI: 10.1016/s0378-1119(02)00462-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DLC-1 (deleted in liver cancer 1) is a candidate tumor suppressor gene for hepatocellular carcinoma and other cancers. It is the human homologue of rat p122, which has been shown to function as a GTPase activating protein for RhoA, and it may be involved in signal transduction pathways regulating cell proliferation and adhesion. To establish an animal model for studying the regulation and function of DLC-1, we have undertaken the characterization of the mouse DLC-1 gene. Northern blot analysis shows that the mouse DLC-1 mRNA is widely expressed, with the highest levels in heart, liver, and lung. Mouse genomic clones that contain the entire DLC-1 gene of 47 kb were isolated. The mouse gene consists of 14 exons, and the structural organization is highly similar to that of the human gene. The promoter region of the mouse gene was GC-rich and contained potential binding sites for transcription factors SP1, GCF, and AP-2. A polymorphic microsatellite marker in intron 8 was used for mapping the gene (Arhgap7) to 20 cM on mouse chromosome 8 and for allelotyping of mouse liver tumor DNAs.
Collapse
MESH Headings
- Animals
- Base Sequence
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Chromosome Mapping
- DNA/chemistry
- DNA/genetics
- Exons
- Female
- GTPase-Activating Proteins/genetics
- Gene Deletion
- Gene Expression
- Genes/genetics
- Humans
- Introns
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Mice, Inbred Strains
- Mice, Transgenic
- Molecular Sequence Data
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Analysis, DNA
- Tumor Suppressor Proteins/genetics
Collapse
Affiliation(s)
- Marian E Durkin
- Laboratory of Experimental Carcinogenesis, Building 37, Room 3C28, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
Multidomain guanine nucleotide (GDP/GTP) exchange factor (GEF) proteins coordinate diverse inputs that signal the actin cytoskeleton. Mammals have two such proteins (Kalirin, Trio), while Drosophila has one, which plays essential roles within and outside the nervous system. For Kalirin, numerous isoforms containing different combinations of functional domains are generated through alternative splicing and use of alternative transcriptional start sites. These different isoforms potentially allow a wide variety of proteins to interact with Kalirin, thereby affecting the activity of the functional domains. Humans, like rats, express a large set of Kalirin isoform mRNAs, and we identified a novel Kalirin isoform, containing only the second GEF domain. Kalirin isoforms are predominantly expressed in the brain, while Trio is expressed in a wider variety of tissues. Alternative splicing and transcription of Kalirin are differentially regulated during development in rats and humans, resulting in expression of isoforms of Kalirin containing different functional domains at different times and locations. The prevalence of Kalirin in the cortex throughout life suggests roles in axonal development and the mature brain.
Collapse
Affiliation(s)
- Clifton E McPherson
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | |
Collapse
|
48
|
Vladychenskaya IP, Dergunova LV, Limborska SA. In vitro and in silico analysis of the predicted human MOB gene encoding a phylogenetically conserved transmembrane protein. BIOMOLECULAR ENGINEERING 2002; 18:263-8. [PMID: 11841947 DOI: 10.1016/s1389-0344(01)00110-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel evolutionary conserved human MOB gene of seven exons is predicted on the chromosome 10. MOB is supposed to express predominately in brain. At least three types of MOB transcripts are proposed. A protein encoded by MOB is five-pass transmembrane molecule.
Collapse
Affiliation(s)
- I P Vladychenskaya
- Department of Human Molecular Genetics, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq., 2, 123182, Moscow, Russia.
| | | | | |
Collapse
|
49
|
Abstract
The efficiency of reinitiation in mammalian translation systems depends in part on the size and arrangement of upstream open reading frames (upORFs). The gradual decrease in reinitiation as an upORF is lengthened, confirmed here using a variety of sequences, might reflect time-dependent loss of protein factors required for reinitiation. Consistent with the idea that the duration of elongation is what matters, reinitiation was nearly abolished when a pseudoknot that causes a pause in elongation was inserted into a short upORF. Control experiments showed that this transient pause in elongation had little effect on the final protein yield when the pseudoknot was moved from the upORF into the main ORF. Thus, the deleterious effect of slowing elongation is limited to the reinitiation mode. Another aspect of reinitiation investigated here is whether post-termination ribosomes can scan backwards to initiate at AUG codons positioned upstream from the terminator codon. Earlier studies that raised this possibility may have been complicated by the occurrence of leaky scanning along with reinitiation. Re-examination of the question, using constructs that preclude leaky scanning, shows barely detectable reinitiation from an AUG codon positioned 4 nt upstream from the terminator codon and no detectable reinitiation from an AUG codon positioned farther upstream. These experiments carried out with synthetic transcripts help to define the circumstances under which reinitiation may be expected to occur in the growing number of natural mRNAs that deviate from the simple first AUG rule.
Collapse
Affiliation(s)
- M Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
50
|
Affiliation(s)
- M Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854, USA.
| |
Collapse
|