1
|
Moles R, Omsland M, Pise-Masison CA, Subleski JJ, McVicar DW, Sarkis S, Gutowska A, Schifanella L, Doster M, Washington-Parks R, Ciminale V, Franchini G. HTLV-1 p13 Protein Hijacks Macrophage Polarization and Promotes T-Cell Recruitment. Viruses 2025; 17:471. [PMID: 40284913 PMCID: PMC12031607 DOI: 10.3390/v17040471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
The human T-cell leukemia type-1 (HTLV-1) retrovirus establishes chronic life-long infection in a fraction of infected individuals associated with severe pathological conditions. Although the mechanism driving disease development is not fully understood, current evidence indicates the essential functions of viral regulatory proteins. Among these, the p13 protein has previously been shown to localize to the inner mitochondrial membrane in T cells, altering mitochondrial biology and T-cell function. While CD4+ T cells are the primary cell target of HTLV-1 infection, genomic viral DNA has also been detected in monocytes, macrophages, and dendritic cells, which orchestrate innate and adaptive immunity and play a critical role in protecting against virus-induce diseases by establishing the appropriate balance of pro and anti-inflammatory responses. Given the central role of mitochondria in monocyte differentiation, we investigated the effect of p13 in monocytes/macrophages and found that by localizing to mitochondria, p13 affects mitochondrial respiration. Moreover, we demonstrate that p13 expression affects macrophage polarization to favor the recruitment of CD4+ T cells, the primary target of the virus, potentially facilitating the spread of viral infection and the development of disease.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Science, 5063 Bergen, Norway
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
| | - Jeffrey J. Subleski
- Cancer and Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Daniel W. McVicar
- Cancer and Innovation Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
| | - Melvin Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
| | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35122 Padua, Italy
- Veneto Institute of Oncology IOV—IRCCS, 35128 Padua, Italy
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA (C.A.P.-M.)
| |
Collapse
|
2
|
de Souza S, Melo GA, Calôba C, Campos MCS, Pimenta JV, Dutra FF, Pereira RM, Echevarria-Lima J. HTLV-1-infected cells drive the differentiation of monocytes into macrophages in vitro. BMC Immunol 2025; 26:24. [PMID: 40114046 PMCID: PMC11927243 DOI: 10.1186/s12865-024-00670-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 11/14/2024] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND The human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HAM/TSP is a chronic inflammatory neurodegenerative disease characterized by leukocyte infiltration in the spinal cord. T-lymphocytes are the most important targets of HTLV-1 infection, but monocytes are also infected. Monocytes from HTLV-1-infected individuals exhibit important functional differences compared to cells from uninfected donors. Here, we investigated the effects of cell-cell physical contact and/or secreted factors of HTLV-1-infected cells in monocyte activation and differentiation. METHODS The THP-1 human monocytic cell line was co-cultured with a human cell line transformed by HTLV-1 (MT-2) for 6 days. To determine the effects of co-culturing HTLV-1-infected cells in THP-1 monocytes cells were characterized by flow cytometry, immunofluorescence microscopy, and real-time PCR. Computational analysis of published transcriptomic datasets was realized to compare molecular profiles of macrophages and mononuclear cells from HTLV-1 carriers. RESULTS Co-culture of monocytes with HTLV-1-infected cells induced macrophage differentiation and upregulation of typical macrophages-associated molecules (HLA-DR, CD80, and CD86), increased cytokine (TNFα, IL-6, and IL-1β) levels and their coding genes expression. Consistently, published transcriptomic datasets showed changes in important genes associated with inflammation during HAM/TSP in patients. The presence of HTLV-1-infected cells in the culture also induced significant upregulation of Interferon Stimulated Genes (ISG), indicating viral infection. Monocyte activation and differentiation into pro-inflammatory macrophages occurred in a cell-to-cell contact-independent manner, suggesting the role of factors secreted by infected cells. CONCLUSIONS Together, our results indicated that HTLV-1-infected cells induced monocyte differentiation into macrophages inflammatory, predominantly.
Collapse
Affiliation(s)
- Sabrina de Souza
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Guilherme Affonso Melo
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Carolina Calôba
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Maria Clara Salgado Campos
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Juliana Vieira Pimenta
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Fabianno Ferreira Dutra
- Laboratório de Imunologia e Inflamação, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil
| | - Renata Meirelles Pereira
- Laboratório de Imunologia Molecular, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941-590, Brazil
| | - Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, CEP 21941- 590, Brazil.
- Instituto de Microbiologia Paulo de Góes, CCS, Sala I-43, UFRJ, Rio de Janeiro, CEP 21941-590, Brazil.
| |
Collapse
|
3
|
Echevarria-Lima J, Moles R. Monocyte and Macrophage Functions in Oncogenic Viral Infections. Viruses 2024; 16:1612. [PMID: 39459945 PMCID: PMC11512331 DOI: 10.3390/v16101612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Monocytes and macrophages are part of innate immunity and constitute the first line of defense against pathogens. Bone marrow-derived monocytes circulate in the bloodstream for one to three days and then typically migrate into tissues, where they differentiate into macrophages. Circulatory monocytes represent 5% of the nucleated cells in normal adult blood. Following differentiation, macrophages are distributed into various tissues and organs to take residence and maintain body homeostasis. Emerging evidence has highlighted the critical role of monocytes/macrophages in oncogenic viral infections, mainly their crucial functions in viral persistence and disease progression. These findings open opportunities to target innate immunity in the context of oncogenic viruses and to explore their potential as immunotherapies.
Collapse
Affiliation(s)
- Juliana Echevarria-Lima
- Laboratório de Imunologia Básica e Aplicada, Department of Immunology, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil;
| | - Ramona Moles
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Cancer Center and Research Institute, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Carcone A, Mortreux F, Alais S, Mathieu C, Journo C, Dutartre H. Peculiar transcriptional reprogramming with functional impairment of dendritic cells upon exposure to transformed HTLV-1-infected cells. PLoS Pathog 2024; 20:e1012555. [PMID: 39283919 PMCID: PMC11426526 DOI: 10.1371/journal.ppat.1012555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
Manipulation of immune cell functions, independently of direct infection of these cells, emerges as a key process in viral pathophysiology. Chronic infection by Human T-cell Leukemia Virus type 1 (HTLV-1) is associated with immune dysfunctions, including misdirected responses of dendritic cells (DCs). Here, we interrogate the ability of transformed HTLV-1-infected T cells to manipulate human DC functions. We show that exposure to transformed HTLV-1-infected T cells induces a biased and peculiar transcriptional signature in monocyte-derived DCs, associated with an inefficient maturation and a poor responsiveness to subsequent stimulation by a TLR4 agonist. This poor responsiveness is also associated with a unique transcriptional landscape characterized by a set of genes whose expression is either conferred, impaired or abolished by HTLV-1 pre-exposure. Induction of this functional impairment requires several hours of coculture with transformed HTLV-1-infected cells, and associated mechanisms driven by viral capture, cell-cell contacts, and soluble mediators. Altogether, this cross-talk between infected T cells and DCs illustrate how HTLV-1 might co-opt communications between cells to induce a unique local tolerogenic immune microenvironment suitable for its own persistence.
Collapse
Affiliation(s)
- Auriane Carcone
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Franck Mortreux
- Laboratory of Biology and Modelling of the Cell, University of Lyon, ENS de Lyon, University Claude Bernard, CNRS UMR 5239, Inserm U1210, Lyon, France
| | - Sandrine Alais
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Cyrille Mathieu
- Centre International de Recherche en Infectiologie, équipe Neuro-Invasion, TROpism and VIRal Encephalitis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Chloé Journo
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| | - Hélène Dutartre
- Centre International de Recherche en Infectiologie, Retroviral Oncogenesis, Inserm U1111-Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civiles de Lyon, Lyon, France
| |
Collapse
|
5
|
Naseri B, Mardi A, Khosrojerdi A, Baghbani E, Aghebati-Maleki L, Hatami-Sadr A, Heris JA, Eskandarzadeh S, Kafshdouz M, Alizadeh N, Baradaran B. Everolimus treatment enhances inhibitory immune checkpoint molecules' expression in monocyte-derived dendritic cells. Hum Immunol 2024; 85:110798. [PMID: 38569354 DOI: 10.1016/j.humimm.2024.110798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Antigen-specific T-cell immunity is provided by dendritic cells (DCs), which are specialized antigen-presenting cells. Furthermore, they establish a link between innate and adaptive immune responses. Currently, DC modification is a new approach for the therapy of several disorders. During solid organ transplantation, Everolimus, which is a mammalian target of rapamycin (mTOR) inhibitor, was initially utilized to suppress the immune system's functionality. Due to the intervention of Everolimus in various signaling pathways in cells and its modulatory properties on the immune system, this study aims to investigate the effect of treatment with Everolimus on the maturation and expression of immune checkpoint genes in monocyte-derived DCs. METHODS To isolate monocytes from PBMCs, the CD14 marker was used via the MACS method. Monocytes were cultured and induced to differentiate into monocyte-derived DCs by utilizing GM-CSF and IL-4 cytokines. On the fifth day, immature DCs were treated with Everolimus and incubated for 24 h. On the sixth day, the flow cytometry technique was used to investigate the effect of Everolimus on the phenotypic characteristics of DCs. In the end, the expression of immune checkpoint genes in both the Everolimus-treated and untreated DCs groups was assessed using the real-time PCR method. RESULTS The findings of this research demonstrated that the administration of Everolimus to DCs led to a notable rise in human leukocyte antigen (HLA)-DR expression and a decrease in CD11c expression. Furthermore, there was a significant increase in the expression of immune checkpoint molecules, namely CTLA-4, VISTA, PD-L1, and BTLA, in DCs treated with Everolimus. CONCLUSION The findings of this study show that Everolimus can target DCs and affect their phenotype and function in order to shift them toward a partially tolerogenic state. However, additional research is required to gain a comprehensive understanding of the precise impact of Everolimus on the activation status of DCs.
