1
|
Xu L, Shao Z, Fang X, Xin Z, Zhao S, Zhang H, Zhang Y, Zheng W, Yu X, Zhang Z, Sun L. Exploring precision treatments in immune-mediated inflammatory diseases: Harnessing the infinite potential of nucleic acid delivery. EXPLORATION (BEIJING, CHINA) 2025; 5:20230165. [PMID: 40040830 PMCID: PMC11875455 DOI: 10.1002/exp.20230165] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/22/2024] [Indexed: 03/06/2025]
Abstract
Immune-mediated inflammatory diseases (IMIDs) impose an immeasurable burden on individuals and society. While the conventional use of immunosuppressants and disease-modifying drugs has provided partial relief and control, their inevitable side effects and limited efficacy cast a shadow over finding a cure. Promising nucleic acid drugs have shown the potential to exert precise effects at the molecular level, with different classes of nucleic acids having regulatory functions through varying mechanisms. For the better delivery of nucleic acids, safe and effective viral vectors and non-viral delivery systems (including liposomes, polymers, etc.) have been intensively explored. Herein, after describing a range of nucleic acid categories and vectors, we focus on the application of therapeutic nucleic acid delivery in various IMIDs, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, multiple sclerosis, asthma, ankylosing spondylitis, systemic lupus erythematosus, and uveitis. Molecules implicated in inflammation and immune dysregulation are abnormally expressed in a series of IMIDs, and their meticulous modulation through nucleic acid therapy results in varying degrees of remission and improvement of these diseases. By synthesizing findings centered on specific molecular targets, this review delivers a systematic elucidation and perspective towards advancing and utilization of nucleic acid therapeutics for managing IMIDs.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Xia Fang
- Department of Plastic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zengfeng Xin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Yu Zhang
- Pharmaceutical Sciences LaboratoryAbo Akademi UniversityTurkuFinland
| | - Wenbiao Zheng
- Department of OrthopedicsTaizhou Municipal HospitalTaizhouChina
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| | - Lingling Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Orthopedics Research Institute of Zhejiang UniversityZhejiang University School of MedicineHangzhouChina
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
- Clinical Research Center of Motor System Disease of Zhejiang ProvinceZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
2
|
Cortese M, Torchiaro E, D'Andrea A, Petti C, Invrea F, Franco L, Donini C, Leuci V, Leto SM, Vurchio V, Cottino F, Isella C, Arena S, Vigna E, Bertotti A, Trusolino L, Sangiolo D, Medico E. Preclinical efficacy of a HER2 synNotch/CEA-CAR combinatorial immunotherapy against colorectal cancer with HER2 amplification. Mol Ther 2024; 32:2741-2761. [PMID: 38894542 PMCID: PMC11405179 DOI: 10.1016/j.ymthe.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 05/03/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
HER2 amplification occurs in approximately 5% of colorectal cancer (CRC) cases and is associated only partially with clinical response to combined human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR)-targeted treatment. An alternative approach based on adoptive cell therapy using T cells engineered with anti-HER2 chimeric antigen receptor (CAR) proved to be toxic due to on-target/off-tumor activity. Here we describe a combinatorial strategy to safely target HER2 amplification and carcinoembryonic antigen (CEA) expression in CRC using a synNotch-CAR-based artificial regulatory network. The natural killer (NK) cell line NK-92 was engineered with an anti-HER2 synNotch receptor driving the expression of a CAR against CEA only when engaged. After being transduced and sorted for HER2-driven CAR expression, cells were cloned. The clone with optimal performances in terms of specificity and amplitude of CAR induction demonstrated significant activity in vitro and in vivo specifically against HER2-amplified (HER2amp)/CEA+ CRC models, with no effects on cells with physiological HER2 levels. The HER2-synNotch/CEA-CAR-NK system provides an innovative, scalable, and safe off-the-shelf cell therapy approach with potential against HER2amp CRC resistant or partially responsive to HER2/EGFR blockade.
Collapse
MESH Headings
- Colorectal Neoplasms/therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/immunology
- Humans
- Receptor, ErbB-2/metabolism
- Receptor, ErbB-2/genetics
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Carcinoembryonic Antigen/immunology
- Carcinoembryonic Antigen/genetics
- Gene Amplification
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Immunotherapy/methods
- Immunotherapy, Adoptive/methods
- Disease Models, Animal
- Female
Collapse
Affiliation(s)
- Marco Cortese
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy.
| | - Erica Torchiaro
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Alice D'Andrea
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Consalvo Petti
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Federica Invrea
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy
| | - Letizia Franco
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy
| | - Chiara Donini
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | | | | | | | - Claudio Isella
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Elisa Vigna
- University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Andrea Bertotti
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Livio Trusolino
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy
| | - Enzo Medico
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo (TO), Italy; University of Turin, Department of Oncology, 10060 Candiolo (TO), Italy.
| |
Collapse
|
3
|
Hong J, Sohn KC, Park HW, Jeon H, Ju E, Lee JG, Lee JS, Rho J, Hur GM, Ro H. All-in-one IQ toggle switches with high versatilities for fine-tuning of transgene expression in mammalian cells and tissues. Mol Ther Methods Clin Dev 2024; 32:101202. [PMID: 38374964 PMCID: PMC10875299 DOI: 10.1016/j.omtm.2024.101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/29/2024] [Indexed: 02/21/2024]
Abstract
The transgene toggling device is recognized as a powerful tool for gene- and cell-based biological research and precision medicine. However, many of these devices often operate in binary mode, exhibit unacceptable leakiness, suffer from transgene silencing, show cytotoxicity, and have low potency. Here, we present a novel transgene switch, SIQ, wherein all the elements for gene toggling are packed into a single vector. SIQ has superior potency in inducing transgene expression in response to tebufenozide compared with the Gal4/UAS system, while completely avoiding transgene leakiness. Additionally, the ease and versatility of SIQ make it possible with a single construct to perform transient transfection, establish stable cell lines by targeting a predetermined genomic locus, and simultaneously produce adenovirus for transduction into cells and mammalian tissues. Furthermore, we integrated a cumate switch into SIQ, called SIQmate, to operate a Boolean AND logic gate, enabling swift toggling-off of the transgene after the removal of chemical inducers, tebufenozide and cumate. Both SIQ and SIQmate offer precise transgene toggling, making them adjustable for various researches, including synthetic biology, genome engineering, and therapeutics.
Collapse
Affiliation(s)
- Jeongkwan Hong
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Kyung-Cheol Sohn
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hye-Won Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Hyoeun Jeon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Eunjin Ju
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Jae-Geun Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, KRIBB, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KRIBB School, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaerang Rho
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 301 747, Korea (ROK)
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Korea (ROK)
| |
Collapse
|
4
|
Minskaia E, Galieva A, Egorov AD, Ivanov R, Karabelsky A. Viral Vectors in Gene Replacement Therapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2157-2178. [PMID: 38462459 DOI: 10.1134/s0006297923120179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 03/12/2024]
Abstract
Throughout the years, several hundred million people with rare genetic disorders have been receiving only symptom management therapy. However, research and development efforts worldwide have led to the development of long-lasting, highly efficient, and safe gene therapy for a wide range of hereditary diseases. Improved viral vectors are now able to evade the preexisting immunity and more efficiently target and transduce therapeutically relevant cells, ensuring genome maintenance and expression of transgenes at the relevant levels. Hematological, ophthalmological, neurodegenerative, and metabolic therapeutic areas have witnessed successful treatment of hemophilia and muscular dystrophy, restoration of immune system in children with immunodeficiencies, and restoration of vision. This review focuses on three leading vector platforms of the past two decades: adeno-associated viruses (AAVs), adenoviruses (AdVs), and lentiviruses (LVs). Special attention is given to successful preclinical and clinical studies that have led to the approval of gene therapies: six AAV-based (Glybera® for lipoprotein lipase deficiency, Luxturna® for retinal dystrophy, Zolgensma® for spinal muscular atrophy, Upstaza® for AADC, Roctavian® for hemophilia A, and Hemgenix® for hemophilia B) and three LV-based (Libmeldy® for infantile metachromatic leukodystrophy, Zynteglo® for β-thalassemia, and Skysona® for ALD). The review also discusses the problems that arise in the development of gene therapy treatments, which, nevertheless, do not overshadow the successes of already developed gene therapies and the hope these treatments give to long-suffering patients and their families.
