1
|
Szymula A, Samayoa-Reyes G, Ogolla S, Liu B, Li S, George A, Van Sciver N, Rochford R, Simas JP, Kaye KM. Macrophages drive KSHV B cell latency. Cell Rep 2023; 42:112767. [PMID: 37440412 PMCID: PMC10528218 DOI: 10.1016/j.celrep.2023.112767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/06/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) establishes lifelong infection and persists in latently infected B cells. Paradoxically, in vitro B cell infection is inefficient, and cells rapidly die, suggesting the absence of necessary factor(s). KSHV epidemiology unexpectedly mirrors that of malaria and certain helminthic infections, while other herpesviruses are ubiquitous. Elevated circulating monocytes are common in these parasitic infections. Here, we show that KSHV infection of monocytes or M-CSF-differentiated (M2) macrophages is highly efficient. Proteomic analyses demonstrate that infection induces macrophage production of B cell chemoattractants and activating factor. We find that KSHV acts with monocytes or M2 macrophages to stimulate B cell survival, proliferation, and plasmablast differentiation. Further, macrophages drive infected plasma cell differentiation and long-term viral latency. In Kenya, where KSHV is endemic, we find elevated monocyte levels in children with malaria. These findings demonstrate a role for mononuclear phagocytes in KSHV B cell latency and suggest that mononuclear phagocyte abundance may underlie KSHV's geographic disparity.
Collapse
Affiliation(s)
- Agnieszka Szymula
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Sidney Ogolla
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - Bing Liu
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Shijun Li
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Athira George
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA
| | - Rosemary Rochford
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu 40100, Kenya
| | - J Pedro Simas
- Instituto de Medicina Molecular, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal; Católica Biomedical Research, Católica Medical School, Universidade Católica Portuguesa, Palma de Cima, 1649-023 Lisboa, Portugal.
| | - Kenneth M Kaye
- Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Virology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Lytic Reactivation of the Kaposi’s Sarcoma-Associated Herpesvirus (KSHV) Is Accompanied by Major Nucleolar Alterations. Viruses 2022; 14:v14081720. [PMID: 36016343 PMCID: PMC9412354 DOI: 10.3390/v14081720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
The nucleolus is a subnuclear compartment whose primary function is the biogenesis of ribosomal subunits. Certain viral infections affect the morphology and composition of the nucleolar compartment and influence ribosomal RNA (rRNA) transcription and maturation. However, no description of nucleolar morphology and function during infection with Kaposi’s sarcoma-associated herpesvirus (KSHV) is available to date. Using immunofluorescence microscopy, we documented extensive destruction of the nuclear and nucleolar architecture during the lytic reactivation of KSHV. This was manifested by the redistribution of key nucleolar proteins, including the rRNA transcription factor UBF. Distinct delocalization patterns were evident; certain nucleolar proteins remained together whereas others dissociated, implying that nucleolar proteins undergo nonrandom programmed dispersion. Significantly, the redistribution of UBF was dependent on viral DNA replication or late viral gene expression. No significant changes in pre-rRNA levels and no accumulation of pre-rRNA intermediates were found by RT-qPCR and Northern blot analysis. Furthermore, fluorescent in situ hybridization (FISH), combined with immunofluorescence, revealed an overlap between Fibrillarin and internal transcribed spacer 1 (ITS1), which represents the primary product of the pre-rRNA, suggesting that the processing of rRNA proceeds during lytic reactivation. Finally, small changes in the levels of pseudouridylation (Ψ) and 2′-O-methylation (Nm) were documented across the rRNA; however, none were localized to the functional domain. Taken together, our results suggest that despite dramatic changes in the nucleolar organization, rRNA transcription and processing persist during lytic reactivation of KSHV. Whether the observed nucleolar alterations favor productive infection or signify cellular anti-viral responses remains to be determined.
Collapse
|
3
|
Hoffman D, Rodriguez W, Macveigh-Fierro D, Miles J, Muller M. The KSHV ORF20 Protein Interacts with the Viral Processivity Factor ORF59 and Promotes Viral Reactivation. Microbiol Spectr 2021; 9:e0014521. [PMID: 34106579 PMCID: PMC8552657 DOI: 10.1128/spectrum.00145-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022] Open
Abstract
Upon Kaposi's Sarcoma-associated herpesvirus (KSHV) lytic reactivation, rapid and widespread amplification of viral DNA (vDNA) triggers significant nuclear reorganization. As part of this striking shift in nuclear architecture, viral replication compartments are formed as sites of lytic vDNA production along with remarkable spatial remodeling and the relocalization of cellular and viral proteins. These viral replication compartments house several lytic gene products that coordinate viral gene expression, vDNA replication, and nucleocapsid assembly. The viral proteins and mechanisms that regulate this overhaul of the nuclear landscape during KSHV replication remain largely unknown. KSHV's ORF20 is a widely conserved lytic gene among all herpesviruses, suggesting it may have a fundamental contribution to the progression of herpesviral infection. Here, we utilized a promiscuous biotin ligase proximity labeling method to identify the proximal interactome of ORF20, which includes several replication-associated viral proteins, one of which is ORF59, the KSHV DNA processivity factor. Using coimmunoprecipitation and immunofluorescence assays, we confirmed the interaction between ORF20 and ORF59 and tracked the localization of both proteins to KSHV replication compartments. To further characterize the function of ORF20, we generated an ORF20-deficient KSHV and compared its replicative fitness to that of wild-type virus. Virion production was significantly diminished in the ORF20-deficient virus as observed by supernatant transfer assays. Additionally, we tied this defect in viable virion formation to a reduction in viral late gene expression. Lastly, we observed an overall reduction in vDNA replication in the ORF20-deficient virus, implying a key role for ORF20 in the regulation of lytic replication. Taken together, these results capture the essential role of KSHV ORF20 in progressing viral lytic infection by regulating vDNA replication alongside other crucial lytic proteins within KSHV replication compartments. IMPORTANCE Kaposi's Sarcoma-associated herpesvirus (KSHV) is a herpesvirus that induces lifelong infection, and as such, its lytic replication is carefully controlled to allow for efficient dissemination from its long-term reservoir and for the spread of the virus to new hosts. Viral DNA replication involves many host and viral proteins, coordinating both in time and space to successfully progress through the viral life cycle. Yet, this process is still not fully understood. We investigated the role of the poorly characterized viral protein ORF20, and through proximity labeling, we found that ORF20 interacts with ORF59 in replication compartments and affects DNA replication and subsequent steps of the late viral life cycle. Collectively, these results provide insights into the possible contribution of ORF20 to the complex lytic DNA replication process and suggest that this highly conserved protein may be an important modulator of this key viral mechanism.
Collapse
Affiliation(s)
- D. Hoffman
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - W. Rodriguez
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - D. Macveigh-Fierro
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - J. Miles
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - M. Muller
- Microbiology Department, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
The FAT10 post-translational modification is involved in the lytic replication of Kaposi's sarcoma-associated herpesvirus. J Virol 2021; 95:JVI.02194-20. [PMID: 33627385 PMCID: PMC8139669 DOI: 10.1128/jvi.02194-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During Kaposi's sarcoma-associated herpesvirus (KSHV) lytic replication, host cell functions including protein expression and post-translational modification pathways are dysregulated by KSHV to promote virus production. Here, we attempted to identify key proteins for KSHV lytic replication by profiling protein expression in the latent and lytic phases using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteomic analysis, immunoblotting, and quantitative PCR demonstrated that antigen-F (HLA-F) adjacent transcript 10 (FAT10) and UBE1L2 (also known as ubiquitin-like modifier-activating enzyme 6, UBA6) were upregulated during lytic replication. FAT10 is a ubiquitin-like protein (UBL). UBE1L2 is the FAT10-activating enzyme (E1), which is essential for FAT10 modification (FAT10ylation). FAT10ylated proteins were immediately expressed after lytic induction and increased over time during lytic replication. Knockout of UBE1L2 suppressed KSHV production but not KSHV DNA synthesis. In order to isolate FAT10ylated proteins during KSHV lytic replication, we conducted immunoprecipitations using anti-FAT10 antibody and Ni-NTA chromatography of exogenously expressed His-tagged FAT10 from cells undergoing latent or lytic replication. LC-MS/MS was performed to identify FAT10ylated proteins. We identified KSHV ORF59 and ORF61 as FAT10ylation substrates. Our study revealed that the UBE1L2-FAT10 system is upregulated during KSHV lytic replication, and it contributes to viral propagation.ImportanceUbiquitin and UBL post-translational modifications, including FAT10, are utilized and dysregulated by viruses for achievement of effective infection and virion production. The UBE1L2-FAT10 system catalyzes FAT10ylation, where one or more FAT10 molecules are covalently linked to a substrate. FAT10ylation is catalyzed by the sequential actions of E1 (activation enzyme), E2 (conjugation enzyme), and E3 (ligase) enzymes. The E1 enzyme for FAT10ylation is UBE1L2, which activates FAT10 and transfers it to E2/USE1. FAT10ylation regulates the cell cycle, IFN signaling, and protein degradation; however, its primary biological function remains unknown. Here, we revealed that KSHV lytic replication induces UBE1L2 expression and production of FAT10ylated proteins including KSHV lytic proteins. Moreover, UBE1L2 knockout suppressed virus production during the lytic cycle. This is the first report demonstrating the contribution of the UBE1L2-FAT10 system to KSHV lytic replication. Our findings provide insight into the physiological function(s) of novel post-translational modifications in KSHV lytic replication.
Collapse
|
5
|
Kaposi's Sarcoma-Associated Herpesvirus Deregulates Host Cellular Replication during Lytic Reactivation by Disrupting the MCM Complex through ORF59. J Virol 2018; 92:JVI.00739-18. [PMID: 30158293 DOI: 10.1128/jvi.00739-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022] Open
Abstract
Minichromosome maintenance proteins (MCMs) play an important role in DNA replication by binding to the origins as helicase and recruiting polymerases for DNA synthesis. During the S phase, MCM complex is loaded to limit DNA replication once per cell cycle. We identified MCMs as ORF59 binding partners in our protein pulldown assays, which led us to hypothesize that this interaction influences DNA replication. ORF59's interactions with MCMs were confirmed in both endogenous and overexpression systems, which showed its association with MCM3, MCM4, MCM5, and MCM6. Interestingly, MCM6 interacted with both the N- and C-terminal domains of ORF59, and its depletion in BCBL-1 and BC3 cells led to an increase in viral genome copies, viral late gene transcripts, and virion production compared to the control cells following reactivation. MCMs perform their function by loading onto the replication competent DNA, and one means of regulating chromatin loading/unloading, in addition to enzymatic activity of the MCM complex, is by posttranslational modifications, including phosphorylation of these factors. Interestingly, a hypophosphorylated form of MCM3, which is associated with reduced loading onto the chromatin, was detected during lytic reactivation and correlated with its inability to associate with histones in reactivated cells. Additionally, chromatin immunoprecipitation showed lower levels of MCM3 and MCM4 association at cellular origins of replication and decreased levels of cellular DNA synthesis in cells undergoing reactivation. Taken together, these findings suggest a mechanism in which KSHV ORF59 disrupts the assembly and functions of MCM complex to stall cellular DNA replication and promote viral replication.IMPORTANCE KSHV is the causative agent of various lethal malignancies affecting immunocompromised individuals. Both lytic and latent phases of the viral life cycle contribute to the progression of these cancers. A better understanding of how viral proteins disrupt functions of a normal healthy cell to cause oncogenesis is warranted. One crucial lytic protein produced early during lytic reactivation is the multifunctional ORF59. In this report, we elucidated an important role of ORF59 in manipulating the cellular environment conducive for viral DNA replication by deregulating the normal functions of the host MCM proteins. ORF59 binds to specific MCMs and sequesters them away from replication origins in order to sabotage cellular DNA replication. Blocking cellular DNA replication ensures that cellular resources are utilized for transcription and replication of viral DNA.
