1
|
Kite J, Hill M, Preston N, Rubina A, Kollnberger S, Wang ECY, Elliott G. Downregulation of endogenous nectin1 in human keratinocytes by herpes simplex virus 1 glycoprotein D excludes superinfection but does not affect NK cell function. J Gen Virol 2024; 105:001969. [PMID: 38471041 PMCID: PMC10950026 DOI: 10.1099/jgv.0.001969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many viruses downregulate their cognate receptors, facilitating virus replication and pathogenesis via processes that are not yet fully understood. In the case of herpes simplex virus 1 (HSV1), the receptor binding protein glycoprotein D (gD) has been implicated in downregulation of its receptor nectin1, but current understanding of the process is limited. Some studies suggest that gD on the incoming virion is sufficient to achieve nectin1 downregulation, but the virus-encoded E3 ubiquitin ligase ICP0 has also been implicated. Here we have used the physiologically relevant nTERT human keratinocyte cell type - which we have previously shown to express readily detectable levels of endogenous nectin1 - to conduct a detailed investigation of nectin1 expression during HSV1 infection. In these cells, nectin1, but not nectin2 or the transferrin receptor, disappeared from the cell surface in a process that required virus protein synthesis rather than incoming virus, but did not involve virus-induced host shutoff. Furthermore, gD was not only required but was sufficient for nectin1 depletion, indicating that no other virus proteins are essential. NK cells were shown to be activated in the presence of keratinocytes, a process that was greatly inhibited in cells infected with wild-type virus. However, degranulation of NK cells was also inhibited in ΔgD-infected cells, indicating that blocking of NK cell activation was independent of gD downregulation of nectin1. By contrast, a superinfection time-course revealed that the ability of HSV1 infection to block subsequent infection of a GFP-expressing HSV1 was dependent on gD and occurred in line with the timing of nectin1 downregulation. Thus, the role of gD-dependent nectin1 impairment during HSV infection is important for virus infection, but not immune evasion, which is achieved by other mechanisms.
Collapse
Affiliation(s)
- Joanne Kite
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Monica Hill
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Natasha Preston
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| | - Anzelika Rubina
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Simon Kollnberger
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Eddie Chung Yern Wang
- Division of Infection & Immunity, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK
| | - Gillian Elliott
- Section of Virology, Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
2
|
Liu Y, Zhang Q, Zou M, Cui J, Shi X, Li L, Wu F, Xu X. Cell entry of Bovine herpesvirus-1 through clathrin- and caveolin-mediated endocytosis requires activation of PI3K-Akt-NF-κB and Ras-p38 MAPK pathways as well as the interaction of BoHV-1 gD with cellular receptor nectin-1. Vet Microbiol 2023; 279:109672. [PMID: 36774841 DOI: 10.1016/j.vetmic.2023.109672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Bovine herpesvirus-1 (BoHV-1) can infect all breeds of cattle and cause severe respiratory organs and genital tract diseases. However, the mechanism of BoHV-1 entering the cells remains unclear. In this study, we explored the mechanism of BoHV-1 entering MDBK cells. We found that the entry of BoHV-1 was blocked by NH4Cl and bafilomycin A1, indicating that BoHV-1 entry is dependent on the acidic environment of endosome. Specific inhibitor dynasore and small interfering RNA (siRNA) knockdown of dynamin-2 inhibited BoHV-1 entry, showing that dynamin is required in BoHV-1 entry. The results of specific inhibitor, siRNA knockdown and co-localization indicating clathrin- and caveolin- mediated endocytosis play a role in BoHV-1 entry. BoHV-1 infection was not affected by EIPA which is a specific inhibitor of macropinocytosis. In addition, we found that BoHV-1 triggered PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways to induce clathrin-mediated and caveolin-mediated endocytosis at the early stage of BoHV-1 infection. BoHV-1 binding was sufficient to activate the endocytic signaling pathways and promote viral entry. These two signaling pathways were activated by transfection of viral gD protein, and were inhibited by deletion of viral gD protein and the siRNA knockdown of cellular receptor nectin-1. The results of co-localization indicating the entered BoHV-1 is traced to late endosomes via early endosomes. Our results suggested the interaction of viral gD protein and cellular receptor nectin-1 triggered the PI3K-Akt-NF-κB and Ras-p38 MAPK signaling pathways and induced clathrin-mediated and caveolin-mediated endocytosis to promote BoHV-1 entry into MDBK cells at the early stage of BoHV-1 infection.
Collapse
Affiliation(s)
- Yang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Qi Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Zou
- State Key Laboratory of Animal Genetical Engineered Vaccine of Ministry of Science and Technology, Qingdao YeBio Biological Engineering Company Limited, Qingdao, Shandong 266110, China
| | - Jin Cui
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China
| | - Xiaojie Shi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linjie Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Faxing Wu
- Key Laboratory of Animal Biosafety Risk Warning and Control of Ministry of Agriculture and Rural Affairs (South), China Animal Health And Epidemiology Center, Qingdao, Shandong 266032, China.
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Abstract
Superinfection exclusion (SIE) is a phenomenon in which a primary viral infection interferes with secondary viral infections within that same cell. Although SIE has been observed across many viruses, it has remained relatively understudied. A recently characterized glycoprotein D (gD)-independent SIE of alphaherpesviruses presents a novel mechanism of coinfection restriction for herpes simplex virus 1 (HSV-1) and pseudorabies virus (PRV). In this study, we evaluated the role of multiplicity of infection (MOI), receptor expression, and trafficking of virions to gain greater insight into potential mechanisms of alphaherpesvirus SIE. We observed that high-MOI secondary viral infections were able to overcome SIE in a manner that was independent of receptor availability. We next assessed virion localization during SIE through live microscopy of fluorescently labeled virions and capsid assemblies. Analysis of these fluorescent assemblies identified changes in the distribution of capsids during SIE. These results indicate that SIE during PRV infection inhibits viral entry or fusion while HSV-1 SIE inhibits infection through a postentry mechanism. Although the timing and phenotype of SIE are similar between alphaherpesviruses, the related viruses implement different mechanisms to restrict coinfection. IMPORTANCE Most viruses utilize a form of superinfection exclusion to conserve resources and control population dynamics. gD-dependent superinfection exclusion in alphaherpesviruses is well documented. However, the undercharacterized gD-independent SIE provides new insight into how alphaherpesviruses limit sequential infection. The observations described here demonstrate that gD-independent SIE differs between PRV and HSV-1. Comparing these differences provides new insights into the underlying mechanisms of SIE implemented by two related viruses.
Collapse
|
4
|
Spear PG. Opportunities, Technology, and the Joy of Discovery. Annu Rev Virol 2022; 9:1-17. [PMID: 35363539 DOI: 10.1146/annurev-virology-100520-012840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My grandparents were immigrants. My paternal grandfather was illiterate. Yet my parents were able to complete college and to become teachers. I had a conventional upbringing in a small town in Florida, graduating from high school in 1960. I was fortunate enough to graduate cum laude from Florida State University and to earn other credentials leading to faculty positions at outstanding institutions of higher education: the University of Chicago and Northwestern University. At a time when women were rarely the leaders of research groups, I was able to establish a well-funded research program and to make contributions to our understanding of viral entry into cells. My best research was done after I became confident enough to seek productive interactions with collaborators. I am grateful for the collaborators and collaborations that moved our field forward and for my trainees who have gone on to successes in many different careers. Expected final online publication date for the Annual Review of Virology, Volume 9 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Patricia G Spear
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
5
|
Traidl S, Roesner L, Zeitvogel J, Werfel T. Eczema herpeticum in atopic dermatitis. Allergy 2021; 76:3017-3027. [PMID: 33844308 DOI: 10.1111/all.14853] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases leading to pruritic skin lesions. A subset of AD patients exhibits a disseminated severe HSV infection called eczema herpeticum (EH) that can cause life-threatening complications. This review gives an overview of the clinical picture, and characteristics of the patients as well as the diagnosis and therapy of EH. A special focus lies on the pathophysiological hallmarks identified so far that predispose for EH. This aspect covers genetic aberrations, immunological changes, and environmental influences displaying a complex multifactorial situation, which is not completely understood. Type 2 skewing of virus-specific T cells in ADEH+ patients has been implicated in immune profile abnormalities, along with impaired functions of dendritic cells and natural killer cells. Furthermore, aberrations in interferon pathway-related genes such as IFNG and IFNGR1 have been identified to increase the risk of EH. IL-4, IL-25, and thymic stromal lymphopoietin (TSLP) are overexpressed in EH, whereas antimicrobial peptides like human β-defensins and LL-37 are reduced. Concerning the epidermal barrier, single nucleotide polymorphisms (SNPs) in skin barrier proteins such as filaggrin were identified in ADEH+ patients. A dysbalance of the skin microbiome also contributes to EH due to an increase of Staphylococcus aureus, which provides a supporting role to the viral infection via secreted toxins such as α-toxin. The risk of EH is reduced in AD patients treated with dupilumab. Further research is needed to identify and specifically target risk factors for EH in AD patients.