Collapse
Affiliation(s)
- Ekaterina Minskaia
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia.
| | - Alima Galieva
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander D Egorov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Roman Ivanov
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| | - Alexander Karabelsky
- Scientific Center of Translational Medicine, Department of Gene Therapy, Sirius University of Science and Technology, Sochi, 354530, Russia
| |
Collapse
|
5
|
Chiriaco C, Donini C, Cortese M, Ughetto S, Modica C, Martinelli I, Proment A, Vitali L, Fontani L, Casucci M, Comoglio PM, Giordano S, Sangiolo D, Leuci V, Vigna E. Efficacy of CAR-T immunotherapy in MET overexpressing tumors not eligible for anti-MET targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:309. [PMID: 36271379 PMCID: PMC9585715 DOI: 10.1186/s13046-022-02479-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
Background Aberrant activation of the MET receptor in cancer is sustained by genetic alterations or, more frequently, by transcriptional upregulations. A fraction of MET-amplified or mutated tumors are sensible to MET targeting agents, but their responsiveness is typically short-lasting, as secondary resistance eventually occurs. Since in the absence of genetic alterations MET is usually not a tumor driver, MET overexpressing tumors are not/poorly responsive to MET targeted therapies. Consequently, the vast majority of tumors exhibiting MET activation still represent an unmet medical need. Methods Here we propose an immunotherapy strategy based on T lymphocytes expressing a Chimeric Antigen Receptor (CAR) targeting MET overexpressing tumors of different histotypes. We engineered two different MET-CAR constructs and tested MET-CAR-T cell cytotoxic activity against different MET overexpressing models, including tumor cell lines, primary cancer cells, organoids, and xenografts in immune-deficient mice. Results We proved that MET-CAR-T exerted a specific cytotoxic activity against MET expressing cells. Cell killing was proportional to the level of MET expressed on the cell surface. While CAR-T cytotoxicity was minimal versus cells carrying MET at physiological levels, essentially sparing normal cells, the activity versus MET overexpressing tumors was robust, significantly controlling tumor cell growth in vitro and in vivo. Notably, MET-CAR-T cells were also able to brake acquired resistance to MET targeting agents in MET amplified cancer cells carrying secondary mutations in downstream signal transducers. Conclusions We set and validated at the pre-clinical level a MET-CAR immunotherapy strategy potentially beneficial for cancers not eligible for MET targeted therapy with inhibitory molecules, including those exhibiting primary or secondary resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02479-y.
Collapse
Affiliation(s)
- Cristina Chiriaco
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,Present address: Anemocyte S.r.l., 21040 Gerenzano, VA Italy
| | - Chiara Donini
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Marco Cortese
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Stefano Ughetto
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy ,Present address: Bios-Therapy, Physiological System for Health S.p.A, 52037 Sansepolcro, AR Italy
| | - Chiara Modica
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.10776.370000 0004 1762 5517Present address: Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Ilaria Martinelli
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Alessia Proment
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Letizia Vitali
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Lara Fontani
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Monica Casucci
- grid.18887.3e0000000417581884Innovative Immunotherapies Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Maria Comoglio
- grid.7678.e0000 0004 1757 7797IFOM-FIRC Institute of Molecular Oncology, Milan, Italy
| | - Silvia Giordano
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Dario Sangiolo
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| | - Valeria Leuci
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy
| | - Elisa Vigna
- grid.419555.90000 0004 1759 7675Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale 142, 10060 Candiolo, TO Italy ,grid.7605.40000 0001 2336 6580Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
6
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 725] [Impact Index Per Article: 181.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Cullmann K, Blokland KEC, Sebe A, Schenk F, Ivics Z, Heinz N, Modlich U. Sustained and regulated gene expression by Tet-inducible "all-in-one" retroviral vectors containing the HNRPA2B1-CBX3 UCOE ®. Biomaterials 2018; 192:486-499. [PMID: 30508767 DOI: 10.1016/j.biomaterials.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022]
Abstract
Genetic modification of induced pluripotent stem (iPS) cells may be necessary for the generation of effector cells for cellular therapies. Hereby, it can be important to induce transgene expression at restricted and defined time windows, especially if it interferes with pluripotency or differentiation. To achieve this, inducible expression systems can be used such as the tetracycline-inducible retroviral vector system, however, retroviral expression can be subjected to epigenetic silencing or to position-effect variegation. One strategy to overcome this is the incorporation of ubiquitous chromatin opening elements (UCOE®'s) into retroviral vectors to maintain a transcriptionally permissive chromatin state at the integration site. In this study, we developed Tet-inducible all-in-one gammaretroviral vectors carrying different sized UCOE®'s derived from the A2UCOE. The ability to prevent vector silencing by preserving the Tet-regulatory potential was investigated in different cell lines, and in murine and human iPS cells. A 670-bp fragment spanning the CBX3 promoter region of A2UCOE (U670) was the most potent element in preventing silencing, and conferred the strongest expression from the vector in the induced state. While longer fragments of A2UCOEs also sustained expression, vector titers and induction efficiencies were impaired. Finally, we demonstrate that U670 can be used for constitutive expression of the transactivator in the all-in-one vector for faithful regulation of transgenes by doxycycline, including the thrombopoietin receptor Mpl conferring cytokine-dependent cell growth.
Collapse
Affiliation(s)
- Katharina Cullmann
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Kaj E C Blokland
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Attila Sebe
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Franziska Schenk
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany
| | - Zoltán Ivics
- Div. of Medical Biotechnology, Paul-Ehrlich-Institute, Langen, Germany
| | - Niels Heinz
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany; BioNTech Innovative Manufacturing Services GmbH, Idar-Oberstein, Germany
| | - Ute Modlich
- Research Group for Gene Modification in Stem Cells, Div. of Veterinary Medicine, Paul-Ehrlich-Institute, Langen, Germany.
| |
Collapse
|
8
|
Li M, Wang Y, Liu M, Lan X. Multimodality reporter gene imaging: Construction strategies and application. Theranostics 2018; 8:2954-2973. [PMID: 29896296 PMCID: PMC5996353 DOI: 10.7150/thno.24108] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/06/2018] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging has played an important role in the noninvasive exploration of multiple biological processes. Reporter gene imaging is a key part of molecular imaging. By combining with a reporter probe, a reporter protein can induce the accumulation of specific signals that are detectable by an imaging device to provide indirect information of reporter gene expression in living subjects. There are many types of reporter genes and each corresponding imaging technique has its own advantages and drawbacks. Fused reporter genes or single reporter genes with products detectable by multiple imaging modalities can compensate for the disadvantages and potentiate the advantages of each modality. Reporter gene multimodality imaging could be applied to trace implanted cells, monitor gene therapy, assess endogenous molecular events, screen drugs, etc. Although several types of multimodality imaging apparatus and multimodality reporter genes are available, more sophisticated detectors and multimodality reporter gene systems are needed.
Collapse
Affiliation(s)
- Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Yichun Wang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Mei Liu
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
- Hubei Province Key Laboratory of Molecular Imaging
| |
Collapse
|
9
|
Stahlhut M, Schambach A, Kustikova OS. Multimodal Lentiviral Vectors for Pharmacologically Controlled Switching Between Constitutive Single Gene Expression and Tetracycline-Regulated Multiple Gene Collaboration. Hum Gene Ther Methods 2017; 28:191-204. [PMID: 28683573 DOI: 10.1089/hgtb.2017.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multimodal lentiviral vectors (LVs) allow switching between constitutive and tetracycline-regulated gene co-expressions in genetically modified cells. Transduction of murine primary hematopoietic progenitor cells (HPCs) with multimodal LVs in the absence of doxycycline ensures the constitutive expression of gene of interest 1 (GOI1) only. In the presence of doxycycline, induced tetracycline-regulated expression of a second GOI (GOI2) allows evaluation of the collaboration between two genes. Drug removal retains constitutive expression, which allows the contribution of an individual gene into created networks to be studied. Doxycycline-dependent switching can be tracked via fluorescent markers coupled to constitutive and tetracycline-regulated GOIs. This article describes transduction of murine primary HPCs with different doses of multimodal LVs, distinct cytokine conditions, and their influence on the number and viability of cells co-expressing both collaborating GOIs upon doxycycline induction. A 2-week protocol is provided for multimodal LV production, titer determination, and evaluation of tetracycline responsive promoter background activity in a murine fibroblast cell line. The power of this model to assess the dose/time/order-controlled contribution of single and multiple genes into hematopoietic networks opens new routes in reprogramming, stem cell, and leukemia biology.
Collapse
Affiliation(s)
- Maike Stahlhut
- 1 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany .,2 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| | - Axel Schambach
- 1 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany .,2 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany .,3 Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Olga S Kustikova
- 1 Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany .,2 Cluster of Excellence REBIRTH, Hannover Medical School , Hannover, Germany
| |
Collapse
|
10
|
Lent-On-Plus Lentiviral vectors for conditional expression in human stem cells. Sci Rep 2016; 6:37289. [PMID: 27853296 PMCID: PMC5112523 DOI: 10.1038/srep37289] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/28/2016] [Indexed: 12/25/2022] Open
Abstract
Conditional transgene expression in human stem cells has been difficult to achieve due to the low efficiency of existing delivery methods, the strong silencing of the transgenes and the toxicity of the regulators. Most of the existing technologies are based on stem cells clones expressing appropriate levels of tTA or rtTA transactivators (based on the TetR-VP16 chimeras). In the present study, we aim the generation of Tet-On all-in-one lentiviral vectors (LVs) that tightly regulate transgene expression in human stem cells using the original TetR repressor. By using appropriate promoter combinations and shielding the LVs with the Is2 insulator, we have constructed the Lent-On-Plus Tet-On system that achieved efficient transgene regulation in human multipotent and pluripotent stem cells. The generation of inducible stem cell lines with the Lent-ON-Plus LVs did not require selection or cloning, and transgene regulation was maintained after long-term cultured and upon differentiation toward different lineages. To our knowledge, Lent-On-Plus is the first all-in-one vector system that tightly regulates transgene expression in bulk populations of human pluripotent stem cells and its progeny.
