1
|
Bettinsoli V, Melzi G, Marchese I, Pantaleoni S, Passoni FC, Corsini E. New approach methodologies to assess wanted and unwanted drugs-induced immunostimulation. Curr Res Toxicol 2025; 8:100222. [PMID: 40027547 PMCID: PMC11872130 DOI: 10.1016/j.crtox.2025.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
This review examines various classes of drugs, focusing on their therapeutic and adverse effects, particularly in relation to immunostimulation. We emphasize the potential of new approach methodologies (NAMs) to study both expected and unexpected immunostimulatory effects. By evaluating the modes of action of different immunostimulatory drugs, we aim to provide insights into effectively assessing unwanted immunostimulatory responses. The review begins by exploring drugs that stimulate the immune system-including immunostimulants, monoclonal antibodies, chemotherapeutics, and nucleic acid-based drugs-to outline NAMs that could be employed to evaluate immunostimulation.
Collapse
Affiliation(s)
- Valeria Bettinsoli
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Irene Marchese
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Sofia Pantaleoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Francesca Carlotta Passoni
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences ‘Rodolfo Paoletti’, Università degli Studi di Milano, Via Balzaretti 9 20133 Milan, Italy
| |
Collapse
|
2
|
Daood NJ, Russo DP, Chung E, Qin X, Zhu H. Predicting Chemical Immunotoxicity through Data-Driven QSAR Modeling of Aryl Hydrocarbon Receptor Agonism and Related Toxicity Mechanisms. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:474-485. [PMID: 39049897 PMCID: PMC11264268 DOI: 10.1021/envhealth.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/27/2024]
Abstract
Computational modeling has emerged as a time-saving and cost-effective alternative to traditional animal testing for assessing chemicals for their potential hazards. However, few computational modeling studies for immunotoxicity were reported, with few models available for predicting toxicants due to the lack of training data and the complex mechanisms of immunotoxicity. In this study, we employed a data-driven quantitative structure-activity relationship (QSAR) modeling workflow to extensively enlarge the limited training data by revealing multiple targets involved in immunotoxicity. To this end, a probe data set of 6,341 chemicals was obtained from a high-throughput screening (HTS) assay testing for the activation of the aryl hydrocarbon receptor (AhR) signaling pathway, a key event leading to immunotoxicity. Searching this probe data set against PubChem yielded 3,183 assays with testing results for varying proportions of these 6,341 compounds. 100 assays were selected to develop QSAR models based on their correlations to AhR agonism. Twelve individual QSAR models were built for each assay using combinations of four machine-learning algorithms and three molecular fingerprints. 5-fold cross-validation of the resulting models showed good predictivity (average CCR = 0.73). A total of 20 assays were further selected based on QSAR model performance, and their resulting QSAR models showed good predictivity of potential immunotoxicants from external chemicals. This study provides a computational modeling strategy that can utilize large public toxicity data sets for modeling immunotoxicity and other toxicity endpoints, which have limited training data and complicated toxicity mechanisms.
Collapse
Affiliation(s)
- Nada J. Daood
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Daniel P. Russo
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
| | - Elena Chung
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
- Center
for Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Xuebin Qin
- Tulane
National Primate Research Center, Tulane
University School of Medicine, Covington, Louisiana 70433, United States
| | - Hao Zhu
- Department
of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey 08028, United States
- Center
for Biomedical Informatics and Genomics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
3
|
Quan H, Jun H, Kim K, Lee SK, Heo Y, Seok SH, Na YR. Development of a transcriptome-based determination of innate immune suppressor (TDIS) assay as an in vitro test for immunotoxicity. Arch Toxicol 2023; 97:495-507. [PMID: 36416909 DOI: 10.1007/s00204-022-03406-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022]
Abstract
Immunotoxicity has been an important topic in toxicology since inadvertent exposures to xenobiotics were found to alter immune functions in humans. While rodent toxicity tests can reveal some levels of immunotoxicity, alternative methods must be developed to identify the detailed mechanisms. In this study, a method of in vitro prediction of innate immune suppression by substances was developed using a genomics approach. The primary selection of immune suppressors was based on their ability to downregulate MCP-1, CCL3, TNF, IL-8, and IL-12p40 expression levels in lipopolysaccharide (LPS)-stimulated THP-1 cells. Among 11 substances classified as potent immune suppressors, six including dexamethasone, tacrolimus, tofacitinib, prednisolone, sodium lauryl sulfate, and benzoic acid were used to create a dataset by transcriptomics of chemical-treated THP-1 cells using bulk RNA sequencing. We selected genes that were significantly upregulated by suppressor treatment while filtering out genes also upregulated in LPS-treated THP-1 cells. We identified a 226-gene immunosuppressive gene set (ISG). Innate immune suppressor signature scores were calculated as the median expression of the ISG. In a validation dataset, the signature score predicted acyclovir, cyclosporine, and mercuric chloride as immune suppressors, while selecting genistein as a non-immune suppressor. Although more dataset integration is needed in the future, our results demonstrated the possibility and utility of a novel genomics-based approach, the transcriptome-based determination of innate immune suppressor (TDIS) assay, to evaluate innate immune suppression by different substances. This provides insight into the development of future alternative testing methods because it reflects a comprehensive genetic signature derived from multiple substances rather than one cytokine.
Collapse
Affiliation(s)
- Hailian Quan
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyeji Jun
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sung Kwang Lee
- Department of Chemistry, Hannam University, Daejeon, 34054, South Korea
| | - Yong Heo
- Deptartment of Occupational Health, College of Bio and Medical Science, Daegu Catholic University, Hayang-Ro 13-13, Gyeongsan-si, Gyeongbuk Province, Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, Institute of Endemic Disease, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Yi Rang Na
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Goyenvalle A, Jimenez-Mallebrera C, van Roon W, Sewing S, Krieg AM, Arechavala-Gomeza V, Andersson P. Considerations in the Preclinical Assessment of the Safety of Antisense Oligonucleotides. Nucleic Acid Ther 2023; 33:1-16. [PMID: 36579950 PMCID: PMC9940817 DOI: 10.1089/nat.2022.0061] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The nucleic acid therapeutics field has made tremendous progress in the past decades. Continuous advances in chemistry and design have led to many successful clinical applications, eliciting even more interest from researchers including both academic groups and drug development companies. Many preclinical studies in the field focus on improving the delivery of antisense oligonucleotide drugs (ONDs) and/or assessing their efficacy in target tissues, often neglecting the evaluation of toxicity, at least in early phases of development. A series of consensus recommendations regarding regulatory considerations and expectations have been generated by the Oligonucleotide Safety Working Group and the Japanese Research Working Group for the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use S6 and Related Issues (WGS6) in several white papers. However, safety aspects should also be kept in sight in earlier phases while screening and designing OND to avoid subsequent failure in the development phase. Experts and members of the network "DARTER," a COST Action funded by the Cooperation in Science and Technology of the EU, have utilized their collective experience working with OND, as well as their insights into OND-mediated toxicities, to generate a series of consensus recommendations to assess OND toxicity in early stages of preclinical research. In the past few years, several publications have described predictive assays, which can be used to assess OND-mediated toxicity in vitro or ex vivo to filter out potential toxic candidates before moving to in vivo phases of preclinical development, that is, animal toxicity studies. These assays also have the potential to provide translational insight since they allow a safety evaluation in human in vitro systems. Yet, small preliminary in vivo studies should also be considered to complement this early assessment. In this study, we summarize the state of the art and provide guidelines and recommendations on the different tests available for these early stage preclinical assessments.