Collapse
Affiliation(s)
- Stephan Traidl
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Lennart Roesner
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Jana Zeitvogel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| | - Thomas Werfel
- Division of Immunodermatology and Allergy Research Department of Dermatology and Allergy Hannover Medical School Hannover Germany
- Cluster of Excellence RESIST (EXC 2155) Hannover Medical School Hannover Germany
| |
Collapse
|
6
|
Herr AE, Hain KS, Taylor MP. Limitations on the Multiplicity of Cellular Infection During Human Alphaherpesvirus Disease. CURRENT CLINICAL MICROBIOLOGY REPORTS 2017. [DOI: 10.1007/s40588-017-0071-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Atanasiu D, Saw WT, Eisenberg RJ, Cohen GH. Regulation of Herpes Simplex Virus Glycoprotein-Induced Cascade of Events Governing Cell-Cell Fusion. J Virol 2016; 90:10535-10544. [PMID: 27630245 PMCID: PMC5110162 DOI: 10.1128/jvi.01501-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Receptor-dependent herpes simplex virus (HSV)-induced cell-cell fusion requires glycoproteins gD, gH/gL, and gB. Our current model posits that during fusion, receptor-activated conformational changes in gD activate gH/gL, which subsequently triggers the transformation of the prefusion form of gB into a fusogenic state. To examine the role of each glycoprotein in receptor-dependent cell-cell fusion, we took advantage of our discovery that fusion by wild-type herpes simplex virus 2 (HSV-2) glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we established that fusion speed was governed by gH/gL, with gH being the main contributor. While the mutant forms of gB fuse at distinct rates that are dictated by their molecular structure, these restrictions can be overcome by gH/gL of HSV-2 (gH2/gL2), thereby enhancing their activity. We also found that deregulated forms of gD of HSV-1 (gD1) and gH2/gL2 can alter the fusogenic potential of gB, promoting cell fusion in the absence of a cellular receptor, and that deregulated forms of gB can drive the fusion machinery to even higher levels. Low pH enhanced fusion by affecting the structure of both gB and gH/gL mutants. Together, our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion. IMPORTANCE Cell-cell fusion mediated by HSV glycoproteins requires gD, gH/gL, gB, and a gD receptor. Here, we show that fusion by wild-type HSV-2 glycoproteins occurs twice as fast as that achieved by HSV-1 glycoproteins. By sequentially swapping each glycoprotein between the two serotypes, we found that the fusion process was controlled by gH/gL. Restrictions imposed on the gB structure by mutations could be overcome by gH2/gL2, enhancing the activity of the mutants. Under low-pH conditions or when using deregulated forms of gD1 and gH2/gL2, the fusogenic potential of gB could only be increased in the absence of receptor, underlining the exquisite regulation that occurs in the presence of receptor. Our data highlight the complexity of the fusion machinery, the impact of the activation state of each glycoprotein on the fusion process, and the critical role of gH/gL in regulating HSV-induced fusion.
Collapse
Affiliation(s)
- Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
B Virus (Macacine Herpesvirus 1) Divergence: Variations in Glycoprotein D from Clinical and Laboratory Isolates Diversify Virus Entry Strategies. J Virol 2016; 90:9420-32. [PMID: 27512063 DOI: 10.1128/jvi.00799-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/03/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED B virus (Macacine herpesvirus 1) can cause deadly zoonotic disease in humans. Molecular mechanisms of B virus cell entry are poorly understood for both macaques and humans. Here we investigated the abilities of clinical B virus isolates to use entry receptors of herpes simplex viruses (HSV). We showed that resistant B78H1 cells became susceptible to B virus clinical strains upon expression of either human nectin-2 or nectin-1. Antibody against glycoprotein D (gD) protected these nectin-bearing cells from B virus infection, and a gD-negative recombinant B virus failed to enter these cells, indicating that the nectin-mediated B virus entry depends on gD. We observed that the infectivity of B virus isolates with a single amino acid substitution (D122N) in the IgV-core of the gD ectodomain was impaired on nectin-1-bearing cells. Computational homology-based modeling of the B virus gD-nectin-1 complex revealed conformational differences between the structures of the gD-122N and gD-122D variants that affected the gD-nectin-1 protein-protein interface and binding affinity. Unlike HSV, B virus clinical strains were unable to use herpesvirus entry mediator (HVEM) as a receptor, regardless of conservation of the gD amino acid residues essential for HSV-1 entry via HVEM. Based on the model of the B virus gD-HVEM interface, we predict that residues R7, R11, and G15 are largely responsible for the inability of B virus to utilize HVEM for entry. The ability of B virus to enter cells of a human host by using a combination of receptors distinct from those for HSV-1 or HSV-2 suggests a possible mechanism of enhanced neuropathogenicity associated with zoonotic infections. IMPORTANCE B virus causes brainstem destruction in infected humans in the absence of timely diagnosis and intervention. Nectins are cell adhesion molecules that are widely expressed in human tissues, including neurons and neuronal synapses. Here we report that human nectin-2 is a target receptor for B virus entry, in addition to the reported receptor human nectin-1. Similar to a B virus lab strain, B virus clinical strains can effectively use both nectin-1 and nectin-2 as cellular receptors for entry into human cells, but unlike HSV-1 and HSV-2, none of the clinical strains uses an HVEM-mediated entry pathway. Ultimately, these differences between B virus and HSV-1 and -2 may provide insight into the neuropathogenicity of B virus during zoonotic infections.
Collapse
|
9
|
Griffithsin and Carrageenan Combination To Target Herpes Simplex Virus 2 and Human Papillomavirus. Antimicrob Agents Chemother 2015; 59:7290-8. [PMID: 26369967 PMCID: PMC4649164 DOI: 10.1128/aac.01816-15] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022] Open
Abstract
Extensive preclinical evaluation of griffithsin (GRFT) has identified this lectin to be a promising broad-spectrum microbicide. We set out to explore the antiviral properties of a GRFT and carrageenan (CG) combination product against herpes simplex virus 2 (HSV-2) and human papillomavirus (HPV) as well as determine the mechanism of action (MOA) of GRFT against both viruses. We performed the experiments in different cell lines, using time-of-addition and temperature dependence experiments to differentiate inhibition of viral attachment from entry and viral receptor internalization. Surface plasmon resonance (SPR) was used to assess GRFT binding to viral glycoproteins, and immunoprecipitation and immunohistochemistry were used to identify the specific glycoprotein involved. We determined the antiviral activity of GRFT against HSV-2 to be a 50% effective concentration (EC50) of 230 nM and provide the first evidence that GRFT has moderate anti-HPV activity (EC50 = 0.429 to 1.39 μM). GRFT blocks the entry of HSV-2 and HPV into target cells but not the adsorption of HSV-2 and HPV onto target cells. The results of the SPR, immunoprecipitation, and immunohistochemistry analyses of HSV-2 combined suggest that GRFT may block viral entry by binding to HSV-2 glycoprotein D. Cell-based assays suggest anti-HPV activity through α6 integrin internalization. The GRFT-CG combination product but not GRFT or CG alone reduced HSV-2 vaginal infection in mice when given an hour before challenge (P = 0.0352). While GRFT significantly protected mice against vaginal HPV infection when dosed during and after HPV16 pseudovirus challenge (P < 0.026), greater CG-mediated protection was afforded by the GRFT-CG combination for up to 8 h (P < 0.0022). These findings support the development of the GRFT-CG combination as a broad-spectrum microbicide.
Collapse
|
10
|
Saw WT, Matsuda Z, Eisenberg RJ, Cohen GH, Atanasiu D. Using a split luciferase assay (SLA) to measure the kinetics of cell-cell fusion mediated by herpes simplex virus glycoproteins. Methods 2015; 90:68-75. [PMID: 26022509 DOI: 10.1016/j.ymeth.2015.05.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/20/2015] [Accepted: 05/22/2015] [Indexed: 02/08/2023] Open
Abstract
Herpes simplex virus (HSV) entry and cell-cell fusion require the envelope proteins gD, gH/gL and gB. We propose that receptor-activated conformational changes to gD activate gH/gL, which then triggers gB (the fusogen) into an active form. To study this dynamic process, we have adapted a dual split protein assay originally developed to study the kinetics of human immunodeficiency virus (HIV) mediated fusion. This assay uses a chimera of split forms of renilla luciferase (RL) and green fluorescent protein (GFP). Effector cells are co-transfected with the glycoproteins and one of the split reporters. Receptor-bearing target cells are transfected with the second reporter. Co-culture results in fusion and restoration of RL, which can convert a membrane permeable substrate into a luminescent product, thereby enabling one to monitor initiation and extent of fusion in live cells in real time. Restoration of GFP can also be studied by fluorescence microscopy. Two sets of split reporters have been developed: the original one allows one to measure fusion kinetics over hours whereas the more recent version was designed to enhance the sensitivity of RL activity allowing one to monitor both initiation and rates of fusion in minutes. Here, we provide a detailed, step-by-step protocol for the optimization of the assay (which we call the SLA for split luciferase assay) using the HSV system. We also show several examples of the power of this assay to examine both the initiation and kinetics of cell-cell fusion by wild type forms of gD, gB, gH/gL of both serotypes of HSV as well as the effect of mutations and antibodies that alter the kinetics of fusion. The SLA can be applied to other viral systems that carry out membrane fusion.
Collapse
Affiliation(s)
- Wan Ting Saw
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Zene Matsuda
- Research Center for Asian Infectious Diseases, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan; China-Japan Joint Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, PR China.
| | - Roselyn J Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Gary H Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Doina Atanasiu
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
11
|
Alves Dummer L, Pereira Leivas Leite F, van Drunen Littel-van den Hurk S. Bovine herpesvirus glycoprotein D: a review of its structural characteristics and applications in vaccinology. Vet Res 2014; 45:111. [PMID: 25359626 PMCID: PMC4252008 DOI: 10.1186/s13567-014-0111-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 10/09/2014] [Indexed: 11/20/2022] Open
Abstract
The viral envelope glycoprotein D from bovine herpesviruses 1 and 5 (BoHV-1 and -5), two important pathogens of cattle, is a major component of the virion and plays a critical role in the pathogenesis of herpesviruses. Glycoprotein D is essential for virus penetration into permissive cells and thus is a major target for virus neutralizing antibodies during infection. In view of its role in the induction of protective immunity, gD has been tested in new vaccine development strategies against both viruses. Subunit, DNA and vectored vaccine candidates have been developed using this glycoprotein as the primary antigen, demonstrating that gD has the capacity to induce robust virus neutralizing antibodies and strong cell-mediated immune responses, as well as protection from clinical symptoms, in target species. This review highlights the structural and functional characteristics of BoHV-1, BoHV-5 and where appropriate, Human herpesvirus gD, as well as its role in viral entry and interactions with host cell receptors. Furthermore, the interactions of gD with the host immune system are discussed. Finally, the application of this glycoprotein in new vaccine design is reviewed, taking its structural and functional characteristics into consideration.
