1
|
Klußmann M, Matijass M, Neundorf I. Impact of Mutational Status on Intracellular Effects of Cell-Permeable CaaX Peptides in Pancreatic Cancer Cells. Chembiochem 2025; 26:e202401076. [PMID: 40270247 PMCID: PMC12117442 DOI: 10.1002/cbic.202401076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Prenyltransferases add a lipid group to the cysteine of a CaaX motif of proteins. This posttranslational modification enables proteins to attach to membranes where they are essential hubs for signaling, trafficking, and apoptosis. Recently, cell-permeable CaaX-peptides are developed as possible tools to interfere with the prenylation machinery. These peptides cause cytotoxic effects, particularly in KRas mutant pancreatic cancer cells (PANC-1) in which they also alter downstream signaling of Ras proteins. Herein, the aim is to get more clues about the relevance of the mutational status of KRas. Therefore, the activity of CaaX-peptides in KRas wildtype BxPC-3 and KRas mutated PANC-1 cells is compared. CaaX-peptides differently influence these two cell lines, although they internalize pretty much to the same extent. Indeed, an altered KRas plasma membrane localization in PANC-1 cells is observed, probably induced by disturbed KRas prenylation based on the presence of CaaX-peptides. The impact of CaaX-peptides on KRas signaling is likely dependent on the KRas mutation in PANC-1 cells in which they further trigger effects on KRas-dependent regulators, e.g., Neurofibromin -1 (NF1) and son of sevenless homolog 1 (SOS1). All in all, CaaX peptides are identified as promising tools for studying and manipulating the function of therapeutically important prenylated proteins.
Collapse
Affiliation(s)
- Merlin Klußmann
- Department of Chemistry and BiochemistryInstitute of BiochemistryUniversity of CologneZuelpicher Str. 47a50674CologneGermany
| | - Martin Matijass
- Department of Chemistry and BiochemistryInstitute of BiochemistryUniversity of CologneZuelpicher Str. 47a50674CologneGermany
| | - Ines Neundorf
- Department of Chemistry and BiochemistryInstitute of BiochemistryUniversity of CologneZuelpicher Str. 47a50674CologneGermany
| |
Collapse
|
2
|
Li T, Chen D, Liu H, Tao Y, He X, Zang S, Li J, Zhang L, Li M, Liu J, He Q. Spatially targeting and regulating tumor-associated macrophages using a raspberry-like micellar system sensitizes pancreatic cancer chemoimmunotherapy. NANOSCALE 2022; 14:13098-13112. [PMID: 35972382 DOI: 10.1039/d2nr03053e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dense stroma and an immunosuppressive microenvironment severely hamper the antitumor therapeutic results of pancreatic cancer. Tumor-associated macrophages (TAMs) support the proliferation and invasion of tumor cells and contribute to the information of the immunosuppressive tumor microenvironment (TME). The repolarization of TAMs activates the antitumor immune response and sensitizes chemotherapy. Nevertheless, the difference in distributed mode between TAMs and tumor cells in tumor turns out to be an obstacle for dual targeting. To repolarize TAMs and elevate the chemoimmunotherapy outcome against pancreatic cancer, co-loading the TME responsive micellar system with gemcitabine (GEM) and PI3K inhibitor wortmannin (Wtmn) was used to dual target TAMs and tumor cells. GEM conjugated dendritic poly-lysine DGL (GD) nanoparticles were linked to polycaprolactone-polyethylene glycol micelles encapsulated with Wtmn (PP/Wtmn) via a cathepsin B (CTSB) substrate peptide to obtain raspberry-like GD@PP/Wtmn micelles. Upon arrival at the TME, GD was released in response to highly expressed CTSB, allowing deep penetration of the tumor and overcoming of the stromal barrier, while PP/Wtmn remained in the perivascular area where TAMs abundantly resided. By inhibiting the PI3K pathway, the M2-like TAMs were repolarized into M1-like TAMs and then activated antitumor immunity, further synergizing with GEM to suppress tumor growth. This tumor and TAMs dual targeting nanoplatform provides an alternative approach to sensitize chemoimmunotherapy against pancreatic cancer.
Collapse
Affiliation(s)
- Ting Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Dong Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Houqin Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Yuan Tao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Xuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Shuya Zang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Jiaxin Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan university, Chengdu 610065, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| | - Ji Liu
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China.
| | - Qin He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Med-X Center for Materials, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
AMPK Is the Crucial Target for the CDK4/6 Inhibitors Mediated Therapeutic Responses in PANC-1 and MIA PaCa-2 Pancreatic Cancer Cell Lines. STRESSES 2021. [DOI: 10.3390/stresses1010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The survival rate of pancreatic ductal adenocarcinoma (PDAC) patients is short, and PDAC is a cancer type that ranks fourth in the statistics regarding death due to cancer. Mutation in the KRAS gene, which plays a role in pancreatic cancer development, activates the PI3K/AKT/mTOR signaling pathway. The activity of the AMPK as a cellular energy sensor is one of the fundamental mechanisms that can induce effective therapeutic responses against CDK4/6 inhibitors via adjusting the cellular and tumor microenvironment stress management. The phosphorylation of AMPKα at the different phosphorylation residues such as Thr172 and Ser 377 causes metabolic differentiation in the cells following CDK4/6 inhibitor treatment in accordance with an increased cell cycle arrest and senescence under the control of different cellular players. In this study, we examined the competencies of the CDK4/6 inhibitors LY2835219 and PD-0332991 on the mechanism of cell survival and death based on AMPK signaling. Both CDK4/6 inhibitors LY2835219 and PD-0332991 modulated different molecular players on the PI3K/AKT/mTOR and AMPK signaling axis in different ways to reduce cell survival in a cell type dependent manner. These drugs are potential inducers of apoptosis and senescence that can alter the therapeutic efficacy cells.
Collapse
|
4
|
Diab M, Azmi A, Mohammad R, Philip PA. Pharmacotherapeutic strategies for treating pancreatic cancer: advances and challenges. Expert Opin Pharmacother 2018; 20:535-546. [PMID: 30592647 DOI: 10.1080/14656566.2018.1561869] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Despite many efforts to improve the outcome of pancreatic ductal adenocarcinoma (PDAC), its prognosis remains poor, which is mostly related to late diagnosis and drug resistance. Improving systemic therapy is considered the major challenge in improving the outcome of this disease. AREAS COVERED This review covers novel chemotherapy and targeted agents in the treatment of PDAC, with a focus on advanced stage disease. EXPERT OPINION Current frontline therapies used in the treatment of patients with PDAC with favorable performance status are gemcitabine (GEM) and nab-paclitaxel or 5-fluorouracil, leucovorin, irinotecan, and oxaliplatin (FOLFIRINOX). PDAC has a number of genetic mutations that may explain its biological behavior, such as KRAS, p53 and CDK2NA, which occur in more than 90% of cases. Unfortunately, to this day, a specific targeting agent to any of those frequent gene mutations is lacking. Emerging areas of targeted therapies include the DNA repair, stroma, metabolism, and stem cells. Immunotherapy with either vaccines or immune checkpoint inhibitors has not produced any significant improvements in outcome of PDAC. Incorporating different approaches in therapy, including conventional, immunological, and others, is key in offering patients with the best possible care.
Collapse
Affiliation(s)
- Maria Diab
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Asfar Azmi
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Ramzi Mohammad
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA
| | - Philip A Philip
- a Department of Oncology, Karmanos Cancer institute , Wayne State University , Detroit , MI , USA.,b Department of Pharmacology, School of Medicine , Wayne State University , Detroit , MI , USA
| |
Collapse
|
5
|
The inhibitory effect of Isoliquiritigenin on the proliferation of human arterial smooth muscle cell. BMC Pharmacol Toxicol 2017; 18:57. [PMID: 28716056 PMCID: PMC5512881 DOI: 10.1186/s40360-017-0165-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 07/09/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Isoliquiritigenin (ISL) has various biological activities including as antioxidant and an inhibitor of PI3K/AKT signaling pathway. However, both oxidative stress and activated PI3K/AKT signaling contribute to the aberrant proliferation of vascular smooth muscle cells (VSMCs). This study is aimed to explore the effect of ISL on the proliferation of human arterial smooth muscle cells (HASMCs) and to investigate the underlying mechanisms. METHODS BrdU incorporation, cell cycle and reactive oxygen species (ROS) in normal or ISL treated HASMCs were analyzed by flow cytometry. Cell viablity was measured by CCK-8. Protein expression levels were examined by Western blot, and superoxide dismutase (SOD) activity was detected by using commercial kit. RESULTS We observed that ISL could inhibit the proliferation of HASMCs in a dose and time dependent manner. Cell cycle of ISL treated HASMCs arrested mainly in G1/S phase and accompanied with elevated expression of p27 and decreased expression of CyclinD1 and CyclinE. In addition, ISL could down-regulated the expression of p-PI3K and p-AKT, alleviated oxidative stress and enhanced the SOD activity in HASMCs. Furthermore, H2O2 treatment partly improved cell viability and up regulated p-PI3K and p-AKT in HASMCs. CONCLUSIONS Therefore, we concluded that ISL inhibited the proliferation of HASMCs via attenuating oxidative stress and suppressing PI3K/AKT signaling pathway. The inhibitory effect of ISL on PI3K/AKT signaling pathway, at least partly, was mediated by ROS.