Collapse
Affiliation(s)
- Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezou Khosrojerdi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | - Mahshid Kafshdouz
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
6
|
Gutowska A, Sarkis S, Rahman MA, Goldfarbmuren KC, Moles R, Bissa M, Doster M, Washington-Parks R, McKinnon K, Silva de Castro I, Schifanella L, Franchini G, Pise-Masison CA. Complete Rescue of HTLV-1 p12KO Infectivity by Depletion of Monocytes Together with NK and CD8 + T Cells. Pathogens 2024; 13:292. [PMID: 38668247 PMCID: PMC11054408 DOI: 10.3390/pathogens13040292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
The transient depletion of monocytes alone prior to exposure of macaques to HTLV-1 enhances both HTLV-1WT (wild type) and HTLV-1p12KO (Orf-1 knockout) infectivity, but seroconversion to either virus is not sustained over time, suggesting a progressive decrease in virus expression. These results raise the hypotheses that either HTLV-1 persistence depends on a monocyte reservoir or monocyte depletion provides a transient immune evasion benefit. To test these hypotheses, we simultaneously depleted NK cells, CD8+ T cells, and monocytes (triple depletion) prior to exposure to HTLV-1WT or HTLV-1p12KO. Remarkably, triple depletion resulted in exacerbation of infection by both viruses and complete rescue of HTLV-1p12KO infectivity. Following triple depletion, we observed rapid and sustained seroconversion, high titers of antibodies against HTLV-1 p24Gag, and frequent detection of viral DNA in the blood and tissues of all animals when compared with depletion of only CD8+ and NK cells, or monocytes alone. The infection of macaques with HTLV-1WT or HTLV-1p12KO was associated with higher plasma levels of IL-10 after 21 weeks, while IL-6, IFN-γ, IL-18, and IL-1β were only elevated in animals infected with HTLV-1WT. The repeat depletion of monocytes, NK, and CD8+ cells seven months following the first exposure to HTLV-1 did not further exacerbate viral replication. These results underscore the contribution of monocytes in orchestrating anti-viral immunity. Indeed, the absence of orf-1 expression was fully compensated by the simultaneous depletion of CD8+ T cells, NK cells, and monocytes, underlining the primary role of orf-1 in hijacking host immunity.
Collapse
Affiliation(s)
- Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Katherine C. Goldfarbmuren
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA;
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Melvin Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD 20892, USA;
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; (A.G.); (S.S.); (I.S.d.C.)
| |
Collapse
|
7
|
Pise-Masison CA, Franchini G. Hijacking Host Immunity by the Human T-Cell Leukemia Virus Type-1: Implications for Therapeutic and Preventive Vaccines. Viruses 2022; 14:2084. [PMID: 36298639 PMCID: PMC9609126 DOI: 10.3390/v14102084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2024] Open
Abstract
Human T-cell Leukemia virus type-1 (HTLV-1) causes adult T-cell leukemia/lymphoma (ATLL), HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and other inflammatory diseases. High viral DNA burden (VL) in peripheral blood mononuclear cells is a documented risk factor for ATLL and HAM/TSP, and patients with HAM/TSP have a higher VL in cerebrospinal fluid than in peripheral blood. VL alone is not sufficient to differentiate symptomatic patients from healthy carriers, suggesting the importance of other factors, including host immune response. HTLV-1 infection is life-long; CD4+-infected cells are not eradicated by the immune response because HTLV-1 inhibits the function of dendritic cells, monocytes, Natural Killer cells, and adaptive cytotoxic CD8+ responses. Although the majority of infected CD4+ T-cells adopt a resting phenotype, antigen stimulation may result in bursts of viral expression. The antigen-dependent "on-off" viral expression creates "conditional latency" that when combined with ineffective host responses precludes virus eradication. Epidemiological and clinical data suggest that the continuous attempt of the host immunity to eliminate infected cells results in chronic immune activation that can be further exacerbated by co-morbidities, resulting in the development of severe disease. We review cell and animal model studies that uncovered mechanisms used by HTLV-1 to usurp and/or counteract host immunity.
Collapse
Affiliation(s)
- Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | |
Collapse
|
8
|
Moles R, Sarkis S, Galli V, Omsland M, Artesi M, Bissa M, McKinnon K, Brown S, Hahaut V, Washington-Parks R, Welsh J, Venzon DJ, Gutowska A, Doster MN, Breed MW, Killoran KE, Kramer J, Jones J, Moniuszko M, Van den Broeke A, Pise-Masison CA, Franchini G. NK cells and monocytes modulate primary HTLV-1 infection. PLoS Pathog 2022; 18:e1010416. [PMID: 35377924 PMCID: PMC9022856 DOI: 10.1371/journal.ppat.1010416] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/21/2022] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
We investigated the impact of monocytes, NK cells, and CD8+ T-cells in primary HTLV-1 infection by depleting cell subsets and exposing macaques to either HTLV-1 wild type (HTLV-1WT) or to the HTLV-1p12KO mutant unable to infect replete animals due to a single point mutation in orf-I that inhibits its expression. The orf-I encoded p8/p12 proteins counteract cytotoxic NK and CD8+ T-cells and favor viral DNA persistence in monocytes. Double NK and CD8+ T-cells or CD8 depletion alone accelerated seroconversion in all animals exposed to HTLV-1WT. In contrast, HTLV-1p12KO infectivity was fully restored only when NK cells were also depleted, demonstrating a critical role of NK cells in primary infection. Monocyte/macrophage depletion resulted in accelerated seroconversion in all animals exposed to HTLV-1WT, but antibody titers to the virus were low and not sustained. Seroconversion did not occur in most animals exposed to HTLV-1p12KO.In vitro experiments in human primary monocytes or THP-1 cells comparing HTLV-1WT and HTLV-1p12KO demonstrated that orf-I expression is associated with inhibition of inflammasome activation in primary cells, with increased CD47 “don’t-eat-me” signal surface expression in virus infected cells and decreased monocyte engulfment of infected cells. Collectively, our data demonstrate a critical role for innate NK cells in primary infection and suggest a dual role of monocytes in primary infection. On one hand, orf-I expression increases the chances of viral transmission by sparing infected cells from efferocytosis, and on the other may protect the engulfed infected cells by modulating inflammasome activation. These data also suggest that, once infection is established, the stoichiometry of orf-I expression may contribute to the chronic inflammation observed in HTLV-1 infection by modulating monocyte efferocytosis. The immune cells that inhibit or favor HTLV-1 infection are still unknown and their identification is critical for understanding viral pathogenesis and for the development of an effective HTLV-1 vaccine. Neutralizing antibodies are produced in natural HTLV-1 infection, but their impact is likely hampered by the virus’s ability to be transmitted from cell to cell via the virological synapse, cellular conduits, and biofilms. By depleting specific immune cell subsets in blood, we found that NK cells play a critical role in the containment of early HTLV-1 infection. Moreover, transient depletion of monocytes/macrophages results in early, but not sustained seroconversion, suggesting that early engagement of monocytes may be necessary for long-term productive infection. The engulfment of apoptotic T-cells infected by HTLV-1 may represent a viral strategy to persist in the host since the viral proteins encoded by orf-I and orf-II affect the function of receptors and proteins involved in efferocytosis. These results suggest that effective HTLV-1 vaccines must also elicit durable innate responses able to promptly clear virus invasion of monocytes through engulfment of infected T-cells to avoid the establishment of a vicious cycle that leads to chronic inflammation.
Collapse
Affiliation(s)
- Ramona Moles
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maria Artesi
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sophia Brown
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Vincent Hahaut
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Robyn Washington-Parks
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Joshua Welsh
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - David J. Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Matthew W. Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Kristin E. Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, Maryland, United States of America
| | - Jennifer Jones
- Translational Nanobiology Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Marcin Moniuszko
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Anne Van den Broeke
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
- Unit of Animal Genomics, GIGA, Université de Liège, Liège, Belgium
| | - Cynthia A. Pise-Masison
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Rocamonde B, Carcone A, Mahieux R, Dutartre H. HTLV-1 infection of myeloid cells: from transmission to immune alterations. Retrovirology 2019; 16:45. [PMID: 31870397 PMCID: PMC6929313 DOI: 10.1186/s12977-019-0506-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1), the etiological agent of adult T-cell leukemia/lymphoma (ATLL) and the demyelinating neuroinflammatory disease known as HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), was the first human retrovirus to be discovered. T-cells, which represent the main reservoir for HTLV-1, have been the main focus of studies aimed at understanding viral transmission and disease progression. However, other cell types such as myeloid cells are also target of HTLV-1 infection and display functional alterations as a consequence. In this work, we review the current investigations that shed light on infection, transmission and functional alterations subsequent to HTLV-1 infection of the different myeloid cells types, and we highlight the lack of knowledge in this regard.
Collapse
Affiliation(s)
- Brenda Rocamonde
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Auriane Carcone
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111 - Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.
- Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect, Lyon, France.
| |
Collapse
|
10
|
Navas MC, Stoll-Keller F, Pavlovic J. Lack of expression of hepatitis C virus core protein in human monocyte-erived dendritic cells using recombinant semliki forest virus. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n3.79368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatitis C Virus belongs to the Flaviviridae family. One proposed mechanism of HCV persistence in the ability to infect hematopoietic cells, including Dendritic cells (DCs). HCV infection of DCs could impair their functions that represent one of the mechanisms, thus hampering viral clearance by the host immune system. Among HCV-encoded proteins, the highly conserved Core protein has been suggested to be responsible for the immunomodulatory properties of this Hepacivirus. Recombinant viral vectors expressing the HCV Core protein and allowing its transduction and therefore the expression of the protein into DCs could be useful tools for the analysis of the properties of the Core protein. Vaccinia Virus and retrovirus have been used to transduce human DCs. Likewise, gene transfer into DCs using Semliki Forest Virus has been reported. This study aimed to express the HCV Core protein in human monocyte-derived DCs using an SFV vector, in which the subgenomic RNA encoding the structural proteins was replaced by the HCV Core sequence and then analyze the effects of its expression on DCs functions.
Collapse
|
11
|
Assil S, Futsch N, Décembre E, Alais S, Gessain A, Cosset FL, Mahieux R, Dreux M, Dutartre H. Sensing of cell-associated HTLV by plasmacytoid dendritic cells is regulated by dense β-galactoside glycosylation. PLoS Pathog 2019; 15:e1007589. [PMID: 30818370 PMCID: PMC6413949 DOI: 10.1371/journal.ppat.1007589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 03/12/2019] [Accepted: 01/22/2019] [Indexed: 01/20/2023] Open
Abstract
Human T Lymphotropic virus (HTLV) infection can persist in individuals resulting, at least in part, from viral escape of the innate immunity, including inhibition of type I interferon response in infected T-cells. Plasmacytoid dendritic cells (pDCs) are known to bypass viral escape by their robust type I interferon production. Here, we demonstrated that pDCs produce type I interferons upon physical cell contact with HTLV-infected cells, yet pDC activation inversely correlates with the ability of the HTLV-producing cells to transmit infection. We show that pDCs sense surface associated-HTLV present with glycan-rich structure referred to as biofilm-like structure, which thus represents a newly described viral structure triggering the antiviral response by pDCs. Consistently, heparan sulfate proteoglycans and especially the cell surface pattern of terminal β-galactoside glycosylation, modulate the transmission of the immunostimulatory RNA to pDCs. Altogether, our results uncover a function of virus-containing cell surface-associated glycosylated structures in the activation of innate immunity.
