1
|
Schuurmans IME, Mordelt A, de Witte LD. Orchestrating the neuroglial compartment: Ontogeny and developmental interaction of astrocytes, oligodendrocytes, and microglia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 209:27-47. [PMID: 40122629 DOI: 10.1016/b978-0-443-19104-6.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Neuroglial cells serve as the master regulators of the central nervous system, making it imperative for glial development to be tightly regulated both spatially and temporally to ensure optimal brain function. In this chapter, we will discuss the origin and development of the three major glia cells such as astrocytes, oligodendrocytes, and microglia in the central nervous system. While much of our understanding of neuroglia development stems from studies using animal models, we will also explore recent insights into human glial development and potential differences from rodent models. Finally, the extensive crosstalk between glia cells will be highlighted, discussing how interactions among astrocyte, oligodendrocyte, and microglial influence their respective developmental pathways.
Collapse
Affiliation(s)
- Imke M E Schuurmans
- Department of Pediatrics, Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, The Netherlands; Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Lot D de Witte
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Blaschuk OW. Potential Therapeutic Applications of N-Cadherin Antagonists and Agonists. Front Cell Dev Biol 2022; 10:866200. [PMID: 35309924 PMCID: PMC8927039 DOI: 10.3389/fcell.2022.866200] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the cell adhesion molecule (CAM), known as neural (N)-cadherin (CDH2). The molecular basis of N-cadherin-mediated intercellular adhesion is discussed, as well as the intracellular signaling pathways regulated by this CAM. N-cadherin antagonists and agonists are then described, and several potential therapeutic applications of these intercellular adhesion modulators are considered. The usefulness of N-cadherin antagonists in treating fibrotic diseases and cancer, as well as manipulating vascular function are emphasized. Biomaterials incorporating N-cadherin modulators for tissue regeneration are also presented. N-cadherin antagonists and agonists have potential for broad utility in the treatment of numerous maladies.
Collapse
|
3
|
Puebla M, Tapia PJ, Espinoza H. Key Role of Astrocytes in Postnatal Brain and Retinal Angiogenesis. Int J Mol Sci 2022; 23:ijms23052646. [PMID: 35269788 PMCID: PMC8910249 DOI: 10.3390/ijms23052646] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/27/2023] Open
Abstract
Angiogenesis is a key process in various physiological and pathological conditions in the nervous system and in the retina during postnatal life. Although an increasing number of studies have addressed the role of endothelial cells in this event, the astrocytes contribution in angiogenesis has received less attention. This review is focused on the role of astrocytes as a scaffold and in the stabilization of the new blood vessels, through different molecules release, which can modulate the angiogenesis process in the brain and in the retina. Further, differences in the astrocytes phenotype are addressed in glioblastoma, one of the most devastating types of brain cancer, in order to provide potential targets involved in the cross signaling between endothelial cells, astrocytes and glioma cells, that mediate tumor progression and pathological angiogenesis. Given the relevance of astrocytes in angiogenesis in physiological and pathological conditions, future studies are required to better understand the interrelation between endothelial and astrocyte signaling pathways during this process.
Collapse
Affiliation(s)
- Mariela Puebla
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina-Clínica Alemana, Universidad del Desarrollo, Av. Plaza 680, Las Condes, Santiago 7550000, Chile;
| | - Pablo J. Tapia
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Av. Lota 2465, Providencia, Santiago 7500000, Chile;
- Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Av. República 71, Santiago 8320000, Chile
| | - Hilda Espinoza
- Facultad de Ciencias de la Salud, Universidad del Alba, Av. Ejército Libertador 171, Santiago 8320000, Chile
- Correspondence:
| |
Collapse
|
4
|
The Relationship between Cadherin Polymorphisms and the Risk of Delayed Encephalopathy after Acute Carbon Monoxide Poisoning in the Chinese Han Population. Behav Neurol 2022; 2022:3155703. [PMID: 35140817 PMCID: PMC8818434 DOI: 10.1155/2022/3155703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The purpose of this study was to analyze the relationship between cadherin gene single-nucleotide polymorphisms (SNPs) and the risk of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Materials and Methods A total of 416 patients with DEACMP and 754 patients with acute carbon monoxide poisoning (ACMP) were recruited. We used the Sequenom MassARRAY® system to detect cadherin gene SNPs related to DEACMP. Using different genetic analysis models, we evaluated the relationship between the cadherin gene polymorphisms and risk of DEACMP. Results We found that rs1944294 in the N-cadherin (CDH2) gene showed significant differences in genotype frequencies between the two groups under codominant and dominant inheritance models. Similarly, rs2513796 in the cadherin-17 (CDH17) gene showed significant differences under the codominant, dominant, and overdominant genetic models. And the T allele frequency of rs1944294 in the DEACMP group was significantly higher than that in the ACMP group (P = 0.023). Conclusions Cadherin gene SNPs (rs1944294, rs2513796) are associated with an increased risk of DEACMP in the Chinese population.
Collapse
|
5
|
Kang M, Yao Y. Laminin regulates oligodendrocyte development and myelination. Glia 2021; 70:414-429. [PMID: 34773273 DOI: 10.1002/glia.24117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/08/2022]
Abstract
Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.
Collapse
Affiliation(s)
- Minkyung Kang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Pruvost M, Moyon S. Oligodendroglial Epigenetics, from Lineage Specification to Activity-Dependent Myelination. Life (Basel) 2021; 11:62. [PMID: 33467699 PMCID: PMC7830029 DOI: 10.3390/life11010062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/25/2022] Open
Abstract
Oligodendroglial cells are the myelinating cells of the central nervous system. While myelination is crucial to axonal activity and conduction, oligodendrocyte progenitor cells and oligodendrocytes have also been shown to be essential for neuronal support and metabolism. Thus, a tight regulation of oligodendroglial cell specification, proliferation, and myelination is required for correct neuronal connectivity and function. Here, we review the role of epigenetic modifications in oligodendroglial lineage cells. First, we briefly describe the epigenetic modalities of gene regulation, which are known to have a role in oligodendroglial cells. We then address how epigenetic enzymes and/or marks have been associated with oligodendrocyte progenitor specification, survival and proliferation, differentiation, and finally, myelination. We finally mention how environmental cues, in particular, neuronal signals, are translated into epigenetic modifications, which can directly influence oligodendroglial biology.
Collapse
|
7
|
Pooyan P, Karamzadeh R, Mirzaei M, Meyfour A, Amirkhan A, Wu Y, Gupta V, Baharvand H, Javan M, Salekdeh GH. The Dynamic Proteome of Oligodendrocyte Lineage Differentiation Features Planar Cell Polarity and Macroautophagy Pathways. Gigascience 2020; 9:giaa116. [PMID: 33128372 PMCID: PMC7601170 DOI: 10.1093/gigascience/giaa116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/22/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Generation of oligodendrocytes is a sophisticated multistep process, the mechanistic underpinnings of which are not fully understood and demand further investigation. To systematically profile proteome dynamics during human embryonic stem cell differentiation into oligodendrocytes, we applied in-depth quantitative proteomics at different developmental stages and monitored changes in protein abundance using a multiplexed tandem mass tag-based proteomics approach. FINDINGS Our proteome data provided a comprehensive protein expression profile that highlighted specific expression clusters based on the protein abundances over the course of human oligodendrocyte lineage differentiation. We identified the eminence of the planar cell polarity signalling and autophagy (particularly macroautophagy) in the progression of oligodendrocyte lineage differentiation-the cooperation of which is assisted by 106 and 77 proteins, respectively, that showed significant expression changes in this differentiation process. Furthermore, differentially expressed protein analysis of the proteome profile of oligodendrocyte lineage cells revealed 378 proteins that were specifically upregulated only in 1 differentiation stage. In addition, comparative pairwise analysis of differentiation stages demonstrated that abundances of 352 proteins differentially changed between consecutive differentiation time points. CONCLUSIONS Our study provides a comprehensive systematic proteomics profile of oligodendrocyte lineage cells that can serve as a resource for identifying novel biomarkers from these cells and for indicating numerous proteins that may contribute to regulating the development of myelinating oligodendrocytes and other cells of oligodendrocyte lineage. We showed the importance of planar cell polarity signalling in oligodendrocyte lineage differentiation and revealed the autophagy-related proteins that participate in oligodendrocyte lineage differentiation.