Collapse
Affiliation(s)
- Luana Alves Dummer
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Fábio Pereira Leivas Leite
- Laboratório de Bacteriologia, Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, 96010-900, Brazil.
| | - Sylvia van Drunen Littel-van den Hurk
- Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada. .,VIDO-Intervac, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E3, Canada.
| |
Collapse
|
12
|
Immune responses of mice against recombinant bovine herpesvirus 5 glycoprotein D. Vaccine 2014; 32:2413-9. [PMID: 24657716 DOI: 10.1016/j.vaccine.2014.03.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 11/23/2022]
Abstract
Glycoprotein D (gD) is essential for attachment and penetration of Bovine herpesvirus 5 (BoHV-5) into permissive cells, and is a major target of the host immune system, inducing strong humoral and cellular immune responses. The aim of this study was to evaluate in mice the immunogenicity of recombinant BoHV-5 gD (rgD5) expressed in Pichia pastoris. Vaccines formulated with rgD5 alone or adjuvanted with Montanide 50 ISA V2; Emulsigen or Emulsigen-DDA was administered intramuscularly or subcutaneously. Almost all formulations stimulated a humoral immune response after the first inoculation. The only exception was observed when the rgD5 was administered subcutaneously without adjuvant, in this case, the antibodies were observed after three doses. Higher titers of neutralizing antibodies were obtained with the three oil-based adjuvant formulations when compared to non-adjuvanted vaccine formulations. The rgD5 vaccine stimulated high mRNA expression levels of Th1 (INF-γ) and pro-inflammatory cytokines (IL-17, GM-CSF). The results demonstrated that the recombinant gD from BoHV-5 conserved important epitopes for viral neutralization from native BoHV-5 gD and was able to elicit mixed Th1/Th2 immune response in mice.
Collapse
|
13
|
Dual split protein-based fusion assay reveals that mutations to herpes simplex virus (HSV) glycoprotein gB alter the kinetics of cell-cell fusion induced by HSV entry glycoproteins. J Virol 2013; 87:11332-45. [PMID: 23946457 DOI: 10.1128/jvi.01700-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus (HSV) entry and cell-cell fusion require glycoproteins gD, gH/gL, and gB. We propose that receptor-activated changes to gD cause it to activate gH/gL, which then triggers gB into an active form. We employed a dual split-protein (DSP) assay to monitor the kinetics of HSV glycoprotein-induced cell-cell fusion. This assay measures content mixing between two cells, i.e., fusion, within the same cell population in real time (minutes to hours). Titration experiments suggest that both gD and gH/gL act in a catalytic fashion to trigger gB. In fact, fusion rates are governed by the amount of gB on the cell surface. We then used the DSP assay to focus on mutants in two functional regions (FRs) of gB, FR1 and FR3. FR1 contains the fusion loops (FL1 and FL2), and FR3 encompasses the crown at the trimer top. All FL mutants initiated fusion very slowly, if at all. However, the fusion rates caused by some FL2 mutants increased over time, so that total fusion by 8 h looked much like that of the WT. Two distinct kinetic patterns, "slow and fast," emerged for mutants in the crown of gB (FR3), again showing differences in initiation and ongoing fusion. Of note are the fusion kinetics of the gB syn mutant (LL871/872AA). Although this mutant was originally included as an ongoing high-rate-of-fusion control, its initiation of fusion is so rapid that it appears to be on a "hair trigger." Thus, the DSP assay affords a unique way to examine the dynamics of HSV glycoprotein-induced cell fusion.
Collapse
|
14
|
Baldwin J, Antoine TE, Shukla D, Tiwari V. Zebrafish encoded 3-O-sulfotransferase-2 generated heparan sulfate serves as a receptor during HSV-1 entry and spread. Biochem Biophys Res Commun 2013; 432:672-6. [PMID: 23416072 DOI: 10.1016/j.bbrc.2013.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 01/13/2023]
Abstract
Previously we reported the role of zebrafish (ZF) encoded glucosaminyl 3-O-sulfotransferase-3 (3-OST-3) isoform in assisting herpes simplex virus type-1 (HSV-1) entry and spread by generating an entry receptor to HSV-1 envelope glycoprotein D (gD). However, the ability of ZF encoded 3-OST-2 isoform to participate in HSV-1 entry has not been determined although it is predominantly expressed in ZF brain, a prime target for HSV-1 to infect and establish lifelong latency. Here we report the expression cloning of ZF encoded 3-OST-2 isoform and demonstrate HSV-1 entry into resistant Chinese hamster ovary (CHO-K1) cells expressing the clone. Additional significance of ZF encoded 3-OST-2 receptor was demonstrated using medically important isolates of HSV-1. In addition, interference to HSV-1 entry was observed upon co-expression of HSV-1 gD and ZF 3-OST-2. Similarly HSV-1 entry was significantly inhibited by the pre-treatment of cells with enzyme HS lyases (heparinase II/III). Finally, ZF-3-OST-2 expressing CHO-K1 was able to fuse with HSV-1 glycoprotein expressing cells suggesting their role in HSV-1 spread. Taken together our result demonstrates a role for ZF 3-OST-2 in HSV-1 pathogenesis.
Collapse
Affiliation(s)
- John Baldwin
- Department of Microbiology & Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | | | | | | |
Collapse
|
15
|
Directional spread of alphaherpesviruses in the nervous system. Viruses 2013; 5:678-707. [PMID: 23435239 PMCID: PMC3640521 DOI: 10.3390/v5020678] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 12/30/2022] Open
Abstract
Alphaherpesviruses are pathogens that invade the nervous systems of their mammalian hosts. Directional spread of infection in the nervous system is a key component of the viral lifecycle and is critical for the onset of alphaherpesvirus-related diseases. Many alphaherpesvirus infections originate at peripheral sites, such as epithelial tissues, and then enter neurons of the peripheral nervous system (PNS), where lifelong latency is established. Following reactivation from latency and assembly of new viral particles, the infection typically spreads back out towards the periphery. These spread events result in the characteristic lesions (cold sores) commonly associated with herpes simplex virus (HSV) and herpes zoster (shingles) associated with varicella zoster virus (VZV). Occasionally, the infection spreads transsynaptically from the PNS into higher order neurons of the central nervous system (CNS). Spread of infection into the CNS, while rarer in natural hosts, often results in severe consequences, including death. In this review, we discuss the viral and cellular mechanisms that govern directional spread of infection in the nervous system. We focus on the molecular events that mediate long distance directional transport of viral particles in neurons during entry and egress.
Collapse
|
16
|
The fusion loops and membrane proximal region of Epstein-Barr virus glycoprotein B (gB) can function in the context of herpes simplex virus 1 gB when substituted individually but not in combination. Virus Res 2012; 171:227-30. [PMID: 23089849 DOI: 10.1016/j.virusres.2012.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 11/21/2022]
Abstract
Among the herpesvirus glycoprotein B (gB) fusion proteins, the hydrophobic content of fusion loops and membrane proximal regions (MPRs) are inversely correlated with each other. We examined the functional importance of the hydrophobicity of these regions by replacing them in herpes simplex virus type 1 gB with corresponding regions from Epstein-Barr virus gB. We show that fusion activity is dependent on the structural context in which the specific loops and MPR sequences exist, rather than a simple hydrophobic relationship.
Collapse
|
17
|
Membrane requirement for folding of the herpes simplex virus 1 gB cytodomain suggests a unique mechanism of fusion regulation. J Virol 2012; 86:8171-84. [PMID: 22623783 DOI: 10.1128/jvi.00932-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) enters cells by fusion of its envelope with a host cell membrane, which requires four viral glycoproteins and a cellular receptor. Viral fusion glycoprotein B (gB) mediates membrane fusion through the action of its ectodomain, while its cytoplasmic domain (cytodomain) regulates fusion from the opposite face of the membrane by an unknown mechanism. The gB cytodomain appears to restrict fusion, because point or truncation mutations within it increase the extent of fusion (syn mutations). Previously, we showed that the hyperfusion phenotype correlated with reduced membrane binding in gB syn truncation mutants and proposed that membrane binding was important in regulating fusion. Here, we extended our analysis to three syn point mutants: A855V, R858H, and A874P. These mutations produce local conformational changes, with some affecting membrane interaction, which suggests that while syn mutants may deregulate fusion by somewhat different mechanisms, maintaining the wild-type (WT) conformation is critical for fusion regulation. We further show that the presence of a membrane is necessary for the cytodomain to achieve its fully folded conformation and propose that the membrane-bound form of the cytodomain represents its native conformation. Taken together, our data suggest that the cytodomain of gB regulates fusion by a novel mechanism in which membrane interaction plays a key role.
Collapse
|
18
|
Residues within the C-terminal arm of the herpes simplex virus 1 glycoprotein B ectodomain contribute to its refolding during the fusion step of virus entry. J Virol 2012; 86:6386-93. [PMID: 22491468 DOI: 10.1128/jvi.00104-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Herpesvirus entry into cells requires coordinated interactions among several viral glycoproteins. The final membrane fusion step of entry is executed by glycoprotein B (gB), a class III viral fusion protein that is conserved across all herpesviruses. Fusion proteins are metastable proteins that mediate fusion by inserting into a target membrane and refolding from a prefusion to postfusion conformation to bring the viral and cell membranes together. Although the structure of gB has been solved in a conformation that likely represents its postfusion form, its prefusion structure and the details of how it refolds to execute fusion are unknown. The postfusion gB structure contains a trimeric coiled-coil at its core and a long C-terminal arm within the ectodomain packs against this coil in an antiparallel manner. This coil-arm complex is reminiscent of the six-helix bundle that provides the energy for fusion in class I fusogens. To determine the role of the coil-arm complex, we individually mutated residues in the herpes simplex virus 1 gB coil-arm complex to alanine and assessed the contribution of each residue to cell-cell and virus-cell fusion. Several coil mutations resulted in a loss of cell surface expression, indicating that the coil residues are important for proper processing of gB. Three mutations in the arm region (I671A, H681A, and F683A) reduced fusion without affecting expression. Combining these three arm mutations drastically reduced the ability of gB to execute fusion; however, fusion function could be restored by adding known hyperfusogenic mutations to the arm mutant. We propose that the formation of the coil-arm complex drives the gB transition to a postfusion conformation and the coil-arm complex performs a function similar to that of the six-helix bundle in class I fusion. Furthermore, we suggest that these specific mutations in the arm may energetically favor the prefusion state of gB.
