1
|
Yang S, Humphries F. Emerging roles of ECSIT in immunity and tumorigenesis. Trends Cell Biol 2025; 35:426-438. [PMID: 39384444 DOI: 10.1016/j.tcb.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Mitochondria are signaling hubs that produce immunomodulatory metabolites during the immune response. In addition, mitochondria also facilitate the recruitment and anchoring of immune signaling complexes during infection. Evolutionary conserved signaling intermediate in toll (ECSIT) was initially described as a positive regulator of the transcription factor Nuclear factor kappa-light chain enhancer of activated B cells (NF-κB). More recently, ECSIT has emerged as a regulator of bacterial clearance, mitochondrial reactive oxygen species (mROS), and mitophagy. In addition, ECSIT has been identified as a control point in responding to viral infection and tumorigenesis. Notably, ECSIT loss in different models and cell types has been found to lead to enhanced tumorigenesis. Thus, ECSIT functions as a metabolic tumor suppressor and limits cancer pathogenesis. In this review, we highlight the key functions and crosstalk mechanisms that ECSIT bridges between cell metabolism and immunity and focus then on the antitumor role of ECSIT independent of immunity.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Immunology, State Key Laboratory of Reproductive Medicine, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, UMass Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Tursi NJ, Tiwari S, Bedanova N, Kannan T, Parzych E, Okba N, Liaw K, Sárközy A, Livingston C, Trullen MI, Gary EN, Vadovics M, Laenger N, Londregan J, Khan MS, Omo-Lamai S, Muramatsu H, Blatney K, Hojecki C, Machado V, Maricic I, Smith TRF, Humeau LM, Patel A, Kossenkov A, Brenner JS, Allman D, Krammer F, Pardi N, Weiner DB. Modulation of lipid nanoparticle-formulated plasmid DNA drives innate immune activation promoting adaptive immunity. Cell Rep Med 2025; 6:102035. [PMID: 40120578 PMCID: PMC12047470 DOI: 10.1016/j.xcrm.2025.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/20/2024] [Accepted: 02/25/2025] [Indexed: 03/25/2025]
Abstract
Nucleic acid vaccines have grown in importance over the past several years, with the development of new approaches remaining a focus. We describe a lipid nanoparticle-formulated DNA (DNA-LNP) formulation which induces robust innate and adaptive immunity with similar serological potency to mRNA-LNPs and adjuvanted protein. Using an influenza hemagglutinin (HA)-encoding construct, we show that priming with our HA DNA-LNP demonstrated stimulator of interferon genes (STING)-dependent upregulation and activation of migratory dendritic cell (DC) subpopulations. HA DNA-LNP induced superior antigen-specific CD8+ T cell responses relative to mRNA-LNPs or adjuvanted protein, with memory responses persisting beyond one year. In rabbits immunized with HA DNA-LNP, we observed immune responses comparable or superior to mRNA-LNPs at the same dose. In an additional model, a SARS-CoV-2 spike-encoding DNA-LNP elicited protective efficacy comparable to spike mRNA-LNPs. Our study identifies a platform-specific priming mechanism for DNA-LNPs divergent from mRNA-LNPs or adjuvanted protein, suggesting avenues for this approach in prophylactic and therapeutic vaccine development.
Collapse
Affiliation(s)
- Nicholas J Tursi
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sachchidanand Tiwari
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicole Bedanova
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Toshitha Kannan
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Elizabeth Parzych
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Nisreen Okba
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kevin Liaw
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - András Sárközy
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cory Livingston
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Maria Ibanez Trullen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ebony N Gary
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Máté Vadovics
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Niklas Laenger
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA; Biology Department, Saint Joseph's University, Philadelphia, PA 19131, USA
| | - Jennifer Londregan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mohammad Suhail Khan
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Serena Omo-Lamai
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kerry Blatney
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Casey Hojecki
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | - Igor Maricic
- Inovio Pharmaceuticals, Plymouth Meeting, PA 19462, USA
| | | | | | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew Kossenkov
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David Allman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, Vienna, Austria
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Zhou Z, Su J, van Os BW, Plug LG, de Jonge-Muller ESM, Brands L, Janson SGT, van de Beek LM, van der Meulen-de Jong AE, Hawinkels LJAC, Barnhoorn MC. Stromal Cell Subsets Show Model-Dependent Changes in Experimental Colitis and Affect Epithelial Tissue Repair and Immune Cell Activation. Inflamm Bowel Dis 2025; 31:1051-1066. [PMID: 40100003 PMCID: PMC11985400 DOI: 10.1093/ibd/izae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 03/20/2025]
Abstract
BACKGROUND Previous work on inflammatory bowel disease (IBD) revealed changes in the abundance of colonic stromal subsets during intestinal inflammation. However, it is currently unknown whether these stromal cell subset changes are also reflected in different IBD mouse models and how commonly used IBD therapies affect stromal cell subset composition. METHODS Stromal subset markers CD55, C-X-C motif chemokine 12 (CXCL12), podoplanin (PDPN), CD90, and CD73 were analyzed by flow cytometry in 3 mouse models for IBD, namely interleukin (IL)-10 knockout (KO), dextran sulfate sodium-induced, and T-cell transfer model for colitis. Next, the effects of IBD therapies on the stromal subset composition were studied. In vitro experiments were performed to study the interaction between stromal cell subsets and epithelial/immune cells. RESULTS The colitis-induced changes in the abundance of stromal cell subsets differed considerably between the 3 colitis mouse models. Interestingly, treatment with IBD medication affected specific stromal subsets in a therapy and model-specific manner. In vitro experiments showed that specific stromal subsets affected epithelial wound healing and/or T-cell activation. CONCLUSIONS The relative abundance changes of stromal cell subsets during experimental colitis differ between 3 established colitis models. Treatment with IBD therapies influences stromal subset abundance, indicating their importance in IBD pathogenesis, possibly through affecting epithelial migration, and T-cell activation.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Jie Su
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Bram W van Os
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Leonie G Plug
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | | | - Stef G T Janson
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Andrea E van der Meulen-de Jong
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lukas J A C Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Marieke C Barnhoorn
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
4
|
Dhital R, Kim Y, Kim D, Hernandez-Aguirre I, Hedberg J, Martin A, Cassady KA. Ruxolitinib and oHSV combination therapy increases CD4 T cell activity and germinal center B cell populations in murine sarcoma. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200929. [PMID: 39895689 PMCID: PMC11787636 DOI: 10.1016/j.omton.2024.200929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a highly aggressive neoplasm of the peripheral nervous system and are resistant to most conventional cancer therapies. We previously showed that pretreatment with ruxolitinib (RUX) enhanced the efficacy of oncolytic herpes simplex virus (oHSV) virotherapy in this murine sarcoma model. A low abundance of tumor-infiltrating leukocytes and limitations in conventional flow cytometry restrict analyses to a narrow subset of immune cells, potentially introducing a confirmation bias. To address these limitations, we developed a 46-color spectral flow cytometry panel for the detailed analysis of immune cell dynamics following repeated oHSV dosing. Beyond the cytotoxic T lymphocyte (CTL) and regulatory T cell (Treg) changes reported in our earlier studies, RUX+oHSV treatment modulates myeloid and other lymphoid compartments, including germinal center B cell populations with enhanced activation. RUX+oHSV therapy also increased cytokine-expressing CD4(+) populations, predominantly granzyme B(+) cytotoxic-like, interferon (IFN)-γ(+) T helper type 1 (Th1)-like, and interleukin (IL)-21(+) T follicular helper (Tfh)-like phenotypes, within the tumor infiltrates, suggestive of potential tertiary lymphoid structure development in the treated tumors. Here, we illustrate the utility of a high-dimensional spectral flow cytometry panel that permits simultaneous evaluation of intratumoral CD4/CD8 T cell, Treg, γδ-T cell, natural killer T (NKT) cell, B cell, NK cell, monocyte, macrophage, granulocyte, myeloid-derived suppressor cell (MDSC), and dendritic cell functional changes from RUX+oHSV-treated MPNSTs.
Collapse
Affiliation(s)
- Ravi Dhital
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Yeaseul Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Doyeon Kim
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ilse Hernandez-Aguirre
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Jack Hedberg
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Alexia Martin
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Biomedical Informatics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| |
Collapse
|
5
|
de Souza KA, Jackson M, Chen J, Reyes J, Muayad J, Tran E, Jackson W, Newell-Rogers MK, Earnest DJ. Shift work schedules alter immune cell regulation and accelerate cognitive impairment during aging. J Neuroinflammation 2025; 22:4. [PMID: 39780172 PMCID: PMC11716134 DOI: 10.1186/s12974-024-03324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging. METHODS C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule. At middle age (13-14mo), the long-term effects of circadian rhythm dysregulation on cognitive performance, immune cell regulation and hippocampal microglia were analyzed using behavioral, flow cytometry and immunohistochemical assays. RESULTS Entrainment of the activity rhythm was stable in all mice on a fixed LD 12:12 cycle but was fully compromised during exposure to shifted LD cycles. Even during "post-treatment" exposure to standard LD 12:12 conditions, re-entrainment in shifted LD mice was marked by altered patterns of entrainment and increased day-to-day variability in activity onset times that persisted into middle-age. These alterations in light-dark entrainment were closely associated with dramatic impairment in the Barnes maze test for the entire group of shifted LD mice at middle age, well before cognitive decline was first observed in aged (18-22mo) animals maintained on fixed LD cycles. In conjunction with the effects of circadian dysregulation on cognition, shifted LD mice at middle age were distinguished by significant expansion of splenic B cells and B cell subtypes expressing the activation marker CD69 or inflammatory marker MHC Class II Invariant peptide (CLIP), differential increases in CLIP+, 41BB-Ligand+, and CD74 + B cells in the meningeal lymphatics, alterations in splenic T cell subtypes, and increased number and altered functional state of microglia in the dentate gyrus. In shifted LD mice, the expansion in splenic B cells was negatively correlated with cognitive performance; when B cell numbers were higher, performance was worse in the Barnes maze. These results indicate that disordered circadian timekeeping associated with early exposure to shift work-like schedules alone accelerates cognitive decline during aging in conjunction with altered regulation of immune cells and microglia in the brain.
Collapse
Affiliation(s)
- Karienn A de Souza
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| | - Morgan Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Justin Chen
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Jocelin Reyes
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Judy Muayad
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - Emma Tran
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - William Jackson
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - M Karen Newell-Rogers
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA
| | - David J Earnest
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
- Department of NExT, Texas A&M Health Science Center, 8447 State Highway 47, 2004 MREB, Bryan, TX, 77807-3260, USA.
| |
Collapse
|
6
|
Kim SA, Kim S, Hong Y, Choi Y, Lee Y, Kwon M, Park SY, Jeong C, Nam GH, Han RT, Kim IS. Immunogenic clearance combined with PD-1 blockade elicits antitumor effect by promoting the recruitment and expansion of the effector memory-like CD8 +T cell. Transl Oncol 2025; 51:102209. [PMID: 39608213 PMCID: PMC11635775 DOI: 10.1016/j.tranon.2024.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/30/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Immune checkpoint inhibition shows promise for cancer treatment, but only a minority of patients respond. Combination strategies have been explored to overcome this resistance. Combining immunogenic clearance using immunogenic cell death inducers with a rho kinase inhibitor enhances phagocytosis of immunogenically dying cancer cells by antigen-presenting cells, stimulating tumor-specific immune responses by activating CD8+T cells via dendritic cell-mediated priming. This approach increases the responsiveness of immune checkpoint blockade (ICB)-resistant cancer to ICB. However, the precise mechanisms remain unclear. This study elucidates cellular mechanisms of immunogenic clearance enhancing ICB response. Using single-cell RNA sequencing, we observed an increase in effector memory-like CD8+T cells within the tumor microenvironment with combined treatment. We propose this cell cluster may originate from proliferating CD8+T cells elevated by immunogenic clearance. Notably, abundant effector memory-like CD8+T cells in ICB-responsive patients suggest their antitumor effect. Thus, increasing this cell population through enhanced T cell priming may improve the response of ICB-resistant tumors.