Collapse
Affiliation(s)
- Sonia Assil
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Nicolas Futsch
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Elodie Décembre
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Sandrine Alais
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Antoine Gessain
- Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris France
| | - François-Loïc Cosset
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Renaud Mahieux
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
| | - Marlène Dreux
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- * E-mail: (MD); (HD)
| | - Hélène Dutartre
- CIRI–Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS Lyon, Lyon, France
- * E-mail: (MD); (HD)
| |
Collapse
|
12
|
Rizkallah G, Alais S, Futsch N, Tanaka Y, Journo C, Mahieux R, Dutartre H. Dendritic cell maturation, but not type I interferon exposure, restricts infection by HTLV-1, and viral transmission to T-cells. PLoS Pathog 2017; 13:e1006353. [PMID: 28426803 PMCID: PMC5413061 DOI: 10.1371/journal.ppat.1006353] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/02/2017] [Accepted: 04/13/2017] [Indexed: 12/21/2022] Open
Abstract
Human T lymphotropic Virus type 1 (HTLV-1) is the etiological agent of Adult T cell Leukemia/Lymphoma (ATLL) and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP). Both CD4+ T-cells and dendritic cells (DCs) infected with HTLV-1 are found in peripheral blood from HTLV-1 carriers. We previously demonstrated that monocyte-derived IL-4 DCs are more susceptible to HTLV-1 infection than autologous primary T-cells, suggesting that DC infection precedes T-cell infection. However, during blood transmission, breast-feeding or sexual transmission, HTLV-1 may encounter different DC subsets present in the blood, the intestinal or genital mucosa respectively. These different contacts may impact HTLV-1 ability to infect DCs and its subsequent transfer to T-cells. Using in vitro monocyte-derived IL-4 DCs, TGF-β DCs and IFN-α DCs that mimic DCs contacting HTLV-1 in vivo, we show here that despite their increased ability to capture HTLV-1 virions, IFN-α DCs restrict HTLV-1 productive infection. Surprisingly, we then demonstrate that it is not due to the antiviral activity of type-I interferon produced by IFN-α DCs, but that it is likely to be linked to a distinct trafficking route of HTLV-1 in IL-4 DCs vs. IFN-α DCs. Finally, we demonstrate that, in contrast to IL-4 DCs, IFN-α DCs are impaired in their capacity to transfer HTLV-1 to CD4 T-cells, both after viral capture and trans-infection and after their productive infection. In conclusion, the nature of the DCs encountered by HTLV-1 upon primo-infection and the viral trafficking route through the vesicular pathway of these cells determine the efficiency of viral transmission to T-cells, which may condition the fate of infection.
Collapse
Affiliation(s)
- Gergès Rizkallah
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”, Lyon, France
| | - Sandrine Alais
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”, Lyon, France
| | - Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”, Lyon, France
| | - Yuetsu Tanaka
- Department of Immunology, Graduate School of Medicine, University of the Ryukyus, Uehara 207, Nishihara-cho, Okinawa, Japan
| | - Chloé Journo
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”, Lyon, France
| | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”, Lyon, France
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis laboratory, INSERM U1111 –Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
- Equipe labellisée “Ligue Nationale Contre le Cancer”, Lyon, France
| |
Collapse
|
13
|
Ando S, Hasegawa A, Murakami Y, Zeng N, Takatsuka N, Maeda Y, Masuda T, Suehiro Y, Kannagi M. HTLV-1 Tax-Specific CTL Epitope–Pulsed Dendritic Cell Therapy Reduces Proviral Load in Infected Rats with Immune Tolerance against Tax. THE JOURNAL OF IMMUNOLOGY 2016; 198:1210-1219. [DOI: 10.4049/jimmunol.1601557] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
|
14
|
Dendritic cells in hematological malignancies. Crit Rev Oncol Hematol 2016; 108:86-96. [DOI: 10.1016/j.critrevonc.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/05/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
|
15
|
Souza A, Santos S, Carvalho LP, Grassi MFR, Carvalho EM. Impairment of the humoral and CD4(+) T cell responses in HTLV-1-infected individuals immunized with tetanus toxoid. Hum Immunol 2016; 77:674-681. [PMID: 27282836 DOI: 10.1016/j.humimm.2016.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 05/11/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
Abstract
T cells from HTLV-1-infected individuals have a decreased ability to proliferate after stimulation with recall antigens. This abnormality may be due to the production of regulatory cytokine or a dysfunctional antigen presentation. The aims of this study were to evaluate the antibody production and cytokine expression by lymphocytes before and after immunization with tetanus toxoid (TT) and to evaluate the immune response of monocytes after stimulation with TT and frequency of dendritic cells (DC) subsets. HTLV-1 carriers (HC) and uninfected controls (UC) with negative serology for TT were immunized with TT, and the antibody titers were determined by ELISA as well as the cell activation markers expression by monocytes. The frequencies of DC subsets were determined by flow cytometry. Following immunization, the IgG anti-TT titers and the frequency of CD4(+) T cells expressing IFN-γ, TNF-α and IL-10 in response to TT were lower in the HC than in the UC. Additionally, monocytes from HC did not exhibit increased HLA-DR expression after stimulation with TT, and presented low numbers of DC subsets, therefore, it's necessary to perform functional studies with antigen-presenting cells. Collectively, our finding suggests that HC present an impairment of the humoral and CD4(+) T cell immune responses after vaccination.
Collapse
Affiliation(s)
- Anselmo Souza
- Immunology Service, Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; National Institute of Science and Technology - Tropical Diseases (INCT-DT), CNPq, Brazil
| | - Silvane Santos
- Immunology Service, Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; Biological Science Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil; National Institute of Science and Technology - Tropical Diseases (INCT-DT), CNPq, Brazil
| | - Lucas P Carvalho
- Immunology Service, Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Maria Fernanda R Grassi
- Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil; Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil
| | - Edgar M Carvalho
- Immunology Service, Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil; National Institute of Science and Technology - Tropical Diseases (INCT-DT), CNPq, Brazil; Bahiana School of Medicine and Public Health, Salvador, Bahia, Brazil; Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (Fiocruz), Salvador, Bahia, Brazil.
| |
Collapse
|
16
|
Viral Source-Independent High Susceptibility of Dendritic Cells to Human T-Cell Leukemia Virus Type 1 Infection Compared to That of T Lymphocytes. J Virol 2015; 89:10580-90. [PMID: 26269171 DOI: 10.1128/jvi.01799-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/03/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human T-cell leukemia virus type 1 (HTLV-1)-infected CD4(+) T cells and dendritic cells (DCs) are present in peripheral blood from HTLV-1 carriers. While T-cell infection requires cell-cell contact, DCs might be infected with cell-free virus, at least in vitro. However, a thorough comparison of the susceptibilities of the two cell types to HTLV-1 infection using cell-associated and cell-free viral sources has not been performed. We first determined that human primary monocyte-derived dendritic cells (MDDCs) were more susceptible to HTLV-1 infection than their autologous lymphocyte counterparts after contact with chronically infected cells. Next, a comparison of infection efficiency using nonconcentrated or concentrated supernatants from infected cells as well as purified viral biofilm was performed. Integrated provirus was found after exposure of MDDCs or primary lymphocytes to viral biofilm but not to a viral supernatant. Using a large series of primary cell samples (n = 21), we demonstrated a higher proviral load in MDDCs exposed to viral biofilm than in lymphocytes. This higher susceptibility is correlated to a higher expression of neuropilin-1 on MDDCs than on autologous activated T lymphocytes. Moreover, we show that MDDCs infected with viral biofilm can transmit the virus to lymphocytes. In conclusion, MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro, supporting a model in which DC infection might represent an important step during primo-infection in vivo. IMPORTANCE HTLV-1 is able to infect several cell types, but viral DNA is mainly found in T lymphocytes in vivo. This supports a model in which T lymphocytes are the main target of infection. However, during the primo-infection of new individuals, incoming viruses might first encounter dendritic cells (DCs), the specialized immune cells responsible for the antiviral response of the host. HTLV-1 cell-free purified viruses can infect dendritic cells in vitro, while T-cell infection is restricted to cell-to-cell transmission. In order to understand the sequence of HTLV-1 dissemination, we undertook a direct comparison of the susceptibilities of the two cell types using cell-associated and cell-free viral sources. We report here that MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro and are able to efficiently transmit the virus to lymphocytes. Our results suggest that DCs may represent a true viral reservoir, as the first cell type to be infected in vivo.
Collapse
|
17
|
Suehiro Y, Hasegawa A, Iino T, Sasada A, Watanabe N, Matsuoka M, Takamori A, Tanosaki R, Utsunomiya A, Choi I, Fukuda T, Miura O, Takaishi S, Teshima T, Akashi K, Kannagi M, Uike N, Okamura J. Clinical outcomes of a novel therapeutic vaccine with Tax peptide-pulsed dendritic cells for adult T cell leukaemia/lymphoma in a pilot study. Br J Haematol 2015; 169:356-67. [PMID: 25612920 DOI: 10.1111/bjh.13302] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/17/2014] [Indexed: 11/28/2022]
Abstract
Adult T cell leukaemia/lymphoma (ATL) is a human T cell leukaemia virus type-I (HTLV-I)-infected T cell malignancy with poor prognosis. We herein developed a novel therapeutic vaccine designed to augment an HTLV-I Tax-specific cytotoxic T lymphocyte (CTL) response that has been implicated in anti-ATL effects, and conducted a pilot study to investigate its safety and efficacy. Three previously treated ATL patients, classified as intermediate- to high-risk, were subcutaneously administered with the vaccine, consisting of autologous dendritic cells (DCs) pulsed with Tax peptides corresponding to the CTL epitopes. In all patients, the performance status improved after vaccination without severe adverse events, and Tax-specific CTL responses were observed with peaks at 16-20 weeks. Two patients achieved partial remission in the first 8 weeks, one of whom later achieved complete remission, maintaining their remission status without any additional chemotherapy 24 and 19 months after vaccination, respectively. The third patient, whose tumour cells lacked the ability to express Tax at biopsy, obtained stable disease in the first 8 weeks and later developed slowly progressive disease although additional therapy was not required for 14 months. The clinical outcomes of this pilot study indicate that the Tax peptide-pulsed DC vaccine is a safe and promising immunotherapy for ATL.
