1
|
Sun N, Su Z, Zheng X. Research progress of mosquito-borne virus mRNA vaccines. Mol Ther Methods Clin Dev 2025; 33:101398. [PMID: 39834558 PMCID: PMC11743085 DOI: 10.1016/j.omtm.2024.101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
In recent years, mRNA vaccines have emerged as a leading technology for preventing infectious diseases due to their rapid development and high immunogenicity. These vaccines encode viral antigens, which are translated into antigenic proteins within host cells, inducing both humoral and cellular immune responses. This review systematically examines the progress in mRNA vaccine research for major mosquito-borne viruses, including dengue virus, Zika virus, Japanese encephalitis virus, Chikungunya virus, yellow fever virus, Rift Valley fever virus, and Venezuelan equine encephalitis virus. Enhancements in mRNA vaccine design, such as improvements to the 5' cap structure, 5'UTR, open reading frame, 3'UTR, and polyadenylation tail, have significantly increased mRNA stability and translation efficiency. Additionally, the use of lipid nanoparticles and polymer nanoparticles has greatly improved the delivery efficiency of mRNA vaccines. Currently, mRNA vaccines against mosquito-borne viruses are under development and clinical trials, showing promising protective effects. Future research should continue to optimize vaccine design and delivery systems to achieve broad-spectrum and long-lasting protection against various mosquito-borne virus infections.
Collapse
Affiliation(s)
- Ningze Sun
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Zhiwei Su
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| | - Xiaoyan Zheng
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China
| |
Collapse
|
2
|
Abraham PR, Gopinath T, Dhotre A, Kumar A. Commercial Enzyme-Linked Immunosorbent Assay Kit Is Useful for Detection of Recombinant and Secretory Nonstructural-1 Protein Antigen of Dengue Virus. Vector Borne Zoonotic Dis 2024; 24:817-825. [PMID: 39134458 DOI: 10.1089/vbz.2024.0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Background: Dengue is a mosquito-borne tropical disease, caused by the Dengue virus (DENV). It has become a severe problem and is a rising threat to public health. In this study, we have evaluated commercial Merilisa i Dengue NS1 Antigen kit (Meril LifeSciences India Pvt. Ltd.) to detect recombinant dengue virus 2 NS1 antigen (rDNS1Ag) and secreted forms of NS1 antigen (sDNS1Ag). Methods: To determine the detection limit of the kit, 100 nanogram (ng) to 0.001 ng rDNS1Ag was tested. The sensitivity and specificity of the kit was determined using recombinant NS1 antigens of all serotypes of DENV and other flaviviruses. For testing sDNS1Ag, the culture supernatant of the Vero cell lines infected with DENV-2 was tested. Further, a spiking experiment was carried out to check the sensitivity of the kit to detect rDNS1Ag in the pools of Aedes aegypti mosquitoes. Results: It was observed that the kit can detect the rDNS1Ag at 1 ng concentration. The kit was sensitive to detect NS1 antigen of DENV-1, DENV-2 and DENV-3 serotypes and specific for detection of only DNS1Ag as it did not cross-react with NS1 antigen of flaviviruses. The kit was sensitive to detect rDNS1Ag in the mosquito pools as well. In addition, the kit was able to detect the sDNS1Ag in Vero cell culture supernatant. Conclusions: Overall, we observed that the Merilisa i Dengue NS1 Ag kit is sensitive and specific for the detection of DNS1Ag both in recombinant and secretory forms.
Collapse
Affiliation(s)
| | | | - Akash Dhotre
- ICMR-Vector Control Research Centre, Puducherry, India
| | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry, India
- Saveetha Institute of Medical and Technical Sciences, Saveetha University, Thandalam, India
| |
Collapse
|
3
|
Domínguez-Martínez DA, Pérez-Flores MS, Núñez-Avellaneda D, Torres-Flores JM, León-Avila G, García-Pérez BE, Salazar MI. NOD2 Responds to Dengue Virus Type 2 Infection in Macrophage-like Cells Interacting with MAVS Adaptor and Affecting IFN-α Production and Virus Titers. Pathogens 2024; 13:306. [PMID: 38668261 PMCID: PMC11054756 DOI: 10.3390/pathogens13040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/14/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
In pathogen recognition, the nucleotide-binding domain (NBD) and leucine rich repeat receptors (NLRs) have noteworthy functions in the activation of the innate immune response. These receptors respond to several viral infections, among them NOD2, a very dynamic NLR, whose role in dengue virus (DENV) infection remains unclear. This research aimed to determine the role of human NOD2 in THP-1 macrophage-like cells during DENV-2 infection. NOD2 levels in DENV-2 infected THP-1 macrophage-like cells was evaluated by RT-PCR and Western blot, and an increase was observed at both mRNA and protein levels. We observed using confocal microscopy and co-immunoprecipitation assays that NOD2 interacts with the effector protein MAVS (mitochondrial antiviral signaling protein), an adaptor protein promoting antiviral activity, this occurring mainly at 12 h into the infection. After silencing NOD2, we detected increased viral loads of DENV-2 and lower levels of IFN-α in supernatants from THP-1 macrophage-like cells with NOD2 knock-down and further infected with DENV-2, compared with mock-control or cells transfected with Scramble-siRNA. Thus, NOD2 is activated in response to DENV-2 in THP-1 macrophage-like cells and participates in IFN-α production, in addition to limiting virus replication at the examined time points.
Collapse
Affiliation(s)
- Diana Alhelí Domínguez-Martínez
- Laboratorio de Inmunología Celular e Inmunopatogénesis, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico;
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Ciudad de México CP 06720, Mexico
| | - Mayra Silvia Pérez-Flores
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico; (M.S.P.-F.); (J.M.T.-F.)
| | - Daniel Núñez-Avellaneda
- Dirección Adjunta de Desarrollo Tecnológico, Vinculación e Innovación, Consejo Nacional de Humanidades Ciencias y Tecnologías, Ciudad de México CP 03940, Mexico;
| | - Jesús M. Torres-Flores
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico; (M.S.P.-F.); (J.M.T.-F.)
| | - Gloria León-Avila
- Laboratorio de Genética, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico;
| | - Blanca Estela García-Pérez
- Laboratorio de Microbiología General, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico;
| | - Ma Isabel Salazar
- Laboratorio Nacional de Vacunología y Virus Tropicales (LNVyVT), Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional, Ciudad de México CP 11340, Mexico; (M.S.P.-F.); (J.M.T.-F.)
| |
Collapse
|
4
|
Ashall J, Shah S, Biggs JR, Chang JNR, Jafari Y, Brady OJ, Mai HK, Lien LT, Do Thai H, Nguyen HAT, Anh DD, Iwasaki C, Kitamura N, Van Loock M, Herrera-Taracena G, Rasschaert F, Van Wesenbeeck L, Yoshida LM, Hafalla JCR, Hue S, Hibberd ML. A phylogenetic study of dengue virus in urban Vietnam shows long-term persistence of endemic strains. Virus Evol 2023; 9:vead012. [PMID: 36926448 PMCID: PMC10013730 DOI: 10.1093/ve/vead012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Dengue virus (DENV) causes repeated outbreaks of disease in endemic areas, with patterns of local transmission strongly influenced by seasonality, importation via human movement, immunity, and vector control efforts. An understanding of how each of these interacts to enable endemic transmission (continual circulation of local virus strains) is largely unknown. There are times of the year when no cases are reported, often for extended periods of time, perhaps wrongly implying the successful eradication of a local strain from that area. Individuals who presented at a clinic or hospital in four communes in Nha Trang, Vietnam, were initially tested for DENV antigen presence. Enrolled positive individuals then had their corresponding household members invited to participate, and those who enrolled were tested for DENV. The presence of viral nucleic acid in all samples was confirmed using quantitative polymerase chain reaction, and positive samples were then whole-genome sequenced using an amplicon and target enrichment library preparation techniques and Illumina MiSeq sequencing technology. Generated consensus genome sequences were then analysed using phylogenetic tree reconstruction to categorise sequences into clades with a common ancestor, enabling investigations of both viral clade persistence and introductions. Hypothetical introduction dates were additionally assessed using a molecular clock model that calculated the time to the most recent common ancestor (TMRCA). We obtained 511 DENV whole-genome sequences covering four serotypes and more than ten distinct viral clades. For five of these clades, we had sufficient data to show that the same viral lineage persisted for at least several months. We noted that some clades persisted longer than others during the sampling time, and by comparison with other published sequences from elsewhere in Vietnam and around the world, we saw that at least two different viral lineages were introduced into the population during the study period (April 2017-2019). Next, by inferring the TMRCA from the construction of molecular clock phylogenies, we predicted that two of the viral lineages had been present in the study population for over a decade. We observed five viral lineages co-circulating in Nha Trang from three DENV serotypes, with two likely to have remained as uninterrupted transmission chains for a decade. This suggests clade cryptic persistence in the area, even during periods of low reported incidence.
Collapse
Affiliation(s)
- James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sonal Shah
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Joseph R Biggs
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jui-Ning R Chang
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Yalda Jafari
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Huynh Kim Mai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Le Thuy Lien
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hung Do Thai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Chihiro Iwasaki
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriko Kitamura
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Marnix Van Loock
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, LLC, 800 Ridgeview Drive, Horsham, PA 19044, USA
| | - Freya Rasschaert
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | | | - Lay-Myint Yoshida
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stephane Hue
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
5
|
Dhiman M, Sharma L, Dadhich A, Dhawan P, Sharma MM. Traditional Knowledge to Contemporary Medication in the Treatment of Infectious Disease Dengue: A Review. Front Pharmacol 2022; 13:750494. [PMID: 35359838 PMCID: PMC8963989 DOI: 10.3389/fphar.2022.750494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Dengue has become a worldwide affliction despite incessant efforts to search for a cure for this long-lived disease. Optimistic consequences for dengue vaccine are implausible as the efficiency is tied to previous dengue virus (DENV) exposure and a very high cost is required for large-scale production of vaccine. Medicinal plants are idyllic substitutes to fight DENV infection since they constitute important components of traditional medicine and show antiviral properties, although the mechanism behind the action of bioactive compounds to obstruct viral replication is less explored and yet to be discovered. This review includes the existing traditional knowledge on how DENV infects and multiplies in the host cells, conscripting different medicinal plants that obtained bioactive compounds with anti-dengue properties, and the probable mechanism on how bioactive compounds modulate the host immune system during DENV infection. Moreover, different plant species having such bioactive compounds reported for anti-DENV efficiency should be validated scientifically via different in vitro and in vivo studies.