Collapse
Affiliation(s)
- Paria Pooyan
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Razieh Karamzadeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
| | - Mehdi Mirzaei
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Daneshjoo Blv., Velenjak, Tehran 19839-63113, Iran
| | - Ardeshir Amirkhan
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Developmental Biology, University of Science and Culture, Ashrafi Esfahani, Tehran 1461968151, Iran
| | - Mohammad Javan
- Department of Brain and Cognitive Science, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal AleAhmad, Tehran 14115-111, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem St., ACECR, Tehran 16635-148, Iran
- Department of Molecular Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
8
|
Espinosa-Hoyos D, Burstein SR, Cha J, Jain T, Nijsure M, Jagielska A, Fossati V, Van Vliet KJ. Mechanosensitivity of Human Oligodendrocytes. Front Cell Neurosci 2020; 14:222. [PMID: 32848617 PMCID: PMC7420028 DOI: 10.3389/fncel.2020.00222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022] Open
Abstract
Oligodendrocytes produce and repair myelin, which is critical for the integrity and function of the central nervous system (CNS). Oligodendrocyte and oligodendrocyte progenitor cell (OPC) biology is modulated in vitro by mechanical cues within the magnitudes observed in vivo. In some cases, these cues are sufficient to accelerate or inhibit terminal differentiation of murine oligodendrocyte progenitors. However, our understanding of oligodendrocyte lineage mechanobiology has been restricted primarily to animal models to date, due to the inaccessibility and challenges of human oligodendrocyte cell culture. Here, we probe the mechanosensitivity of human oligodendrocyte lineage cells derived from human induced pluripotent stem cells. We target phenotypically distinct stages of the human oligodendrocyte lineage and quantify the effect of substratum stiffness on cell migration and differentiation, within the range documented in vivo. We find that human oligodendrocyte lineage cells exhibit mechanosensitive migration and differentiation. Further, we identify two patterns of human donor line-dependent mechanosensitive differentiation. Our findings illustrate the variation among human oligodendrocyte responses, otherwise not captured by animal models, that are important for translational research. Moreover, these findings highlight the importance of studying glia under conditions that better approximate in vivo mechanical cues. Despite significant progress in human oligodendrocyte derivation methodology, the extended duration, low yield, and low selectivity of human-induced pluripotent stem cell-derived oligodendrocyte protocols significantly limit the scale-up and implementation of these cells and protocols for in vivo and in vitro applications. We propose that mechanical modulation, in combination with traditional soluble and insoluble factors, provides a key avenue to address these challenges in cell production and in vitro analysis.
Collapse
Affiliation(s)
- Daniela Espinosa-Hoyos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Suzanne R. Burstein
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Jaaram Cha
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tanya Jain
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Madhura Nijsure
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Anna Jagielska
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) CREATE, Singapore, Singapore
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY, United States
| | - Krystyn J. Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) CREATE, Singapore, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
9
|
Gorter RP, Baron W. Matrix metalloproteinases shape the oligodendrocyte (niche) during development and upon demyelination. Neurosci Lett 2020; 729:134980. [PMID: 32315713 DOI: 10.1016/j.neulet.2020.134980] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The oligodendrocyte lineage cell is crucial to proper brain function. During central nervous system development, oligodendrocyte progenitor cells (OPCs) migrate and proliferate to populate the entire brain and spinal cord, and subsequently differentiate into mature oligodendrocytes that wrap neuronal axons in an insulating myelin layer. When damage occurs to the myelin sheath, OPCs are activated and recruited to the demyelinated site, where they differentiate into oligodendrocytes that remyelinate the denuded axons. The process of OPC attraction and differentiation is influenced by a multitude of factors from the cell's niche. Matrix metalloproteinases (MMPs) are powerful and versatile enzymes that do not only degrade extracellular matrix proteins, but also cleave cell surface receptors, growth factors, signaling molecules, proteases and other precursor proteins, leading to their activation or degradation. MMPs are markedly upregulated during brain development and upon demyelinating injury, where their broad functions influence the behavior of neural progenitor cells (NPCs), OPCs and oligodendrocytes. In this review, we focus on the role of MMPs in (re)myelination. We will start out in the developing brain with describing the effects of MMPs on NPCs, OPCs and eventually oligodendrocytes. Then, we will outline their functions in oligodendrocyte process extension and developmental myelination. Finally, we will review their potential role in demyelination, describe their significance in remyelination and discuss the evidence for a role of MMPs in remyelination failure, focusing on multiple sclerosis. In conclusion, MMPs shape the oligodendrocyte (niche) both during development and upon demyelination, and thus are important players in directing the fate and behavior of oligodendrocyte lineage cells throughout their life cycle.
Collapse
Affiliation(s)
- Rianne P Gorter
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Wia Baron
- University of Groningen, University Medical Center Groningen, Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands.
| |
Collapse
|
10
|
Traiffort E, Kassoussi A, Zahaf A, Laouarem Y. Astrocytes and Microglia as Major Players of Myelin Production in Normal and Pathological Conditions. Front Cell Neurosci 2020; 14:79. [PMID: 32317939 PMCID: PMC7155218 DOI: 10.3389/fncel.2020.00079] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Myelination is an essential process that consists of the ensheathment of axons by myelin. In the central nervous system (CNS), myelin is synthesized by oligodendrocytes. The proliferation, migration, and differentiation of oligodendrocyte precursor cells constitute a prerequisite before mature oligodendrocytes extend their processes around the axons and progressively generate a multilamellar lipidic sheath. Although myelination is predominately driven by oligodendrocytes, the other glial cells including astrocytes and microglia, also contribute to this process. The present review is an update of the most recent emerging mechanisms involving astrocyte and microglia in myelin production. The contribution of these cells will be first described during developmental myelination that occurs in the early postnatal period and is critical for the proper development of cognition and behavior. Then, we will report the novel findings regarding the beneficial or deleterious effects of astroglia and microglia, which respectively promote or impair the endogenous capacity of oligodendrocyte progenitor cells (OPCs) to induce spontaneous remyelination after myelin loss. Acute delineation of astrocyte and microglia activities and cross-talk should uncover the way towards novel therapeutic perspectives aimed at recovering proper myelination during development or at breaking down the barriers impeding the regeneration of the damaged myelin that occurs in CNS demyelinating diseases.
Collapse
Affiliation(s)
| | | | - Amina Zahaf
- U1195 Inserm, University Paris-Saclay, Kremlin-Bicêtre, France
| | - Yousra Laouarem
- U1195 Inserm, University Paris-Saclay, Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett 2020; 717:134673. [PMID: 31838017 PMCID: PMC12023767 DOI: 10.1016/j.neulet.2019.134673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
Collapse
Affiliation(s)
- Ekta P Makhija
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore
| | - Daniela Espinosa-Hoyos
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Anna Jagielska
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
12
|
Leferink PS, Heine VM. The Healthy and Diseased Microenvironments Regulate Oligodendrocyte Properties: Implications for Regenerative Medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:39-52. [PMID: 29024633 DOI: 10.1016/j.ajpath.2017.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/12/2017] [Accepted: 08/01/2017] [Indexed: 02/08/2023]
Abstract
White matter disorders are characterized by deficient myelin or myelin loss, lead to a range of neurologic dysfunctions, and can result in early death. Oligodendrocytes, which are responsible for white matter formation, are the first targets for treatment. However, many studies indicate that failure of white matter repair goes beyond the intrinsic incapacity of oligodendrocytes to (re)generate myelin and that failed interactions with neighboring cells or factors in the diseased microenvironment can underlie white matter defects. Moreover, most of the white matter disorders show specific white matter pathology caused by different disease mechanisms. Herein, we review the factors within the cellular and the extracellular microenvironment regulating oligodendrocyte properties and discuss stem cell tools to identify microenvironmental factors of importance to the development of improved regenerative medicine for patients with white matter disorders.
Collapse
Affiliation(s)
- Prisca S Leferink
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Vivi M Heine
- Department of Pediatrics/Child Neurology, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
13
|
Maternal separation induces hippocampal changes in cadherin-1 ( CDH-1 ) mRNA and recognition memory impairment in adolescent mice. Neurobiol Learn Mem 2017; 141:157-167. [DOI: 10.1016/j.nlm.2017.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/16/2017] [Accepted: 04/17/2017] [Indexed: 01/09/2023]
|
14
|
Dulamea AO. Role of Oligodendrocyte Dysfunction in Demyelination, Remyelination and Neurodegeneration in Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 958:91-127. [PMID: 28093710 DOI: 10.1007/978-3-319-47861-6_7] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oligodendrocytes (OLs) are the myelinating cells of the central nervous system (CNS) during development and throughout adulthood. They result from a complex and well controlled process of activation, proliferation, migration and differentiation of oligodendrocyte progenitor cells (OPCs) from the germinative niches of the CNS. In multiple sclerosis (MS), the complex pathological process produces dysfunction and apoptosis of OLs leading to demyelination and neurodegeneration. This review attempts to describe the patterns of demyelination in MS, the steps involved in oligodendrogenesis and myelination in healthy CNS, the different pathways leading to OLs and myelin loss in MS, as well as principles involved in restoration of myelin sheaths. Environmental factors and their impact on OLs and pathological mechanisms of MS are also discussed. Finally, we will present evidence about the potential therapeutic targets in re-myelination processes that can be accessed in order to develop regenerative therapies for MS.
