1
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
2
|
Naumenko VA, Vishnevskiy DA, Stepanenko AA, Sosnovtseva AO, Chernysheva AA, Abakumova TO, Valikhov MP, Lipatova AV, Abakumov MA, Chekhonin VP. In Vivo Tracking for Oncolytic Adenovirus Interactions with Liver Cells. Biomedicines 2022; 10:biomedicines10071697. [PMID: 35885002 PMCID: PMC9313019 DOI: 10.3390/biomedicines10071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
Hepatotoxicity remains an as yet unsolved problem for adenovirus (Ad) cancer therapy. The toxic effects originate both from rapid Kupffer cell (KCs) death (early phase) and hepatocyte transduction (late phase). Several host factors and capsid components are known to contribute to hepatotoxicity, however, the complex interplay between Ad and liver cells is not fully understood. Here, by using intravital microscopy, we aimed to follow the infection and immune response in mouse liver from the first minutes up to 72 h post intravenous injection of three Ads carrying delta-24 modification (Ad5-RGD, Ad5/3, and Ad5/35). At 15–30 min following the infusion of Ad5-RGD and Ad5/3 (but not Ad5/35), the virus-bound macrophages demonstrated signs of zeiosis: the formation of long-extended protrusions and dynamic membrane blebbing with the virus release into the blood in the membrane-associated vesicles. Although real-time imaging revealed interactions between the neutrophils and virus-bound KCs within minutes after treatment, and long-term contacts of CD8+ T cells with transduced hepatocytes at 24–72 h, depletion of neutrophils and CD8+ T cells affected neither rate nor dynamics of liver infection. Ad5-RGD failed to complete replicative cycle in hepatocytes, and transduced cells remained impermeable for propidium iodide, with a small fraction undergoing spontaneous apoptosis. In Ad5-RGD-immune mice, the virus neither killed KCs nor transduced hepatocytes, while in the setting of hepatic regeneration, Ad5-RGD enhanced liver transduction. The clinical and biochemical signs of hepatotoxicity correlated well with KC death, but not hepatocyte transduction. Real-time in vivo tracking for dynamic interactions between virus and host cells provides a better understanding of mechanisms underlying Ad-related hepatotoxicity.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Correspondence:
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Anastasiia O. Sosnovtseva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Anastasiia A. Chernysheva
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Tatiana O. Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, 121205 Moscow, Russia;
| | - Marat P. Valikhov
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Maxim A. Abakumov
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
- Laboratory of Biomedical Nanomaterials, National University of Science and Technology (MISIS), 119049 Moscow, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, 119034 Moscow, Russia; (D.A.V.); (A.A.S.); (A.O.S.); (A.A.C.); (M.P.V.); (V.P.C.)
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|
3
|
Abstract
Pre-existing immune response against adenovirus could diminish transgene expression efficiency when Ad is employed in humans as gene therapy vector. We previously used Ad-hΔuPA (Recombinant adenovirus expressing human urokinase-type plasminogen activator) as antifibrotic gene therapy in cirrhosis models and demonstrated its effectiveness. As a further clinical approach, transient Cyclosporine A (CsA) immunosuppression was induced in cirrhotic animals to determine whether Ad-hΔuPA administration retained efficacy. Adenovirus sensitization was achieved by systemic administration of non-therapeutic Ad-βGal (Recombinant adenovirus expressing beta-galactosidase) after 4 weeks of intraperitoneal carbon tetrachloride (CCl4) regimen. Cirrhosis induction continued up to 8 weeks. At the end of CCl4 intoxication, immunosuppression was achieved with three CsA doses (40 mg/kg) as follows: 24 h before administration of Ad-hΔuPA, at the moment of Ad-hΔuPA injection and finally, 24 h after Ad-hΔuPA inoculation. At 2 and 72 h after Ad-hΔuPA injection, animals were sacrificed. Liver, spleen, lung, kidney, heart, brain, and testis were analyzed for Ad-biodistribution and transgene expression. In naïve animals, Ad-hΔuPA genomes prevailed in liver and spleen, while Ad-sensitized rats showed Ad genomes also in their kidney and heart. Cirrhosis and Ad preimmunization status notably diminished transgene liver expression compared to healthy livers. CsA immunosuppression in cirrhotic animals has no effect on Ad-hΔuPA biodistribution, but increments survival.
Collapse
|
4
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
5
|
Neuroglobin Expression Models as a Tool to Study Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5728129. [PMID: 31320982 PMCID: PMC6607734 DOI: 10.1155/2019/5728129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/12/2019] [Indexed: 01/13/2023]
Abstract
Neuroglobin (Ngb) is an evolutionary conserved member of the globin family with a primary expression in neurons of which the exact functions remain elusive. A plethora of in vivo and in vitro model systems has been generated to this day to determine the functional biological roles of Ngb. Here, we provide a comprehensive overview and discussion of the different Ngb models, covering animal and cellular models of both overexpression and knockout strategies. Intriguingly, an in-depth literature search of available Ngb expression models revealed crucial discrepancies in the outcomes observed in different models. Not only does the level of Ngb expression—either physiologically, overexpressed, or downregulated—alter its functional properties, the experimental setup, being in vitro or in vivo, does impact the functional outcome as well and, hence, whether or not a physiological and/or therapeutic role is ascribed to Ngb. These differences could highlight either technical or biological adaptations and should be considered until elucidation of the Ngb biology.
Collapse
|
6
|
TRIM21 mediates antibody inhibition of adenovirus-based gene delivery and vaccination. Proc Natl Acad Sci U S A 2018; 115:10440-10445. [PMID: 30209217 PMCID: PMC6187179 DOI: 10.1073/pnas.1806314115] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral-based delivery vectors have huge potential in the treatment of human disease. Adenoviral vectors specifically have proven highly efficacious in delivering corrected genes, as part of gene therapy, and vaccine epitopes for treating cancer and infectious disease. A principal obstacle to their widespread use is that antibodies potently neutralize them, limiting treatment to naïve patients. How antibodies block adenovirus-based transduction has long remained a mystery because, even though they prevent transgene expression, they do not prevent transgene delivery into target tissue. Here we show that the cytosolic antibody receptor TRIM21 is responsible for intercepting adenoviral gene therapy and vaccine vectors and neutralizing them. Gene KO of TRIM21 or a single-antibody mutation that prevents interaction is sufficient to restore transgene expression. Adenovirus has enormous potential as a gene-therapy vector, but preexisting immunity limits its widespread application. What is responsible for this immune block is unclear because antibodies potently inhibit transgene expression without impeding gene transfer into target cells. Here we show that antibody prevention of adenoviral gene delivery in vivo is mediated by the cytosolic antibody receptor TRIM21. Genetic KO of TRIM21 or a single-antibody point mutation is sufficient to restore transgene expression to near-naïve immune levels. TRIM21 is also responsible for blocking cytotoxic T cell induction by vaccine vectors, preventing a protective response against subsequent influenza infection and an engrafted tumor. Furthermore, adenoviral preexisting immunity can lead to an augmented immune response upon i.v. administration of the vector. Transcriptomic analysis of vector-transduced tissue reveals that TRIM21 is responsible for the specific up-regulation of hundreds of immune genes, the majority of which are components of the intrinsic or innate response. Together, these data define a major mechanism underlying the preimmune block to adenovirus gene therapy and demonstrate that TRIM21 efficiently blocks gene delivery in vivo while simultaneously inducing a rapid program of immune transcription.