Collapse
Affiliation(s)
- Mamta Dhiman
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Lakshika Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | - Abhishek Dadhich
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| | | | - M. M. Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, India
| |
Collapse
|
6
|
Yu X, Cheng G. Adaptive Evolution as a Driving Force of the Emergence and Re-Emergence of Mosquito-Borne Viral Diseases. Viruses 2022; 14:v14020435. [PMID: 35216028 PMCID: PMC8878277 DOI: 10.3390/v14020435] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Emerging and re-emerging mosquito-borne viral diseases impose a significant burden on global public health. The most common mosquito-borne viruses causing recent epidemics include flaviviruses in the family Flaviviridae, including Dengue virus (DENV), Zika virus (ZIKV), Japanese encephalitis virus (JEV) and West Nile virus (WNV) and Togaviridae viruses, such as chikungunya virus (CHIKV). Several factors may have contributed to the recent re-emergence and spread of mosquito-borne viral diseases. Among these important causes are the evolution of mosquito-borne viruses and the genetic mutations that make them more adaptive and virulent, leading to widespread epidemics. RNA viruses tend to acquire genetic diversity due to error-prone RNA-dependent RNA polymerases, thus promoting high mutation rates that support adaptation to environmental changes or host immunity. In this review, we discuss recent findings on the adaptive evolution of mosquito-borne viruses and their impact on viral infectivity, pathogenicity, vector fitness, transmissibility, epidemic potential and disease emergence.
Collapse
Affiliation(s)
- Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
7
|
Huerta V, Ramos Y. Isolation and Identification of Dengue Virus Interactome with Human Plasma Proteins by Affinity Purification-Mass Spectrometry. Methods Mol Biol 2022; 2409:133-153. [PMID: 34709640 DOI: 10.1007/978-1-0716-1879-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Viral proteins evolve to benefit the interaction with host proteins during the infection and replication processes. A comprehensive understanding of virus interactome with host proteins may thus lead to the identification of molecular targets for infection inhibition. We present a procedure for isolating and identifying the dengue virus interactome with human plasma proteins. It comprises the fractionation of human plasma by anion exchange chromatography, followed by affinity purification and mass spectrometry identification of the captured proteins. This procedure was applied to the characterization of the interactions of the four serotypes of dengue virus with human plasma proteins, mediated by the domain III of the envelope protein of the virus. The resulting interactome comprises 62 proteins, six of which were validated as new direct interactions of the virus with its human host.
Collapse
Affiliation(s)
- Vivian Huerta
- Division of System Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba.
| | - Yassel Ramos
- Division of System Biology, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
8
|
Ware-Gilmore F, Sgrò CM, Xi Z, Dutra HLC, Jones MJ, Shea K, Hall MD, Thomas MB, McGraw EA. Microbes increase thermal sensitivity in the mosquito Aedes aegypti, with the potential to change disease distributions. PLoS Negl Trop Dis 2021; 15:e0009548. [PMID: 34292940 PMCID: PMC8297775 DOI: 10.1371/journal.pntd.0009548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/10/2021] [Indexed: 11/21/2022] Open
Abstract
The mosquito Aedes aegypti is the primary vector of many disease-causing viruses, including dengue (DENV), Zika, chikungunya, and yellow fever. As consequences of climate change, we expect an increase in both global mean temperatures and extreme climatic events. When temperatures fluctuate, mosquito vectors will be increasingly exposed to temperatures beyond their upper thermal limits. Here, we examine how DENV infection alters Ae. aegypti thermotolerance by using a high-throughput physiological 'knockdown' assay modeled on studies in Drosophila. Such laboratory measures of thermal tolerance have previously been shown to accurately predict an insect's distribution in the field. We show that DENV infection increases thermal sensitivity, an effect that may ultimately limit the geographic range of the virus. We also show that the endosymbiotic bacterium Wolbachia pipientis, which is currently being released globally as a biological control agent, has a similar impact on thermal sensitivity in Ae. aegypti. Surprisingly, in the coinfected state, Wolbachia did not provide protection against DENV-associated effects on thermal tolerance, nor were the effects of the two infections additive. The latter suggests that the microbes may act by similar means, potentially through activation of shared immune pathways or energetic tradeoffs. Models predicting future ranges of both virus transmission and Wolbachia's efficacy following field release may wish to consider the effects these microbes have on host survival.
Collapse
Affiliation(s)
- Fhallon Ware-Gilmore
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Carla M. Sgrò
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Zhiyong Xi
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Heverton L. C. Dutra
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew J. Jones
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Katriona Shea
- Department of Biology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Matthew B. Thomas
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Elizabeth A. McGraw
- Department of Entomology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology & The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
9
|
Begam NN, Kumar A, Sahu M, Soneja M, Bhatt M, Vishwakarma VK, Sethi P, Baitha U, Barua K, Biswas A. Management of dengue with co-infections: an updated narrative review. Drug Discov Ther 2021; 15:130-138. [PMID: 34234061 DOI: 10.5582/ddt.2021.01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dengue is a life-threatening mosquito borne viral disease. We are still in the era of supportive treatment where morbidity and mortality are a major concern. Dengue infection in presence of other co-infections makes this scenario rather worse. Timely recognition and raising alarm to be intensive is the need of the hour for primary care physicians practicing in the community and indoors. This review provides a comprehensive knowledge about the recent trends of coinfection in dengue as well as their management consideration which will be particularly helpful for physicians practicing in rural and remote areas of India.
Collapse
Affiliation(s)
- Nazneen Nahar Begam
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Arvind Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Monalisa Sahu
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Manasvini Bhatt
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Prayas Sethi
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Upendra Baitha
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Kalpana Barua
- National Vector Borne Disease Control Programme (NVBDCP), Ministry of Health and Family Welfare (MOHFW), Government of India (GOI)
| | - Ashutosh Biswas
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Gwee SXW, St John AL, Gray GC, Pang J. Animals as potential reservoirs for dengue transmission: A systematic review. One Health 2021; 12:100216. [PMID: 33598525 PMCID: PMC7868715 DOI: 10.1016/j.onehlt.2021.100216] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
Dengue is a rapidly spreading mosquito-borne flavivirus infection that is prevalent in tropical and sub-tropical regions. Humans are known to be the main reservoir host maintaining the epidemic cycles of dengue but it is unclear if dengue virus is also maintained in a similar enzootic cycle. The systematic review was conducted in accordance to Cochrane's PRISMA recommendations. A search was done on PubMed, EMBASE, Scopus and Cochrane Library. Key data on animal dengue positivity was extracted and classified according to animal type and diagnostic modes. Of the 3818 articles identified, 56 articles were used in this review. A total of 16,333 animals were tested, 1817 of which were positive for dengue virus by RT-PCR or serology. Dengue positivity was detected in bats (10.1%), non-human primates (27.3%), birds (11%), bovid (4.1%), dogs (1.6%), horses (5.1%), pigs (34.1%), rodents (3.5%), marsupials (13%) and other small animals (7.3%). While majority of dengue positivity via serology suggests potential enzootic transmission, but regular dengue virus spillback cannot be excluded. With the exception of bats, acute infection among animals is limited. Further investigation on animals is critically required to better understand their role as potential reservoir in dengue transmission.
Collapse
Affiliation(s)
- Sylvia Xiao Wei Gwee
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Centre of Infectious Disease Epidemiology and Research, National University of Singapore, Singapore
| | - Ashley L. St John
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- Department of Microbiology and Immunology, National University of Singapore, Singapore
- Pathology Department, Duke University, USA
- SingHealth Duke-NUS Global Health University, Singapore
| | - Gregory C. Gray
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
- SingHealth Duke-NUS Global Health University, Singapore
- Division of Infectious Diseases, School of Medicine, Duke University, USA
- Global Health Institute, Duke University, USA
- Duke Kunshan University, China
| | - Junxiong Pang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Centre of Infectious Disease Epidemiology and Research, National University of Singapore, Singapore
| |
Collapse
|
11
|
Universal Dengue Vaccine Elicits Neutralizing Antibodies against Strains from All Four Dengue Virus Serotypes. J Virol 2021; 95:JVI.00658-20. [PMID: 33208445 DOI: 10.1128/jvi.00658-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 11/02/2020] [Indexed: 12/22/2022] Open
Abstract
Any potential dengue virus (DENV) vaccine needs to elicit protective immunity against strains from all four serotypes to avoid potential antibody-dependent enhancement (ADE). In this study, four independent DENV envelope (E) glycoproteins were generated using wild-type E sequences from viruses isolated between 1943 and 2006 using computationally optimized broadly reactive antigen (COBRA) methodology. COBRA and wild-type E antigens were expressed on the surface of subvirion viral particles (SVPs). Four separate wild-type E antigens were used for each serotype. Mice vaccinated with wild-type DENV SVPs had anti-E IgG antibodies that neutralized serotype-specific viruses. COBRA DENV SVPs elicited a broader breadth of antibodies that neutralized strains across all four serotypes. Two COBRA DENV vaccine candidates that elicited the broadest breadth of neutralizing antibodies in mice were used to vaccinate rhesus macaques (Macaca mulatta) that either were immunologically naive to any DENV serotype or had preexisting antibodies to DENV. Antibodies elicited by COBRA DENV E immunogens neutralized all 12 strains of DENV in vitro, which was comparable to antibodies elicited by a tetravalent wild-type E SVP vaccination mixture. Therefore, using a single DENV COBRA E protein can elicit neutralizing antibodies against strains representing all four serotypes of DENV in both naive and dengue virus-preimmune populations.IMPORTANCE Dengue virus infects millions of people living in tropical areas of the world. Dengue virus-induced diseases can range from mild to severe with death. An effective vaccine will need to neutralize viruses from all four serotypes of dengue virus without inducing enhanced disease. A dengue virus E vaccine candidate generated by computationally optimized broadly reactive antigen algorithms elicits broadly neutralizing protection for currently circulating strains from all four serotypes regardless of immune status. Most dengue vaccines in development formulate four separate components based on prM-E from a wild-type strain representing each serotype. Designing a monovalent vaccine that elicits protective immunity against all four serotypes is an effective and economical strategy.