Collapse
Affiliation(s)
- Adriana Octaviana Dulamea
- Neurology Clinic, University of Medicine and Pharmacy "Carol Davila", Fundeni Clinical Institute, Building A, Neurology Clinic, Room 201, 022328, Bucharest, Romania.
| |
Collapse
|
15
|
Nguyen T, Mège RM. N-Cadherin and Fibroblast Growth Factor Receptors crosstalk in the control of developmental and cancer cell migrations. Eur J Cell Biol 2016; 95:415-426. [PMID: 27320194 DOI: 10.1016/j.ejcb.2016.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/13/2016] [Accepted: 05/24/2016] [Indexed: 12/12/2022] Open
Abstract
Cell migrations are diverse. They constitutemajor morphogenetic driving forces during embryogenesis, but they contribute also to the loss of tissue homeostasis and cancer growth. Capabilities of cells to migrate as single cells or as collectives are controlled by internal and external signalling, leading to the reorganisation of their cytoskeleton as well as by the rebalancing of cell-matrix and cell-cell adhesions. Among the genes altered in numerous cancers, cadherins and growth factor receptors are of particular interest for cell migration regulation. In particular, cadherins such as N-cadherin and a class of growth factor receptors, namely FGFRs cooperate to regulate embryonic and cancer cell behaviours. In this review, we discuss on reciprocal crosstalk between N-cadherin and FGFRs during cell migration. Finally, we aim at clarifying the synergy between N-cadherin and FGFR signalling that ensure cellular reorganization during cell movements, mainly during cancer cell migration and metastasis but also during developmental processes.
Collapse
Affiliation(s)
- Thao Nguyen
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France
| | - René Marc Mège
- Institut Jacques Monod, CNRS, Université Paris Diderot, Paris, France.
| |
Collapse
|
16
|
Friedman LG, Benson DL, Huntley GW. Cadherin-based transsynaptic networks in establishing and modifying neural connectivity. Curr Top Dev Biol 2015; 112:415-65. [PMID: 25733148 DOI: 10.1016/bs.ctdb.2014.11.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life.
Collapse
Affiliation(s)
- Lauren G Friedman
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Deanna L Benson
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - George W Huntley
- Fishberg Department of Neuroscience, Friedman Brain Institute and the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
17
|
p38α (MAPK14) critically regulates the immunological response and the production of specific cytokines and chemokines in astrocytes. Sci Rep 2014; 4:7405. [PMID: 25502009 PMCID: PMC4264013 DOI: 10.1038/srep07405] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023] Open
Abstract
In CNS lesions, “reactive astrocytes” form a prominent cellular response. However, the nature of this astrocyte immune activity is not well understood. In order to study astrocytic immune responses to inflammation and injury, we generated mice with conditional deletion of p38α (MAPK14) in GFAP+ astrocytes. We studied the role of p38α signaling in astrocyte immune activation both in vitro and in vivo, and simultaneously examined the effects of astrocyte activation in CNS inflammation. Our results showed that specific subsets of cytokines (TNFα, IL-6) and chemokines (CCL2, CCL4, CXCL1, CXCL2, CXCL10) are critically regulated by p38α signaling in astrocytes. In an in vivo CNS inflammation model of intracerebral injection of LPS, we observed markedly attenuated astrogliosis in conditional GFAPcre p38α−/− mice. However, GFAPcre p38α−/− mice showed marked upregulation of CCL2, CCL3, CCL4, CXCL2, CXCL10, TNFα, and IL-1β compared to p38αfl/fl cohorts, suggesting that in vivo responses to LPS after GFAPcre p38α deletion are complex and involve interactions between multiple cell types. This finding was supported by a prominent increase in macrophage/microglia and neutrophil recruitment in GFAPcre p38α−/− mice compared to p38αfl/fl controls. Together, these studies provide important insights into the critical role of p38α signaling in astrocyte immune activation.
Collapse
|
18
|
Mitew S, Hay C, Peckham H, Xiao J, Koenning M, Emery B. Mechanisms regulating the development of oligodendrocytes and central nervous system myelin. Neuroscience 2014; 276:29-47. [DOI: 10.1016/j.neuroscience.2013.11.029] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/13/2013] [Accepted: 11/14/2013] [Indexed: 12/29/2022]
|
19
|
Clemente D, Ortega MC, Melero-Jerez C, de Castro F. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases. Front Cell Neurosci 2013; 7:268. [PMID: 24391545 PMCID: PMC3868919 DOI: 10.3389/fncel.2013.00268] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 12/03/2013] [Indexed: 01/12/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) originate in specific areas of the developing central nervous system (CNS). Once generated, they migrate towards their destinations where they differentiate into mature oligodendrocytes. In the adult, 5-8% of all cells in the CNS are OPCs, cells that retain the capacity to proliferate, migrate, and differentiate into oligodendrocytes. Indeed, these endogenous OPCs react to damage in demyelinating diseases, like multiple sclerosis (MS), representing a key element in spontaneous remyelination. In the present work, we review the specific interactions between OPCs and other glial cells (astrocytes, microglia) during CNS development and in the pathological scenario of MS. We focus on: (i) the role of astrocytes in maintaining the homeostasis and spatial distribution of different secreted cues that determine OPC proliferation, migration, and differentiation during CNS development; (ii) the role of microglia and astrocytes in the redistribution of iron, which is crucial for myelin synthesis during CNS development and for myelin repair in MS; (iii) how microglia secrete different molecules, e.g., growth factors, that favor the recruitment of OPCs in acute phases of MS lesions; and (iv) how astrocytes modify the extracellular matrix in MS lesions, affecting the ability of OPCs to attempt spontaneous remyelination. Together, these issues demonstrate how both astroglia and microglia influence OPCs in physiological and pathological situations, reinforcing the concept that both development and neural repair are complex and global phenomena. Understanding the molecular and cellular mechanisms that control OPC survival, proliferation, migration, and differentiation during development, as well as in the mature CNS, may open new opportunities in the search for reparative therapies in demyelinating diseases like MS.
Collapse
Affiliation(s)
- Diego Clemente
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| | - María Cristina Ortega
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| | - Carolina Melero-Jerez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos Toledo, Spain
| |
Collapse
|
20
|
Almeida RG, Lyons DA. On the resemblance of synapse formation and CNS myelination. Neuroscience 2013; 276:98-108. [PMID: 24035825 DOI: 10.1016/j.neuroscience.2013.08.062] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/29/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
Abstract
The myelination of axons in the central nervous system (CNS) is essential for nervous system formation, function and health. CNS myelination continues well into adulthood, but not all axons become myelinated. Unlike the peripheral nervous system, where we know of numerous axon-glial signals required for myelination, we have a poor understanding of the nature or identity of such molecules that regulate which axons are myelinated in the CNS. Recent studies have started to elucidate cell behavior during myelination in vivo and indicate that the choice of which axons are myelinated is made prior to myelin sheath generation. Here we propose that interactions between axons and the exploratory processes of oligodendrocyte precursor cells (OPCs) lead to myelination and may be similar to those between dendrites and axons that prefigure and lead to synapse formation. Indeed axons and OPCs form synapses with striking resemblance to those of neurons, suggesting a similar mode of formation. We discuss families of molecules with specific functions at different stages of synapse formation and address studies that implicate the same factors during axon-OPC synapse formation and myelination. We also address the possibility that the function of such synapses might directly regulate the myelinating behavior of oligodendrocyte processes in vivo. In the future it may be of benefit to consider these similarities when taking a candidate-based approach to dissect mechanisms of CNS myelination.
Collapse
Affiliation(s)
- R G Almeida
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| | - D A Lyons
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK; MS Society Centre for Translational Research, University of Edinburgh, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
21
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
22
|
Hochmeister S, Romauch M, Bauer J, Seifert-Held T, Weissert R, Linington C, Hartung HP, Fazekas F, Storch MK. Re-expression of N-cadherin in remyelinating lesions of experimental inflammatory demyelination. Exp Neurol 2012; 237:70-7. [PMID: 22735489 DOI: 10.1016/j.expneurol.2012.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 10/28/2022]
Abstract
The cell adhesion molecule N-cadherin is involved in several processes during central nervous system development, but also in certain pathologic conditions in the adult brain, including tumorigenesis and Alzheimer's disease. N-cadherin function in inflammatory demyelinating disease has so far not been investigated. In vitro studies suggest a role of N-cadherin in myelination; on the other hand N-cadherin has been implicated in the formation of the glial scar, which is believed to impede remyelination. The aim of our study was to investigate the expression pattern of N-cadherin immunoreactivity in experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein (MOG-EAE), an animal model closely mimicking multiple sclerosis. It allows a detailed evaluation of all stages of de- and remyelination during lesion development. Immunopathological evaluation was performed on paraffin-embedded CNS sections sampled at days 20 to 120 post immunization. We found a predominant expression of N-cadherin on oligodendrocytes in early remyelinating lesions, while in fully remyelinated shadow plaques there was no detectable immunoreactivity for N-cadherin. This expression pattern indicates a role of N-cadherin in the initiation of remyelination, most likely by providing a guidance between myelin lamellae and oligodendrocytes. Once the initial contact is made N-cadherin is then rapidly downregulated and virtually absent after completion of the repair process, analog to its known role in developmental myelination. Our results show that N-cadherin plays an important role in creating a remyelination-facilitating environment.