Collapse
Affiliation(s)
- Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles, France.,Address correspondence to: Aurélie Goyenvalle, PhD, Université Paris-Saclay, UVSQ, Inserm, END-ICAP, Versailles 78000, France
| | - Cecilia Jimenez-Mallebrera
- Laboratorio de Investigación Aplicada en Enfermedades Neuromusculares, Unidad de Patología Neuromuscular, Servicio de Neuropediatría, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain.,Departamento de Genética, Microbiología y Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Willeke van Roon
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine Sewing
- Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arthur M. Krieg
- RNA Therapeutics Institute, University of Massachusetts, Worcester, Massachusetts, USA
| | - Virginia Arechavala-Gomeza
- Neuromuscular Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Patrik Andersson
- Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden.,Address correspondence to: Patrik Andersson, PhD, Safety Innovation, Safety Sciences, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Pepparedsleden 1, Mölndal, Gothenburg 431 83, Sweden
| |
Collapse
|
5
|
Maddalon A, Iulini M, Melzi G, Corsini E, Galbiati V. New Approach Methodologies in Immunotoxicology: Challenges and Opportunities. Endocr Metab Immune Disord Drug Targets 2023; 23:1681-1698. [PMID: 37069707 DOI: 10.2174/1871530323666230413081128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 04/19/2023]
Abstract
To maintain the integrity of an organism, a well-functioning immune system is essential. Immunity is dynamic, with constant surveillance needed to determine whether to initiate an immune response or to not respond. Both inappropriate immunostimulation and decreased immune response can be harmful to the host. A reduced immune response can lead to high susceptibility to cancer or infections, whereas an increased immune response can be related to autoimmunity or hypersensitivity reactions. Animal testing has been the gold standard for hazard assessment in immunotoxicity but a lot of efforts are ongoing to develop non-animal-based test systems, and important successes have been achieved. The term "new approach methodologies" (NAMs) refer to the approaches which are not based on animal models. They are applied in hazard and risk assessment of chemicals and include approaches such as defined approaches for data interpretation and integrated approaches to testing and assessment. This review aims to summarize the available NAMs for immunotoxicity assessment, taking into consideration both inappropriate immunostimulation and immunosuppression, including implication for cancer development.
Collapse
Affiliation(s)
- Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Martina Iulini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences, Laboratory of Toxicology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
7
|
Li X, Zhao B, Luo L, Zhou Y, Lai D, Luan T. In vitro immunotoxicity detection for environmental pollutants: Current techniques and future perspectives. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Wei T, Zhang T, Tang M. An overview of quantum dots-induced immunotoxicity and the underlying mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119865. [PMID: 35944776 DOI: 10.1016/j.envpol.2022.119865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/29/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Quantum dots (QDs) have bright luminescence and excellent photostability. New synthesis techniques and strategies also enhance QDs properties for specific applications. With the continuous expansion of the applications, QDs-mediated immunotoxicity has become a major concern. The immune system has been confirmed to be an important target organ of QDs and is sensitive to QDs. Herein, review immunotoxic effects caused by QDs and the underlying mechanisms. Firstly, QDs exposure-induced modulation in immune cell maturation and differentiation is summarized, especially pre-exposed dendritic cells (DCs) and their regulatory roles in adaptive immunity. Cytokines are usually recognized as biomarkers of immunotoxicity, therefore, variation of cytokines mediated by QDs is also highlighted. Moreover, the activation of the complement system induced by QDs is discussed. Accumulated results have suggested that QDs disrupt the immune response by regulating intracellular oxidative stress (reactive oxygen species) levels, autophagy formation, and expressions of pro-inflammatory mediators. Furthermore, several signalling pathways play a key role in the disruption. Finally, some difficulties worthy of further consideration are proposed. Because there are still challenges in biomedical and clinical applications, this review hopes to provide information that could be useful in exploring the mechanisms associated with QD-induced immunotoxicity.
Collapse
Affiliation(s)
- Tingting Wei
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering, Department of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
9
|
Segner H, Rehberger K, Bailey C, Bo J. Assessing Fish Immunotoxicity by Means of In Vitro Assays: Are We There Yet? Front Immunol 2022; 13:835767. [PMID: 35296072 PMCID: PMC8918558 DOI: 10.3389/fimmu.2022.835767] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022] Open
Abstract
There is growing awareness that a range of environmental chemicals target the immune system of fish and may compromise the resistance towards infectious pathogens. Existing concepts to assess chemical hazards to fish, however, do not consider immunotoxicity. Over recent years, the application of in vitro assays for ecotoxicological hazard assessment has gained momentum, what leads to the question whether in vitro assays using piscine immune cells might be suitable to evaluate immunotoxic potentials of environmental chemicals to fish. In vitro systems using primary immune cells or immune cells lines have been established from a wide array of fish species and basically from all immune tissues, and in principal these assays should be able to detect chemical impacts on diverse immune functions. In fact, in vitro assays were found to be a valuable tool in investigating the mechanisms and modes of action through which environmental agents interfere with immune cell functions. However, at the current state of knowledge the usefulness of these assays for immunotoxicity screening in the context of chemical hazard assessment appears questionable. This is mainly due to a lack of assay standardization, and an insufficient knowledge of assay performance with respect to false positive or false negative signals for the different toxicant groups and different immune functions. Also the predictivity of the in vitro immunotoxicity assays for the in vivo immunotoxic response of fishes is uncertain. In conclusion, the currently available database is too limited to support the routine application of piscine in vitro assays as screening tool for assessing immunotoxic potentials of environmental chemicals to fish.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Kristina Rehberger
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen, China
| |
Collapse
|
10
|
Auguste M, Melillo D, Corteggio A, Marino R, Canesi L, Pinsino A, Italiani P, Boraschi D. Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. FRONTIERS IN TOXICOLOGY 2022; 4:842469. [PMID: 35295223 PMCID: PMC8915809 DOI: 10.3389/ftox.2022.842469] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Assessing the impact of drugs and contaminants on immune responses requires methodological approaches able to represent real-life conditions and predict long-term effects. Innate immunity/inflammation is the evolutionarily most widespread and conserved defensive mechanism in living organisms, and therefore we will focus here on immunotoxicological methods that specifically target such processes. By exploiting the conserved mechanisms of innate immunity, we have examined the most representative immunotoxicity methodological approaches across living species, to identify common features and human proxy models/assays. Three marine invertebrate organisms are examined in comparison with humans, i.e., bivalve molluscs, tunicates and sea urchins. In vivo and in vitro approaches are compared, highlighting common mechanisms and species-specific endpoints, to be applied in predictive human and environmental immunotoxicity assessment. Emphasis is given to the 3R principle of Replacement, Refinement and Reduction of Animals in Research and to the application of the ARRIVE guidelines on reporting animal research, in order to strengthen the quality and usability of immunotoxicology research data.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Rita Marino
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), CNR, Palermo, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| |
Collapse
|
11
|
Saleem S, Kannan RR. Zebrafish: A Promising Real-Time Model System for Nanotechnology-Mediated Neurospecific Drug Delivery. NANOSCALE RESEARCH LETTERS 2021; 16:135. [PMID: 34424426 PMCID: PMC8382796 DOI: 10.1186/s11671-021-03592-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Delivering drugs to the brain has always remained a challenge for the research community and physicians. The blood-brain barrier (BBB) acts as a major hurdle for delivering drugs to specific parts of the brain and the central nervous system. It is physiologically comprised of complex network of capillaries to protect the brain from any invasive agents or foreign particles. Therefore, there is an absolute need for understanding of the BBB for successful therapeutic interventions. Recent research indicates the strong emergence of zebrafish as a model for assessing the permeability of the BBB, which is highly conserved in its structure and function between the zebrafish and mammals. The zebrafish model system offers a plethora of advantages including easy maintenance, high fecundity and transparency of embryos and larvae. Therefore, it has the potential to be developed as a model for analysing and elucidating the permeability of BBB to novel permeation technologies with neurospecificity. Nanotechnology has now become a focus area within the industrial and research community for delivering drugs to the brain. Nanoparticles are being developed with increased efficiency and accuracy for overcoming the BBB and delivering neurospecific drugs to the brain. The zebrafish stands as an excellent model system to assess nanoparticle biocompatibility and toxicity. Hence, the zebrafish model is indispensable for the discovery or development of novel technologies for neurospecific drug delivery and potential therapies for brain diseases.