Collapse
|
7
|
Zhang L, Chang L, Xu J, Meyers CA, Yan N, Zou E, Ding C, Ting K, Soo C, Pang S, James AW. Frontal Bone Healing Is Sensitive to Wnt Signaling Inhibition via Lentiviral-Encoded Beta-Catenin Short Hairpin RNA. Tissue Eng Part A 2018; 24:1742-1752. [PMID: 29929440 PMCID: PMC6302677 DOI: 10.1089/ten.tea.2017.0465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/24/2018] [Indexed: 01/10/2023] Open
Abstract
The Wnt/β-catenin signaling pathway plays an integral role in skeletal biology, spanning from embryonic skeletal patterning through bone maintenance and bone repair. Most experimental methods to antagonize Wnt signaling in vivo are either systemic or transient, including genetic approaches, use of small-molecule inhibitors, or neutralizing antibodies. We sought to develop a novel, localized model of prolonged Wnt/β-catenin signaling blockade by the application and validation of a lentivirus encoding β-catenin short hairpin RNA (shRNA). Efficacy of lentiviral-encoded β-catenin shRNA was first confirmed in vitro using bone marrow mesenchymal stromal cells, and in vivo using an intramedullary long bone injection model in NOD SCID mice. Next, the effects of β-catenin knockdown were assessed in a calvarial bone defect model, in which the frontal bone demonstrates enhanced bone healing associated with heightened Wnt/β-catenin signaling. Lentivirus encoding either β-catenin shRNA or random sequence shRNA with enhanced green fluorescent protein (control) was injected overlying the calvaria of NOD SCID mice and bone defects were created in either the frontal or parietal bones. Among mice treated with lentivirus encoding β-catenin shRNA, frontal bone defect healing was significantly reduced by all radiographic and histologic metrics. In contrast, parietal bone healing was minimally impacted by β-catenin shRNA. In aggregate, our data document the application and validation of a lentivirus encoding β-catenin shRNA model that represents an easily replicable tool for examining the importance of locoregional Wnt/β-catenin signaling in bone biology and regeneration.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, China
| | - Leslie Chang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- University of California San Diego School of Medicine, La Jolla, California
| | - Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | | | - Noah Yan
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Erin Zou
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Kang Ting
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
- Division of Growth and Development and Section of Orthodontics, School of Dentistry, UCLA, Los Angeles, California
| | - Chia Soo
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
- Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Shen Pang
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, Los Angeles, California
| |
Collapse
|
8
|
Antibodies against adenovirus fiber and penton base proteins inhibit adenovirus vector-mediated transduction in the liver following systemic administration. Sci Rep 2018; 8:12315. [PMID: 30120324 PMCID: PMC6098129 DOI: 10.1038/s41598-018-30947-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/08/2018] [Indexed: 11/09/2022] Open
Abstract
Pre-existing anti-adenovirus (Ad) neutralizing antibodies (AdNAbs) are a major barrier in clinical gene therapy using Ad vectors and oncolytic Ads; however, it has not been fully elucidated which Ad capsid protein-specific antibodies are involved in AdNAb-mediated inhibition of Ad infection in vivo. In this study, mice possessing antibodies specific for each Ad capsid protein were prepared by intramuscular electroporation of each Ad capsid protein-expressing plasmid. Ad vector-mediated hepatic transduction was efficiently inhibited by more than 100-fold in mice immunized with a fiber protein-expressing plasmid or a penton base-expressing plasmid. An Ad vector pre-coated with FX before administration mediated more than 100-fold lower transduction efficiencies in the liver of warfarinized mice immunized with a fiber protein-expressing plasmid or a penton base-expressing plasmid, compared with those in the liver of warfarinized non-immunized mice. These data suggest that anti-fiber protein and anti-penton base antibodies bind to an Ad vector even though FX has already bound to the hexon, and inhibit Ad vector-mediated transduction. This study provides important clues for the development of a novel Ad vector that can circumvent inhibition with AdNAbs.
Collapse
|
9
|
Wheeler LA, Manzanera AG, Bell SD, Cavaliere R, McGregor JM, Grecula JC, Newton HB, Lo SS, Badie B, Portnow J, Teh BS, Trask TW, Baskin DS, New PZ, Aguilar LK, Aguilar-Cordova E, Chiocca EA. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol 2016; 18:1137-45. [PMID: 26843484 DOI: 10.1093/neuonc/now002] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 01/02/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Despite aggressive standard of care (SOC) treatment, survival of malignant gliomas remains very poor. This Phase II, prospective, matched controlled, multicenter trial was conducted to assess the safety and efficacy of aglatimagene besadenovec (AdV-tk) plus valacyclovir (gene-mediated cytotoxic immunotherapy [GMCI]) in combination with SOC for newly diagnosed malignant glioma patients. METHODS Treatment cohort patients received SOC + GMCI and were enrolled at 4 institutions from 2006 to 2010. The preplanned, matched-control cohort included all concurrent patients meeting protocol criteria and SOC at a fifth institution. AdV-tk was administered at surgery followed by SOC radiation and temozolomide. Subset analyses were preplanned, based on prognostic factors: pathological diagnosis (glioblastoma vs others) and extent of resection. RESULTS Forty-eight patients completed SOC + GMCI, and 134 met control cohort criteria. Median overall survival (OS) was 17.1 months for GMCI + SOC versus 13.5 months for SOC alone (P = .0417). Survival at 1, 2, and 3 years was 67%, 35%, and 19% versus 57%, 22%, and 8%, respectively. The greatest benefit was observed in gross total resection patients: median OS of 25 versus 16.9 months (P = .0492); 1, 2, and 3-year survival of 90%, 53%, and 32% versus 64%, 28% and 6%, respectively. There were no dose-limiting toxicities; fever, fatigue, and headache were the most common GMCI-related symptoms. CONCLUSIONS GMCI can be safely combined with SOC in newly diagnosed malignant gliomas. Survival outcomes were most notably improved in patients with minimal residual disease after gross total resection. These data should help guide future immunotherapy studies and strongly support further evaluation of GMCI for malignant gliomas. CLINICAL TRIAL REGISTRY ClinicalTrials.gov NCT00589875.
Collapse
Affiliation(s)
- Lee A Wheeler
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Andrea G Manzanera
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Susan D Bell
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Robert Cavaliere
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - John M McGregor
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - John C Grecula
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Herbert B Newton
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Simon S Lo
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Behnam Badie
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Jana Portnow
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Bin S Teh
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Todd W Trask
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - David S Baskin
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Pamela Z New
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Laura K Aguilar
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - Estuardo Aguilar-Cordova
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| | - E Antonio Chiocca
- Brigham and Women's Hospital/Harvard Medical School, Massachusetts (L.A.W., E.A.C.); Advantagene, Inc., Auburndale, Massachusetts (A.G.M., L.K.A., E.A.-C.); Ohio State University, Columbus, Ohio (S.D.B., R.C., J.M.M., J.C.G., H.B.N.); University Hospitals Seidman Cancer Center/ Case Western Reserve University, Cleveland, Ohio (S.S.L.); City of Hope, Duarte, California (B.B., J.B.); Houston Methodist Hospital, Houston, Texas (B.S.T., T.W.T., D.S.B., P.Z.N.)
| |
Collapse
|
10
|
Zhang P, Du E, Ma J, Wang W, Zhang L, Tikoo SK, Yang Z. A novel and simple method for rapid generation of recombinant porcine adenoviral vectors for transgene expression. PLoS One 2015; 10:e0127958. [PMID: 26011074 PMCID: PMC4444375 DOI: 10.1371/journal.pone.0127958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 04/22/2015] [Indexed: 01/02/2023] Open
Abstract
Many human (different serotypes) and nonhuman adenovirus vectors are being used for gene delivery. However, the current system for isolating recombinant adenoviral vectors is either time-consuming or expensive, especially for the generation of recombinant non-human adenoviral vectors. We herein report a new and simple cloning approach for the rapid generation of a porcine adenovirus (PAdV-3) vector which shows promise for gene transfer to human cells and evasion of human adenovirus type 5 (HAdV-5) immunity. Based on the final cloning plasmid, pFPAV3-CcdB-Cm, and our modified SLiCE strategy (SLiCE cloning and lethal CcdB screening), the process for generating recombinant PAdV-3 plasmids required only one step in 3 days, with a cloning efficiency as high as 620 ± 49.56 clones/ng and zero background (100% accuracy). The recombinant PAdV-3 plasmids could be successfully rescued in porcine retinal pigment epithelium cells (VR1BL), which constitutively express the HAdV-5 E1 and PAdV-3 E1B 55k genes, and the foreign genes were highly expressed at 24 h after transduction into swine testicle (ST) cells. In conclusion, this strategy for generating recombinant PAdV-3 vectors based on our modified SLiCE cloning system was rapid and cost-efficient, which could be used as universal cloning method for modification the other regions of PAdV-3 genome as well as other adenoviral genomes.