Collapse
Affiliation(s)
- S Hochmeister
- Department of Neurology, Medical University Graz, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Asano K, Ohkuma H. Epithelial growth factor receptor tyrosine kinase inhibitor prevents infiltration and cerebrospinal fluid dissemination in malignant glioma: an experimental study. Neurosurgery 2012; 69:399-410; discussion 410-1. [PMID: 21415790 DOI: 10.1227/neu.0b013e318215a3d0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
UNLABELLED BAC1KGROUND: AG1478 is an epithelial growth factor receptor tyrosine kinase inhibitor. Epithelial growth factor receptor regulates the expression of cadherin in cells via its action on β-catenin, and N-cadherin downregulation promotes infiltration and cerebrospinal fluid (CSF) dissemination of glioma cells. OBJECTIVE To confirm whether AG1478 might have indirect effects on N-cadherin upregulation and whether, in addition to exhibiting an antitumor effect, AG1478 might also exert protective effects against infiltration and CSF dissemination. METHODS Green fluorescent protein (GFP) was introduced into C6 cells to obtain C6-GFP, and N-cadherin was introduced into C6-GFP to obtain C6-GFP-NCH. To confirm N-cadherin upregulation and the anti-infiltrative effect of AG1478 in vitro, we conducted Western blotting, aggregation assays, and Matrigel infiltration experiments. To confirm whether AG1478 exerted preventive effects against infiltration and CSF dissemination in vivo, in addition to exerting an antitumor effect, AG1478 was administered via various routes to rat C6-GFP inoculation models. RESULTS In vitro experiments demonstrated that AG1478 could indirectly upregulate N-cadherin in C6-GFP and reduced infiltration to the level of C6-GFP-NCH. In in vivo experiments, intrathecal administration of AG1478 inhibited CSF dissemination but did not prevent infiltration. Direct administration into the tumor mass demonstrated antitumor and anti-infiltration effects and inhibited CSF dissemination in each cistern, except at the convexity. Direct and intrathecal administration was the best treatment, resulting in significantly reduced numbers of disseminated cells in the CSF smear test. CONCLUSION AG1478 was highly effective both when administered intrathecally and when inoculated directly into the tumor mass.
Collapse
Affiliation(s)
- Kenichiro Asano
- Department of Neurosurgery, Hirosaki University Graduate School of Medicine, Aomori, Japan.
| | | |
Collapse
|
24
|
Corell M, Wicher G, Limbach C, Kilimann MW, Colman DR, Fex Svenningsen Å. Spatiotemporal distribution and function of N-cadherin in postnatal Schwann cells: A matter of adhesion? J Neurosci Res 2010; 88:2338-49. [PMID: 20623533 DOI: 10.1002/jnr.22398] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During embryonic development of the peripheral nervous system (PNS), the adhesion molecule neuronal cadherin (N-cadherin) is expressed by Schwann cell precursors and associated with axonal growth cones. N-cadherin expression levels decrease as precursors differentiate into Schwann cells. In this study, we investigated the distribution of N-cadherin in the developing postnatal and adult rat peripheral nervous system. N-cadherin was found primarily in ensheathing glia throughout development, concentrated at neuron-glial or glial-glial contacts of the sciatic nerve, dorsal root ganglia (DRG), and myenteric plexi. In the sciatic nerve, N-cadherin decreases with age and progress of myelination. In adult animals, N-cadherin was found exclusively in nonmyelinating Schwann cells. The distribution of N-cadherin in developing E17 DRG primary cultures is similar to what was observed in vivo. Functional studies of N-cadherin in these cultures, using the antagonist peptide INPISGQ, show a disruption of the attachment between Schwann cells, but no interference in the initial or long-term contact between Schwann cells and axons. We suggest that N-cadherin acts primarily in the adhesion between glial cells during postnatal development. It may form adherents/junctions between nonmyelinating glia, which contribute to the stable tubular structure encapsulating thin caliber axons and thus stabilize the nerve structure as a whole.
Collapse
Affiliation(s)
- Mikael Corell
- Department of Neuroscience, Unit of Developmental Genetics, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
25
|
Lyon CA, Koutsouki E, Aguilera CM, Blaschuk OW, George SJ. Inhibition of N-cadherin retards smooth muscle cell migration and intimal thickening via induction of apoptosis. J Vasc Surg 2010; 52:1301-9. [PMID: 20630685 PMCID: PMC2977853 DOI: 10.1016/j.jvs.2010.05.096] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 05/21/2010] [Accepted: 05/22/2010] [Indexed: 01/06/2023]
Abstract
Objectives Inhibition of vascular smooth muscle cell (VSMC) migration is a potential strategy for reducing intimal thickening during in-stent restenosis and vein graft failure. In this study, we examined the effect of disrupting the function of the VSMC adhesion molecule, N-cadherin, using antagonists, neutralizing antibodies, and a dominant negative, on VSMC migration and intimal thickening. Migration was assessed by the scratch-wound assay of human saphenous vein VSMCs and in a human saphenous vein ex vivo organ culture model of intimal thickening. Results Inhibition of cadherin function using a pan-cadherin antagonist, significantly reduced migration by 53% ± 8% compared with the control peptide (n = 3; P < .05). Furthermore, inhibition of N-cadherin function with an N-cadherin antagonist, neutralizing antibodies, and adenoviral expression of dominant negative N-cadherin (RAd dn-N-cadherin), significantly reduced migration by 31% ± 2%, 23% ± 1% and 32% ± 7% compared with controls, respectively (n = 3; P < .05). Inhibition of cadherin function significantly increased apoptosis by between 1.5- and 3.3-fold at the wound edge. In an ex vivo model of intimal thickening, inhibition of N-cadherin function by infection of human saphenous vein segments with RAd dn-N-cadherin significantly reduced VSMC migration by 55% and increased VSMC apoptosis by 2.7-fold. As a result, intimal thickening was significantly suppressed by 54% ± 14%. Importantly, there was no detrimental effect of dn-N-cadherin on endothelial coverage; in fact, it was significantly increased, as was survival of cultured human saphenous vein endothelial cells. Conclusions Under the condition of this study, cell-cell adhesion mediated by N-cadherin regulates VSMC migration via modulation of viability. Interestingly, inhibition of N-cadherin function significantly retards intimal thickening via inhibition of VSMC migration and promotion of endothelial cell survival. We suggest that disruption of N-cadherin-mediated cell-cell contacts is a potential strategy for reducing VSMC migration and intimal thickening. Intimal thickening occurs in a large number of coronary artery vein grafts, lower extremity vein grafts, and stented arteries and is therefore a significant clinical problem. Intimal thickening is caused by migration of vascular smooth muscle cells (VSMC) from the intima to the media where they proliferate. In this study, we have shown that inhibition of the function of N-cadherin (a cell-cell contact protein) significantly retards VSMC migration and intimal thickening, while promoting endothelial coverage, and may therefore be clinically useful for treating intimal thickening.
Collapse
Affiliation(s)
- Cressida A Lyon
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Petralia RS, Wang YX, Hua F, Yi Z, Zhou A, Ge L, Stephenson FA, Wenthold RJ. Organization of NMDA receptors at extrasynaptic locations. Neuroscience 2010; 167:68-87. [PMID: 20096331 DOI: 10.1016/j.neuroscience.2010.01.022] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 12/14/2009] [Accepted: 01/13/2010] [Indexed: 12/14/2022]
Abstract
NMDA receptors are found in neurons both at synapses and in extrasynaptic locations. Extrasynaptic locations are poorly characterized. Here we used preembedding immunoperoxidase and postembedding immunogold electron microscopy and fluorescence light microscopy to characterize extrasynaptic NMDA receptor locations in dissociated hippocampal neurons in vitro and in the adult and postnatal hippocampus in vivo. We found that extrasynaptic NMDA receptors on neurons in vivo and in vitro were usually concentrated at points of contact with adjacent processes, which were mainly axons, axon terminals, or glia. Many of these contacts were shown to contain adhesion factors such as cadherin and catenin. We also found associations of extrasynaptic NMDA receptors with the membrane associated guanylate kinase (MAGUKs), postsynaptic density (PSD)-95 and SAP102. Developmental differences were also observed. At postnatal day 2 in vivo, extrasynaptic NMDA receptors could often be found at sites with distinct densities whereas dense material was seen only rarely at sites of extrasynaptic NMDA receptors in the adult hippocampus in vivo. This difference probably indicates that many sites of extrasynaptic NMDA receptors in early postnatal ages represent synapse formation or possibly sites for synapse elimination. At all ages, as suggested in both in vivo and in vitro studies, extrasynaptic NMDA receptors on dendrites or the sides of spines may form complexes with other proteins, in many cases, at stable associations with adjacent cell processes. These associations may facilitate unique functions for extrasynaptic NMDA receptors.