Collapse
|
12
|
Sasmono RT, Santoso MS, Pamai YWB, Yohan B, Afida AM, Denis D, Hutagalung IA, Johar E, Hayati RF, Yudhaputri FA, Haryanto S, Stubbs SCB, Blacklaws BA, Myint KSA, Frost SDW. Distinct Dengue Disease Epidemiology, Clinical, and Diagnosis Features in Western, Central, and Eastern Regions of Indonesia, 2017-2019. Front Med (Lausanne) 2020; 7:582235. [PMID: 33335904 PMCID: PMC7737558 DOI: 10.3389/fmed.2020.582235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/22/2020] [Indexed: 01/06/2023] Open
Abstract
The people of Indonesia have been afflicted by dengue, a mosquito-borne viral disease, for over 5 decades. The country is the world's largest archipelago with diverse geographic, climatic, and demographic conditions that may impact the dynamics of disease transmissions. A dengue epidemiology study was launched by us to compare and understand the dynamics of dengue and other arboviral diseases in three cities representing western, central, and eastern Indonesia, namely, Batam, Banjarmasin, and Ambon, respectively. A total of 732 febrile patients were recruited with dengue-like illness during September 2017-2019 and an analysis of their demographic, clinical, and virological features was performed. The seasonal patterns of dengue-like illness were found to be different in the three regions. Among all patients, 271 (37.0%) were virologically confirmed dengue, while 152 (20.8%) patients were diagnosed with probable dengue, giving a total number of 423 (57.8%) dengue patients. Patients' age and clinical manifestations also differed between cities. Mostly, mild dengue fever was observed in Batam, while more severe cases were prominent in Ambon. While all dengue virus (DENV) serotypes were detected, distinct serotypes dominated in different locations: DENV-1 in Batam and Ambon, and DENV-3 in Banjarmasin. We also assessed the diagnostic features in the study sites, which revealed different patterns of diagnostic agreements, particularly in Ambon. To detect the possibility of infection with other arboviruses, further testing on 461 DENV RT-PCR-negative samples was performed using pan-flavivirus and -alphavirus RT-PCRs; however, only one chikungunya infection was detected in Ambon. A diverse dengue epidemiology in western, central, and eastern Indonesia was observed, which is likely to be influenced by local geographic, climatic, and demographic conditions, as well as differences in the quality of healthcare providers and facilities. Our study adds a new understanding on dengue epidemiology in Indonesia.
Collapse
Affiliation(s)
| | | | | | | | - Anna M Afida
- Dr. H. M. Ansari Saleh Hospital, Banjarmasin, Indonesia
| | | | | | - Edison Johar
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Rahma F Hayati
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Samuel C B Stubbs
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Barbara A Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Khin S A Myint
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom.,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Microsoft Research, Redmond, WA, United States
| |
Collapse
|
13
|
Silva NM, Santos NC, Martins IC. Dengue and Zika Viruses: Epidemiological History, Potential Therapies, and Promising Vaccines. Trop Med Infect Dis 2020; 5:E150. [PMID: 32977703 PMCID: PMC7709709 DOI: 10.3390/tropicalmed5040150] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV), which can lead to fatal hemorrhagic fever, affects 390 million people worldwide. The closely related Zika virus (ZIKV) causes microcephaly in newborns and Guillain-Barré syndrome in adults. Both viruses are mostly transmitted by Aedes albopictus and Aedes aegypti mosquitoes, which, due to globalization of trade and travel alongside climate change, are spreading worldwide, paving the way to DENV and ZIKV transmission and the occurrence of new epidemics. Local outbreaks have already occurred in temperate climates, even in Europe. As there are no specific treatments, these viruses are an international public health concern. Here, we analyze and discuss DENV and ZIKV outbreaks history, clinical and pathogenesis features, and modes of transmission, supplementing with information on advances on potential therapies and restraining measures. Taking advantage of the knowledge of the structure and biological function of the capsid (C) protein, a relatively conserved protein among flaviviruses, within a genus that includes DENV and ZIKV, we designed and patented a new drug lead, pep14-23 (WO2008/028939A1). It was demonstrated that it inhibits the interaction of DENV C protein with the host lipid system, a process essential for viral replication. Such an approach can be used to develop new therapies for related viruses, such as ZIKV.
Collapse
Affiliation(s)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| |
Collapse
|
14
|
Ko HY, Salem GM, Chang GJJ, Chao DY. Application of Next-Generation Sequencing to Reveal How Evolutionary Dynamics of Viral Population Shape Dengue Epidemiology. Front Microbiol 2020; 11:1371. [PMID: 32636827 PMCID: PMC7318875 DOI: 10.3389/fmicb.2020.01371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Dengue viral (DENV) infection results in a wide spectrum of clinical manifestations from asymptomatic, mild fever to severe hemorrhage diseases upon infection. Severe dengue is the leading cause of pediatric deaths and/or hospitalizations, which are a major public health burden in dengue-endemic or hyperendemic countries. Like other RNA viruses, DENV continues to evolve. Adaptive mutations are obscured by the major consensus sequence (so-called wild-type sequences) and can only be identified once they become the dominant viruses in the virus population, a process that can take months or years. Traditional surveillance systems still rely on Sanger consensus sequencing. However, with the recent advancement of high-throughput next-generation sequencing (NGS) technologies, the genome-wide investigation of virus population within-host and between-hosts becomes achievable. Thus, viral population sequencing by NGS can increase our understanding of the changing epidemiology and evolution of viral genomics at the molecular level. This review focuses on the studies within the recent decade utilizing NGS in different experimental and epidemiological settings to understand how the adaptive evolution of dengue variants shapes the dengue epidemic and disease severity through its transmission. We propose three types of studies that can be pursued in the future to enhance our surveillance for epidemic prediction and better medical management.
Collapse
Affiliation(s)
- Hui-Ying Ko
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gielenny M Salem
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Gwong-Jen J Chang
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, United States
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Blight J, Alves E, Reyes-Sandoval A. Considering Genomic and Immunological Correlates of Protection for a Dengue Intervention. Vaccines (Basel) 2019; 7:E203. [PMID: 31816907 PMCID: PMC6963661 DOI: 10.3390/vaccines7040203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 01/18/2023] Open
Abstract
Over three billion are at risk of dengue infection with more than 100 million a year presenting with symptoms that can lead to deadly haemorrhagic disease. There are however no treatments available and the only licensed vaccine shows limited efficacy and is able to enhance the disease in some cases. These failures have mainly been due to the complex pathology and lack of understanding of the correlates of protection for dengue virus (DENV) infection. With increasing data suggesting both a protective and detrimental effect for antibodies and CD8 T-cells whilst having complex environmental dynamics. This review discusses the roles of genomic and immunological aspects of DENV infection, providing both a historical interpretation and fresh discussion on how this information can be used for the next generation of dengue interventions.
Collapse
Affiliation(s)
- Joshua Blight
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.B.); (E.A.)
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eduardo Alves
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, South Kensington, London SW7 2AZ, UK; (J.B.); (E.A.)
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
16
|
Development of an Enzyme-Linked Immunosorbent Assay for Rapid Detection of Dengue Virus (DENV) NS1 and Differentiation of DENV Serotypes during Early Infection. J Clin Microbiol 2019; 57:JCM.00221-19. [PMID: 30971466 PMCID: PMC6595446 DOI: 10.1128/jcm.00221-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/03/2019] [Indexed: 12/01/2022] Open
Abstract
Dengue fever, caused by infections with the dengue virus (DENV), affects nearly 400 million people globally every year. Early diagnosis and management can reduce the morbidity and mortality rates of severe forms of dengue disease as well as decrease the risk of wider outbreaks. Dengue fever, caused by infections with the dengue virus (DENV), affects nearly 400 million people globally every year. Early diagnosis and management can reduce the morbidity and mortality rates of severe forms of dengue disease as well as decrease the risk of wider outbreaks. Although the early diagnosis of dengue can be achieved using a number of commercial NS1 detection kits, none of these can differentiate among the four dengue virus serotypes. In this study, we developed an enzyme-linked immunosorbent assay (ELISA) for the detection of dengue virus (DENV) NS1 by pairing a serotype-cross-reactive monoclonal antibody (MAb) with one of four serotype-specific MAbs in order to facilitate the rapid detection of NS1 antigens and the simultaneous differentiation of DENV serotypes. A total of 146 serum samples obtained from patients suspected to be in the acute phase of DENV infection were used to evaluate the clinical application of our novel test for the detection and serotyping of DENV. The overall sensitivity rate of our test was 84.85%, and the sensitivity rates for serotyping were as follows: 88.2% (15/17) for DENV serotype 1 (DENV1), 94.7% (18/19) for DENV2, 75% (12/16) for DENV3, and 66.6% (6/9) for DENV4. Moreover, there was no cross-reactivity among serotypes, and no cross-reactivity was observed in sera from nondengue patients. Thus, our test not only enables the rapid detection of the dengue virus but also can distinguish among the specific serotypes during the early stages of infection. These results indicate that our ELISA for DENV NS1 is a convenient tool that may help elucidate the epidemiology of DENV outbreaks and facilitate the clinical management of DENV infections.
Collapse
|
17
|
Laiton-Donato K, Alvarez DA, Peláez-Carvajal D, Mercado M, Ajami NJ, Bosch I, Usme-Ciro JA. Molecular characterization of dengue virus reveals regional diversification of serotype 2 in Colombia. Virol J 2019; 16:62. [PMID: 31068191 PMCID: PMC6505283 DOI: 10.1186/s12985-019-1170-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 11/24/2022] Open
Abstract
Dengue is hyperendemic in Colombia, where a cyclic behavior of serotype replacement leading to periodic epidemics has been observed for decades. This level of endemicity favors accumulation of dengue virus genetic diversity and could be linked to disease outcome. To assess the genetic diversity of dengue virus type 2 in Colombia, we sequenced the envelope gene of 24 virus isolates from acute cases of dengue or severe dengue fever during the period 2013–2016. The phylogenetic analysis revealed the circulation of the Asian-American genotype of dengue virus type 2 in Colombia during that period, the intra-genotype variability leading to divergence in two recently circulating lineages with differential geographic distribution, as well as the presence of nonsynonymous substitutions accompanying their emergence and diversification.
Collapse
Affiliation(s)
- Katherine Laiton-Donato
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia
| | - Diego A Alvarez
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia
| | - Dioselina Peláez-Carvajal
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia
| | - Marcela Mercado
- Dirección de Vigilancia y Análisis del Riesgo en Salud Pública, Instituto Nacional de Salud, Bogotá DC, 111321, Colombia
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Irene Bosch
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142-1601, USA
| | - José A Usme-Ciro
- Grupo de Virología, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Avenida Calle 26 N° 51-20 CAN, Bogotá DC, Colombia. .,Current Address: Centro de Investigación en Salud para el Trópico - CIST, Facultad de Medicina, Universidad Cooperativa de Colombia, Troncal del Caribe Sector Mamatoco, Santa Marta, Colombia.
| |
Collapse
|
18
|
Cuypers L, Libin PJK, Simmonds P, Nowé A, Muñoz-Jordán J, Alcantara LCJ, Vandamme AM, Santiago GA, Theys K. Time to Harmonize Dengue Nomenclature and Classification. Viruses 2018; 10:E569. [PMID: 30340326 PMCID: PMC6213058 DOI: 10.3390/v10100569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022] Open
Abstract
Dengue virus (DENV) is estimated to cause 390 million infections per year worldwide. A quarter of these infections manifest clinically and are associated with a morbidity and mortality that put a significant burden on the affected regions. Reports of increased frequency, intensity, and extended geographical range of outbreaks highlight the virus's ongoing global spread. Persistent transmission in endemic areas and the emergence in territories formerly devoid of transmission have shaped DENV's current genetic diversity and divergence. This genetic layout is hierarchically organized in serotypes, genotypes, and sub-genotypic clades. While serotypes are well defined, the genotype nomenclature and classification system lack consistency, which complicates a broader analysis of their clinical and epidemiological characteristics. We identify five key challenges: (1) Currently, there is no formal definition of a DENV genotype; (2) Two different nomenclature systems are used in parallel, which causes significant confusion; (3) A standardized classification procedure is lacking so far; (4) No formal definition of sub-genotypic clades is in place; (5) There is no consensus on how to report antigenic diversity. Therefore, we believe that the time is right to re-evaluate DENV genetic diversity in an essential effort to provide harmonization across DENV studies.