Collapse
Affiliation(s)
- Suraiya Saleem
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India
| | - Rajaretinam Rajesh Kannan
- Neuroscience Lab, Centre for Molecular and Nanomedical Sciences, Centre for Nanoscience and Nanotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai, Tamil Nadu, 600119, India.
| |
Collapse
|
12
|
Kimura Y, Terui H, Fujimura C, Amagai R, Takahashi T, Aiba S. Optimization of the IL-2 Luc assay for immunosuppressive drugs: a novel in vitro immunotoxicity test with high sensitivity and predictivity. Arch Toxicol 2021; 95:2755-2768. [PMID: 34175962 DOI: 10.1007/s00204-021-03101-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
We have reported that the IL-2 Luc assay can detect the effects of chemicals on IL-2 promoter activity by using a dual reporter cell line, 2H4 cells that measure IL-2 promoter-driven luciferase activity (IL2LA) and GAPDH promoter-driven luciferase activity (GAPLA). Since the IL-2 Luc assay cannot detect immunosuppressive drugs that are antimitotic towards rapidly proliferating cells, we attempted to establish a new assay to detect these chemicals by taking advantage of the dual reporter cell properties of 2H4 cells. We first determined the optimal incubation time with drugs and the seeding cell density, and confirmed that the change in GAPLA and IL2LA levels reflects the change in cell count and IL-2 production of 2H4 cells after drug treatment. We designed the IL-2 luciferase lymphotoxicity test (IL-2 Luc LTT) to detect the antimitotic effects of chemicals by modifying the protocol and criteria of the IL-2 Luc assay. To determine the performance of the IL-2 Luc LTT and that of the combination of the IL-2 Luc LTT and the IL-2 Luc assay, we examined 46 drugs: 19 immunosuppressive drugs with different mechanisms of action, 12 anti-cancer drugs, and 15 non-immunosuppressive drugs. The performances of the IL-2 Luc LTT, the IL-2 Luc assay and their combination were 43.3%, 61.3%, and 93.3%, respectively, for sensitivity, 84.6%, 53.3%, and 50.0%, respectively, for specificity, and 55.8%, 58.7%, and 79.5%, respectively, for accuracy. These results demonstrated that the combination of these two assays is promising for the detection of immunosuppressive drugs with different mechanisms of action.
Collapse
Affiliation(s)
- Yutaka Kimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, 980-8574, Japan
| | - Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, 980-8574, Japan
| | - Chizu Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, 980-8574, Japan
| | - Ryo Amagai
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, 980-8574, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, 980-8574, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, 980-8574, Japan.
| |
Collapse
|
13
|
Hammond SM, Aartsma‐Rus A, Alves S, Borgos SE, Buijsen RAM, Collin RWJ, Covello G, Denti MA, Desviat LR, Echevarría L, Foged C, Gaina G, Garanto A, Goyenvalle AT, Guzowska M, Holodnuka I, Jones DR, Krause S, Lehto T, Montolio M, Van Roon‐Mom W, Arechavala‐Gomeza V. Delivery of oligonucleotide-based therapeutics: challenges and opportunities. EMBO Mol Med 2021; 13:e13243. [PMID: 33821570 PMCID: PMC8033518 DOI: 10.15252/emmm.202013243] [Citation(s) in RCA: 212] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Nucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
| | | | - Sandra Alves
- Department of Human Genetics, Research and Development UnitNational Health Institute Doutor Ricardo JorgePortoPortugal
| | - Sven E Borgos
- Department of Biotechnology and NanomedicineSINTEF ASTrondheimNorway
| | - Ronald A M Buijsen
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Rob W J Collin
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
| | - Giuseppina Covello
- Department of BiologyUniversity of PadovaPadovaItaly
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Michela A Denti
- Department of Cellular, Computational and Integrative Biology ‐ CIBIOUniversity of TrentoTrentoItaly
| | - Lourdes R Desviat
- Centro de Biología Molecular Severo Ochoa UAM‐CSICCIBERER, IdiPazUniversidad Autónoma de MadridMadridSpain
| | | | - Camilla Foged
- Department of PharmacyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagen ØDenmark
| | - Gisela Gaina
- Victor Babes National Institute of PathologyBucharestRomania
- Department of Biochemistry and Molecular BiologyUniversity of BucharestBucharestRomania
| | - Alejandro Garanto
- Department of Human Genetics and Donders Institute for Brain, Cognition and BehaviourRadboud University Medical CenterNijmegenThe Netherlands
- Department of PediatricsRadboud University Medical CenterNijmegenThe Netherlands
| | | | - Magdalena Guzowska
- Department of Physiological SciencesFaculty of Veterinary MedicineWarsaw University of Life Sciences – SGGWWarsawPoland
| | - Irina Holodnuka
- Institute of Microbiology and VirologyRiga Stradins UniversityRigaLatvia
| | | | - Sabine Krause
- Department of NeurologyFriedrich‐Baur‐InstituteLudwig‐Maximilians‐University of MunichMunichGermany
| | - Taavi Lehto
- Institute of TechnologyUniversity of TartuTartuEstonia
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstitutetHuddingeSweden
| | - Marisol Montolio
- Duchenne Parent Project EspañaMadridSpain
- Department of Cell Biology, Fisiology and ImmunologyFaculty of BiologyUniversity of BarcelonaBarcelonaSpain
| | - Willeke Van Roon‐Mom
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Virginia Arechavala‐Gomeza
- Neuromuscular Disorders GroupBiocruces Bizkaia Health Research InstituteBarakaldoSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| |
Collapse
|
14
|
Ojo AF, Peng C, Ng JC. Assessing the human health risks of per- and polyfluoroalkyl substances: A need for greater focus on their interactions as mixtures. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124863. [PMID: 33373965 DOI: 10.1016/j.jhazmat.2020.124863] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 05/25/2023]
Abstract
Humans are exposed to complex mixtures of per- and polyfluoroalkyl substances (PFAS). However, human health risk assessment of PFAS currently relies on animal toxicity data derived from individual substance exposure, which may not adequately predict the risk from combined exposure due to possible interactions that can influence the overall risk. Long-chain perfluoroalkyl acids (PFAAs), particularly perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are recognised as global emerging contaminants of concern due to their ubiquitous distribution in all environmental media, wildlife, and humans, persistency, bioaccumulative-, toxic-, and human health-risk potentials. This article reviews the current understanding of the human health risks associated with PFAS exposure focusing on more recent toxicological and epidemiological studies from 2010 to 2020. The existing information on PFAA mixtures was also reviewed in an attempt to highlight the need for greater focus on their potential interactions as mixtures within the class of these chemicals. A growing number of toxicological studies have indicated several adverse health outcomes of PFAA exposure, including developmental and reproductive toxicity, neurotoxicity, hepatotoxicity, genotoxicity, immunotoxicity, thyroid disruption, and carcinogenicity. Epidemiological findings further support some of these adverse human health outcomes. However, the mechanisms underlying these adverse effects are not well defined. A few in vitro studies focusing on PFAA mixtures revealed that these compounds may act additively or interact synergistically/antagonistically depending on the species, dose level, dose ratio, and mixture components. Hence, the combined effects or potential interactions of PFAS mixtures should be considered and integrated into toxicity assessment to obtain a realistic and more refined human health risk assessment.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
15
|
Karkossa I, Raps S, von Bergen M, Schubert K. Systematic Review of Multi-Omics Approaches to Investigate Toxicological Effects in Macrophages. Int J Mol Sci 2020; 21:E9371. [PMID: 33317022 PMCID: PMC7764599 DOI: 10.3390/ijms21249371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/19/2022] Open
Abstract
Insights into the modes of action (MoAs) of xenobiotics are of utmost importance for the definition of adverse outcome pathways (AOPs), which are essential for a mechanism-based risk assessment. A well-established strategy to reveal MoAs of xenobiotics is the use of omics. However, often an even more comprehensive approach is needed, which can be achieved using multi-omics. Since the immune system plays a central role in the defense against foreign substances and pathogens, with the innate immune system building a first barrier, we systematically reviewed multi-omics studies investigating the effects of xenobiotics on macrophages. Surprisingly, only nine publications were identified, combining proteomics with transcriptomics or metabolomics. We summarized pathways and single proteins, transcripts, or metabolites, which were described to be affected upon treatment with xenobiotics in the reviewed studies, thus revealing a broad range of effects. In summary, we show that macrophages are a relevant model system to investigate the toxicological effects induced by xenobiotics. Furthermore, the multi-omics approaches led to a more comprehensive overview compared to only one omics layer with slight advantages for combinations that complement each other directly, e.g., proteome and metabolome.
