1
|
Tee HS, Ku C. Host-Calibrated Time Tree Caps the Age of Giant Viruses. Mol Biol Evol 2025; 42:msaf033. [PMID: 39976376 PMCID: PMC11840718 DOI: 10.1093/molbev/msaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/21/2025] Open
Abstract
Viruses are widespread parasites with important impacts on public health, economy, and ecosystems. However, little is known about their origins, ages, and early evolutionary relationships with hosts. Here, we infer the maximum divergence times for eukaryotic giant DNA viruses (phylum Nucleocytoviricota) with dating analyses calibrated by host taxon ages of virus lineages with specific host ranges. The last common ancestor of Nucleocytoviricota existed after 1,000 million years ago, suggesting a much later origin than that of the eukaryotes. The early evolution of Nucleocytoviricota either coincided with or postdated a substantial increase in the oxygen levels on the Earth's surface during the Neoproterozoic Era. The lineage diversification of giant viruses was frequently associated with host shifts, including two major transitions from amoebozoan hosts to animal hosts that eventually led to the emergence of iridoviruses and African swine fever viruses within the last 450 million years. These results outline the evolutionary timescale of a major virus group and are pivotal for further understanding the virus-host interactions and their potential ecological roles in the Earth's history.
Collapse
Affiliation(s)
- Hwee Sze Tee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
2
|
Karamendin K, Kydyrmanov A, Khan Y, Kasymbekov Y, Nuralibekov S, Sabyrzhan T, Gavrilov A. Isolation and Genetic Characterization of a Novel Adenovirus Associated with Mass Mortality in Great Cormorants ( Phalacrocorax carbo). Avian Dis 2024; 68:38-42. [PMID: 38687106 DOI: 10.1637/aviandiseases-d-23-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 05/02/2024]
Abstract
High mortality in great cormorants (Phalacrocorax carbo) was registered on the Alakol Lake in eastern Kazakhstan in 2021 when about 20% of juveniles died. High-throughput sequencing revealed the presence of a putative novel cormorant adenovirus significantly divergent from known aviadenoviruses. We suggest that this cormorant adenovirus can be considered an emerging threat to the health and conservation of this species.
Collapse
Affiliation(s)
- Kobey Karamendin
- Scientific and Production Center for Microbiology and Virology, 050010, Almaty, Kazakhstan,
| | - Aidyn Kydyrmanov
- Scientific and Production Center for Microbiology and Virology, 050010, Almaty, Kazakhstan
| | - Yelizaveta Khan
- Scientific and Production Center for Microbiology and Virology, 050010, Almaty, Kazakhstan
| | | | - Sardor Nuralibekov
- Scientific and Production Center for Microbiology and Virology, 050010, Almaty, Kazakhstan
| | - Temirlan Sabyrzhan
- Scientific and Production Center for Microbiology and Virology, 050010, Almaty, Kazakhstan
| | | |
Collapse
|
3
|
Konicek C, Heenemann K, Cramer K, Vahlenkamp TW, Schmidt V. Case Series of Disseminated Xanthogranulomatosis in Red-crowned Parakeets (Cyanoramphus novaezelandiae) with Detection of Psittacine Adenovirus 2 (PsAdV-2). Animals (Basel) 2022; 12:ani12182316. [PMID: 36139176 PMCID: PMC9495053 DOI: 10.3390/ani12182316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lipometabolic disorders, such as xanthogranulomatosis, are common diseases in avian medicine. Various manifestations of lipometabolic disorders and risk factors for acquiring lipometabolic diseases have been described in the past years. Xanthogranulomas are usually limited to the skin and supposed to be associated with traumatic or inflammatory injuries in that area. Disseminated xanthogranulomatosis, appearing simultaneously in several internal organs, has been recently described in psittacine birds, the cause of the diseases was not known. Here, we describe a case series of disseminated xanthogranulomatosis in another psittacine species, the Red-crowned Parakeet (Cyanoramphus novaezelandiae) and a possible association with a concurrent psittacine adenovirus 2 (PsAdV-2) infection. Viral infections that trigger lipometabolic diseases have been described in human medicine in some species of small animals and in chickens. PsAdV-2- infections are widely distributed in avian species. A possible association between PsAdV-2- infections and lipometabolic diseases in the Red-crowned Parakeet should be considered. Individual birds and flocks with both or either of these diseases should be carefully examined and monitored. Abstract Xanthogranulomatosis is a common dermatological disease in birds. This form of inflammation, possibly associated with lipometabolic disorders, can also be seen in visceral organs, which as yet has only rarely been described in avian medicine. In general, diseases related to impaired lipid metabolism are frequently reported in avian medicine, with hepatic steatosis and atherosclerosis being the most common. In human medicine, infectious agents—especially some strains of adenovirus—were implicated in contributing to lipometabolic disorders; this has also been described for chicken. Here, a case series of six Red-crowned Parakeets (Cyanoramphus novaezelandiae) is presented, all cases being characterized by psittacine adenovirus 2 (PsAdV-2) infection with or without disseminated xanthogranulomatosis. The affected individuals were examined alive by clinical examination. Total body radiographs were taken of two birds, haematology and blood biochemistry results were achieved in one bird. The birds either died immediately after clinical presentation or within two days, two individuals were euthanized due to worsening of their clinical condition. All birds underwent a post-mortem examination. While four birds were finally diagnosed with disseminated xanthogranulomatosis, all six individuals had large eosinophilic intranuclear inclusion bodies in the epithelial cells of the collecting ducts of the kidney and tested positive for PsAdV-2. Further examinations are needed to clarify to what extent PsAdV-2 might elicit lipometabolic disease in birds, or psittacines in general, and, in particular, the Red-crowned Parakeet.