Collapse
|
19
|
Karasneh GA, Ali M, Shukla D. An important role for syndecan-1 in herpes simplex virus type-1 induced cell-to-cell fusion and virus spread. PLoS One 2011; 6:e25252. [PMID: 21957484 PMCID: PMC3177890 DOI: 10.1371/journal.pone.0025252] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 08/30/2011] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus type-1 (HSV-1) is a common human pathogen that relies heavily on cell-to-cell spread for establishing a lifelong latent infection. Molecular aspects of HSV-1 entry into host cells have been well studied; however, the molecular details of the spread of the virus from cell-to-cell remain poorly understood. In the past, the role of heparan sulfate proteoglycans (HSPG) during HSV-1 infection has focused solely on the role of HS chains as an attachment receptor for the virus, while the core protein has been assumed to perform a passive role of only carrying the HS chains. Likewise, very little is known about the involvement of any specific HSPGs in HSV-1 lifecycle. Here we demonstrate that a HSPG, syndecan-1, plays an important role in HSV-1 induced membrane fusion and cell-to-cell spread. Interestingly, the functions of syndecan-1 in fusion and spread are independent of the presence of HS on the core protein. Using a mutant CHO-K1 cell line that lacks all glycosaminoglycans (GAGs) on its surface (CHO-745) we demonstrate that the core protein of syndecan-1 possesses the ability to modulate membrane fusion and viral spread. Altogether, we identify a new role for syndecan-1 in HSV-1 pathogenesis and demonstrate HS-independent functions of its core protein in viral spread.
Collapse
Affiliation(s)
- Ghadah A. Karasneh
- Departments of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- Departments of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Mohamed Ali
- Departments of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Deepak Shukla
- Departments of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- Departments of Microbiology and Immunology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
20
|
Human cytomegalovirus glycoprotein gO complexes with gH/gL, promoting interference with viral entry into human fibroblasts but not entry into epithelial cells. J Virol 2011; 85:11638-45. [PMID: 21880752 DOI: 10.1128/jvi.05659-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A complex of five human cytomegalovirus virus (HCMV) proteins, gH, gL, UL128, UL130, and UL131 (gH/gL/UL128-131), is essential for virus entry into epithelial cells. We previously showed that gH/gL/UL128-131 expressed in epithelial cells interferes with subsequent HCMV entry into cells. There was no interference with only gH/gL or gB. We concluded that the expression of gH/gL/UL128-131 causes a mislocalization or downregulation of epithelial cell proteins that HCMV requires for entry. In contrast, gH/gL/UL128-131 expression in fibroblasts did not produce interference, suggesting a different mechanism for entry. Here, we show that the coexpression of another HCMV glycoprotein, gO, with gH/gL in human fibroblasts interferes with HCMV entry into fibroblasts but not epithelial cells. However, the coexpression of gO with gH/gL did not increase the cell surface expression level of gH/gL and did not enhance cell-cell fusion, a process that depends upon cell surface gH/gL. Instead, gO promoted the export of gH/gL from the endoplasmic reticulum (ER) and the accumulation of gH/gL in the trans-Golgi network. Thus, interference with gH/gL or gH/gL/gO, i.e., the mislocalization or blocking of entry mediators, occurs in cytoplasmic membranes and not in cell surface membranes of fibroblasts. Together, the results provide additional support for our hypotheses that epithelial cells express putative gH/gL/UL128-1331 receptors important for HCMV entry and that fibroblasts express distinct gH/gL receptors.
Collapse
|
21
|
Herpes simplex virus type-1 (HSV-1) entry into human mesenchymal stem cells is heavily dependent on heparan sulfate. J Biomed Biotechnol 2011; 2011:264350. [PMID: 21799659 PMCID: PMC3134178 DOI: 10.1155/2011/264350] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 03/29/2011] [Indexed: 11/17/2022] Open
Abstract
Hematopoietic stem cells recipients remain susceptible to opportunistic viral infections including herpes simplex virus type-1 (HSV-1). The purpose of this investigation was to analyze susceptibility of human mesenchymal stem cells (hMSCs) to HSV-1 infection and identify the major entry receptor. Productive virus infection in hMSCs was confirmed by replication and plaque formation assays using a syncytial HSV-1 KOS (804) virus. To examine the significance of entry receptors, RT-PCR and antibody-blocking assays were performed. RT-PCR data showed the expression of gD receptors: nectin-1, 3-O sulfotransferase-3 (3-OST-3), and HVEM. Antibody-blocking assay together with heparinase treatment suggested an important role for HS and 3-O-sulfated heparan sulfate (3-OS HS), but not nectin-1 or HVEM, in mediating HSV-1 entry and spread in hMSCs. Taken together, our results provide strong evidence demonstrating that HSV-1 is capable of infecting hMSCs and HS and 3-OS HS serve as its entry receptors during this process.
Collapse
|
22
|
Insertion mutations in herpes simplex virus 1 glycoprotein H reduce cell surface expression, slow the rate of cell fusion, or abrogate functions in cell fusion and viral entry. J Virol 2009; 84:2038-46. [PMID: 20007280 DOI: 10.1128/jvi.02215-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of the four required herpes simplex virus (HSV) entry glycoproteins, the precise role of gH-gL in fusion remains the most elusive. The heterodimer gH-gL has been proposed to mediate hemifusion after the interaction of another required glycoprotein, gD, with a receptor. To identify functional domains of HSV-1 gH, we generated 22 randomized linker-insertion mutants. Analyses of 22 gH mutants revealed that gH is relatively tolerant of insertion mutations, as 15 of 22 mutants permitted normal processing and transport of gH-gL to the cell surface. gH mutants that were not expressed well at the cell surface did not function in fusion or viral entry. The screening of gH mutants for function revealed the following: (i) for wild-type gH and some gH mutants, fusion with nectin-1-expressing target cells occurred more rapidly than with herpesvirus entry mediator (HVEM)-expressing target cells; (ii) some gH mutants reduced the rate of cell fusion without abrogating fusion completely, indicating that gH may play a role in governing the kinetics of fusion and may be responsible for a rate-limiting first stage in HSV-1 fusion; and (iii) only one gH mutant, located within the short cytoplasmic tail, completely abrogated function, indicating that the gH cytoplasmic tail is crucial for cell fusion and viral infectivity.
Collapse
|
23
|
O'Donnell CD, Shukla D. A novel function of heparan sulfate in the regulation of cell-cell fusion. J Biol Chem 2009; 284:29654-65. [PMID: 19726670 DOI: 10.1074/jbc.m109.037960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the important contribution of cell-cell fusion in the development and physiology of eukaryotes, little is known about the mechanisms that regulate this process. Our study shows that glycosaminoglycans and more specifically heparan sulfate (HS) expressed on the cell surface and extracellular matrix may act as negative regulator of cell-cell fusion. Using herpes simplex virus type-1 as a tool to enhance cell-cell fusion, we demonstrate that the absence of HS expression on the cell surface results in a significant increase in cell-cell fusion. An identical phenomenon was observed when other viruses or polyethylene glycol was used as fusion enhancer. Cells deficient in HS biosynthesis showed increased activity of two Rho GTPases, RhoA and Cdc42, both of which showed a correlation between increased activity and increased cell-cell fusion. This could serve as a possible explanation as to why HS-deficient cells showed significantly enhanced cell-cell fusion and suggests that HS could regulate fusion via fine tuning of RhoA and Cdc42 activities.
Collapse
Affiliation(s)
- Christopher D O'Donnell
- Department of Ophthalmology and Visual Sciences and the Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | |
Collapse
|
24
|
Dummer LA, Conceição FR, Nizoli LQ, de Moraes CM, Rocha AR, de Souza LL, Roos T, Vidor T, Leite FPL. Cloning and expression of a truncated form of envelope glycoprotein D of Bovine herpesvirus type 5 in methylotrophic yeast Pichia pastoris. J Virol Methods 2009; 161:84-90. [PMID: 19501621 DOI: 10.1016/j.jviromet.2009.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 05/26/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
Meningoencephalitis caused by Bovine herpesvirus type 5 (BoHV-5) is responsible for heavy economic losses in the cattle industry. As in other Alphaherpesviruses, the envelope glycoprotein IV (gD), which mediates penetration into host cells, is one of the major candidate antigens for a recombinant vaccine, since it induces a strong and persistent immune response. The DNA coding for a truncated form of BoHV-5 gD (tgD) has been cloned into the Pichia pastoris expression vector pPICZalphaB to allow protein secretion into the medium. After induction with methanol, a approximately 55kDa protein was obtained. Enzyme deglycosylation with Endo H showed a smaller size band in SDS-PGAE, with approximately 50kDa, suggesting that tgD has N-linked oligosaccharides and that it is not hyperglycosylated. The approximately 55kDa protein was recognized by several polyclonal antibodies, including polyclonal antibody anti-tgD and polyclonal antibodies of different animal species immunized with BoHV-5 and BoHV-1. This is the first report of BoHV-5 gD expression in yeast. It was shown that the recombinant truncated form of BoHV-5 gD has antigenic and immunogenic properties similar to the native BoHV-5 gD. Expression of tgD as a secreted protein allows simple and inexpensive purification methods that can be used for further studies to evaluate its immunogenicity in cattle.
Collapse
Affiliation(s)
- Luana Alves Dummer
- Centro de Biotecnologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol 2009; 83:6825-36. [PMID: 19369321 DOI: 10.1128/jvi.00301-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion.
Collapse
|
26
|
HCMV gH/gL/UL128-131 interferes with virus entry into epithelial cells: evidence for cell type-specific receptors. Proc Natl Acad Sci U S A 2008; 105:14118-23. [PMID: 18768787 DOI: 10.1073/pnas.0804365105] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) forms two different membrane protein complexes, gH/gL/gO and gH/gL/UL128/UL130/UL131, that function in different cell types. gH/gL/gO appears to be important for HCMV entry into or spread between fibroblasts, processes that occur at neutral pH. We demonstrated that HCMV entry into epithelial and endothelial cells requires gH/gL/UL128-131 and involves endocytosis and low pH. A complex of all five HCMV proteins, gH, gL, UL128, UL130, and UL131, is the functionally important mediator of this entry pathway into epithelial/endothelial cells. Here, we report that expression of gH/gL/UL128-131 in ARPE-19 epithelial cells causes the cells to be resistant to HCMV infection. Another HCMV glycoprotein, gB, did not interfere, and expression of all five gH/gL/UL128-131 proteins was required for this interference. gH/gL/UL128-131 interference was at the stage of virus entry into cells rather than the initial adsorption onto cell surfaces or after-entry defects. By contrast, expression of gH/gL/UL128-131 in primary human fibroblasts did not block HCMV infection. Previously, interference by retrovirus and herpes-simplex-virus entry mediators resulted from sequestration or obstruction of receptors. We concluded that epithelial cells express gH/gL/UL128-131 receptors that mediate HCMV entry. Fibroblasts either lack the gH/gL/UL128-131 receptors, the receptors are more numerous, or fibroblasts express other functional receptors.