Collapse
Affiliation(s)
- Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| | - Stefanie Raps
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
- Institute of Biochemistry, Leipzig University, 04103 Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research—UFZ, 04318 Leipzig, Germany; (I.K.); (S.R.); (M.v.B.)
| |
Collapse
|
16
|
Kimura Y, Yasuno R, Watanabe M, Kobayashi M, Iwaki T, Fujimura C, Ohmiya Y, Yamakage K, Nakajima Y, Kobayashi M, Mashimo N, Takagi Y, Omori T, Corsini E, Germolec D, Inoue T, Rogen EL, Kojima H, Aiba S. An international validation study of the IL-2 Luc assay for evaluating the potential immunotoxic effects of chemicals on T cells and a proposal for reference data for immunotoxic chemicals. Toxicol In Vitro 2020; 66:104832. [PMID: 32200032 PMCID: PMC9552337 DOI: 10.1016/j.tiv.2020.104832] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/12/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022]
Abstract
To evaluate the immunotoxic effects of xenobiotics, we have established the Multi-ImmunoTox assay, in which three stable reporter cell lines are used to evaluate the effects of chemicals on the IL-2, IFN-γ, IL-1β and IL-8 promoters. Here, we report the official validation study of the IL-2 luciferase assay (IL-2 Luc assay). In the Phase I study that evaluated five coded chemicals in three sets of experiments, the average within-laboratory reproducibility was 86.7%. In the Phase II study, 20 coded chemicals were evaluated at multiple laboratories. In the combined results of the Phase I and II studies, the between-laboratory reproducibility was 80.0%. These results suggested that the IL-2 Luc assay was reproducible both between and within laboratories. To determine the predictivity, we collected immunotoxicological information and constructed the reference data by classifying the chemical into immunotoxic compounds targeting T cells or others according to previously reported criteria. When compared with the reference data, the average predictivity of the Phase I and II studies was 75.0%, while that of additional 60 chemicals examined by the lead laboratory was 82.5%. Although the IL-2 Luc assay alone is not sufficient to predict immunotoxicity, it will be a useful tool when combined with other immune tests.
Collapse
Affiliation(s)
- Yutaka Kimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rie Yasuno
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mika Watanabe
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Japan
| | - Miwako Kobayashi
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Japan
| | - Tomoko Iwaki
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Chizu Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Kohji Yamakage
- Hatano Research Institute, Food and Drug Safety Center, Hadano, Japan
| | - Yoshihiro Nakajima
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Mayumi Kobayashi
- Division of Biostatistics, Department of Social/Community Medicine and Health Science, Kobe University School of Medicine, Kobe, Japan
| | - Nana Mashimo
- Division of Biostatistics, Department of Social/Community Medicine and Health Science, Kobe University School of Medicine, Kobe, Japan
| | - Yumi Takagi
- Division of Biostatistics, Department of Social/Community Medicine and Health Science, Kobe University School of Medicine, Kobe, Japan
| | - Takashi Omori
- Division of Biostatistics, Department of Social/Community Medicine and Health Science, Kobe University School of Medicine, Kobe, Japan
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological Sciences, Università degli Studi di Milano, Italy
| | - Dori Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, USA
| | - Tomoaki Inoue
- Research Division, Chugai Pharmaceutical Co., Ltd., Japan
| | | | - Hajime Kojima
- Japanese Center for the Validation of Alternative Methods, National Institute of Health Sciences, Kawasaki, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
17
|
Ghods A, Gilbert J, Baker JR, Russell CC, Sakoff JA, McCluskey A. A focused library synthesis and cytotoxicity of quinones derived from the natural product bolinaquinone. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171189. [PMID: 29765626 PMCID: PMC5936891 DOI: 10.1098/rsos.171189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Bolinaquinone is a natural product that is a structurally complex, cytotoxic sesquiterpene quinone. A scaffold simplification and focused library approach using a microwave-assisted Suzuki coupling gave 32 bolinaquinone analogues with good-to-excellent cytotoxicity profiles. Mono-arylbenzoquinones, Library A, were preferentially toxic towards BE2-C (neuroblastoma) cells with growth inhibition (GI50) values of 4-12 µM; only the 3,4-dimethoxyphenyl 23 and 3-biphenyl 28 variants were broad-spectrum active-HT29 (colon carcinoma), U87 and SJ-G2 (glioblastoma), MCF-7 (breast carcinoma), A2780 (ovarian carcinoma), H460 (lung carcinoma), A431 (skin carcinoma), Du145 (prostate carcinoma), BE2-C (neuroblastoma), MIA (pancreatic carcinoma) and SMA (spontaneous murine astrocytoma). Library B with a second aryl moiety exhibited broad-spectrum cytotoxicity with MCF-7 cells' GI50 values of 5.6 ± 0.7 and 5.1 ± 0.5 µM for 2,5-dimethoxy-3-(naphthalene-1-yl)-6-(naphthalene-3-yl) 33 and 2,5-dimethoxy-3-(biaryl-2-yl)-6-(naphthalene-3-yl) 36, respectively. Similar potencies were also noted with 2,5-dimethoxy-3,6-diphenyl 30 against A2780 (GI50 = 5.9 ± 0.0 µM) and with 2,5-dimethoxy-3-(biaryl-3-yl)-6-(naphthalene-3-yl) 37 against HT29 (GI50 = 5.4 ± 0.4 µM), while the 3,4-dimethoxy mono-aryl analogue 23 exhibited good levels of activity against A2780 (GI50 = 3.8 ± 0.75 µM), the neuroblastoma cell line BE2-C (GI50 = 3 ± 0.35 µM) and SMA (GI50 = 3.9 ± 0.54 µM). Introduction of the amino-substituted Library C gave 2-(naphthalen-1-yl)-5-(naphthalen-3-yl)-3,6-bis(propylamino) 43, with excellent activity against HT29 (0.08 ± 0.0 µM), MCF-7 (0.17 ± 0.1 µM), A2780 (0.14 ± 0.1 µM), A431 (0.11 ± 0.0 µM), Du145 (0.16 ± 0.1 µM), BE2-C (0.08 ± 0.0 µM) and MIA (0.1 ± 0.0 µM).
Collapse
Affiliation(s)
- Azadeh Ghods
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| | - Jayne Gilbert
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| | - Jennifer R. Baker
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| | - Cecilia C. Russell
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| | - Jennette A. Sakoff
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
- Department of Medical Oncology, Calvary Mater Newcastle Hospital, Waratah, New South Wales 2298, Australia
| | - Adam McCluskey
- Chemistry, The University of Newcastle, University Drive Callaghan, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
18
|
Kimura Y, Fujimura C, Ito Y, Takahashi T, Terui H, Aiba S. Profiling the immunotoxicity of chemicals based on in vitro evaluation by a combination of the Multi-ImmunoTox assay and the IL-8 Luc assay. Arch Toxicol 2018; 92:2043-2054. [PMID: 29594315 DOI: 10.1007/s00204-018-2199-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
Abstract
We established a luciferase reporter assay system, the Multi-ImmunoTox Assay (MITA), which can evaluate the effects of chemicals on the promoter activities of four cytokines: IL-2, IFN-γ, IL-1β, and IL-8. We previously reported that MITA correctly reflected the change in mRNA of human whole-blood cells treated with dexamethasone, cyclosporine, FK506, or several other immunosuppressive drugs. In this study, we combined MITA with the IL-8 Luc assay to detect skin sensitization chemicals (OECD 442E) (modified MITA: mMITA) and established a data set of 60 chemicals examined by mMITA. Using the mMITA results, chemicals can be classified based on the lowest observed effect level (LOEL) of chemicals in suppressing or augmenting the promoter activities of the four cytokines. Moreover, we demonstrated that K-means clustering and hierarchical clustering of the 60 chemicals based on the LOEL for their effects on IL-2 and IL-8 promoter activities and the judgment by the IL-8 Luc assay resulted in the same 6-cluster solution: cluster 1 with preferential suppression of IL-8, cluster 2 with suppression of IL-2 and a positive IL-8 Luc assay result, cluster 3 with suppression of both IL-2 and IL-8, cluster 4 with no effects on IL-2 or IL-8 and a negative IL-8 Luc assay result, cluster 5 with suppression of both IL-2 and IL-8 and a negative IL-8 Luc assay result, and cluster 6 with preferential suppression of IL-8. These data suggest that mMITA is a promising novel high-throughput approach for detecting unrecognized immunological effects of chemicals and for profiling their immunotoxic effects.