Collapse
|
6
|
Full-Length Isoforms of Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Accumulate in the Cytoplasm of Cells Undergoing the Lytic Cycle of Replication. J Virol 2017; 91:JVI.01532-17. [PMID: 28978712 DOI: 10.1128/jvi.01532-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/29/2017] [Indexed: 01/09/2023] Open
Abstract
The latency-associated nuclear antigen (LANA) of the Kaposi's sarcoma-associated herpesvirus (KSHV) performs a variety of functions to establish and maintain KSHV latency. During latency, LANA localizes to discrete punctate spots in the nucleus, where it tethers viral episomes to cellular chromatin and interacts with nuclear components to regulate cellular and viral gene expression. Using highly sensitive tyramide signal amplification, we determined that LANA localizes to the cytoplasm in different cell types undergoing the lytic cycle of replication after de novo primary infection and after spontaneous, tetradecanoyl phorbol acetate-, or open reading frame 50 (ORF50)/replication transactivator (RTA)-induced activation. We confirmed the presence of cytoplasmic LANA in a subset of cells in lytically active multicentric Castleman disease lesions. The induction of cellular migration by scratch-wounding confluent cell cultures, culturing under subconfluent conditions, or induction of cell differentiation in primary cultures upregulated the number of cells permissive for primary lytic KSHV infection. The induction of lytic replication was characterized by high-level expression of cytoplasmic LANA and nuclear ORF59, a marker of lytic replication. Subcellular fractionation studies revealed the presence of multiple isoforms of LANA in the cytoplasm of ORF50/RTA-activated Vero cells undergoing primary infection. Mass spectrometry analysis demonstrated that cytoplasmic LANA isoforms were full length, containing the N-terminal nuclear localization signal. These results suggest that trafficking of LANA to different subcellular locations is a regulated phenomenon, which allows LANA to interact with cellular components in different compartments during both the latent and the replicative stages of the KSHV life cycle.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) causes AIDS-related malignancies, including lymphomas and Kaposi's sarcoma. KSHV establishes lifelong infections using its latency-associated nuclear antigen (LANA). During latency, LANA localizes to the nucleus, where it connects viral and cellular DNA complexes and regulates gene expression, allowing the virus to maintain long-term infections. Our research shows that intact LANA traffics to the cytoplasm of cells undergoing permissive lytic infections and latently infected cells in which the virus is induced to replicate. This suggests that LANA plays important roles in the cytoplasm and nuclear compartments of the cell during different stages of the KSHV life cycle. Determining cytoplasmic function and mechanism for regulation of the nuclear localization of LANA will enhance our understanding of the biology of this virus, leading to therapeutic approaches to eliminate infection and block its pathological effects.
Collapse
|
7
|
Sztuba-Solinska J, Rausch JW, Smith R, Miller JT, Whitby D, Le Grice SFJ. Kaposi's sarcoma-associated herpesvirus polyadenylated nuclear RNA: a structural scaffold for nuclear, cytoplasmic and viral proteins. Nucleic Acids Res 2017; 45:6805-6821. [PMID: 28383682 PMCID: PMC5499733 DOI: 10.1093/nar/gkx241] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/30/2017] [Indexed: 01/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpes virus (KSHV) polyadenylated nuclear (PAN) RNA facilitates lytic infection, modulating the cellular immune response by interacting with viral and cellular proteins and DNA. Although a number nucleoprotein interactions involving PAN have been implicated, our understanding of binding partners and PAN RNA binding motifs remains incomplete. Herein, we used SHAPE-mutational profiling (SHAPE-MaP) to probe PAN in its nuclear, cytoplasmic or viral environments or following cell/virion lysis and removal of proteins. We thus characterized and put into context discrete RNA structural elements, including the cis-acting Mta responsive element and expression and nuclear retention element (1,2). By comparing mutational profiles in different biological contexts, we identified sites on PAN either protected from chemical modification by protein binding or characterized by a loss of structure. While some protein binding sites were selectively localized, others were occupied in all three biological contexts. Individual binding sites of select KSHV gene products on PAN RNA were also identified in in vitro experiments. This work constitutes the most extensive structural characterization of a viral lncRNA and interactions with its protein partners in discrete biological contexts, providing a broad framework for understanding the roles of PAN RNA in KSHV infection.
Collapse
Affiliation(s)
- Joanna Sztuba-Solinska
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason W Rausch
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rodman Smith
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jennifer T Miller
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Denise Whitby
- Viral Oncology Section, AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Stuart F J Le Grice
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
8
|
Strahan RC, McDowell-Sargent M, Uppal T, Purushothaman P, Verma SC. KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation. PLoS Pathog 2017; 13:e1006482. [PMID: 28678843 PMCID: PMC5513536 DOI: 10.1371/journal.ppat.1006482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 07/17/2017] [Accepted: 06/20/2017] [Indexed: 01/24/2023] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) persists in a highly-ordered chromatin structure inside latently infected cells with the majority of the viral genome having repressive marks. However, upon reactivation the viral chromatin landscape changes into 'open' chromatin through the involvement of lysine demethylases and methyltransferases. Besides methylation of lysine residues of histone H3, arginine methylation of histone H4 plays an important role in controlling the compactness of the chromatin. Symmetric methylation of histone H4 at arginine 3 (H4R3me2s) negatively affects the methylation of histone H3 at lysine 4 (H3K4me3), an active epigenetic mark deposited on the viral chromatin during reactivation. We identified a novel binding partner to KSHV viral DNA processivity factor, ORF59-a protein arginine methyl transferase 5 (PRMT5). PRMT5 is an arginine methyltransferase that dimethylates arginine 3 (R3) of histone H4 in a symmetric manner, one hallmark of condensed chromatin. Our ChIP-seq data of symmetrically methylated H4 arginine 3 showed a significant decrease in H4R3me2s on the viral genome of reactivated cells as compared to the latent cells. Reduction in arginine methylation correlated with the binding of ORF59 on the viral chromatin and disruption of PRMT5 from its adapter protein, COPR5 (cooperator of PRMT5). Binding of PRMT5 through COPR5 is important for symmetric methylation of H4R3 and the expression of ORF59 competitively reduces the association of PRMT5 with COPR5, leading to a reduction in PRMT5 mediated arginine methylation. This ultimately resulted in a reduced level of symmetrically methylated H4R3 and increased levels of H3K4me3 marks, contributing to the formation of an open chromatin for transcription and DNA replication. Depletion of PRMT5 levels led to a decrease in symmetric methylation and increase in viral gene transcription confirming the role of PRMT5 in viral reactivation. In conclusion, ORF59 modulates histone-modifying enzymes to alter the chromatin structure during lytic reactivation.
Collapse
Affiliation(s)
- Roxanne C. Strahan
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Maria McDowell-Sargent
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States of America
- * E-mail:
| |
Collapse
|
9
|
Quantitative Analysis of the KSHV Transcriptome Following Primary Infection of Blood and Lymphatic Endothelial Cells. Pathogens 2017; 6:pathogens6010011. [PMID: 28335496 PMCID: PMC5371899 DOI: 10.3390/pathogens6010011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
The transcriptome of the Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters. Similar patterns of KSHV expression were detected in BCBL-1 cells undergoing long-term latent infections and in primary latent infections of both BEC and LEC cultures. High expression levels of poly-adenylated nuclear (PAN) RNA and spliced and unspliced transcripts encoding the K12 Kaposin B/C complex and associated microRNA region were detected, with an elevated expression of a large set of lytic genes in all latently infected cultures. Quantitation of non-overlapping regions of transcripts across the complete KSHV genome enabled for the first time accurate evaluation of the KSHV transcriptome associated with viral latency in different cell types. Hierarchical clustering applied to a gene correlation matrix identified modules of co-regulated genes with similar correlation profiles, which corresponded with biological and functional similarities of the encoded gene products. Gene modules were differentially upregulated during latency in specific cell types indicating a role for cellular factors associated with differentiated and/or proliferative states of the host cell to influence viral gene expression.
Collapse
|
10
|
Nuclear Innate Immune DNA Sensor IFI16 Is Degraded during Lytic Reactivation of Kaposi's Sarcoma-Associated Herpesvirus (KSHV): Role of IFI16 in Maintenance of KSHV Latency. J Virol 2016; 90:8822-41. [PMID: 27466416 PMCID: PMC5021400 DOI: 10.1128/jvi.01003-16] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED IFI16 (interferon gamma-inducible protein 16) recognizes nuclear episomal herpesvirus (Kaposi's sarcoma-associated herpesvirus [KSHV], Epstein-Barr virus [EBV], and herpes simplex virus 1 [HSV-1]) genomes and induces the inflammasome and interferon beta responses. It also acts as a lytic replication restriction factor and inhibits viral DNA replication (human cytomegalovirus [HCMV] and human papillomavirus [HPV]) and transcription (HSV-1, HCMV, and HPV) through epigenetic modifications of the viral genomes. To date, the role of IFI16 in the biology of latent viruses is not known. Here, we demonstrate that knockdown of IFI16 in the latently KSHV-infected B-lymphoma BCBL-1 and BC-3 cell lines results in lytic reactivation and increases in levels of KSHV lytic transcripts, proteins, and viral genome replication. Similar results were also observed during KSHV lytic cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by the chemical agent 12-O-tetradecoylphorbol-13-acetate (TPA). IFI16 protein levels were significantly reduced or absent in TPA- or doxycycline-induced cells expressing lytic KSHV proteins. IFI16 is polyubiquitinated and degraded via the proteasomal pathway. The degradation of IFI16 was absent in phosphonoacetic acid-treated cells, which blocks KSHV DNA replication and, consequently, late lytic gene expression. Chromatin immunoprecipitation assays of BCBL-1 and BC-3 cells demonstrated that IFI16 binds to KSHV gene promoters. Uninfected epithelial SLK and osteosarcoma U2OS cells transfected with KSHV luciferase promoter constructs confirmed that IFI16 functions as a transcriptional repressor. These results reveal that KSHV utilizes the innate immune nuclear DNA sensor IFI16 to maintain its latency and repression of lytic transcripts, and a late lytic KSHV gene product(s) targets IFI16 for degradation during lytic reactivation. IMPORTANCE Like all herpesviruses, latency is an integral part of the life cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), an etiological agent for many human cancers. Herpesviruses utilize viral and host factors to successfully evade the host immune system to maintain latency. Reactivation is a complex event where the latent episomal viral genome springs back to active transcription of lytic cycle genes. Our studies reveal that KSHV has evolved to utilize the innate immune sensor IFI16 to keep lytic cycle transcription in dormancy. We demonstrate that IFI16 binds to the lytic gene promoter, acts as a transcriptional repressor, and thereby helps to maintain latency. We also discovered that during the late stage of lytic replication, KSHV selectively degrades IFI16, thus relieving transcriptional repression. This is the first report to demonstrate the role of IFI16 in latency maintenance of a herpesvirus, and further understanding will lead to the development of strategies to eliminate latent infection.
Collapse
|
11
|
Downregulation of Poly(ADP-Ribose) Polymerase 1 by a Viral Processivity Factor Facilitates Lytic Replication of Gammaherpesvirus. J Virol 2015; 89:9676-82. [PMID: 26157130 DOI: 10.1128/jvi.00559-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In Kaposi's sarcoma-associated herpesvirus (KSHV), poly(ADP-ribose) polymerase 1 (PARP-1) acts as an inhibitor of lytic replication. Here, we demonstrate that KSHV downregulated PARP-1 upon reactivation. The viral processivity factor of KSHV (PF-8) interacted with PARP-1 and was sufficient to degrade PARP-1 in a proteasome-dependent manner; this effect was conserved in murine gammaherpesvirus 68. PF-8 knockdown in KSHV-infected cells resulted in reduced lytic replication upon reactivation with increased levels of PARP-1, compared to those in control cells. PF-8 overexpression reduced the levels of the poly(ADP-ribosyl)ated (PARylated) replication and transcription activator (RTA) and further enhanced RTA-mediated transactivation. These results suggest a novel viral mechanism for overcoming the inhibitory effect of a host factor, PARP-1, thereby promoting the lytic replication of gammaherpesvirus. IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors and establish latency mainly in host B lymphocytes. Replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a central molecular switch for lytic replication, and its expression is tightly regulated by many host and viral factors. In this study, we investigated a viral strategy to overcome the inhibitory effect of poly(ADP-ribose) polymerase 1 (PARP-1) on RTA's activity. PARP-1, an abundant multifunctional nuclear protein, was downregulated during KSHV reactivation. The viral processivity factor of KSHV (PF-8) directly interacted with PARP-1 and was sufficient and necessary to degrade PARP-1 protein in a proteasome-dependent manner. PF-8 reduced the levels of PARylated RTA and further promoted RTA-mediated transactivation. As this was also conserved in another gammaherpesvirus, murine gammaherpesvirus 68, our results suggest a conserved viral modulation of a host inhibitory factor to facilitate its lytic replication.