Collapse
Affiliation(s)
- R S Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders/National Institutes of Health (NIDCD/NIH), Bethesda, MD, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol 2010; 119:37-53. [PMID: 19847447 PMCID: PMC2799635 DOI: 10.1007/s00401-009-0601-5] [Citation(s) in RCA: 610] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 10/09/2009] [Accepted: 10/10/2009] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS). They are the end product of a cell lineage which has to undergo a complex and precisely timed program of proliferation, migration, differentiation, and myelination to finally produce the insulating sheath of axons. Due to this complex differentiation program, and due to their unique metabolism/physiology, oligodendrocytes count among the most vulnerable cells of the CNS. In this review, we first describe the different steps eventually culminating in the formation of mature oligodendrocytes and myelin sheaths, as they were revealed by studies in rodents. We will then show differences and similarities of human oligodendrocyte development. Finally, we will lay out the different pathways leading to oligodendrocyte and myelin loss in human CNS diseases, and we will reveal the different principles leading to the restoration of myelin sheaths or to a failure to do so.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| | | |
Collapse
|
28
|
Bribián A, Esteban PF, Clemente D, Soussi-Yanicostas N, Thomas JL, Zalc B, de Castro F. A novel role for anosmin-1 in the adhesion and migration of oligodendrocyte precursors. Dev Neurobiol 2009; 68:1503-16. [PMID: 18814310 DOI: 10.1002/dneu.20678] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
At embryonic stages of development, oligodendrocyte precursors (OPCs) generated in the preoptic area colonize the entire optic nerve (ON). Different factors controlling migration of ON OPCs have been identified, including secreted growth factors, morphogens and guidance cues, as well as cell adhesion molecules. We have shown previously that the soluble form of the extracellular matrix (ECM) protein anosmin-1, impairs OPC migration induced by FGF-2. In the present work, we show that anosmin-1 is expressed by both migrating OPCs and axons of the retinal ganglion cells in the embryonic ON. In vitro, we observe that OPC migration is strongly impaired by contact with anosmin-1 when used as a substrate and, in contrast to previous results, this effect is independent of FGF-2/FGFR1 signaling. We also show that OPCs preferentially adhere to anosmin-1 when compared with other ECM molecules used as substrates, and that when the endogenous anosmin-1 expressed by OPCs is blocked, OPC adhesion to all the different substrates (including anosmin-1), is significantly reduced. This novel effect of anosmin-1 on cell adhesion is also independent of FGF-2/FGFR1. We finally demonstrate that the blockade of the endogenous anosmin-1 expressed by OPCs impairs their migration. Our data suggest that the endogenous anosmin-1 expressed by OPCs is necessary for the correct adhesion of these cells to the different components of the ECM (including anosmin-1 itself), contributing to the migration of these cells.
Collapse
Affiliation(s)
- Ana Bribián
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda s/n, Toledo E-45071, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Piaton G, Williams A, Seilhean D, Lubetzki C. Remyelination in multiple sclerosis. PROGRESS IN BRAIN RESEARCH 2009; 175:453-64. [PMID: 19660673 DOI: 10.1016/s0079-6123(09)17530-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Remyelination in multiple sclerosis is in most cases insufficient, leading to irreversible disability. Different and nonexclusive factors account for this repair deficit. Local inhibitors of the differentiation of oligodendrocyte progenitor cells (OPCs) might play a role, as well as axonal factors impairing the wrapping process. Alternatively, a defect in the recruitment of OPCs toward the demyelinated area may be involved in lesions with oligodendroglial depopulation. Deciphering the mechanisms underlying myelin repair success or failure should open new avenues for designing strategies aimed at favoring endogenous remyelination.
Collapse
|
30
|
Tran MD, Wanner IB, Neary JT. Purinergic receptor signaling regulates N-cadherin expression in primary astrocyte cultures. J Neurochem 2008; 105:272-86. [PMID: 18182057 DOI: 10.1111/j.1471-4159.2008.05214.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Extracellular ATP exerts both short-term and long-term effects in the CNS by stimulating cell-surface purinergic receptors. Here we have examined the effect of purinergic receptor activation on N-cadherin expression, a calcium-dependent cell adhesion molecule involved in many processes, including glia-glia and axon-glia interactions. When primary cultures of rat cortical astrocytes were treated with ATP, N-cadherin protein expression increased in a time- and concentration-dependent manner. In addition, ATP treatment caused an increase in N-cadherin immunoreactivity in both the cytoplasm and on the cell surface membrane. Interestingly, experiments with cycloheximide revealed that relocalization of N-cadherin to the cell surface membrane were independent of protein synthesis. The ATP-induced increase in N-cadherin protein expression was blocked by reactive blue 2 and 8-(p-sulfophenyl)-theophylline, suggesting involvement of both P2 and P1 purinergic receptors, respectively. In addition, N-cadherin expression was partially blocked when signaling from purinergic receptors to extracellular signal regulated protein kinase or Akt was inhibited by 1,4-diamino-2,3-dicyano-1,4-bis(2-aminophenylthio)butadiene or wortmannin, respectively. By using an in vitro model of traumatic CNS injury, we found that N-cadherin expression was increased when astrocytes were subjected to rapid and reversible mechanical strain. The findings presented here demonstrate a role for extracellular ATP, purinergic receptors and protein kinase signaling in regulating N-cadherin expression and suggest a role for this mechanism in cell-cell interactions.
Collapse
Affiliation(s)
- Minh D Tran
- Research Service, Miami VA Medical Center, Department of Pathology, the Neuroscience Program, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | |
Collapse
|
31
|
Derycke L, Morbidelli L, Ziche M, De Wever O, Bracke M, Van Aken E. Soluble N-cadherin fragment promotes angiogenesis. Clin Exp Metastasis 2006; 23:187-201. [PMID: 17028923 DOI: 10.1007/s10585-006-9029-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Endothelial cells express two dependent intercellular adhesion molecules: vascular endothelial (VE)-cadherin, specific for endothelial cells, and N-cadherin, also present in neuronal, lens, skeletal and heart muscle cells, osteoblasts, pericytes and fibroblasts. While there exists a vast amount of evidence that VE-cadherin promotes angiogenesis, the role of N-cadherin still remains to be elucidated. We found that a soluble 90-kDa fragment N-cadherin promotes angiogenesis in the rabbit cornea assay and in the chorioallantoic assay when cleaved enzymatically from the extracellular domain of N-cadherin. Soluble N-cadherin stimulates migration of endothelial cells in the wound healing assay and stimulates phosphorylation of extracellular regulated kinase. In vitro experiments with PD173074 and knock-down of N-cadherin and fibroblast growth factor (FGF)-receptor, showed that the pro-angiogenic effect of soluble N-cadherin is N-cadherin- and FGF-receptor-dependent. Our results suggest that soluble N-cadherin stimulates migration of endothelial cells through the FGF-receptor.
Collapse
Affiliation(s)
- L Derycke
- Laboratory of Experimental Cancerology, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, De Pintelaan 185, 9000, Gent, Belgium.
| | | | | | | | | | | |
Collapse
|
32
|
George SJ, Beeching CA. Cadherin:catenin complex: A novel regulator of vascular smooth muscle cell behaviour. Atherosclerosis 2006; 188:1-11. [PMID: 16438974 DOI: 10.1016/j.atherosclerosis.2005.12.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 11/07/2005] [Accepted: 12/12/2005] [Indexed: 12/17/2022]
Abstract
Dysfunctional vascular smooth muscle cell (VSMC) behaviour contributes to the pathogenesis of atherosclerosis and restenosis. Increased rates of VSMC apoptosis are thought to lead to thinning of the fibrous atherosclerotic plaque and thereby instability, while migration of VSMCs to the intima, and inappropriate VSMC proliferation, contribute to intimal thickening that occurs in atherosclerosis and restenosis. Studies, mainly in cancer and neuronal cells, have demonstrated that cell-cell adhesion by the cadherin:catenin complex modulates apoptosis, migration and proliferation. In contrast, until recently the involvement of this complex in the regulation of VSMC behaviour was relatively unstudied. In this review, evidence for the regulation of VSMC apoptosis, migration and proliferation by the cadherin:catenin complex will be discussed.
Collapse
Affiliation(s)
- S J George
- Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 9HW, UK.
| | | |
Collapse
|
33
|
Semler EJ, Dasgupta A, Moghe PV. Cytomimetic engineering of hepatocyte morphogenesis and function by substrate-based presentation of acellular E-cadherin. ACTA ACUST UNITED AC 2006; 11:734-50. [PMID: 15998215 DOI: 10.1089/ten.2005.11.734] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Although cadherin-mediated intercellular contacts can be integral to the maintenance of functionally competent hepatocytes in vitro, the ability to engineer hepatocellular differentiated function via acellular E-cadherin has yet to be thoroughly explored. To investigate the potential of substrate-presented, acellular E-cadherin to modulate hepatocellular self-assembly and functional fate, rat hepatocytes were cultured at sparse densities on surfaces designed to display recombinant E-cadherin/Fc chimeras. On these substrates, hepatocytes were observed to recognize microdisplayed E-cadherin/Fc and responded by modulating the spatial distribution of the intracellular cadherin-complexing protein beta-catenin. Substrate-presented E-cadherin/Fc was also found to markedly alter patterns of hepatocyte morphogenesis, as cellular spreading and two-dimensional reorganization were significantly inhibited under these conditions, leading to multicellular aggregates that were considerably more three-dimensional in nature. Increasing cadherin exposure was also associated with elevated levels of albumin and urea secretion, two markers of hepatocyte differentiation, over control cultures. This suggested that cell-substrate cadherin engagement established more functionally competent hepatocellular phenotypes, coinciding with the notion that E-cadherin is a differentiation-inducing ligand for these cells. The morphogenetic and function-promoting effects of substrate-bound E-cadherin/Fc were further enhanced under conditions in which protein A was utilized as an anchoring molecule to present cadherin molecules, suggesting that ligand mobility may play an important role in the effective establishment of cell-to-substrate cadherin interactions. Interestingly, the percent increase in function detected for conditions of high cadherin exposure versus control cultures was found to be substantially higher at extremely low cell densities. This observation indicated that hepatocytes respond to substrate-presented E-cadherin even in the absence of native intercellular interactions and associated juxtacrine signaling. The incorporation of acellular E-cadherin on biomaterial substrates may thus potentially present a means to prevent hepatocellular dedifferentiation by maintaining liver-specific function in otherwise severely functionally repressive culture conditions.