Collapse
Affiliation(s)
- Yutaka Kimura
- Department of Dermatology, Tohoku University Hospital, Sendai, Japan
| | - Chizu Fujimura
- Department of Dermatology, Tohoku University Hospital, Sendai, Japan
| | - Yumiko Ito
- Department of Dermatology, Tohoku University Hospital, Sendai, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Hospital, Sendai, Japan
| | - Hitoshi Terui
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Sendai, 980-8574, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Sendai, 980-8574, Japan.
| |
Collapse
|
19
|
Abstract
Assessing the immunotoxicity of xenobiotics by current regulatory testing has revealed compounds that can cause immunosuppression and stimulation. Flow cytometry is a cutting edge technique that can provide data on how toxicants can alter the quality and quantity of the immune response after exposure. Here we describe protocols for how to use flow cytometry to measure the immune response in multiple rodent organs (blood and lymphoid and nonlymphoid) as well as in novel models recently being utilized in the field of toxicology. These methods can be used for current testing and to determine mechanisms by which a xenobiotic can cause immunotoxicity.
Collapse
Affiliation(s)
- Scott T Espenschied
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Robert M Tighe
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
20
|
Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, Rundén-Pran E, Smolkova B. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: New strategies for toxicity testing? Food Chem Toxicol 2017; 109:797-811. [PMID: 28847762 DOI: 10.1016/j.fct.2017.08.030] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/22/2017] [Indexed: 01/29/2023]
Abstract
The unique properties of nanomaterials (NMs) are beneficial in numerous industrial and medical applications. However, they could also induce unintended effects. Thus, a proper strategy for toxicity testing is essential in human hazard and risk assessment. Toxicity can be tested in vivo and in vitro; in compliance with the 3Rs, alternative strategies for in vitro testing should be further developed for NMs. Robust, standardized methods are of great importance in nanotoxicology, with comprehensive material characterization and uptake as an integral part of the testing strategy. Oxidative stress has been shown to be an underlying mechanism of possible toxicity of NMs, causing both immunotoxicity and genotoxicity. For testing NMs in vitro, a battery of tests should be performed on cells of human origin, either cell lines or primary cells, in conditions as close as possible to an in vivo situation. Novel toxicity pathways, particularly epigenetic modification, should be assessed along with conventional toxicity testing methods. However, to initiate epigenetic toxicity screens for NM exposure, there is a need to better understand their adverse effects on the epigenome, to identify robust and reproducible causal links between exposure, epigenetic changes and adverse phenotypic endpoints, and to develop improved assays to monitor epigenetic toxicity.
Collapse
Affiliation(s)
- Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU- Norwegian Institute for Air Research, Kjeller, Norway.
| | - Jana Tulinska
- Faculty of Medicine, Department of Immunology and Immunotoxicology, Slovak Medical University, Bratislava, Slovakia
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Miroslava Kuricova
- Faculty of Medicine, Department of Immunology and Immunotoxicology, Slovak Medical University, Bratislava, Slovakia
| | - Aurelia Liskova
- Faculty of Medicine, Department of Immunology and Immunotoxicology, Slovak Medical University, Bratislava, Slovakia
| | - Eva Rollerova
- Faculty of Public Health, Department of Toxicology, Slovak Medical University, Bratislava, Slovakia
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry-MILK, NILU- Norwegian Institute for Air Research, Kjeller, Norway
| | - Bozena Smolkova
- Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
21
|
Aiba S, Kimura Y. In vitro test methods to evaluate the effects of chemicals on innate and adaptive immune responses. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Current status of alternative methods for assessing immunotoxicity: A chemical industry perspective. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Zwicker P, Schultze N, Niehs S, Methling K, Wurster M, Albrecht D, Bernhardt J, Wachlin G, Lalk M, Lindequist U, Haertel B. A proteomic approach for the identification of immunotoxic properties of Tulipalin A. Proteomics 2016; 16:2997-3008. [DOI: 10.1002/pmic.201600130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 09/23/2016] [Accepted: 09/28/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Paula Zwicker
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Nadin Schultze
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Sarah Niehs
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Karen Methling
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Martina Wurster
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Dirk Albrecht
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Jörg Bernhardt
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Gerhild Wachlin
- Institute of Microbiology, Microbial Physiology and Molecular Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Michael Lalk
- Institute of Biochemistry, Biochemistry of Metabolism/Metabolomics; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Ulrike Lindequist
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| | - Beate Haertel
- Institute of Pharmacy, Pharmaceutical Biology; Ernst-Moritz-Arndt-University; Greifswald Germany
| |
Collapse
|
24
|
Chakraborty C, Sharma AR, Sharma G, Lee SS. Zebrafish: A complete animal model to enumerate the nanoparticle toxicity. J Nanobiotechnology 2016; 14:65. [PMID: 27544212 PMCID: PMC4992559 DOI: 10.1186/s12951-016-0217-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/05/2016] [Indexed: 01/18/2023] Open
Abstract
Presently, nanotechnology is a multi-trillion dollar business sector that covers a wide range of industries, such as medicine, electronics and chemistry. In the current era, the commercial transition of nanotechnology from research level to industrial level is stimulating the world’s total economic growth. However, commercialization of nanoparticles might offer possible risks once they are liberated in the environment. In recent years, the use of zebrafish (Danio rerio) as an established animal model system for nanoparticle toxicity assay is growing exponentially. In the current in-depth review, we discuss the recent research approaches employing adult zebrafish and their embryos for nanoparticle toxicity assessment. Different types of parameters are being discussed here which are used to evaluate nanoparticle toxicity such as hatching achievement rate, developmental malformation of organs, damage in gill and skin, abnormal behavior (movement impairment), immunotoxicity, genotoxicity or gene expression, neurotoxicity, endocrine system disruption, reproduction toxicity and finally mortality. Furthermore, we have also highlighted the toxic effect of different nanoparticles such as silver nanoparticle, gold nanoparticle, and metal oxide nanoparticles (TiO2, Al2O3, CuO, NiO and ZnO). At the end, future directions of zebrafish model and relevant assays to study nanoparticle toxicity have also been argued.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Bioinformatics, School of Computer and Information Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India.
| | - Ashish Ranjan Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Garima Sharma
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute of Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, Gangwon-do, 24252, Republic of Korea.
| |
Collapse
|
25
|
Winkler HC, Suter M, Naegeli H. Critical review of the safety assessment of nano-structured silica additives in food. J Nanobiotechnology 2016; 14:44. [PMID: 27287345 PMCID: PMC4903002 DOI: 10.1186/s12951-016-0189-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/03/2016] [Indexed: 12/23/2022] Open
Abstract
The development of nano-materials is viewed as one of the most important technological advances of the 21st century and new applications of nano-sized particles in the production, processing, packaging or storage of food are expected to emerge soon. This trend of growing commercialization of engineered nano-particles as part of modern diet will substantially increase oral exposure. Contrary to the proven benefits of nano-materials, however, possible adverse health effects have generally received less attention. This problem is very well illustrated by nano-structured synthetic amorphous silica (SAS), which is a common food additive since several decades although the relevant risk assessment has never been satisfactorily completed. A no observed adverse effect level of 2500 mg SAS particles/kg body weight per day was derived from the only available long-term administration study in rodents. However, extrapolation to a safe daily intake for humans is problematic due to limitations of this chronic animal study and knowledge gaps as to possible local intestinal effects of SAS particles, primarily on the gut-associated lymphoid system. This uncertainty is aggravated by digestion experiments indicating that dietary SAS particles preserve their nano-sized structure when reaching the intestinal lumen. An important aspect is whether food-borne particles like SAS alter the function of dendritic cells that, embedded in the intestinal mucosa, act as first-line sentinels of foreign materials. We conclude that nano-particles do not represent a completely new threat and that most potential risks can be assessed following procedures established for conventional chemical hazards. However, specific properties of food-borne nano-particles should be further examined and, for that purpose, in vitro tests with decision-making cells of the immune system are needed to complement existing in vivo studies.