Collapse
Affiliation(s)
- Youko Suehiro
- Department of Haematology, National Kyushu Cancer Centre, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shimauchi T, Piguet V. DC-T cell virological synapses and the skin: novel perspectives in dermatology. Exp Dermatol 2014; 24:1-4. [PMID: 25039899 DOI: 10.1111/exd.12511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2014] [Indexed: 01/13/2023]
Abstract
Virological synapses (VS) increase cell-to-cell viral transmission and facilitate propagation of human immunodeficiency virus type 1 (HIV-1) and human T-cell leukaemia virus type 1 (HTLV-1). VS formation also plays a more general role in viral replication and dissemination. VS have been observed in vitro and ex vivo between uninfected T cells and T cells infected with HIV-1 or HTLV-1. In addition, dendritic cells (DC) infected with HIV-1 also play an important role in viral transmission to uninfected CD4+ T cells via VS formation. Recent studies revealed that several DC subsets are also infected with HTLV-1. These findings may help explain the rapid dissemination of both viruses within secondary lymphoid tissues in vivo. VS also explain, at least in part, why HIV-1 can propagate in the mucosal sites during sexual transmission. Furthermore, in the case of HTLV-1, VS can potentially explain some of the features of HTLV-1-associated dermatitis as infected T cells in the skin contribute to the pathogenesis of this condition.
Collapse
Affiliation(s)
- Takatoshi Shimauchi
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, School of Medicine, Cardiff University and University Hospital of Wales, Cardiff, UK
| | | |
Collapse
|
19
|
Sze A, Belgnaoui SM, Olagnier D, Lin R, Hiscott J, van Grevenynghe J. Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 2014; 14:422-34. [PMID: 24139400 DOI: 10.1016/j.chom.2013.09.009] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/28/2013] [Accepted: 09/24/2013] [Indexed: 11/17/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T cell leukemia and HTLV-1-associated myelopathies. In addition to T cells, HTLV-1 infects cells of the myeloid lineage, which play critical roles in the host innate response to viral infection. Investigating the monocyte depletion observed during HTLV-1 infection, we discovered that primary human monocytes infected with HTLV-1 undergo abortive infection accompanied by apoptosis dependent on SAMHD1, a host restriction factor that hydrolyzes endogenous dNTPs to below the levels required for productive reverse transcription. Reverse transcription intermediates (RTI) produced in the presence of SAMHD1 induced IRF3-mediated antiviral and apoptotic responses. Viral RTIs complexed with the DNA sensor STING to trigger formation of an IRF3-Bax complex leading to apoptosis. This study provides a mechanistic explanation for abortive HTLV-1 infection of monocytes and reports a link between SAMHD1 restriction, HTLV-1 RTI sensing by STING, and initiation of IRF3-Bax driven apoptosis.
Collapse
Affiliation(s)
- Alexandre Sze
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Immunological alterations and associated diseases in mandrills (Mandrillus sphinx) naturally co-infected with SIV and STLV. Virology 2014; 454-455:184-96. [DOI: 10.1016/j.virol.2014.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 01/16/2014] [Accepted: 02/18/2014] [Indexed: 12/11/2022]
|
21
|
Human T-cell leukemia/lymphoma virus type 1 p30, but not p12/p8, counteracts toll-like receptor 3 (TLR3) and TLR4 signaling in human monocytes and dendritic cells. J Virol 2013; 88:393-402. [PMID: 24155397 DOI: 10.1128/jvi.01788-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human T-cell leukemia/lymphoma virus type 1 (HTLV-1) p30 protein, essential for virus infectivity in vivo, is required for efficient infection of human dendritic cells (DCs) but not B and T cells in vitro. We used a human monocytic cell line, THP-1, and dendritic cells to study the mechanism of p30 and p12/p8 requirements in these cell types. p30 inhibited the expression of interferon (IFN)-responsive genes (ISG) following stimulation by lipopolysaccharide (LPS) of Toll-like receptor 4 (TLR4) and by poly(I·C) of TLR3 but not of TLR7/8 with imiquimod. Results with THP-1 mirrored those for ex vivo human primary monocytes and monocyte-derived dendritic cells (Mo-mDC). The effect of p30 on TLR signaling was also demonstrated by ablating its expression within a molecular clone of HTLV-1. HTLV-1 infection of monocytes inhibited TLR3- and TLR4-induced ISG expression by 50 to 90% depending on the genes, whereas the isogenic clone p30 knockout virus was less effective at inhibiting TLR3 and TRL4 signaling and displayed lower infectivity. Viral expression and inhibition of ISG transcription was, however, rescued by restoration of p30 expression. A chromatin immunoprecipitation assay demonstrated that p30 inhibits initiation and elongation of PU.1-dependent transcription of IFN-α1, IFN-β, and TLR4 genes upon TLR stimulation. In contrast, experiments conducted with p12/p8 did not demonstrate an effect on ISG expression. These results provide a mechanistic explanation of the requirement of p30 for HTLV-1 infectivity in vivo, suggest that dampening interferon responses in monocytes and DCs is specific for p30, and represent an essential early step for permissive HTLV-1 infection and persistence.
Collapse
|
22
|
Nishioka C, Ikezoe T, Yang J, Udaka K, Yokoyama A. The combination of IκB kinase β inhibitor and everolimus modulates expression of interleukin-10 in human T-cell lymphotropic virus type-1-infected T cells. Immunology 2013; 138:216-27. [PMID: 23278479 DOI: 10.1111/imm.12035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 12/22/2022] Open
Abstract
Adult T-cell leukaemia-lymphoma (ATLL) is an aggressive malignancy of CD4(+) CD25(+) T lymphocytes, characterized by a severely compromised immunosystem, in which the human T-cell lymphotropic virus type 1 (HTLV-1) has been recognized as the aetiological agent. This study found that an IκB kinase β (IKKβ) inhibitor Bay11-7082 inactivated mammalian target of rapamycin (mTOR), signal transducer and activator of transcription 3 and transcription factor nuclear factor-κB in HTLV-1-infected T cells; this was significantly enhanced in the presence of the mTOR inhibitor everolimus. In addition, Bay11-7082 decreased production of the immunosuppressive cytokine interleukin-10 (IL-10), which was further down-regulated when Bay11-7082 was combined with evelolimus in HTLV-1-infected T and ATLL cells isolated from patients. Interleukin-10 is known to inhibit maturation and the antigen-presenting function of dendritic cells (DCs). The culture media of HTLV-1-infected MT-1 cells, which contained a large amout of IL-10, hampered tumour necrosis factor-α-induced maturation of DCs isolated from healthy volunteers. Culture supernatant of MT-1 cells treated with a combination of Bay11-7082 and everolimus augmented maturation of DCs in association with a decrease in production of IL-10 and enhanced the allostimulatory function of DCs. Similarly, when DCs isolated from patients with ATLL were treated with the combination of Bay11-7082 and everolimus, they were fully matured and their capability to stimulate proliferation of lymphocytes was augmented. Taken together, the combination of Bay11-7082 and everolimus might exhibit immunostimulatory properties in HTLV-1-infected T and ATLL cells isolated from patients, and this combination may be potentially therapeutic to regain the compromised immunosystem in ATLL patients.
Collapse
Affiliation(s)
- Chie Nishioka
- Department of Immunology, Kochi Medical School, Kochi University, Nankoku, Kochi, Japan
| | | | | | | | | |
Collapse
|
23
|
Inagaki S, Takahashi M, Fukunaga Y, Takahashi H. HTLV-I-infected breast milk macrophages inhibit monocyte differentiation to dendritic cells. Viral Immunol 2012; 25:106-16. [PMID: 22356642 DOI: 10.1089/vim.2011.0069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human T-cell leukemia virus type I (HTLV-I), a causative agent of adult T-cell leukemia (ATL), is transmitted from mother to child, predominantly by breastfeeding. Oral HTLV-I infection and infection early in life are associated with a subsequent risk of ATL. Although the pathogenic mechanisms of ATL remain largely unknown, the host immune system seems to play an important role in HTLV-I pathogenesis. Previous studies have shown that monocytes from ATL patients had reduced capacity for dendritic cell (DC) differentiation. Therefore, we performed the present study to clarify the mechanisms responsible for the impairment of DC differentiation using HTLV-I-infected breast milk macrophages (HTLV-BrMMø). We found that when CD14⁺ monocytes were cultured with GM-CSF and IL-4 in the presence of HTLV-BrMMø, they altered the surface phenotype of immature DCs and the stimulatory capacity of T-cell proliferation. The presence of HTLV-BrMMø significantly blocked the increased expression of CD1a, CD1b, CD11b, DC-SIGN, and HLA-DR; however, increased expression of CD1d and CD86 was observed. These effects could be partially replicated by incubation with culture supernatants from HTLV-BrMMø. The impairment of monocyte differentiation might be not due to HTLV-I infection of monocytes, but might be due to unknown soluble factors. Since other HTLV-I-infected cells exhibited similar inhibitory effects on monocyte differentiation to DCs, we speculated that HTLV-I infection might cause the production of some inhibitory cytokines in infected cells. Identifying the factors responsible for the impairment of monocyte differentiation to DCs may be helpful to understand HTLV-I pathogenesis.
Collapse
Affiliation(s)
- Shinichiro Inagaki
- Departments of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | | | | | | |
Collapse
|
24
|
Abstract
The human immune system is under constant challenge from many viruses, some of which the body is successfully able to clear. Other viruses have evolved to escape the host immune responses and thus persist, leading to the development of chronic diseases. Dendritic cells are professional antigen-presenting cells that play a major role in both innate and adaptive immunity against different pathogens. This review focuses on the interaction of different chronic viruses with dendritic cells and the viruses' ability to exploit this critical cell type to their advantage so as to establish persistence within the host.
Collapse
Affiliation(s)
- Saifur Rahman
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | | |
Collapse
|
25
|
Journo C, Mahieux R. HTLV-1 and innate immunity. Viruses 2011; 3:1374-94. [PMID: 21994785 PMCID: PMC3185810 DOI: 10.3390/v3081374] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/20/2011] [Accepted: 08/01/2011] [Indexed: 01/12/2023] Open
Abstract
Innate immunity plays a critical role in the host response to a viral infection. The innate response has two main functions. First, it triggers effector mechanisms that restrict the infection. Second, it primes development of the adaptive response, which completes the elimination of the pathogen or of infected cells. In vivo, HTLV-1 infects T lymphocytes that participate in adaptive immunity but also monocytes and dendritic cells that are major players in innate immunity. Herein, we will review the interplay between HTLV-1 and innate immunity. Particular emphasis is put on HTLV-1-induced alteration of type-I interferon (IFN-I) function. In vitro, the viral Tax protein plays a significant role in the alteration of IFN synthesis and signaling. Despite this, IFN-I/AZT treatment of Adult T-cell Leukemia/Lymphoma (ATLL) patients leads to complete remission. We will discuss a model in which exogenous IFN-I could act both on the microenvironment of the T-cells to protect them from infection, and also on infected cells when combined with other drugs that lead to Tax down-regulation/degradation.