Collapse
|
12
|
Transcriptome analysis of Kaposi's sarcoma-associated herpesvirus during de novo primary infection of human B and endothelial cells. J Virol 2014; 89:3093-111. [PMID: 25552714 DOI: 10.1128/jvi.02507-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infects many target cells (e.g., endothelial, epithelial, and B cells, keratinocytes, and monocytes) to establish lifelong latent infections. Viral latent-protein expression is critical in inducing and maintaining KSHV latency. Infected cells are programmed to retain the incoming viral genomes during primary infection. Immediately after infection, KSHV transcribes many lytic genes that modulate various cellular pathways to establish successful infection. Analysis of the virion particle showed that the virions contain viral mRNAs, microRNAs, and other noncoding RNAs that are transduced into the target cells during infection, but their biological functions are largely unknown. We performed a comprehensive analysis of the KSHV virion packaged transcripts and the profiles of viral genes transcribed after de novo infections of various cell types (human peripheral blood mononuclear cells [PBMCs], CD14(+) monocytes, and telomerase-immortalized vascular endothelial [TIVE] cells), from viral entry until latency establishment. A next-generation sequence analysis of the total transcriptome showed that several viral RNAs (polyadenylated nuclear RNA, open reading frame 58 [ORF58], ORF59, T0.7, and ORF17) were abundantly present in the KSHV virions and effectively transduced into the target cells. Analysis of the transcription profiles of each viral gene showed specific expression patterns in different cell lines, with the majority of the genes, other than latent genes, silencing after 24 h postinfection. We differentiated the actively transcribing genes from the virion-transduced transcripts using a nascent RNA capture approach (Click-iT chemistry), which identified transcription of a number of viral genes during primary infection. Treating the infected cells with phosphonoacetic acid (PAA) to block the activity of viral DNA polymerase confirmed the involvement of lytic DNA replication during primary infection. To further understand the role of DNA replication during primary infection, we performed de novo PBMC infections with a recombinant ORF59-deleted KSHV virus, which showed significantly reduced numbers of viral copies in the latently infected cells. In summary, the transduced KSHV RNAs as well as the actively transcribed genes control critical processes of early infection to establish KSHV latency. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of multiple human malignancies in immunocompromised individuals. KSHV establishes a lifelong latency in the infected host, during which only a limited number of viral genes are expressed. However, a fraction of latently infected cells undergo spontaneous reactivation to produce virions that infect the surrounding cells. These newly infected cells are primed early to retain the incoming viral genome and induce cell growth. KSHV transcribes a variety of lytic proteins during de novo infections that modulate various cellular pathways to establish the latent infection. Interestingly, a large number of viral proteins and RNA are encapsidated in the infectious virions and transduced into the infected cells during a de novo infection. This study determined the kinetics of the viral gene expression during de novo KSHV infections and the functional role of the incoming viral transcripts in establishing latency.
Collapse
|
13
|
PAN's Labyrinth: Molecular biology of Kaposi's sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long noncoding RNA. Viruses 2014; 6:4212-26. [PMID: 25375885 PMCID: PMC4246217 DOI: 10.3390/v6114212] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesivrus, the causative agent of Kaposi’s sarcoma and body cavity lymphomas. During infection KSHV produces a highly abundant long non-coding polyadenylated RNA that is retained in the nucleus known as PAN RNA. Long noncoding RNAs (lncRNA) are key regulators of gene expression and are known to interact with specific chromatin modification complexes, working in cis and trans to regulate gene expression. Data strongly supports a model where PAN RNA is a multifunctional regulatory transcript that controls KSHV gene expression by mediating the modification of chromatin by targeting the KSHV repressed genome.
Collapse
|
14
|
KSHV cell attachment sites revealed by ultra sensitive tyramide signal amplification (TSA) localize to membrane microdomains that are up-regulated on mitotic cells. Virology 2014; 452-453:75-85. [PMID: 24606685 DOI: 10.1016/j.virol.2014.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/28/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022]
Abstract
Cell surface structures initiating attachment of Kaposi's sarcoma-associated herpesvirus (KSHV) were characterized using purified hapten-labeled virions visualized by confocal microscopy with a sensitive fluorescent enhancement using tyramide signal amplification (TSA). KSHV attachment sites were present in specific cellular domains, including actin-based filopodia, lamellipodia, ruffled membranes, microvilli and intercellular junctions. Isolated microdomains were identified on the dorsal surface, which were heterogeneous in size with a variable distribution that depended on cellular confluence and cell cycle stage. KSHV binding domains ranged from scarce on interphase cells to dense and continuous on mitotic cells, and quantitation of bound virus revealed a significant increase on mitotic compared to interphase cells. KSHV also bound to a supranuclear domain that was distinct from microdomains in confluent and interphase cells. These results suggest that rearrangement of the cellular membrane during mitosis induces changes in cell surface receptors implicated in the initial attachment stage of KSHV entry.
Collapse
|
15
|
Rossetto CC, Susilarini NK, Pari GS. Interaction of Kaposi's sarcoma-associated herpesvirus ORF59 with oriLyt is dependent on binding with K-Rta. J Virol 2011; 85:3833-41. [PMID: 21289111 PMCID: PMC3126130 DOI: 10.1128/jvi.02361-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/27/2011] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) displays two distinct life stages, latency and lytic reactivation. Progression through the lytic cycle and replication of the viral genome constitute an essential step toward the production of infectious virus and human disease. KSHV K-RTA has been shown to be the major transactivator required for the initiation of lytic reactivation. In the transient-cotransfection replication assay, K-Rta is the only noncore protein required for DNA synthesis. K-Rta was shown to interact with both C/EBPα binding motifs and the R response elements (RRE) within oriLyt. It is postulated that K-Rta acts in part to facilitate the recruitment of replication factors to oriLyt. In order to define the role of K-Rta in the initiation of lytic DNA synthesis, we show an interaction with ORF59, the DNA polymerase processivity factor (PF), one of the eight virally encoded proteins necessary for origin-dependent DNA replication. Using the chromatin immunoprecipitation (ChIP) assay, both K-Rta and ORF59 interact with the RRE and C/EBPα binding motifs within oriLyt in cells harboring the KSHV bacterial artificial chromosome (BAC). A transient-transfection ChIP assay demonstrated that the interaction of ORF59 with oriLyt is dependent on binding with K-Rta and that ORF59 fails to bind to oriLyt in the absence of K-Rta. Also, using the cotransfection replication assay, overexpression of the interaction domain of K-Rta with ORF59 has a dominant negative effect on oriLyt amplification, suggesting that the interaction of K-Rta with ORF59 is essential for DNA synthesis and supporting the hypothesis that K-Rta facilitates the formation of a replication complex at oriLyt.
Collapse
Affiliation(s)
- Cyprian C. Rossetto
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| | - Ni Ketut Susilarini
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| | - Gregory S. Pari
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| |
Collapse
|
16
|
Bruce AG, Bakke AM, Gravett CA, DeMaster LK, Bielefeldt-Ohmann H, Burnside KL, Rose TM. The ORF59 DNA polymerase processivity factor homologs of Old World primate RV2 rhadinoviruses are highly conserved nuclear antigens expressed in differentiated epithelium in infected macaques. Virol J 2009; 6:205. [PMID: 19922662 PMCID: PMC2785786 DOI: 10.1186/1743-422x-6-205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 11/18/2009] [Indexed: 11/17/2022] Open
Abstract
Background ORF59 DNA polymerase processivity factor of the human rhadinovirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is required for efficient copying of the genome during virus replication. KSHV ORF59 is antigenic in the infected host and is used as a marker for virus activation and replication. Results We cloned, sequenced and expressed the genes encoding related ORF59 proteins from the RV1 rhadinovirus homologs of KSHV from chimpanzee (PtrRV1) and three species of macaques (RFHVMm, RFHVMn and RFHVMf), and have compared them with ORF59 proteins obtained from members of the more distantly-related RV2 rhadinovirus lineage infecting the same non-human primate species (PtrRV2, RRV, MneRV2, and MfaRV2, respectively). We found that ORF59 homologs of the RV1 and RV2 Old World primate rhadinoviruses are highly conserved with distinct phylogenetic clustering of the two rhadinovirus lineages. RV1 and RV2 ORF59 C-terminal domains exhibit a strong lineage-specific conservation. Rabbit antiserum was developed against a C-terminal polypeptide that is highly conserved between the macaque RV2 ORF59 sequences. This anti-serum showed strong reactivity towards ORF59 encoded by the macaque RV2 rhadinoviruses, RRV (rhesus) and MneRV2 (pig-tail), with no cross reaction to human or macaque RV1 ORF59 proteins. Using this antiserum and RT-qPCR, we determined that RRV ORF59 is expressed early after permissive infection of both rhesus primary fetal fibroblasts and African green monkey kidney epithelial cells (Vero) in vitro. RRV- and MneRV2-infected foci showed strong nuclear expression of ORF59 that correlated with production of infectious progeny virus. Immunohistochemical studies of an MneRV2-infected macaque revealed strong nuclear expression of ORF59 in infected cells within the differentiating layer of epidermis corroborating previous observations that differentiated epithelial cells are permissive for replication of KSHV-like rhadinoviruses. Conclusion The ORF59 DNA polymerase processivity factor homologs of the Old World primate RV1 and RV2 rhadinovirus lineages are phylogenetically distinct yet demonstrate similar expression and localization characteristics that correlate with their use as lineage-specific markers for permissive infection and virus replication. These studies will aid in the characterization of virus activation from latency to the replicative state, an important step for understanding the biology and transmission of rhadinoviruses, such as KSHV.
Collapse
Affiliation(s)
- A Gregory Bruce
- Center for Childhood Infection and Prematurity Research, Seattle Children's Research Institute, Seattle, WA 98101-1304, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
The crystal structure of PF-8, the DNA polymerase accessory subunit from Kaposi's sarcoma-associated herpesvirus. J Virol 2009; 83:12215-28. [PMID: 19759157 DOI: 10.1128/jvi.01158-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus is an emerging pathogen whose mechanism of replication is poorly understood. PF-8, the presumed processivity factor of Kaposi's sarcoma-associated herpesvirus DNA polymerase, acts in combination with the catalytic subunit, Pol-8, to synthesize viral DNA. We have solved the crystal structure of residues 1 to 304 of PF-8 at a resolution of 2.8 A. This structure reveals that each monomer of PF-8 shares a fold common to processivity factors. Like human cytomegalovirus UL44, PF-8 forms a head-to-head dimer in the form of a C clamp, with its concave face containing a number of basic residues that are predicted to be important for DNA binding. However, there are several differences with related proteins, especially in loops that extend from each monomer into the center of the C clamp and in the loops that connect the two subdomains of each protein, which may be important for determining PF-8's mode of binding to DNA and to Pol-8. Using the crystal structures of PF-8, the herpes simplex virus catalytic subunit, and RB69 bacteriophage DNA polymerase in complex with DNA and initial experiments testing the effects of inhibition of PF-8-stimulated DNA synthesis by peptides derived from Pol-8, we suggest a model for how PF-8 might form a ternary complex with Pol-8 and DNA. The structure and the model suggest interesting similarities and differences in how PF-8 functions relative to structurally similar proteins.