Collapse
Affiliation(s)
- Hans Christian Winkler
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Mark Suter
- Immunology Division, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057, Zurich, Switzerland.
| |
Collapse
|
26
|
Tulinska J, Kazimirova A, Kuricova M, Barancokova M, Liskova A, Neubauerova E, Drlickova M, Ciampor F, Vavra I, Bilanicova D, Pojana G, Staruchova M, Horvathova M, Jahnova E, Volkovova K, Bartusova M, Cagalinec M, Dusinska M. Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model. Nanotoxicology 2016; 9 Suppl 1:33-43. [PMID: 23859252 DOI: 10.3109/17435390.2013.816798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A human blood cell model for immunotoxicity and genotoxicity testing was used to measure the response to polylactic-co-glycolic acid (PLGA-PEO) nanoparticle (NP) (0.12, 3, 15 and 75 μg/cm(2) exposure in fresh peripheral whole blood cultures/isolated peripheral blood mononuclear cell cultures from human volunteers (n = 9-13). PLGA-PEO NPs were not toxic up to dose 3 μg/cm(2); dose of 75 μg/cm(2) displays significant decrease in [(3)H]-thymidine incorporation into DNA of proliferating cells after 4 h (70% of control) and 48 h (84%) exposure to NPs. In non-cytotoxic concentrations, in vitro assessment of the immunotoxic effects displayed moderate but significant suppression of proliferative activity of T-lymphocytes and T-dependent B-cell response in cultures stimulated with PWM > CON A, and no changes in PHA cultures. Decrease in proliferative function was the most significant in T-cells stimulated with CD3 antigen (up to 84%). Cytotoxicity of natural killer cells was suppressed moderately (92%) but significantly in middle-dosed cultures (4 h exposure). On the other hand, in low PLGA-PEO NPs dosed cultures, significant stimulation of phagocytic activity of granulocytes (119%) > monocytes (117%) and respiratory burst of phagocytes (122%) was recorded. Genotoxicity assessment revealed no increase in the number of micronucleated binucleated cells and no induction of SBs or oxidised DNA bases in PLGA-PEO-treated cells. To conclude on immuno- and genotoxicity of PLGA-PEO NPs, more experiments with various particle size, charge and composition need to be done.
Collapse
Affiliation(s)
- Jana Tulinska
- Department of Immunology and Immunotoxicology and Department of Experimental and Applied Genetics, Slovak Medical University , Bratislava , Slovakia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: Challenges, considerations and strategy. J Control Release 2015; 220:571-83. [PMID: 26348388 PMCID: PMC4688153 DOI: 10.1016/j.jconrel.2015.08.056] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
Assorted challenges in physicochemical characterization, sterilization, depyrogenation, and in the assessment of pharmacology, safety, and efficacy profiles accompany pre-clinical development of nanotechnology-formulated drugs. Some of these challenges are not unique to nanotechnology and are common in the development of other pharmaceutical products. However, nanoparticle-formulated drugs are biochemically sophisticated, which causes their translation into the clinic to be particularly complex. An understanding of both the immune compatibility of nanoformulations and their effects on hematological parameters is now recognized as an important step in the (pre)clinical development of nanomedicines. An evaluation of nanoparticle immunotoxicity is usually performed as a part of a traditional toxicological assessment; however, it often requires additional in vitro and in vivo specialized immuno- and hematotoxicity tests. Herein, I review literature examples and share the experience with the NCI Nanotechnology Characterization Laboratory assay cascade used in the early (discovery-level) phase of pre-clinical development to summarize common challenges in the immunotoxicological assessment of nanomaterials, highlight considerations and discuss solutions to overcome problems that commonly slow or halt the translation of nanoparticle-formulated drugs toward clinical trials. Special attention will be paid to the grand-challenge related to detection, quantification and removal of endotoxin from nanoformulations, and practical considerations related to this challenge.
Collapse
Affiliation(s)
- Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI at Frederick, Frederick, MD 21702, United States.
| |
Collapse
|
28
|
Schmeits PCJ, Shao J, van der Krieken DA, Volger OL, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Successful validation of genomic biomarkers for human immunotoxicity in Jurkat T cells in vitro. J Appl Toxicol 2014; 35:831-41. [PMID: 25424538 DOI: 10.1002/jat.3079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022]
Abstract
Previously, we identified 25 classifier genes that were able to assess immunotoxicity using human Jurkat T cells. The present study aimed to validate these classifiers. For that purpose, Jurkat cells were exposed for 6 h to subcytotoxic doses of nine immunotoxicants, five non-immunotoxicants and four compounds for which human immunotoxicity has not yet been fully established. RNA was isolated and subjected to Fluidigm quantitative real time (qRT)-PCR analysis. The sensitivity, specificity and accuracy of the screening assay as based on the nine immunotoxicants and five non-immunotoxicants used in this study were 100%, 80% and 93%, respectively, which is better than the performance in our previous study. Only one compound was classified as false positive (benzo-e-pyrene). Of the four potential (non-)immunotoxicants, chlorantraniliprole and Hidrasec were classified immunotoxic and Sunset yellow and imidacloprid as non-immunotoxic. ToxPi analysis of the PCR data provided insight in the molecular pathways that were affected by the compounds. The immunotoxicants 2,3-dichloro-propanol and cypermethrin, although structurally different, affected protein metabolism and cholesterol biosynthesis and transport. In addition, four compounds, i.e. chlorpyrifos, aldicarb, benzo-e-pyrene and anti-CD3, affected genes in cholesterol metabolism and transport, protein metabolism and transcription regulation. qRT-PCR on eight additional genes coding for similar processes as defined in ToxPi analyzes, supported these results. In conclusion, the 25 immunotoxic classifiers performed very well in a screening with new non-immunotoxic and immunotoxic compounds. Therefore, the Jurkat screening assay has great promise to be applied within a tiered approach for animal free testing of human immunotoxicity.
Collapse
Affiliation(s)
- Peter C J Schmeits
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands.,Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Jia Shao
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands.,Department of Toxicogenomics, Maastricht University, the Netherlands
| | - Danique A van der Krieken
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Oscar L Volger
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Henk van Loveren
- Department of Toxicogenomics, Maastricht University, the Netherlands.,Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ad A C M Peijnenburg
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Peter J M Hendriksen
- RIKILT Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
29
|
Proliferation and TH1/TH2 cytokine production in human peripheral blood mononuclear cells after treatment with cypermethrin and mancozeb in vitro. J Toxicol 2014; 2014:308286. [PMID: 25328518 PMCID: PMC4189932 DOI: 10.1155/2014/308286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/21/2014] [Accepted: 09/04/2014] [Indexed: 02/06/2023] Open
Abstract
In recent times, human cell-based assays are gaining attention in assessments of immunomodulatory effects of chemicals. In the study here, the possible effects of cypermethrin and mancozeb on lymphocyte proliferation and proinflammatory (tumor necrosis factor (TNF-) α) and immunoregulatory cytokine (interferon- (IFN-) γ, interleukins (IL) 2, 4, 6, and 10) formation in vitro were investigated. Human peripheral blood mononuclear cells (PBMC) were isolated and exposed for 6 hr to noncytotoxic doses (0.45–30 µM) of cypermethrin or mancozeb in the presence of activating rat S9 fraction. Cultures were then further incubated for 48 or 72 hr in fresh medium containing phytohemagglutinin (10 µg/mL) to assess, respectively, effects on cell proliferation (BrdU-ELISA method) and cytokine formation (flow cytometric bead immunoassays). Mancozeb induced dose-dependent increases in lymphocyte proliferation, inhibition of production of TNFα and the TH2 cytokines IL-6 and IL-10, and an increase in IFNγ (TH1 cytokine) production (at least 2-fold compared to control); mancozeb also induced inhibition of IL-4 (TH2) and stimulated IL-2 (TH1) production, albeit only in dose-related manners for each. In contrast, cypermethrin exposure did not cause significant effects on proliferation or cytokine profiles. Further studies are needed to better understand the functional significance of our in vitro findings.
Collapse
|
30
|
Kim HI, Ishihara K. Phospholipid polymer can reduce cytotoxicity of poly (lactic acid) nanoparticles in a high-content screening assay. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2014. [DOI: 10.12989/bme.2014.1.2.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Kimura Y, Fujimura C, Ito Y, Takahashi T, Aiba S. Evaluation of the Multi-ImmunoTox Assay composed of 3 human cytokine reporter cells by examining immunological effects of drugs. Toxicol In Vitro 2014; 28:759-68. [PMID: 24603311 DOI: 10.1016/j.tiv.2014.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 02/24/2014] [Indexed: 11/16/2022]
Abstract
We established a luciferase reporter assay system, the Multi-ImmunoTox Assay (MITA), to evaluate the effects on key predictivein vitro components of the human immune system. The system is composed of 3 stable reporter cell lines transfected with 3 luciferase genes, SLG, SLO, and SLR, under the control of 4 cytokine promoters, IL-2, IFN-γ, IL-1β, and IL-8, and the G3PDH promoter. We first compared the effects of dexamethasone, cyclosporine, and tacrolimus on these cell lines stimulated with phorbol 12-myristate 13-acetate and ionomycin, or lipopolysaccharides, with those on mRNA expression by the mother cell lines and human whole blood cells after stimulation. The results demonstrated that MITA correctly reflected the change of mRNA of the mother cell lines and whole blood cells. Next, we evaluated other immunosuppressive drugs, off-label immunosuppressive drugs, and non-immunomodulatory drugs. Although MITA did not detect immunosuppressive effects of either alkylating agents or antimetabolites, it could demonstrate those of the off-label immunosuppressive drugs, sulfasalazine, chloroquine, minocycline, and nicotinamide. Compared with the published immunological effects of the drugs, these data suggest that MITA can present a novel high-throughput approach to detect immunological effects of chemicals other than those that induce immunosuppressive effects through their inhibitory action on cell division.