Collapse
Affiliation(s)
- Chloé Journo
- Retroviral Oncogenesis Laboratory, INSERM-U758 Human Virology, 69364 Lyon cedex 07, France
- Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
- IFR 128 Biosciences Lyon-Gerland, 69364 Lyon cedex 07, France
| | - Renaud Mahieux
- Retroviral Oncogenesis Laboratory, INSERM-U758 Human Virology, 69364 Lyon cedex 07, France
- Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
- IFR 128 Biosciences Lyon-Gerland, 69364 Lyon cedex 07, France
| |
Collapse
|
26
|
Orf-I and orf-II-encoded proteins in HTLV-1 infection and persistence. Viruses 2011; 3:861-85. [PMID: 21994758 PMCID: PMC3185781 DOI: 10.3390/v3060861] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 01/10/2023] Open
Abstract
The 3′ end of the human T-cell leukemia/lymphoma virus type-1 (HTLV-1) genome contains four overlapping open reading frames (ORF) that encode regulatory proteins. Here, we review current knowledge of HTLV-1 orf-I and orf-II protein products. Singly spliced mRNA from orf-I encodes p12, which can be proteolytically cleaved to generate p8, while differential splicing of mRNA from orf-II results in production of p13 and p30. These proteins have been demonstrated to modulate transcription, apoptosis, host cell activation and proliferation, virus infectivity and transmission, and host immune responses. Though these proteins are not essential for virus replication in vitro, p8, p12, p13, and p30 have an important role in the establishment and maintenance of HTLV-1 infection in vivo.
Collapse
|
27
|
Exogenous control of the expression of Group I CD1 molecules competent for presentation of microbial nonpeptide antigens to human T lymphocytes. Clin Dev Immunol 2011; 2011:790460. [PMID: 21603161 PMCID: PMC3095450 DOI: 10.1155/2011/790460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/12/2011] [Accepted: 01/19/2011] [Indexed: 12/21/2022]
Abstract
Group I CD1 (CD1a, CD1b, and CD1c) glycoproteins expressed on immature and mature dendritic cells present nonpeptide antigens (i.e., lipid or glycolipid molecules mainly of microbial origin) to T cells. Cytotoxic CD1-restricted T lymphocytes recognizing mycobacterial lipid antigens were found in tuberculosis patients. However, thanks to a complex interplay between mycobacteria and CD1 system, M. tuberculosis possesses a successful tactic based, at least in part, on CD1 downregulation to evade CD1-dependent immunity. On the ground of these findings, it is reasonable to hypothesize that modulation of CD1 protein expression by chemical, biological, or infectious agents could influence host's immune reactivity against M. tuberculosis-associated lipids, possibly affecting antitubercular resistance. This scenario prompted us to perform a detailed analysis of the literature concerning the effect of external agents on Group I CD1 expression in order to obtain valuable information on the possible strategies to be adopted for driving properly CD1-dependent immune functions in human pathology and in particular, in human tuberculosis.
Collapse
|
28
|
Abstract
AbstractHuman T-cell lymphotropic virus type 1 (HTLV-1) is a causative agent of adult T-cell leukemia and HTLV-1–associated myelopathy/tropical spastic paraparesis. HTLV-1–associated myelopathy/tropical spastic paraparesis is a chronic inflammatory disease characterized by loss of motor movement in response to spinal marrow cell destruction by T lymphocytes. To perform their cellular function, T cells need to be activated by antigen-presenting cells, such as dendritic cells (DCs). The aim of this work was to analyze DC differentiation and activation from monocytes of HTLV-1–infected individuals. We demonstrated that monocytes from HTLV-1–infected patients who had been stimulated to differentiate had an impaired loss of CD14 expression, expressed low levels of CD1a, and maintained secretion of tumor necrosis factor-α compared with monocytes from noninfected donors. We further evaluated DC activation by tumor necrosis factor-α. We observed that in response to activation, DCs that were derived from noninfected donors had an increase in the percentage of CD83+, CD86+, and human leukocyte antigen-DR+ cells, whereas in DCs derived from HTLV-1–infected patients, the percentage of CD83+, CD86+, and human leukocyte antigen-DR+ cells remained similar to that of nonactivated cells. Moreover, these cells had an impaired capacity to stimulate allogeneic T lymphocytes. We demonstrated that DC maturation was altered in HTLV-1–infected patients, which could contribute to the development of HTLV-1–associated diseases.
Collapse
|
29
|
Rahman S, Khan ZK, Wigdahl B, Jennings SR, Tangy F, Jain P. Murine FLT3 ligand-derived dendritic cell-mediated early immune responses are critical to controlling cell-free human T cell leukemia virus type 1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:390-402. [PMID: 21115731 PMCID: PMC3224812 DOI: 10.4049/jimmunol.1002570] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is associated with two immunologically distinct diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T cell leukemia. We observed previously that depletion of dendritic cells (DCs) in CD11c-diphtheria toxin receptor transgenic mice followed by infection with cell-free virus led to greater proviral and Tax mRNA loads and diminished cellular immune response compared with mice infected with cell-associated virus. To understand the significance of these in vivo results and explore the host-pathogen interaction between DCs and cell-free HTLV-1, we used FLT3 ligand-cultured mouse bone marrow-derived DCs (FL-DCs) and chimeric HTLV-1. Phenotypically, the FL-DCs upregulated expression of surface markers (CD80, CD86, and MHC class II) on infection; however, the level of MHC class I remained unchanged. We performed kinetic studies to understand viral entry, proviral integration, and expression of the viral protein Tax. Multiplex cytokine profiling revealed production of an array of proinflammatory cytokines and type 1 IFN (IFN-α) by FL-DCs treated with virus. Virus-matured FL-DCs stimulated proliferation of autologous CD3(+) T cells as shown by intracellular nuclear Ki67 staining and produced IFN-γ when cultured with infected FL-DCs. Gene expression studies using type 1 IFN-specific and DC-specific arrays revealed upregulation of IFN-stimulated genes, most cytokines, and transcription factors, but a distinct downregulation of many chemokines. Overall, these results highlight the critical early responses generated by FL-DCs on challenge with cell-free chimeric HTLV-1.
Collapse
Affiliation(s)
- Saifur Rahman
- Drexel Institute for Biotechnology and Virology Research, Doylestown, PA 18902
- Center for Cancer Biology, Drexel University College of Medicine, Philadelphia, PA 19127
- Center for Molecular Virology and Neuroimmunology, Drexel University College of Medicine, Philadelphia, PA 19127
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Zafar K. Khan
- Drexel Institute for Biotechnology and Virology Research, Doylestown, PA 18902
- Center for Cancer Biology, Drexel University College of Medicine, Philadelphia, PA 19127
- Center for Molecular Virology and Neuroimmunology, Drexel University College of Medicine, Philadelphia, PA 19127
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Brian Wigdahl
- Center for Cancer Biology, Drexel University College of Medicine, Philadelphia, PA 19127
- Center for Molecular Virology and Neuroimmunology, Drexel University College of Medicine, Philadelphia, PA 19127
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Stephen R. Jennings
- Center for Cancer Biology, Drexel University College of Medicine, Philadelphia, PA 19127
- Center for Molecular Virology and Neuroimmunology, Drexel University College of Medicine, Philadelphia, PA 19127
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Frederic Tangy
- Unité de Génomique Virale et Vaccination, Centre National de la Recherche Scientifique, Institut Pasteur, Paris, France
| | - Pooja Jain
- Drexel Institute for Biotechnology and Virology Research, Doylestown, PA 18902
- Center for Cancer Biology, Drexel University College of Medicine, Philadelphia, PA 19127
- Center for Molecular Virology and Neuroimmunology, Drexel University College of Medicine, Philadelphia, PA 19127
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19127
| |
Collapse
|
30
|
Rahman S, Manuel SL, Khan ZK, Wigdahl B, Acheampong E, Tangy F, Jain P. Depletion of dendritic cells enhances susceptibility to cell-free infection of human T cell leukemia virus type 1 in CD11c-diphtheria toxin receptor transgenic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5553-61. [PMID: 20382884 PMCID: PMC2946091 DOI: 10.4049/jimmunol.0903226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is associated with two immunologically distinct diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis and adult T cell leukemia. The genesis of these diseases is believed to be associated with the route (mucosa versus blood) and mode (cell-free versus cell-associated) of primary infection as well as the modulation of dendritic cell (DC) functions. To explore the role of DCs during early HTLV-1 infection in vivo, we used a chimeric HTLV-1 with a replaced envelope gene from Moloney murine leukemia virus to allow HTLV-1 to fuse with murine cells, which are generally not susceptible to infection with human retroviruses. We also used a CD11c-diphtheria toxin receptor transgenic mouse model system that permits conditional transient depletion of CD11c(+) DCs. We infected these transgenic mice with HTLV-1 using both cell-free and cell-associated infection routes in the absence and presence of DCs. The ablation of DCs led to an enhanced susceptibility to infection with cell-free but not cell-associated HTLV-1 in both CD4 and non-CD4 fractions, as measured by the proviral load. Infection with cell-free virus in the absence of DCs was also found to have increased levels of Tax mRNA in the non-CD4 fraction. Moreover, depletion of DCs significantly dampened the cellular immune response (IFN-gamma(+)CD8(+) T cells) against both cell-free and cell-associated virus. These results uniquely differentiate the involvement of DCs in early cell-free versus late cell-associated infection of HTLV-1 and highlight a significant aspect of viral immunopathogenesis related to the progression of adult T cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis after the initial infection.