Collapse
|
27
|
Klyachkin YM, Geraghty RJ. Mutagenic analysis of herpes simplex virus type 1 glycoprotein L reveals the importance of an arginine-rich region for function. Virology 2008; 374:23-32. [PMID: 18222518 DOI: 10.1016/j.virol.2007.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 10/31/2007] [Accepted: 11/09/2007] [Indexed: 12/01/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) glycoproteins H and L (gH and gL) are required for virus-induced membrane fusion. Expression of gH at the virion or infected cell surface is mediated by the chaperone-like activity of gL. We have previously shown that a region between amino acids 155 and 161 is critical for gL chaperone-like activity. Here, we conducted Ala substitution mutagenesis of residues in this region and found that substitution of Cys160, Arg156, Arg158, or Arg156/158/159 with Ala resulted in a gL mutant that bound gH but displayed a reduced ability in gH trafficking and membrane fusion. Substitution of Arg156 with another positively charged amino acid, Lys, restored function. Substitution of Arg158 with Lys restored function in gH trafficking and cell fusion but not virus entry. These results indicate that an arginine-rich region of gL is critical for function.
Collapse
Affiliation(s)
- Yuri M Klyachkin
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose St., UKMC MS423, Lexington, KY 40536-0298, USA
| | | |
Collapse
|
28
|
Engineered disulfide bonds in herpes simplex virus type 1 gD separate receptor binding from fusion initiation and viral entry. J Virol 2007; 82:700-9. [PMID: 18032483 DOI: 10.1128/jvi.02192-07] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein D (gD) is the receptor binding protein of herpes simplex virus (HSV) and binds to at least two distinct protein receptors, herpesvirus entry mediator (HVEM) and nectin-1. While both receptor binding regions are found within the first 234 amino acids, a crystal structure shows that the C terminus of the gD ectodomain normally occludes the receptor binding sites. Receptor binding must therefore displace the C terminus, and this conformational change is postulated to be required for inducing fusion via gB and gH/gL. When cysteine residues are introduced at positions 37 and 302 of gD, a disulfide bond is formed that stabilizes the C terminus and prevents binding to either receptor. We speculated that if disulfide bonds were engineered further upstream, receptor binding might be separated from the induction of fusion. To test this, we made five additional double cysteine mutants, each potentially introducing a disulfide bond between the ectodomain C terminus and the core of the gD ectodomain. The two mutants predicted to impose the greatest constraint were unable to bind receptors or mediate cell-cell fusion. However, the three mutants with the most flexible C terminus bound well to both HVEM and nectin-1. Two of these mutants were impaired in cell-cell fusion and null-virus complementation. Importantly, a third mutant in this group was nonfunctional in both assays. This mutant clearly separates the role of gD in triggering fusion from its role in receptor binding. Based upon the properties of the panel of mutants we conclude that fusion requires greater flexibility of the gD ectodomain C terminus than does receptor binding.
Collapse
|
29
|
Lin E, Spear PG. Random linker-insertion mutagenesis to identify functional domains of herpes simplex virus type 1 glycoprotein B. Proc Natl Acad Sci U S A 2007; 104:13140-5. [PMID: 17666526 PMCID: PMC1941792 DOI: 10.1073/pnas.0705926104] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus glycoprotein B (gB) is one of four glycoproteins essential for viral entry and cell fusion. Recently, an x-ray structure of the nearly full-length trimeric gB ectodomain was determined. Five structural domains and two linker regions were identified in what is probably a postfusion conformation. To identify functional domains of gB, we performed random linker-insertion mutagenesis. Analyses of 81 mutants revealed that only 27 could fold to permit processing and transport of gB to the cell surface. These 27 mutants fell into three categories. Insertions into two regions excluded from the solved structure (the N terminus and the C-terminal cytoplasmic tail) had no negative effect on cell fusion and viral entry activity, identifying regions that can tolerate altered structure without loss of function. Insertions into a disordered region in domain II and the adjacent linker region also permitted partial cell fusion and viral entry activity. Insertions at 16 other positions resulted in loss of cell fusion and viral entry activity, despite detectable levels of cell surface expression. Four of these insertion sites were not included in the solved structure. Two were between residues exposed to a cavity that is too small to accommodate the 5-amino acid insertions, consistent with the solved structure being different from the native prefusion structure. Ten were between residues exposed to the surface of the trimer, identifying regions that may be critical for interactions with other viral proteins or cellular components or for transitions from the prefusion to postfusion state.
Collapse
Affiliation(s)
- Erick Lin
- Department of Microbiology–Immunology, Feinberg School of Medicine, Northwestern University, MC S213, 320 East Superior Street, Chicago, IL 60611
| | - Patricia G. Spear
- Department of Microbiology–Immunology, Feinberg School of Medicine, Northwestern University, MC S213, 320 East Superior Street, Chicago, IL 60611
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Ch'ng TH, Spear PG, Struyf F, Enquist LW. Glycoprotein D-independent spread of pseudorabies virus infection in cultured peripheral nervous system neurons in a compartmented system. J Virol 2007; 81:10742-57. [PMID: 17652377 PMCID: PMC2045490 DOI: 10.1128/jvi.00981-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The molecular mechanisms underlying the directional neuron-to-epithelial cell transport of herpesvirus particles during infection are poorly understood. To study the role of the viral glycoprotein D (gD) in the directional spread of herpes simplex virus (HSV) and pseudorabies virus (PRV) infection, a culture system consisting of sympathetic neurons or epithelial cells in different compartments was employed. We discovered that PRV infection could spread efficiently from neurons to cells and back to neurons in the absence of gD, the viral ligand required for entry of extracellular particles. Unexpectedly, PRV infection can also spread transneuronally via axo-axonal contacts. We show that this form of interaxonal spread between neurons is gD independent and is not mediated by extracellular virions. We also found that unlike PRV gD, HSV-1 gD is required for neuron-to-cell spread of infection. Neither of the host cell gD receptors (HVEM and nectin-1) is required in target primary fibroblasts for neuron-to-cell spread of HSV-1 or PRV infection.
Collapse
Affiliation(s)
- T H Ch'ng
- Schultz Laboratory, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
31
|
Cairns TM, Friedman LS, Lou H, Whitbeck JC, Shaner MS, Cohen GH, Eisenberg RJ. N-terminal mutants of herpes simplex virus type 2 gH are transported without gL but require gL for function. J Virol 2007; 81:5102-11. [PMID: 17344290 PMCID: PMC1900195 DOI: 10.1128/jvi.00097-07] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycoprotein H (gH) is conserved among all herpesviruses and is essential for virus entry and cell fusion along with gL, gB, and, in most alphaherpesviruses, gD. Within the gH/gL heterodimer, it is thought that gH accounts for the fusion function and gL acts as a chaperone for the folding and transport of gH. Here, we found that the N terminus of gH2 contains important elements involved in both its folding and its transport. Our conclusions are based on the phenotypes of a series of gH deletion mutants in which the signal sequence (residues 1 to 18) was retained and N-terminal residues were removed up to the number indicated. The first mutant, gH2Delta29 (deletion of residues 19 to 28), like wild-type (WT) gH, required gL for both transport and function. To our surprise, two other mutants (gH2Delta64 and gH2Delta72) were transported to the cell surface independent of gL but were nonfunctional, even when complexed with gL. Importantly, a fourth mutant (gH2Delta48) was transported independent of gL but was functional only when complexed with gL. Using a panel of monoclonal antibodies against gH2, we found that when gH2Delta48 was expressed alone, its antigenic structure differed from that of gH2Delta48/gL or gH2-WT/gL. Mutation of gH2 residue R39, Y41, W42, or D44 allowed gL-independent transport of gH. Our results also show that gL is not merely required for gH transport but is also necessary for the folding and function of the complex. Since gH2Delta64/gL and gH2Delta72/gL were nonfunctional, we hypothesized that residues critical for gH/gL function lie within this deleted region. Additional mutagenesis identified L66 and L72 as important for function. Together, our results highlight several key gH residues: R39, Y41, W42, and D44 for gH transport and L66 and L72 for gH/gL structure and function.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hannah BP, Heldwein EE, Bender FC, Cohen GH, Eisenberg RJ. Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B. J Virol 2007; 81:4858-65. [PMID: 17314168 PMCID: PMC1900191 DOI: 10.1128/jvi.02755-06] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) glycoprotein B (gB) is one of four glycoproteins necessary and sufficient for HSV cellular entry. Recently, the crystal structures of HSV-1 gB and vesicular stomatitis virus glycoprotein G were determined. Surprisingly, the two proteins share remarkable structural homology. Both proteins are homotrimeric and center about a long alpha-helix, features reminiscent of class I fusion proteins, such as influenza virus hemagglutinin or paramyxovirus F. However, these structures revealed that G has internal fusion loops, similar to the fusion loops of the class II fusion proteins, and that these loops are structurally conserved in gB. To examine whether these putative fusion loops are important for gB function, we mutated potential membrane-interacting (hydrophobic) residues to charged amino acids. Of most interest were mutant gB proteins that were expressed on the cell surface and were recognized by monoclonal antibodies against conformational epitopes but lacked the ability to function in cell-cell fusion assays. We find that three of the five hydrophobic amino acids targeted in these loops, tryptophan 174, tyrosine 179, and alanine 261, are integral in the function of gB. Our data suggest that they are part of an important functional domain. We hypothesize that two loops in domain 1 of HSV gB function as fusion loops. Our data are further evidence that gB is a viral fusogen and suggest clues as to how gB may function.