Collapse
Affiliation(s)
- Yutaka Kimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Chizu Fujimura
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yumiko Ito
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.
| |
Collapse
|
32
|
Transcriptome-based functional classifiers for direct immunotoxicity. Arch Toxicol 2013; 88:673-89. [DOI: 10.1007/s00204-013-1179-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/03/2013] [Indexed: 01/28/2023]
|
33
|
Chen Z, He Y, Shi B, Yang D. Human serum albumin from recombinant DNA technology: Challenges and strategies. Biochim Biophys Acta Gen Subj 2013; 1830:5515-25. [DOI: 10.1016/j.bbagen.2013.04.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 12/22/2022]
|
34
|
Coch C, Lück C, Schwickart A, Putschli B, Renn M, Höller T, Barchet W, Hartmann G, Schlee M. A human in vitro whole blood assay to predict the systemic cytokine response to therapeutic oligonucleotides including siRNA. PLoS One 2013; 8:e71057. [PMID: 23940691 PMCID: PMC3733725 DOI: 10.1371/journal.pone.0071057] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/26/2013] [Indexed: 12/12/2022] Open
Abstract
Therapeutic oligonucleotides including siRNA and immunostimulatory ligands of Toll-like receptors (TLR) or RIG-I like helicases (RLH) are a promising novel class of drugs. They are in clinical development for a broad spectrum of applications, e.g. as adjuvants in vaccines and for the immunotherapy of cancer. Species-specific immune activation leading to cytokine release is characteristic for therapeutic oligonucleotides either as an unwanted side effect or intended pharmacology. Reliable in vitro tests designed for therapeutic oligonucleotides are therefore urgently needed in order to predict clinical efficacy and to prevent unexpected harmful effects in clinical development. To serve this purpose, we here established a human whole blood assay (WBA) that is fast and easy to perform. Its response to synthetic TLR ligands (R848: TLR7/8, LPS: TLR4) was on a comparable threshold to the more time consuming peripheral blood mononuclear cell (PBMC) based assay. By contrast, the type I IFN profile provoked by intravenous CpG-DNA (TLR9 ligand) in humans in vivo was more precisely replicated in the WBA than in stimulated PBMC. Since Heparin and EDTA, but not Hirudin, displaced oligonucleotides from their delivery agent, only Hirudin qualified as the anticoagulant to be used in the WBA. The Hirudin WBA exhibited a similar capacity as the PBMC assay to distinguish between TLR7-activating and modified non-stimulatory siRNA sequences. RNA-based immunoactivating TLR7/8- and RIG-I-ligands induced substantial amounts of IFN-α in the Hirudin-WBA dependent on delivery agent used. In conclusion, we present a human Hirudin WBA to determine therapeutic oligonucleotide-induced cytokine release during preclinical development that can readily be performed and offers a close reflection of human cytokine response in vivo.
Collapse
Affiliation(s)
- Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Schmeits PCJ, Volger OL, Zandvliet ET, van Loveren H, Peijnenburg AACM, Hendriksen PJM. Assessment of the usefulness of the murine cytotoxic T cell line CTLL-2 for immunotoxicity screening by transcriptomics. Toxicol Lett 2012; 217:1-13. [PMID: 23253260 DOI: 10.1016/j.toxlet.2012.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/05/2012] [Accepted: 12/06/2012] [Indexed: 10/27/2022]
Abstract
A toxicogenomics approach was applied to assess the usefulness of the mouse cytotoxic T cell line CTLL-2 for in vitro immunotoxicity testing. CTLL-2 cells were exposed for 6 h to two model immunotoxic compounds: (1) the mycotoxin deoxynivalenol (DON, 1 and 2 μM), a ribotoxic stress inducer, and (2) the organotin compound tributyltin oxide (TBTO, 100 and 200 nM), an endoplasmic reticulum (ER) stress inducer. Effects on whole-genome mRNA expression were assessed by microarray analysis. The biological interpretation of the microarray data indicated that TBTO (200 nM) induced genes involved in T cell activation, ER stress, NFκB activation and apoptosis, which agreed very well with results obtained before on TBTO exposed Jurkat cells and mouse primary thymocytes. Remarkably, DON (2 μM) downregulated genes involved in T cell activation, ER stress and apoptosis, which is opposite to results obtained before for DON-exposed Jurkat cells and mouse primary thymocytes. Furthermore, the results for DON in CTLL-2 cells are also opposite to the results obtained for TBTO in CTLL-2 cells. In agreement with the lack of induction of ER stress and apoptosis, viability assays showed that CTLL-2 cells are much more resistant to the toxicity of DON than Jurkat cells and primary thymocytes. We propose that CTLL-2 cells lack the signal transduction that induces ER stress and apoptosis in response to ribotoxic stress. Based on the results for TBTO and DON, the CTLL-2 cell line does not yield an added value for immunotoxicity compared to the human Jurkat T cell line.
Collapse
Affiliation(s)
- Peter C J Schmeits
- RIKILT-Institute of Food Safety, Wageningen University and Research Centre, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
36
|
Yi YL, Lu C, Hu XG, Ling F, Wang GX. Antiprotozoal activity of medicinal plants against Ichthyophthirius multifiliis in goldfish (Carassius auratus). Parasitol Res 2012; 111:1771-8. [PMID: 22864919 DOI: 10.1007/s00436-012-3022-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
Ichthyophthiriasis is a widespread disease in aquaculture and causes mass mortalities of fish. The development of new antiprotozoal agents for the treatment of Ichthyophthirius multifiliis infections is of increasing interest. The aim of the present study was to investigate the efficacy of 30 medicinal plants against I. multifiliis. The results showed that the methanol extracts of Magnolia officinalis and Sophora alopecuroides displayed the highest antiprotozoal activity against theronts, with 4-h LC(50) values estimated to be 2.45 and 3.43 mg L(-1), respectively. Concentrations of 2.5, 5.0, 10.0, and 20.0 mg L(-1) of M. officinalis extracts resulted in tomont mortality of 9.7, 43.7, 91.3, and 100% at 20 h, respectively. From 40 to 320 mg L(-1) of S. alopecuroides extracts, tomont mortality increased from 29.7 to 100%. Antiprotozoal efficacy against settled tomonts (2 and 10 h) was also applied; the results indicated that encysted I. multifiliis tomonts were less susceptible to these plant extract treatments. In vivo experiments demonstrated that high concentrations of M. officinalis and S. alopecuroides extracts could kill tomonts, and M. officinalis significantly reduced its reproduction (P < 0.05). These results suggested that the methanol extracts of M. officinalis and S. alopecuroides have the potential to be used as an eco-friendly approach for the control of I. multifiliis.
