1
|
Zhang M, Yang Q, Lou J, Hu Y, Shi Y. A new strategy to HER2-specific antibody discovery through artificial intelligence-powered phage display screening based on the Trastuzumab framework. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167772. [PMID: 40056877 DOI: 10.1016/j.bbadis.2025.167772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Human epidermal growth factor receptor 2 (HER2) is a recognized drug target, and it serves as a critical target for various cancer treatments, necessitating the discovery of more antibodies for therapeutic and detection purposes. Here, we have developed an innovative workflow for antibody generation through Artificial Intelligence-powered Phage Display Screening (AIPDS). This workflow integrates artificial intelligence-driven antibody CDRH3 sequence design, high-throughput DNA synthesis and phage display screening. We applied AIPDS workflow to generate promising antibodies against the human epidermal growth factor receptor 2 (HER2), offering a template for streamlined antibody generation. Seven novel antibodies stood out, demonstrating promising efficacy in various functional assays. Notably, DYHER2-02 demonstrates strong performance across all experimental tests. In summary, our study introduces a novel methodology to generate new antibody variants of an existing antibody using an AI-assisted phage display approach. These new antibody variants hold potential applications in research, diagnosis, and therapeutic applications.
Collapse
Affiliation(s)
- Mancang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jiangrong Lou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Yang Hu
- United Research Center for Next Generation DNA Synthesis of SJTU-Dynegene, Shanghai 201108, People's Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China.
| |
Collapse
|
2
|
Stephens AD, Wilkinson T. Discovery of Therapeutic Antibodies Targeting Complex Multi-Spanning Membrane Proteins. BioDrugs 2024; 38:769-794. [PMID: 39453540 PMCID: PMC11530565 DOI: 10.1007/s40259-024-00682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Complex integral membrane proteins, which are embedded in the cell surface lipid bilayer by multiple transmembrane spanning polypeptides, encompass families of proteins that are important target classes for drug discovery. These protein families include G protein-coupled receptors, ion channels, transporters, enzymes, and adhesion molecules. The high specificity of monoclonal antibodies and the ability to engineer their properties offers a significant opportunity to selectively bind these target proteins, allowing direct modulation of pharmacology or enabling other mechanisms of action such as cell killing. Isolation of antibodies that bind these types of membrane proteins and exhibit the desired pharmacological function has, however, remained challenging due to technical issues in preparing membrane protein antigens suitable for enabling and driving antibody drug discovery strategies. In this article, we review progress and emerging themes in defining discovery strategies for a generation of antibodies that target these complex membrane protein antigens. We also comment on how this field may develop with the emerging implementation of computational techniques, artificial intelligence, and machine learning.
Collapse
Affiliation(s)
- Amberley D Stephens
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
| | - Trevor Wilkinson
- Department of Biologics Engineering, Oncology R&D, The Discovery Centre, AstraZeneca, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK.
| |
Collapse
|
3
|
Giang KA, Sidhu SS, Nilvebrant J. Construction of Synthetic Antibody Phage Display Libraries. Methods Mol Biol 2023; 2702:59-75. [PMID: 37679615 DOI: 10.1007/978-1-0716-3381-6_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Synthetic antibody libraries provide a vast resource of renewable antibody reagents that can rival natural antibodies and be rapidly isolated through controlled in vitro selections. Use of highly optimized human frameworks enables the incorporation of defined diversity at positions that are most likely to contribute to antigen recognition. This protocol describes the construction of synthetic antibody libraries based on a single engineered human autonomous variable heavy domain scaffold with diversity in all three complementarity-determining regions. The resulting libraries can be used to generate recombinant domain antibodies targeting a wide range of protein antigens using phage display. Furthermore, analogous methods can be used to construct antibody libraries based on larger antibody fragments or second-generation libraries aimed to fine-tune antibody characteristics including affinity, specificity, and manufacturability. The procedures rely on standard reagents and equipment available in most molecular biology laboratories.