Collapse
|
6
|
Zhang L, Fang Y, Xu XF, Jin DY. Moscatilin induces apoptosis of pancreatic cancer cells via reactive oxygen species and the JNK/SAPK pathway. Mol Med Rep 2017; 15:1195-1203. [PMID: 28138710 PMCID: PMC5367346 DOI: 10.3892/mmr.2017.6144] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 10/24/2016] [Indexed: 01/01/2023] Open
Abstract
Moscatilin is a bibenzyl derivative extracted from the Dendrobium aurantiacum var. denneanum, which has traditionally been used as an immunomodulatory treatment in China. The present study was designed to determine whether moscatilin is a pro‑apoptotic agent in pancreatic cancer, and to elucidate the underlying mechanisms. The apoptotic and anti‑proliferative effects of moscatilin on pancreatic cancer cells were determined in vitro using biochemical assays, such as the MTT assay, colony formation assay, Hoechst staining and DNA fragmentation assay, and in vivo using Panc‑1 pancreatic cancer xenografts. Western blotting was also conducted to evaluate the expression levels of B‑cell lymphoma 2 (Bcl2), Bcl2‑associated X protein (Bax), Bcl2 homologous antagonist killer (Bak), caspase 3, cleaved‑caspase 3, poly (ADP‑ribose) polymerase, p‑c‑Jun N‑terminal kinase (JNK)/stress‑activated protein kinases (SAPK) and JNK/SAPK in response to moscatilin. We used DCFH‑DA to detect the production of reactive oxygen species (ROS) induced by moscatilin. The present study demonstrated that moscatilin markedly inhibited pancreatic cancer cell viability and induced cell apoptosis in a concentration‑dependent manner. Conversely, moscatilin did not affect the cell viability of human umbilical vein endothelial cells at the comparable dosage. Treatment with moscatilin suppressed clonogenicity of Panc‑1 cells in a concentration‑dependent manner. Furthermore, a decrease in Bcl2 expression, and an increase in the expression levels of Bak and Bax, was detected following treatment with moscatilin, resulting in an increase in the proapoptotic/anti‑apoptotic expression ratio (Bax/Bcl2) in Panc‑1 cells. Moscatilin also induced activation of the caspase‑dependent mitochondrial apoptotic pathway. In addition, moscatilin enhanced cellular ROS production and induced activation of JNKSAPK signaling pathway. Conversely, pretreatment with the ROS scavenger N‑acetylcysteine or the JNK/SAPK‑specific inhibitor SP600125 prevented moscatilin‑mediated reductions in cell viability. Furthermore, moscatilin inhibited tumor growth in nude mice bearing Panc‑1 cells, without apparent toxicity. In conclusion, these results demonstrated that moscatilin may induce pancreatic cell apoptosis, and therefore may be considered a potential therapeutic agent for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 200232, P.R. China
| | - Yuan Fang
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 200232, P.R. China
| | - Xue-Feng Xu
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 200232, P.R. China
| | - Da-Yong Jin
- Pancreatic Cancer Group, General Surgery Department, Zhongshan Hospital, Fudan University, Shanghai 200232, P.R. China
| |
Collapse
|
7
|
Takano H, Nakamura T, Tsuchikawa T, Kushibiki T, Hontani K, Inoko K, Takahashi M, Sato S, Abe H, Takeuchi S, Sato N, Hiraoka K, Nishihara H, Shichinohe T, Hirano S. Inhibition of Eph receptor A4 by 2,5-dimethylpyrrolyl benzoic acid suppresses human pancreatic cancer growing orthotopically in nude mice. Oncotarget 2016; 6:41063-76. [PMID: 26516928 PMCID: PMC4747390 DOI: 10.18632/oncotarget.5729] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/20/2015] [Indexed: 12/20/2022] Open
Abstract
Ephrin receptor A4 (EphA4) is overexpressed in human pancreatic adenocarcinoma (PDAC) and activate cell growth. Recent studies have identified small molecules that block EphA4. In this study, we investigated the correlation between EphA4 expression and the prognosis of patients with PDAC. We also examined the cytostatic efficacy of 2,5-dimethylpyrrolyl benzoic acid (compound 1), a small molecule that blocks EphA4, in PDAC cells. Overall survival of patients with EphA4 positivity was significantly shorter than that of patients with EphA4 negativity (P = 0.029). In addition, multivariate analysis revealed that EphA4 expression was an independent prognostic factor in PDAC patients (P = 0.039). Compound 1 showed a cytostatic efficacy in PDAC cells expressing EphA4 in vitro and in vivo. Our study indicated that compound 1 suppressed both EphA4 and Akt phosphorylations, and induced apoptosis in PDAC cells expressing EphA4. In conclusion,compound 1 has a high potential as a therapeutic agent for patients with PDAC.
Collapse
Affiliation(s)
- Hironobu Takano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toru Nakamura
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Takahiro Tsuchikawa
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toshihiro Kushibiki
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kouji Hontani
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kazuho Inoko
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Mizuna Takahashi
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shoki Sato
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hirotake Abe
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Shintaro Takeuchi
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Nagato Sato
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kei Hiraoka
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hiroshi Nishihara
- Department of Translational Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Toshiaki Shichinohe
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Satoshi Hirano
- Department of Gastroenterological Surgery II, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
8
|
Wittenberg AD, Azar S, Klochendler A, Stolovich-Rain M, Avraham S, Birnbaum L, Binder Gallimidi A, Katz M, Dor Y, Meyuhas O. Phosphorylated Ribosomal Protein S6 Is Required for Akt-Driven Hyperplasia and Malignant Transformation, but Not for Hypertrophy, Aneuploidy and Hyperfunction of Pancreatic β-Cells. PLoS One 2016; 11:e0149995. [PMID: 26919188 PMCID: PMC4769037 DOI: 10.1371/journal.pone.0149995] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/08/2016] [Indexed: 12/31/2022] Open
Abstract
Constitutive expression of active Akt (Akttg) drives hyperplasia and hypertrophy of pancreatic β-cells, concomitantly with increased insulin secretion and improved glucose tolerance, and at a later stage the development of insulinoma. To determine which functions of Akt are mediated by ribosomal protein S6 (rpS6), an Akt effector, we generated mice that express constitutive Akt in β-cells in the background of unphosphorylatable ribosomal protein S6 (rpS6P-/-). rpS6 phosphorylation deficiency failed to block Akttg-induced hypertrophy and aneuploidy in β-cells, as well as the improved glucose homeostasis, indicating that Akt carries out these functions independently of rpS6 phosphorylation. In contrast, rpS6 phosphorylation deficiency efficiently restrained the reduction in nuclear localization of the cell cycle inhibitor p27, as well as the development of Akttg-driven hyperplasia and tumor formation in β-cells. In vitro experiments with Akttg and rpS6P-/-;Akttg fibroblasts demonstrated that rpS6 phosphorylation deficiency leads to reduced translation fidelity, which might underlie its anti-tumorigenic effect in the pancreas. However, the role of translation infidelity in tumor suppression cannot simply be inferred from this heterologous experimental model, as rpS6 phosphorylation deficiency unexpectedly elevated the resistance of Akttg fibroblasts to proteotoxic, genotoxic as well as autophagic stresses. In contrast, rpS6P-/- fibroblasts exhibited a higher sensitivity to these stresses upon constitutive expression of oncogenic Kras. The latter result provides a possible mechanistic explanation for the ability of rpS6 phosphorylation deficiency to enhance DNA damage and protect mice from Kras-induced neoplastic transformation in the exocrine pancreas. We propose that Akt1 and Kras exert their oncogenic properties through distinct mechanisms, even though both show addiction to rpS6 phosphorylation.
Collapse
Affiliation(s)
- Avigail Dreazen Wittenberg
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shahar Azar
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Miri Stolovich-Rain
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shlomit Avraham
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Lea Birnbaum
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Adi Binder Gallimidi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maximiliano Katz
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
9
|
Birtolo C, Go VLW, Ptasznik A, Eibl G, Pandol SJ. Phosphatidylinositol 3-Kinase: A Link Between Inflammation and Pancreatic Cancer. Pancreas 2016; 45:21-31. [PMID: 26658038 PMCID: PMC4859755 DOI: 10.1097/mpa.0000000000000531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Even though a strong association between inflammation and cancer has been widely accepted, the underlying precise molecular mechanisms are still largely unknown. A complex signaling network between tumor and stromal cells is responsible for the infiltration of inflammatory cells into the cancer microenvironment. Tumor stromal cells such as pancreatic stellate cells (PSCs) and immune cells create a microenvironment that protects cancer cells through a complex interaction, ultimately facilitating their local proliferation and their migration to different sites. Furthermore, PSCs have multiple functions related to local immunity, angiogenesis, inflammation, and fibrosis. Recently, many studies have shown that members of the phosphoinositol-3-phosphate kinase (PI3K) family are activated in tumor cells, PSCs, and tumor-infiltrating inflammatory cells to promote cancer growth. Proinflammatory cytokines and chemokines secreted by immune cells and fibroblasts within the tumor environment can activate the PI3K pathway both in cancer and inflammatory cells. In this review, we focus on the central role of the PI3K pathway in regulating the cross talk between immune/stromal cells and cancer cells. Understanding the role of the PI3K pathway in the development of chronic pancreatitis and cancer is crucial for the discovery of novel and efficacious treatment options.
Collapse
Affiliation(s)
- Chiara Birtolo
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA,Department of Internal Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Italy
| | - Vay Liang W. Go
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrzej Ptasznik
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Stephen J. Pandol
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA,VA Greater Los Angeles Health Care System, Los Angeles, CA
| |
Collapse
|
10
|
Baer R, Cintas C, Therville N, Guillermet-Guibert J. Implication of PI3K/Akt pathway in pancreatic cancer: When PI3K isoforms matter? Adv Biol Regul 2015; 59:19-35. [PMID: 26166735 DOI: 10.1016/j.jbior.2015.05.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Pancreatic cancer belongs to the incurable family of solid cancers. Despite of a recent better understanding its molecular biology, and an increased number of clinical trials, there is still a lack for innovative targeted therapies to fight this deadly malignancy. PI3K/Akt signalling is one of the most commonly deregulated signalling pathways in cancer, which explains the massive attention from many pharmaceutical companies over the ten past years on these signalling molecules. The already developed small molecule inhibitors are currently under clinical trial in various cancer types. Class I PI3Ks have 4 isoforms for which the role in physiology starts to be well described in the literature. Data are more unclear for their differential involvement in oncogenesis. In this review, we will discuss about the cognitive and therapeutic potential of targeting this signalling pathway and in particular Class I PI3K isoforms for pancreatic cancer treatment. Isoform-specificity of PI3K inhibitors are currently designed to achieve the same goal as pan-PI3K inhibitors but without potential adverse effects. We will discuss if such strategy is relevant in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Romain Baer
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Célia Cintas
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Nicole Therville
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France
| | - Julie Guillermet-Guibert
- Inserm, U1037, Université Toulouse III, Centre de Recherches en Cancérologie de Toulouse, Oncopole de Toulouse, F31037, Toulouse, France.
| |
Collapse
|
11
|
Abstract
Pancreatic cancer is an insidious type of cancer with its symptoms manifested upon extensive disease. The overall 5-year survival rates between 0.4 and 4%. Surgical resection is an option for only 10% of the patients with pancreatic cancer. Local recurrence and hepatic metastases occur within 2 years after surgery. There are currently several molecular pathways investigated and novel targeted treatments are on the market. However; the nature of pancreatic cancer with its ability to spread locally in the primary site and lymph nodes indicates that further experimentation with local interventional therapies could be a future treatment proposal as palliative care or adjunct to gene therapy and chemotherapy/radiotherapy. In the current review, we will summarize the molecular pathways and present the interventional treatment options for pancreatic cancer.