Collapse
|
18
|
Liu Y, Cao Y, Liang D, Gao Y, Xia T, Robertson ES, Lan K. Kaposi's sarcoma-associated herpesvirus RTA activates the processivity factor ORF59 through interaction with RBP-Jkappa and a cis-acting RTA responsive element. Virology 2008; 380:264-75. [PMID: 18786687 DOI: 10.1016/j.virol.2008.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 07/31/2008] [Accepted: 08/07/2008] [Indexed: 01/02/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) displays two life modes, latency and lytic reactivation in the infected host cells which are equally important for virus mediated pathogenesis. During latency only a small number of genes are expressed. Under specific conditions, KSHV can undergo lytic replication with the production of viral progeny. One immediate-early gene RTA, encoded by open reading frame 50 of KSHV, has been shown to play a critical role in switching the viral latency to lytic reactivation. Over-expression of RTA from a heterologous promoter is sufficient for driving KSHV lytic replication which results in production of viral progeny. In the present study, we show that RTA can activate the expression of the ORF59 which encodes the processivity factor essential for DNA replication during lytic reactivation. We also show that RTA regulates ORF59 promoter through interaction with RBP-Jkappa as well as a cis-acting RTA responsive element within the promoter. In the context of KSHV infected cells, the upregulation of ORF59 is a direct response to RTA expression. Taken together, our findings provide new evidence to explain the mechanism by which RTA can regulate its downstream gene ORF59, further increasing our understanding of the biology of KSHV lytic replication.
Collapse
Affiliation(s)
- Yunhua Liu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, 225 South Chongqing Road, Shanghai 200025, The People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Human herpesvirus 8 (HHV-8) is the etiological agent of Kaposi's sarcoma. We present a localization map of 85 HHV-8-encoded proteins in mammalian cells. Viral open reading frames were cloned with a Myc tag in expression plasmids, confirmed by full-length sequencing, and expressed in HeLa cells. Protein localizations were analyzed by immunofluorescence microscopy. Fifty-one percent of all proteins were localized in the cytoplasm, 22% were in the nucleus, and 27% were found in both compartments. Surprisingly, we detected viral FLIP (v-FLIP) in the nucleus and in the cytoplasm, whereas cellular FLIPs are generally localized exclusively in the cytoplasm. This suggested that v-FLIP may exert additional or alternative functions compared to cellular FLIPs. In addition, it has been shown recently that the K10 protein can bind to at least 15 different HHV-8 proteins. We noticed that K10 and only five of its 15 putative binding factors were localized in the nucleus when the proteins were expressed in HeLa cells individually. Interestingly, in coexpression experiments K10 colocalized with 87% (13 of 15) of its putative binding partners. Colocalization was induced by translocation of either K10 alone or both proteins. These results indicate active intracellular translocation processes in virus-infected cells. Specifically in this framework, the localization map may provide a useful reference to further elucidate the function of HHV-8-encoded genes in human diseases.
Collapse
|
20
|
Xie J, Ajibade AO, Ye F, Kuhne K, Gao SJ. Reactivation of Kaposi's sarcoma-associated herpesvirus from latency requires MEK/ERK, JNK and p38 multiple mitogen-activated protein kinase pathways. Virology 2007; 371:139-54. [PMID: 17964626 DOI: 10.1016/j.virol.2007.09.040] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 08/17/2007] [Accepted: 09/27/2007] [Indexed: 12/22/2022]
Abstract
Lytic replication of Kaposi's sarcoma-associated herpesvirus (KSHV) promotes the progression of Kaposi's sarcoma (KS), a dominant malignancy in patients with AIDS. While 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-induced KSHV reactivation from latency is mediated by the protein kinase C delta and MEK/ERK mitogen-activated protein kinase (MAPK) pathways, we have recently shown that the MEK/ERK, JNK and p38 MAPK pathways modulate KSHV lytic replication during productive primary infection of human umbilical vein endothelial cells [Pan, H., Xie, J., Ye, F., Gao, S.J., 2006. Modulation of Kaposi's sarcoma-associated herpesvirus infection and replication by MEK/ERK, JNK, and p38 multiple mitogen-activated protein kinase pathways during primary infection. J. Virol. 80 (11), 5371-5382]. Here, we report that, besides the MEK/ERK pathway, the JNK and p38 MAPK pathways also mediate TPA-induced KSHV reactivation from latency. The MEK/ERK, JNK and p38 MAPK pathways were constitutively activated in latent KSHV-infected BCBL-1 cells. TPA treatment enhanced the levels of activated ERK and p38 but not those of activated JNK. Inhibitors of all three MAPK pathways reduced TPA-induced production of KSHV infectious virions in BCBL-1 cells in a dose-dependent fashion. The inhibitors blocked KSHV lytic replication at the early stage(s) of reactivation, and reduced the expression of viral lytic genes including RTA, a key immediate-early transactivator of viral lytic replication. Activation of MAPK pathways was necessary and sufficient for activating the promoter of RTA. Furthermore, we showed that the activation of RTA promoter by MAPK pathways was mediated by their downstream target AP-1. Together, these findings suggest that MAPK pathways might have general roles in regulating the life cycle of KSHV by mediating both viral infection and switch from viral latency to lytic replication.
Collapse
Affiliation(s)
- Jianping Xie
- Tumor Virology Program, Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
21
|
Han Z, Swaminathan S. Kaposi's sarcoma-associated herpesvirus lytic gene ORF57 is essential for infectious virion production. J Virol 2007; 80:5251-60. [PMID: 16699005 PMCID: PMC1472138 DOI: 10.1128/jvi.02570-05] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ORF57 gene of Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a nuclear protein expressed during the lytic phase of KSHV replication. An ORF57 homolog is present in all known human herpesviruses and many animal herpesviruses. Many of these proteins have been demonstrated to have essential transcriptional and posttranscriptional regulatory functions. ORF57 enhances expression of reporter genes posttranscriptionally in vitro and may synergize with transcription factors to enhance gene transcription. However, the biologic role of ORF57 in KSHV replication has not been established. In this study, we demonstrate that ORF57 is essential for productive KSHV lytic replication by constructing a recombinant KSHV in which ORF57 expression has been specifically inactivated. The ORF57-null KSHV recombinant was unable to produce virion progeny or fully express several other lytic KSHV genes except when ORF57 was provided in trans. The Epstein-Barr virus (EBV) homolog of ORF57, SM, was unable to rescue lytic KSHV virion production, although EBV SM does enhance KSHV lytic gene expression from the ORF57-null mutant. Conversely, ORF57 did not rescue an SM-null recombinant EBV, indicating the existence of virus-specific functions for the ORF57 family of genes.
Collapse
Affiliation(s)
- Zhao Han
- Program in Cancer Genetics, Epigenetics and Tumor Virology, UF Shands Cancer Center, Box 100232, University of Florida, Gainesville, FL 32610-0232, USA
| | | |
Collapse
|
22
|
Gottwein E, Cai X, Cullen BR. A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol 2007; 80:5321-6. [PMID: 16699012 PMCID: PMC1472151 DOI: 10.1128/jvi.02734-05] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of approximately 22-nucleotide noncoding RNAs that inhibit the expression of specific target genes at the posttranscriptional level. Recently, 11 miRNAs encoded by the pathogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) were cloned from latently infected cells. While the expression of these miRNAs has been confirmed by Northern analysis, their ability to inhibit target gene expression has not been demonstrated. We have devised a novel assay for miRNA function that uses lentiviral indicator vectors carrying two perfectly complementary target sites for each given miRNA in the 3' untranslated region of the Renilla luciferase gene. This assay allowed us to demonstrate the activity of each viral miRNA upon cotransduction of cells with the Renilla luciferase indicator vector together with a firefly luciferase control vector. In KSHV-infected BC-1 and BCBL-1 cells, but not uninfected control cells, Renilla luciferase expression was selectively reduced up to 10-fold. Interestingly, one of the viral miRNAs (miR-K5) exhibited much higher activity in BC-1 cells than in BCBL-1 cells. Sequence analysis of both viral genomes revealed a single nucleotide polymorphism in the miR-K5 precursor stem-loop, which inhibits the expression of mature miR-K5 in BCBL-1 cells. We show that the primary miR-K5 sequence present in BCBL-1 results in diminished processing by Drosha both in vivo and in vitro. This is the first report of a naturally occurring sequence polymorphism in an miRNA precursor that results in reduced processing and therefore lower levels of mature miRNA expression and function.
Collapse
Affiliation(s)
- Eva Gottwein
- Department of Molecular Genetics and Microbiology, Box 3025, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
23
|
Kepler GM, Nguyen HK, Webster-Cyriaque J, Banks HT. A dynamic model for induced reactivation of latent virus. J Theor Biol 2007; 244:451-62. [PMID: 17045614 PMCID: PMC2075089 DOI: 10.1016/j.jtbi.2006.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Revised: 08/08/2006] [Accepted: 08/14/2006] [Indexed: 01/05/2023]
Abstract
We develop a deterministic mathematical model to describe reactivation of latent virus by chemical inducers. This model is applied to the reactivation of latent KSHV in BCBL-1 cell cultures with butyrate as the inducing agent. Parameters for the model are first estimated from known properties of the exponentially growing, uninduced cell cultures. Additional parameters that are necessary to describe induction are determined from fits to experimental data from the literature. Our initial model provides good agreement with two independent sets of experimental data, but also points to the need for a new class of experiments which are required for further understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- G M Kepler
- Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695-8205, USA.
| | | | | | | |
Collapse
|
24
|
Zeng Y, Zhang X, Huang Z, Cheng L, Yao S, Qin D, Chen X, Tang Q, Lv Z, Zhang L, Lu C. Intracellular Tat of human immunodeficiency virus type 1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus: role of JAK/STAT signaling. J Virol 2006; 81:2401-17. [PMID: 17151125 PMCID: PMC1865948 DOI: 10.1128/jvi.02024-06] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection significantly increases the risk of Kaposi's sarcoma (KS) occurrence in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV infection appears to be necessary but not sufficient for KS development without other cofactors. However, factors that facilitate KSHV to cause KS have not been well defined. Previously, we determined that human herpesvirus 6 was one of the cofactors that activated lytic cycle replication of KSHV. Here, we demonstrate that the Tat protein of HIV-1 is a potentially important factor in the pathogenesis of KS, as determined by production of lytic phase mRNA transcripts and viral proteins in BCBL-1 cells. Mechanistic studies showed ectopic expression of Tat induced the production of human interleukin-6 (huIL-6) and its receptor (huIL-6Ra) and activated STAT3 signaling. Neutralization of huIL-6 or huIL-6R or inhibition of STAT3 signaling enhanced the replication. In addition, IL-4/STAT6 signaling also partially contributed to Tat-induced KSHV replication. These findings suggest that Tat may participate in KS pathogenesis by inducing KSHV replication and increasing KSHV viral load. These data also suggest that JAK/STAT signaling may be of therapeutic value in AIDS-related KS patients.