Collapse
Affiliation(s)
- Kim Anh Giang
- Division of Protein Engineering, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden
| | - Sachdev S Sidhu
- School of Pharmacy, University of Waterloo, Kitchener, ON, Canada
| | - Johan Nilvebrant
- Division of Protein Engineering, School of Chemistry, Biotechnology and Health, Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
4
|
Sherpa D, Mueller J, Karayel Ö, Xu P, Yao Y, Chrustowicz J, Gottemukkala KV, Baumann C, Gross A, Czarnecki O, Zhang W, Gu J, Nilvebrant J, Sidhu SS, Murray PJ, Mann M, Weiss MJ, Schulman BA, Alpi AF. Modular UBE2H-CTLH E2-E3 complexes regulate erythroid maturation. eLife 2022; 11:e77937. [PMID: 36459484 PMCID: PMC9718529 DOI: 10.7554/elife.77937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
The development of haematopoietic stem cells into mature erythrocytes - erythropoiesis - is a controlled process characterized by cellular reorganization and drastic reshaping of the proteome landscape. Failure of ordered erythropoiesis is associated with anaemias and haematological malignancies. Although the ubiquitin system is a known crucial post-translational regulator in erythropoiesis, how the erythrocyte is reshaped by the ubiquitin system is poorly understood. By measuring the proteomic landscape of in vitro human erythropoiesis models, we found dynamic differential expression of subunits of the CTLH E3 ubiquitin ligase complex that formed maturation stage-dependent assemblies of topologically homologous RANBP9- and RANBP10-CTLH complexes. Moreover, protein abundance of CTLH's cognate E2 ubiquitin conjugating enzyme UBE2H increased during terminal differentiation, and UBE2H expression depended on catalytically active CTLH E3 complexes. CRISPR-Cas9-mediated inactivation of CTLH E3 assemblies or UBE2H in erythroid progenitors revealed defects, including spontaneous and accelerated erythroid maturation as well as inefficient enucleation. Thus, we propose that dynamic maturation stage-specific changes of UBE2H-CTLH E2-E3 modules control the orderly progression of human erythropoiesis.
Collapse
Affiliation(s)
- Dawafuti Sherpa
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Judith Mueller
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Özge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Peng Xu
- Cyrus Tang Medical Institute, National Clinical Research Centre for Hematologic Diseases, Collaborative Innovation Centre of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow UniversitySuzhouChina
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Yu Yao
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Jakub Chrustowicz
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Karthik V Gottemukkala
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Christine Baumann
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Annette Gross
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Oliver Czarnecki
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Wei Zhang
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
| | - Jun Gu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Johan Nilvebrant
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Sachdev S Sidhu
- Donnelly Centre for Cellular and Biomolecular Research, University of TorontoTorontoCanada
- Department of Molecular Genetics, University of TorontoTorontoCanada
| | - Peter J Murray
- Department of Immunoregulation, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children’s Research HospitalMemphisUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
5
|
Henrique IDM, Sacerdoti F, Ferreira RL, Henrique C, Amaral MM, Piazza RMF, Luz D. Therapeutic Antibodies Against Shiga Toxins: Trends and Perspectives. Front Cell Infect Microbiol 2022; 12:825856. [PMID: 35223548 PMCID: PMC8866733 DOI: 10.3389/fcimb.2022.825856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/11/2022] [Indexed: 12/22/2022] Open
Abstract
Shiga toxins (Stx) are AB5-type toxins, composed of five B subunits which bind to Gb3 host cell receptors and an active A subunit, whose action on the ribosome leads to protein synthesis suppression. The two Stx types (Stx1 and Stx2) and their subtypes can be produced by Shiga toxin-producing Escherichia coli strains and some Shigella spp. These bacteria colonize the colon and induce diarrhea that may progress to hemorrhagic colitis and in the most severe cases, to hemolytic uremic syndrome, which could lead to death. Since the use of antibiotics in these infections is a topic of great controversy, the treatment remains supportive and there are no specific therapies to ameliorate the course. Therefore, there is an open window for Stx neutralization employing antibodies, which are versatile molecules. Indeed, polyclonal, monoclonal, and recombinant antibodies have been raised and tested in vitro and in vivo assays, showing differences in their neutralizing ability against deleterious effects of Stx. These molecules are in different phases of development for which we decide to present herein an updated report of these antibody molecules, their source, advantages, and disadvantages of the promising ones, as well as the challenges faced until reaching their applicability.