Collapse
|
12
|
Khan S, Chauhan N, Yallapu MM, Ebeling MC, Balakrishna S, Ellis RT, Thompson PA, Balabathula P, Behrman SW, Zafar N, Singh MM, Halaweish FT, Jaggi M, Chauhan SC. Nanoparticle formulation of ormeloxifene for pancreatic cancer. Biomaterials 2015; 53:731-43. [PMID: 25890768 DOI: 10.1016/j.biomaterials.2015.02.082] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/17/2015] [Accepted: 02/19/2015] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is the fourth most prevalent cancer with about an 85% mortality rate; thus, an utmost need exists to discover new therapeutic modalities that would enhance therapy outcomes of this disease with minimal or no side effects. Ormeloxifene (ORM), a synthetic molecule, has exhibited potent anti-cancer effects through inhibition of important oncogenic and proliferation signaling pathways. However, the anti-cancer efficacy of ORM can be further improved by developing its nanoformulation, which will also offer tumor specific targeted delivery. Therefore, we have developed a novel ORM encapsulated poly(lactic-co-glycolic acid) nanoparticle (NP) formulation (PLGA-ORM NP). This formulation was characterized for particle size, chemical composition, and drug loading efficiency, using various physico-chemical methods (TEM, FT-IR, DSC, TGA, and HPLC). Because of its facile composition, this novel formulation is compatible with antibody/aptamer conjugation to achieve tumor specific targeting. The particle size analysis of this PLGA-ORM formulation (∼100 nm) indicates that this formulation can preferentially reach and accumulate in tumors by the Enhanced Permeability and Retention (EPR) effect. Cellular uptake and internalization studies demonstrate that PLGA-ORM NPs escape lysosomal degradation, providing efficient endosomal release to cytosol. PLGA-ORM NPs showed remarkable anti-cancer potential in various pancreatic cancer cells (HPAF-II, AsPC-1, BxPC-3, Panc-1, and MiaPaca) and a BxPC-3 xenograft mice model resulting in increased animal survival. PLGA-ORM NPs suppressed pancreatic tumor growth via suppression of Akt phosphorylation and expression of MUC1, HER2, PCNA, CK19 and CD31. This study suggests that the PLGA-ORM formulation is highly efficient for the inhibition of pancreatic tumor growth and thus can be valuable for the treatment of pancreatic cancer in the future.
Collapse
Affiliation(s)
- Sheema Khan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Neeraj Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Murali M Yallapu
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mara C Ebeling
- Cancer Biology Research Center, Sanford Research/USD, Sioux Falls, SD, USA
| | - Swathi Balakrishna
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robert T Ellis
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Paul A Thompson
- Methodology and Data Analysis Center, Sanford Research, Sioux Falls, SD, USA
| | - Pavan Balabathula
- Department of Pharmaceutical Sciences and Plough Center for Sterile Drug Delivery Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stephen W Behrman
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Nadeem Zafar
- Department of Pathology, University of Tennessee at Memphis, Memphis, TN, USA
| | - Man M Singh
- Saraswati Dental College, Lucknow, Uttar Pradesh, India
| | - Fathi T Halaweish
- Department of Chemistry & Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Meena Jaggi
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Subhash C Chauhan
- Department of Pharmaceutical Sciences and Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Johnson B, Mahadevan D. Emerging Role and Targeting of Carcinoembryonic Antigen-related Cell Adhesion Molecule 6 (CEACAM6) in Human Malignancies. CLINICAL CANCER DRUGS 2015; 2:100-111. [PMID: 27595061 PMCID: PMC4997943 DOI: 10.2174/2212697x02666150602215823] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 04/30/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) is a member of the CEA family of cell adhesion proteins that belong to the immunoglobulin superfamily. CEACAM6 is normally expressed on the surface of myeloid (CD66c) and epithelial surfaces. Stiochiomertic expression of members of the CEA family (CEACAM1, 5, 6, 7) on epithelia maintains normal tissue architecture through homo-and hetero-philic interactions. Dysregulated over-expression of CEACAM6 is oncogenic, is associated with anoikis resistance and an invasive phenotype mediated by excessive TGFβ, AKT, FAK and SRC signaling in human malignancies. METHODS Extensive literature review through PubMed was conducted to identify relevant preclinical and clinical research publications regarding CEACAM6 over the last decade and was summarized in this manuscript. RESULTS CEACAM5 and 6 are over-expressed in nearly 70% of epithelial malignancies including colorectal cancer (CRC), pancreatic ductal adenocarcinoma (PDA), hepatobiliary, gastric, breast, non-small cell lung and head/neck cancers. Importantly, CEACAM6 is a poor prognostic marker in CRC, while its expression correlates with tumor stage, metastasis and post-operative survival in PDA. CEACAM6 appears to be an immune checkpoint suppressor in hematologic malignancies including acute lymphoblastic leukemia and multiple myeloma. Several therapeutic monoclonal antibodies or antibody fragments targeting CEACAM6 have been designed and developed as a targeted therapy for human malignancies. A Llama antibody targeting CEACAM6 is being evaluated in early phase clinical trials. CONCLUSION This review focuses on the role of CEACAM6 in the pathogenesis and signaling of the malignant phenotype in solid and hematologic malignancies and highlights its potential as a therapeutic target for anti-cancer therapy.
Collapse
Affiliation(s)
- Benny Johnson
- The University of Tennessee Health Science Center & West Cancer Center, Memphis, TN,USA
| | - Daruka Mahadevan
- The University of Tennessee Health Science Center & West Cancer Center, Memphis, TN,USA
| |
Collapse
|
14
|
Chronic alcohol exposure exacerbates inflammation and triggers pancreatic acinar-to-ductal metaplasia through PI3K/Akt/IKK. Int J Mol Med 2014; 35:653-63. [PMID: 25573338 PMCID: PMC4314411 DOI: 10.3892/ijmm.2014.2055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/20/2014] [Indexed: 01/06/2023] Open
Abstract
Pancreatic acinar-to-ductal metaplasia (ADM) has been identified as an initiating event that can progress to pancreatic intraepithelial neoplasia (PanIN) or pancreatic ductal adenocarcinoma (PDAC). Acini transdifferentiation can be induced by persistent inflammation. Notably, compelling evidence has emerged that chronic alcohol exposure may trigger an inflammatory response of macrophages/monocytes stimulated by endotoxins. In the present study, we aimed to evaluate the role of inflammation induced by chronic alcohol and lipopolysaccharide (LPS) exposure in the progression of pancreatic ADM, as well as to elucidate the possible mechanisms involved. For this purpose, cultured macrophages were exposed to varying doses of alcohol for 1 week prior to stimulation with LPS. Tumor necrosis factor-α (TNF-α) and regulated upon activation, normal T cell expression and secreted (RANTES) expression were upregulated in the intoxicated macrophages with activated nuclear factor-κB (NF-κB). Following treatment with the supernatant of intoxicated macrophages, ADM of primary acinar cells was induced. Furthermore, the expression of TNF-α and RANTES, as well as the phosphatidylinositol-3-kinase (PI3K)/protein kinase B(Akt)/inhibitory κB kinase (IKK) signaling pathway have been proven to be involved in the ADM of acinar cells. Moreover, Sprague-Dawley (SD) rats were employed to further explore the induction of pancreatic ADM by chronic alcohol and LPS exposure in vivo. At the end of the treatment period, a number of physiological parameters, such as body weight, liver weight and pancreatic weight were reduced in the exposed rats. Plasma alcohol concentrations and oxidative stress levels in the serum, as well as TNF-α and RANTES expression in monocytes were also induced following chronic alcohol and LPS exposure. In addition, pancreatic ADM was induced through the PI3K/Akt/IKK signaling pathway by the augmented TNF-α and RANTES expression levels in the exposed rats. Overall, we characterized the link between inflammation induced by chronic alcohol and LPS exposure and pancreatic ADM. However, the mechanisms behind the induction of pancreatic ADM warrant further investigation.
Collapse
|
15
|
Prasad SB, Yadav SS, Das M, Govardhan HB, Pandey LK, Singh S, Pradhan S, Narayan G. Down Regulation of FOXO1 Promotes Cell Proliferation in Cervical Cancer. J Cancer 2014; 5:655-62. [PMID: 25157276 PMCID: PMC4142327 DOI: 10.7150/jca.6554] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/09/2013] [Indexed: 01/17/2023] Open
Abstract
The Forkhead transcription factor FOXO1, an important downstream target of phosphatidylinositol-3-kinase (PI3K)/AKT signaling pathway, regulates cellular homeostasis by maintaining cell proliferation, apoptosis and viability in normal cells. Though, the function and regulation of FOXO1 is well documented in many cancers, the molecular mechanism of its regulation in cervical cancer is largely unknown. In the present study we have investigated the role of PI3K inhibition on FOXO1 regulation. Expression profiling of primary tumors and cell lines show over expression of PIK3CA and AKT1; and down regulation of FOXO1. Lack of FOXO1 promoter methylation and inability of hypomethylating drug 5-Aza-2'-deoxycytidine and HDAC inhibitor trichostatin A to reactivate FOXO1 expression suggest that loss of FOXO1 expression is due to mechanisms other than promoter methylation/acetylation. Inhibition of PI3K by LY294002 decreased the level of p-AKT1 and activated FOXO1 transcription factor. We demonstrate that activation of FOXO1 induces apoptosis, cell proliferation arrest, and decreased cell viability in cervical cancer cell lines. Our data suggest that frequent down regulation of FOXO1 and its functional inactivation may be due to post-translational modifications in cervical cancer. Together, these observations suggest that activation of FOXO1 and its nuclear sequestration is critical in the regulation of cell proliferation, cell viability and apoptosis in cervical cancer. Hence, PI3K/AKT pathway may be a potential molecular target for cervical cancer therapy.
Collapse
Affiliation(s)
- Shyam Babu Prasad
- 1. Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi-221 005, India
| | - Suresh Singh Yadav
- 1. Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi-221 005, India
| | - Mitali Das
- 1. Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi-221 005, India
| | - H B Govardhan
- 2. Department of Radiotherapy and Radiation Medicine, Banaras Hindu University, Varanasi-221 005, India
| | - Lakshmi Kant Pandey
- 3. Department of Obstetrics and Gynaecology, Banaras Hindu University, Varanasi-221 005, India
| | - Sunita Singh
- 4. Department of Zoology, Mahila Mahavidyalaya; Banaras Hindu University, Varanasi-221 005, India
| | - Satyajit Pradhan
- 2. Department of Radiotherapy and Radiation Medicine, Banaras Hindu University, Varanasi-221 005, India
| | - Gopeshwar Narayan
- 1. Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi-221 005, India
| |
Collapse
|
16
|
Ryu YL, Jung KH, Son MK, Yan HH, Kim SJ, Shin S, Hong S, Hong SS. Anticancer activity of HS-527, a novel inhibitor targeting PI3-kinase in human pancreatic cancer cells. Cancer Lett 2014; 353:68-77. [PMID: 25016056 DOI: 10.1016/j.canlet.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is known to have low 5-year survival rate and poor response to treatment. In this study, we synthesized HS-527, a new PI3-kinase inhibitor, and investigated not only its anticancer activity, but also its mechanism of action in pancreatic cancer cells. HS-527 had higher specificity for PI3K than other kinases and inhibited PI3K/Akt signaling pathway by down-regulating Akt and P70S6K. And HS-527 inhibited the cell growth and proliferation of the pancreatic cancer in a time- and dose-dependent manner, with greater activity than gemcitabine. Even HS-527 showed lower cytotoxicity than gemcitabine in normal cells. When treated with HS-527, the cancer cells appeared apoptotic, increasing the expression of cleaved PARP, cleaved caspase-3, and Bax. Furthermore, HS-527 showed an anti-angiogenic activity by decreasing the expression of HIF-1α and VEGF, and inhibited the migration of endothelial cells, and the formation of new blood vessel in mouse Matrigel plug assay. In this study, we found that HS-527 showed anti-cancer activity through an inhibition of the PI3K/Akt pathway in pancreatic cancer cells, suggesting that HS-527 could be used as a promising therapeutic agent for pancreatic cancer.