Collapse
|
11
|
Antyborzec I, O'Leary VB, Dolly JO, Ovsepian SV. Low-Affinity Neurotrophin Receptor p75 Promotes the Transduction of Targeted Lentiviral Vectors to Cholinergic Neurons of Rat Basal Forebrain. Neurotherapeutics 2016; 13:859-870. [PMID: 27220617 PMCID: PMC5081123 DOI: 10.1007/s13311-016-0445-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) are one of the most affected neuronal types in Alzheimer's disease (AD), with their extensive loss documented at late stages of the pathology. While discriminatory provision of neuroprotective agents and trophic factors to these cells is thought to be of substantial therapeutic potential, the intricate topography and structure of the forebrain cholinergic system imposes a major challenge. To overcome this, we took advantage of the physiological enrichment of BFCNs with a low-affinity p75 neurotrophin receptor (p75NTR) for their targeting by lentiviral vectors within the intact brain of adult rat. Herein, a method is described that affords selective and effective transduction of BFCNs with a green fluorescence protein (GFP) reporter, which combines streptavidin-biotin technology with anti-p75NTR antibody-coated lentiviral vectors. Specific GFP expression in cholinergic neurons was attained in the medial septum and nuclei of the diagonal band Broca after a single intraventricular administration of such targeted vectors. Bioelectrical activity of GFP-labeled neurons was proven to be unchanged. Thus, proof of principle is obtained for the utility of the low-affinity p75NTR for targeted transduction of vectors to BFCNs in vivo.
Collapse
Affiliation(s)
- Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
- Institute of Radiation Biology, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - James O Dolly
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland.
- Institute for Biological and Medical Imaging, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Munich School of Bioengineering, Technical University Munich, Munich, Germany.
| |
Collapse
|
12
|
Cocchiarella F, Latella MC, Basile V, Miselli F, Galla M, Imbriano C, Recchia A. Transcriptionally regulated and nontoxic delivery of the hyperactive Sleeping Beauty Transposase. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16038. [PMID: 27574698 PMCID: PMC4985251 DOI: 10.1038/mtm.2016.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 12/17/2022]
Abstract
The Sleeping Beauty (SB) transposase and, in particular, its hyperactive variant SB100X raises increasing interest for gene therapy application, including genome modification and, more recently, induced pluripotent stem cells (iPS) reprogramming. The documented cytotoxicity of the transposase, when constitutively expressed by an integrating retroviral vector (iRV), has been circumvented by the transient delivery of SB100X using retroviral mRNA transfer. In this study, we developed an alternative, safe, and efficient transposase delivery system based on a tetracycline-ON regulated expression cassette and the rtTA2(S)-M2 transactivator gene transiently delivered by integration-defective lentiviral vectors (IDLVs). Compared with iRV-mediated delivery, expression of tetracycline-induced SB100X delivered by an IDLV results in more efficient integration of a GFP transposon and reduced toxicity. Tightly regulated expression and reactivation of the transposase was achieved in HeLa cells as wells as in human primary keratinocytes. Based on these properties, the regulated transposase-IDLV vectors may represent a valuable tool for genetic engineering and therapeutic gene transfer.
Collapse
Affiliation(s)
- Fabienne Cocchiarella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Maria Carmela Latella
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Valentina Basile
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Francesca Miselli
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School , Hannover, Germany
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia , Modena, Italy
| | - Alessandra Recchia
- Department of Life Sciences, Centre for Regenerative Medicine, University of Modena and Reggio Emilia , Modena, Italy
| |
Collapse
|
13
|
Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells. Sci Rep 2015; 5:17166. [PMID: 26612671 PMCID: PMC4661691 DOI: 10.1038/srep17166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022] Open
Abstract
Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.
Collapse
|
14
|
Lentiviral vector system for coordinated constitutive and drug controlled tetracycline-regulated gene co-expression. Biomaterials 2015; 63:189-201. [DOI: 10.1016/j.biomaterials.2015.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
|
15
|
Merienne N, Delzor A, Viret A, Dufour N, Rey M, Hantraye P, Déglon N. Gene transfer engineering for astrocyte-specific silencing in the CNS. Gene Ther 2015; 22:830-9. [PMID: 26109254 DOI: 10.1038/gt.2015.54] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/21/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023]
Abstract
Cell-type-specific gene silencing is critical to understand cell functions in normal and pathological conditions, in particular in the brain where strong cellular heterogeneity exists. Molecular engineering of lentiviral vectors has been widely used to express genes of interest specifically in neurons or astrocytes. However, we show that these strategies are not suitable for astrocyte-specific gene silencing due to the processing of small hairpin RNA (shRNA) in a cell. Here we develop an indirect method based on a tetracycline-regulated system to fully restrict shRNA expression to astrocytes. The combination of Mokola-G envelope pseudotyping, glutamine synthetase promoter and two distinct microRNA target sequences provides a powerful tool for efficient and cell-type-specific gene silencing in the central nervous system. We anticipate our vector will be a potent and versatile system to improve the targeting of cell populations for fundamental as well as therapeutic applications.
Collapse
Affiliation(s)
- N Merienne
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - A Delzor
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - A Viret
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - N Dufour
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - M Rey
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| | - P Hantraye
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Biomedical Imaging (I2BM), Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,CNRS-CEA URA2210, Fontenay-aux-Roses, France
| | - N Déglon
- Laboratory of Cellular and Molecular Neurotherapies (LCMN), Department of Clinical Neurosciences (DNC), Lausanne University Hospital (CHUV), Lausanne, Switzerland.,LCMN, Neuroscience Research Center (CRN), Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
16
|
Qian K, Huang CTL, Huang CL, Chen H, Blackbourn LW, Chen Y, Cao J, Yao L, Sauvey C, Du Z, Zhang SC. A simple and efficient system for regulating gene expression in human pluripotent stem cells and derivatives. Stem Cells 2014; 32:1230-8. [PMID: 24497442 DOI: 10.1002/stem.1653] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022]
Abstract
Regulatable transgene expression in human pluripotent stem cells (hPSCs) and their progenies is often necessary to dissect gene function in a temporal and spatial manner. However, hPSC lines with inducible transgene expression, especially in differentiated progenies, have not been established due to silencing of randomly inserted genes during stem cell expansion and/or differentiation. Here, we report the use of transcription activator-like effector nucleases-mediated targeting to AAVS1 site to generate versatile conditional hPSC lines. Transgene (both green fluorescent protein and a functional gene) expression in hPSCs and their derivatives was not only sustained but also tightly regulated in response to doxycycline both in vitro and in vivo. We modified the donor construct so that any gene of interest can be readily inserted to produce hPSC lines with conditional transgene expression. This technology will substantially improve the way we study human stem cells.
Collapse
Affiliation(s)
- Kun Qian
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China; Waisman Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kustikova OS, Stahlhut M, Ha TC, Scherer R, Schambach A, Baum C. Dose response and clonal variability of lentiviral tetracycline-regulated vectors in murine hematopoietic cells. Exp Hematol 2014; 42:505-515.e7. [DOI: 10.1016/j.exphem.2014.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 12/14/2022]
|
18
|
Vigna E, Pacchiana G, Chiriaco C, Cignetto S, Fontani L, Michieli P, Comoglio PM. Targeted therapy by gene transfer of a monovalent antibody fragment against the Met oncogenic receptor. J Mol Med (Berl) 2013; 92:65-76. [PMID: 24013625 DOI: 10.1007/s00109-013-1079-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/02/2013] [Accepted: 08/20/2013] [Indexed: 02/04/2023]
Abstract
UNLABELLED Due to the key role played in critical sub-populations, Met is considered a relevant therapeutic target for glioblastoma multiforme and lung cancers. The anti-Met DN30 antibody, engineered to a monovalent Fab (Mv-DN30), proved to be a potent antagonist, inducing physical removal of Met receptor from the cell surface. In this study, we designed a gene therapy approach, challenging Mv-DN30 in preclinical models of Met-driven human glioblastoma and lung carcinoma. Mv-DN30 was delivered by a Tet-inducible-bidirectional lentiviral vector. Gene therapy solved the limitations dictated by the short half-life of the low molecular weight form of the antibody. In vitro, upon doxycycline induction, the transgene: (1) drove synthesis and secretion of the correctly assembled Mv-DN30; (2) triggered the displacement of Met receptor from the surface of target cancer cells; (3) suppressed the Met-mediated invasive growth phenotype. Induction of transgene expression in cancer cells-transplanted either subcutaneously or orthotopically in nude mice-resulted in inhibition of tumor growth. Direct Mv-DN30 gene transfer in nude mice, intra-tumor or systemic, was followed by a therapeutic response. These results provide proof of concept for a gene transfer immunotherapy strategy by a Fab fragment and encourage clinical studies targeting Met-driven cancers with Mv-DN30. KEY MESSAGE Gene transfer allows the continuous in vivo production of therapeutic Fab fragments. Mv-DN30 is an excellent tool for the treatment of Met-driven cancers. Mv-DN30 gene therapy represents an innovative route for Met targeting.