Collapse
Affiliation(s)
- Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seohyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea
| | - Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yoonjeong Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea
| | - Yeji Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Minsu Kwon
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea
| | - Cherlhyun Jeong
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biological Chemistry, Korea University of Science and Technology, KIST Campus, 02841, Republic of Korea
| | - Gi-Hoon Nam
- Department of Research and Development, ShiftBio, Seoul 02751, Republic of Korea; Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 02841, Republic of Korea.
| | - Rafael T Han
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
7
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
8
|
Huang TX, Huang HS, Dong SW, Chen JY, Zhang B, Li HH, Zhang TT, Xie Q, Long QY, Yang Y, Huang LY, Zhao P, Bi J, Lu XF, Pan F, Zou C, Fu L. ATP6V0A1-dependent cholesterol absorption in colorectal cancer cells triggers immunosuppressive signaling to inactivate memory CD8 + T cells. Nat Commun 2024; 15:5680. [PMID: 38971819 PMCID: PMC11227557 DOI: 10.1038/s41467-024-50077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-β1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-β1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Hui-Si Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Shao-Wei Dong
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Jia-Yan Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Bin Zhang
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Hua-Hui Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, Guangdong, China
| | - Tian-Tian Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Qiang Xie
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Qiao-Yun Long
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Lin-Yuan Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Pan Zhao
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Jiong Bi
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xi-Feng Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, Guangdong, China
| | - Chang Zou
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China.
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518000, Guangdong, China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
9
|
Hwang J, Dittmar JW, Kang J, Ocampo T, Evangelopoulos M, Han Z, Kudruk S, Lorch J, Mirkin CA. DNA Anchoring Strength Directly Correlates with Spherical Nucleic Acid-Based HPV E7 Cancer Vaccine Potency. NANO LETTERS 2024; 24:7629-7636. [PMID: 38874796 PMCID: PMC11540143 DOI: 10.1021/acs.nanolett.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Vaccination for cancers arising from human papillomavirus (HPV) infection holds immense potential, yet clinical success has been elusive. Herein, we describe vaccination studies involving spherical nucleic acids (SNAs) incorporating a CpG adjuvant and a peptide antigen (E711-19) from the HPV-E7 oncoprotein. Administering the vaccine to humanized mice induced immunity-dependent on the oligonucleotide anchor chemistry (cholesterol vs (C12)9). SNAs containing a (C12)9-anchor enhanced IFN-γ production >200-fold, doubled memory CD8+ T-cell formation, and delivered more than twice the amount of oligonucleotide to lymph nodes in vivo compared to a simple admixture. Importantly, the analogous construct with a weaker cholesterol anchor performed similar to admix. Moreover, (C12)9-SNAs activated 50% more dendritic cells and generated T-cells cytotoxic toward an HPV+ cancer cell line, UM-SCC-104, with near 2-fold greater efficiency. These observations highlight the pivotal role of structural design, and specifically oligonucleotide anchoring strength (which correlates with overall construct stability), in developing efficacious therapeutic vaccines.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
- These authors contributed equally to this work
| | - Jasper Wilson Dittmar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
- These authors contributed equally to this work
| | - Janice Kang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Tonatiuh Ocampo
- Department of Interdisciplinary Biological Sciences, Northwestern University, 2 Sheridan Road, Evanston, IL 60208, United States
| | - Michael Evangelopoulos
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Zhenyu Han
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Sergej Kudruk
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Jochen Lorch
- Department of Medicine, Hematology/Oncology Division, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
| |
Collapse
|
10
|
Ma Q, Weng C, Yao C, Xu J, Tian B, Wu Y, Wang H, Yang Q, Dai H, Zhang Y, Xu F, Shi X, Wang C. Severe pneumonia induces immunosenescence of T cells in the lung of mice. Aging (Albany NY) 2023; 15:7084-7097. [PMID: 37490715 PMCID: PMC10415552 DOI: 10.18632/aging.204893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Severe pneumonia may induce sequelae and accelerated aging process even after the person has recovered. However, the underline mechanism is not very clear. More research is needed to fully understand the long-term effects of severe pneumonia. In this study, we found that mice recovered from severe pneumonia showed lung immunosenescence, which was characterized by a bias naive-memory balance of T lymphocytes in the lung. The reduction of naïve T cells is associated with the diminished immune response to cancer or external new antigens, which is one of the key changes that occurs with age. Our results also indicate the link between severe pneumonia and aging process, which is mediated by the disrupted T cells homeostasis in the lungs after pneumonia.
Collapse
Affiliation(s)
- Qingle Ma
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Chenhui Weng
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Chenlu Yao
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Jialu Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Bo Tian
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, China
| | - Yi Wu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Heng Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Qianyu Yang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Huaxing Dai
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Yue Zhang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Fang Xu
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiaolin Shi
- Medical College of Soochow University, Suzhou 215123, Jiangsu, China
| | - Chao Wang
- Laboratory for Biomaterial and Immunoengineering, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
11
|
Xu R, Jacques LC, Khandaker S, Beentjes D, Leon-Rios M, Wei X, French N, Neill DR, Kadioglu A. TNFR2 + regulatory T cells protect against bacteremic pneumococcal pneumonia by suppressing IL-17A-producing γδ T cells in the lung. Cell Rep 2023; 42:112054. [PMID: 36724074 DOI: 10.1016/j.celrep.2023.112054] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 12/09/2022] [Accepted: 01/17/2023] [Indexed: 02/02/2023] Open
Abstract
Streptococcus pneumoniae is a pathogen of global morbidity and mortality. Pneumococcal pneumonia can lead to systemic infections associated with high rates of mortality. We find that, upon pneumococcal infection, pulmonary Treg cells are activated and have upregulated TNFR2 expression. TNFR2-deficient mice have compromised Treg cell responses and highly activated IL-17A-producing γδ T cell (γδT17) responses, resulting in significantly enhanced neutrophil infiltration, tissue damage, and rapid development of bacteremia, mirroring responses in Treg cell-depleted mice. Deletion of total Treg cells predominantly activate IFNγ-T cell responses, whereas adoptive transfer of TNFR2+ Treg cells specifically suppress the γδT17 response, suggesting a targeted control of γδT17 activation by TNFR2+ Treg cells. Blocking IL-17A at early stage of infection significantly reduces bacterial blood dissemination and improves survival in TNFR2-deficient mice. Our results demonstrate that TNFR2 is critical for Treg cell-mediated regulation of pulmonary γδT17-neutrophil axis, with impaired TNFR2+ Treg cell responses increasing susceptibility to disease.
Collapse
Affiliation(s)
- Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Daan Beentjes
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Miguel Leon-Rios
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Xiaoqing Wei
- Institute of Tissue Engineering and Repair, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF14 4XY, UK
| | - Neil French
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK.
| |
Collapse
|
12
|
Castellan FS, Irie N. Postnatal depletion of maternal cells biases T lymphocytes and natural killer cells' profiles toward early activation in the spleen. Biol Open 2022; 11:bio059334. [PMID: 36349799 PMCID: PMC9672855 DOI: 10.1242/bio.059334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/11/2022] [Indexed: 08/27/2023] Open
Abstract
The maternal cells transferred into the fetus during gestation persist long after birth in the progeny. These maternal cells have been hypothesized to promote the maturation of the fetal immune system in utero but there are still significant gaps in our knowledge of their potential roles after birth. To provide insights into these maternal cells' postnatal functional roles, we set up a transgenic mouse model to specifically eliminate maternal cells in the neonates by diphtheria toxin injection and confirmed significant depletion in the spleens. We then performed immunophenotyping of the spleens of two-week-old pups by mass cytometry to pinpoint the immune profile differences driven by the depletion of maternal cells in early postnatal life. We observed a heightened expression of markers related to activation and maturation in some natural killer and T cell populations. We hypothesize these results to indicate a potential postnatal regulation of lymphocytic responses by maternal cells. Together, our findings highlight an immunological influence of maternal microchimeric cells postnatally, possibly protecting against adverse hypersensitivity reactions of the neonate at a crucial time of new encounters with self and environmental antigens.
Collapse
Affiliation(s)
- Flore S. Castellan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoki Irie
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Wu S, Wang S, Wang L, Peng H, Zhang S, Yang Q, Huang M, Li Y, Guan S, Jiang W, Zhang Z, Bi Q, Li L, Gao Y, Xiong P, Zhong Z, Xu B, Deng Y, Deng Y. Docosahexaenoic acid supplementation represses the early immune response against murine cytomegalovirus but enhances NK cell effector function. BMC Immunol 2022; 23:17. [PMID: 35439922 PMCID: PMC9017742 DOI: 10.1186/s12865-022-00492-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/12/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Docosahexaenoic acid (DHA) supplementation is beneficial for several chronic diseases; however, its effect on immune regulation is still debated. Given the prevalence of cytomegalovirus (CMV) infection and because natural killer (NK) cells are a component of innate immunity critical for controlling CMV infection, the current study explored the effect of a DHA-enriched diet on susceptibility to murine (M) CMV infection and the NK cell effector response to MCMV infection. RESULTS Male C57BL/6 mice fed a control or DHA-enriched diet for 3 weeks were infected with MCMV and sacrificed at the indicated time points postinfection. Compared with control mice, DHA-fed mice had higher liver and spleen viral loads at day 7 postinfection, but final MCMV clearance was not affected. The total numbers of NK cells and their terminal mature cell subset (KLRG1+ and Ly49H+ NK cells) were reduced compared with those in control mice at day 7 postinfection but not day 21. DHA feeding resulted in higher IFN-γ and granzyme B expression in splenic NK cells at day 7 postinfection. A mechanistic analysis showed that the splenic NK cells of DHA-fed mice had enhanced glucose uptake, increased CD71 and CD98 expression, and higher mitochondrial mass than control mice. In addition, DHA-fed mice showed reductions in the total numbers and activation levels of CD4+ and CD8+ T cells. CONCLUSIONS These results suggest that DHA supplementation represses the early response to CMV infection but preserves NK cell effector functions by improving mitochondrial activity, which may play critical roles in subsequent MCMV clearance.
Collapse
Affiliation(s)
- Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shanshan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, People's Republic of China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Shuzhen Guan
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Wenjuan Jiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaohui Zhang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Yuan Gao
- Southwest Hospital/Southwest Eye Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China
| | - Zhaoyang Zhong
- Cancer Center, Daping Hospital and Research Institute of Surgery, Army Medical University (Third Military Medical University), Chongqing, 400042, People's Republic of China
| | - Bo Xu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221002, People's Republic of China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, Hunan, People's Republic of China.