Collapse
Affiliation(s)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Camila Henrique
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Roxane Maria Fontes Piazza
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| | - Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo, Brazil
- *Correspondence: Roxane Maria Fontes Piazza, ; Daniela Luz,
| |
Collapse
|
6
|
Luz D, Gómez FD, Ferreira RL, Melo BS, Guth BEC, Quintilio W, Moro AM, Presta A, Sacerdoti F, Ibarra C, Chen G, Sidhu SS, Amaral MM, Piazza RMF. The Deleterious Effects of Shiga Toxin Type 2 Are Neutralized In Vitro by FabF8:Stx2 Recombinant Monoclonal Antibody. Toxins (Basel) 2021; 13:toxins13110825. [PMID: 34822608 PMCID: PMC8621789 DOI: 10.3390/toxins13110825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/26/2022] Open
Abstract
Hemolytic Uremic Syndrome (HUS) associated with Shiga-toxigenic Escherichia coli (STEC) infections is the principal cause of acute renal injury in pediatric age groups. Shiga toxin type 2 (Stx2) has in vitro cytotoxic effects on kidney cells, including human glomerular endothelial (HGEC) and Vero cells. Neither a licensed vaccine nor effective therapy for HUS is available for humans. Recombinant antibodies against Stx2, produced in bacteria, appeared as the utmost tool to prevent HUS. Therefore, in this work, a recombinant FabF8:Stx2 was selected from a human Fab antibody library by phage display, characterized, and analyzed for its ability to neutralize the Stx activity from different STEC-Stx2 and Stx1/Stx2 producing strains in a gold standard Vero cell assay, and the Stx2 cytotoxic effects on primary cultures of HGEC. This recombinant Fab showed a dissociation constant of 13.8 nM and a half maximum effective concentration (EC50) of 160 ng/mL to Stx2. Additionally, FabF8:Stx2 neutralized, in different percentages, the cytotoxic effects of Stx2 and Stx1/2 from different STEC strains on Vero cells. Moreover, it significantly prevented the deleterious effects of Stx2 in a dose-dependent manner (up to 83%) in HGEC and protected this cell up to 90% from apoptosis and necrosis. Therefore, this novel and simple anti-Stx2 biomolecule will allow further investigation as a new therapeutic option that could improve STEC and HUS patient outcomes.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Fernando D. Gómez
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Raíssa L. Ferreira
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Bruna S. Melo
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
| | - Beatriz E. C. Guth
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Sāo Paulo, Sao Paulo 04023-062, Brazil;
| | - Wagner Quintilio
- Laboratório de Biofármacos, Instituto Butantan, Sao Paulo 05503-900, Brazil; (W.Q.); (A.M.M.)
| | - Ana Maria Moro
- Laboratório de Biofármacos, Instituto Butantan, Sao Paulo 05503-900, Brazil; (W.Q.); (A.M.M.)
| | - Agostina Presta
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
| | - Gang Chen
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, OT M5S 3E1, Canada; (G.C.); (S.S.S.)
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, OT M5S 3E1, Canada; (G.C.); (S.S.S.)
| | - María Marta Amaral
- Laboratorio de Fisiopatogenia, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (F.D.G.); (A.P.); (F.S.); (C.I.)
- Correspondence: (M.M.A.); (R.M.F.P.)
| | - Roxane M. F. Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Sao Paulo 05503-900, Brazil; (D.L.); (R.L.F.); (B.S.M.)
- Correspondence: (M.M.A.); (R.M.F.P.)