Collapse
Affiliation(s)
- Lize Cuypers
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Pieter J K Libin
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK.
| | - Ann Nowé
- Artificial Intelligence Lab, Department of Computer Science, Vrije Universiteit Brussel, 1050 Brussels, Belgium.
| | - Jorge Muñoz-Jordán
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR 00920, USA.
| | | | - Anne-Mieke Vandamme
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
- Global Health and Tropical Medicine, Unidade de Microbiologia, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, 1349-008 Lisbon, Portugal.
| | - Gilberto A Santiago
- Division of Vector-Borne Diseases, Dengue Branch, Centers for Disease Control and Prevention, San Juan, PR 00920, USA.
| | - Kristof Theys
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Stewart-Ibarra AM, Ryan SJ, Kenneson A, King CA, Abbott M, Barbachano-Guerrero A, Beltrán-Ayala E, Borbor-Cordova MJ, Cárdenas WB, Cueva C, Finkelstein JL, Lupone CD, Jarman RG, Maljkovic Berry I, Mehta S, Polhemus M, Silva M, Endy TP. The Burden of Dengue Fever and Chikungunya in Southern Coastal Ecuador: Epidemiology, Clinical Presentation, and Phylogenetics from the First Two Years of a Prospective Study. Am J Trop Med Hyg 2018; 98:1444-1459. [PMID: 29512482 PMCID: PMC5953373 DOI: 10.4269/ajtmh.17-0762] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/11/2018] [Indexed: 01/05/2023] Open
Abstract
Here, we report the findings from the first 2 years (2014-2015) of an arbovirus surveillance study conducted in Machala, Ecuador, a dengue-endemic region. Patients with suspected dengue virus (DENV) infections (index cases, N = 324) were referred from five Ministry of Health clinical sites. A subset of DENV-positive index cases (N = 44) were selected, and individuals from the index household and four neighboring homes within 200 m were recruited (N = 400). Individuals who entered the study, other than the index cases, are referred to as associates. In 2014, 70.9% of index cases and 35.6% of associates had acute or recent DENV infections. In 2015, 28.3% of index cases and 12.8% of associates had acute or recent DENV infections. For every DENV infection captured by passive surveillance, we detected an additional three acute or recent DENV infections in associates. Of associates with acute DENV infections, 68% reported dengue-like symptoms, with the highest prevalence of symptomatic acute infections in children aged less than 10 years. The first chikungunya virus (CHIKV) infections were detected on epidemiological week 12 in 2015; 43.1% of index cases and 3.5% of associates had acute CHIKV infections. No Zika virus infections were detected. Phylogenetic analyses of isolates of DENV from 2014 revealed genetic relatedness and shared ancestry of DENV1, DENV2, and DENV4 genomes from Ecuador with those from Venezuela and Colombia, indicating the presence of viral flow between Ecuador and surrounding countries. Enhanced surveillance studies, such as this, provide high-resolution data on symptomatic and inapparent infections across the population.
Collapse
Affiliation(s)
- Anna M. Stewart-Ibarra
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Sadie J. Ryan
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Geography, University of Florida, Gainesville, Florida
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida
- College of Life Sciences, University of Kwazulu-Natal, Durban, South Africa
| | - Aileen Kenneson
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Christine A. King
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Mark Abbott
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Arturo Barbachano-Guerrero
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Efraín Beltrán-Ayala
- Department of Medicine, Universidad Técnica de Machala, Machala, El Oro, Ecuador
| | - Mercy J. Borbor-Cordova
- Laboratorio para Investigaciónes Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas Province, Ecuador
| | - Washington B. Cárdenas
- Laboratorio para Investigaciónes Biomédicas, Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, Guayaquil, Guayas Province, Ecuador
| | - Cinthya Cueva
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | | | - Christina D. Lupone
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Public Health and Preventative Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Richard G. Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research (WRAIR), Silver Spring, Maryland
| | - Saurabh Mehta
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
| | - Mark Polhemus
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| | - Mercy Silva
- Ministry of Health, Machala, El Oro, Ecuador
| | - Timothy P. Endy
- Center for Global Health and Translational Sciences, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
- Department of Microbiology and Immunology, State University of New York (SUNY) Upstate Medical University, Syracuse, New York
| |
Collapse
|
20
|
Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD. High dengue virus load differentially modulates human microvascular endothelial barrier function during early infection. J Gen Virol 2017; 98:2993-3007. [PMID: 29182510 DOI: 10.1099/jgv.0.000981] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
Collapse
Affiliation(s)
- Hui Jen Soe
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Asif M Khan
- Centre for Bioinformatics, School of Data Sciences, Perdana University, Serdang, Selangor, Malaysia
| | - Rishya Manikam
- Trauma and Emergency (Academic), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chandramathi Samudi Raju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, Hong Kong SAR
| | - Shamala Devi Sekaran
- Department of Medical Microbiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Katzelnick LC, Harris E. Immune correlates of protection for dengue: State of the art and research agenda. Vaccine 2017; 35:4659-4669. [PMID: 28757058 PMCID: PMC5924688 DOI: 10.1016/j.vaccine.2017.07.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/04/2017] [Accepted: 07/13/2017] [Indexed: 01/15/2023]
Abstract
Dengue viruses (DENV1-4) are mosquito-borne flaviviruses estimated to cause up to ∼400 million infections and ∼100 million dengue cases each year. Factors that contribute to protection from and risk of dengue and severe dengue disease have been studied extensively but are still not fully understood. Results from Phase 3 vaccine efficacy trials have recently become available for one vaccine candidate, now licensed for use in several countries, and more Phase 2 and 3 studies of additional vaccine candidates are ongoing, making these issues all the more urgent and timely. At the "Summit on Dengue Immune Correlates of Protection", held in Annecy, France, on March 8-9, 2016, dengue experts from diverse fields came together to discuss the current understanding of the immune response to and protection from DENV infection and disease, identify key unanswered questions, discuss data on immune correlates and plans for comparison of results across assays/consortia, and propose a research agenda for investigation of dengue immune correlates, all in the context of both natural infection studies and vaccine trials.
Collapse
Affiliation(s)
- Leah C Katzelnick
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-3370, USA.
| |
Collapse
|
22
|
Siraj AS, Oidtman RJ, Huber JH, Kraemer MUG, Brady OJ, Johansson MA, Perkins TA. Temperature modulates dengue virus epidemic growth rates through its effects on reproduction numbers and generation intervals. PLoS Negl Trop Dis 2017; 11:e0005797. [PMID: 28723920 PMCID: PMC5536440 DOI: 10.1371/journal.pntd.0005797] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/31/2017] [Accepted: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Epidemic growth rate, r, provides a more complete description of the potential for epidemics than the more commonly studied basic reproduction number, R0, yet the former has never been described as a function of temperature for dengue virus or other pathogens with temperature-sensitive transmission. The need to understand the drivers of epidemics of these pathogens is acute, with arthropod-borne virus epidemics becoming increasingly problematic. We addressed this need by developing temperature-dependent descriptions of the two components of r—R0 and the generation interval—to obtain a temperature-dependent description of r. Our results show that the generation interval is highly sensitive to temperature, decreasing twofold between 25 and 35°C and suggesting that dengue virus epidemics may accelerate as temperatures increase, not only because of more infections per generation but also because of faster generations. Under the empirical temperature relationships that we considered, we found that r peaked at a temperature threshold that was robust to uncertainty in model parameters that do not depend on temperature. Although the precise value of this temperature threshold could be refined following future studies of empirical temperature relationships, the framework we present for identifying such temperature thresholds offers a new way to classify regions in which dengue virus epidemic intensity could either increase or decrease under future climate change. Recurrent, rapidly intensifying epidemics of dengue–the world’s most prevalent mosquito-borne viral disease–pose a challenge to healthcare systems throughout the tropical and subtropical world. An acute disease that tends to respond well to proper treatment, the sometimes intense nature of dengue epidemics has been known to overwhelm healthcare systems and elevate the morbidity and mortality of patients left without adequate medical treatment under peak epidemic conditions. Here, we quantify the temperature dependence of dengue epidemic intensity by quantifying two distinct determinants of epidemic growth rate: the average number of secondary infections arising from each primary infection and the average time between successive infections in humans. Our results show that the time between successive infections in humans decreases steadily with increasing temperatures, whereas the average number of secondary infections peaks at intermediate temperatures. Altogether, this suggests a peak temperature for dengue epidemic intensity. Applying this result to global temperature projections under future climate change scenarios suggests that dengue epidemics in many regions of the world could become more intense under future temperature increases.
Collapse
Affiliation(s)
- Amir S. Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, United States of America
- * E-mail: (ASS); (TAP)
| | - Rachel J. Oidtman
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, United States of America
| | - John H. Huber
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, United States of America
| | - Moritz U. G. Kraemer
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Department of Pediatrics, Harvard Medical School, Boston, United States of America
- Department of Informatics, Boston Children’s Hospital, Boston, United States of America
| | - Oliver J. Brady
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael A. Johansson
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, United States of America
- * E-mail: (ASS); (TAP)
| |
Collapse
|
23
|
Gao B, Zhang J, Wang Y, Chen F, Zheng C, Xie L. Genomic Characterization of Travel-Associated Dengue Viruses Isolated from the Entry-Exit Ports in Fujian Province, China, 2013-2015. Jpn J Infect Dis 2017; 70:554-558. [PMID: 28674315 DOI: 10.7883/yoken.jjid.2016.577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past decade, indigenous dengue outbreaks have occurred occasionally in Fujian province in southeastern China because of sporadic imported dengue viruses (DENV). In this study, 3 DENV-2 and 2 DENV-4 strains were isolated from suspected febrile travelers at 2 ports of entry in Fujian between 2013-2015. Complete viral genome sequences of these new isolates were obtained with Sanger chemistry. Genomic sequence analyses revealed that these strains belonged to genotypes of 2-Cosmopolitan and 4-II. Consistent with the patients' travel information, phylogenetic analyses of the complete coding regions also indicated that most of the new isolates were genetically similar to the circulating strains in Southeast Asia rather than previous Chinese strains that were available. Therefore, phylogenetic analyses of the imported DENV demonstrated that multiple introductions of DENV emerged continuously in Fujian, and highlighted the importance of dengue surveillance at entry-exit ports in the subtropical regions of southern China.