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, Hunan, People's Republic of China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, People's Republic of China.
| |
Collapse
|
14
|
Tune C, Hahn J, Autenrieth SE, Meinhardt M, Pagel R, Schampel A, Schierloh LK, Kalies K, Westermann J. Sleep restriction prior to antigen exposure does not alter the T cell receptor repertoire but impairs germinal center formation during a T cell-dependent B cell response in murine spleen. Brain Behav Immun Health 2021; 16:100312. [PMID: 34589803 PMCID: PMC8474616 DOI: 10.1016/j.bbih.2021.100312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
It is well known that sleep promotes immune functions. In line with this, a variety of studies in animal models and humans have shown that sleep restriction following an antigen challenge dampens the immune response on several levels which leads to e.g. worsening of disease outcome and reduction of vaccination efficiency, respectively. However, the inverse scenario with sleep restriction preceding an antigen challenge is only investigated in a few animal models where it has been shown to reduce antigen uptake and presentation as well as pathogen clearance and survival rates. Here, we use injection of sheep red blood cells to investigate the yet unknown effect on a T cell-dependent B cell response in a well-established mouse model. We found that 6 h of sleep restriction prior to the antigen challenge does not impact the T cell reaction including the T cell receptor repertoire but dampens the development of germinal centers which correlates with reduced antigen-specific antibody titer indicating an impaired B cell response. These changes concerned a functionally more relevant level than those found in the same experimental model with the inverse scenario when sleep restriction followed the antigen challenge. Taken together, our findings showed that the outcome of the T cell-dependent B cell response is indeed impacted by sleep restriction prior to the antigen challenge which highlights the clinical significance of this scenario and the need for further investigations in humans, for example concerning the effect of sleep restriction preceding a vaccination.
Collapse
Key Words
- Antigen presentation
- BCZ, B cell zone
- CCL, C–C motif ligand
- CCR, C–C motif receptor
- CD, cluster of differentiation
- CIITA, class II major histocompatibility complex transactivator
- CXCL, C-X-C motif ligand
- FDR, false discovery rate
- GC, germinal center
- Germinal center
- IFN, interferon
- IL, interleukin
- IgG, Immunglobulin G
- MHC-II, major histocompatibility complex II
- Mouse
- RP, red pulp
- SD, standard deviation
- SLO, secondary lymphoid organ
- SRBC, sheep red blood cells
- Sheep red blood cells
- Sleep deprivation
- Spleen
- T cell-dependent B cell response
- TCR, T cell receptor
- TCR-R, T cell receptor repertoire
- TCZ, T cell zone
- Tfh, follicular T helper cells
Collapse
Affiliation(s)
- Cornelia Tune
- Institute of Anatomy, University of Luebeck, Germany
| | - Julia Hahn
- Department of Internal Medicine II, University of Tuebingen, Germany
| | | | | | - Rene Pagel
- Institute of Anatomy, University of Luebeck, Germany
| | | | | | | | | |
Collapse
|
15
|
Cai G, Xia S, Zhong F, Liu S, Gu J, Yuan Y, Zhu G, Zou H, Liu Z, Bian J. Zearalenone and deoxynivalenol reduced Th1-mediated cellular immune response after Listeria monocytogenes infection by inhibiting CD4 + T cell activation and differentiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117514. [PMID: 34261220 DOI: 10.1016/j.envpol.2021.117514] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/09/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Based on the fact that mycotoxins and the food-borne bacteria coexist in the natural environment and pose a significant health hazard to humans and animals, it is important to investigate the immunosuppressive mechanism of ZEA (zearalenone), DON (deoxynivalenol), and their combination in bacterial infections. In this study, we established a mouse model of mycotoxin low-dose exposure combined with Listeria monocytogenes infection and investigated the effects of ZEA, DON and their combination on Th1-mediated anti-intracellular bacterial infection based on CD4+ T cell activation and differentiation using both in vitro and in vivo analyses. The present study showed that both ZEA and DON aggravated Listeria monocytogenes infection in mice and affected the activation of CD4+ T cells and Th1 differentiation, including the effects on costimulatory molecules CD28 and CD152 and on cross-linking of IL-12 and IL-12R, by inhibiting T cell receptor (TCR) signaling. When compared with ZEA, DON was found to have a greater impact on many related indicators. Surprisingly, the combined effects of ZEA and DON did not appear to enhance toxicity compared to treatment with the individual mycotoxins. Our findings more clearly revealed that exposure to low-dose ZEA and DON caused immunosuppression in the body by mechanisms including inhibition of CD4+ T cells activation and reduction of Th1 cell differentiation, thus exacerbating infection of animals by Listeria monocytogenes.
Collapse
Affiliation(s)
- Guodong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sugan Xia
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Fang Zhong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Shuangshuang Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
16
|
Ren J, Lu X, Griffiths R, Privratsky JR, Crowley SD. Twist1 in T Lymphocytes Augments Kidney Fibrosis after Ureteral Obstruction. KIDNEY360 2021; 2:784-794. [PMID: 35373065 PMCID: PMC8791343 DOI: 10.34067/kid.0007182020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/17/2021] [Indexed: 02/04/2023]
Abstract
Background Twist1 is a basic helix-loop-helix domain-containing transcription factor that participates in diverse cellular functions, including epithelial-mesenchymal transition and the cellular immune response. Although Twist1 plays critical roles in the initiation and progression of kidney diseases, the effects of Twist1 in the T lymphocyte on the progression of renal fibrosis require elucidation. Methods 129/SvEv mice with a floxed allele for the gene encoding Twist1 or TNFα were bred with CD4-Cre mice to yield CD4-Cre+ Twist1flox/flox (Twist1-TKO) or CD4-Cre+ TNFflox/flox (TNF-TKO) mice with robust, but selective, deletion of Twist1 or TNFα mRNA in T cells, respectively. Twist1 TKO, TNF TKO, and WT controls underwent UUO with assessment of kidney fibrosis and T-cell phenotype at 14 days. Results Compared with WT controls, obstructed kidneys from Twist1 TKO mice had attenuated extracellular matrix deposition. Despite this diminished fibrosis, Twist1 TKO obstructed kidneys contained more CD8+ T cells than in WTs. These intrarenal CD8+ T cells exhibited greater activation and higher levels of TNFα expression than those from WT obstructed kidneys. Further, we found that selective deletion of TNFα from T cells exaggerated renal scar formation and injury after UUO, highlighting the capacity of T-cell TNF to constrain fibrosis in the kidney. Conclusions Twist1 in T cells promotes kidney fibrogenesis, in part, by curtailing the renal accumulation of TNF-elaborating T cells.
Collapse
Affiliation(s)
- Jiafa Ren
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Xiaohan Lu
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Robert Griffiths
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Jamie R. Privratsky
- Department of Anesthesiology, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| | - Steven D. Crowley
- Division of Nephrology, Department of Medicine, Durham Veterans Affairs and Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
17
|
Kim YH, Bang YJ, Park HJ, Li Ko H, Park SI, Hwang KA, Kim H, Nam JH. Inactivated influenza vaccine formulated with single-stranded RNA-based adjuvant confers mucosal immunity and cross-protection against influenza virus infection. Vaccine 2020; 38:6141-6152. [DOI: 10.1016/j.vaccine.2020.07.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/20/2020] [Accepted: 07/12/2020] [Indexed: 01/31/2023]
|
18
|
Ma L, Wang L, Nelson AT, Han C, He S, Henn MA, Menon K, Chen JJ, Baek AE, Vardanyan A, Shahoei SH, Park S, Shapiro DJ, Nanjappa SG, Nelson ER. 27-Hydroxycholesterol acts on myeloid immune cells to induce T cell dysfunction, promoting breast cancer progression. Cancer Lett 2020; 493:266-283. [PMID: 32861706 DOI: 10.1016/j.canlet.2020.08.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022]
Abstract
Breast cancer remains one of the leading causes of cancer mortality in the US. Elevated cholesterol is a major risk factor for breast cancer onset and recurrence, while cholesterol-lowering drugs, such as statins, are associated with a good prognosis. Previous work in murine models showed that cholesterol increases breast cancer metastasis, and the pro-metastatic effects of cholesterol were due to its primary metabolite, 27-hydroxycholesterol (27HC). In our prior work, myeloid cells were found to be required for the pro-metastatic effects of 27HC, but their precise contribution remains unclear. Here we report that 27HC impairs T cell expansion and cytotoxic function through its actions on myeloid cells, including macrophages, in a Liver X receptor (LXR) dependent manner. Many oxysterols and LXR ligands had similar effects on T cell expansion. Moreover, their ability to induce the LXR target gene ABCA1 was associated with their effectiveness in impairing T cell expansion. Induction of T cell apoptosis was likely one mediator of this impairment. Interestingly, the enzyme responsible for the synthesis of 27HC, CYP27A1, is highly expressed in myeloid cells, suggesting that 27HC may have important autocrine or paracrine functions in these cells, a hypothesis supported by our finding that breast cancer metastasis was reduced in mice with a myeloid specific knockout of CYP27A1. Importantly, pharmacologic inhibition of CYP27A1 reduced metastatic growth and improved the efficacy of checkpoint inhibitor, anti-PD-L1. Taken together, our work suggests that targeting the CYP27A1 axis in myeloid cells may present therapeutic benefits and improve the response rate to immune therapies in breast cancer.
Collapse
Affiliation(s)
- Liqian Ma
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Lawrence Wang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Adam T Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Chaeyeon Han
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sisi He
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Madeline A Henn
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Karan Menon
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Joy J Chen
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Amy E Baek
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anna Vardanyan
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayyed Hamed Shahoei
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sunghee Park
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - David J Shapiro
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Som G Nanjappa
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA; University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA; Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
19
|
Amada E, Fukuda K, Kumagai K, Kawakubo H, Kitagawa Y. Soluble recombinant human thrombomodulin suppresses inflammation-induced gastrointestinal tumor growth in a murine peritonitis model. Mol Cell Biochem 2020; 475:195-203. [PMID: 32767229 DOI: 10.1007/s11010-020-03872-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/01/2020] [Indexed: 12/27/2022]
Abstract
Regulatory T cells (Tregs) and transforming growth factor β (TGF-β) are believed to play key roles in both postoperative pro-inflammatory and anti-inflammatory responses of malignancies. Recombinant human thrombomodulin (rTM) is implied to inhibit the interaction between TGF-β and Tregs. The aim of this study is to evaluate the antitumor effects of rTM against gastrointestinal tumors under systemic inflammation. Mice were subjected to cecal ligation and puncture and percutaneous allogeneic tumor implantation. rTM were introduced by percutaneous injection into the abdominal cavity. The effects of rTM were evaluated by weight of implanted tumor, proportion of Tregs in peripheral blood lymphocytes (PBL) and tumor infiltrating lymphocytes (TIL) and temporal evaluation of serum cytokines. The effect of rTM was also evaluated on the in vitro differentiation of naïve T cells into induced Tregs induced by TGF-β and interleukin (IL) -2. rTM significantly inhibited the proliferation of the implanted tumor cells in an inflammation-dependent manner. rTM also reduced the fractions of regulatory T cells and induced regulatory T cells among both PBL and TIL. Temporal evaluation of serum cytokine levels in the model mice showed that rTM significantly suppressed the increases in the serum levels of IL-2 and TGF-β. An in vitro differentiation assay revealed that rTM inhibited the differentiation of naïve T cells into Tregs triggered by IL-2- and TGF-β. rTM has suppressive effects on inflammation-induced gastrointestinal tumor growth by suggestively affecting differentiation of Tregs.