| |
Collapse
|
7
|
Nilvebrant J, Ereño-Orbea J, Gorelik M, Julian MC, Tessier PM, Julien JP, Sidhu SS. Systematic Engineering of Optimized Autonomous Heavy-Chain Variable Domains. J Mol Biol 2021; 433:167241. [PMID: 34508727 DOI: 10.1016/j.jmb.2021.167241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 01/06/2023]
Abstract
Autonomous heavy-chain variable (VH) domains are the smallest functional antibody fragments, and they possess unique features, including small size and convex paratopes, which provide enhanced targeting of concave epitopes that are difficult to access with larger conventional antibodies. However, human VH domains have evolved to fold and function with a light chain partner, and alone, they typically suffer from low stability and high aggregation propensity. Development of autonomous human VH domains, in which aggregation propensity is reduced without compromising antigen recognition, has proven challenging. Here, we used an autonomous human VH domain as a scaffold to construct phage-displayed synthetic libraries in which aspartate was systematically incorporated at different paratope positions. In selections, the library yielded many anti-EphA1 receptor VH domains, which were characterized in detail. Structural analyses of a parental anti-EphA1 VH domain and an improved variant provided insights into the effects of aspartate and other substitutions on preventing aggregation while retaining function. Our naïve libraries and in vitro selection procedures offer a systematic approach to generating highly functional autonomous human VH domains that resist aggregation and could be used for basic research and biomedical applications.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - June Ereño-Orbea
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Maryna Gorelik
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Mark C Julian
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter M Tessier
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Departments of Chemical Engineering, Pharmaceutical Sciences, and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute and Departments of Biochemistry and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
8
|
Short Read-Length Next Generation DNA Sequencing of Antibody CDR Combinations from Phage Selection Outputs. Methods Mol Biol 2021. [PMID: 34478134 DOI: 10.1007/978-1-0716-1450-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Phage display is commonly used to select target-binding antibody fragments from large libraries containing billions of unique antibody clones. In practice, selection outputs are often highly heterogenous, making it desirable to recover sequence information from the selected pool. Next Generation DNA Sequencing (NGS) enables the acquisition of sufficient sequencing reads to cover the pool diversity, however read-lengths are typically too short to capture paired antibody complementarity-determining regions (CDRs), which is needed to reconstruct target-binding antibody fragments. Here, we describe a simple in vitro protocol to bring the DNA encoding the antibody CDRs closer together. The final PCR product referred to as a "CDR strip" is suitable for short read-length NGS. In this method, phagemid ssDNA is recovered from antibody phage display biopanning and used as a template to create a heteroduplex with deletions between CDRs of interest. The shorter strand in the heteroduplex is preferentially PCR amplified to generate a CDR strip that is sequenced using NGS. We have also included a bioinformatics approach to analyze the CDR strip populations so that single antibody clones can be created from paired CDR sequences.
Collapse
|
9
|
Mwale PF, Lee CH, Huang PN, Tseng SN, Shih SR, Huang HY, Leu SJ, Huang YJ, Chiang LC, Mao YC, Wang WC, Yang YY. In Vitro Characterization of Neutralizing Hen Antibodies to Coxsackievirus A16. Int J Mol Sci 2021; 22:4146. [PMID: 33923724 PMCID: PMC8074035 DOI: 10.3390/ijms22084146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
Coxsackievirus A16 (CA16) is one of the major causative agents of hand, foot, and mouth disease (HFMD). Children aged <5 years are the most affected by CA16 HFMD globally. Although clinical symptoms of CA16 infections are usually mild, severe complications, such as aseptic meningitis or even death, have been recorded. Currently, no vaccine or antiviral therapy for CA16 infection exists. Single-chain variable fragment (scFv) antibodies significantly inhibit viral infection and could be a potential treatment for controlling the infection. In this study, scFv phage display libraries were constructed from splenocytes of a laying hen immunized with CA16-infected lysate. The pComb3X vector containing the scFv genes was introduced into ER2738 Escherichia coli and rescued by helper phages to express scFv molecules. After screening with five cycles of bio-panning, an effective scFv antibody showing favorable binding activity to proteins in CA16-infected lysate on ELISA plates was selected. Importantly, the selected scFv clone showed a neutralizing capability against the CA16 virus and cross-reacted with viral proteins in EV71-infected lysate. Intriguingly, polyclonal IgY antibody not only showed binding specificity against proteins in CA16-infected lysate but also showed significant neutralization activities. Nevertheless, IgY-binding protein did not cross-react with proteins in EV71-infected lysate. These results suggest that the IgY- and scFv-binding protein antibodies provide protection against CA16 viral infection in in vitro assays and may be potential candidates for treating CA16 infection in vulnerable young children.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (H.-Y.H.); (Y.-J.H.)
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (H.-Y.H.); (Y.-J.H.)
| | - Peng-Nien Huang
- Division of Infectious Diseases, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Sung-Nien Tseng
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333323, Taiwan;
| | - Shin-Ru Shih
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan 333423, Taiwan;
| | - Hsin-Yuan Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (H.-Y.H.); (Y.-J.H.)
| | - Sy-Jye Leu
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yun-Ju Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (H.-Y.H.); (Y.-J.H.)
| | - Liao-Chun Chiang
- Institute of Bioinformatics and Structural Biology, College of Life Sciences, National Tsing Hua University, Hsinchu 300040, Taiwan;
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan;
| | - Wei-Chu Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (H.-Y.H.); (Y.-J.H.)