Collapse
Affiliation(s)
- Ye-Lim Ryu
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Kyung Hee Jung
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Mi Kwon Son
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Hong Hua Yan
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Soo Jung Kim
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea
| | - Sanghye Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| | - Soon-Sun Hong
- Department of Drug Development, College of Medicine, Inha University, 3-ga, Sinheung-dong, Jung-gu, Incheon 400-712, Republic of Korea.
| |
Collapse
|
17
|
Qi T, Zhang W, Luan Y, Kong F, Xu D, Cheng G, Wang Y. Proteomic profiling identified multiple short-lived members of the central proteome as the direct targets of the addicted oncogenes in cancer cells. Mol Cell Proteomics 2013; 13:49-62. [PMID: 24105791 DOI: 10.1074/mcp.m113.027813] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Oncogene addiction" is an unexplained phenomenon in the area of cancer targeted therapy. In this study, we have tested a hypothesis that rapid apoptotic response of cancer cells following acute inhibition of the addicted oncogenes is because of loss of multiple short-lived proteins whose activity normally maintain cell survival by blocking caspase activation directly or indirectly. It was shown that rapid apoptotic response or acute apoptosis could be induced in both A431 and MiaPaCa-2 cells, and quick down-regulation of 17 proteins, which were all members of the central proteome of human cells, was found to be associated with the onset of acute apoptosis. Knockdown of PSMD11 could partially promote the occurrence of acute apoptosis in both MiaPaCa-2 and PANC-1 pancreatic cancer cells. These findings indicate that maintaining the stability of central proteome may be a primary mechanism for addicted oncogenes to maintain the survival of cancer cells through various signaling pathways, and quick loss of some of the short-lived members of the central proteome may be the direct reason for the rapid apoptotic response or acute apoptosis following acute inhibition of the addicted oncogenes in cancer cells. These findings we have presented can help us better understand the phenomenon of oncogene-addiction and may have important implications for the targeted therapy of cancer.
Collapse
Affiliation(s)
- Tonggang Qi
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | | | | | | | | | | | | |
Collapse
|
18
|
The role of epidermal growth factor receptor in cancer metastasis and microenvironment. BIOMED RESEARCH INTERNATIONAL 2013; 2013:546318. [PMID: 23986907 PMCID: PMC3748428 DOI: 10.1155/2013/546318] [Citation(s) in RCA: 201] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/25/2013] [Indexed: 02/06/2023]
Abstract
Despite significant improvements in diagnosis, surgical techniques, and advancements in general patient care, the majority of deaths from cancer are caused by the metastases. There is an urgent need for an improved understanding of the cellular and molecular factors that promote cancer metastasis. The process of cancer metastasis depends on multiple interactions between cancer cells and host cells. Studies investigating the TGF α-EGFR signaling pathways that promote the growth and spread of cancer cells. Moreover, the signaling activates not only tumor cells, but also tumor-associated endothelial cells. TGF α-EGFR signaling in colon cancer cells creates a microenvironment that is conducive for metastasis, providing a rationale for efforts to inhibit EGFR signaling in TGF α-positive cancers. In this review, we describe the recent advances in our understanding of the molecular basis of cancer metastasis.
Collapse
|
19
|
Aravindan S, Delma CR, Thirugnanasambandan SS, Herman TS, Aravindan N. Anti-pancreatic cancer deliverables from sea: first-hand evidence on the efficacy, molecular targets and mode of action for multifarious polyphenols from five different brown-algae. PLoS One 2013; 8:e61977. [PMID: 23613993 PMCID: PMC3628576 DOI: 10.1371/journal.pone.0061977] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/15/2013] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer (PC) remains the fourth leading cause of cancer death with an unacceptable survival that has remained relatively unchanged over the past 25 years. The presence of occult or clinical metastases at the time of diagnosis together with the lack of effective chemotherapies pose a dire need for designing new and targeted therapeutic deliverables that favors the clinical outcome. Herein, we investigated the anti-tumorigenic potential of polyphenols from five different brown-algae in human PC cells (MiaPaCa-2, Panc-1, BXPC-3 and Panc-3.27). Total anti-oxidant capacity (TAC) analysis on stepwise polyphenol separations with increasing polarity (Hexane-DCM-EA-methanol) identified high levels of TAC in DCM and EA extractions across all seaweeds assessed. All DCM and EA separated polyphenols induced a dose-dependent and sustained (time-independent) inhibition of cell proliferation and viability. Further, these polyphenols profoundly enhanced DNA damage (acridine orange/Ethidium bromide staining and DNA fragmentation) in all the cell lines investigated. More importantly, luciferase reporter assay revealed a significant inhibition of NFκB transcription in cells treated with polyphenols. Interestingly, QPCR analysis identified a differential yet definite regulation of pro-tumorigenic EGFR, VEGFA, AKT, hTERT, kRas, Bcl2, FGFα and PDGFα transcription in cells treated with DCM and EA polyphenols. Immunoblotting validates the inhibitory potential of seaweed polyphenols in EGFR phosphorylation, kRas, AurKβ and Stat3. Together, these data suggest that intermediate polarity based fractions of seaweed polyphenols may significantly potentiate tumor cell killing and may serve as potential drug deliverable for PC cure. More Studies dissecting out the active constituents in potent fractions, mechanisms of action and synergism, if any, are warranted and are currently in process.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, India
| | - Caroline R. Delma
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Marine Sciences, Center of Advanced Study in Marine Biology, Annamalai University, Parangipettai, India
| | | | - Terence S. Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
20
|
Li J, Liang X, Yang X. Ursolic acid inhibits growth and induces apoptosis in gemcitabine-resistant human pancreatic cancer via the JNK and PI3K/Akt/NF-κB pathways. Oncol Rep 2012; 28:501-10. [PMID: 22641480 DOI: 10.3892/or.2012.1827] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/30/2012] [Indexed: 11/06/2022] Open
Abstract
Pancreatic cancer is one of the most deadly carcinomas worldwide. Although gemcitabine as the standard chemotherapy agent has been proven to be effective, the response rate remains at 5.4% and the 5-year survival rate is extremely poor. Ursolic acid (UA) is a small molecule compound extracted from Chinese herbs as well as edible vegetables and a well-known anti-inflammatory and immunosuppressive agent. Here, we show that UA has potential to be developed into an anti-neoplastic agent against gemcitabine-resistant pancreatic cancer and to explore its molecular mechanism of action. In vitro, we used three different malignancy grades of pancreatic resistant cancer cell lines including MIA PaCa-2, PANC-1 and Capan-1 to assess the antitumor effect of UA. We found that UA inhibited growth and induced apoptosis in a dose-dependent manner in all of the three pancreatic cancer cell lines. Both extrinsic and intrinsic pathways were found to be involved in apoptotic cascade. The potential signaling pathways are concerned with inactivation of the PI3K/Akt/NF-κB pathway and activation of the c-Jun-terminal kinase (JNK) pathway. The JNK inhibitor SP600125 partly abrogated the caspase-9 activation caused by UA. The Akt inhibitor LY294002 did not mimic the effect of UA on caspase-8 and -9, but inhibited the viability of MIA PaCa-2 cells to some extent. Equally, UA also overcame the chemoresistance in the chemoresistant endometrial and ovarian carcinoma cell lines (HEC-1A and OVCAR-3). Moreover, UA caused cytotoxicity to a nude mouse xenograft model in vivo. Therefore, our present data suggest that UA can act as a novel and potent therapeutic agent in gemcitabine-resistant pancreatic cancer and even as a promising candidate in other chemoresistant cancers.
Collapse
Affiliation(s)
- Jingjie Li
- Center of Reproductive Medicine, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, PR China
| | | | | |
Collapse
|
21
|
Leake K, Singhal J, Nagaprashantha LD, Awasthi S, Singhal SS. RLIP76 regulates PI3K/Akt signaling and chemo-radiotherapy resistance in pancreatic cancer. PLoS One 2012; 7:e34582. [PMID: 22509328 PMCID: PMC3317991 DOI: 10.1371/journal.pone.0034582] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022] Open
Abstract
Purpose Pancreatic cancer is an aggressive malignancy with characteristic metastatic course of disease and resistance to conventional chemo-radiotherapy. RLIP76 is a multi-functional cell membrane protein that functions as a major mercapturic acid pathway transporter as well as key regulator of receptor-ligand complexes. In this regard, we investigated the significance of targeting RLIP76 on PI3K/Akt pathway and mechanisms regulating response to chemo-radiotherapy. Research Design and Methods Cell survival was assessed by MTT and colony forming assays. Cellular levels of proteins and phosphorylation was determined by Western blot analyses. The impact on apoptosis was determined by TUNEL assay. The anti-cancer effects of RLIP76 targeted interventions in vivo were determined using mice xenograft model of the pancreatic cancer. The regulation of doxorubicin transport and radiation sensitivity were determined by transport studies and colony forming assays, respectively. Results Our current studies reveal an encompassing model for the role of RLIP76 in regulating the levels of fundamental proteins like PI3K, Akt, E-cadherin, CDK4, Bcl2 and PCNA which are of specific importance in the signal transduction from critical upstream signaling cascades that determine the proliferation, apoptosis and differentiation of pancreatic cancer cells. RLIP76 depletion also caused marked and sustained regression of established human BxPC-3 pancreatic cancer tumors in nude mouse xenograft model. RLIP76 turned out to be a major regulator of drug transport along with contributing to the radiation resistance in pancreatic cancer. Conclusions/Significance RLIP76 represents a mechanistically significant target for developing effective interventions in aggressive and refractory pancreatic cancers.