Collapse
MESH Headings
- Animals
- Base Sequence
- Callithrix
- Cell Line
- DNA Primers/genetics
- Gene Expression
- Gene Products, tat/genetics
- Gene Products, tat/physiology
- Genes, tat
- HIV Infections/complications
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/physiology
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/pathogenicity
- Herpesvirus 8, Human/physiology
- Humans
- Interleukin-4/genetics
- Interleukin-6/genetics
- Janus Kinases/metabolism
- Mice
- NIH 3T3 Cells
- Receptors, Interleukin-6/genetics
- STAT Transcription Factors/metabolism
- STAT6 Transcription Factor/genetics
- Sarcoma, Kaposi/etiology
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/virology
- Signal Transduction
- Virus Replication/genetics
- Virus Replication/physiology
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Yi Zeng
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
Rhesus monkey rhadinovirus (RRV) is one of the closest phylogenetic relatives to the human pathogen Kaposi sarcoma-associated herpesvirus (KSHV)-a gamma-2 herpesvirus and the etiologic agent of three malignancies associated with immunosuppression. In contrast to KSHV, RRV displays robust lytic-phase growth in culture, replicating to high titer, and therefore holds promise as an effective model for studying primate gammaherpesvirus lytic gene transcription as well as virion structure, assembly, and proteomics. More recently, investigators have devised complementary latent systems of RRV infection, thereby also enabling the characterization of the more restricted latent transcriptional program. Another benefit of working with RRV as a primate gammaherpesvirus model is that its efficient lytic growth makes genetic manipulation easier than that in its human counterpart. Exploiting this quality, laboratories have already begun to generate mutant RRV, setting the stage for future work investigating the function of individual viral genes. Finally, rhesus macaques support experimental infection with RRV, providing a natural in vivo model of infection, while similar nonhuman systems have remained resistant to prolonged KSHV infection. Recently, dual infection with RRV and a strain of simian immunodeficiency virus (SIV) has led to a lymphoproliferative disorder (LPD) reminiscent of multicentric Castleman disease (MCD)--a clinical manifestation of KSHV infection in a subset of immunosuppressed patients. RRV, in short, shows a high degree of homology with KSHV yet is more amenable to experimental manipulation both in vitro and in vivo. Taken together, these qualities ensure its current position as one of the most relevant viral models of KSHV biology and infection.
Collapse
Affiliation(s)
- C M O'Connor
- Department of Microbiology, Division of Infectious Diseases and Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, VA 22901, USA
| | | |
Collapse
|
26
|
Abe Y, Matsubara D, Gatanaga H, Oka S, Kimura S, Sasao Y, Saitoh K, Fujii T, Sato Y, Sata T, Katano H. Distinct expression of Kaposi's sarcoma-associated herpesvirus-encoded proteins in Kaposi's sarcoma and multicentric Castleman's disease. Pathol Int 2006; 56:617-24. [PMID: 16984619 DOI: 10.1111/j.1440-1827.2006.02017.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The expression of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8)-encoded proteins is herein demonstrated in Kaposi's sarcoma (KS) and multicentric Castleman's disease (MCD) in a single lymph node derived from a patient with acquired immunodeficiency syndrome. Immunohistochemistry revealed that both lytic and latent KSHV proteins were expressed in cells of the MCD lesion. KSHV-encoded viral interleukin-6 was also detected in follicular dendritic cells of the germinal center. Cytoplasmic localization of open reading frame 59 protein and latency-associated nuclear antigen suggested KSHV activation in the MCD lesion. Moreover, a high copy number of KSHV was detected in the blood. Clinically, pegylated-liposomal doxorubicin induced regression of not only KS, but also lymphadenopathy of the MCD lesion with a decrease in KSHV load and human interleukin-6 in the blood. To the best of the authors' knowledge this is the first case demonstrating differential expression of virus proteins in two KSHV-associated diseases, KS and MCD, in the same section. The case confirms lytic KSHV infection in MCD, and suggests that clinical symptoms of MCD might be closely linked with KSHV activation.
Collapse
MESH Headings
- Adult
- Antigens, Viral/genetics
- Bone Marrow/metabolism
- Bone Marrow/pathology
- Castleman Disease/diagnosis
- Castleman Disease/genetics
- Castleman Disease/metabolism
- Castleman Disease/pathology
- DNA, Neoplasm/genetics
- DNA, Viral/genetics
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral/genetics
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/metabolism
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lymph Nodes/metabolism
- Lymph Nodes/pathology
- Male
- Nuclear Proteins/genetics
- Sarcoma, Kaposi/diagnosis
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
|
27
|
Krishnan HH, Sharma-Walia N, Zeng L, Gao SJ, Chandran B. Envelope glycoprotein gB of Kaposi's sarcoma-associated herpesvirus is essential for egress from infected cells. J Virol 2005; 79:10952-67. [PMID: 16103147 PMCID: PMC1193577 DOI: 10.1128/jvi.79.17.10952-10967.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) envelope glycoprotein gB interacts with cell surface heparan sulfate (HS) and alpha3beta1 integrin and plays roles in the initial binding and entry into the target cells and in the induction of preexisting host cell signal pathways. To define gB function further, using a bacterial artificial chromosome (BAC) system carrying the KSHV genome (BAC36wt-KSHV), we constructed a recombinant virus genome with the gB open reading frame (ORF) deleted by replacing a 2-kb gB ORF with a 1.3-kb Kan(r) gene. Stable 293T cells carrying BAC36wt-KSHV and DeltagBBAC36-KSHV genomes were generated. Transcript analyses and immunoprecipitation reactions confirmed the absence of gB in the 293T-DeltagBBAC36 cells. When monolayers of 293T-BAC36wt and 293T-DeltagBBAC36 cells were induced with tetradecanoylphorbol-13-acetate, infectious virus was detected only from the 293T-BAC36wt cell supernatants. No significant amount of DNase I-resistant viral DNA was detected in the supernatants of 293T-DeltagBBAC36 cells. BAC36wt-KSHV infected the target cells, and in contrast, no viral DNA and transcripts could be detected in cells infected with DeltagBBAC36-KSHV. Electron microscopy of 293T-DeltagBBAC36 cells revealed capsids in the nuclei, cytoplasmic vesicles with core-containing capsids, and occasional enveloped virions in the cytoplasm. However, enveloped virus particles were observed in the extracellular compartments of 293T-BAC36wt cells only and not in 293T-DeltagBBAC36 cells. Transfection of 293T-DeltagBBAC36 cells with plasmid expressing full-length gB restored the recovery of infectious KSHV in the supernatant. These results suggest that, besides its role in virus binding and entry into the target cells, KSHV gB also plays a role in the maturation and egress of virus from the infected cells.
Collapse
Affiliation(s)
- Harinivas H Krishnan
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
De novo infection of cultured cells with Kaposi's sarcoma-associated herpesvirus (KSHV) typically results in a latent infection. Recently, however, it has been reported that a subset of lytic mRNAs can be detected in cells shortly after KSHV infection; this expression is transient and eventually subsides, leading to latent infection (H. H. Krishnan et al., J. Virol 78:3601-3620, 2004). Since it has been shown that viral RNAs can be packaged into other herpesvirus virions, we sought to determine if KSHV virions contained RNAs and, if so, whether these RNAs contributed to the pool of lytic transcripts detected immediately after infection. Using DNA microarray, reverse transcription (RT)-PCR, and Northern blotting analyses, we identified 11 virally encoded RNAs in KSHV virions. These corresponded in size to the full-length mRNAs found in cytoplasmic RNA, and at least one was directly demonstrated to be translated upon infection in the presence of actinomycin D. Ten of these RNAs correspond to transcripts reported by Krishnan et al. at early times of infection, representing ca. 30% of such RNAs. Thus, import of RNAs in virions can account for some but not all of the early-appearing lytic transcripts. Quantitative RT-PCR analysis of infected-cell RNA demonstrated that most of the virion RNAs were very abundant at late times of infection, consistent with nonspecific incorporation during budding. However, the intracellular levels of one virion mRNA, encoding the viral protease, were much lower than those of transcripts not packaged in the virus particle, strongly suggesting that it may be incorporated by a specific mechanism.
Collapse
Affiliation(s)
- Jill Bechtel
- Howard Hughes Medical Institute and G. W. Hooper Foundation, University of California, San Francisco, CA 94143, USA.
| | | | | |
Collapse
|
29
|
Abstract
In 1994, Chang and Moore reported on the latest of the gammaherpesviruses to infect humans, human herpesvirus 8 (HHV-8) [1]. This novel herpesvirus has and continues to present challenges to define its scope of involvement in human disease. In this review, aspects of HHV-8 infection are discussed, such as, the human immune response, viral pathogenesis and transmission, viral disease entities, and the virus's epidemiology with an emphasis on HHV-8 diagnostics.
Collapse
Affiliation(s)
- Daniel C Edelman
- Department of Pathology, University of Maryland Baltimore, School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
30
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes latent infections in lymphocytes and endothelial cells, and latent infection is closely linked to tumorigenesis. As few viral markers are expressed during latency, compounds that can safely and efficiently increase lytic gene expression in vivo have been sought. We have found that the non-tumour-promoting phorbol ester prostratin and the proteasome inhibitor bortezomib induce immediate-early, early and late KSHV gene expression from two lymphoma cell lines in vitro. Their ability to induce lytic gene expression supports a role for phorbol-ester and proteasome-regulated signalling pathways in KSHV reactivation and prompts further investigation of prostratin and bortezomib as therapeutic agents for KSHV-associated malignancies.
Collapse
|
31
|
Dittmer DP, Gonzalez CM, Vahrson W, DeWire SM, Hines-Boykin R, Damania B. Whole-genome transcription profiling of rhesus monkey rhadinovirus. J Virol 2005; 79:8637-50. [PMID: 15956606 PMCID: PMC1143716 DOI: 10.1128/jvi.79.13.8637-8650.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2004] [Accepted: 02/21/2005] [Indexed: 11/20/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) and Kaposi's sarcoma-associated herpesvirus (KSHV; also called human herpesvirus 8) belong to the gamma-2 grouping of herpesviruses. RRV and KSHV share a high degree of sequence similarity, and their genomes are organized in a similar fashion. RRV serves as an excellent animal model system to study the gamma herpesvirus life cycle both in vitro and in vivo. We have developed a high-sensitivity, high-throughput, high-specificity real-time quantitative reverse transcriptase-based PCR assay for RRV and have used this assay to profile transcription from the whole RRV genome during de novo productive infection of rhesus fibroblasts. Using this assay, we demonstrate that the genome-wide transcription profile for RRV closely parallels the genome-wide transcription profile for KSHV.
Collapse
Affiliation(s)
- Dirk P Dittmer
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | |
Collapse
|
32
|
Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. Kaposi's sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 2005; 102:5570-5. [PMID: 15800047 PMCID: PMC556237 DOI: 10.1073/pnas.0408192102] [Citation(s) in RCA: 458] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are an endogenously encoded class of small RNAs that have been proposed to function as key posttranscriptional regulators of gene expression in a range of eukaryotic species, including humans. The small size of miRNA precursors makes them potentially ideal for use by viruses as inhibitors of host cell defense pathways. Here, we demonstrate that the pathogenic human herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) encodes an array of 11 distinct miRNAs, all of which are expressed at readily detectable levels in latently KSHV infected cells. Individual KSHV miRNAs were expressed at up to 2,200 copies per cell. The KSHV miRNAs are expressed from what appears to be a single genetic locus that largely coincides with an approximately 4-kb noncoding sequence located between the KSHV v-cyclin and K12/Kaposin genes, both of which are also expressed in latently infected cells. Computer analysis of potential mRNA targets for these viral miRNAs identified a number of interesting candidate genes, including several mRNAs previously shown to be down-regulated in KSHV-infected cells. We hypothesize that these viral miRNAs play a critical role in the establishment and/or maintenance of KSHV latent infection in vivo and, hence, in KSHV-induced oncogenesis.