Collapse
Affiliation(s)
- Eric J Semler
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
34
|
Lee SW, Kim WJ, Park JA, Choi YK, Kwon YW, Kim KW. Blood-brain barrier interfaces and brain tumors. Arch Pharm Res 2006; 29:265-75. [PMID: 16681030 DOI: 10.1007/bf02968569] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In the developing brain, capillaries are differentiated and matured into the blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocyte end-feet, and pericytes. Since the BBB regulates the homeostasis of central nervous system (CNS), the maintenance of the BBB is important for CNS function. The disruption of the BBB may result in many brain disorders including brain tumors. However, the molecular mechanism of BBB formation and maintenance is poorly understood. Here, we summarize recent advances in the role of oxygen tension and growth factors on BBB development and maintenance, and in BBB dysfunction related with brain tumors.
Collapse
Affiliation(s)
- Sae-Won Lee
- Neurovascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
35
|
de Castro F, Bribián A. The molecular orchestra of the migration of oligodendrocyte precursors during development. ACTA ACUST UNITED AC 2005; 49:227-41. [PMID: 16111552 DOI: 10.1016/j.brainresrev.2004.12.034] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 11/11/2004] [Accepted: 12/10/2004] [Indexed: 02/06/2023]
Abstract
During development of the central nervous system (CNS), postmitotic cells (including neurons and myelin-generating cells, the oligodendrocytes) migrate from the germinal areas of the neural tube where they originate to their final destination sites. The migration of neurons during development has been extensively studied and has been the topic of detailed reviews. The migration of oligodendrocyte precursor cells (OPCs) is also an extremely complex and precise event, with a widespread migration of OPCs across many regions to colonize the entire CNS. Different mechanisms have been shown to direct the migration of OPCs, among them contact-mediated mechanisms (adhesion molecules) and long-range cues (chemotropic molecules). This review provides a detailed overview and discussion of the cellular and molecular basis of OPCs migration during development. Because it has been shown that neuronal and oligodendroglial lineages share some of these mechanisms, we briefly summarize similarities and differences between these two types of neural cells. We also summarize the changes in the normal migration of OPCs during development that would be relevant for different neurological diseases (including demyelinating diseases, such as multiple sclerosis, and glial cancers). We also examine the relevance of these migratory properties of the oligondendrocytic cell lineage for the repair of neural damage.
Collapse
Affiliation(s)
- Fernando de Castro
- Instituto de Neurociencias de Castilla y León-INCyL, Universidad de Salamanca, Avda. de Alfonso X el Sabio, s/n, E-37007-Salamanca, Spain.
| | | |
Collapse
|
36
|
Abstract
Multiple sclerosis presents particular and serious problems to those attempting to develop cell-based therapies: the occurrence of innumerable lesions scattered throughout the CNS, axon loss, astrocytosis, and a continuing inflammatory process, to name but a few. Nevertheless, the limited and relatively focused nature of damage to oligodendrocytes and myelin, at least in early disease, the large body of available knowledge concerning the biology of oligodendrocytes, and the success of experimental myelin repair, have allowed cautious optimism that therapies may be possible. Here, we review the clinical and biological problems presented by multiple sclerosis in the context of cell therapies, and the neuroscientific background to the development of strategies for myelin repair. We attempt to highlight those areas where difficulties have yet to be resolved and draw on a variety of more recent experimental findings to speculate on how remyelinating therapies are likely to develop in the foreseeable future.
Collapse
Affiliation(s)
- Claire Rice
- University of Bristol Institute of Clinical Neurosciences, Department of Neurology, Frenchay Hospital, Bristol, BS16 1LE, United Kingdom
| | | | | |
Collapse
|
37
|
Scheidenhelm DK, Cresswell J, Haipek CA, Fleming TP, Mercer RW, Gutmann DH. Akt-dependent cell size regulation by the adhesion molecule on glia occurs independently of phosphatidylinositol 3-kinase and Rheb signaling. Mol Cell Biol 2005; 25:3151-62. [PMID: 15798201 PMCID: PMC1069598 DOI: 10.1128/mcb.25.8.3151-3162.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 10/12/2004] [Accepted: 01/06/2005] [Indexed: 12/13/2022] Open
Abstract
The role of cell adhesion molecules in mediating interactions with neighboring cells and the extracellular matrix has long been appreciated. More recently, these molecules have been shown to modulate intracellular signal transduction cascades critical for cell growth and proliferation. Expression of adhesion molecule on glia (AMOG) is downregulated in human and mouse gliomas, suggesting that AMOG may be important for growth regulation in the brain. In this report, we examined the role of AMOG expression on cell growth and intracellular signal transduction. We show that AMOG does not negatively regulate cell growth in vitro or in vivo. Instead, expression of AMOG in AMOG-deficient cells results in a dramatic increase in cell size associated with protein kinase B/Akt hyperactivation, which occurs independent of phosphatidylinositol 3-kinase activation. AMOG-mediated Akt phosphorylation specifically activates the mTOR/p70S6 kinase pathway previously implicated in cell size regulation, but it does not depend on tuberous sclerosis complex/Ras homolog enriched in brain (Rheb) signaling. These data support a novel role for a glial adhesion molecule in cell size regulation through selective activation of the Akt/mTOR/S6K signal transduction pathway.
Collapse
Affiliation(s)
- Danielle K Scheidenhelm
- Department of Neurology, Washington University School of Medicine, Box 8111, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
38
|
Chaudhuri A. Why we should offer routine vitamin D supplementation in pregnancy and childhood to prevent multiple sclerosis. Med Hypotheses 2005; 64:608-18. [PMID: 15617877 DOI: 10.1016/j.mehy.2004.06.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 06/24/2004] [Indexed: 10/26/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system that runs a chronic course and disables young people. The disease is more prevalent in the geographic areas that are farthest from the equator. No form of treatment is known to be effective in preventing MS or its disabling complications. A number of epidemiological studies have shown a protective effect of exposure to sunlight during early life and a recent longitudinal study confirmed that vitamin D supplementation reduced life-time prevalence of MS in women. Very little is known regarding the role of vitamin D on the developing brain but experimental data suggest that cerebral white matter is vitamin D responsive and oligodendrocytes in the brain and spinal cord and express vitamin D receptors. It is possible that differentiation and axonal adhesion of oligodendrocytes are influenced by vitamin D level during brain development and a relative lack of vitamin D may increase oligodendroglial apoptosis. The age effect of migration on susceptibility to develop MS could be explained by a role of vitamin D on brain development. In areas of high MS prevalence, dietary supplementation of vitamin D in early life may reduce the incidence of MS. In addition, like folic acid, vitamin D supplementation should also be routinely recommended in pregnancy. Prevention of MS by modifying an important environmental factor (sunlight exposure and vitamin D level) offers a practical and cost-effective way to reduce the burden of the disease in the future generations.
Collapse
Affiliation(s)
- Abhijit Chaudhuri
- Department of Neurology, Institute of Neurological Sciences, 1345 Govan Road, Glasgow G51 4TF, UK.
| |
Collapse
|
39
|
Asano K, Duntsch CD, Zhou Q, Weimar JD, Bordelon D, Robertson JH, Pourmotabbed T. Correlation of N-cadherin expression in high grade gliomas with tissue invasion. J Neurooncol 2004; 70:3-15. [PMID: 15527101 DOI: 10.1023/b:neon.0000040811.14908.f2] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cadherins are Ca2+-dependent cell adhesion molecules that play an important role in tissue construction and morphogenesis in multicellular organisms. Over the last few years, reports have emerged in the literature describing the involvement of cadherins in tumor invasion and metastasis. Cadherins typically demonstrate up and down-regulation according to the biological needs of the tissue. Additionally, up-regulation of N-cadherin is thought to be important for tumor formation in early stages of tumor development. We studied N-cadherin in surgical specimens of patients with primary glioblastoma by microarray analysis and found that N-cadherin mRNA expression is up-regulated compared to normal brain. To study the effects of N-cadherin expression on invasion and metastasis in vitro and in vivo, we overexpressed N-cadherin in the rat C6 glioma cell line which normally has low levels of N-cadherin. We found that up-regulation of N-cadherin resulted in a slight decreased adhesion to type IV collagen, fibronectin, and laminin, but statistically significant decreased adhesion to type I collagen. Furthermore, increased expression of N-cadherin correlated with a dramatic decrease in invasive behavior in extracellular matrix invasion assays. We then proceeded to study these cell lines in vivo in a rat intracranial glioma model, and found that N-cadherin expression inversely correlated with invasion into surrounding tissues, irregular margins, and extracranial invasion. In summary, these data collectively demonstrate that N-cadherin levels are important in the malignant behavior of gliomas, and may serve as a prognostic indicator for patients with high-grade gliomas.