Collapse
Affiliation(s)
- Kathryn Leake
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Jyotsana Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Lokesh Dalasanur Nagaprashantha
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sanjay Awasthi
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
| | - Sharad S. Singhal
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope, Comprehensive Cancer Center, Duarte, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
The dual PI3K/mTOR inhibitor NVP-BGT226 induces cell cycle arrest and regulates Survivin gene expression in human pancreatic cancer cell lines. Tumour Biol 2011; 33:757-65. [DOI: 10.1007/s13277-011-0290-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022] Open
|
23
|
Matthaios D, Zarogoulidis P, Balgouranidou I, Chatzaki E, Kakolyris S. Molecular pathogenesis of pancreatic cancer and clinical perspectives. Oncology 2011; 81:259-72. [PMID: 22116519 DOI: 10.1159/000334449] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 10/10/2011] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer remains stubbornly resistant to many key cytotoxic chemotherapeutic agents and novel targeted therapies. The molecular heterogeneity of this cancer may account for therapy failures to date, although our growing arsenal of novel targeted agents could translate into patient survival. The main objectives of this review are to elucidate histological subtypes of pancreatic neoplasms that exhibit the characteristic of a gradual process of differentiation from benign entities to malignant ones. In addition, important genes, molecular abnormalities, and significant pathways of pancreatic cancer are analyzed and a potential clinical interpretation is presented (p16/cdkn2a, k-ras mutations, smad-4/tgf-/stat3, stk-11, braf, brca-2, neurotensin, mucs proteins, palb2, mitochondrial mutations, DNA mismatch repair genes, methylation, microrna expression, epithelial-to-mesenchymal transition, egfr mutations, the pi3k-akt-mtor pathway, the vegf pathway, heat shock proteins, cxcr4, the cox pathway, the src pathway, the hedgehog pathway, pancreatic stellate cells, a progression model, and molecular events in uncommon pancreatic tumors). Finally, future therapeutic directions are elucidated.
Collapse
Affiliation(s)
- D Matthaios
- Department of Medical Oncology, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | |
Collapse
|
24
|
Balic A, Dorado J, Alonso-Gómez M, Heeschen C. Stem cells as the root of pancreatic ductal adenocarcinoma. Exp Cell Res 2011; 318:691-704. [PMID: 22119145 DOI: 10.1016/j.yexcr.2011.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 11/05/2011] [Accepted: 11/08/2011] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that stem cells play a crucial role not only in the generation and maintenance of different tissues, but also in the development and progression of malignancies. For the many solid cancers, it has now been shown that they harbor a distinct subpopulation of cancer cells that bear stem cell features and therefore, these cells are termed cancer stem cells (CSC) or tumor-propagating cells. CSC are exclusively tumorigenic and essential drivers for tumor progression and metastasis. Moreover, it has been shown that pancreatic ductal adenocarcinoma does not only contain one homogeneous population of CSC rather than diverse subpopulations that may have evolved during tumor progression. One of these populations is called migrating CSC and can be characterized by CXCR4 co-expression. Only these cells are capable of evading the primary tumor and traveling to distant sites such as the liver as the preferred site of metastatic spread. Clinically even more important, however, is the observation that CSC are highly resistant to chemo- and radiotherapy resulting in their relative enrichment during treatment and rapid relapse of disease. Many laboratories are now working on the further in-depth characterization of these cells, which may eventually allow for the identification of their Achilles heal and lead to novel treatment modalities for fighting this deadly disease.
Collapse
Affiliation(s)
- Anamaria Balic
- Clinical Research Programme, Stem Cells & Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | |
Collapse
|
25
|
Shin-Kang S, Ramsauer VP, Lightner J, Chakraborty K, Stone W, Campbell S, Reddy SAG, Krishnan K. Tocotrienols inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by suppressing the ErbB2 pathway. Free Radic Biol Med 2011; 51:1164-74. [PMID: 21723941 DOI: 10.1016/j.freeradbiomed.2011.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 05/18/2011] [Accepted: 06/05/2011] [Indexed: 12/21/2022]
Abstract
Tocotrienols are members of the vitamin E family but, unlike tocopherols, possess an unsaturated isoprenoid side chain that confers superior anti-cancer properties. The ability of tocotrienols to selectively inhibit the HMG-CoA reductase pathway through posttranslational degradation and to suppress the activity of transcription factor NF-κB could be the basis for some of these properties. Our studies indicate that γ- and δ-tocotrienols have potent antiproliferative activity in pancreatic cancer cells (Panc-28, MIA PaCa-2, Panc-1, and BxPC-3). Indeed both tocotrienols induced cell death (>50%) by the MTT cell viability assay in all four pancreatic cancer cell lines. We also examined the effects of the tocotrienols on the AKT and the Ras/Raf/MEK/ERK signaling pathways by Western blotting analysis. γ- and δ-tocotrienol treatment of cells reduced the activation of ERK MAP kinase and that of its downstream mediator RSK (ribosomal protein S6 kinase) in addition to suppressing the activation of protein kinase AKT. Suppression of activation of AKT by γ-tocotrienol led to downregulation of p-GSK-3β and upregulation accompanied by nuclear translocation of Foxo3. These effects were mediated by the downregulation of Her2/ErbB2 at the messenger level. Tocotrienols but not tocopherols were able to induce the observed effects. Our results suggest that the tocotrienol isoforms of vitamin E can induce apoptosis in pancreatic cancer cells through the suppression of vital cell survival and proliferative signaling pathways such as those mediated by the PI3-kinase/AKT and ERK/MAP kinases via downregulation of Her2/ErbB2 expression. The molecular components for this mechanism are not completely elucidated and need further investigation.
Collapse
Affiliation(s)
- Sonyo Shin-Kang
- Division of Hematology-Oncology, Department of Internal Medicine, JamesH. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Pancreatic cancer (PC) is the fourth leading cause of cancer death in the United States. Despite significant improvement in understanding disease biology, the 5-year survival rates remain less than 5%. Targeted agents failed to add any meaningful survival benefit in this patient population despite very promising pre-clinical data. The new paradigm for the treatment of PC must emphasize validation of targeted agents in the appropriate pre-clinical models, identification of predictive markers for disease response, and extending range of targets into cancer stem cells and tumor microenvironment. It is also necessary to perform studies that are designed to address the various stages of disease with respect to study endpoints and application of a multimodality approach in management. Phase III trials should only be considered when a strong efficacy signal is demonstrated in phase II studies that is based on a survival endpoint. This review will focus on the development of novel treatments in pancreas cancer and the proposed design of future clinical trials.
Collapse
|
27
|
Zavoral M, Minarikova P, Zavada F, Salek C, Minarik M. Molecular biology of pancreatic cancer. World J Gastroenterol 2011; 17:2897-908. [PMID: 21734801 PMCID: PMC3129504 DOI: 10.3748/wjg.v17.i24.2897] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 02/19/2011] [Accepted: 02/26/2011] [Indexed: 02/06/2023] Open
Abstract
In spite of continuous research efforts directed at early detection and treatment of pancreatic cancer, the outlook for patients affected by the disease remains dismal. With most cases still being diagnosed at advanced stages, no improvement in survival prognosis is achieved with current diagnostic imaging approaches. In the absence of a dominant precancerous condition, several risk factors have been identified including family history, chronic pancreatitis, smoking, diabetes mellitus, as well as certain genetic disorders such as hereditary pancreatitis, cystic fibrosis, familial atypical multiple mole melanoma, and Peutz–Jeghers and Lynch syndromes. Most pancreatic carcinomas, however, remain sporadic. Current progress in experimental molecular techniques has enabled detailed understanding of the molecular processes of pancreatic cancer development. According to the latest information, malignant pancreatic transformation involves multiple oncogenes and tumor-suppressor genes that are involved in a variety of signaling pathways. The most characteristic aberrations (somatic point mutations and allelic losses) affect oncogenes and tumor-suppressor genes within RAS, AKT and Wnt signaling, and have a key role in transcription and proliferation, as well as systems that regulate the cell cycle (SMAD/DPC, CDKN2A/p16) and apoptosis (TP53). Understanding of the underlying molecular mechanisms should promote development of new methodology for early diagnosis and facilitate improvement in current approaches for pancreatic cancer treatment.
Collapse
|
28
|
Sun C, Rosendahl AH, Andersson R, Wu D, Wang X. The role of phosphatidylinositol 3-kinase signaling pathways in pancreatic cancer. Pancreatology 2011; 11:252-260. [PMID: 21625196 DOI: 10.1159/000327715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Pancreatic cancer is a highly malignant cancer and the fourth leading cause of cancer-related death. It is characterized by a rapid disease progression, a highly invasive tumor phenotype, and frequently resistance to chemotherapy. Despite significant advances in diagnosis, staging, and surgical management of the disease during the past decade, prognosis of pancreatic cancer is still dismal. METHODS AND RESULTS The phosphatidylinositol 3-kinase (PI3K) signaling pathways regulate cellular growth, metabolism, survival, and motility in pancreatic cancer. Pancreatic cancer is associated with a high degree of genetic alterations that can result in aberrant activation of the PI3K signaling pathway. Elucidating the role of the PI3K signaling pathway in pancreatic cancer may thus be both meaningful and necessary. CONCLUSION Improved knowledge of the PI3K signaling pathway in pancreatic cancer would furthermore be helpful in understanding mechanisms of tumor initiation and progression, and in identifying appropriate targeted anticancer treatment in pancreatic cancer. and IAP.
Collapse
Affiliation(s)
- Chen Sun
- Harbin Medical University, Harbin, China
| | | | | | | | | |
Collapse
|
29
|
Wu D, Tao J, Xu B, Qing W, Li P, Lu Q, Zhang W. Phosphatidylinositol 3-kinase inhibitor LY294002 suppresses proliferation and sensitizes doxorubicin chemotherapy in bladder cancer cells. Urol Int 2011; 87:105-13. [PMID: 21597260 DOI: 10.1159/000322849] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/14/2010] [Indexed: 12/22/2022]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K)-AKT signaling is a well-characterized pathway involved in the control of cell proliferation, apoptosis and oncogenesis. LY294002 is a commonly used pharmacologic inhibitor which acts at the ATP-binding site of the PI3K enzyme, thus selectively inhibiting the PI3K-AKT nexus. The purpose of the present study was to examine whether PI3K inhibited by LY294002 had an effect on human bladder cancer cells. METHODS After treatment with LY294002, MTT assay, chemosensitivity test, colony formation assay, apoptosis assay and Western blot analysis were conducted in EJ cells. RESULT EJ cells treated with LY294002 showed significant AKT phosphorylation suppression in a dose-response manner. Also, PI3K/AKT signaling inhibitor LY294002 suppressed cell proliferation and enhanced the chemosensitivity of doxorubicin in human bladder cancer EJ cells. Furthermore, LY294002 increased cell apoptosis to doxorubicin. CONCLUSION The augmentation of doxorubicin with PI3K inhibitor LY294002 may resolve the multidrug resistance of bladder cancer, and this may be a new strategy for achieving tolerance for chemotherapeutic agents in bladder cancer therapy.