Collapse
Affiliation(s)
- Bo Gao
- Fujian Agriculture & Forestry University.,Fujian International Travel Healthcare Center
| | | | - Yuping Wang
- Fujian International Travel Healthcare Center
| | - Fan Chen
- Fujian International Travel Healthcare Center
| | | | | |
Collapse
|
24
|
Wardhani P, Aryati A, Yohan B, Trimarsanto H, Setianingsih TY, Puspitasari D, Arfijanto MV, Bramantono B, Suharto S, Sasmono RT. Clinical and virological characteristics of dengue in Surabaya, Indonesia. PLoS One 2017; 12:e0178443. [PMID: 28575000 PMCID: PMC5456069 DOI: 10.1371/journal.pone.0178443] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 05/12/2017] [Indexed: 01/28/2023] Open
Abstract
Dengue disease is still a major health problem in Indonesia. Surabaya, the second largest city in the country, is endemic for dengue. We report here on dengue disease in Surabaya, investigating the clinical manifestations, the distribution of dengue virus (DENV) serotypes, and the relationships between clinical manifestations and the genetic characteristics of DENV. A total of 148 patients suspected of having dengue were recruited during February-August 2012. One hundred one (68%) of them were children, and 47 (32%) were adults. Dengue fever (DF) and Dengue hemorrhagic fever (DHF) were equally manifested in all of the patients. We performed DENV serotyping on all of the samples using real-time RT-PCR. Of 148, 79 (53%) samples were detected as DENV positive, with DENV-1 as the predominant serotype (73%), followed by DENV-2 (8%), DENV-4 (8%), and DENV-3 (6%), while 5% were mixed infections. Based on the Envelope gene sequences, we performed phylogenetic analyses of 24 isolates to genotype the DENV circulating in Surabaya in 2012, and the analysis revealed that DENV-1 consisted of Genotypes I and IV, DENV-2 was of the Cosmopolitan genotype, the DENV-3 viruses were of Genotype I, and DENV-4 was detected as Genotype II. We correlated the infecting DENV serotypes with clinical manifestations and laboratory parameters; however, no significant correlations were found. Amino acid analysis of Envelope protein did not find any unique mutations related to disease severity.
Collapse
Affiliation(s)
- Puspa Wardhani
- Department of Clinical Pathology, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute for Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | - Aryati Aryati
- Department of Clinical Pathology, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Institute for Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| | | | | | | | - Dwiyanti Puspitasari
- Department of Pediatric, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | | | - Bramantono Bramantono
- Department of Internal Medicine, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suharto Suharto
- Department of Internal Medicine, School of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - R. Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- * E-mail:
| |
Collapse
|
25
|
de Lima TFM, Lana RM, de Senna Carneiro TG, Codeço CT, Machado GS, Ferreira LS, de Castro Medeiros LC, Davis Junior CA. DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E920. [PMID: 27649226 PMCID: PMC5036753 DOI: 10.3390/ijerph13090920] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022]
Abstract
The prevention and control of dengue are great public health challenges for many countries, particularly since 2015, as other arboviruses have been observed to interact significantly with dengue virus. Different approaches and methodologies have been proposed and discussed by the research community. An important tool widely used is modeling and simulation, which help us to understand epidemic dynamics and create scenarios to support planning and decision making processes. With this aim, we proposed and developed DengueME, a collaborative open source platform to simulate dengue disease and its vector's dynamics. It supports compartmental and individual-based models, implemented over a GIS database, that represent Aedes aegypti population dynamics, human demography, human mobility, urban landscape and dengue transmission mediated by human and mosquito encounters. A user-friendly graphical interface was developed to facilitate model configuration and data input, and a library of models was developed to support teaching-learning activities. DengueME was applied in study cases and evaluated by specialists. Other improvements will be made in future work, to enhance its extensibility and usability.
Collapse
Affiliation(s)
- Tiago França Melo de Lima
- Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP) - Campus João Monlevade, João Monlevade, MG 35931-008, Brasil.
| | - Raquel Martins Lana
- Programa Pós-Graduação em Epidemiologia em Saúde Pública, Escola Nacional de Saúde Pública Sérgio Arouca (ENSP), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21045-900, Brasil.
| | - Tiago Garcia de Senna Carneiro
- Departamento de Computação (DECOM), Instituto de Ciências Exatas e Biológicas (ICEB), Universidade Federal de Ouro Preto (UFOP) - Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000, Brasil.
| | - Cláudia Torres Codeço
- Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21045-900, Brasil.
| | - Gabriel Souza Machado
- Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP) - Campus João Monlevade, João Monlevade, MG 35931-008, Brasil.
| | - Lucas Saraiva Ferreira
- Departamento de Computação e Sistemas (DECSI), Instituto de Ciências Exatas e Aplicadas (ICEA), Universidade Federal de Ouro Preto (UFOP) - Campus João Monlevade, João Monlevade, MG 35931-008, Brasil.
| | - Líliam César de Castro Medeiros
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), São José dos Campos, SP 12247-004, Brasil.
| | - Clodoveu Augusto Davis Junior
- Departamento de Ciência da Computação (DCC), Instituto de Ciências Exatas (ICEx), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31270-010, Brasil.
| |
Collapse
|
26
|
Andrade CC, Young KI, Johnson WL, Villa ME, Buraczyk CA, Messer WB, Hanley KA. Rise and fall of vector infectivity during sequential strain displacements by mosquito-borne dengue virus. J Evol Biol 2016; 29:2205-2218. [PMID: 27500505 DOI: 10.1111/jeb.12939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/10/2016] [Accepted: 06/15/2016] [Indexed: 12/31/2022]
Abstract
Each of the four serotypes of mosquito-borne dengue virus (DENV-1-4) comprises multiple, genetically distinct strains. Competitive displacement between strains within a serotype is a common feature of DENV epidemiology and can trigger outbreaks of dengue disease. We investigated the mechanisms underlying two sequential displacements by DENV-3 strains in Sri Lanka that each coincided with abrupt increases in dengue haemorrhagic fever (DHF) incidence. First, the post-DHF strain displaced the pre-DHF strain in the 1980s. We have previously shown that post-DHF is more infectious than pre-DHF for the major DENV vector, Aedes aegypti. Then, the ultra-DHF strain evolved in situ from post-DHF and displaced its ancestor in the 2000s. We predicted that ultra-DHF would be more infectious for Ae. aegypti than post-DHF but found that ultra-DHF infected a significantly lower percentage of mosquitoes than post-DHF. We therefore hypothesized that ultra-DHF had effected displacement by disseminating in Ae. aegypti more rapidly than post-DHF, but this was not borne out by a time course of mosquito infection. To elucidate the mechanisms that shape these virus-vector interactions, we tested the impact of RNA interference (RNAi), the principal mosquito defence against DENV, on replication of each of the three DENV strains. Replication of all strains was similar in mosquito cells with dysfunctional RNAi, but in cells with functional RNAi, replication of pre-DHF was significantly suppressed relative to the other two strains. Thus, differences in susceptibility to RNAi may account for the differences in mosquito infectivity between pre-DHF and post-DHF, but other mechanisms underlie the difference between post-DHF and ultra-DHF.
Collapse
Affiliation(s)
- C C Andrade
- Department of Biology, New Mexico State University, Las Cruces, NM, USA.
| | - K I Young
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - W L Johnson
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - M E Villa
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - C A Buraczyk
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - W B Messer
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA.,Division of Infectious Diseases, Department of Medicine, Oregon Health and Sciences University, Portland, OR, USA
| | - K A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
27
|
Haryanto S, Hayati RF, Yohan B, Sijabat L, Sihite IF, Fahri S, Meutiawati F, Halim JAN, Halim SN, Soebandrio A, Sasmono RT. The molecular and clinical features of dengue during outbreak in Jambi, Indonesia in 2015. Pathog Glob Health 2016; 110:119-29. [PMID: 27215933 DOI: 10.1080/20477724.2016.1184864] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dengue is hyperendemic in Indonesia. In 2015, reported cases of dengue fever doubled those of 2014 in the Jambi municipality of Sumatra. We examined viral aetiology and its relationship with disease outcome in Jambi. Dengue-suspected patients' sera were collected and NS1 detection and IgM/IgG serology were performed. Dengue virus (DENV) serotyping was performed using real-time RT-PCR. Envelope genes were sequenced to determine the genotypes of DENV. Clinical, haematologic, and demographic data were recorded. Of 210 dengue-suspected patients, 107 were confirmed. The disease manifested as Dengue Fever (62%), Dengue Haemorrhagic Fever (36%), and Dengue Shock Syndrome (2%). The serotypes of 94 DENV were determined. All DENV serotypes were detected with DENV-1 as the predominant serotype (66%). Genotypically, the DENV-1 viruses belong to Genotype I, DENV-2 was of Cosmopolitan genotype, DENV-3 as Genotype I, and DENV-4 belonged to Genotype II. Comparison with historical data revealed serotype predominance switched from DENV-3 to DENV-1, and the replacement of Genotype IV of DENV-1 with Genotype I. In summary, DENV-1 predominated during the 2015 dengue outbreak in Jambi. The full spectrum of dengue disease occurred and was characterized by a switch in predominant serotypes.
Collapse
Affiliation(s)
- Sotianingsih Haryanto
- a Siloam Hospital , Jambi , Indonesia.,d Faculty of Medicine , Jambi University , Jambi , Indonesia
| | - Rahma F Hayati
- b Eijkman Institute for Molecular Biology , Jakarta , Indonesia
| | | | | | | | - Sukmal Fahri
- c Health Polytechnic , Jambi Provincial Health Office , Jambi , Indonesia
| | | | | | - Stefanie N Halim
- e Faculty of Medicine , Diponegoro University , Semarang , Indonesia
| | - Amin Soebandrio
- b Eijkman Institute for Molecular Biology , Jakarta , Indonesia
| | - R Tedjo Sasmono
- b Eijkman Institute for Molecular Biology , Jakarta , Indonesia
| |
Collapse
|
28
|
El-Kafrawy SA, Sohrab SS, Ela SA, Abd-Alla AMM, Alhabbab R, Farraj SA, Othman NA, Hassan AM, Bergoin M, Klitting R, Charrel RN, Hashem AM, Madani TA, Azhar EI. Multiple Introductions of Dengue 2 Virus Strains into Saudi Arabia from 1992 to 2014. Vector Borne Zoonotic Dis 2016; 16:391-9. [PMID: 27135750 DOI: 10.1089/vbz.2015.1911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Dengue is a significant arboviral infection that represents a major public health concern worldwide. The infection is endemic in most parts of South East Asia, sub-Saharan Africa, and Latin America. Among the four dengue virus (DENV) serotypes, DENV-2 has been reported to be the predominant serotype in Saudi Arabia since 1992. However, virological and epidemiological data of DENV-2 from Saudi Arabia are severely deficient and require further investigations. METHODS Full genome sequencing of a recent DENV-2 isolate and phylogenetic analysis of all available DENV-2 sequences from Saudi Arabia. RESULTS Based on full genome and envelope (E) gene sequence, we show that a recent isolate (DENV-2-Jeddah-2014) belongs to the Indian subcontinent lineage of the Cosmopolitan genotype with close similarity to recent strains from Pakistan. Interestingly, the E gene sequence of DENV-2-Jeddah-2014 isolate was slightly divergent from those previously identified in Saudi Arabia between 1992 and 2004 with three to nine amino acid (aa) substitutions. While our data show that the Cosmopolitan genotype is still circulating in Saudi Arabia, they highlight four distinct genetic groups suggesting at least four independent introductions into the Kingdom. CONCLUSIONS The close clustering of DENV-2 isolates reported from Saudi Arabia between 1992 and 2014 with strains from countries providing the highest numbers of pilgrims attending either Hajj or Umrah pilgrimages (Indonesia, Pakistan, India) clearly suggests a role for pilgrims or expatriates coming from DENV endemic countries in DENV-2 importation into Saudi Arabia. Accordingly, continuous monitoring of the circulation of DENVs in Saudi Arabia must be implemented to undertake effective control and management strategies in the Kingdom. Screening of the pilgrims coming to perform Hajj and Umrah might help prevent the introduction of new DENV strains, which is expected to increase the burden of the disease not only in Saudi Arabia but also in other countries.