Collapse
Affiliation(s)
- Peng Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Enqi Du
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Jing Ma
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Wenbin Wang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Lu Zhang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
| | - Suresh K. Tikoo
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Vaccinology & Immunotherapeutics Program, School of Public Health, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (ZY); (SKT)
| | - Zengqi Yang
- College of Veterinary Medicine, North-west A&F University, Yangling, Shaanxi, China
- * E-mail: (ZY); (SKT)
| |
Collapse
|
11
|
Tropism-modification strategies for targeted gene delivery using adenoviral vectors. Viruses 2010; 2:2290-2355. [PMID: 21994621 PMCID: PMC3185574 DOI: 10.3390/v2102290] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 10/07/2010] [Indexed: 02/08/2023] Open
Abstract
Achieving high efficiency, targeted gene delivery with adenoviral vectors is a long-standing goal in the field of clinical gene therapy. To achieve this, platform vectors must combine efficient retargeting strategies with detargeting modifications to ablate native receptor binding (i.e. CAR/integrins/heparan sulfate proteoglycans) and “bridging” interactions. “Bridging” interactions refer to coagulation factor binding, namely coagulation factor X (FX), which bridges hepatocyte transduction in vivo through engagement with surface expressed heparan sulfate proteoglycans (HSPGs). These interactions can contribute to the off-target sequestration of Ad5 in the liver and its characteristic dose-limiting hepatotoxicity, thereby significantly limiting the in vivo targeting efficiency and clinical potential of Ad5-based therapeutics. To date, various approaches to retargeting adenoviruses (Ad) have been described. These include genetic modification strategies to incorporate peptide ligands (within fiber knob domain, fiber shaft, penton base, pIX or hexon), pseudotyping of capsid proteins to include whole fiber substitutions or fiber knob chimeras, pseudotyping with non-human Ad species or with capsid proteins derived from other viral families, hexon hypervariable region (HVR) substitutions and adapter-based conjugation/crosslinking of scFv, growth factors or monoclonal antibodies directed against surface-expressed target antigens. In order to maximize retargeting, strategies which permit detargeting from undesirable interactions between the Ad capsid and components of the circulatory system (e.g. coagulation factors, erythrocytes, pre-existing neutralizing antibodies), can be employed simultaneously. Detargeting can be achieved by genetic ablation of native receptor-binding determinants, ablation of “bridging interactions” such as those which occur between the hexon of Ad5 and coagulation factor X (FX), or alternatively, through the use of polymer-coated “stealth” vectors which avoid these interactions. Simultaneous retargeting and detargeting can be achieved by combining multiple genetic and/or chemical modifications.
Collapse
|
12
|
Abstract
Adenovirus (Ad) vectors, in particular those of the serotype 5, are highly attractive for a wide range of gene therapy, vaccine and virotherapy applications (as discussed in further detail in this issue). Wild type Ad5 virus can replicate in numerous tissue types but to use Ad vectors for therapeutic purposes the viral genome requires modification. In particular, if the viral genome is modified in such a way that the viral life cycle is interfered with, a specific producer cell line is required to provide trans-complementation to overcome the modification and allow viral production. This can occur in two ways; use of a producer cell line that contains specific adenoviral sequences incorporated into the cell genome to trans-complement, or use of a producer cell line that naturally complements for the modified Ad vector genome. This review concentrates on producer cell lines that complement non-replicating adenoviral vectors, starting with the historical HEK293 cell line developed in 1977 for first generation Ad vectors. In addition the problem of replication-competent adenovirus (RCA) contamination in viral preparations from HEK293 cells is addressed leading to the development of alternate cell lines. Furthermore novel cell lines for more complex Ad vectors and alternate serotype Ad vectors are discussed.
Collapse
|
13
|
Zaiss AK, Machado HB, Herschman HR. The influence of innate and pre-existing immunity on adenovirus therapy. J Cell Biochem 2010; 108:778-90. [PMID: 19711370 DOI: 10.1002/jcb.22328] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Recombinant adenovirus serotype 5 (Ad5) vectors have been studied extensively in preclinical gene therapy models and in a range of clinical trials. However, innate immune responses to adenovirus vectors limit effectiveness of Ad5 based therapies. Moreover, extensive pre-existing Ad5 immunity in human populations will likely limit the clinical utility of adenovirus vectors, unless methods to circumvent neutralizing antibodies that bind virus and block target cell transduction can be developed. Furthermore, memory T cell and humoral responses to Ad5 are associated with increased toxicity, raising safety concerns for therapeutic adenovirus vectors in immunized hosts. Most preclinical studies have been performed in naïve animals; although pre-existing immunity is among the greatest hurdles for adenovirus therapies, it is also one of the most neglected experimentally. Here we summarize findings using adenovirus vectors in naïve animals, in Ad-immunized animals and in clinical trials, and review strategies proposed to overcome innate immune responses and pre-existing immunity.
Collapse
Affiliation(s)
- Anne K Zaiss
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
14
|
Moore CB, Guthrie EH, Huang MTH, Taxman DJ. Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol 2010; 629:141-58. [PMID: 20387148 DOI: 10.1007/978-1-60761-657-3_10] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Shortly after the cellular mechanism of RNA interference (RNAi) was first described, scientists began using this powerful technique to study gene function. This included designing better methods for the successful delivery of small interfering RNAs (siRNAs) and short hairpin RNAs (shRNAs) into mammalian cells. While the simplest method for RNAi is the cytosolic delivery of siRNA oligonucleotides, this technique is limited to cells capable of transfection and is primarily utilized during transient in vitro studies. The introduction of shRNA into mammalian cells through infection with viral vectors allows for stable integration of shRNA and long-term knockdown of the targeted gene; however, several challenges exist with the implementation of this technology. Here we describe some well-tested protocols which should increase the chances of successful design, delivery, and assessment of gene knockdown by shRNA. We provide suggestions for designing shRNA targets and controls, a protocol for sequencing through the secondary structure of the shRNA hairpin structure, and protocols for packaging and delivery of shRNA lentiviral particles. Using real-time PCR and functional assays we demonstrate the successful knockdown of ASC, an inflammatory adaptor molecule. These studies demonstrate the practicality of including two shRNAs with different efficacies of knockdown to provide an additional level of control and to verify dose dependency of functional effects. Along with the methods described here, as new techniques and algorithms are designed in the future, shRNA is likely to include further promising application and continue to be a critical component of gene discovery.
Collapse
Affiliation(s)
- Chris B Moore
- Virology, GlaxoSmithKline, Research Triangle Park, NC, USA
| | | | | | | |
Collapse
|
15
|
Tsai KC, Liao ZK, Yang SJ, Lin WL, Shieh MJ, Hwang LH, Chen WS. Differences in gene expression between sonoporation in tumor and in muscle. J Gene Med 2009; 11:933-40. [PMID: 19639605 DOI: 10.1002/jgm.1376] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Ultrasound (US) is a novel and effective tool for the local delivery of genes into target tissues. US can temporarily change the permeability of a cell membrane and thus enhance the delivery of naked DNA into cells. In the present study, the efficiencies of gene expression mediated by US delivery in orthotopic liver tumor, subcutaneous tumor and muscle tissue were evaluated by changing the contrast agent concentrations and US exposure durations. METHODS Plasmid DNA coding for luciferase, interleukin-12 or enhanced green fluorescence protein was mixed with SonoVue and injected intratumorally or intramuscularly. The injection sites were then exposed to US (20% duty cycle and 0.4 W/cm(2) intensity). RESULTS The results obtained showed that the optimal condition was 50% SonoVue for tumors and 30% for muscle, with 10 min of US exposure. The expression levels of the transfected DNAs were in the order: muscle > subcutaneous tumor > orthotopic liver tumor. CONCLUSIONS The present study indicates that muscle tissue is a good target site for producing large amounts of gene products for the purpose of gene therapy.
Collapse
Affiliation(s)
- Kun-Che Tsai
- Institute of Biomedical Engineering, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | | | | | | | | | | | | |
Collapse
|
16
|
Dhar D, Spencer JF, Toth K, Wold WSM. Pre-existing immunity and passive immunity to adenovirus 5 prevents toxicity caused by an oncolytic adenovirus vector in the Syrian hamster model. Mol Ther 2009; 17:1724-32. [PMID: 19602998 DOI: 10.1038/mt.2009.156] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We have used Syrian hamsters to examine the role of pre-existing immunity to adenovirus (Ad) 5 in the toxicity of the oncolytic Ad vector INGN 007. Groups of hamsters were or were not immunized with Ad5. Half the hamsters were immunosuppressed using cyclophosphamide (CP), then injected intravenously (i.v.) with 3x the maximum tolerated dose (MTD) of INGN 007 (in immunocompetent hamsters), and toxicity and vector replication in the liver were quantitated. In nonimmunized immunocompetent hamsters, toxicity was observed early but the hamsters recovered by day 6 after vector injection. In nonimmunized immunosuppressed hamsters, the vector was lethal by 3 days. Pre-existing neutralizing antibody (NAb) prevented liver infection and hepatotoxicity in both immunocompetent and immunosuppressed hamsters. In another study, passive immunization of immunosuppressed hamsters 1 day before a lethal dose (1x MTD) of INGN 007 prevented liver infection and replication, but immunization 1 day after vector administration was barely effective. When immunosuppressed hamsters were passively immunized 1 day after injection of 1/3rd the MTD of INGN 007, then significant protection was observed against liver infection and toxicity. Therefore, serum NAb are sufficient to prevent oncolytic Ad vector liver infection and toxicity. We saw no evidence that pre-existing immunity was associated with increased vector toxicity.