Collapse
Affiliation(s)
- Deyao Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
30
|
Wu D, Tao J, Xu B, Qing W, Li P, Lu Q, Zhang W. Phosphatidylinositol 3-kinase inhibitor LY294002 suppresses proliferation and sensitizes doxorubicin chemotherapy in bladder cancer cells. Urol Int 2011; 86:346-54. [PMID: 21273759 DOI: 10.1159/000322986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 11/14/2010] [Indexed: 12/19/2022]
Abstract
BACKGROUND Phosphatidylinositol 3-kinase (PI3K)-AKT signaling is a well-characterized pathway involved in control of cell proliferation, apoptosis and oncogenesis. LY294002 is a commonly used pharmacologic inhibitor which acts at the ATP-binding site of the PI3K enzyme, and thus selectively inhibits the PI3K-AKT nexus. The purpose of the study was to examine whether PI3K inhibited by LY294002 had effects in human bladder cancer cells. METHODS After treatment with LY294002, MTT assay, a chemosensitivity test, colony formation assay, apoptosis assay and Western blot analysis were conducted in EJ cells. RESULT EJ cells treated with LY294002 showed significant AKT phosphorylation suppressing in a dose-response manner. Additionally, the PI3K/AKT signaling inhibitor LY294002 suppressed cell proliferation and enhanced chemosensitivity to doxorubicin in human bladder cancer EJ cells. Furthermore, LY294002 increased cell apoptosis to doxorubicin. CONCLUSION The augmentation of doxorubicin with the PI3K inhibitor LY294002 may resolve the multidrug resistance of bladder cancer, and this may be a new strategy for achieving tolerance for chemotherapeutic agents in bladder cancer therapy.
Collapse
Affiliation(s)
- Deyao Wu
- Department of Urology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Srivastava RK, Tang SN, Zhu W, Meeker D, Shankar S. Sulforaphane synergizes with quercetin to inhibit self-renewal capacity of pancreatic cancer stem cells. Front Biosci (Elite Ed) 2011; 3:515-28. [PMID: 21196331 DOI: 10.2741/e266] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
According to the cancer stem cell hypothesis, the aggressive growth and early metastasis of cancer may arise through dysregulation of self-renewal of stem cells. The objectives of this study were to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables) inhibits self-renewal capacity of pancreatic cancer stem cells (CSCs), and synergizes with quercetin, a major polyphenol and flavonoid commonly detected in many fruits and vegetables. Our data demonstrated that SFN inhibited self-renewal capacity of pancreatic CSCs. Inhibition of Nanog by lentiviral-mediated shRNA expression enhanced the inhibitory effects of sulforaphane on self-renewal capacity of CSCs. SFN induced apoptosis by inhibiting the expression of Bcl-2 and XIAP, phosphorylation of FKHR, and activating caspase-3. Moreover, SFN inhibited expression of proteins involved in the epithelial-mesenchymal transition (beta-catenin, vimentin, twist-1, and ZEB1), suggesting the blockade of signaling involved in early metastasis. Furthermore, the combination of quercetin with SFN had synergistic effects on self-renewal capacity of pancreatic CSCs. These data suggest that SFN either alone or in combination with quercetin can eliminate cancer stem cell-characteristics.
Collapse
Affiliation(s)
- Rakesh K Srivastava
- Department of Pharmacology, Toxicology and Therapeutics, and Medicine, The University of Kansas Cancer Center, The University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
32
|
Bellizzi AM, Bloomston M, Zhou XP, Iwenofu OH, Frankel WL. The mTOR Pathway is Frequently Activated in Pancreatic Ductal Adenocarcinoma and Chronic Pancreatitis. Appl Immunohistochem Mol Morphol 2010; 18:442-7. [DOI: 10.1097/pai.0b013e3181de115b] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J Mol Signal 2010; 5:10. [PMID: 20642839 PMCID: PMC2915986 DOI: 10.1186/1750-2187-5-10] [Citation(s) in RCA: 307] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 07/19/2010] [Indexed: 12/19/2022] Open
Abstract
Background Mammalian forkhead members of the class O (FOXO) transcription factors, including FOXO1, FOXO3a, and FOXO4, are implicated in the regulation of several biological processes, including the stress resistance, metabolism, cell cycle, apoptosis and DNA repair. The objectives of this study were to examine the molecular mechanisms by which FOXO transcription factors induced cell cycle arrest and apoptosis and enhanced anti-proliferative effects of sulforaphane (SFN, an active compound in cruciferous vegetables) in pancreatic cancer cells. Results Our data demonstrated that SFN inhibited cell proliferation and colony formation, and induced apoptosis through caspase-3 activation in pancreatic cancer cells. The inhibition of PI3K/AKT and MEK/ERK pathways activated FOXO transcription factors. SFN inhibited phosphorylation of AKT and ERK, and activated FOXO transcription factors, leading to cell cycle arrest and apoptosis. Phosphorylation deficient mutants of FOXO proteins enhanced FOXO transcriptional activity, and further enhanced SFN-induced FOXO activity and apoptosis. SFN induced the expression of p21/CIP1 and p27/KIP1, and inhibited the expression of cyclin D1. Conclusion These data suggest that inhibition of PI3K/AKT and ERK pathways acts together to activate FOXO transcription factor and enhances SFN-induced FOXO transcriptional activity, leading to cell cycle arrest and apoptosis.
Collapse
|
34
|
Tomizawa M, Shinozaki F, Sugiyama T, Yamamoto S, Sueishi M, Yoshida T. Insulin-like growth factor-I receptor in proliferation and motility of pancreatic cancer. World J Gastroenterol 2010; 16:1854-1858. [PMID: 20397262 PMCID: PMC2856825 DOI: 10.3748/wjg.v16.i15.1854] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 01/18/2010] [Accepted: 01/25/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To develop a molecular therapy for pancreatic cancer, the insulin-like growth factor-I (IGF-I) signaling pathway was analyzed. METHODS Pancreatic cancer cell lines (MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4) were cultured in media with 10 mL/L fetal bovine serum. Western blotting analysis was performed to clarify the expression of IGF-I receptor (IGF-IR). Picropodophyllin (PPP), a specific inhibitor of IGF-IR, LY294002, a specific inhibitor of phosphatidylinositol 3 kinase (PI3K), and PD98059, a specific inhibitor of mitogen-activated protein kinase, were added to the media. After 72 h, a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt (MTS) assay was performed to analyze cell proliferation. A wound assay was performed to analyze cell motility with hematoxylin and eosin (HE) staining 48 h after addition of each inhibitor. RESULTS All cell lines clearly expressed not only IGF-IR but also phosphorylated IGF-IR. PPP significantly suppressed proliferation of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 cells to 36.9% +/- 2.4% (mean +/- SD), 30.9% +/- 5.5%, 23.8% +/- 3.9%, 37.1% +/- 5.3%, 10.4% +/- 4.5%, 52.5% +/- 4.5% and 22.6% +/- 0.4%, at 2 micromol/L, respectively (P < 0.05). LY294002 significantly suppressed proliferation of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 cells to 44.4% +/- 7.6%, 32.9% +/- 8.2%, 53.9% +/- 8.0%, 52.8% +/- 4.0%, 32.3% +/- 4.2%, 51.8% +/- 4.5%, and 30.6% +/- 9.4%, at 50 micromol/L, respectively (P < 0.05). PD98059 did not significantly suppress cell proliferation. PPP at 2 micromol/L suppressed motility of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 cells to 3.0% +/- 0.2%, 0%, 0%, 2.0% +/- 0.1%, 5.0% +/- 0.2%, 3.0% +/- 0.1%, and 5.0% +/- 0.2%, respectively (P < 0.05). LY294002 at 50 micromol/L suppressed motility of MIA-Paca2, NOR-P1, PANC-1, PK-45H, PK-1, PK-59 and KP-4 to 3.0% +/- 0.2%, 0%, 3.0% +/- 0.2%, 0%, 0%, 0% and 3% +/- 0.1%, respectively (P < 0.05). PD980509 at 20 micromol/L did not suppress motility. Cells were observed by microscopy to analyze the morphological changes induced by the inhibitors. Cells in medium treated with 2 micromol/L PPP or 50 micromol/L LY294002 had pyknotic nuclei, whereas those in medium with 20 micromol/L PD98059 did not show apoptosis. CONCLUSION IGF-IR and PI3K are good candidates for molecular therapy of pancreatic cancer.
Collapse
|
35
|
Chen CA, Chang HH, Kao CY, Tsai TH, Chen YJ. Plumbagin, isolated from Plumbago zeylanica, induces cell death through apoptosis in human pancreatic cancer cells. Pancreatology 2010; 9:797-809. [PMID: 20110748 DOI: 10.1159/000210028] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 03/03/2009] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Pancreatic cancer is one of the most resistant malignancies. Several studies have indicated that plumbagin isolated from Plumbago zeylanica possesses anticancer activity. However, its antitumor effects against pancreatic cancer have not been explored. METHODS We investigated the effect of plumbagin on the growth of human pancreatic carcinoma cells and its possible underlying mechanisms. RESULTS Plumbagin inhibited the growth of Panc-1 and Bxpc-3 cells in a dose-dependent and time-dependent manner. Liu's staining and transmission electron microscopy demonstrated morphological changes resembling apoptosis in Panc-1 cells treated with plumbagin. The degree of apoptosis was assessed by measuring the proportions of sub-G(1), annexin V+/propidium iodide-, and terminal- deoxynucleotidyl-transferase-mediated-nick-end labeling (TUNEL)+ cells, and a significant increment in apoptotic cells was observed. Exposure to plumbagin caused the upregulation of Bax, a rapid decline in mitochondrial transmembrane potential, apoptosis-inducing factor overexpression in cytosol, and the cleavage of procaspase-9 and poly ADP-ribose polymerase. Activation of caspase-3, but not caspase-8, was evidenced by fluorometric substrate assay. Pretreatment with caspase inhibitors did not block plumbagin-induced apoptosis. Alternatively, it is possible that plumbagin downregulated phosphoinositide 3-kinase activity through a negative feedback mechanism. In an orthotopic pancreatic tumor model, plumbagin markedly inhibited the growth of Panc-1 xenografts without any significant effect on leukocyte counts or body weight. CONCLUSION Plumbagin may induce apoptosis in human pancreatic cancer cells primarily through the mitochondria-related pathway followed by both caspase-dependent and caspase-independent cascades. It indicates that plumbagin can be potentially developed as a novel therapeutic agent against pancreatic cancer.
Collapse
Affiliation(s)
- Chien-An Chen
- Department of Radiation Oncology, Far Eastern Memorial Hospital, Graduate Institute of Traditional Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
36
|
Huang XF, Chen J. Obesity and pancreatic cancer: possible role of the PI3K/Akt pathway. Surgery 2010; 147:596. [PMID: 20079913 DOI: 10.1016/j.surg.2009.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Accepted: 11/20/2009] [Indexed: 11/16/2022]
|
37
|
Johnson SK, Haun RS. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth. World J Gastroenterol 2009; 15:3355-66. [PMID: 19610136 PMCID: PMC2712896 DOI: 10.3748/wjg.15.3355] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).
METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.
RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.
CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.