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
10
|
Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J, Doerner A, Krah S, Hust M, Zielonka S. Antibody display technologies: selecting the cream of the crop. Biol Chem 2021; 403:455-477. [PMID: 33759431 DOI: 10.1515/hsz-2020-0377] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 02/07/2023]
Abstract
Antibody display technologies enable the successful isolation of antigen-specific antibodies with therapeutic potential. The key feature that facilitates the selection of an antibody with prescribed properties is the coupling of the protein variant to its genetic information and is referred to as genotype phenotype coupling. There are several different platform technologies based on prokaryotic organisms as well as strategies employing higher eukaryotes. Among those, phage display is the most established system with more than a dozen of therapeutic antibodies approved for therapy that have been discovered or engineered using this approach. In recent years several other technologies gained a certain level of maturity, most strikingly mammalian display. In this review, we delineate the most important selection systems with respect to antibody generation with an emphasis on recent developments.
Collapse
Affiliation(s)
- Bernhard Valldorf
- Chemical and Pharmaceutical Development, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Steffen C Hinz
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Giulio Russo
- Abcalis GmbH, Inhoffenstrasse 7, D-38124Braunschweig, Germany.,Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Lukas Pekar
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Laura Mohr
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, Max-von-Laue-Strasse 13, D-60438Frankfurt am Main, Germany
| | - Janina Klemm
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Simon Krah
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstrasse 7, D-38106Braunschweig, Germany
| | - Stefan Zielonka
- Protein Engineering and Antibody Technologies, Merck KGaA, Frankfurter Strasse 250, D-64293Darmstadt, Germany
| |
Collapse
|
11
|
Makowski EK, Wu L, Gupta P, Tessier PM. Discovery-stage identification of drug-like antibodies using emerging experimental and computational methods. MAbs 2021; 13:1895540. [PMID: 34313532 PMCID: PMC8346245 DOI: 10.1080/19420862.2021.1895540] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 11/30/2022] Open
Abstract
There is intense and widespread interest in developing monoclonal antibodies as therapeutic agents to treat diverse human disorders. During early-stage antibody discovery, hundreds to thousands of lead candidates are identified, and those that lack optimal physical and chemical properties must be deselected as early as possible to avoid problems later in drug development. It is particularly challenging to characterize such properties for large numbers of candidates with the low antibody quantities, concentrations, and purities that are available at the discovery stage, and to predict concentrated antibody properties (e.g., solubility, viscosity) required for efficient formulation, delivery, and efficacy. Here we review key recent advances in developing and implementing high-throughput methods for identifying antibodies with desirable in vitro and in vivo properties, including favorable antibody stability, specificity, solubility, pharmacokinetics, and immunogenicity profiles, that together encompass overall drug developability. In particular, we highlight impressive recent progress in developing computational methods for improving rational antibody design and prediction of drug-like behaviors that hold great promise for reducing the amount of required experimentation. We also discuss outstanding challenges that will need to be addressed in the future to fully realize the great potential of using such analysis for minimizing development times and improving the success rate of antibody candidates in the clinic.
Collapse
Affiliation(s)
- Emily K. Makowski
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Lina Wu
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering
| | - Priyanka Gupta
- Department of Biochemistry and Biophysics, Rensselaer Polytechnic Institute, Troy, NY, USA
- Biotherapeutics Discovery Department, Boehringer Ingelheim, Ridgefield, CT, USA
| | - Peter M. Tessier
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Chang YC, Kao CY, Tang HC, Huang MS, Mou KY. Direct Antibody Isolation on Cells Using Affinity-Tag-Guided Proximity Selection. Biochemistry 2020; 59:4285-4293. [DOI: 10.1021/acs.biochem.0c00730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- You-Chiun Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chia-Yi Kao
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan
| | - Hao-Cheng Tang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Sen Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
13
|
Chi X, Liu X, Wang C, Zhang X, Li X, Hou J, Ren L, Jin Q, Wang J, Yang W. Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Nat Commun 2020; 11:4528. [PMID: 32913273 PMCID: PMC7483421 DOI: 10.1038/s41467-020-18387-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/12/2020] [Indexed: 01/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads worldwide and leads to an unprecedented medical burden and lives lost. Neutralizing antibodies provide efficient blockade for viral infection and are a promising category of biological therapies. Here, using SARS-CoV-2 spike receptor-binding domain (RBD) as a bait, we generate a panel of humanized single domain antibodies (sdAbs) from a synthetic library. These sdAbs reveal binding kinetics with the equilibrium dissociation constant (KD) of 0.99–35.5 nM. The monomeric sdAbs show half maximal neutralization concentration (EC50) of 0.0009–0.07 µg/mL and 0.13–0.51 µg/mL against SARS-CoV-2 pseudotypes, and authentic SARS-CoV-2, respectively. Competitive ligand-binding experiments suggest that the sdAbs either completely block or significantly inhibit the association between SARS-CoV-2 RBD and viral entry receptor ACE2. Fusion of the human IgG1 Fc to sdAbs improve their neutralization activity by up to ten times. These results support neutralizing sdAbs as a potential alternative for antiviral therapies. Here, using a humanized phage display library with recombinant SARS- CoV-2 receptor binding domain (RBD) proteins, the authors identify a number of single domain antibodies (sdAbs) that neutralize SARS-CoV-2 in vitro by inhibiting the interaction of the RDB with the host entry receptor ACE2.