Collapse
Affiliation(s)
- Saifur Rahman
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Center for Cancer Biology and Center for Molecular Virology and Neuroimmunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Sharrón L. Manuel
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Center for Cancer Biology and Center for Molecular Virology and Neuroimmunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Zafar K. Khan
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Center for Cancer Biology and Center for Molecular Virology and Neuroimmunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Cancer Biology and Center for Molecular Virology and Neuroimmunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Edward Acheampong
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Center for Cancer Biology and Center for Molecular Virology and Neuroimmunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
| | - Frederic Tangy
- Unité des Virus Lents, Unité de Recherche Associée, 1930 Centre Nationale de Recherche Scientifique, Institut Pasteur, Paris, France
| | - Pooja Jain
- Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, Philadelphia, PA 19127
- Department of Microbiology and Immunology, Center for Cancer Biology and Center for Molecular Virology and Neuroimmunology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19127
| |
Collapse
|
31
|
Manuel SL, Schell TD, Acheampong E, Rahman S, Khan ZK, Jain P. Presentation of human T cell leukemia virus type 1 (HTLV-1) Tax protein by dendritic cells: the underlying mechanism of HTLV-1-associated neuroinflammatory disease. J Leukoc Biol 2009; 86:1205-16. [PMID: 19656902 PMCID: PMC2774881 DOI: 10.1189/jlb.0309172] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/17/2022] Open
Abstract
HTLV-1 is the etiologic agent of a debilitating neurologic disorder, HAM/TSP. This disease features a robust immune response including the oligoclonal expansion of CD8+ CTLs specific for the viral oncoprotein Tax. The key pathogenic process resulting in the proliferation of CTLs and the presentation of Tax peptide remains uncharacterized. We have investigated the role of APCs, particularly DCs, in priming of the anti-Tax CTL response under in vitro and in vivo conditions. We investigated two routes (direct vs. indirect) of Tax presentation using live virus, infected primary CD4+/CD25+ T cells, and the CD4+ T cell line (C8166, a HTLV-1-mutated line that only expresses Tax). Our results indicated that DCs are capable of priming a pronounced Tax-specific CTL response in cell cultures consisting of naïve PBLs as well as in HLA-A*0201 transgenic mice (line HHD II). DCs were able to direct the presentation of Tax successfully through infected T cells, live virus, and cell-free Tax. These observations were comparable with those made with a known stimulant of DC maturation, a combination of CD40L and IFN-gamma. Our studies clearly establish a role for this important immune cell component in HTLV-1 immuno/neuropathogenesis and suggest that modulation of DC functions could be an important tool for therapeutic interventions.
Collapse
Affiliation(s)
- Sharrón L Manuel
- Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | | | | | | | | | | |
Collapse
|
32
|
Jain P, Manuel SL, Khan ZK, Ahuja J, Quann K, Wigdahl B. DC-SIGN mediates cell-free infection and transmission of human T-cell lymphotropic virus type 1 by dendritic cells. J Virol 2009; 83:10908-21. [PMID: 19692463 PMCID: PMC2772783 DOI: 10.1128/jvi.01054-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/12/2009] [Indexed: 12/20/2022] Open
Abstract
Despite the susceptibility of dendritic cells (DCs) to human T-cell lymphotropic virus type 1 (HTLV-1) infection and the defined role of these cells in disease pathogenesis, the mechanisms of viral binding to DCs have not been fully delineated. Recently, a glucose transporter, GLUT-1, heparan sulfate proteoglycans (HSPGs), and neuropilin-1 (NRP-1) were demonstrated to facilitate HTLV-1 entry into T cells. DCs express their own array of antigen receptors, the most important being the DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin (DC-SIGN) with respect to retrovirus binding. Consequently, the role of DC-SIGN and other HTLV-1 attachment factors was analyzed in viral binding, transmission, and productive infection using monocyte-derived DCs (MDDCs), blood myeloid DCs, and B-cell lines expressing DC-SIGN. The relative expression of DC-SIGN, GLUT-1, HSPGs, and NRP-1 first was examined on both DCs and B-cell lines. Although the inhibition of these molecules reduced viral binding, HTLV-1 transmission from DCs to T cells was mediated primarily by DC-SIGN. DC-SIGN also was shown to play a role in the infection of MDDCs as well as model B-cell lines. The HTLV-1 infection of MDDCs also was achieved in blood myeloid DCs following the enhancement of virus-induced interleukin-4 production and subsequent DC-SIGN expression in this cell population. This study represents the first comprehensive analysis of potential HTLV-1 receptors on DCs and strongly suggests that DC-SIGN plays a critical role in HTLV-1 binding, transmission, and infection, thereby providing an attractive target for the development of antiretroviral therapeutics and microbicides.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Sharrón L. Manuel
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Zafar K. Khan
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Jaya Ahuja
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Kevin Quann
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102
| |
Collapse
|
33
|
Severe loss of invariant NKT cells exhibiting anti-HTLV-1 activity in patients with HTLV-1-associated disorders. Blood 2009; 114:3208-15. [PMID: 19666871 DOI: 10.1182/blood-2009-02-203042] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are unique T cells that regulate the immune response to microbes, cancers, and autoimmunity. We assessed the characteristics of iNKT cells from persons infected with human T-lymphotropic virus type 1 (HTLV-1). Whereas most infected persons remain asymptomatic carriers (ACs) throughout their lives, a small proportion, usually with high equilibrium proviral loads,develop 2 diseases: HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia (ATL). We demonstrated that the frequency of iNKT, NK, and dendritic cells in the peripheral blood of HAM/TSP and ATL patients is decreased. We also observed an inverse correlation between the iNKT cell frequency and the HTLV-1 proviral load in the peripheral blood of infected persons. Notably, in vitro stimulation of peripheral blood cells with alpha-galactosylceramide led to an increase in the iNKT cell number and a subsequent decrease in the HTLV-1-infected T-cell number in samples from ACs but not HAM/TSP or ATL patients. Our results suggest that iNKT cells contribute to the immune defense against HTLV-1, and iNKT-cell depletion plays an important role in the pathogenesis of HAM/TSP and ATL. Therefore, iNKT cell-based immunotherapy may be an effective strategy for preventing these HTLV-1-associated disorders.
Collapse
|
34
|
Jones KS, Petrow-Sadowski C, Huang YK, Bertolette DC, Ruscetti FW. Cell-free HTLV-1 infects dendritic cells leading to transmission and transformation of CD4(+) T cells. Nat Med 2008; 14:429-36. [PMID: 18376405 DOI: 10.1038/nm1745] [Citation(s) in RCA: 213] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/29/2008] [Indexed: 11/09/2022]
Abstract
Cell-free human T-lymphotropic virus type 1 (HTLV-1) virions are poorly infectious in vitro for their primary target cells, CD4(+) T cells. Here, we show that HTLV-1 can efficiently infect myeloid and plasmacytoid dendritic cells (DCs). Moreover, DCs exposed to HTLV-1, both before and after being productively infected, can rapidly, efficiently and reproducibly transfer virus to autologous primary CD4(+) T cells. This DC-mediated transfer of HTLV-1 involves heparan sulfate proteoglycans and neuropilin-1 and results in long-term productive infection and interleukin-2-independent transformation of the CD4(+) T cells. These studies, along with observations of HTLV-1-infected DCs in the peripheral blood of infected individuals, indicate that DCs have a central role in HTLV-1 transmission, dissemination and persistence in vivo. In addition to altering the current paradigm concerning how HTLV-1 transmission occurs, these studies suggest that impairment of DC function after HTLV-1 infection plays a part in pathogenesis.
Collapse
Affiliation(s)
- Kathryn S Jones
- Basic Research Program, Science Applications International Corporation-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | |
Collapse
|
35
|
Tuyaerts S, Aerts JL, Corthals J, Neyns B, Heirman C, Breckpot K, Thielemans K, Bonehill A. Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 2007; 56:1513-37. [PMID: 17503040 PMCID: PMC11030932 DOI: 10.1007/s00262-007-0334-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/17/2007] [Indexed: 02/06/2023]
Abstract
The discovery of tumor-associated antigens, which are either selectively or preferentially expressed by tumors, together with an improved insight in dendritic cell biology illustrating their key function in the immune system, have provided a rationale to initiate dendritic cell-based cancer immunotherapy trials. Nevertheless, dendritic cell vaccination is in an early stage, as methods for preparing tumor antigen presenting dendritic cells and improving their immunostimulatory function are continuously being optimized. In addition, recent improvements in immunomonitoring have emphasized the need for careful design of this part of the trials. Still, valuable proofs-of-principle have been obtained, which favor the use of dendritic cells in subsequent, more standardized clinical trials. Here, we review the recent developments in clinical DC generation, antigen loading methods and immunomonitoring approaches for DC-based trials.