Collapse
Affiliation(s)
- Sherif A El-Kafrawy
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Sayed S Sohrab
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Said Abol Ela
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Adly M M Abd-Alla
- 2 Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture , Vienna, Austria .,3 Pests and Plant Protection Department, National Research Center , Cairo, Egypt
| | - Rowa Alhabbab
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia .,4 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Suha A Farraj
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Norah A Othman
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Ahmed M Hassan
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Max Bergoin
- 5 Laboratoire de Pathologie Comparée, Université Montpellier 2 , Montpellier, France
| | - Raphaelle Klitting
- 6 Aix Marseille Université, IRD French Institute of Research for Development , EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", and IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Remi N Charrel
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia .,6 Aix Marseille Université, IRD French Institute of Research for Development , EHESP French School of Public Health, EPV UMR_D 190 "Emergence des Pathologies Virales", and IHU Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Anwar M Hashem
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia .,7 Department of Medical Microbiology and Parasitology Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Tariq A Madani
- 8 Department of Medicine, Faculty of Medicine, King Abdulaziz University , Jeddah, Saudi Arabia
| | - Esam I Azhar
- 1 Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University , Jeddah, Saudi Arabia .,4 Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University , Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Sim S, Hibberd ML. Genomic approaches for understanding dengue: insights from the virus, vector, and host. Genome Biol 2016; 17:38. [PMID: 26931545 PMCID: PMC4774013 DOI: 10.1186/s13059-016-0907-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The incidence and geographic range of dengue have increased dramatically in recent decades. Climate change, rapid urbanization and increased global travel have facilitated the spread of both efficient mosquito vectors and the four dengue virus serotypes between population centers. At the same time, significant advances in genomics approaches have provided insights into host–pathogen interactions, immunogenetics, and viral evolution in both humans and mosquitoes. Here, we review these advances and the innovative treatment and control strategies that they are inspiring.
Collapse
Affiliation(s)
- Shuzhen Sim
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Martin L Hibberd
- Infectious Diseases, Genome Institute of Singapore, Singapore, 138672, Singapore. .,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| |
Collapse
|
30
|
Barros VE, dos Santos-Junior NN, Amarilla AA, Soares AM, Lourencini R, Trabuco AC, Aquino VH. Differential replicative ability of clinical dengue virus isolates in an immunocompetent C57BL/6 mouse model. BMC Microbiol 2015; 15:189. [PMID: 26415508 PMCID: PMC4587874 DOI: 10.1186/s12866-015-0520-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several experimental animal models have been used to study the pathogenesis of dengue disease; however, most of the studies used laboratory-adapted viruses, which lack the virulence of viruses circulating in humans. The aim of this study was to analyze the ability of clinical Dengue virus (DENV) isolates (D2/BR/RP/RMB/09 and D3/BR/SL3/02) to infect immunocompetent C57BL/6 mice. METHODS Two strategies of intraperitoneal infection, which were based on the concept of the antibody dependent enhancement phenomenon, were used. In one strategy, the animals were inoculated with macrophages infected in vitro with dengue viruses, which were incubated with enhancing antibodies, and in the other strategy, the animals were inoculated with a complex of enhancing antibodies and dengue viruses. RESULTS The D3/BR/SL3/08 isolate showed a higher ability of infection (virus RNA was more frequently detected in the serum and in several organs) in the experimental model compared to both the D2/BR/RP/RMB/2009 isolate and a laboratory adapted DENV-1 strain (Mochizuki strain), regardless of the infection strategy used. The main features of the D3/BR/SL3/08 isolate were its neuroinvasiveness and the induction of an extended period of viremia. Enhancing antibodies did not influence on the infection of animals when macrophages were used, but the level of viremia was increased when they were used as a complex with a D3/BR/SL3/02 isolate. DISCUSSION We showed that DENV isolates could infect immunocompetent C57BL/6 mice, which have has been previously used to study some aspect of dengue disease when infected with laboratory adapted strains. DENV genome was detected in the same organs found in humans when autopsy and biopsy samples were analyzed, showing that C57BL/6 mice reproduce some aspects of the DENV tropism observed in humans. The main difference observed between the D3/BR/SL3/02 and D2/BR/RP/RMB/2009 clinical isolates was the neuroinvasive ability of the first one. Neuroinvasiveness has been described in some DENV infected cases and is common for other members of the Flavivirus genus. CONCLUSIONS These results suggest that C57BL/6 mice can be used as an experimental model to evaluate virulence differences among DENV clinical isolates.
Collapse
Affiliation(s)
- Veridiana Ester Barros
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Nilton Nascimento dos Santos-Junior
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Alberto Anastacio Amarilla
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Adriana Moreira Soares
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Rafael Lourencini
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Amanda Cristina Trabuco
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| | - Victor Hugo Aquino
- Laboratory of Virology, Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av do Café, s/n, CEP: 14040-903, Ribeirao Preto, Sao Paulo, Brazil.
| |
Collapse
|
31
|
Complete genome sequencing and phylogenetic analysis of dengue type 1 virus isolated from Jeddah, Saudi Arabia. Virol J 2015; 12:1. [PMID: 25591713 PMCID: PMC4310205 DOI: 10.1186/s12985-014-0235-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/23/2014] [Indexed: 11/10/2022] Open
Abstract
Background Dengue viruses (DENVs) are mosquito-borne viruses which can cause disease ranging from mild fever to severe dengue infection. These viruses are endemic in several tropical and subtropical regions. Multiple outbreaks of DENV serotypes 1, 2 and 3 (DENV-1, DENV-2 and DENV-3) have been reported from the western region in Saudi Arabia since 1994. Strains from at least two genotypes of DENV-1 (Asia and America/Africa genotypes) have been circulating in western Saudi Arabia until 2006. However, all previous studies reported from Saudi Arabia were based on partial sequencing data of the envelope (E) gene without any reports of full genome sequences for any DENV serotypes circulating in Saudi Arabia. Findings Here, we report the isolation and the first complete genome sequence of a DENV-1 strain (DENV-1-Jeddah-1-2011) isolated from a patient from Jeddah, Saudi Arabia in 2011. Whole genome sequence alignment and phylogenetic analysis showed high similarity between DENV-1-Jeddah-1-2011 strain and D1/H/IMTSSA/98/606 isolate (Asian genotype) reported from Djibouti in 1998. Further analysis of the full envelope gene revealed a close relationship between DENV-1-Jeddah-1-2011 strain and isolates reported between 2004–2006 from Jeddah as well as recent isolates from Somalia, suggesting the widespread of the Asian genotype in this region. Conclusions These data suggest that strains belonging to the Asian genotype might have been introduced into Saudi Arabia long before 2004 most probably by African pilgrims and continued to circulate in western Saudi Arabia at least until 2011. Most importantly, these results indicate that pilgrims from dengue endemic regions can play an important role in the spread of new DENVs in Saudi Arabia and the rest of the world. Therefore, availability of complete genome sequences would serve as a reference for future epidemiological studies of DENV-1 viruses.
Collapse
|
32
|
Grange L, Simon-Loriere E, Sakuntabhai A, Gresh L, Paul R, Harris E. Epidemiological risk factors associated with high global frequency of inapparent dengue virus infections. Front Immunol 2014; 5:280. [PMID: 24966859 PMCID: PMC4052743 DOI: 10.3389/fimmu.2014.00280] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/28/2014] [Indexed: 02/04/2023] Open
Abstract
Dengue is a major international public health concern, and the number of outbreaks has escalated greatly. Human migration and international trade and travel are constantly introducing new vectors and pathogens into novel geographic areas. Of particular interest is the extent to which dengue virus (DENV) infections are subclinical or inapparent. Not only may such infections contribute to the global spread of DENV by human migration, but also seroprevalence rates in naïve populations may be initially high despite minimal numbers of detectable clinical cases. As the probability of severe disease is increased in secondary infections, populations may thus be primed, with serious public health consequences following introduction of a new serotype. In addition, pre-existing immunity from inapparent infections may affect vaccine uptake, and the ratio of clinically apparent to inapparent infection could affect the interpretation of vaccine trials. We performed a literature search for inapparent DENV infections and provide an analytical review of their frequency and associated risk factors. Inapparent rates were highly variable, but “inapparent” was the major outcome of infection in all prospective studies. Differences in the epidemiological context and type of surveillance account for much of the variability in inapparent infection rates. However, one particular epidemiological pattern was shared by four longitudinal cohort studies: the rate of inapparent DENV infections was positively correlated with the incidence of disease the previous year, strongly supporting an important role for short-term heterotypic immunity in determining the outcome of infection. Primary and secondary infections were equally likely to be inapparent. Knowledge of the extent to which viruses from inapparent infections are transmissible to mosquitoes is urgently needed. Inapparent infections need to be considered for their impact on disease severity, transmission dynamics, and vaccine efficacy and uptake.