Collapse
Affiliation(s)
- En Amada
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| | - Kazumasa Fukuda
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| | - Koshi Kumagai
- Department of Gastroenterological Surgery, The Cancer Institute Hospital of JFCR, 3-8-31, Ariake, Koto, Tokyo, Japan.
| | - Hirofumi Kawakubo
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, School of Medicine, Keio University, 35, Shinanomachi, Shinjuku, Tokyo, Japan
| |
Collapse
|
20
|
Zhou L, Long J, Sun Y, Chen W, Qiu R, Yuan D. Resveratrol ameliorates atherosclerosis induced by high-fat diet and LPS in ApoE -/- mice and inhibits the activation of CD4 + T cells. Nutr Metab (Lond) 2020; 17:41. [PMID: 32508962 PMCID: PMC7251691 DOI: 10.1186/s12986-020-00461-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/15/2020] [Indexed: 02/06/2023] Open
Abstract
Background Atherosclerosis (AS), which characterized with the accumulation of lipids on the vessel wall, is the pathological basis of many cardiovascular diseases (CVD) and seriously threatens human health. Resveratrol (RES) has been reported to be benefit for AS treatment. This research aimed to observe the effects of RES on AS induced by high-fat diet (HFD) and LPS in ApoE-/- mice and investigate the underlying mechanism. Methods ApoE-/- mice were fed with HFD companied with LPS to induce AS and RES was administrated for 20 weeks. Splenic CD4+ T cells were cultured and treated with anti-CD3/CD28 together with LPS, and RES was added. Serum lipids and the atherosclerotic areas of aortas were detected. The activation of CD4+ T cells were investigated both in vivo and in vitro and the expression of DNA methyltransferases (Dnmt) in CD4+ T cells were measured. Results In vivo, administration of RES prevented HFD and LPS induced dysfunction of serum lipids including TC (total cholesterol), TG (triglyceride), LDL-C (low density lipoprotein cholesterol) and HDL-C (high density lipoprotein cholesterol), ameliorated the thickened coronary artery wall and decreased the areas of atherosclerotic lesion on aortas. Besides, RES decreased the number of CD4+ T cells in peripheral blood, decreased the expression of CD25 and CD44, but not affected the expression of L-selectin (CD62L). In vitro, RES decreased the expression of Ki67, CD25 and CD44 in CD4+ T cells. Moreover, RES increased the secretion of IL-2, IL-10 and TGF-β1, decreased IL-6. In addition, RES decreased both the mRNA and protein level of Dnmt1 and Dnmt3b in CD4+ T cells. Conclusion These results indicated that RES ameliorated AS induced by HFD companied with LPS in ApoE-/- mice, inhibited the proliferation and activation of CD4+ T cells and regulated the expression of Dnmt1 and Dnmt3b.
Collapse
Affiliation(s)
- Liyu Zhou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Jun Long
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Yuting Sun
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Weikai Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| | - Runze Qiu
- Department of Clinical Pharmacology Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006 People's Republic of China
| | - Dongping Yuan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing, 210023 Jiangsu People's Republic of China
| |
Collapse
|
21
|
Girón-Pérez DA, Vadillo E, Schnoor M, Santos-Argumedo L. Myo1e modulates the recruitment of activated B cells to inguinal lymph nodes. J Cell Sci 2020; 133:jcs.235275. [PMID: 31964710 DOI: 10.1242/jcs.235275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The inclusion of lymphocytes in high endothelial venules and their migration to the lymph nodes are critical steps in the immune response. Cell migration is regulated by the actin cytoskeleton and myosins. Myo1e is a long-tailed class I myosin and is highly expressed in B cells, which have not been studied in the context of cell migration. By using intravital microscopy in an in vivo model and performing in vitro experiments, we studied the relevance of Myo1e for the adhesion and inclusion of activated B cells in high endothelial venules. We observed reduced expression of integrins and F-actin in the membrane protrusions of B lymphocytes, which might be explained by deficiencies in vesicular trafficking. Interestingly, the lack of Myo1e reduced the phosphorylation of focal adhesion kinase (FAK; also known as PTK2), AKT (also known as AKT1) and RAC-1, disturbing the FAK-PI3K-RAC-1 signaling pathway. Taken together, our results indicate a critical role of Myo1e in the mechanism of B-cell adhesion and migration.
Collapse
Affiliation(s)
- Daniel A Girón-Pérez
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Michael Schnoor
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| | - Leopoldo Santos-Argumedo
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, CP 07360, Mexico City, Mexico
| |
Collapse
|
22
|
Haycook CP, Balsamo JA, Glass EB, Williams CH, Hong CC, Major AS, Giorgio TD. PEGylated PLGA Nanoparticle Delivery of Eggmanone for T Cell Modulation: Applications in Rheumatic Autoimmunity. Int J Nanomedicine 2020; 15:1215-1228. [PMID: 32110018 PMCID: PMC7036983 DOI: 10.2147/ijn.s234850] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Background Helper T cell activity is dysregulated in a number of diseases including those associated with rheumatic autoimmunity. Treatment options are limited and usually consist of systemic immune suppression, resulting in undesirable consequences from compromised immunity. Hedgehog (Hh) signaling has been implicated in the activation of T cells and the formation of the immune synapse, but remains understudied in the context of autoimmunity. Modulation of Hh signaling has the potential to enable controlled immunosuppression but a potential therapy has not yet been developed to leverage this opportunity. Methods In this work, we developed biodegradable nanoparticles to enable targeted delivery of eggmanone (Egm), a specific Hh inhibitor, to CD4+ T cell subsets. We utilized two FDA-approved polymers, poly(lactic-co-glycolic acid) and polyethylene glycol, to generate hydrolytically degradable nanoparticles. Furthermore, we employed maleimide-thiol mediated conjugation chemistry to decorate nanoparticles with anti-CD4 F(ab') antibody fragments to enable targeted delivery of Egm. Results Our novel delivery system achieved a highly specific association with the majority of CD4+ T cells present among a complex cell population. Additionally, we have demonstrated antigen-specific inhibition of CD4+ T cell responses mediated by nanoparticle-formulated Egm. Conclusion This work is the first characterization of Egm's immunomodulatory potential. Importantly, this study also suggests the potential benefit of a biodegradable delivery vehicle that is rationally designed for preferential interaction with a specific immune cell subtype for targeted modulation of Hh signaling.
Collapse
Affiliation(s)
- Christopher P Haycook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Joseph A Balsamo
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.,Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN 37232, USA
| | - Evan B Glass
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Charles H Williams
- Department of Medicine, Division of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Charles C Hong
- Department of Medicine, Division of Cardiovascular Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amy S Major
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt Medical Center, Nashville, TN 37232, USA.,U.S., Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Todd D Giorgio
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
23
|
Fitzpatrick S, Lausch R, Barrington RA. CCR6-Positive γδ T Cells Provide Protection Against Intracorneal HSV-1 Infection. Invest Ophthalmol Vis Sci 2020; 60:3952-3962. [PMID: 31560369 DOI: 10.1167/iovs.19-27810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose γδ T cells offer an important early immune defense against many different pathogens, both bacterial and viral. Herein, we examined the capacity of γδ T cell subsets to provide protection in the cornea against herpes simplex virus-1 (HSV-1). Methods C57Bl/6 (wild-type [WT]), γδ T-cell deficient (TCRδ-/-) and CCR6-deficient (CCR6-/-) mice were infected intracorneally with HSV-1. At multiple time points following infection, corneas were excised, and cells were immunostained for surface markers, intracellular cytokines, and analyzed using flow cytometry. WT and CCR6-/- γδ T cells were adoptively transferred into TCRδ-/- mice and corneal scores and survival were measured. Results Intracorneal infection of mice lacking γδ T cells exhibited increased corneal opacity scores, elevated viral titers, and higher mortality compared with WT mice. Both CCR6+ and CCR6neg γδ T cell subsets were observed in corneas after virus infection. CCR6+ γδ T cells produced IL-17A and were predominantly CD44+CD62L+, consistent with natural IL-17+ γδ T cells. In contrast IL-17A production by CCR6neg γδ T cells was infrequent, and this subset was largely single positive for CD62L or CD44. The CCR6+ subset appeared to provide protection against HSV-1 as follows: (1) CCR6-/- mice had more severe corneal opacity compared with WT mice; and (2) adoptive transfer of γδ T cells from WT mice restored protection in TCRδ-/- mice whereas transfer of γδ T cells from CCR6-/- mice did not. Conclusions γδ T cells in the cornea can be divided into CCR6+ and CCR6neg subsets with the former conferring protection early after intracorneal HSV-1 infection.
Collapse
Affiliation(s)
- Steffani Fitzpatrick
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| | - Robert Lausch
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| | - Robert A Barrington
- Department of Microbiology & Immunology, University of South Alabama Mobile, Alabama, United States
| |
Collapse
|
24
|
Lu X, Rudemiller NP, Privratsky JR, Ren J, Wen Y, Griffiths R, Crowley SD. Classical Dendritic Cells Mediate Hypertension by Promoting Renal Oxidative Stress and Fluid Retention. Hypertension 2019; 75:131-138. [PMID: 31786985 DOI: 10.1161/hypertensionaha.119.13667] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FLT3L (Fms-like tyrosine kinase 3 ligand) stimulates the development of classical dendritic cells (DCs). Here we tested the hypothesis that classical DCs drive blood pressure elevation by promoting renal fluid retention. FLT3L-deficient (FLT3L-/-) mice that lack classical DCs in the kidney had mean arterial pressures similar to wild-types (WTs) at baseline but had blunted hypertensive responses during 4 weeks of chronic Ang II (angiotensin II) infusion. In FLT3L-/- mice, the proportions of effector memory T cells in the kidney were similar to those in WTs at baseline. However, after Ang II infusion, proportions of effector memory T cells were dramatically lower in the FLT3L-/- kidneys versus WTs, indicating that classical DCs augment the renal accumulation of effector T cells after renin-angiotensin system activation. Consistent with their lower blood pressures, the Ang II-infused FLT3L-/- mice had attenuated cardiac hypertrophy and lower renal mRNA expression for pro-hypertensive cytokines. Moreover, the Ang II-infused FLT3L-/- mice had lower urinary excretion of the oxidative stress marker 8-isoprostane and lower renal mRNA levels of nicotinamide adenine dinucleotide phosphate oxidase 2. In an intraperitoneal saline challenge test at day 7 of Ang II, FLT3L-/- mice excreted higher proportions of the injected volume and sodium than WTs. Consistent with this enhanced diuresis, mRNA expressions for the sodium chloride cotransporter and all 3 subunits of the epithelial sodium channel were diminished by >40% in FLT3L-/- kidneys compared with the WTs. Thus, classical FLT3L-dependent DCs promote renal T-cell activation with consequent oxidative stress, fluid retention, and blood pressure elevation.
Collapse
Affiliation(s)
- Xiaohan Lu
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Nathan P Rudemiller
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Jamie R Privratsky
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Jiafa Ren
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Yi Wen
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Robert Griffiths
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.)