Collapse
|
38
|
Matsuo Y, Campbell PM, Brekken RA, Sung B, Ouellette MM, Fleming JB, Aggarwal BB, Der CJ, Guha S. K-Ras promotes angiogenesis mediated by immortalized human pancreatic epithelial cells through mitogen-activated protein kinase signaling pathways. Mol Cancer Res 2009; 7:799-808. [PMID: 19509115 PMCID: PMC4267726 DOI: 10.1158/1541-7786.mcr-08-0577] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activating point mutations in the K-Ras oncogene are among the most common genetic alterations in pancreatic cancer, occurring early in the progression of the disease. However, the function of mutant K-Ras activity in tumor angiogenesis remains poorly understood. Using human pancreatic duct epithelial (HPDE) and K-Ras4B(G12V)-transformed HPDE (HPDE-KRas) cells, we show that activated K-Ras significantly enhanced the production of angiogenic factors including CXC chemokines and vascular endothelial growth factor (VEGF). Western blot analysis revealed that K-Ras activation promoted the phosphorylation of Raf/mitogen-activated protein kinase kinase-1/2 (MEK1/2) and expression of c-Jun. MEK1/2 inhibitors, U0126 and PD98059, significantly inhibited the secretion of both CXC chemokines and VEGF, whereas the c-Jun NH(2)-terminal kinase inhibitor SP600125 abrogated only CXC chemokine production. To further elucidate the biological functions of oncogenic K-Ras in promoting angiogenesis, we did in vitro invasion and tube formation assays using human umbilical vein endothelial cells (HUVEC). HUVEC cocultured with HPDE-KRas showed significantly enhanced invasiveness and tube formation as compared with either control (without coculture) or coculture with HPDE. Moreover, SB225002 (a CXCR2 inhibitor) and 2C3 (an anti-VEGF monoclonal antibody) either alone or in a cooperative manner significantly reduced the degree of both Ras-dependent HUVEC invasiveness and tube formation. Similar results were obtained using another pair of immortalized human pancreatic duct-derived cells, E6/E7/st and its oncogenic K-Ras variant, E6/E7/Ras/st. Taken together, our results suggest that angiogenesis is initiated by paracrine epithelial secretion of CXC chemokines and VEGF downstream of activated oncogenic K-Ras, and that this vascular maturation is in part dependent on MEK1/2 and c-Jun signaling.
Collapse
MESH Headings
- Carcinoma, Pancreatic Ductal/blood supply
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Cell Line
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cells, Cultured
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/metabolism
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Genes, ras
- Humans
- MAP Kinase Signaling System
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Pancreatic Neoplasms/blood supply
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Vascular Endothelial Growth Factor A/biosynthesis
- Vascular Endothelial Growth Factor A/metabolism
- ras Proteins/genetics
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Yoichi Matsuo
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Paul M. Campbell
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, Hamon Center for Therapeutic Oncology Research, and Department of Pharmacology, University of Texas Southwestern Medical School, Dallas, Texas
| | - Bokyung Sung
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Michel M. Ouellette
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jason B. Fleming
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Bharat B. Aggarwal
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Channing J. Der
- Lineberger Comprehensive Cancer Center and Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sushovan Guha
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
39
|
Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 2008; 27:193-8. [PMID: 19047305 DOI: 10.1200/jco.2008.18.9514] [Citation(s) in RCA: 239] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The PI3K/Akt/mTOR pathway is activated in the majority of pancreatic cancers, and inhibition of this pathway has antitumor effects in preclinical studies. We performed a multi-institutional, single-arm, phase II study of RAD001(everolimus), an oral inhibitor of mTOR, in patients who experienced treatment failure on first-line therapy with gemcitabine. PATIENTS AND METHODS Thirty-three patients with gemcitabine-refractory, metastatic pancreatic cancer were treated continuously with RAD001 at 10 mg daily. Prior treatment with fluorouracil in the perioperative setting was allowed. Patients were observed for toxicity, treatment response, and survival. RESULTS Treatment with single-agent RAD001 was well-tolerated; the most common adverse events were mild hyperglycemia and thrombocytopenia. No patients were removed from the study because of drug-related adverse events. No complete or partial treatment responses were noted, and only seven patients (21%) had stable disease at the first restaging scans performed at 2 months. Median progression-free survival and overall survival were 1.8 months and 4.5 months, respectively. One patient (3%) had a biochemical response, defined as > or = 50% reduction in serum CA19-9. CONCLUSION Although well-tolerated, RAD001 administered as a single-agent had minimal clinical activity in patients with gemcitabine-refractory, metastatic pancreatic cancer. Future studies in metastatic pancreatic cancer should assess the combination of mTOR inhibitors with other agents and/or examine inhibitors of other components of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wolpin BM, Hezel AF, Abrams T, Blaszkowsky LS, Meyerhardt JA, Chan JA, Enzinger PC, Allen B, Clark JW, Ryan DP, Fuchs CS. Oral mTOR inhibitor everolimus in patients with gemcitabine-refractory metastatic pancreatic cancer. J Clin Oncol 2008. [PMID: 19047305 DOI: 10.1200/jco.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The PI3K/Akt/mTOR pathway is activated in the majority of pancreatic cancers, and inhibition of this pathway has antitumor effects in preclinical studies. We performed a multi-institutional, single-arm, phase II study of RAD001(everolimus), an oral inhibitor of mTOR, in patients who experienced treatment failure on first-line therapy with gemcitabine. PATIENTS AND METHODS Thirty-three patients with gemcitabine-refractory, metastatic pancreatic cancer were treated continuously with RAD001 at 10 mg daily. Prior treatment with fluorouracil in the perioperative setting was allowed. Patients were observed for toxicity, treatment response, and survival. RESULTS Treatment with single-agent RAD001 was well-tolerated; the most common adverse events were mild hyperglycemia and thrombocytopenia. No patients were removed from the study because of drug-related adverse events. No complete or partial treatment responses were noted, and only seven patients (21%) had stable disease at the first restaging scans performed at 2 months. Median progression-free survival and overall survival were 1.8 months and 4.5 months, respectively. One patient (3%) had a biochemical response, defined as > or = 50% reduction in serum CA19-9. CONCLUSION Although well-tolerated, RAD001 administered as a single-agent had minimal clinical activity in patients with gemcitabine-refractory, metastatic pancreatic cancer. Future studies in metastatic pancreatic cancer should assess the combination of mTOR inhibitors with other agents and/or examine inhibitors of other components of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney St, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lesma E, Grande V, Ancona S, Carelli S, Di Giulio AM, Gorio A. Anti-EGFR antibody efficiently and specifically inhibits human TSC2-/- smooth muscle cell proliferation. Possible treatment options for TSC and LAM. PLoS One 2008; 3:e3558. [PMID: 18958173 PMCID: PMC2570214 DOI: 10.1371/journal.pone.0003558] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 10/06/2008] [Indexed: 11/28/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC), a tumor syndrome caused by mutations in TSC1 or TSC2 genes, is characterized by the development of hamartomas. We previously isolated, from an angiomyolipoma of a TSC2 patient, a homogenous population of smooth muscle-like cells (TSC2−/− ASM cells) that have a mutation in the TSC2 gene as well as TSC2 loss of heterozygosity (LOH) and consequently, do not produce the TSC2 gene product, tuberin. TSC2−/− ASM cell proliferation is EGF-dependent. Methods and Findings Effects of EGF on proliferation of TSC2−/− ASM cells and TSC2−/− ASM cells transfected with TSC2 gene were determined. In contrast to TSC2−/− ASM cells, growth of TSC2-transfected cells was not dependent on EGF. Moreover, phosphorylation of Akt, PTEN, Erk and S6 was significantly decreased. EGF is a proliferative factor of TSC2−/− ASM cells. Exposure of TSC2−/− ASM cells to anti-EGFR antibodies significantly inhibited their proliferation, reverted reactivity to HMB45 antibody, a marker of TSC2−/− cell phenotype, and inhibited constitutive phosphorylation of S6 and ERK. Exposure of TSC2−/− ASM cells to rapamycin reduced the proliferation rate, but only when added at plating time. Although rapamycin efficiently inhibited S6 phosphorylation, it was less efficient than anti-EGFR antibody in reverting HMB45 reactivity and blocking ERK phosphorylation. In TSC2−/− ASM cells specific PI3K inhibitors (e.g. LY294002, wortmannin) and Akt1 siRNA had little effect on S6 and ERK phosphorylation. Following TSC2-gene transfection, Akt inhibitor sensitivity was observed. Conclusion Our results show that an EGF independent pathway is more important than that involving IGF-I for growth and survival of TSC−/− ASM cells, and such EGF-dependency is the result of the lack of tuberin.
Collapse
MESH Headings
- Adult
- Antibodies/pharmacology
- Antibodies/therapeutic use
- Antibody Affinity
- Antibody Specificity
- Cell Proliferation/drug effects
- Cells, Cultured
- ErbB Receptors/immunology
- Female
- Humans
- Lymphangioleiomyomatosis/genetics
- Lymphangioleiomyomatosis/metabolism
- Lymphangioleiomyomatosis/pathology
- Lymphangioleiomyomatosis/therapy
- Models, Biological
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Smooth Muscle Tumor/genetics
- Smooth Muscle Tumor/metabolism
- Smooth Muscle Tumor/pathology
- Smooth Muscle Tumor/therapy
- Transfection
- Tuberous Sclerosis/genetics
- Tuberous Sclerosis/metabolism
- Tuberous Sclerosis/pathology
- Tuberous Sclerosis/therapy
- Tuberous Sclerosis Complex 2 Protein
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Elena Lesma
- Laboratory of Pharmacology , Department of Medicine, Surgery and Dentistry- Polo H. San Paolo, Faculty of Medicine, University of Milan, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
42
|
Greenhalf W, Malats N, Nilsson M, Bartsch D, Neoptolemos J. International registries of families at high risk of pancreatic cancer. Pancreatology 2008; 8:558-65. [PMID: 18818508 DOI: 10.1159/000159214] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To describe the need for multinational registries of families at high risk of pancreatic cancer and the issues surrounding identification of such families. RESULTS A consensus position was published describing surveillance of individuals at high risk of pancreatic cancer. Hereditary pancreatitis patients, people with Peutz-Jeghers syndrome, individuals with CDKN2A or BRCA1/2 mutations with a family history of pancreatic cancer and kindred with multiple pancreatic cancers were considered suitable for research-based screening. Mutations responsible for familial predisposition are mostly unknown, although BRCA2 mutations have been identified in some families and a mutation in the palladin gene has been shown to segregate with pancreatic cancer in one kindred. Specific autosomal dominant inheritance of pancreatic cancer risk seems to involve anticipation; this finding aids identification of families and determination of individual risk. Diabetes mellitus is an early symptom of pancreatic cancer, but recent publications suggest that it may not be a significant predisposing factor; this remains controversial. However, in the context of hereditary pancreatitis, diabetes probably does predispose to pancreatic cancer as shown in a recent description of French families. CONCLUSION Appropriate inclusion of patients within registries of high-risk families provides a framework for secondary screening and research on risk stratification and early tumorigenesis. and IAP.