Collapse
Affiliation(s)
- Sandra Tuyaerts
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Joeri L. Aerts
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Jurgen Corthals
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Bart Neyns
- Medical Oncology, Oncology Center, University Hospital Brussels, Free University Brussels, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Carlo Heirman
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Aude Bonehill
- Laboratory of Molecular and Cellular Therapy, Department of Physiology and Immunology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| |
Collapse
|
36
|
Jain P, Ahuja J, Khan ZK, Shimizu S, Meucci O, Jennings SR, Wigdahl B. Modulation of dendritic cell maturation and function by the Tax protein of human T cell leukemia virus type 1. J Leukoc Biol 2007; 82:44-56. [PMID: 17442856 PMCID: PMC2712352 DOI: 10.1189/jlb.1006641] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human T cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is characterized by the generation of an intense CTL cell response directed against the viral transactivator protein Tax. In addition, patients diagnosed with HAM/TSP exhibit rapid activation and maturation of dendritic cells (DC), likely contributing to the robust, Tax-specific CTL response. In this study, extracellular Tax has been shown to induce maturation and functional alterations in human monocyte-derived DC, critical observations being confirmed in freshly isolated myeloid DC. Tax was shown to promote the production of proinflammatory cytokines and chemokines involved in the DC activation process in a dose- and time-dependent manner. Furthermore, Tax induced the expression of DC activation (CD40, CD80, and CD86) and maturation (CD83) markers and enhanced the T cell proliferation capability of DC. Heat inactivation of Tax resulted in abrogation of these effects, indicating a requirement for the native structure of Tax, which was found to bind efficiently to the DC membrane and was internalized within a few hours, suggesting that extracellular Tax may possess an intracellular mechanism of action subsequent to entry. Finally, inhibitors of cellular signaling pathways, NF-kappaB, protein kinase, tyrosine kinase, and phospholipase C, were shown to inhibit Tax-mediated DC activation. This is the first study reporting the immunomodulatory effects of extracellular Tax in the DC compartment. These results suggest that DC, once exposed to Tax by uptake from the extracellular environment, can undergo activation, providing constant antigen presentation and costimulation to T cells, leading to the intense T cell proliferation and inflammatory responses underlying HAM/TSP.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Microbiology and Immunology Institute for Molecular Medicine and Infectious Disease and Centers for Molecular Virology and Neuroimmunology and Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Jaya Ahuja
- Department of Microbiology and Immunology Institute for Molecular Medicine and Infectious Disease and Centers for Molecular Virology and Neuroimmunology and Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Zafar K. Khan
- Department of Microbiology and Immunology Institute for Molecular Medicine and Infectious Disease and Centers for Molecular Virology and Neuroimmunology and Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Saori Shimizu
- Department of Pharmacology and Physiology, Institute for Molecular Medicine and Infectious Disease and Centers for Molecular Virology and Neuroimmunology and Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Institute for Molecular Medicine and Infectious Disease and Centers for Molecular Virology and Neuroimmunology and Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Stephen R. Jennings
- Department of Microbiology and Immunology Institute for Molecular Medicine and Infectious Disease and Centers for Molecular Virology and Neuroimmunology and Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology Institute for Molecular Medicine and Infectious Disease and Centers for Molecular Virology and Neuroimmunology and Cancer Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Datta A, Sinha-Datta U, Dhillon NK, Buch S, Nicot C. The HTLV-I p30 Interferes with TLR4 Signaling and Modulates the Release of Pro- and Anti-inflammatory Cytokines from Human Macrophages. J Biol Chem 2006; 281:23414-24. [PMID: 16785240 DOI: 10.1074/jbc.m600684200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Whereas adaptive immunity has been extensively studied, very little is known about the innate immunity of the host to HTLV-I infection. HTLV-I-infected ATL patients have pronounced immunodeficiency associated with frequent opportunistic infections, and in these patients, concurrent infections with bacteria and/or parasites are known to increase risks of progression to ATL. The Toll-like receptor-4 (TLR4) activation in response to bacterial infection is essential for dendritic cell maturation and links the innate and adaptive immune responses. Recent reports indicate that TLR4 is targeted by viruses such as RSV, HCV, and MMTV. Here we report that HTLV-I has also evolved a protein that interferes with TLR4 signaling; p30 interacts with and inhibits the DNA binding and transcription activity of PU.1 resulting in the down-regulation of the TLR4 expression from the cell surface. Expression of p30 hampers the release of pro-inflammatory cytokines MCP-1, TNF-alpha, and IL-8 and stimulates release of anti-inflammatory IL-10 following stimulation of TLR4 in human macrophage. Finally, we found that p30 increases phosphorylation and inactivation of GSK3-beta a key step for IL-10 production. Our study suggests a novel function of p30, which may instigate immune tolerance by reducing activation of adaptive immunity in ATL patients.
Collapse
Affiliation(s)
- Abhik Datta
- Department of Microbiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | |
Collapse
|
38
|
Ceccaldi PE, Delebecque F, Prevost MC, Moris A, Abastado JP, Gessain A, Schwartz O, Ozden S. DC-SIGN facilitates fusion of dendritic cells with human T-cell leukemia virus type 1-infected cells. J Virol 2006; 80:4771-80. [PMID: 16641270 PMCID: PMC1472089 DOI: 10.1128/jvi.80.10.4771-4780.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions between the oncogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) and dendritic cells (DCs) are poorly characterized. We show here that monocyte-derived DCs form syncytia and are infected upon coculture with HTLV-1-infected lymphocytes. We examined the role of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin expressed in DCs, in HTLV-1-induced syncytium formation. DC-SIGN is known to bind with high affinity to various viral envelope glycoproteins, including human immunodeficiency virus (HIV) and hepatitis C virus, as well as to the cellular receptors ICAM-2 and ICAM-3. After cocultivating DCs and HTLV-1-infected cells, we found that anti-DC-SIGN monoclonal antibodies (MAbs) were able to decrease the number and size of HTLV-1-induced syncytia. Moreover, expression of the lectin in epithelial-cell lines dramatically enhanced the ability to fuse with HTLV-1-positive cells. Interestingly, in contrast to the envelope (Env) glycoproteins of HIV and other viruses, that of HTLV-1 does not bind directly to DC-SIGN. The facilitating role of the lectin in HTLV-1 syncytium formation is mediated by its interaction with ICAM-2 and ICAM-3, as demonstrated by use of MAbs directed against these adhesion molecules. Altogether, our results indicate that DC-SIGN facilitates HTLV-1 infection and fusion of DCs through an ICAM-dependent mechanism.
Collapse
Affiliation(s)
- Pierre-Emmanuel Ceccaldi
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris Cedex 15, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Pollara G, Kwan A, Newton PJ, Handley ME, Chain BM, Katz DR. Dendritic cells in viral pathogenesis: protective or defective? Int J Exp Pathol 2005; 86:187-204. [PMID: 16045541 PMCID: PMC2517433 DOI: 10.1111/j.0959-9673.2005.00440.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DC) are potent antigen-presenting cells that are critical in the initiation of immune responses to control and/or eliminate viral infections. Recent studies have investigated the effects of virus infection on the biology of DC. This review summarizes these changes, focusing on both the DC parameters affected and the viral factors involved. In addition, the central role of DC biology in the pathogenesis of several viral families, including herpesviruses, paramyxoviruses and retroviruses, is explored. The field of pathogen recognition by DC is addressed, focusing on its role in protecting the host from viral infection, as well as the ability of viruses to exploit such host receptor ligation and signalling to their replicative advantage. The hypothesis is proposed that virus and host have evolved a symbiotic relationship to ensure both viral transmission and host survival.
Collapse
Affiliation(s)
- Gabriele Pollara
- Department of Immunology and Molecular Pathology, University College London, Windeyer Institute of Medical Sciences, London W1T 4JF, UK.
| | | | | | | | | | | |
Collapse
|
40
|
Rinaldo CR, Piazza P. Virus infection of dendritic cells: portal for host invasion and host defense. Trends Microbiol 2004; 12:337-45. [PMID: 15223061 DOI: 10.1016/j.tim.2004.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dendritic cells (DCs) act as a portal for virus invasion and as the most potent antigen-presenting cells in antiviral host defense. Human immunodeficiency virus (HIV)-1 has served as the paradigm for virus interaction with DCs. HIV-1 infection of DCs via its primary CD4 receptor and secondary chemokine receptors leads to full virus replication (cis infection), whereas binding to C-type lectin receptors results both in cis replication, as well as transfer and replication of virus in CD4(pos) T cells (trans infection). DCs respond to this invasion by processing viral proteins through MHC class I and II pathways and undergoing a maturation that enhances their presentation of antigen to T cells for induction of adaptive antiviral immunity. HIV-1 and other viruses have evolved mechanisms to subvert this immune function. Engineering of DCs with various forms of viral immunogens and co-treatment with cytokines and chemokines is being used as an immunotherapy for HIV-1 and other viral infections.
Collapse
Affiliation(s)
- Charles R Rinaldo
- Department of Infectious Diseases and Microbiology and Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
41
|
Fantuzzi L, Purificato C, Donato K, Belardelli F, Gessani S. Human immunodeficiency virus type 1 gp120 induces abnormal maturation and functional alterations of dendritic cells: a novel mechanism for AIDS pathogenesis. J Virol 2004; 78:9763-72. [PMID: 15331709 PMCID: PMC515003 DOI: 10.1128/jvi.78.18.9763-9772.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play a crucial role in bridging innate and acquired immune responses to pathogens. In human immunodeficiency virus type 1 (HIV-1) infection, immature DCs (iDCs) are also main targets for HIV-1 at the mucosal level. In this study, we evaluated the effects of HIV-1-DC interactions on the maturation and functional activity of these cells. Exposure of human monocyte-derived iDCs to either aldrithiol-2-inactivated HIV-1 or gp120 led to an upmodulation of activation markers indicative of functional maturation. Despite their phenotype, these cells retained antigen uptake capacity and showed an impaired ability to secrete cytokines or chemokines and to induce T-cell proliferation. Although gp120 did not interfere with DC differentiation, the capacity of these cells to produce interleukin-12 (IL-12) upon maturation was markedly reduced. Likewise, iDCs stimulated by classical maturation factors in the presence of gp120 lacked allostimulatory capacity and did not produce IL-12, in spite of their phenotype typical of activated DCs. Exogenous addition of IL-12 restores the allostimulatory capacity of gp120-exposed DCs. The finding that gp120 induces abnormal maturation of DCs linked to profound suppression of their activities unravels a novel mechanism by which HIV can lead to immune dysfunction in AIDS patients.
Collapse
Affiliation(s)
- Laura Fantuzzi
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | | | |
Collapse
|
42
|
Nath MD, Ruscetti FW, Petrow-Sadowski C, Jones KS. Regulation of the cell-surface expression of an HTLV-I binding protein in human T cells during immune activation. Blood 2003; 101:3085-92. [PMID: 12506039 DOI: 10.1182/blood-2002-07-2277] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the requirements for human T-cell leukemia virus type I (HTLV-I) entry, including the identity of the cellular receptor(s). Recently, we have generated an HTLV-I surface glycoprotein (SU) immunoadhesin, HTSU-IgG, which binds specifically to cell-surface protein(s) critical for HTLV-I-mediated entry in cell lines. Here, expression of the HTLV-I SU binding protein on primary cells of the immune system was examined. The immunoadhesin specifically bound to adult T cells, B cells, NK cells, and macrophages. Cell stimulation dramatically increased the amount of binding, with the highest levels of binding on CD4(+) and CD8(+) T cells. Naive (CD45RA(high), CD62L(high)) CD4(+) T cells derived from cord blood cells, in contrast to other primary cells and all cell lines examined, bound no detectable HTLV-I SU. However, following stimulation, the level of HTSU-IgG binding was rapidly induced (fewer than 6 hours), reaching the level of binding seen on adult CD4(+) T cells by 72 hours. In contrast to HTLV-I virions, the soluble HTSU-IgG did not effect T-cell activation or proliferation. When incubated with human peripheral blood mononuclear cells in a mixed leukocyte reaction, HTSU-IgG inhibited proliferation at less than 1 ng/mL. These results indicate that cell-surface expression of the HTLV SU binding protein is up-regulated during in vitro activation and suggest a role for the HTLV-I SU binding proteins in the immunobiology of CD4(+) T cells.