Collapse
Affiliation(s)
- Xiaojing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiuying Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Conghui Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinhui Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Li
- Beijing Kawin Technology Co., Ltd., Beijing, China
| | - Jianhua Hou
- Beijing Kawin Technology Co., Ltd., Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
14
|
Hanna R, Cardarelli L, Patel N, Blazer LL, Adams JJ, Sidhu SS. A phage-displayed single-chain Fab library optimized for rapid production of single-chain IgGs. Protein Sci 2020; 29:2075-2084. [PMID: 32803886 DOI: 10.1002/pro.3931] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022]
Abstract
Phage-displayed synthetic antibody (Ab) repertoires have become a major source of affinity reagents for basic and clinical research. Specific Abs identified from such libraries are often screened as fragments antigen binding (Fabs) produced in bacteria, and those with desired biochemical characteristics are reformatted for production as full-length immunoglobulin G (IgG) in mammalian cells. The conversion of Fabs to IgGs is a cumbersome and often rate-limiting step in the development of Abs. Moreover, biochemical properties required for lead IgG development are not always shared by the Fabs, and these issues are not uncovered until a significant effort has been spent on Abs that ultimately will not be useful. Thus, there is a need for simple and rapid techniques to convert phage-displayed Fabs to IgGs at an early stage of the Ab screening process. We report the generation of a highly diverse phage-displayed synthetic single-chain Fab (scFab) library, in which the light and heavy chains were tethered with an optimized linker. Following selection, pools of scFabs were converted to single-chain IgGs (scIgGs) en masse, enabling facile screening of hundreds of phage-derived scIgGs. We show that this approach can be used to rapidly screen for and select scIgGs that target cell-surface receptors, and scIgGs behave the same as conventional IgGs.
Collapse
Affiliation(s)
- Rachel Hanna
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Lia Cardarelli
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Nish Patel
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Levi L Blazer
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jarrett J Adams
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sachdev S Sidhu
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Suryamohan K, Seshagiri S. Naja naja (Indian Cobra). Trends Genet 2020; 36:804-806. [PMID: 32768150 DOI: 10.1016/j.tig.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/16/2022]
Affiliation(s)
| | - Somasekar Seshagiri
- ModMab Therapeutics, Foster City, CA 94404, USA; SciGenom Research Foundation, Chennai 600 020, India.