Collapse
Affiliation(s)
- Brian P Hannah
- Department of Microbiology, University of Pennsylvania, School of Dental Medicine, 240 S. 40th Street, Levy Building R233, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
33
|
Sawatsky B, Grolla A, Kuzenko N, Weingartl H, Czub M. Inhibition of henipavirus infection by Nipah virus attachment glycoprotein occurs without cell-surface downregulation of ephrin-B2 or ephrin-B3. J Gen Virol 2007; 88:582-591. [PMID: 17251577 DOI: 10.1099/vir.0.82427-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are newly identified members of the family Paramyxoviridae and have been classified in the new genus Henipavirus based on unique genetic characteristics distinct from other paramyxoviruses. Transgenic cell lines were generated that expressed either the attachment protein (G) or the fusion protein (F) of NiV. Functional expression of NiV F and G was verified by complementation with the corresponding glycoprotein, which resulted in the development of syncytia. When exposed to NiV and HeV, expression of NiV G in Crandall feline kidney cells resulted in a qualitative inhibition of both cytopathic effect (CPE) and cell death by both viruses. RT-PCR analysis of surviving exposed cells showed a complete absence of viral positive-sense mRNA and genomic negative-sense viral RNA. Cells expressing NiV G were also unable to fuse with cells co-expressing NiV F and G in a fluorescent fusion inhibition assay. Cell-surface staining for the cellular receptors for NiV and HeV (ephrin-B2 and ephrin-B3) indicated that they were located on the surface of cells, regardless of NiV G expression or infection by NiV. These results indicated that viral interference can be established for henipaviruses and requires only the expression of the attachment protein, G. Furthermore, it was found that this interference probably occurs at the level of virus entry, as fusion was not observed in cells expressing NiV G. Finally, expression of NiV G by either transient transfection or NiV infection did not alter the cell-surface levels of the two known viral receptors.
Collapse
Affiliation(s)
- Bevan Sawatsky
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Allen Grolla
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Nina Kuzenko
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| | - Hana Weingartl
- National Centre for Foreign Animal Disease, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
| | - Markus Czub
- Department of Medical Microbiology, University of Manitoba, 730 William Avenue, Winnipeg, MB R3E 0W3, Canada
- National Microbiology Laboratory, Canadian Science Centre for Human and Animal Health, 1015 Arlington Street, Winnipeg, MB R3E 3R2, Canada
| |
Collapse
|
34
|
Teresa Sciortino M, Medici MA, Marino-Merlo F, Zaccaria D, Giuffrè M, Venuti A, Grelli S, Mastino A. Signaling Pathway Used by HSV-1 to Induce NF- B Activation: Possible Role of Herpes Virus Entry Receptor A. Ann N Y Acad Sci 2007; 1096:89-96. [PMID: 17405920 DOI: 10.1196/annals.1397.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have previously demonstrated that wild-type herpes simplex virus type 1 (HSV-1), as well as nonreplicating UV-inactivated HSV-1, promptly activates the nuclear factor-kappaB (NF-kappaB) in U937 monocytoid cells and that glycoprotein D (gD) of HSV-1 is sufficient by itself to exert a similar effect. We then investigated the signaling pathway used by HSV-1 to initiate NF-kappaB activation and, particularly, whether our observation could be related to the capability of HSV-1-gD to directly stimulate NF-kappaB through its interaction with the herpes virus entry receptor A (HveA). Here we report that: (a) co-cultivation of U937 cells with an adherent cell line expressing wild-type gD on its surface led to increased NF-kappaB activation, while co-cultivation with the same adherent cell line expressing a mutated form of gD, lacking the capability to bind HveA, did not cause the same effect; (b) exposure to UV-inactivated HSV-1 induced the activation of NF-kappaB in HveA-expressing U937 and THP-1 cells, but not in non-HveA-expressing HEp-2 cells; and (c) activation of NF-kappaB in U937 and THP-1 cells exposed to soluble gD was inhibited by an antibody able to interfere with gD-HveA interaction. These results suggest that HSV-1-gD-HveA interaction initiates a signal transduction pathway leading to NF-kappaB activation.
Collapse
Affiliation(s)
- M Teresa Sciortino
- Department of Microbiological, Genetic, and Molecular Sciences, University of Messina, Salita Sperone 31, 98166 Messina, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Gianni T, Forghieri C, Campadelli-Fiume G. The herpesvirus glycoproteins B and H.L are sequentially recruited to the receptor-bound gD to effect membrane fusion at virus entry. Proc Natl Acad Sci U S A 2006; 103:14572-7. [PMID: 16973744 PMCID: PMC1600001 DOI: 10.1073/pnas.0606127103] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four glycoproteins (gD, gB, gH, and gL) are required for herpes simplex virus entry into the cell or for cell-cell fusion in transfected cells. gD serves as the receptor-binding glycoprotein and as the trigger of fusion; the other three execute fusion between the viral envelope and the plasma and endocytic membranes or the membranes of adjacent cells and are highly conserved among members of the herpesvirus family. Details of the interaction of gD with gB, gH, and gL were not known. Here, we report that the four glycoproteins assemble into a complex initiated by the interaction of gD with its cellular receptor. gB is recruited to the gD-receptor complex next, even in the absence of gH.gL. gH.gL is recruited next, but only to the receptor-gD-gB ensemble. A complex with the composition receptor-gD-gB-gH.gL is assembled transiently with a life span of 15-30 min in cells exposed to virus but can also be found in infected cells and in cells committed to form polykaryocytes after transfection of the glycoprotein quartet. The results indicate that the complex assembly is a critical step in the process of virus entry and fusion, and that no viral protein other than those that participate in the complex itself is required for complex assembly. These findings imply critical protein-protein interactions among the quartet as herpes simplex virions enter the cells and at cell-cell fusion, define a specific order of recruitment, and place gH.gL as the last link in the process of glycoprotein recruitment to the complex.
Collapse
Affiliation(s)
- Tatiana Gianni
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Cristina Forghieri
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Gabriella Campadelli-Fiume
- Department of Experimental Pathology, Section on Microbiology and Virology, Alma Mater Studiorum, University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Tiwari V, Clement C, Xu D, Valyi-Nagy T, Yue BYJT, Liu J, Shukla D. Role for 3-O-sulfated heparan sulfate as the receptor for herpes simplex virus type 1 entry into primary human corneal fibroblasts. J Virol 2006; 80:8970-80. [PMID: 16940509 PMCID: PMC1563926 DOI: 10.1128/jvi.00296-06] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 06/19/2006] [Indexed: 01/20/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) infection of the corneal stroma remains a major cause of blindness. Primary cultures of corneal fibroblasts (CF) were tested and found susceptible to HSV-1 entry, which was confirmed by deconvolution imaging of infected cells. Plaque assay and real-time PCR demonstrated viral replication and hence a productive infection of CF by HSV-1. A role for glycoprotein D (gD) receptors in cultured CF was determined by gD interference assay. Reverse transcription-PCR analysis indicated expression of herpesvirus entry mediator and 3-O-sulfated (3-OS) heparan sulfate (HS)-generating enzyme 3-O sulfotransferase 3 (3-OST-3) but not nectin-1 or nectin-2. Subsequently, HS isolated from these cells was found to contain two distinct disaccharides (IdoUA2S-AnMan3S and IdoUA2S-AnMan3S6S) that are representative of 3-OST-3 activity. The following lines of evidence supported the important role of 3-OS HS as the mediator of HSV-1 entry into CF. (i) Blockage of entry was observed in CF treated with heparinases. The same enzymes had significantly less effect on HeLa cells that use nectin-1 as the entry receptor. (ii) Enzymatic removal of cell surface HS also removed the major gD-binding receptor, as evident from the reduced binding of gD to cells. (iii) Spinoculation assay demonstrated that entry blockage by heparinase treatment included the membrane fusion step. (iv) HSV-1 glycoprotein-induced cell-to-cell fusion was inhibited by either prior treatment of cells with heparinases or by HS preparations enriched in 3-OS HS. Taken together, the data in this report provide novel information on the role of 3-OS HS in mediating infection of CF, a natural target cell type.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- University of Illinois at Chicago, Lions of Illinois Eye Research Institute, M/C 648, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Even DL, Henley AM, Geraghty RJ. The requirements for herpes simplex virus type 1 cell-cell spread via nectin-1 parallel those for virus entry. Virus Res 2006; 119:195-207. [PMID: 16823958 DOI: 10.1016/j.virusres.2006.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) spreads from an infected cell to an uninfected cell by virus entry, virus-induced cell fusion, and cell-cell spread. The three forms of virus spread require the viral proteins gB, gD, and gH-gL, as well as a cellular gD receptor. The mutual requirement for the fusion glycoproteins and gD receptor suggests that virus entry, cell fusion, and cell-cell spread occur by a similar mechanism. The goals of this study were to examine the role of the nectin-1alpha transmembrane domain and cytoplasmic tail in cell-cell spread and to obtain a better understanding of the receptor-dependent events occurring at the plasma membrane during cell-cell spread. We determined that an intact nectin-1alpha V-like domain was required for cell-cell spread, while a membrane-spanning domain and cytoplasmic tail were not. Chimeric forms of nectin-1 that were non-functional for virus entry did not mediate cell-cell spread regardless of whether they could mediate cell fusion. Also, cell-cell spread of syncytial isolates was dependent upon nectin-1alpha expression and occurred through a nectin-1-dependent mechanism. Taken together, our results indicate that nectin-1-dependent events occurring at the plasma membrane during cell-cell spread were equivalent to those for virus entry.