Collapse
Affiliation(s)
- Manisha D Nath
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, MD 21702, USA
| | | | | | | |
Collapse
|
43
|
Shimokubo S, Wakamatsu SI, Maeda Y, Baba M, Makino M. Fusion of mature dendritic cells and human T-lymphotropic virus type I infected T cells: its efficiency as an antigen-presenting cell. Virology 2002; 301:13-20. [PMID: 12359442 DOI: 10.1006/viro.2002.1546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monocyte-derived dendritic cells (DCs) from adult T cell leukemia are impaired in taking up exogenous antigens. To overcome this impairment, we fused unpulsed DCs to human T-lymphotropic virus type I (HTLV-I)-infected CD4(+) T cells (fusion DC-T cells). The efficiency of fusion was 50% and the fusion cells expressed higher HLA-ABC and CD86 Ags than HTLV-I-infected DCs. The fusion DC-T cells stimulated autologous CD4(+) and CD8(+) T cells, but DCs fused to itself or PHA-blasts did not stimulate any subsets. The functionally highest fusion DC-T cells was obtained when a DC and HTLV-I-infected T cells were fused at a ratio of 3:1. Expression of HTLV-Igag Ag on CD4(+) T cells was up-regulated when infected in the presence of 8-azaguanine, and these fusion DC-T cells were quite efficient in induction of higher CD8(+) T cell response. The results suggest that fusion DC-T cells produce functionally competent Ag-presenting cells and may be a likely candidate for immunotherapeutic use.
Collapse
Affiliation(s)
- Satoshi Shimokubo
- Department of Microbiology, Leprosy Research Center, National Institute of Infectious Diseases, Tokyo, 189-0002, Japan
| | | | | | | | | |
Collapse
|
44
|
Hashimoto K, Maeda Y, Kimura H, Suzuki K, Masuda A, Matsuoka M, Makino M. Mycobacterium leprae infection in monocyte-derived dendritic cells and its influence on antigen-presenting function. Infect Immun 2002; 70:5167-76. [PMID: 12183567 PMCID: PMC128241 DOI: 10.1128/iai.70.9.5167-5176.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2002] [Revised: 04/08/2002] [Accepted: 05/31/2002] [Indexed: 11/20/2022] Open
Abstract
Host defense against Mycobacterium leprae infection is chiefly mediated by gamma interferon (IFN-gamma)-secreting cytotoxic T cells. Since which antigen-presenting cell populations act to stimulate these T cells is not fully understood, we addressed the role of monocyte-derived dendritic cells (DCs). The DCs phagocytosed M. leprae and expressed bacterially derived antigens (Ags), such as phenolic glycolipid 1 (PGL-1), in the cytoplasm, as well as on the cell surface. The expression of HLA-ABC and -DR Ags on DCs was down-regulated by M. leprae infection, and that of CD86 was up-regulated, but not as fully as by Mycobacterium bovis BCG infection. Induction of CD83 expression required a large number of M. leprae cells. When a multiplicity of infection of >40 was used, the DCs induced a significant proliferative and IFN-gamma-producing response in autologous T cells. However, these responses were significantly lower than those induced by BCG- or Mycobacterium avium-infected DCs. A CD40-mediated signaling in M. leprae-infected DCs up-regulated the expression of HLA Ags, CD86, and CD83 but did not enhance T-cell-stimulating ability. Therefore, M. leprae-infected DCs are less efficient at inducing T-cell responses. However, when the surface PGL-1 on M. leprae-infected DCs was masked by a monoclonal antibody, the DCs induced enhanced responses in both CD4(+)- and CD8(+)-T-cell subsets. M. leprae is a unique pathogen which remains resistant to DC-mediated T-cell immunity, at least in the early stages of infection.
Collapse
Affiliation(s)
- Ken Hashimoto
- Department of Microbiology, Leprosy Research Center, National Institute of Infectious Diseases, Higashimurayama, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Navas MC, Fuchs A, Schvoerer E, Bohbot A, Aubertin AM, Stoll-Keller F. Dendritic cell susceptibility to hepatitis C virus genotype 1 infection. J Med Virol 2002; 67:152-61. [PMID: 11992576 DOI: 10.1002/jmv.2204] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro infection of human monocyte-derived dendritic cells was carried out to study their susceptibility to hepatitis C virus (HCV) infection. Immature dendritic cells and mature dendritic cells were incubated overnight at 37 degrees C with HCV-positive (genotype 1) serum samples; the presence of the viral genome associated with the production of its replicative intermediate was used as evidence of infection. In immature dendritic cells, HCV RNA was detectable from days 1-10 post-infection (p.i.), and de novo synthesis of negative-strand HCV RNA could be demonstrated by a strand-specific rTth reverse transcription-polymerase chain reaction at day 2. In mature dendritic cells, the positive-strand form was detectable from days 1-5 p.i., while the negative-strand HCV RNA appeared at days 1 and 2 p.i. Quasispecies present in the inoculum and 6 days p.i. were analyzed by sequencing hypervariable region 1 of the E2 protein. Only two of seven HVR variants present in the inoculum were found in HCV-infected immature dendritic cells. Another two HVR variants not found in the inoculum were recovered from infected immature dendritic cells, suggesting serum minor variants selection or virus evolution during in vitro replication. Analysis by single-strand conformation polymorphism assay of 5' untranslated region of HCV sequences showed that the patterns obtained from the inoculum and infected immature dendritic cells and mature dendritic cells differed slightly. These findings indicate that both immature dendritic cells and mature dendritic cells are susceptible to HCV genotype 1 infection, supporting at least HCV RNA replication. This model should be a valuable tool for the study of modulation of dendritic cell functions in HCV infection.
Collapse
|
46
|
Grant C, Barmak K, Alefantis T, Yao J, Jacobson S, Wigdahl B. Human T cell leukemia virus type I and neurologic disease: events in bone marrow, peripheral blood, and central nervous system during normal immune surveillance and neuroinflammation. J Cell Physiol 2002; 190:133-59. [PMID: 11807819 DOI: 10.1002/jcp.10053] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human T cell lymphotropic/leukemia virus type I (HTLV-I) has been identified as the causative agent of both adult T cell leukemia (ATL) and HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Although the exact sequence of events that occur during the early stages of infection are not known in detail, the initial route of infection may predetermine, along with host, environmental, and viral factors, the subset of target cells and/or the primary immune response encountered by HTLV-I, and whether an HTLV-I-infected individual will remain asymptomatic, develop ATL, or progress to the neuroinflammatory disease, HAM/TSP. Although a large number of studies have indicated that CD4(+) T cells represent an important target for HTLV-I infection in the peripheral blood (PB), additional evidence has accumulated over the past several years demonstrating that HTLV-I can infect several additional cellular compartments in vivo, including CD8(+) T lymphocytes, PB monocytes, dendritic cells, B lymphocytes, and resident central nervous system (CNS) astrocytes. More importantly, extensive latent viral infection of the bone marrow, including cells likely to be hematopoietic progenitor cells, has been observed in individuals with HAM/TSP as well as some asymptomatic carriers, but to a much lesser extent in individuals with ATL. Furthermore, HTLV-I(+) CD34(+) hematopoietic progenitor cells can maintain the intact proviral genome and initiate viral gene expression during the differentiation process. Introduction of HTLV-I-infected bone marrow progenitor cells into the PB, followed by genomic activation and low level viral gene expression may lead to an increase in proviral DNA load in the PB, resulting in a progressive state of immune dysregulation including the generation of a detrimental cytotoxic Tax-specific CD8(+) T cell population, anti-HTLV-I antibodies, and neurotoxic cytokines involved in disruption of myelin-producing cells and neuronal degradation characteristic of HAM/TSP.
Collapse
Affiliation(s)
- Christian Grant
- Laboratory for Molecular Retrovirology and Viral Neuropathogenesis, Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | |
Collapse
|
47
|
Makino M, Utsunomiya A, Maeda Y, Shimokubo S, Izumo S, Baba M. Association of CD40 ligand expression on HTLV-I-infected T cells and maturation of dendritic cells. Scand J Immunol 2001; 54:574-81. [PMID: 11902332 DOI: 10.1046/j.1365-3083.2001.01003.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human T lymphotropic virus type I (HTLV-I) induces HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T-cell leukemia (ATL). The development of HAM/TSP is associated with rapid maturation of dendritic cells (DCs), while ATL is accomplished with their maturation defect. The DC maturation is induced by cell-to-cell contact with CD4+ T cells expressing CD40 ligand (L). We determined the influence of CD40L expressed on various HTLV-I-infected T cells on the DC maturation. Around 60% of CD4+ T cells infected with HTLV-I for 1 week, expressed CD40L molecules involved in DC maturation. DCs matured by the CD40L+ T cells activated autologous CD4+ and CD8+ T cells. HTLV-I-immortalized T-cell lines established from healthy donors consistently expressed CD40L molecules for 3 months, however, some lines lost the expression soon thereafter. Interleukin (IL)-2-independent and transformed lines lacked that expression. Furthermore, T cells obtained from HAM/TSP patients expressed CD40L molecules for at least 3 weeks, whereas T cells from ATL patients did not express that. The CD40L T cells did not induce DC maturation, and required exogenous CD40L molecules for maturation. The CD40L+ T-cell-induced maturation was blocked by anti-CD40L antibody. Therefore, the lack of CD40L expression on HTLV-I-infected T cells may be associated with the development of ATL.
Collapse
Affiliation(s)
- M Makino
- Division of Human Retrovirus, Center for Chronic Viral Diseases, Faculty of Medicine, Kagoshima University, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Siegel RS, Gartenhaus RB, Kuzel TM. Human T-cell lymphotropic-I-associated leukemia/lymphoma. Curr Treat Options Oncol 2001; 2:291-300. [PMID: 12057109 DOI: 10.1007/s11864-001-0022-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human T-cell lymphotropic virus-I (HTLV-I)-related adult T-cell leukemia/lymphoma (ATL) is a model disease for proof of viral oncogenesis. HTLV-I infection is endemic in southern Japan and the Caribbean basin, and occurs sporadically in Africa, Central and South America, the Middle East, and the southeastern United States. ATL occurs in only 2% to 4% of HTLV-I-infected people [1-3]. When it does occur, it is usually aggressive and difficult to treat; most people survive for less than 1 year [1-3]. Combination chemotherapy with cytotoxic agents has yielded complete response rates of 20% to 45%, but responses usually last only a few months [3]. Recently, novel treatments, such as monoclonal antibodies directed at the interleukin-2 receptor and the combination of interferon alfa and zidovudine, have been shown to be active in the treatment of patients with ATL. A small percentage of patients achieve long-lasting remissions [2,3].
Collapse
Affiliation(s)
- R S Siegel
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Medical School, and the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 676 N. St. Clair, Suite 850, Chicago, IL 60611, USA
| | | | | |
Collapse
|