| |
Collapse
|
16
|
Mwale PF, Lee CH, Lin LT, Leu SJ, Huang YJ, Chiang LC, Mao YC, Yang YY. Expression, Purification, and Characterization of Anti- Zika virus Envelope Protein: Polyclonal and Chicken-Derived Single Chain Variable Fragment Antibodies. Int J Mol Sci 2020; 21:ijms21020492. [PMID: 31940993 PMCID: PMC7014089 DOI: 10.3390/ijms21020492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Zika virus (ZIKV) is a new and emerging virus that has caused outbreaks worldwide. The virus has been linked to congenital neurological malformations in neonates and Guillain-Barré syndrome in adults. Currently there are no effective vaccines available. As a result, there is a great need for ZIKV treatment. In this study, we developed single chain variable fragment (scFv) antibodies that target the ZIKV envelope protein using phage display technology. We first induced an immune response in white leghorn laying hens against the ZIKV envelope (E) protein. Chickens were immunized and polyclonal immunoglobulin yolk (IgY) antibodies were extracted from egg yolks. A high-level titer of anti-ZIKV_E IgY antibodies was detected using enzyme-linked immunosorbent assay (ELISA) after the third immunization. The titer persisted for at least 9 weeks. We constructed two antibody libraries that contained 5.3 × 106 and 4.5 × 106 transformants. After biopanning, an ELISA phage assay confirmed the enrichment of specific clones. We randomly selected 26 clones that expressed ZIKV scFv antibodies and classified them into two groups, short-linker and long-linker. Of these, four showed specific binding activities toward ZIKV_E proteins. These data suggest that the polyclonal and monoclonal scFv antibodies have the diagnostic or therapeutic potential for ZIKV.
Collapse
Affiliation(s)
- Pharaoh Fellow Mwale
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chi-Hsin Lee
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Liang-Tzung Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (L.-T.L.); (S.-J.L.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Sy-Jye Leu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (L.-T.L.); (S.-J.L.)
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yun-Ju Huang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Liao-Chun Chiang
- College of Life Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Yi-Yuan Yang
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (P.F.M.); (C.-H.L.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-273-616-61 (ext. 3325); Fax: +886-2-273-245-10
| |
Collapse
|
17
|
Covarrubias-Zambrano O, Yu J, Bossmann SH. Nano-Inspired Technologies for Peptide Delivery. Curr Protein Pept Sci 2019; 21:379-400. [PMID: 31793426 DOI: 10.2174/1389203720666191202112429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/26/2019] [Accepted: 10/02/2019] [Indexed: 12/15/2022]
Abstract
Nano-inspired technologies offer unique opportunities to treat numerous diseases by using therapeutic peptides. Therapeutic peptides have attractive pharmacological profiles and can be manufactured at relatively low costs. The major advantages of using a nanodelivery approach comprises significantly lower required dosages compared to systemic delivery, and thus reduced toxicity and immunogenicity. The combination of therapeutic peptides with delivery peptides and nanoparticles or small molecule drugs offers systemic treatment approaches, instead of aiming for single biological targets or pathways. This review article discusses exemplary state-of-the-art nanosized delivery systems for therapeutic peptides and antibodies, as well as their biochemical and biophysical foundations and emphasizes still remaining challenges. The competition between using different nanoplatforms, such as liposome-, hydrogel-, polymer-, silica nanosphere-, or nanosponge-based delivery systems is still "on" and no clear frontrunner has emerged to date.
Collapse
Affiliation(s)
| | - Jing Yu
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States.,Johns Hopkins University, Department of Radiology, Baltimore, MD, United States
| | - Stefan H Bossmann
- Department of Chemistry, Kansas State University, 419 CBC Building, Manhattan, KS 66506-0401, United States
| |
Collapse
|
18
|
Liu B, Long S, Liu J. Improving the mutagenesis efficiency of the Kunkel method by codon optimization and annealing temperature adjustment. N Biotechnol 2019; 56:46-53. [PMID: 31726223 DOI: 10.1016/j.nbt.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 10/30/2019] [Accepted: 11/10/2019] [Indexed: 01/19/2023]
Abstract
The Kunkel method is a widely used site-directed mutagenesis strategy that introduces point mutations by annealing mutation-containing oligonucleotides to single-stranded uracil-containing DNA (dU-ssDNA) templates. The method is fast and inexpensive and has been routinely employed to generate point mutations and multi-site mutations. However, its efficiency for point mutations is highly variable. In this work, codons in both DNA templates and mutagenic oligonucleotides were optimized to lower the GC percentage (GC%) of the complementary regions, and the oligonucleotide length was also extended to reduce the GC difference between upstream and downstream regions. These modifications largely increased the mutation efficiency of single-site mutagenesis. In addition, a multi-stage cooling programme was developed in the annealing step specifically for multi-site mutagenesis, which increased the simultaneous mutation efficiency. The modifications will help in generating antibody libraries by effectively randomizing multiple CDRs simultaneously.