Collapse
Affiliation(s)
- Laura Grange
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Etienne Simon-Loriere
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Anavaj Sakuntabhai
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Lionel Gresh
- Sustainable Sciences Institute , Managua , Nicaragua
| | - Richard Paul
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur , Paris , France ; URA3012, Centre National de la Recherche Scientifique , Paris , France
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California , Berkeley, CA , USA
| |
Collapse
|
33
|
Al-alimi AA, Ali SA, Al-Hassan FM, Idris FM, Teow SY, Mohd Yusoff N. Dengue virus type 2 (DENV2)-induced oxidative responses in monocytes from glucose-6-phosphate dehydrogenase (G6PD)-deficient and G6PD normal subjects. PLoS Negl Trop Dis 2014; 8:e2711. [PMID: 24625456 PMCID: PMC3953068 DOI: 10.1371/journal.pntd.0002711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 01/09/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals. METHODOLOGY Monocytes from G6PD-deficient individuals were infected with DENV2 and infection rate, levels of oxidative species, nitric oxide (NO), superoxide anions (O2-), and oxidative stress were determined and compared with normal controls. PRINCIPAL FINDINGS Monocytes from G6PD-deficient individuals exhibited significantly higher infection rates compared to normal controls. In an effort to explain the reason for this enhanced susceptibility, we investigated the production of NO and O2- in the monocytes of individuals with G6PD deficiency compared with normal controls. We found that levels of NO and O2- were significantly lower in the DENV-infected monocytes from G6PD-deficient individuals compared with normal controls. Furthermore, the overall oxidative stress in DENV-infected monocytes from G6PD-deficient individuals was significantly higher when compared to normal controls. Correlation studies between DENV-infected cells and oxidative state of monocytes further confirmed these findings. CONCLUSIONS/SIGNIFICANCE Altered redox state of DENV-infected monocytes from G6PD-deficient individuals appears to augment viral replication in these cells. DENV-infected G6PD-deficient individuals may contain higher viral titers, which may be significant in enhanced virus transmission. Furthermore, granulocyte dysfunction and higher viral loads in G6PD-deificient individuals may result in severe form of dengue infection.
Collapse
Affiliation(s)
| | - Syed A. Ali
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Faisal Muti Al-Hassan
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Fauziah Mohd Idris
- Department of Microbiology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Sin-Yeang Teow
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
| | - Narazah Mohd Yusoff
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia
- * E-mail:
| |
Collapse
|
34
|
Rodriguez-Barraquer I, Mier-y-Teran-Romero L, Schwartz IB, Burke DS, Cummings DAT. Potential opportunities and perils of imperfect dengue vaccines. Vaccine 2013; 32:514-20. [PMID: 24269318 DOI: 10.1016/j.vaccine.2013.11.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/15/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
Dengue vaccine development efforts have focused on the development of tetravalent vaccines. However, a recent Phase IIb trial of a tetravalent vaccine indicates a protective effect against only 3 of the 4 serotypes. While vaccines effective against a subset of serotypes may reduce morbidity and mortality, particular profiles could result in an increased number of cases due to immune enhancement and other peculiarities of dengue epidemiology. Here, we use a compartmental transmission model to assess the impact of partially effective vaccines in a hyperendemic Thai population. Crucially, we evaluate the effects that certain serotype heterogeneities may have in the presence of mass-vaccination campaigns. In the majority of scenarios explored, partially effective vaccines lead to 50% or greater reductions in the number of cases. This is true even of vaccines that we would not expect to proceed to licensure due to poor or incomplete immune responses. Our results show that a partially effective vaccine can have significant impacts on serotype distribution and mean age of cases.
Collapse
Affiliation(s)
| | - Luis Mier-y-Teran-Romero
- Department of Epidemiology, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA; Nonlinear Systems Dynamics Section, Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Ira B Schwartz
- Nonlinear Systems Dynamics Section, Plasma Physics Division, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Donald S Burke
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA
| | - Derek A T Cummings
- Department of Epidemiology, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Dengue is one of the most rapidly spreading vector-borne diseases in the world, with the incidence increasing 30-fold in the past 50 years. There are currently no licensed treatments or vaccines for dengue. This review covers the recent advances in our understanding of dengue pathogenesis, including host and viral determinants. RECENT FINDINGS The pathogenesis of severe dengue is thought to be immune-mediated due to the timing of the clinical manifestations and higher incidence in secondary infections with a heterologous serotype. Recent evidence has provided further information of neutralizing versus enhancing monoclonal antibodies and their target epitopes on the dengue virion, which has major implications for vaccine design. The role of T-cell immunopathology has also been advanced with recent evidence of cross-reactive high pro-inflammatory cytokine producing T cells predominating in severe dengue. Recent large genome-wide association studies have identified specific susceptibility loci associated with severe disease. Epidemiological studies have served to define certain at-risk groups and specific viral virulence factors have recently been described. SUMMARY The pathogenesis of dengue is likely to be a complex interplay of host immunity and genetic predisposition combined with certain viral virulence factors. Better understanding of the underlying mechanisms leading to severe dengue is crucial if we are to develop prognostic markers, novel diagnostics and therapeutics and ultimately a balanced and safe vaccine.
Collapse
Affiliation(s)
- Sophie Yacoub
- Department of Medicine, Imperial College, Hammersmith Campus, London, UK.
| | | | | |
Collapse
|
36
|
Tabachnick WJ. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:249-77. [PMID: 23343982 PMCID: PMC3564141 DOI: 10.3390/ijerph10010249] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 12/29/2012] [Accepted: 01/09/2013] [Indexed: 01/14/2023]
Abstract
Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.
Collapse
Affiliation(s)
- Walter J Tabachnick
- Florida Medical Entomology Laboratory, University of Florida, IFAS, 200 9th St. SE, Vero Beach, FL 32962, USA.
| |
Collapse
|
37
|
Abstract
Dengue viruses are major contributors to illness and death globally. Here we analyze the extrinsic and intrinsic incubation periods (EIP and IIP), in the mosquito and human, respectively. We identified 146 EIP observations from 8 studies and 204 IIP observations from 35 studies. These data were fitted with censored Bayesian time-to-event models. The best-fitting temperature-dependent EIP model estimated that 95% of EIPs are between 5 and 33 days at 25°C, and 2 and 15 days at 30°C, with means of 15 and 6.5 days, respectively. The mean IIP estimate was 5.9 days, with 95% expected between days 3 and 10. Differences between serotypes were not identified for either incubation period. These incubation period models should be useful in clinical diagnosis, outbreak investigation, prevention and control efforts, and mathematical modeling of dengue virus transmission.
Collapse
|
38
|
de Araújo JMG, Bello G, Romero H, Nogueira RMR. Origin and evolution of dengue virus type 3 in Brazil. PLoS Negl Trop Dis 2012; 6:e1784. [PMID: 22970331 PMCID: PMC3435237 DOI: 10.1371/journal.pntd.0001784] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 07/04/2012] [Indexed: 11/17/2022] Open
Abstract
The incidence of dengue fever and dengue hemorrhagic fever in Brazil experienced a significant increase since the emergence of dengue virus type-3 (DENV-3) at the early 2000s. Despite the major public health concerns, there have been very few studies of the molecular epidemiology and time-scale of this DENV lineage in Brazil. In this study, we investigated the origin and dispersion dynamics of DENV-3 genotype III in Brazil by examining a large number (n = 107) of E gene sequences sampled between 2001 and 2009 from diverse Brazilian regions. These Brazilian sequences were combined with 457 DENV-3 genotype III E gene sequences from 29 countries around the world. Our phylogenetic analysis reveals that there have been at least four introductions of the DENV-3 genotype III in Brazil, as signified by the presence of four phylogenetically distinct lineages. Three lineages (BR-I, BR-II, and BR-III) were probably imported from the Lesser Antilles (Caribbean), while the fourth one (BR-IV) was probably introduced from Colombia or Venezuela. While lineages BR-I and BR-II succeeded in getting established and disseminated in Brazil and other countries from the Southern Cone, lineages BR-III and BR-IV were only detected in one single individual each from the North region. The phylogeographic analysis indicates that DENV-3 lineages BR-I and BR-II were most likely introduced into Brazil through the Southeast and North regions around 1999 (95% HPD: 1998–2000) and 2001 (95% HPD: 2000–2002), respectively. These findings show that importation of DENV-3 lineages from the Caribbean islands into Brazil seems to be relatively frequent. Our study further suggests that the North and Southeast Brazilian regions were the most important hubs of introduction and spread of DENV-3 lineages and deserve an intense epidemiological surveillance. Dengue is a major health problem in the tropics and the incidence of dengue fever and dengue hemorrhagic fever in Brazil experienced a significant increase since the emergence of dengue virus type-3 (DENV-3). In this study, the authors reconstruct the spatio-temporal dispersion pattern of the DENV-3 lineage that circulates in Brazil and the Americas. The authors found that DENV-3 outbreaks occurring in the American continent since the mid-1990s are the result of a single introduction of genotype III. The Central American countries and Mexico were the hubs of genotype III spread in the Americas, while the Caribbean region acted as a staging post between Central America/Mexico and South America. The authors estimate that there have been at least four introductions of the DENV-3 genotype III in Brazil, although only two of them succeeded in getting established and disseminating through the country. The Lesser Antilles (Caribbean) were the main source of DENV-3 viruses that arrived into Brazil,and the North and Southeast country regions seem to be most important hubs of introduction and dissemination of DENV-3 lineages. These findings offer important information to perform more effective surveillance programs to detect introduction and dispersal of new DENV lineages in Brazil.
Collapse
Affiliation(s)
- Josélio Maria Galvão de Araújo
- Laboratory of Molecular Biology for Infectious Diseases and Cancer, Federal University of Rio Grande do Norte, Natal, Brazil.
| | | | | | | |
Collapse
|
39
|
OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborío S, Nuñez A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 2012; 3:114ra128. [PMID: 22190239 DOI: 10.1126/scitranslmed.3003084] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The rapid spread of dengue is a worldwide public health problem. In two clinical studies of dengue in Managua, Nicaragua, we observed an abrupt increase in disease severity across several epidemic seasons of dengue virus serotype 2 (DENV-2) transmission. Waning DENV-1 immunity appeared to increase the risk of severe disease in subsequent DENV-2 infections after a period of cross-protection. The increase in severity coincided with replacement of the Asian/American DENV-2 NI-1 clade with a new virus clade, NI-2B. In vitro analyses of viral isolates from the two clades and analysis of viremia in patient blood samples support the emergence of a fitter virus in later, relative to earlier, epidemic seasons. In addition, the NI-1 clade of viruses was more virulent specifically in children who were immune to DENV-1, whereas DENV-3 immunity was associated with more severe disease among NI-2B infections. Our data demonstrate that the complex interaction between viral genetics and population dynamics of serotype-specific immunity contributes to the risk of severe dengue disease. Furthermore, this work provides insights into viral evolution and the interaction between viral and immunological determinants of viral fitness and virulence.