Collapse
Affiliation(s)
- Debanjan Dhar
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104, USA
| | | | | | | |
Collapse
|
17
|
Sakurai F. [Development of a replication-incompetent adenovirus vector derived from subgroup B adenovirus serotype 35]. YAKUGAKU ZASSHI 2009; 128:1751-61. [PMID: 19043294 DOI: 10.1248/yakushi.128.1751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Properties of gene delivery vehicles, including gene transfer efficiencies and toxicities, are a key parameter for successful gene therapy. Among various types of gene delivery vehicles that have been developed so far, adenovirus (Ad) vectors have promising potentials as a vector for gene therapy because they can easily be grown to high titers and can efficiently deliver genes to both dividing and non-dividing cells. However, recent studies demonstrated some drawbacks of conventional Ad vectors, which are composed of subgroup C Ad serotype 5 (Ad5). First, Ad5 vectors poorly transduce cells lacking the primary receptor for Ad5, coxsackievirus and adenovirus receptor (CAR). Second, majority of adults have neutralizing antibodies to Ad5. In order to overcome these drawbacks, we developed a novel Ad vector which is fully composed of subgroup B Ad serotype 35 (Ad35). Ad35 vectors can infect a variety of human cells because the primary receptor for Ad35, CD46, is ubiquitously expressed in human cells. Furthermore, Ad35 vectors efficiently transduce in the presence of anti-Ad5 antibodies, and seroprevalence of Ad35 in adults is much lower than that of Ad5. In the current review, I introduce our recent work on development and evaluation of Ad35 vectors, and I also discuss the potential of Ad35 vectors as gene delivery vehicles.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Ibaragi City, Japan.
| |
Collapse
|
18
|
Zhang H, Takayama K, Zhang L, Uchino J, Harada A, Harada T, Hisasue J, Nakagaki N, Zhou C, Nakanishi Y. Tetracycline-inducible promoter-based conditionally replicative adenoviruses for the control of viral replication. Cancer Gene Ther 2009; 16:415-22. [DOI: 10.1038/cgt.2008.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Effect of preexisting immunity on oncolytic adenovirus vector INGN 007 antitumor efficacy in immunocompetent and immunosuppressed Syrian hamsters. J Virol 2008; 83:2130-9. [PMID: 19073718 DOI: 10.1128/jvi.02127-08] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Immune responses against adenovirus (Ad) vectors pose a possible concern for the outcome of treatment efficacy. To address the role of preexisting immunity in oncolytic Ad vector antitumor efficacy following intratumoral injection of vector as well as tumor-to-tissue spread of the vector, we employed the Syrian hamster model. These animals are immunocompetent, and their tumors and tissues are permissive for replication of Ad type 5 (Ad5). We used the adenovirus death protein-overexpressing Ad5-based vector INGN 007. Subcutaneous tumors were established in groups of hamsters that were or were not immunized with Ad5. Half of the hamsters in these groups were immunosuppressed with cyclophosphamide. For all groups, tumors injected with INGN 007 grew significantly more slowly than those injected with buffer. Under immunocompetent conditions, there was no significant effect of preexisting immunity on vector antitumor efficacy. Soon after the tumors in naïve animals were injected with vector, the hamsters developed neutralizing antibody (NAb) and the difference in NAb titers between the naïve and immunized groups diminished. Under immunosuppressed conditions, preexisting NAb did significantly reduce vector efficacy. Thus, NAb do reduce vector efficacy to some extent, but immunosuppression is required to observe the effect. Regarding vector toxicity, there was spillover of vector from the tumor to the liver and lungs in naïve immunocompetent hamsters, and this was nearly eliminated in the immunized hamsters. Thus, preexisting immunity to Ad5 does not affect INGN 007 antitumor efficacy following intratumoral injection, but immunity prevents vector spillover from the tumor to the liver and lungs.
Collapse
|
20
|
Sakurai F. Development and evaluation of a novel gene delivery vehicle composed of adenovirus serotype 35. Biol Pharm Bull 2008; 31:1819-25. [PMID: 18827334 DOI: 10.1248/bpb.31.1819] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The capacity of gene delivery vehicles is considered to be a critical factor determining the success of gene therapy. To date, various types of gene delivery vehicle have been developed. Among them, recombinant adeno-virus (Ad) vectors have potential that has favored their worldwide use in vitro and in vivo. Conventional Ad vectors are composed of subgroup C Ad serotype 5 (Ad5), although it has been clarified that the drawbacks of Ad5 vectors are a high seroprevalence of Ad5 in adults and low transduction efficiencies in cells lacking the primary receptor for Ad5, coxsackievirus and adenovirus receptor. To overcome these problems, we developed a novel Ad vector fully composed of Ad serotype 35 (Ad35). Ad35 vectors show a wide tropism for human cells because Ad35 binds to human CD46, which is ubiquitously expressed on almost all human cells, as a primary receptor. In addition, anti-Ad5 antibodies do not inhibit Ad35 vector-mediated transduction and the seroprevalence of Ad35 in adults is lower than that of Ad5. This paper reviews our studies on the development and evaluation of Ad35 vectors. Ad vectors derived from other Ad serotypes different from Ad5, including Ad35, are expected to be gene delivery vehicles alternative to conventional Ad5 vectors.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, 7-6-8 Asagi, Saito, Ibaragi, Osaka 567-0085, Japan.
| |
Collapse
|
21
|
Transduction Properties of Adenovirus Serotype 35 Vectors After Intravenous Administration Into Nonhuman Primates. Mol Ther 2008; 16:726-733. [DOI: 10.1038/mt.2008.19] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 09/15/2007] [Indexed: 12/28/2022] Open
|
22
|
Appledorn DM, Kiang A, McBride A, Jiang H, Seregin S, Scott JM, Stringer R, Kousa Y, Hoban M, Frank MM, Amalfitano A. Wild-type adenoviruses from groups A-F evoke unique innate immune responses, of which HAd3 and SAd23 are partially complement dependent. Gene Ther 2008; 15:885-901. [PMID: 18288208 DOI: 10.1038/gt.2008.18] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative human and non-human Ad serotype vectors are currently studied for gene therapy and/or vaccine applications to capitalize upon their likely ability to avoid pre-existing immunity to HAd5. However, relatively little attention has been given to the nature and scope of innate immune responses generated by alternative Ad serotypes. In this study, we characterized several innate immune responses after intravenous administration of wild-type Ad serotypes HAd31, HAd3, HAd5, HAd37, SAd23 and HAd41, representing groups A-F, respectively. Notably, biodistribution studies revealed significant differences between the serotypes, with high levels of HAd3 genomes found in the liver and lung, and HAd37 genomes found in the spleen after systemic administration. Relative to similar treatments with other Ad serotypes, HAd3 and SAd23 induced altered innate immune responses, illustrated by induction of higher levels of cellular gene transcription in several tissues, and higher plasma levels of cytokines and chemokines. We also investigated whether complement interactions have a role in HAd3- and SAd23-induced responses. We confirmed complement dependent gene transcription, plasma cytokine/chemokine responses, and liver toxicities incurred after administration of HAd3 and SAd23. This study highlights the potential benefits and/or limitations to the proposed use of alternative Ad serotypes for gene therapy or vaccine applications.
Collapse
Affiliation(s)
- D M Appledorn
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48823, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vähä-Koskela MJ, Heikkilä JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216. [PMID: 17383089 PMCID: PMC7126325 DOI: 10.1016/j.canlet.2007.02.002] [Citation(s) in RCA: 226] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/01/2007] [Accepted: 02/05/2007] [Indexed: 12/26/2022]
Abstract
Oncolytic virotherapy is a promising form of gene therapy for cancer, employing nature’s own agents to find and destroy malignant cells. The purpose of this review is to provide an introduction to this very topical field of research and to point out some of the current observations, insights and ideas circulating in the literature. We have strived to acknowledge as many different oncolytic viruses as possible to give a broader picture of targeting cancer using viruses. Some of the newest additions to the panel of oncolytic viruses include the avian adenovirus, foamy virus, myxoma virus, yaba-like disease virus, echovirus type 1, bovine herpesvirus 4, Saimiri virus, feline panleukopenia virus, Sendai virus and the non-human coronaviruses. Although promising, virotherapy still faces many obstacles that need to be addressed, including the emergence of virus-resistant tumor cells.