Collapse
Affiliation(s)
- Elisa Vigna
- IRCC, Institute for Cancer Research and Treatment at Candiolo, Strada Provinciale 142-Km 3.95, 10060, Candiolo, Turin, Italy,
| | | | | | | | | | | | | |
Collapse
|
19
|
Robert MA, Lin Y, Bendjelloul M, Zeng Y, Dessolin S, Broussau S, Larochelle N, Nalbantoglu J, Massie B, Gilbert R. Strength and muscle specificity of a compact promoter derived from the slow troponin I gene in the context of episomal (gutless adenovirus) and integrating (lentiviral) vectors. J Gene Med 2013; 14:746-60. [PMID: 23071006 DOI: 10.1002/jgm.2675] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 08/16/2012] [Accepted: 10/12/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Gutless adenovirus (helper-dependent adenoviral vector; HDAd) and lentiviral vectors (LV) are attractive vectors for the gene therapy of muscle diseases. Because the organization of their DNA (episomal versus integrated) differs, we investigated whether the strength and specificity of ΔUSEx3, a novel muscle-specific promoter previously tested with plasmid, were maintained in the context of these vectors. METHODS Two HDAds expressing β-galactosidase regulated by ΔUSEx3 or CAG [cytomegalovirus (CMV) enhancer/β-actin promoter], and three LV expressing green fluorescent protein regulated by ΔUSEx3, CMV or a modified skeletal α-actin promoter (SPcΔ5-12), were constructed. Gene expression was compared in cell culture and after intravenous (HDAd only) and intramuscular injection of mice. RESULTS Irrespective of the vector used, ΔUSEx3 remained poorly active in nonmuscle cells and tissues. In myotubes, ΔUSEx3 was as strong as CMV and SPcΔ5-12, although it was ten-fold weaker than CAG, a proven powerful promoter in muscle. In cell culture, ΔUSEx3 activity in the context of LV was more stable than CMV, indicating it is less prone to silencing. In the context of HDAd, the behavior of ΔUSEx3 in skeletal muscle mirrored that of cell culture (10% of the CAG activity and half the number of transduced fibers). Surprisingly, in muscles treated with LV, ΔUSEx3 activity was five-fold lower than SPcΔ5-12. CONCLUSIONS The data obtained in the present study confirm that ΔUSEx3 is a strong and robust muscle-specific promoter in the context of HDAd (cell culture and in vivo) and LV (cell culture). However, it was less efficient in vivo in the context of LV.
Collapse
Affiliation(s)
- Marc-André Robert
- Biotechnology Research Institute, National Research Council Canada, Montreal, Québec, Canada. renald
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Regulated expression of lentivirus-mediated GDNF in human bone marrow-derived mesenchymal stem cells and its neuroprotection on dopaminergic cells in vitro. PLoS One 2013; 8:e64389. [PMID: 23717608 PMCID: PMC3661514 DOI: 10.1371/journal.pone.0064389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022] Open
Abstract
Gene regulation remains one of the major challenges for gene therapy in clinical trials. In the present study, we first generated a binary tetracycline-on (Tet-On) system based on two lentivirus vectors, one expressing both human glial cell line-derived neurotrophic factor (hGDNF) and humanized recombinant green fluorescent protein (hrGFP) genes under second-generation tetracycline response element (TRE), and the other expressing the advanced reverse tetracycline-controlled transactivator--rtTA2S-M2 under a human minimal cytomegalovirus immediate early (CMV-IE) promoter. This system allows simultaneous expression of hGDNF and hrGFP genes in the presence of doxycycline (Dox). Human bone marrow-derived mesenchymal stem cells (hMSCs) were transduced with the binary Tet-On lentivirus vectors and characterized in vitro in the presence (On) or absence (Off) of Dox. The expression of hGDNF and hrGFP transgenes in transduced hMSCs was tightly regulated as determined by flow cytometry (FCM), GDNF enzyme-linked immunosorbent assay (ELISA) and quantitative real time-polymerase chain reaction (qRT-PCR). There was a dose-dependent regulation for hrGFP transgene expression. The levels of hGDNF protein in culture medium were correlated with the mean fluorescence intensity (MFI) units of hrGFP. The levels of transgene background expression were very low in the absence of Dox. The treatment of the conditioned medium from cultures of transduced hMSCs in the presence of Dox protected SH-SY5Y cells against 6-hydroxydopamine (6-OHDA) toxicity as determined by cell viability using 3, [4,5-dimethylthiazol-2-yl]-diphenyltetrazolium bromide (MTT) assay. The treatment of the conditioned medium was also found to improve the survival of dopaminergic (DA) neurons of ventral mesencephalic (VM) tissue in serum-free culture conditions as assessed by cell body area, the number of neurites and dendrite branching points, and proportion of tyrosine hydroxylase (TH)-immunoreactive (IR) cells. Our inducible lentivirus-mediated hGDNF gene delivery system may provide useful tools for basic research on gene therapy for chronic neurological disorders such as Parkinson's disease (PD).
Collapse
|
21
|
Heinz N, Hennig K, Loew R. Graded or threshold response of the tet-controlled gene expression: all depends on the concentration of the transactivator. BMC Biotechnol 2013; 13:5. [PMID: 23336718 PMCID: PMC3556329 DOI: 10.1186/1472-6750-13-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/14/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Currently, the step-wise integration of tet-dependent transactivator and tet-responsive expression unit is considered to be the most promising tool to achieve stable tet-controlled gene expression in cell populations. However, disadvantages of this strategy for integration into primary cells led us to develop an "All-In-One" vector system, enabling simultaneous integration of both components. The effect on tet-controlled gene expression was analyzed for retroviral "All-In-One" vectors expressing the M2-transactivator either under control of a constitutive or a new type of autoregulated promoter. RESULTS Determination of luciferase activity in transduced cell populations indicated improvement of the dynamic range of gene expression for the autoregulated system. Further differences were observed regarding induction kinetics and dose-response. Most notably, introduction of the autoregulated system resulted in a threshold mode of induction, whereas the constitutive system exhibited pronounced effector-dose dependence. CONCLUSION Tet-regulated gene expression in the applied autoregulated system resembles a threshold mode, whereby full induction of the tet-unit can be achieved at otherwise limiting doxycycline concentrations.
Collapse
|
22
|
Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S, Vinchi F, Fiorito V, Fagoonee S, Camporeale A, Turco E, Merlo GR, Silengo L, Altruda F, Pinton P, Tolosano E. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest 2012; 122:4569-4579. [PMID: 23187127 PMCID: PMC3533534 DOI: 10.1172/jci62422] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 09/27/2012] [Indexed: 12/21/2022] Open
Abstract
Feline leukemia virus subgroup C receptor 1 (FLVCR1) is a cell membrane heme exporter that maintains the balance between heme levels and globin synthesis in erythroid precursors. It was previously shown that Flvcr1-null mice died in utero due to a failure of erythropoiesis. Here, we identify Flvcr1b, a mitochondrial Flvcr1 isoform that promotes heme efflux into the cytoplasm. Flvcr1b overexpression promoted heme synthesis and in vitro erythroid differentiation, whereas silencing of Flvcr1b caused mitochondrial heme accumulation and termination of erythroid differentiation. Furthermore, mice lacking the plasma membrane isoform (Flvcr1a) but expressing Flvcr1b had normal erythropoiesis, but exhibited hemorrhages, edema, and skeletal abnormalities. Thus, FLVCR1b regulates erythropoiesis by controlling mitochondrial heme efflux, whereas FLVCR1a expression is required to prevent hemorrhages and edema. The aberrant expression of Flvcr1 isoforms may play a role in the pathogenesis of disorders characterized by an imbalance between heme and globin synthesis.
Collapse
Affiliation(s)
- Deborah Chiabrando
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Samuele Marro
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Mercurio
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sara Petrillo
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Francesca Vinchi
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Veronica Fiorito
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sharmila Fagoonee
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Annalisa Camporeale
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Emilia Turco
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Giorgio R. Merlo
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Fiorella Altruda
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Emanuela Tolosano
- Molecular Biotechnology Centre, Department of Genetics, Biology and Biochemistry, University of Torino, Torino, Italy.
Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.
Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Liu Y, Chen C, He H, Wang D, E L, Liu Z, Liu H. Lentiviral-mediated gene transfer into human adipose-derived stem cells: role of NELL1 versus BMP2 in osteogenesis and adipogenesis in vitro. Acta Biochim Biophys Sin (Shanghai) 2012; 44:856-65. [PMID: 23017834 DOI: 10.1093/abbs/gms070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
NEL-like molecule 1 (NELL1) is a potent osteogenic factor associated with craniosynostosis. Adenoviruses, the most commonly used viral vectors for gene therapy, have several disadvantages that may restrict osteogenesis. Previous studies have shown that lentiviruses can serve as ideal vectors for gene therapy for bone regeneration. In this study, two lentiviral vectors (LvNELL1 and LvBMP2) that encode human NELL1 and bone morphogenetic protein-2 (BMP2), respectively, were constructed. The effect of LvNELL1 infection on the proliferation, osteogenesis, and adipogenesis of human adipose-derived stem cells (hADSCs) in vitro was assessed and compared with that of LvBMP2. The results showed that hADSCs infected with LvNELL1 could efficiently and stably overexpress the target genes. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay results demonstrated that LvBMP2, but not LvNELL1, enhanced the proliferation of hADSCs. Assessment of alkaline phosphatase activity and cellular mineralization indicated that LvNELL1 infection promoted the osteogenic differentiation of hADSCs, and the effect was comparable with that of LvBMP2. Real-time polymerase chain reaction (PCR) revealed that LvNELL1 infection upregulated OSX expression but not RUNX2 expression in hADSCs. In addition, adipogenic markers (lipid droplets, peroxisome proliferator-activating receptor γ, and lipoprotein lipase) analysis showed that LvNELL1 could dramatically inhibit the adipogenic differentiation of hADSCs, but LvBMP2 had no such effect. Taken together, these findings suggested that lentiviral-mediated NELL1 gene transfer in hADSCs may be a novel and promising approach to achieve effective and precise bone regeneration.