Collapse
Affiliation(s)
- Molly OhAinle
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720-7354, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Díaz-Quijano FA, Waldman EA. Factors associated with dengue mortality in Latin America and the Caribbean, 1995-2009: an ecological study. Am J Trop Med Hyg 2012; 86:328-34. [PMID: 22302870 DOI: 10.4269/ajtmh.2012.11-0074] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
In this study, we aimed to estimate the effect that environmental, demographic, and socioeconomic factors have on dengue mortality in Latin America and the Caribbean. To that end, we conducted an observational ecological study, analyzing data collected between 1995 and 2009. Dengue mortality rates were highest in the Caribbean (Spanish-speaking and non-Spanish-speaking). Multivariate analysis through Poisson regression revealed that the following factors were independently associated with dengue mortality: time since identification of endemicity (adjusted rate ratio [aRR] = 3.2 [for each 10 years]); annual rainfall (aRR = 1.5 [for each 10(3) L/m(2)]); population density (aRR = 2.1 and 3.2 for 20-120 inhabitants/km(2) and > 120 inhabitants/km(2), respectively); Human Development Index > 0.83 (aRR = 0.4); and circulation of the dengue 2 serotype (aRR = 1.7). These results highlight the important role that environmental, demographic, socioeconomic, and biological factors have played in increasing the severity of dengue in recent decades.
Collapse
|
41
|
Innate immunity evasion by Dengue virus. Viruses 2012; 4:397-413. [PMID: 22590678 PMCID: PMC3347034 DOI: 10.3390/v4030397] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 02/14/2012] [Accepted: 03/07/2012] [Indexed: 12/21/2022] Open
Abstract
For viruses to productively infect their hosts, they must evade or inhibit important elements of the innate immune system, namely the type I interferon (IFN) response, which negatively influences the subsequent development of antigen-specific adaptive immunity against those viruses. Dengue virus (DENV) can inhibit both type I IFN production and signaling in susceptible human cells, including dendritic cells (DCs). The NS2B3 protease complex of DENV functions as an antagonist of type I IFN production, and its proteolytic activity is necessary for this function. DENV also encodes proteins that antagonize type I IFN signaling, including NS2A, NS4A, NS4B and NS5 by targeting different components of this signaling pathway, such as STATs. Importantly, the ability of the NS5 protein to bind and degrade STAT2 contributes to the limited host tropism of DENV to humans and non-human primates. In this review, we will evaluate the contribution of innate immunity evasion by DENV to the pathogenesis and host tropism of this virus.
Collapse
|
42
|
Yamanaka A, Mulyatno KC, Susilowati H, Hendrianto E, Ginting AP, Sary DD, Rantam FA, Soegijanto S, Konishi E. Displacement of the predominant dengue virus from type 2 to type 1 with a subsequent genotype shift from IV to I in Surabaya, Indonesia 2008-2010. PLoS One 2011; 6:e27322. [PMID: 22087290 PMCID: PMC3210158 DOI: 10.1371/journal.pone.0027322] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/13/2011] [Indexed: 11/27/2022] Open
Abstract
Indonesia has annually experienced approximately 100,000 reported cases of dengue fever (DF) and dengue hemorrhagic fever (DHF) in recent years. However, epidemiological surveys of dengue viruses (DENVs) have been limited in this country. In Surabaya, the second largest city, a single report indicated that dengue virus type 2 (DENV2) was the predominant circulating virus in 2003–2005. We conducted three surveys in Surabaya during: (i) April 2007, (ii) June 2008 to April 2009, and (iii) September 2009 to December 2010. A total of 231 isolates were obtained from dengue patients and examined by PCR typing. We found that the predominant DENV shifted from type 2 to type 1 between October and November 2008. Another survey using wild-caught mosquitoes in April 2009 confirmed that dengue type 1 virus (DENV1) was the predominant type in Surabaya. Phylogenetic analyses of the nucleotide sequences of the complete envelope gene of DENV1 indicated that all 22 selected isolates in the second survey belonged to genotype IV and all 17 selected isolates in the third survey belonged to genotype I, indicating a genotype shift between April and September 2009. Furthermore, in December 2010, isolates were grouped into a new clade of DENV1 genotype I, suggesting clade shift between September and December 2010. According to statistics reported by the Surabaya Health Office, the proportion of DHF cases among the total number of dengue cases increased about three times after the type shift in 2008. In addition, the subsequent genotype shift in 2009 was associated with the increased number of total dengue cases. This indicates the need for continuous surveillance of circulating viruses to predict the risk of DHF and DF.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya, Indonesia.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rioth M, Beauharnais CA, Noel F, Ikizler MR, Mehta S, Zhu Y, Long CA, Pape JW, Wright PF. Serologic imprint of dengue virus in urban Haiti: characterization of humoral immunity to dengue in infants and young children. Am J Trop Med Hyg 2011; 84:630-6. [PMID: 21460022 DOI: 10.4269/ajtmh.2011.10-0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue is endemic to Haiti but not recognized as an important illness in the autochthonous population. To evaluate the prevalence of antibodies to dengue virus (DENV), serum samples from infants and young children 7-36 months of age (n = 166) were assayed by plaque reduction neutralization assays to each DENV serotype. Dengue virus serotype 1 had infected 40% of this study population, followed by serotype 2 (12%), serotype 3 (11%), and serotype 4 (2%). Fifty-three percent of infants and young children less than 12 months of age had already experienced DENV infection, and the seroprevalence of antibody to DENV increased to 65% by 36 months. Heterotypic antibody responses were an important component of the total dengue immunity profile.
Collapse
Affiliation(s)
- Meghan Rioth
- Department of Pediatrics, Vanderbilt University, Nashville, TN, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cox J, Brown HE, Rico-Hesse R. Variation in vector competence for dengue viruses does not depend on mosquito midgut binding affinity. PLoS Negl Trop Dis 2011; 5:e1172. [PMID: 21610852 PMCID: PMC3096590 DOI: 10.1371/journal.pntd.0001172] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 04/01/2011] [Indexed: 12/04/2022] Open
Abstract
Background Dengue virus genotypes of Southeast Asian origin have been associated with higher virulence and transmission compared to other genotypes of serotype 2 (DEN-2). We tested the hypothesis that genetic differences in dengue viruses may result in differential binding to the midgut of the primary vector, Aedes aegypti, resulting in increased transmission or vectorial capacity. Methodology/Principal Finding Two strains of each of the four DEN-2 genotypes (Southeast Asian, American, Indian, and West African) were tested to determine their binding affinity for mosquito midguts from two distinct populations (Tapachula, Chiapas, Mexico and McAllen, Texas, USA). Our previous studies demonstrated that Southeast Asian viruses disseminated up to 65-fold more rapidly in Ae. aegypti from Texas and were therefore more likely to be transmitted to humans. Results shown here demonstrate that viruses from all four genotypes bind to midguts at the same rate, in a titer-dependent manner. In addition, we show population differences when comparing binding affinity for DEN-2 between the Tapachula and McAllen mosquito colonies. Conclusions If midgut binding potential is the same for all DEN-2 viruses, then viral replication differences in these tissues and throughout the mosquito can thus probably explain the significant differences in dissemination and vector competence. These conclusions differ from the established paradigms to explain mosquito barriers to infection, dissemination, and transmission. Several factors, such as mosquito and virus genetics and environmental variables, determine the ability of mosquitoes to transmit dengue viruses. In this report, we describe new and important information that in some ways contradicts what is in the literature. Midgut infection barriers have been described as important determinants of virus transmission in mosquitoes but we found that virus binding to these midgut cells does not vary. When we compared binding of 8 different, low passage dengue viruses to mosquito midguts that were dissected out of Aedes aegypti mosquitoes (the main vectors of dengue) from Mexico and Texas, we found that there were no differences. Previously, we (and others) had shown that these same viruses differed significantly in replication and dissemination throughout the rest of the mosquito body, including the salivary glands, and therefore they differed greatly in their potential to be transmitted to humans. Thus, the data presented here are important considerations for future studies of vector competence and in determining strategies for control of dengue viruses in the vector.
Collapse
Affiliation(s)
- Jonathan Cox
- Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
| | - Heidi E. Brown
- Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
- School of Geography and Development, University of Arizona, Tucson, Arizona, United States of America
| | - Rebeca Rico-Hesse
- Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
de Castro Medeiros LC, Castilho CAR, Braga C, de Souza WV, Regis L, Monteiro AMV. Modeling the dynamic transmission of dengue fever: investigating disease persistence. PLoS Negl Trop Dis 2011; 5:e942. [PMID: 21264356 PMCID: PMC3019115 DOI: 10.1371/journal.pntd.0000942] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 12/09/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Dengue is a disease of great complexity, due to interactions between humans, mosquitoes and various virus serotypes as well as efficient vector survival strategies. Thus, understanding the factors influencing the persistence of the disease has been a challenge for scientists and policy makers. The aim of this study is to investigate the influence of various factors related to humans and vectors in the maintenance of viral transmission during extended periods. METHODOLOGY/PRINCIPAL FINDINGS We developed a stochastic cellular automata model to simulate the spread of dengue fever in a dense community. Each cell can correspond to a built area, and human and mosquito populations are individually monitored during the simulations. Human mobility and renewal, as well as vector infestation, are taken into consideration. To investigate the factors influencing the maintenance of viral circulation, two sets of simulations were performed: (1(st)) varying human renewal rates and human population sizes and (2(nd)) varying the house index (fraction of infested buildings) and vector per human ratio. We found that viral transmission is inhibited with the combination of small human populations with low renewal rates. It is also shown that maintenance of viral circulation for extended periods is possible at low values of house index. Based on the results of the model and on a study conducted in the city of Recife, Brazil, which associates vector infestation with Aedes aegytpi egg counts, we question the current methodology used in calculating the house index, based on larval survey. CONCLUSIONS/SIGNIFICANCE This study contributed to a better understanding of the dynamics of dengue subsistence. Using basic concepts of metapopulations, we concluded that low infestation rates in a few neighborhoods ensure the persistence of dengue in large cities and suggested that better strategies should be implemented to obtain measures of house index values, in order to improve the dengue monitoring and control system.
Collapse
|
46
|
Urcuqui-Inchima S, Patiño C, Torres S, Haenni AL, Díaz FJ. Recent developments in understanding dengue virus replication. Adv Virus Res 2010; 77:1-39. [PMID: 20951868 DOI: 10.1016/b978-0-12-385034-8.00001-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dengue is the most important cause of mosquito-borne virus diseases in tropical and subtropical regions in the world. Severe clinical outcomes such as dengue hemorrhagic fever and dengue shock syndrome are potentially fatal. The epidemiology of dengue has undergone profound changes in recent years, due to several factors such as expansion of the geographical distribution of the insect vector, increase in traveling, and demographic pressure. As a consequence, the incidence of dengue has increased dramatically. Since mosquito control has not been successful and since no vaccine or antiviral treatment is available, new approaches to this problem are needed. Consequently, an in-depth understanding of the molecular and cellular biology of the virus should be helpful to design efficient strategies for the control of dengue. Here, we review the recently acquired knowledge on the molecular and cell biology of the dengue virus life cycle based on newly developed molecular biology technologies.
Collapse
Affiliation(s)
- Silvio Urcuqui-Inchima
- Grupo de Inmunoviología, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | | | | | | | | |
Collapse
|