Collapse
Affiliation(s)
- Markus J.V. Vähä-Koskela
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
- Turku Graduate School of Biomedical Sciences, Turku, Finland
- Corresponding author. Address: Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland. Tel.: +358 2 215 4018; fax: +358 2 215 4745.
| | - Jari E. Heikkilä
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| | - Ari E. Hinkkanen
- Åbo Akademi University, Department of Biochemistry and Pharmacy and Turku Immunology Centre, Turku, Finland
| |
Collapse
|
24
|
Chetty C, Bhoopathi P, Joseph P, Chittivelu S, Rao JS, Lakka S. Adenovirus-mediated small interfering RNA against matrix metalloproteinase-2 suppresses tumor growth and lung metastasis in mice. Mol Cancer Ther 2006; 5:2289-99. [PMID: 16985063 DOI: 10.1158/1535-7163.mct-06-0169] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Matrix metalloproteinases (MMP) are a group of proteinases that have normal physiologic roles degrading and remodeling the extracellular matrix. They also have multiple roles in different stages of tumor progression. Elevated levels of MMPs have been observed in many tumors; these increases have a strong association with the invasive phenotype. MMP-2 and MMP-9 are particularly involved in cancer invasion and metastasis. MMP inhibitors are currently being tested as therapeutic agents for a number of cancers in both preclinical models and in clinical trials. To date, clinical trials using this strategy have had limited efficacy. A major concern is the lack of specificity of commercially available MMP inhibitors. An adenoviral vector expressing small interfering RNA against the MMP-2 gene (Ad-MMP-2) was constructed to specifically inhibit MMP-2 expression. The effect of Ad-MMP-2 on invasion, angiogenesis, tumor growth, and metastasis of A549 lung cancer cell was evaluated. Ad-MMP-2 infection of lung cancer cells showed specific down-regulation of MMP-2 protein, activity, and transcription as determined by Western blotting, gelatin zymography, and reverse transcription-PCR. Ad-MMP-2 inhibition also mitigated lung cancer invasion and migration, and reduced tumor cell-induced angiogenesis in vitro. In an experimental metastatic lung tumor model, treatment of established tumors by Ad-MMP-2 inhibited s.c. tumor growth and formation of lung nodules in mice. Adenoviral-mediated RNA interference against MMP-2 has significant therapeutic potential for lung cancer and exerts some of this effect by inhibiting angiogenesis.
Collapse
Affiliation(s)
- Chandramu Chetty
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | | | | | | | | | | |
Collapse
|
25
|
Sakurai F, Kawabata K, Mizuguchi H. [Characterization of adenovirus serotype 35 vectors using genetically modified animals and non-human primates]. YAKUGAKU ZASSHI 2006; 126:1013-9. [PMID: 17077607 DOI: 10.1248/yakushi.126.1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant Adenovirus (Ad) vectors are considered to be a promising gene delivery vehicle of high utility because they are easy to construct, can be produced at high titers, and efficiently transduce various types of cells. Ad vectors commonly used in the world, including clinical trials, are composed of Ad serotype 5 (Ad5), which belongs to subgroup C. In recent years, however, it has become apparent that Ad5 vectors have some drawbacks, such as high seroprevalence of anti-Ad5 antibodies in adults and low transduction efficiencies of Ad5 vectors in cells lacking a primary receptor for Ad5, coxsackievirus and adenovirus receptor (CAR). To overcome these limitations of Ad5 vectors, we have developed a novel type of Ad vector, which is composed of Ad serotype 35 (Ad35), belonging to subgroup B. Ad35 vectors recognize human CD46, not CAR, as a cellular receptor for infection. Human CD46 is expressed in almost all of human cells, leading to a broad tropism of Ad35 vectors to human cells, in contrast, expression of rodent CD46 is limited to the testis. Therefore, in vivo transduction properties of Ad35 vectors are not appropriately evaluated in normal mice. In order to evaluate the in vivo transduction properties of Ad35 vectors, Ad35 vectors were applied to human CD46-transgenic mice and nonhuman primates, which express CD46 in a similar pattern to humans. The data obtained using CD46-transgenic mice and nonhuman primates would provide valuable information towards clinical applications of Ad35 vectors.
Collapse
Affiliation(s)
- Fuminori Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, 7-6-8 Asugi, Saito, Ibaraki City 567-0085, Japan.
| | | | | |
Collapse
|
26
|
Ni S, Gaggar A, Di Paolo N, Li ZY, Liu Y, Strauss R, Sova P, Morihara J, Feng Q, Kiviat N, Touré P, Sow PS, Lieber A. Evaluation of adenovirus vectors containing serotype 35 fibers for tumor targeting. Cancer Gene Ther 2006; 13:1072-81. [PMID: 16874361 DOI: 10.1038/sj.cgt.7700981] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is growing evidence from in vitro studies that subgroup B adenoviruses (Ad) can overcome the limitations in safety and tumor transduction efficiency seen with commonly used subgroup C serotype 5-based vectors. In this study, we confirm that the expression level of the B-group Ad receptor, CD46, correlates with the grade of malignancy of cervical cancer in situ. We also demonstrate the in vivo properties of Ad5-based vectors that contain the B-group Ad serotype 35 fiber (Ad5/35) in transgenic mice that express CD46 in a pattern and at a level similar to humans. Upon intravenous and intraperitoneal injection, an Ad5/35 vector did not efficiently transduce normal tissue, but was able to target metastatic or intraperitoneal tumors that express CD46 at levels comparable to human tumors. When an oncolytic Ad5/35-based vector was employed, in both tumor models antitumor effects were observed. Furthermore, injection of Ad5/35 vectors into CD46 transgenic mice caused less innate toxicity than Ad5 vectors. Our data demonstrate that Ad vectors that target CD46 offer advantages over Ad5-based vectors for treatment of cancer.
Collapse
Affiliation(s)
- S Ni
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sakurai F, Kawabata K, Koizumi N, Inoue N, Okabe M, Yamaguchi T, Hayakawa T, Mizuguchi H. Adenovirus serotype 35 vector-mediated transduction into human CD46-transgenic mice. Gene Ther 2006; 13:1118-26. [PMID: 16541121 DOI: 10.1038/sj.gt.3302749] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that systemic administration of adenovirus serotype 35 (Ad35) vectors to mice does not mediate efficient transduction in organs, probably because expression of the mouse analog of the subgroup B Ad receptor, human CD46 (membrane cofactor protein), is limited to the testis. Here, we describe the in vitro and in vivo transduction characteristics of Ad35 vectors by using homozygous and hemizygous human CD46-transgenic (CD46TG) mice, which ubiquitously express human CD46. An Ad35 vector more efficiently transduced the primary dendritic cells and macrophages prepared from CD46TG mice than those from wild-type mice. In vivo transduction experiments demonstrated that CD46TG mice are more susceptible to Ad35 vector-mediated in vivo transduction than are wild-type mice. In particular, homozygous CD46TG mice, which express higher levels of CD46 in the organs than hemizygous CD46TG mice, tend to exhibit higher transduction efficiencies after intraperitoneal administration than hemizygous CD46TG mice. Intraperitoneal administration of Ad35 vectors resulted in efficient transduction into the mesothelial cells of the peritoneal organs in homozygous CD46TG mice. These results indicate that an Ad35 vector recognizes human CD46 as a cellular receptor in CD46TG mice. However, the in vivo transduction efficiencies of Ad35 vectors in CD46TG mice are much lower than those of conventional Ad5 vectors in wild-type mice.
Collapse
Affiliation(s)
- F Sakurai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Takahashi E, Cohen SL, Tsai PK, Sweeney JA. Quantitation of adenovirus type 5 empty capsids. Anal Biochem 2006; 349:208-17. [PMID: 16360111 DOI: 10.1016/j.ab.2005.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Revised: 11/03/2005] [Accepted: 11/04/2005] [Indexed: 11/20/2022]
Abstract
Adenovirus empty capsids are immature intermediates that lack DNA and viral core proteins. Highly purified preparations of empty and full capsids were generated by subjecting purified adenovirus preparations to repeated cesium chloride gradient separations. PAGE results revealed that empty capsids contain at least five bands that correspond to proteins absent from the mature virus proteome. Peptide mapping by matrix-assisted laser desorption/ionization time-of-flight MS revealed that three of these bands correspond to varying forms of L1 52/55kDa, a protein involved in the encapsidation of the viral DNA. One band at around 31kDa was found to include precursors to proteins VI and VIII. These precursors correspond to proteins that have not been cleaved by the adenovirus-encoded protease and are not present in the mature full capsids. The precursor to protein VIII (pVIII), a capsid cement protein, is used in this study as a marker in reverse-phased HPLC (RP-HPLC) analyses of adenovirus for the quantitation of empty capsids. A novel calculation method applied to the integration of RP-HPLC chromatograms allowed for the generation of a percentage empty capsid value in a given adenovirus preparation. The percentage empty capsid values generated to date by this method show a high degree of precision and good agreement with a cesium chloride gradient/SDS-PAGE quantitation method of empty capsids. The advantage of this method lies in the accurate, precise, and rapid generation of the percentage of empty capsids in a given purified virus preparation without relying on tedious and time-consuming cesium chloride gradient separations and extractions.