Collapse
MESH Headings
- Base Sequence
- Blotting, Northern
- Cell Line
- Cloning, Molecular
- DNA, Complementary/genetics
- Gene Expression Regulation, Viral
- Gene Library
- Genes, Viral/genetics
- Genome, Viral
- Genomics
- Herpesvirus 8, Human/genetics
- MicroRNAs/chemistry
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Nucleic Acid Conformation
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Kaposi/virology
- Virus Latency/genetics
Collapse
Affiliation(s)
- Xuezhong Cai
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
33
|
Lu C, Zeng Y, Huang Z, Huang L, Qian C, Tang G, Qin D. Human herpesvirus 6 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:173-83. [PMID: 15632010 PMCID: PMC1602294 DOI: 10.1016/s0002-9440(10)62242-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/01/2004] [Indexed: 10/18/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) or human herpesvirus 8 (HHV-8) is a gamma-herpesvirus consistently identified in Kaposi's sarcoma (KS), primary effusion lymphoma, and multicentric Castleman's disease. KSHV infection appears to be necessary, but not be sufficient for development of KS without other co-factors. However, factors that facilitate KSHV to cause KS have not been well defined. Because patients with KS are often immunosuppressed and susceptible to many infectious agents including human herpesvirus 6 (HHV-6), we investigated the potential of HHV-6 to influence the replication of KSHV. By co-culturing HHV-6-infected T cells with KSHV-latent BCBL-1 cell line, infecting BCBL-1 cells with HHV-6 virions, and generating heterokaryons between HHV-6-infected T cells and BCBL-1 cells, we showed that HHV-6 played a critical role in induction of KSHV replication, as determined by production of lytic phase mRNA transcripts and viral proteins. We confirmed and extended the results by using a luciferase reporter assay in which KSHV ORF50 promoter, the first promoter activated during KSHV replication, drove the luciferase expression. Besides HHV-6, we also found that cytokines such as interferon-gamma partially contributed to induction of KSHV replication in the co-culture system. These findings suggest that HHV-6 may participate in KS pathogenesis by promoting KSHV replication and increasing KSHV viral load.
Collapse
Affiliation(s)
- Chun Lu
- Department of Microbiology and Immunology, Nanjing Medical University, Nanjing 210029, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
Krug LT, Pozharskaya VP, Yu Y, Inoue N, Offermann MK. Inhibition of infection and replication of human herpesvirus 8 in microvascular endothelial cells by alpha interferon and phosphonoformic acid. J Virol 2004; 78:8359-71. [PMID: 15254208 PMCID: PMC446096 DOI: 10.1128/jvi.78.15.8359-8371.2004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Infection of endothelial cells with human herpesvirus 8 (HHV-8) is an essential event in the development of Kaposi's sarcoma. When primary microvascular endothelial cells (MECs) were infected with HHV-8 at a low multiplicity of infection, considerable latent replication of HHV-8 occurred, leading to a time-dependent increase in the percentage of virus-infected cells that was accompanied by cellular spindling and growth to a high density with loss of contact inhibition. Only a low percentage of MECs supported lytic replication of HHV-8 and produced infectious virus. Phosphonoformic acid blocked production of infectious virus but did not inhibit the rapid expansion of latently infected MECs. Pretreatment of MECs with alpha interferon (IFN-alpha) prior to infection effectively reduced HHV-8 viral gene expression, latent replication, and production of infectious virus. High levels of the double-stranded RNA activated protein kinase (PKR) were expressed in HHV-8-infected cells, and incubation with IFN-alpha increased PKR expression more in virus-infected cells than in uninfected cells. MECs that were immortalized with simian virus 40 large-T antigen differed from nonimmortalized MECs in their response to infection with HHV-8 and demonstrated that cells with elevated levels of expression of antiviral transcripts expressed viral transcripts at reduced levels. These studies demonstrate that MECs respond to HHV-8 with enhanced expression of cellular antiviral genes and that augmentation of innate antiviral defenses with IFN-alpha is a more effective strategy than inhibition of viral lytic replication to protect MECs from infection with HHV-8 and to restrict proliferation of virus-infected MECs.
Collapse
Affiliation(s)
- Laurie T Krug
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
35
|
Vieira J, O'Hearn PM. Use of the red fluorescent protein as a marker of Kaposi's sarcoma-associated herpesvirus lytic gene expression. Virology 2004; 325:225-40. [PMID: 15246263 DOI: 10.1016/j.virol.2004.03.049] [Citation(s) in RCA: 270] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 03/16/2004] [Accepted: 03/24/2004] [Indexed: 10/26/2022]
Abstract
A hallmark of all herpesvirus is the ability to exist in either a latent, or lytic, state of replication, enabling the lifelong infection of its host. Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) can efficiently establish a latent infection in a variety of cell types in vitro, making it a valuable model for the study of latency and reactivation. To facilitate the identification of KSHV lytic replication, and allow subsequent experiments with live cells, a recombinant virus, rKSHV.219, was constructed using JSC-1 cells that expresses the red fluorescent protein (RFP) from the KSHV lytic PAN promoter, the green fluorescent protein (GFP) from the EF-1alpha promoter, and with the gene for puromycin resistance as a selectable marker. rKSHV.219 from JSC-1 cells was used to infect Vero cells for purification of the recombinant virus. Vero cells were also used for the production of rKSHV.219 at levels of 10(5)-10(6) infectious units (IU) of virus per milliliter using a combination of KSHV/RTA expressed from a baculovirus vector, BacK50, and butyrate. Virus produced from Vero cells was used to infect human fibroblasts (HF), 293, DU145, T24, HaCaT, and HEp-2 cells, and in all cells except 293 cells, only a latent infection was established with GFP expression, but no RFP expression. In 293 cells, 10-15% of cells showed lytic gene expression. Both primary and immortalized microvascular endothelial cells (MVEC) were also infected with rKSHV.219, and reduced spontaneous lytic replication was found in immortalized cells. In all cells used in this study, rKSHV.219 efficiently established latent infections from which the virus could be reactivated to productive lytic replication. This work also demonstrated strong synergy between KSHV/RTA and butyrate for the activation of KSHV lytic replication and the production of infectious virus.
Collapse
Affiliation(s)
- Jeffrey Vieira
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98109-8070, USA.
| | | |
Collapse
|
36
|
Pozharskaya VP, Weakland LL, Zimring JC, Krug LT, Unger ER, Neisch A, Joshi H, Inoue N, Offermann MK. Short duration of elevated vIRF-1 expression during lytic replication of human herpesvirus 8 limits its ability to block antiviral responses induced by alpha interferon in BCBL-1 cells. J Virol 2004; 78:6621-35. [PMID: 15163753 PMCID: PMC416518 DOI: 10.1128/jvi.78.12.6621-6635.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Human herpesvirus 8 (HHV-8) encodes multiple proteins that disrupt the host antiviral response, including viral interferon (IFN) regulatory factor 1 (vIRF-1). The product of the vIRF-1 gene blocks responses to IFN when overexpressed by transfection, but the functional consequence of vIRF-1 that is expressed during infection with HHV-8 is not known. These studies demonstrate that BCBL-1 cells that were latently infected with HHV-8 expressed low levels of vIRF-1 that were associated with PML bodies, whereas much higher levels of vIRF-1 were transiently expressed during the lytic phase of HHV-8 replication. The low levels of vIRF-1 that were associated with PML bodies were insufficient to block alpha IFN (IFN-alpha)-induced alterations in gene expression, whereas cells that expressed high levels of vIRF-1 were resistant to some changes induced by IFN-alpha, including the expression of the double-stranded-RNA-activated protein kinase. High levels of vIRF-1 were expressed for only a short period during the lytic cascade, so many cells with HHV-8 in the lytic phase responded to IFN-alpha with increased expression of antiviral genes and enhanced apoptosis. Furthermore, the production of infectious virus was severely compromised when IFN-alpha was present early during the lytic cascade. These studies indicate that the transient expression of high levels of vIRF-1 is inadequate to subvert many of the antiviral effects of IFN-alpha so that IFN-alpha can effectively induce apoptosis and block production of infectious virus when present early in the lytic cascade of HHV-8.
Collapse
Affiliation(s)
- Veronika P Pozharskaya
- Winship Cancer Institute, Emory University, 1365-B Clifton Road N.E., Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhu J, Trang P, Kim K, Zhou T, Deng H, Liu F. Effective inhibition of Rta expression and lytic replication of Kaposi's sarcoma-associated herpesvirus by human RNase P. Proc Natl Acad Sci U S A 2004; 101:9073-8. [PMID: 15184661 PMCID: PMC428475 DOI: 10.1073/pnas.0403164101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Indexed: 11/18/2022] Open
Abstract
Ribonuclease P (RNase P) complexed with external guide sequence (EGS) represents a nucleic acid-based gene interference approach to knock-down gene expression. Unlike other strategies, such as antisense oligonucleotides, ribozymes, and RNA interference, the RNase P-based technology is unique because a custom-designed EGS molecule can bind to any complementary mRNA sequence and recruit intracellular RNase P for specific degradation of the target mRNA. In this study, we demonstrate that the RNase P-based strategy is effective in blocking gene expression and growth of Kaposi's sarcoma (KS)-associated herpesvirus (KSHV), the causative agent of the leading AIDS-associated neoplasms, such as KS and primary-effusion lymphoma. We constructed 2'-O-methyl-modified EGS molecules that target the mRNA encoding KSHV immediate-early transcription activator Rta, and we administered them directly to human primary-effusion lymphoma cells infected with KSHV. A reduction of 90% in Rta expression and a reduction of approximately 150-fold in viral growth were observed in cells treated with a functional EGS. In contrast, a reduction of <10% in the Rta expression and viral growth was found in cells that were either not treated with an EGS or that were treated with a disabled EGS containing mutations that preclude recognition by RNase P. Our study provides direct evidence that EGSs are highly effective in inhibiting KSHV gene expression and growth. Exogenous administration of chemically modified EGSs in inducing RNase P-mediated cleavage represents an approach for inhibiting specific gene expression and for treating human diseases, including KSHV-associated tumors.
Collapse
Affiliation(s)
- Jiaming Zhu
- Program in Infectious Diseases, School of Public Health, 140 Warren Hall, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
38
|
DeWire SM, Money ES, Krall SP, Damania B. Rhesus monkey rhadinovirus (RRV): construction of a RRV-GFP recombinant virus and development of assays to assess viral replication. Virology 2003; 312:122-34. [PMID: 12890626 DOI: 10.1016/s0042-6822(03)00195-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Rhesus monkey rhadinovirus (RRV) is a gamma-2-herpesvirus that is closely related to Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). Lack of an efficient culture system to grow high titers of virus, and the lack of an in vivo animal model system, has hampered the study of KSHV replication and pathogenesis. RRV is capable of replicating to high titers on fibroblasts, thus facilitating the construction of recombinant rhadinoviruses. In addition, the ability to experimentally infect naïve rhesus macaques with RRV makes it an excellent model system to study gamma-herpesvirus replication. Our study describes, for the first time, the construction of a GFP-expressing RRV recombinant virus using a traditional homologous recombination strategy. We have also developed two new methods for determining viral titers of RRV including a traditional viral plaque assay and a quantitative real-time PCR assay. We have compared the replication of wild-type RRV with that of the RRV-GFP recombinant virus in one-step growth curves. We have also measured the sensitivity of RRV to a small panel of antiviral drugs. The development of both the recombination strategy and the viral quantitation assays for RRV will lay the foundation for future studies to evaluate the contribution of individual genes to viral replication both in vitro and in vivo.
Collapse
Affiliation(s)
- Scott M DeWire
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
39
|
Dourmishev LA, Dourmishev AL, Palmeri D, Schwartz RA, Lukac DM. Molecular genetics of Kaposi's sarcoma-associated herpesvirus (human herpesvirus-8) epidemiology and pathogenesis. Microbiol Mol Biol Rev 2003; 67:175-212, table of contents. [PMID: 12794189 PMCID: PMC156467 DOI: 10.1128/mmbr.67.2.175-212.2003] [Citation(s) in RCA: 245] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma had been recognized as unique human cancer for a century before it manifested as an AIDS-defining illness with a suspected infectious etiology. The discovery of Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, in 1994 by using representational difference analysis, a subtractive method previously employed for cloning differences in human genomic DNA, was a fitting harbinger for the powerful bioinformatic approaches since employed to understand its pathogenesis in KS. Indeed, the discovery of KSHV was rapidly followed by publication of its complete sequence, which revealed that the virus had coopted a wide armamentarium of human genes; in the short time since then, the functions of many of these viral gene variants in cell growth control, signaling apoptosis, angiogenesis, and immunomodulation have been characterized. This critical literature review explores the pathogenic potential of these genes within the framework of current knowledge of the basic herpesvirology of KSHV, including the relationships between viral genotypic variation and the four clinicoepidemiologic forms of Kaposi's sarcoma, current viral detection methods and their utility, primary infection by KSHV, tissue culture and animal models of latent- and lytic-cycle gene expression and pathogenesis, and viral reactivation from latency. Recent advances in models of de novo endothelial infection, microarray analyses of the host response to infection, receptor identification, and cloning of full-length, infectious KSHV genomic DNA promise to reveal key molecular mechanisms of the candidate pathogeneic genes when expressed in the context of viral infection.