Collapse
Affiliation(s)
- Deborah L Even
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, 800 Rose St., UKMC MS415, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
38
|
Klyachkin YM, Stoops KD, Geraghty RJ. Herpes simplex virus type 1 glycoprotein L mutants that fail to promote trafficking of glycoprotein H and fail to function in fusion can induce binding of glycoprotein L-dependent anti-glycoprotein H antibodies. J Gen Virol 2006; 87:759-767. [PMID: 16528023 DOI: 10.1099/vir.0.81563-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) glycoproteins H (gH) and L (gL) form a heterodimer and efficient expression of gH at the virion or cell surface is dependent upon gL. Five carboxy-terminal deletion mutants of gL were created and their ability to interact with and mediate cell-surface expression of gH, to promote binding of gL-dependent anti-gH antibodies and to contribute to cell fusion was analysed. All of the gL mutants bound gH, but only two mutants, containing the amino-terminal 161 or 168 aa of gL, mediated cell-surface expression of gH, and only gL161 and gL168 functioned in cell fusion. The binding of gL to gH, therefore, was not sufficient to ensure gH cell-surface expression and it was not possible to separate the gH-trafficking role of gL from gL function in fusion. Co-expression of gH with any gL mutant conferred binding of the anti-gH mAbs 53S and LP11. If the acquisition of 53S and LP11 binding to gH reflects a gL-induced conformational change, such a change is not sufficient to mediate trafficking of the gH-gL heterodimer.
Collapse
Affiliation(s)
- Yuri M Klyachkin
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose Street, UKMC MS415, Lexington, KY 40536-0298, USA
| | - Krista D Stoops
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose Street, UKMC MS415, Lexington, KY 40536-0298, USA
| | - Robert J Geraghty
- University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose Street, UKMC MS415, Lexington, KY 40536-0298, USA
| |
Collapse
|
39
|
O'Donnell CD, Tiwari V, Oh MJ, Shukla D. A role for heparan sulfate 3-O-sulfotransferase isoform 2 in herpes simplex virus type 1 entry and spread. Virology 2005; 346:452-9. [PMID: 16336986 DOI: 10.1016/j.virol.2005.11.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Revised: 10/11/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Heparan sulfate (HS) 3-O-sulfotransferase isoform-2 (3-OST-2), which belongs to a family of enzymes capable of generating herpes simplex virus type-1 (HSV-1) entry and spread receptors, is predominantly expressed in human brain. Despite its unique expression pattern, the ability of 3-OST-2 to mediate HSV-1 entry and cell-to-cell fusion is not known. Our results demonstrate that expression of 3-OST-2 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and mutant strains of HSV-1. Evidence for generation of gD receptors by 3-OST-2 were suggested by gD-mediated interference assay and the ability of 3-OST-2-expressing CHO-K1 cells to preferentially bind HSV-1 gD, which could be reversed by prior treatment of cells with HS lyases (heparinases II/III). In addition, 3-OST-2-expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins, a phenomenon that mimics a way of viral spread in vivo. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together, our results raise the possibility of a role of 3-OST-2 in the spread of HSV-1 infection in the brain.
Collapse
Affiliation(s)
- Christopher D O'Donnell
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
40
|
Ruel N, Zago A, Spear PG. Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry. Virology 2005; 346:229-37. [PMID: 16325881 DOI: 10.1016/j.virol.2005.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Revised: 09/13/2005] [Accepted: 11/02/2005] [Indexed: 10/25/2022]
Abstract
Herpes simplex virus (HSV) glycoprotein B (gB) is one of the four viral glycoproteins required for viral entry and cell fusion and is highly conserved among herpesviruses. Mutants of HSV type 2 gB were generated by substituting conserved residues in the cytoplasmic tail with alanine or by deleting 41 amino acids from the C-terminus. Some of the mutations abolished cell fusion activity and also prevented transport of gB to the cell surface, identifying residues in the gB cytoplasmic tail that are critical for intracellular transport of this glycoprotein. These mutations also prevented production of infectious virus, possibly because the mutant forms of gB were not transported to the site of envelopment. Other mutations, particularly the deletion, significantly enhanced cell fusion activity. These mutations, as well as others described previously, identify regions of the gB cytoplasmic domain that modulate cell fusion activity.
Collapse
Affiliation(s)
- Nancy Ruel
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 320 East Superior Street, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
41
|
Pomeranz LE, Reynolds AE, Hengartner CJ. Molecular biology of pseudorabies virus: impact on neurovirology and veterinary medicine. Microbiol Mol Biol Rev 2005; 69:462-500. [PMID: 16148307 PMCID: PMC1197806 DOI: 10.1128/mmbr.69.3.462-500.2005] [Citation(s) in RCA: 599] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudorabies virus (PRV) is a herpesvirus of swine, a member of the Alphaherpesvirinae subfamily, and the etiological agent of Aujeszky's disease. This review describes the contributions of PRV research to herpesvirus biology, neurobiology, and viral pathogenesis by focusing on (i) the molecular biology of PRV, (ii) model systems to study PRV pathogenesis and neurovirulence, (iii) PRV transsynaptic tracing of neuronal circuits, and (iv) veterinary aspects of pseudorabies disease. The structure of the enveloped infectious particle, the content of the viral DNA genome, and a step-by-step overview of the viral replication cycle are presented. PRV infection is initiated by binding to cellular receptors to allow penetration into the cell. After reaching the nucleus, the viral genome directs a regulated gene expression cascade that culminates with viral DNA replication and production of new virion constituents. Finally, progeny virions self-assemble and exit the host cells. Animal models and neuronal culture systems developed for the study of PRV pathogenesis and neurovirulence are discussed. PRV serves asa self-perpetuating transsynaptic tracer of neuronal circuitry, and we detail the original studies of PRV circuitry mapping, the biology underlying this application, and the development of the next generation of tracer viruses. The basic veterinary aspects of pseudorabies management and disease in swine are discussed. PRV infection progresses from acute infection of the respiratory epithelium to latent infection in the peripheral nervous system. Sporadic reactivation from latency can transmit PRV to new hosts. The successful management of PRV disease has relied on vaccination, prevention, and testing.
Collapse
Affiliation(s)
- Lisa E Pomeranz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | | | |
Collapse
|
42
|
Subramanian RP, Dunn JE, Geraghty RJ. The nectin-1alpha transmembrane domain, but not the cytoplasmic tail, influences cell fusion induced by HSV-1 glycoproteins. Virology 2005; 339:176-91. [PMID: 16005040 PMCID: PMC1360157 DOI: 10.1016/j.virol.2005.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2005] [Revised: 04/06/2005] [Accepted: 05/25/2005] [Indexed: 12/28/2022]
Abstract
Nectin-1 is a receptor for herpes simplex virus (HSV), a member of the immunoglobulin superfamily, and a cellular adhesion molecule. To study domains of nectin-1alpha involved in cell fusion, we measured the ability of nectin-1alpha/nectin-2alpha chimeras, nectin-1alpha/CD4 chimeras, and transmembrane domain and cytoplasmic tail mutants of nectin-1alpha to promote cell fusion induced by HSV-1 glycoproteins. Our results demonstrate that only chimeras and mutants containing the entire V-like domain and a link to the plasma membrane conferred cell-fusion activity. The transmembrane domain and cytoplasmic tail of nectin-1 were not required for any viral receptor or cell adhesion function tested. Cellular cytoplasmic factors that bind to the nectin-1alpha cytoplasmic tail, therefore, did not influence virus entry or cell fusion. Interestingly, the efficiency of cell fusion was reduced when membrane-spanning domains of nectin-1alpha and gD were replaced by glycosylphosphatidylinositol tethers, indicating that transmembrane domains may play a modulatory role in the gD/nectin-1alpha interaction in fusion.
Collapse
Affiliation(s)
| | | | - Robert J. Geraghty
- *To whom correspondence and reprint requests should be addressed at University of Kentucky, Department of Microbiology, Immunology, and Molecular Genetics, 800 Rose St., UKMC MS415, Lexington, KY 40536-0298. Telephone: (859)257-5147 Fax:(859)257-8994 E-mail:
| |
Collapse
|
43
|
Tiwari V, Clement C, Scanlan PM, Kowlessur D, Yue BYJT, Shukla D. A role for herpesvirus entry mediator as the receptor for herpes simplex virus 1 entry into primary human trabecular meshwork cells. J Virol 2005; 79:13173-9. [PMID: 16189018 PMCID: PMC1235852 DOI: 10.1128/jvi.79.20.13173-13179.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human eye is an important target for infection with herpes simplex virus 1 (HSV-1). Damage to cells forming the trabeculum of the eye by HSV-1 infection could contribute to the development of glaucoma, a major blinding disease. Primary cultures of human trabecular meshwork cells were used as an in vitro model to demonstrate the ability of HSV-1 to enter into and establish a productive infection of the trabeculum. Blocking of entry by anti-herpesvirus entry mediator (HVEM) antibody implicated HVEM as the major receptor for HSV-1 infection.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 60612, UK
| | | | | | | | | | | |
Collapse
|
44
|
Tiwari V, O'Donnell CD, Oh MJ, Valyi-Nagy T, Shukla D. A role for 3-O-sulfotransferase isoform-4 in assisting HSV-1 entry and spread. Biochem Biophys Res Commun 2005; 338:930-7. [PMID: 16259945 DOI: 10.1016/j.bbrc.2005.10.056] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
Many heparan sulfate (HS) 3-O-sulfotransferase (3-OST) isoforms generate cellular receptors for herpes simplex virus type-1 (HSV-1) glycoprotein D (gD). Interestingly, the ability of 3-OST-4 to mediate HSV-1 entry and cell-to-cell fusion has not been determined, although it is predominantly expressed in the brain, a primary target of HSV-1 infections. We report that expression of 3-OST-4 can render Chinese hamster ovary K1 (CHO-K1) cells susceptible to entry of wild-type and a mutant (Rid1) strain of HSV-1. Evidence for generation of gD receptors by 3-OST-4 was suggested by gD-mediated interference assay and the ability of 3-OST-4 expressing CHO-K1 cells to preferentially bind HSV-1 gD, which could be reversed by prior treatment of cells with HS lyases (heparinases-II/III). In addition, 3-OST-4 expressing CHO-K1 cells acquired the ability to fuse with cells-expressing HSV-1 glycoproteins. Demonstrating specificity, the cell fusion was inhibited by soluble 3-O-sulfated forms of HS, but not unmodified HS. Taken together our results suggest a role of 3-OST-4 in HSV-1 pathogenesis.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
45
|
Scanlan PM, Tiwari V, Bommireddy S, Shukla D. Spinoculation of heparan sulfate deficient cells enhances HSV-1 entry, but does not abolish the need for essential glycoproteins in viral fusion. J Virol Methods 2005; 128:104-12. [PMID: 15908019 DOI: 10.1016/j.jviromet.2005.04.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 04/04/2005] [Accepted: 04/05/2005] [Indexed: 10/25/2022]
Abstract
Cell surface heparan sulfate functions as a co-receptor in HSV-1 entry. In order to study its significance in context with specific gD receptors (nectin-1, HVEM, and 3-O-sulfated heparan sulfate) a low speed centrifugation based virus inoculation (spinoculation) method was used. The experiments were performed at 1200 x g using glycosylaminoglycan positive (GAG+) or deficient (GAG-) cells expressing gD receptors. Clearly, spinoculation of GAG- nectin-1 or HVEM cells enhanced significantly viral entry compared to similar but unspun cells. The enhanced entry was due to increased virus deposition at the cell surface and not due to pelleting of the virus. Among the gD receptors, spinoculated GAG- HVEM cells showed restoration of HSV-1 entry compared to unspinoculated GAG+ HVEM cells. In contrast, spinoculated GAG- nectin-1 cells showed less entry than unspinoculated GAG+ nectin-1 cells. GAG- 3-O-sulfotransferase-expressing cells or heparinase treated GAG+ 3-O-sulfated heparan sulfate cells, in contrast, remained resistant to entry even after spinoculation. To investigate further, any potential effects of centrifugation on membrane fusion, a virus-free cell fusion assay was performed. Clearly, spinning had no effects on cell fusion, nor could it replace the need for all four essential glycoproteins. Taken together these results suggest that heparan sulfate plays a role of an attachment receptor, which could be substituted by spinoculation. This effect, however, varies with the gD receptor used, which in turn, could be used as a means for identifying gD receptor usage for entry into a cell type.