Collapse
Affiliation(s)
- Eddie Takahashi
- Bioprocess and Bioanalytical Research, Bioprocess R&D, Merck Research Laboratories, West Point, PA 19486, USA
| | | | | | | |
Collapse
|
29
|
Stone D, Ni S, Li ZY, Gaggar A, DiPaolo N, Feng Q, Sandig V, Lieber A. Development and assessment of human adenovirus type 11 as a gene transfer vector. J Virol 2005; 79:5090-104. [PMID: 15795294 PMCID: PMC1069572 DOI: 10.1128/jvi.79.8.5090-5104.2005] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Adenovirus vectors based on human serotype 5 (Ad5) have successfully been used as gene transfer vectors in many gene therapy-based approaches to treat disease. Despite their widespread application, many potential therapeutic applications are limited by the widespread prevalence of vector-neutralizing antibodies within the human population and the inability of Ad5-based vectors to transduce important therapeutic target cell types. In an attempt to circumvent these problems, we have developed Ad vectors based on human Ad serotype 11 (Ad11), since the prevalence of neutralizing antibodies to Ad11 in humans is low. E1-deleted Ad11 vector genomes were generated by homologous recombination in 293 cells expressing the Ad11-E1B55K protein or by recombination in Escherichia coli. E1-deleted Ad11 genomes did not display transforming activity in rodent cells. Transduction of primary human CD34+ hematopoietic progenitor cells and immature dendritic cells was more efficient with Ad11 vectors than with Ad5 vectors. Thirty minutes after intravenous injection into mice that express one of the Ad11 receptors (CD46), we found, in a pattern and at a level comparable to what is found in humans, Ad11 vector genomes in all analyzed organs, with the highest amounts in liver, lung, kidney, and spleen. Neither Ad11 genomes nor Ad11 vector-mediated transgene expression were, however, detected at 72 h postinfusion. A large number of Ad11 particles were also found to be associated with circulating blood cells. We also discovered differences in in vitro transduction efficiencies and in vivo biodistributions between Ad11 vectors and chimeric Ad5 vectors possessing Ad11 fibers, indicating that Ad11 capsid proteins other than fibers influence viral infectivity and tropism. Overall, our study provides a basis for the application of Ad11 vectors for in vitro and in vivo gene transfer and for gaining an understanding of the factors that determine Ad tropism.
Collapse
Affiliation(s)
- Daniel Stone
- University of Washington, Division of Medical Genetics, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Sakakima Y, Hayashi S, Yagi Y, Hayakawa A, Tachibana K, Nakao A. Gene therapy for hepatocellular carcinoma using sonoporation enhanced by contrast agents. Cancer Gene Ther 2005; 12:884-9. [PMID: 15891773 DOI: 10.1038/sj.cgt.7700850] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined whether sonoporation enhanced by a contrast agent (BR14) was effective in gene therapy for hepatocelluar carcinoma (HCC). Human hepatic cancer cells (SK-Hep1) and plasmid cDNAs expressing green fluorescent protein (GFP), interferonbeta (IFNbeta), and LacZ were used. In vitro, SK-Hep1 cell suspensions with DNA and BR14 were sonoporated. Expressions of every plasmid cDNA and the antitumor effect of IFNbeta were analyzed. In vivo, GFP and IFNbeta genes with BR14 were directly injected into subcutaneous tumors using SK-Hep1 in nude mice, and transcutaneous sonoporation of the tumors was performed. GFP gene transfections and tumor diameters after IFNbeta gene transfection were examined. In vitro, no SK-Hep1 cells were transfected without sonication, whereas transfections were successful after sonication with BR14. Antitumor effect of IFNbeta gene transfection by ultrasound (US) and with BR14 was revealed. In vivo, the SK-Hep1 cells expressed GFP, and the IFNbeta gene transfection by US with BR14 reduced tumor size significantly. In conclusion, gene therapy with sonoporation enhanced by a contrast agent may become a new treatment option for HCC.
Collapse
Affiliation(s)
- Yoshikazu Sakakima
- Department of Surgery II, Nagoya University School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Mok H, Palmer DJ, Ng P, Barry MA. Evaluation of polyethylene glycol modification of first-generation and helper-dependent adenoviral vectors to reduce innate immune responses. Mol Ther 2005; 11:66-79. [PMID: 15585407 DOI: 10.1016/j.ymthe.2004.09.015] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 09/06/2004] [Indexed: 12/31/2022] Open
Abstract
Adenoviruses are robust gene delivery vectors in vivo, but are limited by their propensity to provoke strong innate and adaptive responses. Previous work has demonstrated that polyethylene glycol (PEG) modification of adenovirus can protect the vectors from preexisting and adaptive immune responses by reducing protein-protein interactions. To test whether PEGylation can reduce innate immune responses to adenovirus by reducing their interactions with immune cells, first-generation (FG-Ad) and helper-dependent (HD-Ad) Ad5 vectors were PEGylated with SPA-PEG and tested in vitro and in vivo. We demonstrate that increasing PEGylation ablated in vitro transduction, but surprisingly had no negative effect on the level or distribution of in vivo gene delivery. This poor in vitro transduction could be rescued in part by physically forcing the PEGylated vectors onto cells, suggesting that physiological forces in vivo may enable transduction via heparin sulfate proteoglycan and integrin interactions. While transduction remained the same as for unmodified vectors, the PEGylated vectors reduced innate IL-6 responses by 70 and 50% in vivo for FG-Ad and HD-Ad. These reduced innate responses paralleled similar reductions in vector uptake by macrophages in vitro and Kupffer cells in vivo. These data suggest that PEGylation of Ad vectors can reduce innate immune responses without reducing transduction in vivo. These data also suggest that nonspecific vector uptake by macrophages and Kupffer cells may be critically involved in the initial activation of innate immune responses.
Collapse
Affiliation(s)
- Hoyin Mok
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, The Methodist Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
32
|
Geldmacher A, Skrastina D, Borisova G, Petrovskis I, Krüger DH, Pumpens P, Ulrich R. A hantavirus nucleocapsid protein segment exposed on hepatitis B virus core particles is highly immunogenic in mice when applied without adjuvants or in the presence of pre-existing anti-core antibodies. Vaccine 2005; 23:3973-83. [PMID: 15917119 DOI: 10.1016/j.vaccine.2005.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Accepted: 02/01/2005] [Indexed: 10/25/2022]
Abstract
Hepatitis B virus (HBV) core particles carrying the amino-terminal 120 amino acids (aa) of the nucleocapsid (N) protein of the hantaviruses Dobrava, Hantaan or Puumala have been demonstrated to be highly immunogenic in mice when complexed with adjuvants. Here we demonstrate that even without adjuvant, these chimeric particles induced high-titered, and strongly cross-reactive N-specific antibody responses in BALB/c and C57BL/6 mice. The induced N-specific antibodies represented all IgG subclasses. Pre-existing core-specific antibodies did not abrogate the induction of an N-specific immune response by a hantavirus N insert presented on core particles. Therefore, chimeric core particles should represent promising vaccine candidates even for anti-core positive humans.
Collapse
Affiliation(s)
- Astrid Geldmacher
- Institute of Virology, Charité Medical School, Campus Mitte, D-10098 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Ramesh R, Ito I, Saito Y, Wu Z, Mhashikar AM, Wilson DR, Branch CD, Roth JA, Chada S. Local and systemic inhibition of lung tumor growth after nanoparticle-mediated mda-7/IL-24 gene delivery. DNA Cell Biol 2005; 23:850-7. [PMID: 15684712 DOI: 10.1089/dna.2004.23.850] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The human melanoma differentiation associated gene-7 (mda-7), also known as interleukin-24 (IL-24), is a novel gene with tumor suppressor, antiangiogenic, and cytokine properties. In vitro adenovirus-mediated gene transfer of the human mda-7/IL-24 gene (Ad-mda-7) results in ubiquitous growth suppression of human cancer cells with minimal toxicity to normal cells. Intratumoral administration of Ad-mda-7 to lung tumor xenografts results in growth suppression via induction of apoptosis and antiangiogenic mechanisms. Although these results are encouraging, one limitation of this approach is that its locoregional clinical application-systemic delivery of adenoviruses for treatment of disseminated cancer is not feasible at the present time. An alternative approach that is suitable for systemic application is non-viral gene delivery. We recently demonstrated that DOTAP:cholesterol (DOTAP:Chol) nanoparticles effectively deliver tumor suppressor genes to primary and disseminated lung tumors. In the present study, therefore, we evaluated nanoparticle-mediated delivery of the human mda-7/IL-24 gene to primary and disseminated lung tumors in vivo. We demonstrate that DOTAP:Chol efficiently delivers the mda-7/IL-24 gene to human lung tumor xenografts, resulting in suppression of tumor growth. Growth-inhibitory effects were observed in both primary (P=0.001) and metastatic lung tumors (P=0.02). Furthermore, tumor vascularization was reduced in mda-7/IL-24-treated tumors. Finally, growth was also inhibited in murine syngenic tumors treated with DOTAP:Chol-mda-7 nanoparticles (P=0.01). This is the first report demonstrating (1) systemic therapeutic effects of mda-7/IL-24 in lung cancer, and (2) antitumor effects of human mda-7 in syngeneic cancer models. Our findings are important for the development of mda-7/IL-24 treatments for primary and disseminated cancers.