Collapse
Affiliation(s)
- Yajing Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
More than two decades have passed since genetically modified HIV was used for gene delivery. Through continuous improvements these early marker gene-carrying HIVs have evolved into safer and more effective lentiviral vectors. Lentiviral vectors offer several attractive properties as gene-delivery vehicles, including: (i) sustained gene delivery through stable vector integration into host genome; (ii) the capability of infecting both dividing and non-dividing cells; (iii) broad tissue tropisms, including important gene- and cell-therapy-target cell types; (iv) no expression of viral proteins after vector transduction; (v) the ability to deliver complex genetic elements, such as polycistronic or intron-containing sequences; (vi) potentially safer integration site profile; and (vii) a relatively easy system for vector manipulation and production. Accordingly, lentivector technologies now have widespread use in basic biology and translational studies for stable transgene overexpression, persistent gene silencing, immunization, in vivo imaging, generating transgenic animals, induction of pluripotent cells, stem cell modification and lineage tracking, or site-directed gene editing. Moreover, in the present high-throughput '-omics' era, the commercial availability of premade lentiviral vectors, which are engineered to express or silence genome-wide genes, accelerates the rapid expansion of this vector technology. In the present review, we assess the advances in lentiviral vector technology, including basic lentivirology, vector designs for improved efficiency and biosafety, protocols for vector production and infection, targeted gene delivery, advanced lentiviral applications and issues associated with the vector system.
Collapse
|
25
|
Lentiviral vectors and cardiovascular diseases: a genetic tool for manipulating cardiomyocyte differentiation and function. Gene Ther 2012; 19:642-8. [DOI: 10.1038/gt.2012.19] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Mukherjee S, Thrasher AJ. Progress and prospects: advancements in retroviral vector design, generation, and application. Hum Gene Ther 2012; 22:1171-4. [PMID: 22044093 DOI: 10.1089/hum.2011.2523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Sayandip Mukherjee
- Centre for Immunodeficiency, UCL Institute of Child Health, University College London, London, United Kingdom
| | | |
Collapse
|
27
|
Escors D, Kochan G, Stephenson H, Breckpot K. Cell and Tissue Gene Targeting with Lentiviral Vectors. SPRINGERBRIEFS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012. [PMCID: PMC7122860 DOI: 10.1007/978-3-0348-0402-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
One of the main advantages of using lentivectors is their capacity to transduce a wide range of cell types, independently from the cell cycle stage. However, transgene expression in certain cell types is sometimes not desirable, either because of toxicity, cell transformation, or induction of transgene-specific immune responses. In other cases, specific targeting of only cancerous cells within a tumor is sought after for the delivery of suicide genes. Consequently, great effort has been invested in developing strategies to control transgene delivery/expression in a cell/tissue-specific manner. These strategies can broadly be divided in three; particle pseudotyping (surface targeting), which entails modification of the envelope glycoprotein (ENV); transcriptional targeting, which utilizes cell-specific promoters and/or inducible promoters; and posttranscriptional targeting, recently applied in lentivectors by introducing sequence targets for cell-specific microRNAs. In this chapter we describe each of these strategies providing some illustrative examples.
Collapse
Affiliation(s)
- David Escors
- University College London, Rayne Building, 5 University Street, London, WC1E 6JF UK
| | - Grazyna Kochan
- Oxford Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building. Roosevelt Drive, Headington, Oxford, OX3 7DQ UK
| | - Holly Stephenson
- Institute of Child Health, University College London, Great Ormond Street, London, WC1N 3JH UK
| | | |
Collapse
|
28
|
Selective inhibition of microRNA accessibility by RBM38 is required for p53 activity. Nat Commun 2011; 2:513. [PMID: 22027593 PMCID: PMC3221330 DOI: 10.1038/ncomms1519] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 09/27/2011] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) interact with 3'-untranslated regions of messenger RNAs to restrict expression of most protein-coding genes during normal development and cancer. RNA-binding proteins (RBPs) can control the biogenesis, stability and activity of miRNAs. Here we identify RBM38 in a genetic screen for RBPs whose expression controls miRNA access to target mRNAs. RBM38 is induced by p53 and its ability to modulate miRNA-mediated repression is required for proper p53 function. In contrast, RBM38 shows lower propensity to block the action of the p53-controlled miR-34a on SIRT1. Target selectivity is determined by the interaction of RBM38 with uridine-rich regions near miRNA target sequences. Furthermore, in large cohorts of human breast cancer, reduced RBM38 expression by promoter hypermethylation correlates with wild-type p53 status. Thus, our results indicate a novel layer of p53 gene regulation, which is required for its tumour suppressive function.
Collapse
|
29
|
Heinz N, Schambach A, Galla M, Maetzig T, Baum C, Loew R, Schiedlmeier B. Retroviral and transposon-based tet-regulated all-in-one vectors with reduced background expression and improved dynamic range. Hum Gene Ther 2010; 22:166-76. [PMID: 20825282 DOI: 10.1089/hum.2010.099] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The regulated expression of therapeutic genes may become crucial in gene therapy when their constitutive expression interferes with cell fate in vivo. The efficient regulation of transgene expression requires tightly controlled inducible promoters, as shown for the tetracycline regulatory system (tet-system). However, its application requires the introduction of two components into the target cell genome: the tet-responsive transactivator and the regulated expression cassette. In order to facilitate the usage of the tet-system for approaches in gene therapy, both components have to be transferred by a single vector, thus eliminating the preselection of transactivator positive cells. Published "all-in-one" vectors for regulated transgene expression display a relatively low signal-to-noise ratio, resulting in regulatory windows of around 500-fold even in selected clones. In this study, we show that a modified vector architecture combined with the introduction of new tet-responsive promoters, Ptet, improved the dynamic range of such all-in-one vectors to levels up to 14,000-fold for viral and 25,000-fold for nonviral transfer vectors in nonclonal human cell lines, and up to 2,800-fold in murine hematopoietic cell lines. This improved regulation was the result of a strong reduction of background expression in the off-state, even if cells were transduced at high multiplicity of infection, while induction remained at high levels. In addition, the results indicated that successful regulation of gene expression in different target cells depended on vector architecture as well as the choice of the Ptet-promoter.
Collapse
Affiliation(s)
- Niels Heinz
- Experimental Hematology, Hannover Medical School, Carl-Neuberg-Strasse 1, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Fagoonee S, Hobbs RM, De Chiara L, Cantarella D, Piro RM, Tolosano E, Medico E, Provero P, Pandolfi PP, Silengo L, Altruda F. Generation of functional hepatocytes from mouse germ line cell-derived pluripotent stem cells in vitro. Stem Cells Dev 2010; 19:1183-94. [PMID: 20331356 DOI: 10.1089/scd.2009.0496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Germ line cell-derived pluripotent stem cells (GPSCs) are similar to embryonic stem (ES) cells in that they can proliferate intensively and differentiate into a variety of cell types. Previous studies have revealed some inherent differences in gene expression between undifferentiated mouse ES cells and GPSCs. Our aims were to generate functional hepatocytes from mouse GPSCs in vitro and to investigate whether the differences in gene expression may impact on the hepatocyte differentiation capacity of the GPSCs compared with ES cells. Mouse GPSCs and ES cells were induced to differentiate into hepatocytes through embryoid body formation, with very high efficiency. These hepatocytes were characterized at cellular, molecular, and functional levels. The GPSC-derived hepatocytes expressed hepatic markers and were metabolically active as shown by albumin and haptoglobin secretion, urea synthesis, glycogen storage, and indocyanine green uptake. We also performed an unprecedented DNA microarray analysis comparing different stages of hepatocyte differentiation. Gene expression profiling demonstrated a strong similarity between GPSC and ES cells at different stages of induced hepatic differentiation. Moreover, Pearson correlation analysis of the microarray datasets suggested that, at late hepatic differentiation stages, the in vitro-derived cells were closer to fetal mouse primary hepatocytes than to those obtained from neonates. We have shown for the first time that adult GPSCs can be induced to differentiate into functional hepatocytes in vitro. These GPSC-derived hepatocytes offer great potential for cell replacement therapy for a wide variety of liver diseases.
Collapse
Affiliation(s)
- Sharmila Fagoonee
- Department of Genetics, Biology and Biochemistry and Molecular Biotechnology Center, University of Turin, Turin, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Gaillet B, Gilbert R, Broussau S, Pilotte A, Malenfant F, Mullick A, Garnier A, Massie B. High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Biotechnol Bioeng 2010; 106:203-15. [PMID: 20178120 DOI: 10.1002/bit.22698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fast and efficient production of recombinant proteins for structural and functional studies is a crucial issue for research and for industry. To this end, we have developed an efficient system to generate in less than 2 months, starting from the cDNA, pools of CHO cells stably expressing high-level of recombinant proteins. It is based on lentiviral vectors (LVs) for stable transduction coupled with the cumate gene-switch for inducible and efficient gene expression. Transcription is initiated upon binding of the cumate transactivator (cTA) or the reverse cTA (rcTA) to the CR5 promoter. Binding of cTA or rcTA is prevented or induced by addition of cumate respectively. We first validated the CHO/LV production system with an LV carrying the secreted alkaline phosphatase (SEAP), whose expression was linked to the green fluorescent protein (GFP) through an internal ribosome entry site (IRES). CHO cells stably expressing the cTA (CHO-cTA) were transduced at various multiplicity of infection (MOI). Pools of cells were incubated at 37 and 30 degrees C during 10 days. Optimal SEAP production (65 microg/mL) was achieved at 30 degrees C with a MOI of 200. The pool stability was demonstrated for 48 days of culture by GFP expression analysis. The system was also evaluated using LV expressing three typical therapeutic proteins (a protein made up of the extracellular domain of CD200 fused to IgG Fc region [CD200Fc], a chimeric antibody [chB43], and erythropoietin [EPO]). CHO cells expressing rcTA (CHO-Cum2) were transduced with these LVs at a MOI of 200 and production was tested at 30 degrees C. After 13 days of culture, 235, 160, and 206 microg/mL of CD200Fc, chB43, and EPO were produced, respectively. The ON/OFF ratio of these pools was equal to 6 for CD200Fc, 16 for chB43, and 74 for EPO. In conclusion, this system should be very useful to produce mg quantities of recombinant proteins in a timely manner in serum free suspension culture of CHO cells for preclinical studies.