Collapse
Affiliation(s)
- Perry M Scanlan
- Department of Microbiology-Immunology, College of Medicine, University of Illinois at Chicago, Lions of Illinois Eye Research Institute, M/C 648, 1855 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
46
|
Cairns TM, Landsburg DJ, Whitbeck JC, Eisenberg RJ, Cohen GH. Contribution of cysteine residues to the structure and function of herpes simplex virus gH/gL. Virology 2005; 332:550-62. [PMID: 15680420 DOI: 10.1016/j.virol.2004.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/17/2004] [Accepted: 12/02/2004] [Indexed: 11/16/2022]
Abstract
In HSV types 1 and 2, gH forms a noncovalent heterodimer with gL. Previous studies demonstrated that the first 323 amino acids of gH1 and the first 161 amino acids of gL1 are sufficient for gH/gL binding. For gL1, substitution of any of its four cysteine (C) residues (all located within the gH/gL binding region) destroyed gH binding and function. Although gH1 contains 8 cysteines in its ectodomain, gH 2 contains 7 (C3 of gH1 is replaced by arginine in gH2). We found that mutation of any of the four C-terminal cysteines led to a reduction or loss of gH/gL function. Mutation of C5 or C6 in gH1 or gH2 rendered the proteins non-functional. However, substitution of C7 and/or C8 in gH1 has a definite negative impact on cell-cell fusion, although these mutations had less effect on complementation. Remarkably, all four gH1 N-terminal cysteines could be mutated simultaneously with little effect on fusion or complementation. As gH2 already lacks C3, we constructed a triple mutant (gH2-C1/2/4) which exhibited a similar phenotype. Since gH1 is known to bind gL2 and vice versa, we wondered whether binding of gH2 to the heterologous gL1 would enhance the fusion defect seen with the gH2-C2 mutant. The combination of mutant gH2-C2 with wild-type gL1 was nonfunctional in a cell-cell fusion assay. Interestingly, the reciprocal was not true, as gH1-C2 could utilize both gL1 and gL2. These findings suggest that there is a structural difference in the gH2 N-terminus as compared to gH1. We also present genetic evidence for at least one disulfide bond within gH2, between cysteines 2 and 4.
Collapse
Affiliation(s)
- Tina M Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
47
|
Struyf F, Plate AE, Spear PG. Deletion of the second immunoglobulin-like domain of nectin-1 alters its intracellular processing and localization and ability to mediate entry of herpes simplex virus. J Virol 2005; 79:3841-5. [PMID: 15731277 PMCID: PMC1075719 DOI: 10.1128/jvi.79.6.3841-3845.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nectin-1 is an immunoglobulin (Ig)-like entry receptor for herpes simplex virus (HSV). Like other nectins, nectin-1 forms dimers and mediates cell adhesion through interactions with other nectins. We constructed a second-domain deletion mutant of nectin-1 (nectin-1-Delta2) to examine the role of the second Ig-like domain in HSV entry. Nectin-1-Delta2 exhibited a severely reduced ability to mediate HSV entry and accumulated in the endoplasmic reticulum but retained the ability to interact with its HSV ligand, gD. The failure of nectin-1-Delta2 to mediate HSV entry probably resulted from its failure to be transported to a membrane targeted by HSV for viral entry.
Collapse
Affiliation(s)
- Frank Struyf
- Northwestern University, The Feinberg School of Medicine, Department of Microbiology and Immunology, Searle 6-447, 320 E. Superior St., Chicago, IL 60611, USA
| | | | | |
Collapse
|
48
|
Connolly SA, Landsburg DJ, Carfi A, Whitbeck JC, Zuo Y, Wiley DC, Cohen GH, Eisenberg RJ. Potential nectin-1 binding site on herpes simplex virus glycoprotein d. J Virol 2005; 79:1282-95. [PMID: 15613355 PMCID: PMC538551 DOI: 10.1128/jvi.79.2.1282-1295.2005] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Four glycoproteins (gD, gB, gH, and gL) are essential for herpes simplex virus (HSV) entry into cells. An early step of fusion requires gD to bind one of several receptors, such as nectin-1 or herpesvirus entry mediator (HVEM). We hypothesize that a conformational change in gD occurs upon receptor binding that triggers the other glycoproteins to mediate fusion. Comparison of the crystal structures of gD alone and gD bound to HVEM reveals that upon HVEM binding, the gD N terminus transitions from a flexible stretch of residues to a hairpin loop. To address the contribution of this transition to the ability of gD to trigger fusion, we attempted to "lock" the gD N terminus into a looped conformation by engineering a disulfide bond at its N and C termini. The resulting mutant (gD-A3C/Y38C) failed to trigger fusion in the absence of receptor, suggesting that formation of the loop is not the sole fusion trigger. Unexpectedly, although gD-A3C/Y38C bound HVEM, it failed to bind nectin-1. This was due to the key role played by Y38 in interacting with nectin-1. Since tyrosines are often "hot spot" residues at the center of protein-protein interfaces, we mutated residues that surround Y38 on the same face of gD and tested their binding and functional properties. Our results suggest that this region of gD is important for nectin-1 interaction and is distinct from but partially overlaps the site of HVEM binding. Unique gD mutants with altered receptor usage generated in this study may help dissect the roles played by various HSV receptors during infection.
Collapse
Affiliation(s)
- Sarah A Connolly
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zago A, Jogger CR, Spear PG. Use of herpes simplex virus and pseudorabies virus chimeric glycoprotein D molecules to identify regions critical for membrane fusion. Proc Natl Acad Sci U S A 2004; 101:17498-503. [PMID: 15583135 PMCID: PMC536050 DOI: 10.1073/pnas.0408186101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Membrane fusion induced by herpes simplex virus (HSV) requires the action of four viral membrane glycoproteins (gB, gD, gH, and gL) and the binding of gD to one of its receptors, such as the herpesvirus entry mediator or nectin-1. The related animal herpesvirus, pseudorabies virus (PRV), encodes a homologous set of glycoproteins and its gD can also use nectin-1 as an entry receptor. We show here that PRV gD, when coexpressed with HSV gB, gH, and gL, cannot substitute for HSV gD in inducing fusion with target cells expressing nectin-1. Chimeric gD molecules composed of HSV and PRV sequences can substitute, provided the first 285 aa are from HSV gD. Because the first 261 aa were sufficient for receptor binding, this suggested that amino acids 262-285 contain a region required for cell fusion but not for receptor binding. Deletions from amino acids 250-299 failed to identify a specific subregion critical for cell fusion, except possibly for amino acids 250-255, which also influenced receptor binding. Instead, presence of a flexible stalk between the membrane and receptor-binding domain appears to be required, perhaps to enable conformational changes in gD on receptor binding and subsequent interactions of undefined regions of gD with the other glycoproteins required for membrane fusion.
Collapse
Affiliation(s)
- Anna Zago
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
50
|
Manoj S, Jogger CR, Myscofski D, Yoon M, Spear PG. Mutations in herpes simplex virus glycoprotein D that prevent cell entry via nectins and alter cell tropism. Proc Natl Acad Sci U S A 2004; 101:12414-21. [PMID: 15273289 PMCID: PMC515077 DOI: 10.1073/pnas.0404211101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glycoprotein D (gD) determines which cells can be infected by herpes simplex virus (HSV) by binding to one of the several cell surface receptors that can mediate HSV entry or cell fusion. These receptors include the herpesvirus entry mediator (HVEM), nectin-1, nectin-2, and sites in heparan sulfate generated by specific 3-O-sulfotransferases. The objective of the present study was to identify residues in gD that are critical for physical and functional interactions with nectin-1 and nectin-2. We found that double or triple amino acid substitutions at positions 215, 222, and 223 in gD caused marked reduction in gD binding to nectin-1 and a corresponding inability to function in cell fusion or entry of HSV via nectin-1 or nectin-2. These substitutions either enhanced or did not significantly inhibit functional interactions with HVEM and modified heparan sulfate. These and other results demonstrate that different domains of gD, with some overlap, are critical for functional interactions with each class of entry receptor. Viral entry assays, using gD mutants described here and previously, revealed that nectins are the principal entry receptors for selected human cell lines of neuronal and epithelial origin, whereas HVEM or nectins could be used to mediate entry into a T lymphocyte line. Because T cells and fibroblasts can be infected via HVEM, HSV strains carrying gD mutations that prevent entry via nectins may establish transient infections in humans, but perhaps not latent infections of neurons, and are therefore candidates for development of safe live virus vaccines and vaccine vectors.
Collapse
Affiliation(s)
- Sharmila Manoj
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|