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., J.R.P., J.R., Y.W., R.G., S.D.C.).,Department of Immunology, Duke University School of Medicine, Durham, NC (S.D.C.)
| |
Collapse
|
25
|
Lu X, Rudemiller NP, Wen Y, Ren J, Hammer GE, Griffiths R, Privratsky JR, Yang B, Sparks MA, Crowley SD. A20 in Myeloid Cells Protects Against Hypertension by Inhibiting Dendritic Cell-Mediated T-Cell Activation. Circ Res 2019; 125:1055-1066. [PMID: 31630621 DOI: 10.1161/circresaha.119.315343] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RATIONALE The ubiquitin-editing protein A20 in dendritic cells (DCs) suppresses NF-κB (nuclear factor-κB) signaling and constrains DC-mediated T-cell stimulation, but the role of A20 in modulating the hypertensive response requires elucidation. OBJECTIVE Here, we tested the hypothesis that A20 in CD11c-expressing myeloid cells mitigates Ang II (angiotensin II)-induced hypertension by limiting renal T-cell activation. METHODS AND RESULTS Mice with heterozygous deletion of A20 in CD11c-expressing myeloid cells (DC ACT[Cd11c-Cre+ A20flox/wt]) have spontaneous DC activation but have normal baseline blood pressures. In response to low-dose chronic Ang II infusion, DC ACT mice compared with WT (wild type) controls had an exaggerated hypertensive response and augmented proportions of CD62LloCD44hi effector memory T lymphocytes in the kidney lymph node. After 10 days of Ang II, DC ACT kidneys had increased numbers of memory effector CD8+, but not CD4+ T cells, compared with WTs. Moreover, the expressions of TNF-α (tumor necrosis factor-α) and IFN-γ (interferon-γ) were upregulated in the DC ACT renal CD8+ T cells but not CD4+ T cells. Saline challenge testing revealed enhanced renal fluid retention in the DC ACT mice. DC ACT kidneys showed augmented protein expression of γ-epithelial sodium channel and NHE3 (sodium-hydrogen antiporter 3). DC ACT mice also had greater reductions in renal blood flow following acute injections with Ang II and enhanced oxidant stress in the vasculature as evidenced by higher circulating levels of malondialdehyde compared with WT controls. To directly test whether enhanced T-cell activation in the DC ACT cohort was responsible for their exaggerated hypertensive response, we chronically infused Ang II into lymphocyte-deficient DC ACT Rag1 (recombination activating protein 1)-deficient (Rag1-/-) mice and WT (Cd11c-Cre- A20flox/wt) Rag1-/- controls. The difference in blood pressure elevation accruing from DC activation was abrogated on the Rag1-/- strain. CONCLUSIONS Following stimulation of the renin-angiotensin system, A20 suppresses DC activation and thereby mitigates T-cell-dependent blood pressure elevation.
Collapse
Affiliation(s)
- Xiaohan Lu
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Nathan P Rudemiller
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Yi Wen
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Jiafa Ren
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Gianna E Hammer
- Department of Immunology, Duke University School of Medicine, Durham, NC (G.E.H.).,Department of Molecular Genetics and Microbiology, Durham, NC (G.E.H.)
| | - Robert Griffiths
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Jamie R Privratsky
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Bo Yang
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Matthew A Sparks
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| | - Steven D Crowley
- From the Division of Nephrology, Department of Medicine, Duke University and Durham VA Medical Centers, NC (X.L., N.P.R., Y.W., J.R., R.G., J.R.P., B.Y., M.A.S., S.D.C.)
| |
Collapse
|
26
|
Pan Y, Hou X, Meng Q, Yang X, Shang L, Wei X, Hao W. The critical role for TAK1 in trichloroethylene-induced contact hypersensitivity in vivo and in CD4 + T cell function alteration by trichloroethylene and its metabolites in vitro. Toxicol Appl Pharmacol 2019; 380:114705. [PMID: 31400415 DOI: 10.1016/j.taap.2019.114705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/22/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Occupational exposure to trichloroethylene (TCE) has been associated with severe, generalized contact hypersensitivity (CHS) skin disorder, which is considered a delayed-type hypersensitivity reaction mediated by antigen-specific T cells. Transforming growth factor-β activated kinase-1 (TAK1) is essential for regulating the development and effector function of T cells. We hypothesized that disrupting TAK1 activity might inhibit TCE-induced CHS response. In this study, a local lymph node assay was employed to build a CHS model induced by TCE combined with the inducible-TAK1 deletion system to study the effect of TAK1 on it. It was observed that TAK1 deficiency ameliorated the TCE-induced CHS response and was associated with defective T cell expansion and activation and IFN-γ production in vivo. Furthermore, we investigated the effects of TCE and its metabolites trichloroacetic acid (TCA) and dichloroacetic acid (DCA) on CD4+ T cell function and the effect of TAK1 on it in vitro. The results showed that TCE, TCA and DCA augmented the proliferation, activation and differentiation of CD4+ T cells through Jnk MAPK and NF-κB pathways. TAK1 deletion significantly attenuated these effects induced by TCE, TCA or DCA on CD4+ T cells. In conclusion, it is suggested that TAK1 plays a critical role both in TCE-induced CHS response in vivo and in TCE and its metabolite-induced CD4+ T cell activation in vitro. Local inhibition of TAK1 might offer a promising alternative feasible strategy for TCE-induced CHS.
Collapse
Affiliation(s)
- Yao Pan
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China; Department of Cosmetics, School of Science, Beijing Technology and Business University, Beijing 100048, China
| | - Xiaohong Hou
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Xiaohua Yang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Lanqin Shang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing 100191, China.
| |
Collapse
|
27
|
Perfilyeva YV, Ostapchuk YO, Abdolla N, Tleulieva R, Krasnoshtanov VC, Belyaev NN. Exogenous Melatonin Up-Regulates Expression of CD62L by Lymphocytes in Aged Mice under Inflammatory and Non-Inflammatory Conditions. Immunol Invest 2019; 48:632-643. [PMID: 30887869 DOI: 10.1080/08820139.2019.1586918] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It is well documented that age-related impaired functioning of immunocompetent cells is associated with an increase in the rates of chronic inflammatory diseases. Recently, an ability of melatonin to modulate inflammatory processes by regulating leucocyte recruitment has been demonstrated. However, to date, no studies have attempted to determine the impact of melatonin on the expression of CD62L by lymphocytes. CD62L, also known as L-selectin, is required for the entry of lymphocytes into secondary lymphoid organs, sites of tumor growth and chronic inflammation through high endothelial venules. Here, we investigated the effect of melatonin at physiological concentrations on the expression of CD62L by T and NK cells in vivo and in vitro. We demonstrated that NK and CD3+ T cells obtained from the spleen of aged mice were characterized by decreased expression of CD62L compared to young mice. Melatonin administration up-regulated the levels of surface CD62L on NK and T cell populations in aged mice under non-inflammatory conditions and on CD8+ T cells in aged mice with chronic inflammation. Pre-incubation with melatonin prevented the reduction in CD62L expression by CD8+ T cells induced by the co-cultivation of peripheral blood mononuclear cells with human pancreatic adenocarcinoma cell line (MiaPaCa-2). The obtained results suggest that melatonin can modulate lymphocyte homing into lymph nodes and sites of chronic inflammation and, therefore, can stimulate immune responses in chronic inflammatory conditions associated with aging.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- a Laboratory of Molecular Immunology and Immunobiotechnology , M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry , Almaty , Kazakhstan
| | - Yekaterina O Ostapchuk
- a Laboratory of Molecular Immunology and Immunobiotechnology , M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry , Almaty , Kazakhstan
| | - Nurshat Abdolla
- a Laboratory of Molecular Immunology and Immunobiotechnology , M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry , Almaty , Kazakhstan
- b Department of Biophysics and Biomedicine , Al-Farabi Kazakh National University , Almaty , Kazakhstan
| | - Raikhan Tleulieva
- a Laboratory of Molecular Immunology and Immunobiotechnology , M.A.Aitkhozhin's Institute of Molecular Biology and Biochemistry , Almaty , Kazakhstan
| | | | - Nikolai N Belyaev
- d Department of New Technologies , Saint-Petersburg Pasteur Institute , Saint-Petersburg , Russia
| |
Collapse
|
28
|
Basketter D, Cockshott A, Corsini E, Gerberick GF, Idehara K, Kimber I, Van Loveren H, Matheson J, Mehling A, Omori T, Rovida C, Sozu T, Takeyoshi M, Casati S. An Evaluation of Performance Standards and Non-radioactive Endpoints for the Local Lymph Node Assay. Altern Lab Anim 2019; 36:243-57. [DOI: 10.1177/026119290803600211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David Basketter
- St John's Institute of Dermatology, St Thomas’ Hospital, London, UK
| | | | - Emanuela Corsini
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - G. Frank Gerberick
- Procter & Gamble Company, Miami Valley Innovation Center, Cincinnati, OH, USA
| | | | - Ian Kimber
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Henk Van Loveren
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | - Takashi Omori
- Kyoto University School of Public Health, Kyoto, Japan
| | - Costanza Rovida
- ECVAM, IHCP, European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Silvia Casati
- ECVAM, IHCP, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
29
|
Withers SS, Moore PF, Chang H, Choi JW, McSorley SJ, Kent MS, Monjazeb AM, Canter RJ, Murphy WJ, Sparger EE, Rebhun RB. Multi-color flow cytometry for evaluating age-related changes in memory lymphocyte subsets in dogs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:64-74. [PMID: 29859828 PMCID: PMC6197816 DOI: 10.1016/j.dci.2018.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
While dogs are increasingly being utilized as large-animal models of disease, important features of age-related immunosenescence in the dog have yet to be evaluated due to the lack of defined naïve vs. memory T lymphocyte phenotypes. We therefore performed multi-color flow cytometry on peripheral blood mononuclear cells from young and aged beagles, and determined the differential cytokine production by proposed memory subsets. CD4+ and CD8+ T lymphocytes in aged dogs displayed increased cytokine production, and decreased proliferative capacity. Antibodies targeting CD45RA and CD62L, but less so CD28 or CD44, defined canine cells that consistently exhibited properties of naïve-, central memory-, effector memory-, and terminal effector-like CD4+ and CD8+ T lymphocyte subsets. Older dogs demonstrated decreased frequencies of naïve-like CD4+ and CD8+ T lymphocytes, and an increased frequency of terminal effector-like CD8+ T lymphocytes. Overall findings revealed that aged dogs displayed features of immunosenescence similar to those reported in other species.
Collapse
Affiliation(s)
- Sita S Withers
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peter F Moore
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hong Chang
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jin W Choi
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, County Road 98 & Hutchison Drive, Davis, CA 95616, USA
| | - Michael S Kent
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Arta M Monjazeb
- Comprehensive Cancer Center, Department of Radiation Oncology, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - Robert J Canter
- Comprehensive Cancer Center, Department of Surgery, School of Medicine, University of California-Davis, 4501 X Street, G-140, Sacramento, CA 95817, USA
| | - William J Murphy
- Department of Dermatology, School of Medicine, University of California-Davis, 2921 Stockton Blvd, Sacramento, CA 95716, USA
| | - Ellen E Sparger
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| | - Robert B Rebhun
- Center for Companion Animal Health, Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Huppert C, Paris C, Langonné I, Muller S, Mathiot J, Abdessadeq H, Gagnaire F, Battais F, Sponne I. Activation of T cells by dendritic cells exposed to a reference sensitizer: Towards a promising model to assess the allergenic potential of chemicals. Contact Dermatitis 2018; 79:67-75. [PMID: 29635784 DOI: 10.1111/cod.12991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/25/2018] [Accepted: 02/10/2018] [Indexed: 12/01/2022]
Abstract
BACKGROUND Low molecular weight chemicals constitute one of the major causes of occupational allergies. European legislation on chemicals recommends limiting the use of in vivo models for assessing the sensitizing potential of chemicals, and encourages the development of integrated alternative methods. An in vitro mouse model of bone marrow-derived dendritic cells (BMDCs) that showed good accuracy (75%) and sensitivity (69%) has previously been developed to assess the sensitizing potential of chemicals. OBJECTIVE To assess the ability of BMDCs to activate T cells (TCs) in vitro. METHODS BMDCs pre-exposed to the reference sensitizer ammonium hexachloroplatinate (AHCP) were co-cultured with different subpopulations of TCs. TC activation was assessed by surface marker expression, proliferation, and cytokine release. RESULTS The results showed significant activation of TCs co-cultured with dendritic cells pre-exposed to AHCP as evaluated by CD124 expression, proliferation, and cytokine secretion. Moreover, the response of TCs appeared to be Th2-oriented. Naive TCs were shown to be involved in this response, and the removal of regulatory TCs did not improve the cell response. CONCLUSIONS The BMDCs used in this previously developed model appear to have the ability to activate TCs, confirming that the BMDC model represents a reliable assay for assessing the sensitizing potential of chemicals.