Collapse
|
40
|
DeWire SM, McVoy MA, Damania B. Kinetics of expression of rhesus monkey rhadinovirus (RRV) and identification and characterization of a polycistronic transcript encoding the RRV Orf50/Rta, RRV R8, and R8.1 genes. J Virol 2002; 76:9819-31. [PMID: 12208960 PMCID: PMC136498 DOI: 10.1128/jvi.76.19.9819-9831.2002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Rhesus monkey rhadinovirus (RRV) is a close relative of Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8). RRV serves as an in vitro and an in vivo model for KSHV, and the mapping of its transcription program during lytic replication is significant since it represents de novo infection in the absence of stimulation with phorbol esters. Further, the RRV lytic system facilitates the making of recombinant viruses, and hence transcription profiling of the wild-type virus is important. Currently, the kinetics of lytic gene expression of RRV, the function of the RRV Orf50/Rta gene, and the presence of the RRV R8 and R8.1 genes are not known. This study details the transcription profile seen during RRV lytic replication and shows that RRV latency-associated nuclear antigen, viral FLIP (vFLIP), and vCyclin are transcribed during the RRV lytic phase. In addition, this study describes the identification of three new spliced products of the RRV Orf50, R8, and R8.1 genes, which are structural homologs of the KSHV Orf50, K8, and K8.1 genes, respectively. Characterization of the RRV Orf50 protein identifies it as a strong transcriptional transactivator capable of activating three early RRV promoters. Interestingly, the KSHV Orf50 transactivator can also activate these simian virus promoters, suggesting that there exists a conservation of gene function between the key transcription factors of KSHV and RRV.
Collapse
Affiliation(s)
- Scott M DeWire
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
41
|
Moses AV, Jarvis MA, Raggo C, Bell YC, Ruhl R, Luukkonen BGM, Griffith DJ, Wait CL, Druker BJ, Heinrich MC, Nelson JA, Früh K. Kaposi's sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol 2002; 76:8383-99. [PMID: 12134042 PMCID: PMC155158 DOI: 10.1128/jvi.76.16.8383-8399.2002] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Kaposi's sarcoma (KS), the most frequent malignancy afflicting AIDS patients, is characterized by spindle cell formation and vascularization. Infection with KS-associated herpesvirus (KSHV) is consistently observed in all forms of KS. Spindle cell formation can be replicated in vitro by infection of dermal microvascular endothelial cells (DMVEC) with KSHV. To study the molecular mechanism of this transformation, we compared RNA expression profiles of KSHV-infected and mock-infected DMVEC. Induction of several proto-oncogenes was observed, particularly the receptor tyrosine kinase c-kit. Consistent with increased c-Kit expression, KHSV-infected DMVEC displayed enhanced proliferation in response to the c-Kit ligand, stem cell factor (SCF). Inhibition of c-Kit activity with either a pharmacological inhibitor of c-Kit (STI 571) or a dominant-negative c-Kit protein reversed SCF-dependent proliferation. Importantly, inhibition of c-Kit signal transduction reversed the KSHV-induced morphological transformation of DMVEC. Furthermore, overexpression studies showed that c-Kit was sufficient to induce spindle cell formation. Together, these data demonstrate an essential role for c-Kit in KS tumorigenesis and reveal a target for pharmacological intervention.
Collapse
Affiliation(s)
- Ashlee V Moses
- Vaccine and Gene Therapy Institute, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Varthakavi V, Smith RM, Deng H, Sun R, Spearman P. Human immunodeficiency virus type-1 activates lytic cycle replication of Kaposi's sarcoma-associated herpesvirus through induction of KSHV Rta. Virology 2002; 297:270-80. [PMID: 12083825 DOI: 10.1006/viro.2002.1434] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) infection dramatically increases the risk of development of Kaposi's sarcoma (KS) in individuals infected with Kaposi's sarcoma-associated herpesvirus (KSHV). In a primary effusion lymphoma (PEL) tissue culture model system, HIV-1 replication potently induced the lytic replication of KSHV and led to the secretion of soluble factors capable of inducing lytic KSHV replication in bystander cells. Here we demonstrate that HIV induces KSHV lytic replication through activation of the KSHV Rta. HIV gene expression activated the KSHV Rta promoter following viral infection or after transfection of proviral DNA. Although HIV-1 Tat has previously been implicated as an activator of KSHV lytic replication, Tat alone was unable to activate lytic replication and failed to activate the Rta promoter. We conclude that HIV activates KSHV lytic replication by inducing the KSHV Rta promoter and that factors other than HIV-1 Tat are required to mediate this effect.
Collapse
Affiliation(s)
- Vasundhara Varthakavi
- Departments of Pediatrics and Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
43
|
Chang PJ, Shedd D, Gradoville L, Cho MS, Chen LW, Chang J, Miller G. Open reading frame 50 protein of Kaposi's sarcoma-associated herpesvirus directly activates the viral PAN and K12 genes by binding to related response elements. J Virol 2002; 76:3168-78. [PMID: 11884541 PMCID: PMC136055 DOI: 10.1128/jvi.76.7.3168-3178.2002] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Open reading frame (ORF) 50 protein is capable of activating the entire lytic cycle of Kaposi's sarcoma-associated herpesvirus (KSHV), but its mechanism of action is not well characterized. Here we demonstrate that ORF 50 protein activates two KSHV lytic cycle genes, PAN (polyadenylated nuclear RNA) and K12, by binding to closely related response elements located approximately 60 to 100 nucleotides (nt) upstream of the start of transcription of the two genes. The 25-nt sequence 5' AAATGGGTGGCTAACCTGTCCAAAA from the PAN promoter (PANp) confers a response to ORF 50 protein in both epithelial cells and B cells in the absence of other KSHV proteins. The responsive region of DNA can be transferred to a heterologous minimal promoter. Extensive point mutagenesis showed that a span of at least 20 nt is essential for a response to ORF 50 protein. However, a minimum of six positions within this region were ambiguous. The related 26-nt responsive element in the K12 promoter (K12p), 5' GGAAATGGGTGGCTAACCCCTACATA, shares 20 nt (underlined) with the comparable region of PANp. The divergence is primarily at the 3' end. The DNA binding domain of ORF 50 protein, encompassing amino acids 1 to 490, fused to a heterologous activation domain from herpes simplex virus VP16 [ORF 50(1-490)+VP] can mediate activation of reporter constructs bearing these response elements. Most importantly, ORF 50(1-490)+VP can induce PAN RNA and K12 transcripts in transfected cells. ORF 50(1-490)+VP expressed in human cells binds specifically to duplex oligonucleotides containing the responsive regions from PANp and K12p. These DNA-protein complexes were supershifted by antibody to VP16. ORF 50(1-490) without a VP16 tag also bound to the response element. There was a strong correlation between DNA binding by ORF 50 and transcriptional activation. Mutations within PANp and K12p that impaired transactivation by ORF 50 or ORF 50(1-490)+VP also abolished DNA binding. Only one of eight related complexes formed on PANp and K12p oligonucleotides was due to ORF 50(1-490)+VP. The other complexes were due to cellular proteins. Two KSHV lytic-cycle promoters are activated by a similar mechanism that involves direct recognition of a homologous response element by the DNA binding domain of ORF 50 protein in the context of related cellular proteins.
Collapse
Affiliation(s)
- Pey-Jium Chang
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Chiou CJ, Poole LJ, Kim PS, Ciufo DM, Cannon JS, ap Rhys CM, Alcendor DJ, Zong JC, Ambinder RF, Hayward GS. Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J Virol 2002; 76:3421-39. [PMID: 11884567 PMCID: PMC136009 DOI: 10.1128/jvi.76.7.3421-3439.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ORF74 or vGCR gene encoded by Kaposi's sarcoma-associated herpesvirus (KSHV; also called human herpesvirus 8) has properties of a ligand-independent membrane receptor signaling protein with angiogenic properties that is predicted to play a key role in the biology of the virus. We have examined the expression of vGCR mRNA and protein in primary effusion lymphoma (PEL) cell lines, PEL and multicentric Castleman's disease (MCD) tumors, Kaposi's sarcoma lesions and infected endothelial cell cultures. The vGCR gene proved to be expressed in PEL cell lines as a large spliced bicistronic mRNA of 3.2 kb that also encompasses the upstream vOX2 (K14) gene. This mRNA species was induced strongly by phorbol ester (TPA) and sodium butyrate treatment in the BCBL-1 cell line, but only weakly in the HBL6 cell line, and was classified as a relatively late and low-abundance delayed early class lytic cycle gene product. A complex bipartite upstream lytic cycle promoter for this mRNA was nestled within the intron of the 5'-overlapping but oppositely oriented latent-state transcription unit for LANA1/vCYC-D/vFLIP and responded strongly to both TPA induction and cotransfection with the KSHV RNA transactivator protein (RTA or ORF50) in transient reporter gene assays. A vGCR protein product of 45 kDa that readily dimerized was detected by Western blotting and in vitro translation and was localized in a cytoplasmic and membrane pattern in DNA-transfected Vero and 293T cells or adenovirus vGCR-transduced dermal microvascular endothelial cells (DMVEC) as detected by indirect immunofluorescence assay (IFA) and immunohistochemistry with a specific rabbit anti-vGCR antibody. Similarly, a subfraction of KSHV-positive cultured PEL cells and of KSHV (JSC-1) persistently infected DMVEC cells displayed cytoplasmic vGCR protein expression, but only after TPA or spontaneous lytic cycle induction, respectively. The vGCR protein was also detectable by immunohistochemical staining in a small fraction (0.5 to 3%) of the cells in PEL and MCD tumor and nodular Kaposi's sarcoma lesion specimens that were apparently undergoing lytic cycle expression. These properties are difficult to reconcile with the vGCR protein's playing a direct role in spindle cell proliferation, transformation, or latency, but could be compatible with proposed contributions to angiogenesis via downstream paracrine effects. The ability of vGCR to transactivate expression of both several KSHV promoter-driven luciferase (LUC) reporter genes and an NFkappaB motif containing the chloramphenicol acetyltransferase (CAT) reporter gene may also suggest an unexpected regulatory role in viral gene expression.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Cell Membrane/metabolism
- Cytoplasm/metabolism
- Gene Expression Regulation, Viral
- Herpesvirus 8, Human/metabolism
- Humans
- Immediate-Early Proteins/metabolism
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Tetradecanoylphorbol Acetate/pharmacology
- Trans-Activators/metabolism
- Transcription, Genetic
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Latency
Collapse
Affiliation(s)
- Chuang-Jiun Chiou
- Molecular Virology Laboratories, Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Coulter LJ, Reid HW. Isolation and expression of three open reading frames from ovine herpesvirus-2. J Gen Virol 2002; 83:533-543. [PMID: 11842248 DOI: 10.1099/0022-1317-83-3-533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ovine herpesvirus-2 (OvHV-2), a member of the gammaherpesviruses (genus Rhadinovirus), asymptomatically infects its natural host, the sheep, but causes malignant catarrhal fever (MCF) in susceptible hosts, such as cattle, deer and pigs. A permissive cell culture system for virus replication has not been identified but viral DNA is present within lymphoblastoid cell lines (LCLs) established from cases of MCF. During this study, a cDNA expression library generated from LCLs was screened with sheep sera and two cDNAs were isolated. One cDNA contained two open reading frames (ORFs) that show similarity to ORFs 58 and 59 of alcelaphine herpesvirus-1 (AlHV-1), a closely related gammaherpesvirus that also causes MCF. Both ORFs 58 and 59 are conserved throughout the gammaherpesviruses. ORF 58 is predicted to be a membrane protein, while ORF 59 has been shown to be an early lytic gene that functions as a DNA polymerase processivity factor. The second cDNA clone contained a partial ORF showing limited similarity to AlHV-1 ORF 73, a homologue of the latency-associated nuclear antigen of human herpesvirus-8, which is associated with latent infections. The full-length OvHV-2 ORF 73 was cloned subsequently by PCR. The ORFs isolated from the library were cloned into a bacterial expression vector and the recombinant proteins tested for their reactivity to sera from OvHV-2-infected animals. An ORF 59 fusion protein was recognized specifically by sera from OvHV-2-infected cattle and will be used to develop a sero-diagnostic test.