Collapse
Affiliation(s)
- Rajagopal Ramesh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Varnavski AN, Calcedo R, Bove M, Gao G, Wilson JM. Evaluation of toxicity from high-dose systemic administration of recombinant adenovirus vector in vector-naive and pre-immunized mice. Gene Ther 2005; 12:427-36. [PMID: 15647774 DOI: 10.1038/sj.gt.3302347] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2003] [Accepted: 06/12/2004] [Indexed: 11/09/2022]
Abstract
Toxicity associated with in vivo administration of adenovirus (Ad) vectors has been linked to activation of both innate and adaptive immune responses. Pre-existing immunity to the prevalent Ad serotypes, acquired by the majority of the human population as a result of natural infections, has the potential to modulate vector efficacy and safety. Previously, we evaluated some aspects of toxicity from systemic Ad vector in vector-naive and pre-immunized rhesus monkeys. In this report, we summarize data from several studies analyzing toxic effects from systemically administered E1/E3-deleted Ad vector in vector-naive and pre-immunized C57BL/6 mice. Our results indicate that pre-immunization can be associated with increased mortality shortly after systemic administration of Ad. Transient leukopenia and thrombocytopenia were observed early post vector infusion in both vector-naive and pre-immunized animals. Pre-exposure to the vector did not prevent induction of pro-inflammatory cytokines; however, pre-immunized mice showed less tissue toxicity. Growth of bone marrow myeloid and erythroid progenitors was transiently inhibited in pre-immunized animals, but only the myeloid progenitors were affected in vector-naive animals. In summary, pre-existing immunity to Ad vector substantially modifies host immune responses to systemic Ad vector.
Collapse
Affiliation(s)
- A N Varnavski
- Gene Therapy Program at the University of Pennsylvania School of Medicine, Department of Medicine, Division of Medical Genetics, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
35
|
Sova P, Ren XW, Ni S, Bernt KM, Mi J, Kiviat N, Lieber A. A tumor-targeted and conditionally replicating oncolytic adenovirus vector expressing TRAIL for treatment of liver metastases. Mol Ther 2004; 9:496-509. [PMID: 15093180 DOI: 10.1016/j.ymthe.2003.12.008] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2003] [Accepted: 12/17/2003] [Indexed: 01/09/2023] Open
Abstract
We have constructed a new capsid-modified adenovirus (Ad) vector that specifically replicates in tumor cells and expresses TNF-related apoptosis-inducing ligand (TRAIL). The Ad capsid contains short-shafted fibers derived from Ad serotype 35, which allow for efficient infection of malignant tumor cells, and largely avoids innate toxicity after intravenous application. Replication-dependent homologous recombination in Ad genomes was used to achieve tumor-specific expression of Ad E1a (to mediate viral replication) and TRAIL (to mediate apoptosis and enhance release of progeny virus from infected cells). We demonstrated that our oncolytic vector (Ad5/35.IR-E1A/TRAIL) induced apoptosis in human tumor cell lines derived from colorectal, lung, prostate, and liver cancer. Both in vitro and in vivo tumor models showed efficient intratumoral spread of this vector. In a model for metastatic colon cancer, tail vein infusion of Ad5/35.IR-E1A/TRAIL resulted in elimination of preestablished liver metastases. Intravenous injection of this vector caused a transient elevation of serum glutamic pyruvic transaminase in tumor-bearing mice, which we attributed to factors released from apoptotic tumor cells. Liver histology analyzed at day 14 after virus injection did not show signs of hepatocellular damage. This new oncolytic vector represents a potentially efficient means for gene therapy of metastatic cancer.
Collapse
Affiliation(s)
- Pavel Sova
- Department of Pathology, University of Washington, Box 357720, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tsai V, Johnson DE, Rahman A, Wen SF, LaFace D, Philopena J, Nery J, Zepeda M, Maneval DC, Demers GW, Ralston R. Impact of Human Neutralizing Antibodies on Antitumor Efficacy of an Oncolytic Adenovirus in a Murine Model. Clin Cancer Res 2004; 10:7199-206. [PMID: 15534093 DOI: 10.1158/1078-0432.ccr-04-0765] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to assess the impact of anti-adenovirus neutralizing antibodies (AdNAbs) on the distribution, tolerability, and efficacy of intravenously administered oncolytic adenovirus. A translational model was developed to evaluate the impact of humoral immunity on intravenous administration of oncolytic adenovirus in humans. EXPERIMENTAL DESIGN Initially, severe combined immunodeficient (SCID)/beige mice were passively immunized with various amounts of human sera to establish a condition of preexisting humoral immunity similar to humans. A replication-deficient adenovirus encoding beta-galactosidase (rAd-betagal) was injected intravenously into these mice. An AdNAb titer that mitigated galactosidase transgene expression was determined. A xenograft tumor-bearing nude mouse model was developed to assess how a similar in vivo titer would impact the activity of 01/PEME, an oncolytic adenovirus, after intravenous administration. RESULTS In SCID/beige mice, there was a dose dependence between AdNAbs and galactosidase transgene expression; 90% of transgene expression was inhibited when the titer was 80. A similar titer reconstituted in the nude mice with human serum, as was done in the SCID/beige mice, did not abrogate the antitumor efficacy of the replicating adenovirus after intravenous administration. Viral DNA increased in tumors over time. CONCLUSIONS In intravenous administration, preexisting AdNAb titer of 80 significantly attenuated the activity of a 2.5 x 10(12) particles per kilogram dose of nonreplicating adenovirus; the same titer had no affect on the activity of an equivalent dose of replicating adenovirus. Our results suggest that a majority of patients with preexisting adenovirus immunity would be candidates for intravenous administration of oncolytic adenovirus.
Collapse
Affiliation(s)
- Van Tsai
- Canji, Inc., San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bangari DS, Mittal SK. Porcine adenoviral vectors evade preexisting humoral immunity to adenoviruses and efficiently infect both human and murine cells in culture. Virus Res 2004; 105:127-36. [PMID: 15351486 DOI: 10.1016/j.virusres.2004.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2004] [Revised: 05/14/2004] [Accepted: 05/14/2004] [Indexed: 12/11/2022]
Abstract
Preexisting immunity against human adenoviruses (HAd) limits the efficiency of transduction of HAd vectors in humans. In addition, development of a vector-specific immune response after the first inoculation with a HAd vector further lowers vector uptake following readministration. We investigated the usefulness of porcine adenovirus serotype 3 (PAd3)-based vectors as a supplement to HAd vectors. Here we demonstrate that preexisting HAd-specific neutralizing antibodies in humans do not cross-neutralize PAd3. In order to generate E1A-deleted PAd3 vectors, an E1-complementing cell line of porcine origin was produced. E1A-deleted PAd3 vector expressing green fluorescent protein; GFP (PAd-GFP) and E1-deleted HAd5 vector expressing GFP (HAd-GFP) transduced human cell lines with comparable efficiencies. Both of these vectors efficiently transduced murine MT1A2 breast cancer cell line, while PAd-GFP transduced murine NIH 3T3 fibroblast cell line significantly better (P < 0.05) than HAd-GFP. These results suggest that PAd3 vectors would be promising supplement to HAd vectors as a delivery vehicle for recombinant vaccines and gene therapy applications.