Collapse
Affiliation(s)
- Cécile Huppert
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France.,Faculté de Médecine, INGRES, EA 7298, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christophe Paris
- Faculté de Médecine, INGRES, EA 7298, Université de Lorraine, Vandœuvre-lès-Nancy, France.,INSERM, Unité U1085-IRSET, Rennes, France
| | - Isabelle Langonné
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France
| | - Samuel Muller
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France
| | - Julianne Mathiot
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France
| | - Hakima Abdessadeq
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France
| | - François Gagnaire
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France
| | - Fabrice Battais
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France
| | - Isabelle Sponne
- Department of Toxicology and Biometrology, National Institute for Research and Safety (INRS), Vandœuvre-lès-Nancy cedex, France
| |
Collapse
|
31
|
Mycobacterium tuberculosis protein Rv2220 induces maturation and activation of dendritic cells. Cell Immunol 2018; 328:70-78. [PMID: 29625705 DOI: 10.1016/j.cellimm.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/26/2018] [Accepted: 03/30/2018] [Indexed: 11/23/2022]
Abstract
Tuberculosis remains a serious health problem worldwide. Characterization of the dendritic cell (DC)-activating mycobacterial proteins has driven the development of effective TB vaccine candidates besides improving the understanding of immune responses. Some studies have emphasized the essential role of protein Rv2220 from M. tuberculosis in mycobacterial growth. Nonetheless, little is known about cellular immune responses to Rv2220. In this study, our aim was to test whether protein Rv2220 induces maturation and activation of DCs. Rv2220-activated DCs appeared to be in a mature state with elevated expression of relevant surface molecules and proinflammatory cytokines. DC maturation caused by Rv2220 was mediated by MAPK and NF-κB signaling pathways. Specifically, Rv2220-matured DCs induced the expansion of memory CD62LlowCD44highCD4+ T cells in the spleen of mycobacteria-infected mice. Our results suggest that Rv2220 regulates host immune responses through maturation of DCs, a finding that points to a new vaccine candidate against tuberculosis.
Collapse
|
32
|
Chen X, Zhang D, Chen X, Meng G, Zheng Q, Mai W, Wu Y, Ye L, Wang L. Oral administration of visceral adipose tissue antigens ameliorates metabolic disorders in mice and elevates visceral adipose tissue-resident CD4 +CD25 +Foxp3 + regulatory T cells. Vaccine 2017; 35:4612-4620. [PMID: 28736203 DOI: 10.1016/j.vaccine.2017.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/09/2017] [Accepted: 07/03/2017] [Indexed: 01/12/2023]
Abstract
Obesity and type 2 diabetes are linked with chronic, low-grade inflammation in visceral adipose tissue (VAT). A unique population of VAT-resident CD4+Foxp3+ Tregs plays a crucial role in regulating VAT inflammation and metabolic homeostasis. VAT-resident Tregs display a highly restricted TCR repertoire, suggesting they recognize certain autoantigen(s) in VAT. A dramatic reduction of VAT-resident Tregs has been shown to closely correlate with obesity-related VAT chronic inflammation and metabolic disorders. Oral tolerance strategy may modulate inflammatory response to autoantigens by several mechanisms including induction of autoantigen-specific Tregs. Here, we explored the effects and cellular mechanism of oral administration of VAT pooled antigens on high-fat diet (HFD)-induced metabolic disorders in mice. Indeed, we found that oral treatment of VAT mixture antigens effectively inhibited gain in body weight and fat mass, ameliorated serum lipid parameters, and improved insulin sensitivity in HFD mice. This strategy was shown to significantly restore HFD-induced decrease of VAT-resident Tregs, accompanied by a hampered M2-type to M1-type macrophages phenotypic switch as well as decreased CD8+ T cells infiltration in VAT. Thus, oral administration of VAT antigens may be a novel and safe strategy against obesity and its related metabolic disorders.
Collapse
Affiliation(s)
- Xiangyu Chen
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Dali Zhang
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China; Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xiaoling Chen
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China
| | - Gang Meng
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qian Zheng
- Function Center, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Wenli Mai
- Function Center, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Yuzhang Wu
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Lilin Ye
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| | - Li Wang
- Institute of Immunology PLA & Department of Immunology, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
33
|
Kim DE, Lee Y, Kim M, Lee S, Jon S, Lee SH. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials 2017. [PMID: 28624706 DOI: 10.1016/j.biomaterials.2017.06.014] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4+ T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders.
Collapse
Affiliation(s)
- Dong Eon Kim
- Biomedical Science and Engineering Interdisciplinary Program, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yonghyun Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - MinGyo Kim
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Soyoung Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sangyong Jon
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| | - Seung-Hyo Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
34
|
Meng L, Tong J, Wang H, Tao C, Wang Q, Niu C, Zhang X, Gao Q. PPE38 Protein of Mycobacterium tuberculosis Inhibits Macrophage MHC Class I Expression and Dampens CD8 + T Cell Responses. Front Cell Infect Microbiol 2017; 7:68. [PMID: 28348981 PMCID: PMC5346565 DOI: 10.3389/fcimb.2017.00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/22/2017] [Indexed: 12/23/2022] Open
Abstract
Suppression of CD8+ T cell activation is a critical mechanism used by Mycobacterium tuberculosis (MTB) to escape protective host immune responses. PPE38 belongs to the unique PPE family of MTB and in our previous study, PPE38 protein was speculated to participate in manipulating macrophage MHC class I pathway. To test this hypothesis, the function of mycobacterial PPE38 protein was assessed here using macrophage and mouse infection models. Decreased amount of MHC class I was observed on the surface of macrophages infected with PPE38-expressing mycobacteria. The transcript of genes encoding MHC class I was also inhibited by PPE38. After infection of C57BL/6 mice with Mycobacterium smegmatis expressing PPE38 (Msmeg-PPE38), decreased number of CD8+ T cells was found in spleen, liver, and lungs through immunohistochemical analysis, comparing to the control strain harboring empty vector (Msmeg-V). Consistently, flow cytometry assay showed that fewer effector/memory CD8+ T cells (CD44highCD62Llow) were activated in spleen from Msmeg-PPE38 infected mice. Moreover, Msmeg-PPE38 confers a growth advantage over Msmeg-V in C57BL/6 mice, indicating an effect of PPE38 to favor mycobacterial persistence in vivo. Overall, this study shows a unique biological function of PPE38 protein to facilitate mycobacteria to escape host immunity, and provides hints for TB vaccine development.
Collapse
Affiliation(s)
- Lu Meng
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Jingfeng Tong
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Hui Wang
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan UniversityShanghai, China; The State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, School of Medicine, Shenzhen UniversityGuangdong, China
| | - Chengwu Tao
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences Shanghai, China
| | - Qinglan Wang
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Chen Niu
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences Shanghai, China
| | - Qian Gao
- Key laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University Shanghai, China
| |
Collapse
|
35
|
HtrA2 suppresses autoimmune arthritis and regulates activation of STAT3. Sci Rep 2016; 6:39393. [PMID: 28008946 PMCID: PMC5180098 DOI: 10.1038/srep39393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that is related to the induction of T helper (Th)17 cells, which secrete interleukin-17, and activation of the signal transducer and activator of transcription (STAT) 3. The expression of high-temperature requirement protein A (HtrA) 2, a serine protease involved in apoptosis, was decreased in RA patients nonresponsive to drug treatment of RA. The aim of this study was to determine whether overexpression of HtrA2 has a therapeutic effect on RA. Th17 differentiation, osteoclastogenesis, and lymphocyte activation are increased in motor neuron degeneration (mnd)2 mice, which lack HtrA2 activity because of a missense mutation (Ser276Cys) in the protease domain of HtrA2. The inhibitor of HtrA2 also increased Th17 differentiation. On the other hand, HtrA2 induced cleavage of STAT3 and overexpression of HtrA2 attenuated CIA in a mouse model. HtrA2 overexpression inhibited plaque development as well as the differentiation of Th17 in ApoE-/- mice after immunization with proteoglycans to induce a hyperlipidemia-based RA animal model. The therapeutic function of HtrA2 in inflammatory diseases is linked with Th17 development and the STAT3 pathway in splenocytes. These results suggest that HtrA2 participates in immunomodulatory activity where the upregulation of HtrA2 may shed light on therapeutic approaches to RA and hyperlipidemia.
Collapse
|
36
|
Traba J, Miozzo P, Akkaya B, Pierce SK, Akkaya M. An Optimized Protocol to Analyze Glycolysis and Mitochondrial Respiration in Lymphocytes. J Vis Exp 2016. [PMID: 27911401 PMCID: PMC5226256 DOI: 10.3791/54918] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lymphocytes respond to a variety of stimuli by activating intracellular signaling pathways, which in turn leads to rapid cellular proliferation, migration and differentiation, and cytokine production. All of these events are tightly linked to the energy status of the cell, and therefore studying the energy-producing pathways may give clues about the overall functionality of these cells. The extracellular flux analyzer is a commonly used device for evaluating the performance of glycolysis and mitochondrial respiration in many cell types. This system has been used to study immune cells in a few published reports, yet a comprehensive protocol optimized particularly for lymphocytes is lacking. Lymphocytes are fragile cells that survive poorly in ex vivo conditions. Oftentimes lymphocyte subsets are rare, and working with low cell numbers is inevitable. Thus, an experimental strategy that addresses these difficulties is required. Here, we provide a protocol that allows for rapid isolation of viable lymphocytes from lymphoid tissues, and for the analysis of their metabolic states in the extracellular flux analyzer. Furthermore, we provide results of experiments in which the metabolic activities of several lymphocyte subtypes at different cell densities were compared. These observations suggest that our protocol can be used to achieve consistent, well-standardized results even at low cell concentrations, and thus it may have broad applications in future studies focusing on the characterization of metabolic events in immune cells.