Collapse
Affiliation(s)
- Bruno Gaillet
- Genomics & Gene Therapy Vectors, Biotechnology Research Institute, National Research Council Canada, Montréal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58:107-19. [PMID: 20143172 PMCID: PMC2837622 DOI: 10.1007/s00005-010-0063-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 10/06/2009] [Indexed: 12/28/2022]
Abstract
The concept of gene therapy originated in the mid twentieth century and was perceived as a revolutionary technology with the promise to cure almost any disease of which the molecular basis was understood. Since then, several gene vectors have been developed and the feasibility of gene therapy has been shown in many animal models of human disease. However, clinical efficacy could not be demonstrated until the beginning of the new century in a small-scale clinical trial curing an otherwise fatal immunodeficiency disorder in children. This first success, achieved after retroviral therapy, was later overshadowed by the occurrence of vector-related leukemia in a significant number of the treated children, demonstrating that the future success of gene therapy depends on our understanding of vector biology. This has led to the development of later-generation vectors with improved efficiency, specificity, and safety. Amongst these are HIV-1 lentivirus-based vectors (lentivectors), which are being increasingly used in basic and applied research. Human gene therapy clinical trials are currently underway using lentivectors in a wide range of human diseases. The intention of this review is to describe the main scientific steps leading to the engineering of HIV-1 lentiviral vectors and place them in the context of current human gene therapy.
Collapse
Affiliation(s)
- David Escors
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
| | - Karine Breckpot
- Division of Infection and Immunity, Medical School of the Royal Free and University College London, 46 Cleveland Street, London W1T 4JF, United Kingdom
- Laboratory of Molecular and Cellular Therapy, Department of Physiology-Immunology, Medical School of the ‘Vrije Universiteit Brussel’, Laarbeeklaan 103 building E, 1090 Jette, Belgium
| |
Collapse
|
33
|
Falkowska-Hansen B, Kollar J, Grüner BM, Schanz M, Boukamp P, Siveke J, Rethwilm A, Kirschner M. An inducible Tet-Off-H2B-GFP lentiviral reporter vector for detection and in vivo isolation of label-retaining cells. Exp Cell Res 2010; 316:1885-95. [PMID: 20171964 DOI: 10.1016/j.yexcr.2010.02.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2009] [Revised: 02/10/2010] [Accepted: 02/12/2010] [Indexed: 11/16/2022]
Abstract
Many regenerative cells are label-retaining cells (LRCs) due to their ability to keep a DNA label over a prolonged time. Until recently, isolation of vital LRCs was hampered due to the necessary use of fixation methods. To circumvent this, we generated a lentiviral-(HIV-1) based vector expressing a Tet-Off controlled histone 2B-GFP (Tet-Off-H2B-GFP) reporter gene for the detection and isolation of viable LRCs. In initial experiments, the vector was successfully used to infect 2- and 3-dimensional tissue culture models. Infected cultures from skin and pancreatic cells showed a very tight regulation of H2B-GFP, were sensitive to minimal amounts of doxycycline (Dox) and had a stable transgenic expression over the time of this study. Our lentiviral vector represents a reliable and easy to handle system for the successful infection, detection and isolation of LRCs from various tissues in vitro, in vivo and ex vivo.
Collapse
Affiliation(s)
- Berit Falkowska-Hansen
- Genetics of Skin Carcinogenesis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Lentiviral vectors (LVs) have emerged as potent and versatile vectors for ex vivo or in vivo gene transfer into dividing and nondividing cells. Robust phenotypic correction of diseases in mouse models has been achieved paving the way toward the first clinical trials. LVs can deliver genes ex vivo into bona fide stem cells, particularly hematopoietic stem cells, allowing for stable transgene expression upon hematopoietic reconstitution. They are also useful to generate induced pluripotent stem cells. LVs can be pseudotyped with distinct viral envelopes that influence vector tropism and transduction efficiency. Targetable LVs can be generated by incorporating specific ligands or antibodies into the vector envelope. Immune responses toward the transgene products and transduced cells can be repressed using microRNA-regulated vectors. Though there are safety concerns regarding insertional mutagenesis, their integration profile seems more favorable than that of gamma-retroviral vectors (gamma-RVs). Moreover, it is possible to minimize this risk by modifying the vector design or by employing integration-deficient LVs. In conjunction with zinc-finger nuclease technology, LVs allow for site-specific gene correction or addition in predefined chromosomal loci. These recent advances underscore the improved safety and efficacy of LVs with important implications for clinical trials.
Collapse
|
35
|
Centlivre M, Zhou X, Pouw SM, Weijer K, Kleibeuker W, Das AT, Blom B, Seppen J, Berkhout B, Legrand N. Autoregulatory lentiviral vectors allow multiple cycles of doxycycline-inducible gene expression in human hematopoietic cells in vivo. Gene Ther 2009; 17:14-25. [PMID: 19727135 DOI: 10.1038/gt.2009.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The efficient control of gene expression in vivo from lentiviral vectors remains technically challenging. To analyze inducible gene expression in a human setting, we generated 'human immune system' (HIS) mice by transplanting newborn BALB/c Rag2(-/-)IL-2Rgamma(c)(-/-) immunodeficient mice with human hematopoietic stem cells transduced with a doxycycline-inducible lentiviral vector. We compared several methods of doxycycline delivery to mice, and could accurately measure doxycycline in vivo using a new sensitive detection assay. Two different lentiviral vector designs with constitutive (TRECMV-V14) or autoregulatory (TREAuto-V14) expression of an optimized reverse tetracycline transactivator were used to transduce human hematopoietic stem cells. After transplantation into immunodeficient mice, we analyzed the expression of the green fluorescent protein (GFP) reporter gene in the human hematopoiesis-derived cells that develop and accumulate in the generated HIS mice. We show efficient inducible GFP expression in adult HIS mice containing TREAuto-V14-transduced human cells, whereas GFP expression is poor with the TRECMV-V14 vector. Multiple cycles of doxycycline exposure in the TREAuto-V14 group result in repeated cycles of GFP expression with no loss of intensity. These findings are of major interest for gene therapy and basic research settings that require inducible gene expression.
Collapse
Affiliation(s)
- M Centlivre
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam (AMC-UvA), Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P, Cooper PK, Kaufman PD. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 2009; 4:e6529. [PMID: 19657394 PMCID: PMC2717805 DOI: 10.1371/journal.pone.0006529] [Citation(s) in RCA: 753] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 07/08/2009] [Indexed: 12/12/2022] Open
Abstract
The ability to express or deplete proteins in living cells is crucial for the study of biological processes. Viral vectors are often useful to deliver DNA constructs to cells that are difficult to transfect by other methods. Lentiviruses have the additional advantage of being able to integrate into the genomes of non-dividing mammalian cells. However, existing viral expression systems generally require different vector backbones for expression of cDNA, small hairpin RNA (shRNA) or microRNA (miRNA) and provide limited drug selection markers. Furthermore, viral backbones are often recombinogenic in bacteria, complicating the generation and maintenance of desired clones. Here, we describe a collection of 59 vectors that comprise an integrated system for constitutive or inducible expression of cDNAs, shRNAs or miRNAs, and use a wide variety of drug selection markers. These vectors are based on the Gateway technology (Invitrogen) whereby the cDNA, shRNA or miRNA of interest is cloned into an Entry vector and then recombined into a Destination vector that carries the chosen viral backbone and drug selection marker. This recombination reaction generates the desired product with >95% efficiency and greatly reduces the frequency of unwanted recombination in bacteria. We generated Destination vectors for the production of both retroviruses and lentiviruses. Further, we characterized each vector for its viral titer production as well as its efficiency in expressing or depleting proteins of interest. We also generated multiple types of vectors for the production of fusion proteins and confirmed expression of each. We demonstrated the utility of these vectors in a variety of functional studies. First, we show that the FKBP12 Destabilization Domain system can be used to either express or deplete the protein of interest in mitotically-arrested cells. Also, we generate primary fibroblasts that can be induced to senesce in the presence or absence of DNA damage. Finally, we determined that both isoforms of the AT-Rich Interacting Domain 4B (ARID4B) protein could induce G1 arrest when overexpressed. As new technologies emerge, the vectors in this collection can be easily modified and adapted without the need for extensive recloning.
Collapse
Affiliation(s)
- Eric Campeau
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kumar TR. FSHbeta knockout mouse model: a decade ago and into the future. Endocrine 2009; 36:1-5. [PMID: 19387872 PMCID: PMC4074305 DOI: 10.1007/s12020-009-9199-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 02/24/2009] [Accepted: 04/09/2009] [Indexed: 10/20/2022]
Abstract
In 1997, more than 10 years ago now, we first reported the phenotypes of follicle stimulating hormone (FSH) beta null mice. Since then, these mice have been useful for various physiological and genetic studies in reproductive biology. More recently, extra-gonadal functions of FSH have been discovered in bone. These studies opened up exciting avenues of new research on osteoporosis in postmenopausal women. Several genomics and proteomics tools and novel strategies to spatio-temporally restricting gene expression in vivo are available now. It is hoped that with the aid of these and other emerging technologies, an integrated network of FSH signaling pathways in various tissues would emerge in the near future. Undoubtedly, the coming 10 years should be more exciting to explore this "fertile" area of reproductive physiology research.