Collapse
MESH Headings
- Adenovirus E1A Proteins/genetics
- Adenoviruses, Human/genetics
- Adenoviruses, Human/immunology
- Adenoviruses, Human/physiology
- Adenoviruses, Porcine/genetics
- Adenoviruses, Porcine/immunology
- Adenoviruses, Porcine/physiology
- Animals
- Antibodies, Viral/immunology
- Cell Line
- Cell Line, Tumor
- Coxsackie and Adenovirus Receptor-Like Membrane Protein
- Cross Reactions
- Gene Deletion
- Genetic Vectors
- Green Fluorescent Proteins/genetics
- Humans
- Mice
- NIH 3T3 Cells
- Neutralization Tests
- Receptors, Virus/metabolism
- Transduction, Genetic
- Virus Replication
Collapse
Affiliation(s)
- Dinesh S Bangari
- Laboratory of Gene Therapy and Purdue University Cancer Center, 1290 Lynn Hall, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
38
|
Abstract
The main objective in gene therapy is the development of efficient, non-toxic gene carriers that can encapsulate and deliver foreign genetic materials into specific cell types such as cancerous cells. During the past two decades, enormous research in the area of gene delivery has been conducted worldwide, in particular for cancer gene therapy application. Viral vectors are biological systems derived from naturally evolved viruses capable of transferring their genetic materials into the host cells. Many viruses including retrovirus, adenovirus, herpes simplex virus (HSV), adeno-associated virus (AAV) and pox virus have been modified to eliminate their toxicity and maintain their high gene transfer capability. The limitations associated with viral vectors, however, in terms of their safety, particularly immunogenicity, and in terms of their limited capacity of transgenic materials, have encouraged researchers to increasingly focus on non-viral vectors as an alternative to viral vectors. Non-viral vectors are generally cationic in nature. They include cationic polymers such as poly(ethylenimine) (PEI) and poly(L-lysine) (PLL), cationic peptides and cationic liposomes. The newly described liposomal preparation LPD (liposomes/protamine/DNA), for example, has shown superiority over conventional liposomes/DNA complexes (lipoplexes). Although non-viral vectors are less efficient than viral ones, they have the advantages of safety, simplicity of preparation and high gene encapsulation capability. This article reviews the most recent studies highlighting the advantages and the limitations of various types of gene delivery systems used in cancer gene therapy.
Collapse
Affiliation(s)
- Anas El-Aneed
- School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Dr, St. John's, NL, Canada A1B 3V6.
| |
Collapse
|
39
|
Smith TAG, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M, King L, Mech C, Dinges L, Iverson WO, Sherer AD, Markovits JE, Lyons RM, Kaleko M, Stevenson SC. Receptor Interactions Involved in Adenoviral-Mediated Gene Delivery After Systemic Administration in Non-Human Primates. Hum Gene Ther 2003; 14:1595-604. [PMID: 14633402 DOI: 10.1089/104303403322542248] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adenovirus serotype 5 (Ad5)-based vectors can bind at least three separate cell surface receptors for efficient cell entry: the coxsackie-adenovirus receptor (CAR), alpha nu integrins, and heparan sulfate glycosaminoglycans (HSG). To address the role of each receptor involved in adenoviral cell entry, we mutated critical amino acids in fiber or penton to inhibit receptor interaction. A series of five adenoviral vectors was prepared and the biodistribution of each was previously characterized in mice. To evaluate possible species differences in Ad vector tropism, we characterized the effects of each detargeting mutation in non-human primates after systemic delivery to confirm our conclusions made in mice. In non-human primates, CAR was found to have minimal effects on vector delivery to all organs examined including liver and spleen. Cell-surface alpha nu integrins played a significant role in delivery of vector to the spleen, lung and kidney. The fiber shaft mutation S*, which presumably inhibits HSG binding, was found to significantly decrease delivery to all organs examined. The ability to detarget the liver corresponded with decreased elevations in liver serum enzymes (aspartate transferase [AST] and alanine transferase [ALT]) 24 hr after vector administration and also in serum interleukin (IL)-6 levels 6 hr after vector administration. The biodistribution data generated in cynomolgus monkeys correspond with those data derived from mice, demonstrating that CAR binding is not the major determinant of viral tropism in vivo. Vectors containing the fiber shaft modification may provide for a detargeted adenoviral vector on which to introduce new tropisms for the development of targeted, systemically deliverable adenoviral vectors for human clinical application.
Collapse
|
40
|
Lefesvre P, Attema J, van Bekkum D. Pharmacogenetic heterogeneity of transgene expression in muscle and tumours. BMC Pharmacol 2003; 3:11. [PMID: 12943556 PMCID: PMC194725 DOI: 10.1186/1471-2210-3-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2003] [Accepted: 08/28/2003] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Recombinant adenoviruses are employed to deliver a therapeutic transgene in the liver, muscle or tumour tissue. However, to rationalise this delivery approach, the factors of variation between individuals need to be identified. It is assumed that differences between inbred strains of laboratory animals are considered to reflect differences between patients. Previously we showed that transgene expression in the liver of different rat strains was dependent on the transcription efficiency of the transgene. In the present paper we investigated if transfection of muscle and tumour tissue were also subject to such variations. METHODS Variation, in transgene expression, after intramuscular gene delivery was determined in different rodent strains and gene expression in tumours was investigated in different human and rodent cell lines as well as in subcutaneously implanted rodent tumours. The molecular mechanisms involved in transgene expression were dissected using an adenovirus encoding luciferase. The luciferase activity, the viral DNA copies and the luciferase transcripts were assessed in cultured cells as well as in the tissues. RESULTS Large differences of luciferase activity, up to 2 logs, were observed between different rodent strains after intramuscular injection of Ad Luciferase. This inter-strain variation of transgene expression was due to a difference in transcription efficiency. The transgene expression level in tumour cell lines of different tissue origin could be explained largely by the difference of infectibility to the adenovirus. In contrast, the main step responsible for luciferase activity variation, between six human breast cancer cell lines with similar phenotype, was at the transcriptional level. CONCLUSION Difference in transcriptional efficiency in muscles as observed between different inbred strains and between human breast cancer cell lines may be expected to occur between individual patients. This might have important consequences for clinical gene therapy. The variation between tumour types and tissues within a species are mainly at the levels of infectivity.
Collapse
Affiliation(s)
- Pierre Lefesvre
- Crucell Holland BV, PO BOX 2048, 2301CA, Leiden The Netherlands
| | - Joline Attema
- Crucell Holland BV, PO BOX 2048, 2301CA, Leiden The Netherlands
| | - Dirk van Bekkum
- Crucell Holland BV, PO BOX 2048, 2301CA, Leiden The Netherlands
| |
Collapse
|
41
|
Seshidhar Reddy P, Ganesh S, Limbach MP, Brann T, Pinkstaff A, Kaloss M, Kaleko M, Connelly S. Development of adenovirus serotype 35 as a gene transfer vector. Virology 2003; 311:384-93. [PMID: 12842627 DOI: 10.1016/s0042-6822(03)00161-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
While 51 human adenoviral serotypes have been identified to date, the vast majority of adenoviral vectors designed for gene transfer have been generated in the adenovirus serotype 5 (Ad5) backbone. Viral infections caused by Ad5 are endemic in most human populations and the majority of humans carry preexisting humoral and/or cellular immunity to Ad5 which may severely limit the use of Ad5-based vectors for gene therapy applications. To circumvent this preexisting Ad5 immunity, we have identified Ad35 as an alternative adenoviral serotype to which the majority of humans do not have neutralizing antibodies. Importantly, Ad35 can be grown to high titers with a low particle-to-PFU ratio. As a prerequisite for the development of Ad35 for use as a gene transfer vector, a genome organization map was constructed using the available Ad35 sequence information, and E1a-deficient Ad35 vectors encoding marker genes were generated. Ad35 biodistribution in mice was assessed following intravenous administration and compared with that of Ad5. Extremely low levels of Ad35 were detected in all organs evaluated, including liver, lung, spleen, and bone marrow, while Ad5 displayed high transduction of these organs. Due to the lack of Ad35 liver tropism, minimal hepatotoxicity was observed in mice treated with Ad35. Furthermore, the half-life of Ad35 in mouse blood was found to be two to three times longer than that of Ad5. These data suggest that either mice do not express the Ad35 cell surface receptor or that Ad35 does not efficiently transduce mouse cells in vivo following systemic delivery. Therefore, to begin to elucidate the Ad35 cell entry mechanisms, in vitro competition studies were performed. These data demonstrated that Ad35 cell entry is CAR independent, and may involve protein(s) expressed on most human cells.
Collapse
Affiliation(s)
- P Seshidhar Reddy
- Genetic Therapy, Inc., A Novartis Company, 9 West Watkins Mill Road, Gaithersburg, MD 20878, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Green NK, Seymour LW. Adenoviral vectors: systemic delivery and tumor targeting. Cancer Gene Ther 2002; 9:1036-42. [PMID: 12522442 DOI: 10.1038/sj.cgt.7700541] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2002] [Indexed: 12/16/2022]
Abstract
The development of a targeted adenoviral vector, which can be delivered systemically, is one of the major challenges facing cancer gene therapy. The virus is readily cleared from the bloodstream, can be neutralised by pre-existing antibodies, and has a permissive cellular tropism. Clinical studies using the ONYX virus have shown limited efficacy, but there are several hurdles to overcome to achieve an effective tumor-specific systemic therapy. In this review, we have summarized the various strategies used to overcome the limitations of adenoviral-mediated gene delivery.
Collapse
Affiliation(s)
- Nicola K Green
- Department of Clinical Pharmacology, University of Oxford, Radcliffe Infirmary, Oxford, UK.
| | | |
Collapse
|