Collapse
Affiliation(s)
- Javier Traba
- Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health
| | - Pietro Miozzo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Billur Akkaya
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health;
| |
Collapse
|
37
|
Yao P, Hongqian C, Qinghe M, Lanqin S, Jianjun J, Xiaohua Y, Xuetao W, Weidong H. Lack of TAK1 in dendritic cells inhibits the contact hypersensitivity response induced by trichloroethylene in local lymph node assay. Toxicol Appl Pharmacol 2016; 307:72-80. [DOI: 10.1016/j.taap.2016.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/19/2016] [Accepted: 07/25/2016] [Indexed: 12/31/2022]
|
38
|
Akkaya B, Miozzo P, Holstein AH, Shevach EM, Pierce SK, Akkaya M. A Simple, Versatile Antibody-Based Barcoding Method for Flow Cytometry. THE JOURNAL OF IMMUNOLOGY 2016; 197:2027-38. [PMID: 27439517 DOI: 10.4049/jimmunol.1600727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/17/2016] [Indexed: 01/26/2023]
Abstract
Barcoding of biological samples is a commonly used strategy to mark or identify individuals within a complex mixture. However, cell barcoding has not yet found wide use in flow cytometry that would benefit greatly from the ability to analyze pooled experimental samples simultaneously. This is due, in part, to technical and practical limitations of current fluorescent dye-based methods. In this study, we describe a simple, versatile barcoding strategy that relies on combinations of a single Ab conjugated to different fluorochromes and thus in principle can be integrated into any flow cytometry application. To demonstrate the efficacy of the approach, we describe the results of a variety of experiments using live cells as well as fixed and permeabilized cells. The results of these studies show that Ab-based barcoding provides a simple, practical method for identifying cells from individual samples pooled for analysis by flow cytometry that has broad applications in immunological research.
Collapse
Affiliation(s)
- Billur Akkaya
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Pietro Miozzo
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Amanda H Holstein
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Ethan M Shevach
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Munir Akkaya
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
39
|
Ohmura S, Mizuno S, Oishi H, Ku CJ, Hermann M, Hosoya T, Takahashi S, Engel JD. Lineage-affiliated transcription factors bind the Gata3 Tce1 enhancer to mediate lineage-specific programs. J Clin Invest 2016; 126:865-78. [PMID: 26808502 DOI: 10.1172/jci83894] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/10/2015] [Indexed: 01/09/2023] Open
Abstract
The transcription factor GATA3 is essential for the genesis and maturation of the T cell lineage, and GATA3 dysregulation has pathological consequences. Previous studies have shown that GATA3 function in T cell development is regulated by multiple signaling pathways and that the Notch nuclear effector, RBP-J, binds specifically to the Gata3 promoter. We previously identified a T cell-specific Gata3 enhancer (Tce1) lying 280 kb downstream from the structural gene and demonstrated in transgenic mice that Tce1 promoted T lymphocyte-specific transcription of reporter genes throughout T cell development; however, it was not clear if Tce1 is required for Gata3 transcription in vivo. Here, we determined that the canonical Gata3 promoter is insufficient for Gata3 transcriptional activation in T cells in vivo, precluding the possibility that promoter binding by a host of previously implicated transcription factors alone is responsible for Gata3 expression in T cells. Instead, we demonstrated that multiple lineage-affiliated transcription factors bind to Tce1 and that this enhancer confers T lymphocyte-specific Gata3 activation in vivo, as targeted deletion of Tce1 in a mouse model abrogated critical functions of this T cell-regulatory element. Together, our data show that Tce1 is both necessary and sufficient for critical aspects of Gata3 T cell-specific transcriptional activity.
Collapse
|
40
|
CD69 is the crucial regulator of intestinal inflammation: a new target molecule for IBD treatment? J Immunol Res 2015; 2015:497056. [PMID: 25759842 PMCID: PMC4352431 DOI: 10.1155/2015/497056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 10/07/2014] [Indexed: 12/19/2022] Open
Abstract
CD69 has been identified as an early activation marker of lymphocytes. However, recent work has indicated that CD69 plays an essential role for the regulation of inflammatory processes. Particularly, CD69 is highly expressed by lymphocytes at mucosal sites being constantly exposed to the intestinal microflora (one of the nature's most complex and most densely populated microbial habitats) and food antigens, while only a small number of circulating leukocytes express this molecule. In this review we will discuss the role of CD69 in mucosal tissue and consider CD69 as a potential target for the development of novel treatments of intestinal inflammation.
Collapse
|
41
|
Concomitant analysis of Helios and Neuropilin-1 as a marker to detect thymic derived regulatory T cells in naïve mice. Sci Rep 2015; 5:7767. [PMID: 25586548 PMCID: PMC4293597 DOI: 10.1038/srep07767] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/16/2014] [Indexed: 02/05/2023] Open
Abstract
Regulatory T (Treg) cells are characterized by the expression of CD4, CD25 and the intracellular Foxp3. However, these markers do not indicate whether Treg cells are thymic derived Treg (tTreg) cells or peripherally induced Treg (pTreg) cells. Recently, Helios and Neuropilin-1 (Nrp1) has been reported as potential markers for tTreg cells. Herein, we used flow cytometry to examine the proportion of CD4(+)CD8(-)CD25(+) Treg cells expressing Helios, Nrp1 and Foxp3 in thymus, pancreatic draining lymph nodes (PDLNs) and spleen of CD-1 mice, and thymus of NOD and C57BL/6 mice. The frequency of Helios(+) cells was higher than that of Nrp1(+) cells in CD4(+)CD8(-)CD25(+) and CD4(+)CD8(-)CD25(+)Foxp3(+) Treg cells in thymus. Interestingly, the proportion of IL-10(+), Ebi3(+)and CTLA-4(+) cells was higher in Helios(+) than Nrp1(+) tTreg cells. The anti-apoptotic activity of Helios(+) tTreg cells was higher in thymus compared to Nrp1(+) tTreg cells. Nrp1 seems to be expressed at a later developmental stage compared to Helios and Foxp3. Furthermore, the expression of Nrp1 in CD4(+)CD25(+) T cells of younger mice did not increase after stimulating them in vitro with anti-CD3 and -CD28. Thus, under these conditions, Helios could be considered a more reliable marker for distinguishing tTreg cells from pTreg cells than Nrp1.
Collapse
|
42
|
Strauss V, Kolle SN, Honarvar N, Dammann M, Groeters S, Faulhammer F, Landsiedel R, van Ravenzwaay B. Immunophenotyping does not improve predictivity of the local lymph node assay in mice. J Appl Toxicol 2014; 35:434-45. [DOI: 10.1002/jat.3042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Volker Strauss
- BASF SE; Experimental Toxicology and Ecology; Z470 67056 Ludwigshafen Germany
| | - Susanne N. Kolle
- BASF SE; Experimental Toxicology and Ecology; Z470 67056 Ludwigshafen Germany
| | - Naveed Honarvar
- BASF SE; Experimental Toxicology and Ecology; Z470 67056 Ludwigshafen Germany
| | - Martina Dammann
- BASF SE; Experimental Toxicology and Ecology; Z470 67056 Ludwigshafen Germany
| | - Sibylle Groeters
- BASF SE; Experimental Toxicology and Ecology; Z470 67056 Ludwigshafen Germany
| | - Frank Faulhammer
- BASF SE; Product Safety, Regulatory Toxicology; Ludwigshafen Germany
| | - Robert Landsiedel
- BASF SE; Experimental Toxicology and Ecology; Z470 67056 Ludwigshafen Germany
| | | |
Collapse
|
43
|
Huang H, Tang Q, Chu H, Jiang J, Zhang H, Hao W, Wei X. MAP4K4 deletion inhibits proliferation and activation of CD4(+) T cell and promotes T regulatory cell generation in vitro. Cell Immunol 2014; 289:15-20. [PMID: 24681727 DOI: 10.1016/j.cellimm.2014.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
CD4(+) T cells are critical for adaptive immunity. MAP4K4 is a key member of germinal center kinase group. However, the physiological function of MAP4K4 in primary CD4(+) T cells is still unclear. In this study, it was demonstrated that in vitro, MAP4K4 deletion remarkably suppressed CD4(+) T cell proliferation in response to phorbol 12-myristate 13-acetate (PMA) and ionomycin, which was not due to enhancing cell apoptosis. Additionally, MAP4K4 was required for the activation of CD4(+) T cells. MAP4K4 deletion significantly down-regulated expression of interleukin 2 (IL-2) and interferon-γ (IFN-γ), while notably up-regulating the expression of regulatory T cells (Treg) transcription factor Foxp3 in peripheral CD4(+) T cells. Furthermore, western blot analysis indicated that CD4(+) T cells lacking MAP4K4 failed to phosphorylate Jnk, Erk, p38 and PKC-θ. Thus, our results provide the evidence that MAP4K4 is essential for CD4(+) T cell proliferation, activation and cytokine production.
Collapse
Affiliation(s)
- Hongpeng Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Qiuqiong Tang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Haizhou Zhang
- Roche R&D Center (China) Ltd., Shanghai 201203, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China.
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
44
|
Wang H, Zhang Z, Tian W, Liu T, Han H, Garcia B, Li XC, Du C. Memory T Cells Mediate Cardiac Allograft Vasculopathy and are Inactivated by Anti-OX40L Monoclonal Antibody. Cardiovasc Drugs Ther 2014; 28:115-22. [PMID: 24254032 PMCID: PMC4539019 DOI: 10.1007/s10557-013-6502-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Cardiac allograft vasculopathy (CAV) is a major complication limiting the long-term survival of cardiac transplants. The role of memory T cells (Tmem) in the pathogenesis of CAV remains elusive. This study investigated the role of Tmem cells in the development of CAV and the therapeutic potential of targeting the OX40/OX40L pathway for heart transplant survival. METHODS Tmem cells were generated in Rag-1(-/-) C57BL/6 (B6) mice by homeostatic proliferation (HP) of CD40L null CD3(+) T cells from B6 mice. Rag-1(-/-) B6 mice (H-2(b)) harboring Tmem cells received cardiac allografts from BALB/c mice (H-2(d)), and were either untreated or treated with anti-OX40L monoclonal antibody (mAb) (0.5 mg/mouse/day) for 10 days. RESULTS Six weeks after HP, the majority of transferred CD40L(-/-) T cells in Rag-1(-/-) B6 mice were differentiated to CD44(high) and CD62L(low) Tmem cells. BALB/c heart allografts in Rag-1(-/-) B6 recipient mice in the presence of these Tmem cells developed a typical pathological feature of CAV; intimal thickening, 100 days after transplantation. However, functionally blocking the OX40/OX40L pathway with anti-OX40L mAb significantly prevented CAV development and reduced the Tmem cell population in recipient mice. Anti-OX40L mAb therapy also significantly decreased cellular infiltration and cytokine (IFN-γ, TNF-α and TGF-β) expression in heart allografts. CONCLUSIONS Tmem cells mediate CAV in heart transplants. Functionally blocking the OX40/OX40L pathway using anti-OX40L mAb therapy prevents Tmem cell-mediated CAV, suggesting therapeutic potential for disrupting OX40-OX40L signaling in order to prevent CAV in heart transplant patients.