Collapse
Affiliation(s)
- T Rajendra Kumar
- Department of Molecular, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
38
|
Assouline-Thomas B, Pilotte A, Petropavlovskaia M, Makhlin J, Ding J, McLeod D, Hanley S, Massie B, Rosenberg L. Production and characterization of the recombinant Islet Neogenesis Associated Protein (rINGAP). Protein Expr Purif 2009; 69:1-8. [PMID: 19635567 DOI: 10.1016/j.pep.2009.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 07/20/2009] [Accepted: 07/20/2009] [Indexed: 01/09/2023]
Abstract
Islet Neogenesis Associated Protein (INGAP) is implicated in pancreatic islet neogenesis. INGAP peptide, a pentadecapeptide comprising amino acids 104-118, reverses diabetes in rodents and improves glucose homeostasis in patients with diabetes. The mechanism of INGAP action is unknown, but such studies would benefit from the availability of the full-length recombinant protein (rINGAP). Here we report the production of rINGAP from 293-SF cells following lentiviral transduction, and its characterization by MALDI-TOF and Q-TOF Mass Spectrometry, and HPLC. Importantly, we show that rINGAP exhibits 100x the bioactivity of INGAP peptide on a molar basis in an in vitro assay of human islet regeneration.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/chemistry
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/isolation & purification
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/chemistry
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/isolation & purification
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Cricetinae
- Gene Expression Regulation
- Humans
- Islets of Langerhans/physiology
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/chemistry
- Lectins, C-Type/genetics
- Lectins, C-Type/isolation & purification
- Lentivirus/genetics
- Mass Spectrometry
- Mesocricetus
- Molecular Sequence Data
- Molecular Weight
- Pancreatitis-Associated Proteins
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/isolation & purification
- Regeneration/physiology
- Subcellular Fractions/metabolism
- Transduction, Genetic
Collapse
|
39
|
Jaiswal S, Jamieson CHM, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009; 138:271-85. [PMID: 19632178 PMCID: PMC2775564 DOI: 10.1016/j.cell.2009.05.046] [Citation(s) in RCA: 1217] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 03/04/2009] [Accepted: 05/21/2009] [Indexed: 12/19/2022]
Abstract
Macrophages clear pathogens and damaged or aged cells from the blood stream via phagocytosis. Cell-surface CD47 interacts with its receptor on macrophages, SIRPalpha, to inhibit phagocytosis of normal, healthy cells. We find that mobilizing cytokines and inflammatory stimuli cause CD47 to be transiently upregulated on mouse hematopoietic stem cells (HSCs) and progenitors just prior to and during their migratory phase, and that the level of CD47 on these cells determines the probability that they are engulfed in vivo. CD47 is also constitutively upregulated on mouse and human myeloid leukemias, and overexpression of CD47 on a myeloid leukemia line increases its pathogenicity by allowing it to evade phagocytosis. We conclude that CD47 upregulation is an important mechanism that provides protection to normal HSCs during inflammation-mediated mobilization, and that leukemic progenitors co-opt this ability in order to evade macrophage killing.
Collapse
Affiliation(s)
- Siddhartha Jaiswal
- Ludwig Center at Stanford, Stanford Cancer Center, Department of Pathology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
41
|
Shinoda Y, Hieda K, Koyanagi Y, Suzuki Y. Efficient transduction of cytotoxic and anti-HIV-1 genes by a gene-regulatable lentiviral vector. Virus Genes 2009; 39:165-75. [DOI: 10.1007/s11262-009-0382-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/12/2009] [Indexed: 01/25/2023]
|
42
|
Löw R. The use of retroviral vectors for tet-regulated gene expression in cell populations. Methods Mol Biol 2009; 506:221-42. [PMID: 19110630 DOI: 10.1007/978-1-59745-409-4_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Today the treatment of inherited diseases holds a major field in gene therapy, and gamma -retroviral vectors are often the preferred tool for stable introduction of the therapeutic gene(s) into the host cell genome. In many cases, the newly introduced gene has to be constitutively expressed, since enzyme function often is required at all times. However, in some cases gene function might be demanded only transiently, making a strict control of gene expression necessary. For more than a decade, the tet-system has proven to facilitate such strict control by tightly regulating gene expression, thereby assuring high expression levels in almost all organs and tissues. Yet, most of these results were obtained from the analysis of either selected cell clones or transgenic animals. On the contrary, in case of conditional gene expression, as necessary for gene therapy approaches, the use of genetically modified cell populations, where the majority of cells display similar regulatory properties, is required. Therefore, great effort has been undertaken to design viral vectors carrying the response unit that enables homogenous regulation of gene expression in transduced cell populations. This article summarizes critical points that have to be considered for the conditional regulation of gene expression in cell populations mediated by the tet-system. Examples of the required vector elements and tet-system components as well as advice on the handling of the system are given. These tools have been specifically developed to improve population-based gene regulation.
Collapse
|
43
|
Sanchez-Bustamante CD, Frey U, Kelm JM, Hierlemann A, Fussenegger M. Modulation of cardiomyocyte electrical properties using regulated bone morphogenetic protein-2 expression. Tissue Eng Part A 2009; 14:1969-88. [PMID: 18673087 DOI: 10.1089/ten.tea.2007.0302] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because cardiomyocytes lose their ability to divide after birth, any subsequent cell loss or dysfunction results in pathologic cardiac rhythm initiation or impulse conduction. Strategies to restore and control the electrophysiological activity of the heart may, therefore, greatly affect the regeneration of cardiac tissue functionality. Using lentivirus-derived particles to regulate the bone morphogenetic protein-2 (BMP-2) gene expression in a pristinamycin- or gaseous acetaldehyde-inducible manner, we demonstrated the adjustment of cardiomyocyte electrophysiological characteristics. Complementary metal oxide semiconductor-based high-density microelectrode arrays (HD-MEAs) were used to monitor the electrophysiological activity of neonatal rat cardiomyocytes (NRCs) cultured as monolayers (NRCml) or as microtissues (NRCmt). NRCmt more closely resembled heart tissue physiology than did NRCml and could be conveniently monitored using HD-MEAs because of their ability to detect low-signal events and to sub-select the region of interest, namely, areas where the microtissues were placed. Cardiomyocyte-forming microtissues, transduced using lentiviral vectors encoding BMP-2, were capable of restoring myocardial microtissue electrical activity. We also engineered NRCmt to functionally couple within a cardiomyocyte monolayer, thus showing pacemaker-like activity upon local regulation of transgenic BMP-2 expression. The controlled expression of therapeutic transgenes represents a crucial advance for clinical interventions and gene-function analysis.
Collapse
|
44
|
Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M, Naldini L. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods 2009; 6:63-6. [PMID: 19043411 DOI: 10.1038/nmeth.1277] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 11/06/2008] [Indexed: 01/09/2023]
Abstract
Studying microRNA function in vivo requires genetic strategies to generate loss-of-function phenotypes. We used lentiviral vectors to stably and specifically knock down microRNA by overexpressing microRNA target sequences from polymerase II promoters. These vectors effectively inhibited regulation of reporter constructs and natural microRNA targets. We used bone marrow reconstitution with hematopoietic stem cells stably overexpressing miR-223 target sequence to phenocopy the genetic miR-223 knockout mouse, indicating robust interference of microRNA function in vivo.
Collapse
Affiliation(s)
- Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, Via Olgettina 58, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
The effects of lentiviral gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats. ACTA ACUST UNITED AC 2008; 21:372-9. [PMID: 18600149 DOI: 10.1097/bsd.0b013e31814cf51d] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
STUDY DESIGN Rat spinal fusion model. OBJECTIVE This study aimed to assess the ability of rat bone marrow cells (RBMCs) transfected with bone morphogenetic protein (BMP)-2-containing lentivirus to induce a posterolateral spinal fusion in a rat model. SUMMARY OF BACKGROUND DATA Spinal arthrodesis is a commonly performed spinal procedure and autograft remains the standard for achieving spinal fusion. However, its procurement is associated with significant morbidity, and the rate of pseudoarthrosis has been reported to be 5% to 43%. Nonunion frequently leads to an unsatisfactory resolution of clinical symptoms and usually results in high medical costs and morbidity as well as the need for additional surgeries. These problems have led surgeons to search for alternative solutions to stimulate bone formation. Recombinant BMPs have also been used successfully in clinical trials. However, large doses of BMPs were required to induce adequate bone repair. The development of a regional gene therapy may be a more efficient method to deliver proteins to a specific anatomic site. Furthermore, adeno-BMP-2-producing rat bone marrow-derived cells have been used successfully to induce posterior spinal fusion. Recently, lentiviral vectors on the basis of human immunodeficiency virus have been developed for gene therapy. Lentiviruses are capable of insertion into the host genome, ensuring a prolonged gene expression. However, safety issues are a major concern when adopting these vectors for clinical use. METHODS In vitro study, we used RBMCs transfected with lentivirus vectors encoding BMP-2 (Lenti-BMP-2), RBMCs transfected with lentivirus vectors encoding the green fluorescent protein (GFP) (Lenti-GFP), and untransfected RBMCs; the latter 2 were used as controls. Alkaline phosphatase (ALP) staining and ALP activity were compared between the groups to assess the ability of the Lenti-BMP-2-transfected RBMCs to stimulate osteoblastic differentiation. In the rat posterolateral spine fusion model, the experimental study comprised 4 groups. Group 1 comprised 6 animals that were implanted with a collagen sponge containing 5 million RBMCs transfected with Lenti-BMP-2. Group 2 comprised 3 animals that were implanted with a collagen sponge containing 5 million RBMCs transfected with Lenti-GFP. Group 3 comprised 6 animals that were implanted with a collagen sponge containing 5 million untransfected RBMCs. Group 4 comprised 3 animals that were implanted with a collagen sponge alone. The rats were assessed by radiographs obtained at 4, 6, and 8 weeks. After death, their spines were explanted and assessed by manual palpation, high-resolution microcomputerized tomography, and histologic analysis. RESULTS The ALP staining was significantly greater in the Lenti-BMP-2-transfected RBMCs than in the untransfected RBMCs and the Lenti-GFP-transfected RBMCs. The ALP activity was 3-fold greater in the Lenti-BMP-2-transfected RBMCs than in the untransfected RBMCs and the Lenti-GFP-transfected RBMCs. In the rat spine fusion model, radiographic evaluation, high-resolution microcomputerized tomography, and manual palpation revealed spinal fusion in all the rats in Group 1 at 8 weeks. Groups 2, 3, and 4 comprised the control group. None of the rats in the control group (0 of 12) developed fusion at L4-L5. CONCLUSIONS The present study demonstrated that BMP-2-producing RBMCs, created through lentiviral gene transfer, induced sufficient spinal fusion. The use of lentiviral vectors that contain the cDNA for BMP-2 will be a novel and promising approach for a spinal fusion strategy.