Collapse
Affiliation(s)
- Kenichiro Asano
- Department of Neurosurgery, The University of Tennessee Health Science Center, Memphis, TN, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Harzheim M, Stepien-Mering M, Schröder R, Schmidt S. The Expression of Microfilament-Associated Cell-Cell Contacts in Brain Endothelial Cells Is Modified by IFN-β1a (Rebif®). J Interferon Cytokine Res 2004; 24:711-6. [PMID: 15684738 DOI: 10.1089/jir.2004.24.711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In multiple sclerosis (MS), a crucial step in the induction phase of the inflammatory process in the central nervous system (CNS) is the disruption of the endothelial blood-brain barrier (BBB). Its permeability depends on the expression of intercellular adhesion molecules, such as vinculin and N-cadherin in endothelial cells. Interferon-gamma (IFN-gamma), as a proinflammatory cytokine, decreases the expression of both adhesion molecules in epithelial and astrocytic cells, whereas IFN-beta1a, an established treatment for MS, increases the expression of N-cadherin and vinculin in astrocytic cells and is postulated to preserve endothelial cell barrier function and to inhibit transendothelial migration of activated leukocytes. We analyzed the expression of N-cadherin and vinculin in a murine brain endothelial cell line by immunofluorescence staining and Western blot to study the presumed reversal effects of IFN-beta1a (Rebif, Serono Pharma, Unterschleissheim, Germany) and IFN-gamma on the formation of intercellular contacts. Vinculin and N-cadherin expression in brain endothelial cells was decreased after treatment with IFN-gamma, whereas stimulation with IFN-beta1a caused increased expression of both adhesion molecules. Combined treatment with both IFNs did not affect vinculin and N-cadherin expression. These data suggest that IFN-gamma contributes to BBB disruption by decreasing and IFN-beta1a restores the BBB by an upregulation of vinculin and N-cadherin expression in brain endothelial cells. This action of IFN-beta1a may contribute to its beneficial effects in MS therapy.
Collapse
|
41
|
Machon O, van den Bout CJ, Backman M, Kemler R, Krauss S. Role of β-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 2003; 122:129-43. [PMID: 14596855 DOI: 10.1016/s0306-4522(03)00519-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
beta-Catenin plays a pivotal role in Wnt signaling during embryogenesis and is a component of adherens junctions. Since targeted disruption of the beta-catenin gene is lethal at gastrulation we have used a D6-Cre mouse line for conditional inactivation of beta-catenin in the mouse cerebral cortex and hippocampus after embryonic day (E) 10.5. In D6-Cre floxed beta-catenin mice, hippocampal CA1-CA2 fields are disrupted in similar manner as in Wnt-3a and LEF-1 mutants. The cortex of D6-Cre floxed beta-catenin mutants is strongly affected which contrasts with the normal cortex observed in Wnt-3a and LEF-1 mutants. Severe abnormalities in the organization of the neuroepithelium are observed that include disrupted interkinetic nuclear migration, loss of adherens junctions, impaired radial migration of neurons toward superficial layers and decreased cell proliferation after E15.5. At newborn stage, a premature disassembly of the radial glial scaffold and increased numbers of astrocytes are found in the cortex.
Collapse
Affiliation(s)
- O Machon
- Institute of Molecular Genetics, Czech Academy of Sciences, Videnska 1083, 14220 Praha, Czech Republic
| | | | | | | | | |
Collapse
|
42
|
Bekirov IH, Needleman LA, Zhang W, Benson DL. Identification and localization of multiple classic cadherins in developing rat limbic system. Neuroscience 2003; 115:213-27. [PMID: 12401335 DOI: 10.1016/s0306-4522(02)00375-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Classic cadherins are multifunctional adhesion proteins that play roles in tissue histogenesis, neural differentiation, neurite outgrowth and synapse formation. Several lines of evidence suggest that classic cadherins may establish regional or laminar recognition cues by virtue of their differential expression and tight, and principally homophilic, cell adhesion. As a first step toward investigating the role this family plays in generating limbic system connectivity, we used RT-PCR to amplify type I and type II classic cadherins present in rat hippocampus during the principal period of synaptogenesis. We identified nine different cadherins, one of which, cadherin-9, is novel in hippocampus. Using in situ hybridization, we compared the cellular and regional distribution of five of the cadherins (N, 6, 8, 9 and 10) during the first two postnatal weeks in hippocampus, subiculum, entorhinal cortex, cingulate cortex, anterior thalamus, hypothalamus and amygdala. We find that each cadherin is differentially distributed in distinct, but highly overlapping fields that largely correspond to known anatomical boundaries and are often coordinately expressed in interconnected regions. For example, cadherin-6 expression defines CA1 and its principal target, the subiculum; cadherin-10 is differentially expressed in CA1 and CA3 in a manner correlating with the organization of interconnecting Schaffer collateral axons; and cadherin-9 shows a striking concentration in CA3. Some cadherin mRNAs are highly restricted to particular anatomical fields over the entire time course, while others are more broadly expressed and become concentrated within particular domains coincident with the timing of afferent ingrowth. Our data indicate that classic cadherins are sufficiently diverse and differentially distributed to support a role in cell surface recognition and adhesion during the formation of limbic system connectivity.
Collapse
Affiliation(s)
- I H Bekirov
- Fishberg Research Center for Neurobiology, Box 1065/Neurobiology, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
43
|
Harzheim M, Altenschmidt M, Heneka MT, Schröder R, Klockgether T, Schmidt S. IFN-beta1a (Rebif) modifies the expression of microfilament-associated cell-cell contacts in C6 glioma cells. J Interferon Cytokine Res 2003; 23:83-9. [PMID: 12744773 DOI: 10.1089/107999003321455471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease characterized by multifocal demyelination and axonal damage in the central nervous system (CNS). The disruption of the endothelial blood-brain barrier (BBB) with consecutive transmigration of inflammatory cells into the brain parenchyma is of critical importance in the pathogenesis of MS. The integrity of the BBB and the adjacent network of glial cells partially depends on the assembly of intercellular contacts between astrocytes. We demonstrate that recombinant interferon-gamma (rIFN-gamma), a proinflammatory cytokine critically involved in the disruption of the BBB, downregulates the expression of the cell adhesion molecules N-cadherin and vinculin in astrocytic C6 cells using Western blot and immunofluorescence microscopy. By contrast, IFN-beta1a, an established treatment for relapsing-remitting MS, increases the expression of N-cadherin and vinculin and partly inhibits the downregulation of these adhesion molecules by phytohemagglutinin (PHA)-stimulated IFN-gamma-secreting human T lymphocytes in coculture experiments. In summary, we demonstrate that IFN-beta1a modifies the assembly of N-cadherin- and vinculin-mediated intercellular contacts between astrocytic C6 cells in vitro. This effect may also contribute to the therapeutic action of IFN-beta1a in MS.
Collapse
Affiliation(s)
- Michael Harzheim
- Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, D-53105 Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Huang ZY, Wu Y, Hedrick N, Gutmann DH. T-cadherin-mediated cell growth regulation involves G2 phase arrest and requires p21(CIP1/WAF1) expression. Mol Cell Biol 2003; 23:566-78. [PMID: 12509455 PMCID: PMC151541 DOI: 10.1128/mcb.23.2.566-578.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the cadherin family have been implicated as growth regulators in multiple tumor types. Based on recent studies from our laboratory implicating T-cadherin expression in mouse brain tumorigenesis, we examined the role of T-cadherin in astrocytoma growth regulation. In this report, we show that T-cadherin expression increased during primary astrocyte physiologic growth arrest in response to contact inhibition and serum starvation in vitro, suggesting a function for T-cadherin in astrocyte growth regulation. We further demonstrate that transient and stable reexpression of T-cadherin in deficient C6 glioma cell lines results in growth suppression. In addition, T-cadherin-expressing C6 cell lines demonstrated increased homophilic cell aggregation, increased cell attachment to fibronectin, and decreased cell motility. Cell cycle flow cytometry demonstrated that T-cadherin reexpression resulted in G2 phase arrest, which was confirmed by mitotic index analysis. This growth arrest was p53 independent, as T-cadherin could still mediate growth suppression in p53(-/-) mouse embryonic fibroblasts. T-cadherin-expressing C6 cell lines exhibited increased p21(CIP1/WAF1), but not p27(Kip1), expression. Lastly, T-cadherin-mediated growth arrest was dependent on p21(CIP1/WAF1) expression and was eliminated in p21(CIP1/WAF1)-deficient fibroblasts. Collectively, these observations suggest a novel mechanism of growth regulation for T-cadherin involving p21(CIP1/WAF1) expression and G2 arrest.