Collapse
Affiliation(s)
- Yang-Lei Yi
- College of Science, Northwest A&F University, Yangling, Xianyang 712100, China
| | | | | | | | | |
Collapse
|
37
|
Yao JY, Zhou ZM, Li XL, Yin WL, Ru HS, Pan XY, Hao GJ, Xu Y, Shen JY. Antiparasitic efficacy of dihydrosanguinarine and dihydrochelerythrine from Macleaya microcarpa against Ichthyophthirius multifiliis in richadsin (Squaliobarbus curriculus). Vet Parasitol 2011; 183:8-13. [DOI: 10.1016/j.vetpar.2011.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 06/21/2011] [Accepted: 07/08/2011] [Indexed: 11/27/2022]
|
38
|
Galbiati V, Carne A, Mitjans M, Galli CL, Marinovich M, Corsini E. Isoeugenol destabilizes IL-8 mRNA expression in THP-1 cells through induction of the negative regulator of mRNA stability tristetraprolin. Arch Toxicol 2011; 86:239-48. [PMID: 21969073 DOI: 10.1007/s00204-011-0758-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/20/2011] [Indexed: 12/13/2022]
Abstract
We previously demonstrated in the human promyelocytic cell line THP-1 that all allergens tested, with the exception of the prohapten isoeugenol, induced a dose-related release of interleukin-8 (IL-8). In the present study, we investigated whether this abnormal behavior was regulated by the AU-rich element-binding proteins HuR and tristetraprolin (TTP) or by the downstream molecule suppressor of cytokine signaling (SOCS)-3. The contact allergens isoeugenol, diethylmaleate (DEM), and 2,4-dinitrochlorobenzene (DNCB), and the irritant salicylic acid were used as reference compounds. Chemicals were used at concentrations that induced a 20% decrease in cell viability as assessed by propidium iodide staining, namely 100 μg/ml (0.61 mM) for isoeugenol, 100 μg/ml (0.58 mM) for DEM, 3 μg/ml (14.8 μM) for DNCB, and 250 μg/ml (1.81 mM) for salicylic acid. Time course experiments of IL-8 mRNA expression and assessment of IL-8 mRNA half-life, indicated a decreased IL-8 mRNA stability in isoeugenol-treated cells. We could demonstrate that a combination and regulation of HuR and TTP following exposure to contact allergens resulted in a different modulation of IL-8 mRNA half-life and release. The increased expression of TTP in THP-1 cells treated with isoeugenol results in destabilization of the IL-8 mRNA, which can account for the lack of IL-8 release. In contrast, the strong allergen DNCB failing to up-regulate TTP, while inducing HuR, resulted in longer IL-8 mRNA half-life and protein release. SOCS-3 was induced only in isoeugenol-treated cells; however, its modulation did not rescue the lack of IL-8 release, indicating that it is unlikely to be involved in the lack of IL-8 production. Finally, the destabilization effect of isoeugenol on IL-8 mRNA expression together with SOCS-3 expression resulted in an anti-inflammatory effect, as demonstrated by the ability of isoeugenol to modulate LPS or ionomycin-induced cytokine release.
Collapse
Affiliation(s)
- Valentina Galbiati
- Department of Pharmacological Sciences, Faculty of Pharmacy, Laboratory of Toxicology, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Galbiati V, Mitjans M, Lucchi L, Viviani B, Galli CL, Marinovich M, Corsini E. Further development of the NCTC 2544 IL-18 assay to identify in vitro contact allergens. Toxicol In Vitro 2010; 25:724-32. [PMID: 21182927 DOI: 10.1016/j.tiv.2010.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 10/18/2022]
Abstract
Several European Union legislations request the use of in vitro methods for toxicological evaluations, including sensitization, in order to increase consumer safety but also to reduce the use of animals. The EU project SENS-IT-IV addresses the need of developing predictive in vitro tests to assess contact and respiratory hypersensitivity reactions. In this context, we have recently reported the possibility to use IL-18 production in the human keratinocyte cell line NCTC 2544 to discriminate contact sensitizer from irritants and low molecular weight respiratory allergens. The aims of the present study were to further develop this assay in order to optimize experimental conditions; to develop a 96-well plate format to establish a high throughput assay; to test the performance of other available keratinocyte cell lines, and to understand the signal transduction pathway involved in p-phenylenediamine (PPD)-induced IL-18 production. If cells reach confluence at the moment of treatment, the ability to identify contact allergens is lost; therefore a careful check for the optimal cell density using PPD as reference contact allergen is critical. In our hands, a cell density of 1-2.5 × 10(5)cells/ml gave optimal stimulation. In order to develop a high throughput test, cells seeded in 96-well plate were exposed to contact allergens (2,4-dinitrochlorobenzene, p-phenylenediamine, isoeugenol, cinnamaldehyde, tetramethylthiuram disulfite, resorcinol, cinnamic alcohol and eugenol), irritants (phenol, sodium laurel sulphate, lactic acid and salicylic acid) and respiratory allergens (hexachloroplatinate, diphenylmethane diisocyanate, trimellitic anhydride). A selective increase in total (intracellular plus released) IL-18 was observed 24h later in cells treated with contact allergens, whereas no changes were observed following treatment with respiratory allergens and irritants, confirming previous results obtained in a 24-well format assay. A selective induction of IL-18 was also obtained testing with PPD other keratinocyte cell lines, namely HPKII and HaCaT, with the HPKII showing the highest stimulation index. Regarding the signal transduction pathway, we could demonstrate using selective inhibitors a role for oxidative stress, NF-κB and p38 MAPK activation in PPD-induced IL-18 production. In conclusion, results obtained suggest that the production of IL-18 represents a promising endpoint for the screening of potential contact allergens. The assay can be performed in a 96-well plate format, different keratinocyte cell lines can be used, and a role for oxidative stress in contact allergen-induced IL-18 was demonstrated.
Collapse
Affiliation(s)
- V Galbiati
- Laboratory of Toxicology, Department of Pharmacological Science, Università degli Studi di, Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
41
|
Stølevik SB, Nygaard UC, Namork E, Granum B, Pellerud A, van Leeuwen DM, Gmuender H, van Delft JHM, van Loveren H, Løvik M. In vitro cytokine release from human peripheral blood mononuclear cells in the assessment of the immunotoxic potential of chemicals. Toxicol In Vitro 2010; 25:555-62. [PMID: 21144890 DOI: 10.1016/j.tiv.2010.11.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/29/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
Alternative methods to the use of animals in testing of chemicals are needed. We investigated if the immunotoxic potential of 12 dietary toxicants could be predicted from effects on cytokine release from human peripheral blood mononuclear cells (PBMC) after in vitro exposure. Nine cytokines were selected to reflect different types of immune responses. The toxicants were classified as immunotoxic or non-immunotoxic substances according to the published in vivo data. Isolated human PBMC were exposed for 20 h to three concentrations of each of the 12 substances in the presence of human liver S9 fraction. After further incubation of PBMC in fresh medium containing the mitogen phytohemagglutinin (PHA, 10 μg/ml) for 48 h, release of the nine selected cytokines into the supernatant as well as cell proliferation were measured by Luminex technology™ and the BrdU incorporation assay, respectively. All 12 substances investigated affected the release of one or more cytokines, and each of the substances showed different cytokine release patterns. Within the limitations of the study design, the present study suggests that the effect of the substances on mitogen-induced cytokine release from PBMC cannot predict their immunotoxic potential, but may be useful in mechanistic studies.
Collapse
Affiliation(s)
- S B Stølevik
- Department of Environmental Immunology, Norwegian Institute of Public Health, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Andersen ME, Al-Zoughool M, Croteau M, Westphal M, Krewski D. The future of toxicity testing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2010; 13:163-196. [PMID: 20574896 DOI: 10.1080/10937404.2010.483933] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In 2007, the U.S. National Research Council (NRC) released a report, "Toxicity Testing in the 21st Century: A Vision and a Strategy," that proposes a paradigm shift for toxicity testing of environmental agents. The vision is based on the notion that exposure to environmental agents leads to adverse health outcomes through the perturbation of toxicity pathways that are operative in humans. Implementation of the NRC vision will involve a fundamental change in the assessment of toxicity of environmental agents, moving away from adverse health outcomes observed in experimental animals to the identification of critical perturbations of toxicity pathways. Pathway perturbations will be identified using in vitro assays and quantified for dose response using methods in computational toxicology and other recent scientific advances in basic biology. Implementation of the NRC vision will require a major research effort, not unlike that required to successfully map the human genome, extending over 10 to 20 years, involving the broad scientific community to map important toxicity pathways operative in humans. This article provides an overview of the scientific tools and technologies that will form the core of the NRC vision for toxicity testing. Of particular importance will be the development of rapidly performed in vitro screening assays using human cells and cell lines or human tissue surrogates to efficiently identify environmental agents producing critical pathway perturbations. In addition to the overview of the NRC vision, this study documents the reaction by a number of stakeholder groups since 2007, including the scientific, risk assessment, regulatory, and animal welfare communities.
Collapse
Affiliation(s)
- Melvin E Andersen
- Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina, USA
| | | | | | | | | |
Collapse
|