Collapse
Affiliation(s)
- Lesley J Coulter
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK1
| | - Hugh W Reid
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK1
| |
Collapse
|
46
|
Suda T, Katano H, Delsol G, Kakiuchi C, Nakamura T, Shiota M, Sata T, Higashihara M, Mori S. HHV-8 infection status of AIDS-unrelated and AIDS-associated multicentric Castleman's disease. Pathol Int 2001; 51:671-9. [PMID: 11696169 DOI: 10.1046/j.1440-1827.2001.01266.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multicentric Castleman's disease (MCD) is a clinicopathologically defined entity characterized by systemic lymphadenopathy with unique pathomorphology such as angiosclerosis, blood vessel proliferation in and around follicles, and plasmacytosis. While its pathogenesis has remained unclarified for many years, identification of the human herpesvirus 8 (HHV-8) in at least some MCD cases has opened new perspectives in this field. Because previous reports have described many inconsistencies regarding HHV-8 positivity in MCD, we intended to clarify this issue by the introduction of more convincing methodologies. For this investigation, we introduced two antibodies produced in our laboratories that recognize a latent gene product ORF73 and a lytic gene product ORF59, together with two well-recognized methods, in situ hybridization for the detection of lytic phase transcript T1.1/nut-1, and genomic polymerase chain reaction (PCR). Eighty-two cases of MCD were collected from Japan (n = 75) and France (n = 7). In three cases, the patients were suffering from acquired immunodeficiency syndrome (AIDS). Immunohistochemistry and in situ hybridization showed identical results: only three out of 82 cases were positively stained, and all the positive cases were found to be the patients with AIDS. Genomic PCR was done in 43 cases, and only one case produced positive results: the only AIDS case among the 43 cases studied by genomic PCR. Histopathologically, the HHV-8-positive cases showed the highest intensity of angiosclerosis and germinal center / perifollicular vascular proliferation, while plasmacytosis was not severe in the HHV-8-positive cases. Some of the HHV-8-negative MCD cases displayed similar histopathology, but at a far less intense level, except for the plasmacytosis. These results suggest that: (i) all three of the HHV-8-positive MCD patients in the present group are the patients with AIDS; and (ii) HHV-8-positive MCD patients develop typical but marked angiosclerosis and vascular proliferation that might be differentiated from HHV-8-negative MCD patients, who showed far less intense changes.
Collapse
Affiliation(s)
- T Suda
- Department of Pathology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nador RG, Milligan LL, Flore O, Wang X, Arvanitakis L, Knowles DM, Cesarman E. Expression of Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor monocistronic and bicistronic transcripts in primary effusion lymphomas. Virology 2001; 287:62-70. [PMID: 11504542 DOI: 10.1006/viro.2001.1016] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) encodes a G protein-coupled receptor (vGPCR) in open reading frame (ORF) 74, which is homologous to human chemokine receptors. KSHV vGPCR is constitutively active and induces VEGF-mediated angiogenesis. Previous studies have shown that ORF 74 is transcribed as part of a bicistronic message containing ORF K14 upstream of ORF 74, with an early lytic pattern of expression. We have now extended these studies by analyzing three different KSHV-positive primary effusion lymphoma (PEL) cell lines and three PEL clinical samples. In addition, we have identified another less abundant monocistronic transcript containing only ORF 74. Both transcripts were identified at low but similar levels in two PEL clinical samples. We evaluated the degree of sequence and functional conservation of ORF74 in three additional PELs and two KS clinical specimens, demonstrating complete identity at the amino acid level among all isolates. While it is expressed as an early lytic transcript in PEL cell lines, in primary clinical PEL samples transcription of KSHV vGPCR can be readily detected.
Collapse
Affiliation(s)
- R G Nador
- Department of Pathology, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Wang FZ, Akula SM, Pramod NP, Zeng L, Chandran B. Human herpesvirus 8 envelope glycoprotein K8.1A interaction with the target cells involves heparan sulfate. J Virol 2001; 75:7517-27. [PMID: 11462024 PMCID: PMC114987 DOI: 10.1128/jvi.75.16.7517-7527.2001] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus-8 (HHV-8) or Kaposi's sarcoma-associated herpesvirus K8.1 gene encodes for two immunogenic glycoproteins, gpK8.1A and gpK8.1B, originating from spliced messages. The 228-amino-acid (aa) gpK8.1A is the predominant form associated with the virion envelope, consisting of a 167-aa region identical to gpK8.1B and a 61-aa unique region (L. Zhu, V. Puri, and B. Chandran, Virology 262:237-249, 1999). HHV-8 has a broad in vivo and in vitro cellular tropism, and our studies showed that this may be in part due to HHV-8's interaction with the ubiquitous host cell surface molecule, heparan sulfate (HS). Since HHV-8 K8.1 gene is positionally colinear to the Epstein-Barr virus (EBV) gene encoding the gp350/gp220 protein involved in EBV binding to the target cells, gpK8.1A's ability to interact with the target cells was examined. The gpK8.1A without the transmembrane and carboxyl domains (DeltaTMgpK8.1A) was expressed in a baculovirus system and purified. Radiolabeled purified DeltaTMgpK8.1A protein bound to the target cells, which was blocked by unlabeled DeltaTMgpK8.1A. Unlabeled DeltaTMgpK8.1A blocked the binding of [(3)H]thymidine-labeled purified HHV-8 to the target cells. Binding of radiolabeled DeltaTMgpK8.1A to the target cells was inhibited in a dose-dependent manner by soluble heparin, a glycosaminoglycan (GAG) closely related to HS, but not by other GAGs such as chondroitin sulfate A and C, N-acetyl heparin and de-N-sulfated heparin. Cell surface absorbed DeltaTMgpK8.1A was displaced by soluble heparin. Radiolabeled DeltaTMgpK8.1A also bound to HS expressing Chinese hamster ovary (CHO-K1) cells, and binding to mutant CHO cell lines deficient in HS was significantly reduced. The DeltaTMgpK8.1A specifically bound to heparin-agarose beads, which was inhibited by HS and heparin, but not by other GAGs. Virion envelope-associated gpK8.1A was specifically precipitated by heparin-agarose beads. These findings suggest that gpK8.1A interaction with target cells involves cell surface HS-like moieties, and HHV-8 interaction with HS could be in part mediated by virion envelope-associated gpK8.1A.
Collapse
Affiliation(s)
- F Z Wang
- Department of Microbiology, Molecular Genetics, and Immunology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
49
|
Lagunoff M, Lukac DM, Ganem D. Immunoreceptor tyrosine-based activation motif-dependent signaling by Kaposi's sarcoma-associated herpesvirus K1 protein: effects on lytic viral replication. J Virol 2001; 75:5891-8. [PMID: 11390590 PMCID: PMC114304 DOI: 10.1128/jvi.75.13.5891-5898.2001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Kaposi's sarcoma-associated herpesvirus (KSHV) K1 gene encodes a polypeptide bearing an immunoreceptor tyrosine-based activation motif (ITAM) that is constitutively active for ITAM-based signal transduction. Although ectopic overexpression of K1 in cultured fibroblasts can lead to growth transformation, in vivo this gene is primarily expressed in lymphoid cells undergoing lytic infection. Here we have examined function of K1 in the setting of lytic replication, through the study of K1 mutants lacking functional ITAMs. Expression of such mutants in BJAB cells cotransfected with wild-type K1 results in dramatic inhibition of K1 signal transduction, as judged by impaired activation of Syk kinase and phospholipase C-gamma2 as well as by diminished expression of a luciferase reporter gene dependent upon K1-induced calcium and Ras signaling. Thus, the mutants behave as dominantly acting inhibitors of K1 function. To assess the role of K1 in lytic replication, we introduced these K1 mutants into BCBL-1 cells, a B-cell lymphoma line latently infected with KSHV, and induced lytic replication by ectopic expression of the KSHV ORF50 transactivator. Expression of lytic cycle genes was diminished up to 80% in the presence of a K1 dominant negative mutant. These inhibitory effects could be overridden by tetradecanoyl phorbol acetate treatment, indicating that inhibition was not due to irreversible cell injury and suggesting that other signaling events could bypass the block. We conclude that ITAM-dependent signaling by K1 is not absolutely required for lytic reactivation but functions to modestly augment lytic replication in B cells, the natural reservoir of KSHV.
Collapse
Affiliation(s)
- M Lagunoff
- Howard Hughes Medical Institute, Departments of Microbiology and Immunology and Medicine, University of California Medical Center, San Francisco, CA 94143-0414, USA
| | | | | |
Collapse
|
50
|
Ciufo DM, Cannon JS, Poole LJ, Wu FY, Murray P, Ambinder RF, Hayward GS. Spindle cell conversion by Kaposi's sarcoma-associated herpesvirus: formation of colonies and plaques with mixed lytic and latent gene expression in infected primary dermal microvascular endothelial cell cultures. J Virol 2001; 75:5614-26. [PMID: 11356969 PMCID: PMC114274 DOI: 10.1128/jvi.75.12.5614-5626.2001] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Angiogenic Kaposi's sarcoma (KS) skin lesions found in both AIDS and non-AIDS patients are universally associated with infection by the presumed causative agent, known as KS-associated herpesvirus (KSHV) or human herpesvirus 8. KSHV genomes expressing latent state virus-encoded mRNAs and the LANA1 (latent nuclear antigen 1) protein are consistently present in spindle-like tumor cells that are thought to be of endothelial cell origin. Although the KSHV lytic cycle can be induced in rare latently infected primary effusion lymphoma (PEL) cell lines, the ability to transmit or assay infectious KSHV has so far eluded investigators. Here, we demonstrate that infection with supernatant virions derived from three different tetradecanoyl phorbol acetate-induced PEL cell lines can induce cultured primary human dermal microvascular endothelial cells (DMVEC) to form colonies of proliferating latently infected spindle-shaped cells, all of which express the KSHV-encoded LANA1 protein. Although their initial infectivity varied widely (JSC1 > > BC3 > BCP1), virions from all three cell lines produced distinctive spindle cell colonies and plaques without affecting the contact-inhibited cobblestone-like phenotype of adjacent uninfected DMVEC. Each infected culture could also be expanded into a completely spindloid persistently infected culture displaying aggregated swirls of spindle cells resembling those in KS lesions. Formation of new colonies and plaques was inhibited in the presence of phosphonoacetic acid or gangciclovir, but these antiherpesvirus agents had little effect on the propagation of already latently infected spindloid cultures. In persistently infected secondary cultures, patches of up to 10% of the spindloid cells constitutively expressed several early viral lytic cycle proteins, and 1 to 2% of the cells also formed typical herpesvirus DNA replication compartments, displayed cytopathic rounding effects, and expressed late viral antigens. We conclude that de novo KSHV infection induces a spindle cell conversion phenotype in primary DMVEC cultures that is directly associated with latent state expression of the LANA1 protein. However, these cultures also spontaneously reactivate to produce an unusual combination of both latent and productive but slow lytic cycle infection. The formation of spindle cell colonies and plaques in DMVEC cultures provides for the first time a quantitative assay for directly measuring the infectivity of KSHV virion preparations.
Collapse
Affiliation(s)
- D M Ciufo
- Molecular Virology Program, Department of Oncology, The Johns Hopkins University School of Medicine Cancer Center, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | |
Collapse
|