Collapse
Affiliation(s)
- Bin Liu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | | | - Jianghai Liu
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China.
| |
Collapse
|
19
|
Luz D, Amaral MM, Sacerdoti F, Bernal AM, Quintilio W, Moro AM, Palermo MS, Ibarra C, Piazza RMF. Human Recombinant Fab Fragment Neutralizes Shiga Toxin Type 2 Cytotoxic Effects in vitro and in vivo. Toxins (Basel) 2018; 10:E508. [PMID: 30513821 PMCID: PMC6315604 DOI: 10.3390/toxins10120508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022] Open
Abstract
Shiga toxin (Stx) producing Escherichia coli (STEC) is responsible for causing hemolytic uremic syndrome (HUS), a life-threatening thrombotic microangiopathy characterized by thrombocytopenia, hemolytic anemia, and acute renal failure after bacterially induced hemorrhagic diarrhea. Until now, there has been neither an effective treatment nor method of prevention for the deleterious effects caused by Stx intoxication. Antibodies are well recognized as affinity components of therapeutic drugs; thus, a previously obtained recombinant human FabC11:Stx2 fragment was used to neutralize Stx2 in vitro in a Vero cell viability assay. Herein, we demonstrated that this fragment neutralized, in a dose-dependent manner, the cytotoxic effects of Stx2 on human glomerular endothelial cells, on human proximal tubular epithelial cells, and prevented the morphological alterations induced by Stx2. FabC11:Stx2 protected mice from a lethal dose of Stx2 by toxin-antibody pre-incubation. Altogether, our results show the ability of a new encouraging molecule to prevent Stx-intoxication symptoms during STEC infection.
Collapse
Affiliation(s)
- Daniela Luz
- Laboratório de Bacteriologia, Instituto Butantan, São Paulo 05503900, Brasil.
| | - Maria Marta Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Flavia Sacerdoti
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | - Alan Mauro Bernal
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Wagner Quintilio
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Ana Maria Moro
- Laboratório de Biofármacos em Células Animais, Instituto Butantan, São Paulo, SP 05503-900, Brazil.
| | - Marina Sandra Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, (IMEX)-CONICET-Academia Nacional de Medicina, Buenos Aires C1425, Argentina.
| | - Cristina Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121, Argentina.
| | | |
Collapse
|
20
|
Pavlovic Z, Adams JJ, Blazer LL, Gakhal AK, Jarvik N, Steinhart Z, Robitaille M, Mascall K, Pan J, Angers S, Moffat J, Sidhu SS. A synthetic anti-Frizzled antibody engineered for broadened specificity exhibits enhanced anti-tumor properties. MAbs 2018; 10:1157-1167. [PMID: 30183492 DOI: 10.1080/19420862.2018.1515565] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Secreted Wnt ligands play a major role in the development and progression of many cancers by modulating signaling through cell-surface Frizzled receptors (FZDs). In order to achieve maximal effect on Wnt signaling by targeting the cell surface, we developed a synthetic antibody targeting six of the 10 human FZDs. We first identified an anti-FZD antagonist antibody (F2) with a specificity profile matching that of OMP-18R5, a monoclonal antibody that inhibits growth of many cancers by targeting FZD7, FZD1, FZD2, FZD5 and FZD8. We then used combinatorial antibody engineering by phage display to develop a variant antibody F2.A with specificity broadened to include FZD4. We confirmed that F2.A blocked binding of Wnt ligands, but not binding of Norrin, a ligand that also activates FZD4. Importantly, F2.A proved to be much more efficacious than either OMP-18R5 or F2 in inhibiting the growth of multiple RNF43-mutant pancreatic ductal adenocarcinoma cell lines, including patient-derived cells.
Collapse
Affiliation(s)
- Zvezdan Pavlovic
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Jarrett J Adams
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Levi L Blazer
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Amandeep K Gakhal
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Nick Jarvik
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Zachary Steinhart
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Mélanie Robitaille
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - Keith Mascall
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada
| | - James Pan
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada
| | - Stephane Angers
- b Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy , University of Toronto , Toronto , Canada.,c Department of Biochemistry , University of Toronto , Toronto , Canada
| | - Jason Moffat
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada.,e Canadian Institute for Advanced Research , Toronto , Canada
| | - Sachdev S Sidhu
- a Terrence Donnelly Centre for Cellular and Biomolecular Research , University of Toronto , Toronto , Canada.,d Department of Molecular Genetics , University of Toronto , Toronto , Canada
| |
Collapse
|