Collapse
|
46
|
Vogel R, Mammeri H, Mallet J. Lentiviral vectors mediate nonimmunosuppressive rapamycin analog-induced production of secreted therapeutic factors in the brain: regulation at the level of transcription and exocytosis. Hum Gene Ther 2008; 19:167-78. [PMID: 18179357 DOI: 10.1089/hum.2007.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene transfer may become a powerful clinical tool for the delivery of secreted therapeutic polypeptides, provided that the in situ production of these peptides can be tightly regulated by the administration of a small inducer molecule. Particularly efficient control may be achieved by simultaneously using two regulation systems that interfere with the biosynthesis of the therapeutic factor at two different levels. Therefore, we have developed a set of two lentiviral vectors containing two regulation systems. These systems are induced by nonimmunosuppressive derivatives of rapamycin ("rapalogs") and allow simultaneous control of expression and of exocytosis of secreted therapeutic polypeptides. The set of vectors was used to produce green fluorescent protein (GFP) and glial cell line-derived neurotrophic factor (GDNF); GFP served as a model factor to demonstrate expression and entry into the exocytotic pathway in transduced cells. The constructs allowed robust in vitro expression and secretion of the polypeptides in the presence of rapalog AP21967. Withdrawal of the inducer resulted in efficient downregulation. In vivo, tightly regulated production of GFP and GDNF was observed after injection of the constructs into the striata of mice. The vectors thus fulfill key requirements for application in gene therapy.
Collapse
Affiliation(s)
- Roland Vogel
- Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs (LGN), CNRS-UMR 7091, Paris 75013, France
| | | | | |
Collapse
|
47
|
Rolny C, Capparuccia L, Casazza A, Mazzone M, Vallario A, Cignetti A, Medico E, Carmeliet P, Comoglio PM, Tamagnone L. The tumor suppressor semaphorin 3B triggers a prometastatic program mediated by interleukin 8 and the tumor microenvironment. J Exp Med 2008; 205:1155-71. [PMID: 18458115 PMCID: PMC2373847 DOI: 10.1084/jem.20072509] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 04/07/2008] [Indexed: 01/13/2023] Open
Abstract
Semaphorins are a large family of evolutionarily conserved morphogenetic molecules originally identified for their repelling role in axonal guidance. Intriguingly, semaphorins have recently been implicated in cancer progression (Neufeld, G., T. Lange, A. Varshavsky, and O. Kessler. 2007. Adv. Exp. Med. Biol. 600:118-131). In particular, semaphorin 3B (SEMA3B) is considered a putative tumor suppressor, and yet we found that it is expressed at high levels in many invasive and metastatic human cancers. By investigating experimental tumor models, we confirmed that SEMA3B expression inhibited tumor growth, whereas metastatic dissemination was surprisingly increased. We found that SEMA3B induced the production of interleukin (IL) 8 by tumor cells by activating the p38-mitogen-activated protein kinase pathway in a neuropilin 1-dependent manner. Silencing the expression of endogenous SEMA3B in tumor cells impaired IL-8 transcription. The release of IL-8, in turn, induced the recruitment of tumor-associated macrophages and metastatic dissemination to the lung, which could be rescued by blocking IL-8 with neutralizing antibodies. In conclusion, we report that SEMA3B exerts unexpected functions in cancer progression by fostering a prometastatic environment through elevated IL-8 secretion and recruitment of macrophages coupled to the suppression of tumor growth.
Collapse
Affiliation(s)
- Charlotte Rolny
- Institute for Cancer Research and Treatment (IRCC), University of Turin, School of Medicine, 10060 Candiolo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Broussau S, Jabbour N, Lachapelle G, Durocher Y, Tom R, Transfiguracion J, Gilbert R, Massie B. Inducible packaging cells for large-scale production of lentiviral vectors in serum-free suspension culture. Mol Ther 2008; 16:500-7. [PMID: 18180776 DOI: 10.1038/sj.mt.6300383] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We have developed new packaging cell lines (293SF-PacLV) that can produce lentiviral vectors (LVs) in serum-free suspension cultures. A cell line derived from 293SF cells, expressing the repressor (CymR) of the cumate switch and the reverse transactivator (rtTA2(S)-M2) of the tetracycline (Tet) switch, was established first. We next generated clones stably expressing the Gag/Pol and Rev genes of human immunodeficiency virus-1, and the glycoprotein of vesicular stomatitis virus (VSV-G). Expression of Rev and VSV-G was tightly regulated by the cumate and Tet switches. Our best packaging cells produced up to 2.6 x 10(7) transducing units (TU)/ml after transfection with the transfer vector. Up to 3.4 x 10(7) TU/ml were obtained using stable producers generated by transducing the packaging cells with conditional-SIN-LV. The 293SF-PacLV was stable, as shown by the fact that some producers maintained high-level LV production for 18 weeks without selective pressure. The utility of the 293SF-PacLV for scaling up production in serum-free medium was demonstrated in suspension cultures and in a 3.5-L bioreactor. In shake flasks, the best packaging cells produced between 3.0 and 8.0 x 10(6) TU/ml/day for 3 days, and the best producer cells, between 1.0 and 3.4 x 10(7) TU/ml/day for 5 days. In the bioreactor, 2.8 liters containing 2.0 x 10(6) TU/ml was obtained after 3 days of batch culture following the transfection of packaging cells. In summary, the 293SF-PacLV possesses all the attributes necessary to become a valuable tool for scaling up LV production for preclinical and clinical applications.
Collapse
Affiliation(s)
- Sophie Broussau
- Groupe de Vecteurs de Génomique et Thérapie Génique, Institut de Recherche en Biotechnologie, Conseil National de Recherches Canada, Montréal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007; 36:184-204. [PMID: 17873406 DOI: 10.1007/s12033-007-0010-8] [Citation(s) in RCA: 225] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/28/2022]
Abstract
The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.
Collapse
Affiliation(s)
- Adam S Cockrell
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
50
|
Abstract
The mainstays of Parkinson's disease (PD) treatment remain symptomatic, including initial dopamine replacement and subsequent deep brain stimulation, however, neither of these approaches is neuroprotective. Neurotrophic factors - proteins that activate cell signalling pathways regulating neuronal survival, differentiation, growth and regeneration - represent an alternative for treating dopaminergic neurons in PD but are difficult to administer clinically because they do not pass through the blood-brain barrier. Glial cell line-derived neurotrophic factor (GDNF) has potent neurotrophic effects particularly but not exclusively on dopaminergic neurons; in animal models of PD, it has consistently demonstrated both neuroprotective and neuroregenerative effects when provided continuously, either by means of a viral vector or through continuous infusion either into the cerebral ventricles (ICV) or directly into the denervated putamen. This led to a human PD study in which GDNF was administered by monthly bolus intracerebroventricular injections, however, no clinical benefit resulted, probably because of the limited penetration to the target brain areas, and instead significant side effects occurred. In an open-label study of continuous intraputamenal GDNF infusion in five patients (one unilaterally and four bilaterally), we reported excellent tolerance, few side effects and clinical benefit evident within three months of the commencement of treatment. The clinical improvement was sustained and progressive, and by 24-months patients demonstrated a 57 and 63% improvement in their off-medication motor and activities of daily living UPDRS subscores, respectively, with clear benefit in dyskinesias. The benefit was associated with a significant increase in putamenal 18F-dopa uptake on positron emission tomography (PET), and in one patient coming to autopsy after 43 months of unilateral infusion there was evident increased tyrosine hydroxylase immunopositive nerve fibres in the infused putamen. A second open trial in 10 patients using unilateral intraputamenal GDNF infusions has also demonstrated a greater than 30% bilateral benefit in both on- and off-medication scores at 24 weeks. Based on our 6-month results, a randomized controlled clinical trial was conducted to confirm the open-label results, however, GDNF infusion over 6-months did not confer the predetermined level of clinical benefit to patients with PD despite increased 18F-dopa uptake surrounding the catheter tip. It is possible that technical differences between this trial and the positive open label studies contributed to this negative outcome.
Collapse
Affiliation(s)
- N K Patel
- Institute of Neurosciences, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|