Collapse
Affiliation(s)
- Zhi-yong Huang
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
45
|
Gil OD, Needleman L, Huntley GW. Developmental patterns of cadherin expression and localization in relation to compartmentalized thalamocortical terminations in rat barrel cortex. J Comp Neurol 2002; 453:372-88. [PMID: 12389209 DOI: 10.1002/cne.10424] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The wiring of synaptic circuitry during development is remarkably precise, but the molecular interactions that enable such precision remain largely to be defined. Cadherins are cell adhesion molecules hypothesized to play roles in axon growth and synaptic targeting during development. We previously showed that N-cadherin localizes to ventrobasal (VB) thalamocortical synapses in rat somatosensory (barrel) cortex during formation of the whisker-map in layer IV (Huntley and Benson [1999] J. Comp. Neurol. 407:453-471). Such specific association of N-cadherin with one identified afferent pathway raises the prediction that other cadherins are expressed in barrel cortex and that these are, in some combination, also differentially associated with distinct inputs. Here, we first show that N-cadherin and three other classic cadherins (cadherin-6, -8, and -10) are expressed contemporaneously in barrel cortex with relative levels of postnatal expression that are highest during the first 2 weeks, when afferent and intrinsic circuitries are forming and synaptogenesis is maximal. Each displayed distinct, but partly overlapping laminar patterns of expression that changed over time. Cadherin-8 probe hybridization formed a particularly striking pattern of intermittent, columnar patches extending from layer V through layer III, which was first detectable at approximately postnatal day 3. The patches were centered precisely over regions of dysgranular layer IV and, in the whisker barrel field, over barrel septa. This pattern is similar to that formed by the terminal distribution of thalamocortical afferents arising from the posterior nucleus (POm), suggesting cadherin-8 association with the POm thalamocortical synaptic circuit. Consistent with this, cadherin-8 mRNAs were enriched in the POm nucleus, and cadherin-8 immunolabeling in layer IV was enriched in barrel septa and codistributed with labeled POm thalamocortical synaptic-like puncta. The striking molecular parcellation of at least two different cadherins to the two, converging thalamic pathways that terminated in non-overlapping barrel center and septal compartments in layer IV strongly suggested that cadherins provide requisite molecular recognition and targeting that enable precise construction of thalamocortical and other synaptic circuitry.
Collapse
Affiliation(s)
- Orlando D Gil
- Fishberg Research Center for Neurobiology, The Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
46
|
Lele Z, Folchert A, Concha M, Rauch GJ, Geisler R, Rosa F, Wilson SW, Hammerschmidt M, Bally-Cuif L. parachute/n-cadherinis required for morphogenesis and maintained integrity of the zebrafish neural tube. Development 2002; 129:3281-94. [PMID: 12091300 DOI: 10.1242/dev.129.14.3281] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
N-cadherin (Ncad) is a classical cadherin that is implicated in several aspects of vertebrate embryonic development, including somitogenesis, heart morphogenesis, neural tube formation and establishment of left-right asymmetry. However, genetic in vivo analyses of its role during neural development have been rather limited. We report the isolation and characterization of the zebrafish parachute (pac) mutations. By mapping and candidate gene analysis, we demonstrate that pac corresponds to a zebrafish n-cadherin (ncad) homolog. Three mutant alleles were sequenced and each is likely to encode a non-functional Ncad protein. All result in a similar neural tube phenotype that is most prominent in the midbrain, hindbrain and the posterior spinal cord. Neuroectodermal cell adhesion is altered, and convergent cell movements during neurulation are severely compromised. In addition, many neurons become progressively displaced along the dorsoventral and the anteroposterior axes. At the cellular level, loss of Ncad affects β-catenin stabilization/localization and causes mispositioned and increased mitoses in the dorsal midbrain and hindbrain, a phenotype later correlated with enhanced apoptosis and the appearance of ectopic neurons in these areas. Our results thus highlight novel and crucial in vivo roles for Ncad in the control of cell convergence, maintenance of neuronal positioning and dorsal cell proliferation during vertebrate neural tube development.
Collapse
Affiliation(s)
- Zsolt Lele
- Max-Planck Institute for Immunobiology, Stuebeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
A hallmark of astrocytic tumors is their infiltrative nature. Although their aggressive and typically widespread dispersal in the adult brain differs fundamentally from that of other brain tumors, little is known about their cellular basis. Astrocytic tumors express the gap junction protein connexin 43 (Cx43), and we show here that Cx43 expression induced the morphological transformation of glioma cells into an epithelial phenotype. In a short-term aggregation assay, Cx43 expression was associated with a several-fold increase in the competence of glioma cells to aggregate. Antibodies directed against the extracellular domain of Cx43 restored the connexin-deficient phenotype, as manifested by a dose-dependent reduction in aggregation. Apart from their role in gap junction formation, connexins may therefore be considered a distinct class of membrane proteins with adhesive properties. Moreover, implanted Cx43-expressing glioma cells established functional gap junction channels with host astrocytes and dispersed through a substantially greater volume of brain parenchyma than mock- and mutant Cx43-transfected sister cells. Cx43 expression therefore may modulate not only the adhesion of astrocytes to one another, but the spread of glial tumor cells throughout astrocytic syncytia. These observations widen our concept of the potential interactions between tumor cells and their surroundings and suggest that both connexin proteins and their derived gap junctions are critical determinants of the invasiveness of central gliomas.
Collapse
|
48
|
Abstract
The molecular mechanisms underlying the contact behavior of Schwann cells (SCs) and SC-axon association are poorly understood. SC-SC and SC-axon interactions were studied using purified adult rat SCs and cocultures of SCs with embryonic dorsal root ganglion neurons. After contact of SCs with axons, SCs start to extend processes in alignment with axons. This unique alignment was quantitated using a new assay. SC-axon alignment and SC-SC band formation were disrupted in medium containing low extracellular calcium, indicating the involvement of calcium-dependent adhesion molecules. N-cadherin expression was strong in developing rat sciatic nerves but weak in adult sciatic nerves. In purified adult-derived rat SCs, N-cadherin expression was increased by mitogens (neuregulins) and decreased by high cell density. High-resolution confocal images show intense N-cadherin signals in SC process tips. Subcellular N-cadherin was accumulated in bands at intercellular junctions between SCs and was clustered at axon-SC contact sites. Blocking antibodies (rabbit and guinea pig IgG directed against the first extracellular domain of N-cadherin) and cyclic pentapeptides (including the HAV motif) were used to perturb N-cadherin function. All blocking agents reduced the number of N-cadherin-positive SC-SC junctions and perturbed axon-aligned growth of SC processes. Averaging over all N-cadherin-perturbation experiments, in controls 67-86% of SCs exhibited axon-aligned process growth, whereas in treated cultures only 41% of the SCs aligned with axons. These results are evidence that in mammals N-cadherin is important for formation of SC-SC junctions and SC process growth in alignment with axons.
Collapse
|
49
|
Abstract
A decade ago, therapeutic strategies to remyelinate the CNS in diseases such as multiple sclerosis had much experimental appeal, but translation of laboratory success into clinical treatments appeared to be a long way off. Within the past 12 months, however, the first patients with multiple sclerosis have received intracerebral implants of autologous myelinating cells. Here we review the clinical and biological problems presented by multiple sclerosis disease processes, and the background to the development of myelin-repair strategies. We attempt to highlight those areas where difficulties have yet to be resolved, and draw on various experimental findings to speculate on how remyelinating therapies are likely to develop in the foreseeable future.
Collapse
|
50
|
Abstract
Motility of the nerve growth cone is highly dependent on its dynamic interactions with the microenvironment mediated by cell adhesion molecules (CAMs). These adhesive interactions can be spatially regulated by changing the density and avidity of CAMs on the growth cone. Previous studies have shown that L1, a member of the immunoglobulin superfamily of CAMs, is endocytosed at the central domain of the growth cone followed by centrifugal vesicular transport and reinsertion into the plasma membrane of the leading edge. The present paper focuses on the functional significance of endocytic L1 trafficking in dorsal root ganglia neurons in vitro. We demonstrate that the rate of L1-based neurite growth has a positive correlation with the amount of endocytosed L1 in the growth cone, whereas stimulation of neurite growth via an N-cadherin-dependent mechanism does not increase L1 endocytosis. A growth cone that migrates on an L1 substrate exhibits a steep gradient of L1-mediated adhesion (strong adhesion at the growth cone's leading edge and weak adhesion at the central domain). This gradient of L1 adhesion is attenuated after inhibition of L1 endocytosis in the growth cone by intracellular loading of a function-blocking antibody against alpha-adaptin, a subunit of the clathrin-associated AP-2 adaptor. Inhibition of L1 endocytosis by this antibody also decreased the rate of L1-dependent growth cone migration. These results indicate that the growth cone actively translocates CAMs to create spatial asymmetry in adhesive interactions with its environment and that this spatial asymmetry is important for growth cone migration.
Collapse
|