Collapse
Affiliation(s)
- William Greenhalf
- Division of Surgery, University of Liverpool, Royal Liverpool University Hospital, Liverpool, UK.
| | | | | | | | | |
Collapse
|
43
|
Abstract
INTRODUCTION Pancreatic cancer is a devastating malignancy and a leading cause of cancer mortality. Furthermore, early diagnosis represents a serious hurdle for clinicians, as symptoms are non-specific and usually manifest in advanced, treatment-resistant stages of the disease. SOURCES OF DATA Here, we review the rationale and progress of targeted therapies currently under investigation. AREAS OF AGREEMENT At present, chemoradiation regimes are administered palliatively, and produce only marginal survival benefits, underscoring a desperate need for more effective treatment modalities. AREAS OF CONTROVERSY Questions have been raised as to whether erlotinib, the only targeted therapy to attain a statistically significant increase in median survival, is cost-effective. GROWING POINTS The last decade of research has provided us with a wealth of information regarding the molecular nature of pancreatic cancer, leading to the identification of signalling pathways and their respective components which are critical for the maintenance of the malignant phenotype. AREAS TIMELY FOR DEVELOPING RESEARCH These proteins thus represent ideal targets for novel molecular therapies which embody an urgently needed novel treatment strategy.
Collapse
Affiliation(s)
- S A Danovi
- Centre for Molecular Oncology and Imaging, Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary, University of London, London, UK
| | | | | |
Collapse
|
44
|
Ristorcelli E, Beraud E, Verrando P, Villard C, Lafitte D, Sbarra V, Lombardo D, Verine A. Human tumor nanoparticles induce apoptosis of pancreatic cancer cells. FASEB J 2008; 22:3358-69. [PMID: 18511551 DOI: 10.1096/fj.07-102855] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Exosomes are vesicles secreted by most hematopoietic cells on fusion of multivesicular endosomes with the plasma membrane. Many studies have reported that exosomes may also be released by tumor cells. Exosomes are believed to play an antitumor role through immune cells. We asked whether tumor exosomes have biological activities on tumor cells. We report that human pancreatic tumor nanoparticles, exosome-like as characterized by proteomic analyses and rich in lipid rafts, decreased tumor cell proliferation. Nanoparticles increased Bax and decreased Bcl-2 expressions. Caspase-3 and -9 but not caspase-8 inhibitors impaired apoptosis, which implicates the mitochondria apoptotic pathway. The ceramide-sphingomyelin apoptotic pathway was inoperative. Moreover, nanoparticles induced phosphatase and tensin homolog (PTEN) and glycogen synthase kinase (GSK) -3beta activation and decreased pyruvate dehydrogenase activity. In nanoparticle-treated cells, PTEN formed complexes with actin, beta-catenin, and GSK-3beta. Thus, beta-catenin may no longer be available to activate the survival pathway. Nanoparticles triggered the down-regulation of cyclin D1 and poly(ADP-ribose) polymerase. Hence, nanoparticles counteracted the constitutively activated phosphatidylinositol 3-kinase/Akt survival pathway to drive tumor cells toward apoptosis. Our study provides the first evidence of an apoptotic function of tumor-derived nanoparticles on tumor cells. We propose a new role for nanoparticles, i.e., as signal carriers for interaction between cells, which may have implications in physiopathological situations.
Collapse
|
45
|
Shankar S, Chen Q, Srivastava RK. Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to enhance antiangiogenic effects of EGCG through activation of FOXO transcription factor. J Mol Signal 2008; 3:7. [PMID: 18355401 PMCID: PMC2278143 DOI: 10.1186/1750-2187-3-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Accepted: 03/20/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND We have recently shown that epigallocatechin-3-gallate (EGCG), a polyphenolic compound from green tea, inhibits angiogenesis. However, the molecular mechanisms by which EGCG inhibits angiogenesis have never been investigated. In this study, we examined the interaction of PI3K/AKT and MEK/ERK pathways on the regulation of FOXO transcription factors, which ultimately control the antiangiogenic effects of EGCG. RESULTS Inhibition of PI3K/AKT and MEK/ERK pathways interact synergistically to inhibit migration and capillary tube formation of HUVEC cells and further enhanced the antiangiogenic effects of EGCG. Inhibition of AKT and MEK kinases synergistically induced FOXO transcriptional activity, which was further enhanced in the presence of EGCG. Phosphorylation deficient mutants of FOXO induced FOXO transcriptional activity, inhibited HUVEC cell migration and capillary tube formation. Inhibition of FOXO phosphorylation also enhanced antiangiogenic effects of EGCG through transcriptional activation of FOXO. CONCLUSION Inhibition of PI3K/AKT and MEK/ERK pathways act synergistically to regulate antiangiogenic effects of EGCG through activation of FOXO transcription factors. The activation of FOXO transcription factors through inhibition of these two pathways may have physiological significance in management of diabetic retinopathy, rheumatoid arthritis, psoriasis, cardiovascular diseases, and cancer.
Collapse
Affiliation(s)
- Sharmila Shankar
- Department of Biochemistry, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708-3154, USA.
| | | | | |
Collapse
|
46
|
Mortenson MM, Galante JG, Gilad O, Schlieman MG, Virudachalam S, Kung HJ, Bold RJ. BCL-2 functions as an activator of the AKT signaling pathway in pancreatic cancer. J Cell Biochem 2008; 102:1171-9. [PMID: 17960583 DOI: 10.1002/jcb.21343] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BCL-2 is the prototypic anti-apoptotic protein involved in the regulation of apoptosis. Overexpression of BCL-2 is common in pancreatic cancer and confers resistance to the apoptotic effect of chemo- and radiotherapy. Although these cellular effects of BCL-2 are traditionally related to pathways involving the mitochondrial membrane, we sought to investigate whether BCL-2 is involved in other signaling pathways regulating cell survival and focused on AKT. We examined the effect of overexpression of BCL-2 in the MIA-PaCa-2 human pancreatic cancer cell line on the function and subcellular location of AKT. We observed that the stable subclones of MIA-PaCa-2 overexpressing BCL-2 demonstrated increased activity of AKT as well as IKK (a downstream target of AKT), increasing the transcriptional activity of NF-kappaB. Using immunoprecipitation techniques, we observed co-immunoprecipitation of AKT and BCL-2. Immunocytochemistry demonstrated co-localization of BCL-2 and AKT, which was abrogated by treatment with HA14-1, a small molecule inhibitor of BH-3-mediated protein interaction by BCL-2. Furthermore, treatment with HA14-1 decreased phosphorylation of AKT and increased sensitivity to the apoptotic effect of the chemotherapeutic agent, paclitaxel. These results demonstrate an additional mechanism of regulation of cell survival mediated by BCL-2, namely through AKT activation, in the MIA-PaCa-2 pancreatic cancer cell line. Therefore, directed inhibition of BCL-2 may alter diverse pathways controlling cell survival and overcome the apoptotic resistance that is the hallmark of pancreatic cancer.
Collapse
Affiliation(s)
- Melinda M Mortenson
- Department of Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Targeting the Tumor Microenvironment (Stroma) for Treatment of Metastasis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Gutierrez-Barrera AM, Menter DG, Abbruzzese JL, Reddy SAG. Establishment of three-dimensional cultures of human pancreatic duct epithelial cells. Biochem Biophys Res Commun 2007; 358:698-703. [PMID: 17512909 PMCID: PMC2562614 DOI: 10.1016/j.bbrc.2007.04.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/18/2007] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) cultures of epithelial cells offer singular advantages for studies of morphogenesis or the role of cancer genes in oncogenesis. In this study, as part of establishing a 3D culture system of pancreatic duct epithelial cells, we compared human pancreatic duct epithelial cells (HPDE-E6E7) with pancreatic cancer cell lines. Our results show, that in contrast to cancer cells, HPDE-E6E7 organized into spheroids with what appeared to be apical and basal membranes and a luminal space. Immunostaining experiments indicated that protein kinase Akt was phosphorylated (Ser473) and CTMP, a negative Akt regulator, was expressed in both HPDE-E6E7 and cancer cells. However, a nuclear pool of CTMP was detectable in HPDE-E6E7 cells that showed a dynamic concentrated expression pattern, a feature that further distinguished HPDE-E637 cells from cancer cells. Collectively, these data suggest that 3D cultures of HPDE-E6E7 cells are useful for investigating signaling and morphological abnormalities in pancreatic cancer cells.
Collapse
Affiliation(s)
- Angelica M Gutierrez-Barrera
- Department of Gastrointestinal Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Unit 426, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
49
|
Reichert M, Saur D, Hamacher R, Schmid RM, Schneider G. Phosphoinositide-3-kinase signaling controls S-phase kinase-associated protein 2 transcription via E2F1 in pancreatic ductal adenocarcinoma cells. Cancer Res 2007; 67:4149-56. [PMID: 17483325 DOI: 10.1158/0008-5472.can-06-4484] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The phosphoinositide-3-kinase (PI3K)/AKT signaling pathway controls fundamental processes of cancer cell biology like proliferation and cell survival. The PI3K/AKT pathway is activated in pancreatic ductal adenocarcinoma (PDAC) cells. The molecular mechanisms linking PI3K signaling to the cell cycle machinery in PDAC cells are not investigated in detail. Using the PI3K inhibitor Ly294002 as well as small interfering RNA targeting AKT1 expression, we show that PI3K controls the proliferation and G(1) phase progression of PDAC cells. Gene profiling revealed several important regulators of G(1)-S phase progression controlled by PI3K signaling like p21(Cip1), S-phase kinase-associated protein 2 (SKP2), CDC25a, cyclin A, cyclin D2, CDK2, and cyclin E. We show that the F-box protein SKP2, an oncogene up-regulated in PDAC, is transcriptionally regulated by the PI3K/AKT1 pathway in PDAC cells. At the molecular level, the control of the SKP2 gene by PI3K is due to the regulation of E2F1 binding to the proximal SKP2 gene promoter. The complex and profound connection of PI3K/AKT1 signaling to the cell cycle qualifies this pathway as a suitable target for therapeutic intervention in PDAC.
Collapse
Affiliation(s)
- Maximilian Reichert
- Department of Internal Medicine, Technical University of Munich, Munich, Germany
| | | | | | | | | |
Collapse
|
50
|
Aho U, Zhao X, Löhr M, Andersson R. Molecular mechanisms of pancreatic cancer and potential targets of treatment. Scand J Gastroenterol 2007; 42:279-296. [PMID: 17354106 DOI: 10.1080/00365520601106384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ursula Aho
- Department of Surgery, Lund University Hospital, University of Lund, Lund, Sweden
| | | | | | | |
Collapse
|