Collapse
Affiliation(s)
- Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin General Surgery Institute, Tianjin, China,
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Yin H, Kosa P, Liu X, Swaim WD, Lai Z, Cabrera-Perez J, Di Pasquale G, Ambudkar IS, Bugge TH, Chiorini JA. Matriptase deletion initiates a Sjögren's syndrome-like disease in mice. PLoS One 2014; 9:e82852. [PMID: 24551030 PMCID: PMC3923742 DOI: 10.1371/journal.pone.0082852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/28/2013] [Indexed: 11/24/2022] Open
Abstract
Objective The objective of this study was to determine the effect of epithelial barrier disruption, caused by deficiency of the membrane-anchored serine protease, matriptase, on salivary gland function and the induction of autoimmunity in an animal model. Methods Embryonic and acute ablation of matriptase expression in the salivary glands of mice was induced, leading to decreased epithelial barrier function. Mice were characterized for secretory epithelial function and the induction of autoimmunity including salivary and lacrimal gland dysfunction, lymphocytic infiltration, serum anti-Ro/SSA, anti-La/SSB and antinuclear antibodies. Salivary glands immune activation/regulation, barrier function as well as tight junction proteins expression also were determined. Expression of matriptase in minor salivary gland biopsies was compared among pSS patients and healthy volunteers. Results Embryonic ablation of matriptase expression in mice resulted in the loss of secretory epithelial cell function and the induction of autoimmunity similar to that observed in primary Sjögren’s syndrome. Phenotypic changes included exocrine gland dysfunction, lymphocytic infiltrates, production of Sjögren’s syndrome-specific autoantibodies, and overall activation of the immune system. Acute ablation of matriptase expression resulted in significant salivary gland dysfunction in the absence of overt immune activation. Analysis of the salivary glands indicates a loss of electrical potential across the epithelial layer as well as altered distribution of a tight junction protein. Moreover, a significant decrease in matriptase gene expression was detected in the minor salivary glands of pSS patients compared with healthy volunteers. Conclusions Our findings demonstrate that local impairment of epithelial barrier function can lead to loss of exocrine gland dysfunction in the absence of inflammation while systemic deletion can induce a primary Sjögren’s syndrome like phenotype with autoimmunity and loss of gland function.
Collapse
Affiliation(s)
- Hongen Yin
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAC); (HY)
| | - Peter Kosa
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Xibao Liu
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - William D. Swaim
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zhennan Lai
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Javier Cabrera-Perez
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Indu S. Ambudkar
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas H. Bugge
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAC); (HY)
| |
Collapse
|
46
|
Byun EH, Kim WS, Kim JS, Won CJ, Choi HG, Kim HJ, Cho SN, Lee K, Zhang T, Hur GM, Shin SJ. Mycobacterium paratuberculosis CobT activates dendritic cells via engagement of Toll-like receptor 4 resulting in Th1 cell expansion. J Biol Chem 2012; 287:38609-24. [PMID: 23019321 DOI: 10.1074/jbc.m112.391060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is the causative agent of Johne disease in animals and MAP involvement in human Crohn disease has been recently emphasized. Evidence from M. tuberculosis studies suggests mycobacterial proteins activate dendritic cells (DCs) via Toll-like receptor (TLR) 4, eventually determining the fate of immune responses. Here, we investigated whether MAP CobT contributes to the development of T cell immunity through the activation of DCs. MAP CobT recognizes TLR4, and induces DC maturation and activation via the MyD88 and TRIF signaling cascades, which are followed by MAP kinases and NF-κB. We further found that MAP CobT-treated DCs activated naive T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, but not IL-4 and IL-10, and induced T cell proliferation. These data indicate that MAP CobT contributes to T helper (Th) 1 polarization of the immune response. MAP CobT-treated DCs specifically induced the expansion of CD4(+)/CD8(+)CD44(high)CD62L(low) memory T cells in the mesenteric lymph node of MAP-infected mice in a TLR4-dependent manner. Our results indicate that MAP CobT is a novel DC maturation-inducing antigen that drives Th1 polarized-naive/memory T cell expansion in a TLR4-dependent cascade, suggesting that MAP CobT potentially links innate and adaptive immunity against MAP.
Collapse
Affiliation(s)
- Eui-Hong Byun
- Department of Microbiology and Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Vijayan A, Gómez CE, Espinosa DA, Goodman AG, Sanchez-Sampedro L, Sorzano COS, Zavala F, Esteban M. Adjuvant-like effect of vaccinia virus 14K protein: a case study with malaria vaccine based on the circumsporozoite protein. THE JOURNAL OF IMMUNOLOGY 2012; 188:6407-17. [PMID: 22615208 DOI: 10.4049/jimmunol.1102492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of subunit vaccines for malaria that elicit a strong, long-term memory response is an intensive area of research, with the focus on improving the immunogenicity of a circumsporozoite (CS) protein-based vaccine. In this study, we found that a chimeric protein, formed by fusing vaccinia virus protein 14K (A27) to the CS of Plasmodium yoelii, induces strong effector memory CD8(+) T cell responses in addition to high-affinity Abs when used as a priming agent in the absence of any adjuvant, followed by an attenuated vaccinia virus boost expressing CS in murine models. Moreover, priming with the chimeric protein improved the magnitude and polyfunctionality of cytokine-secreting CD8(+) T cells. This fusion protein formed oligomers/aggregates that led to activation of STAT-1 and IFN regulatory factor-3 in human macrophages, indicating a type I IFN response, resulting in NO, IL-12, and IL-6 induction. Furthermore, this vaccination regimen inhibited the liver stage development of the parasite, resulting in sterile protection. In summary, we propose a novel approach in designing CS based pre-erythrocytic vaccines against Plasmodium using the adjuvant-like effect of the immunogenic vaccinia virus protein 14K.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Departamento de Biología Celular y Molecular, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Byun EH, Kim WS, Kim JS, Jung ID, Park YM, Kim HJ, Cho SN, Shin SJ. Mycobacterium tuberculosis Rv0577, a novel TLR2 agonist, induces maturation of dendritic cells and drives Th1 immune response. FASEB J 2012; 26:2695-711. [PMID: 22415304 DOI: 10.1096/fj.11-199588] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis constitutes an ongoing threat to global health. An antigen that can induce dendritic cell (DC) maturation and lead to enhanced cellular immunity is crucial to the development of an effective TB vaccine. Here, we investigated the functional roles and the related signaling mechanism of the Rv0577 protein, a M. tuberculosis complex-restricted secreted protein involved in the methylglyoxal detoxification pathway. Rv0577 recognizes Toll-like receptor 2 (TLR2) and functionally induces DC maturation by augmenting the expression of cell surface molecules (CD80, CD86, and MHC class I and II) and proinflammatory cytokine production (TNF-α, IL-1β, IL-6, and IL-12p70) in DCs on MyD88-dependent signaling, mitogen-activated protein kinases, and nuclear factor κB signaling pathways. In addition, Rv0577-treated DCs activated naive T cells, effectively polarized CD4(+) and CD8(+) T cells to secrete IFN-γ and IL-2, and induced T-cell proliferation, indicating that this protein possibly contributes to Th1-polarization of the immune response. More important, unlike LPS, Rv0577-treated DCs specifically induced the proliferation of memory CD4(+)/CD8(+)CD44(high)CD62L(low) T cells in the spleen of M. tuberculosis-infected mice in a TLR2-dependent manner. Taken together, these findings suggest that Rv0577 may regulate innate and adaptive immunity by interacting with TLR2, a finding that could be helpful in the design of new TB vaccines.
Collapse
Affiliation(s)
- Eui-Hong Byun
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chan DV, Somani AK, Young AB, Massari JV, Ohtola J, Sugiyama H, Garaczi E, Babineau D, Cooper KD, McCormick TS. Signal peptide cleavage is essential for surface expression of a regulatory T cell surface protein, leucine rich repeat containing 32 (LRRC32). BMC BIOCHEMISTRY 2011; 12:27. [PMID: 21615933 PMCID: PMC3127830 DOI: 10.1186/1471-2091-12-27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 05/26/2011] [Indexed: 01/05/2023]
Abstract
BACKGROUND Elevated numbers of regulatory T cells (T(regs)) have been implicated in certain cancers. Depletion of T(regs) has been shown to increase anti-tumor immunity. T(regs) also play a critical role in the suppression of autoimmune responses. The study of T(regs) has been hampered by a lack of adequate surface markers. Leucine Rich Repeat Containing 32 (LRRC32), also known as Glycoprotein A Repetitions Predominant (GARP), has been postulated as a novel surface marker of activated T(regs). However, there is limited information regarding the processing of LRRC32 or the regulatory phenotype and functional activity of T(regs) expressing LRRC32. RESULTS Using naturally-occurring freshly isolated T(regs), we demonstrate that low levels of LRRC32 are present intracellularly prior to activation and that freshly isolated LRRC32+ T(regs) are distinct from LRRC32- T(regs) with respect to the expression of surface CD62L. Using LRRC32 transfectants of HEK cells, we demonstrate that the N-terminus of LRRC32 is cleaved prior to expression of the protein at the cell surface. Furthermore, we demonstrate using a construct containing a deleted putative signal peptide region that the presence of a signal peptide region is critical to cell surface expression of LRRC32. Finally, mixed lymphocyte assays demonstrate that LRRC32+ T(regs) are more potent suppressors than LRRC32- T(regs). CONCLUSIONS A cleaved signal peptide site in LRRC32 is necessary for surface localization of native LRRC32 following activation of naturally-occurring freshly-isolated regulatory T cells. LRRC32 expression appears to alter the surface expression of activation markers of T cells such as CD62L. LRRC32 surface expression may be useful as a marker that selects for more potent T(reg) populations. In summary, understanding the processing and expression of LRRC32 may provide insight into the mechanism of action of T(regs) and the refinement of immunotherapeutic strategies aimed at targeting these cells.
Collapse
Affiliation(s)
- Derek V Chan
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
- Current Address: Ohio State University Dermatology, 2012 Kenny Road, Columbus, OH, 43221, USA
| | - Ally-Khan Somani
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
- Current Address: Department of Dermatology, Indiana University School of Medicine, 550 N. University Blvd., Suite 3240, Indianapolis, IN, 46202, USA
| | - Andrew B Young
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Jessica V Massari
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Jennifer Ohtola
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Hideaki Sugiyama
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
- Department of Dermatology, University of Yamanashi, Yamanashi, Japan
| | - Edina Garaczi
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary
| | - Denise Babineau
- Statistical Sciences Core, Center For Clinical Investigation, Case Western Reserve University, Cleveland, OH, 44106 USA
| | - Kevin D Cooper
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
- VA Medical Center, Cleveland, OH, 44106 USA
| | - Thomas S McCormick
- Previous Address: Department of Dermatology, University Hospitals Case Medical Center and Case Western Reserve University, Cleveland, OH, 44106 USA
| |
Collapse
|
50
|
Abstract
Contact hypersensitivity (CHS) is a delayed-type hypersensitivity that can be induced by haptens, such as 2,4-dinitrofluorobenzene (DNFB). Innate and adaptive immunities are both important for the development of CHS. To treat CHS-related diseases, such as allergic contact dermatitis, a disease prevalent in industrialized countries, ways of interfering with improper immune function during CHS responses need to be identified. Transforming growth factor-β-activated kinase-1 (TAK1), a member of mitogen-activated protein kinase kinase kinase family, is important for both innate and adaptive immunities. We thus hypothesized that the CHS response could be inhibited by interfering with TAK1 activity. Using a mouse model in which TAK1 deletion can be locally induced, we observed that TAK deficiency led to an impaired CHS response and was associated with defective T-cell expansion, activation and interferon (IFN)-γ production. In addition, we investigated the effect of deleting TAK1 specifically in dendritic cells (DC) on the CHS response. We found that when TAK1 is deficient in DC, the CHS response was abolished and hapten-elicited T-cell responses were defective. Collectively, this study demonstrates an essential role of TAK1 in the induction of CHS and suggests that targeting TAK1 could be a viable approach to treat CHS.
Collapse
|