Collapse
Affiliation(s)
- Cornelia Konicek
- Service for Birds and Reptiles, Clinic for Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Kerstin Cramer
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 17, 04103 Leipzig, Germany
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 17, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
4
|
Abstract
Cancer is one of the leading causes of death in the world, which is the second after heart diseases. Adenoviruses (Ads) have become the promise of new therapeutic strategy for cancer treatment. The objective of this review is to discuss current advances in the applications of adenoviral vectors in cancer therapy. Adenoviral vectors can be engineered in different ways so as to change the tumor microenvironment from cold tumor to hot tumor, including; 1. by modifying Ads to deliver transgenes that codes for tumor suppressor gene (p53) and other proteins whose expression result in cell cycle arrest 2. Ads can also be modified to express tumor specific antigens, cytokines, and other immune-modulatory molecules. The other strategy to use Ads in cancer therapy is to use oncolytic adenoviruses, which directly kills tumor cells. Gendicine and Advexin are replication-defective recombinant human p53 adenoviral vectors that have been shown to be effective against several types of cancer. Gendicine was approved for treatment of squamous cell carcinoma of the head and neck by the Chinese Food and Drug Administration (FDA) agency in 2003 as a first-ever gene therapy product. Oncorine and ONYX-015 are oncolytic adenoviral vectors that have been shown to be effective against some types of cancer. The Chiness FDA agency has also approved Oncorin for the treatment of head and neck cancer. Ads that were engineered to express immune-stimulatory cytokines and other immune-modulatory molecules such as TNF-α, IL-2, BiTE, CD40L, 4-1BBL, GM-CSF, and IFN have shown promising outcome in treatment of cancer. Ads can also improve therapeutic efficacy of immune checkpoint inhibitors and adoptive cell therapy (Chimeric Antigen Receptor T Cells). In addition, different replication-deficient adenoviral vectors (Ad5-CEA, Ad5-PSA, Ad-E6E7, ChAdOx1-MVA and Ad-transduced Dendritic cells) that were tested as anticancer vaccines have been demonstrated to induce strong antitumor immune response. However, the use of adenoviral vectors in gene therapy is limited by several factors such as pre-existing immunity to adenoviral vectors and high immunogenicity of the viruses. Thus, innovative strategies must be continually developed so as to overcome the obstacles of using adenoviral vectors in gene therapy.
Collapse
Affiliation(s)
- Sintayehu Tsegaye Tseha
- Lecturer of Biomedical Sciences, Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
- Department of Microbial, Cellular and Molecular Biology, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
5
|
Isolation and whole-genome sequencing of a novel aviadenovirus from owls in Japan. Arch Virol 2022; 167:829-838. [PMID: 35118528 DOI: 10.1007/s00705-022-05380-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/20/2021] [Indexed: 11/02/2022]
Abstract
Adenoviruses have been reported to infect a variety of birds. Here, we isolated a novel adenovirus from the liver of a dead owl chick (Bengal eagle owl; Bubo bengalensis) at a raptor-breeding facility in Japan and determined the complete genome sequence of the virus. We performed necropsies on the dead owl chicks and found that they had enlarged livers, pericardial edema, and focal necrosis of the liver tissue. Transmission electron microscopy of the liver tissue revealed a virus-like structure, appearing as paracrystalline arrays in the nucleus, and immunohistochemical staining with anti-adenovirus antibodies showed positive reactions in hepatocytes and other cells. Attempts to isolate the virus from homogenized liver tissue of a dead owl chick showed a cytopathic effect on chicken-derived cultured cells after multiple blind passages. Further, we determined the complete genome sequence of this virus and performed phylogenetic analysis, revealing that this adenovirus belongs to the genus Aviadenovirus, forming a cluster with fowl and turkey aviadenoviruses. The amino acid sequence divergence between the DNA polymerase of this virus and its closest known adenovirus relative is approximately 29%, implying that this virus can be assigned to a new species in the genus Aviadenovirus. Based on our data, this novel owl adenovirus is a likely cause of fatal infections in owls, which may threaten wild and captive owl populations. Further, this virus is unique among raptor adenoviruses in that it infects chicken-derived cultured cells, raising the importance of further investigations to evaluate interspecies transmission of this virus.
Collapse
|
6
|
Gainor K, Becker AAMJ, Malik YS, Ghosh S. First Report on Detection and Molecular Characterization of Adenoviruses in the Small Indian Mongoose ( Urva auropunctata). Viruses 2021; 13:v13112194. [PMID: 34835000 PMCID: PMC8622525 DOI: 10.3390/v13112194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Anne A. M. J. Becker
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, 141004 Ludhiana, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
- Correspondence: or ; Tel.: +1-(869)-4654161 (ext. 401-1202)
| |
Collapse
|
7
|
Hardmeier I, Aeberhard N, Qi W, Schoenbaechler K, Kraettli H, Hatt JM, Fraefel C, Kubacki J. Metagenomic analysis of fecal and tissue samples from 18 endemic bat species in Switzerland revealed a diverse virus composition including potentially zoonotic viruses. PLoS One 2021; 16:e0252534. [PMID: 34133435 PMCID: PMC8208571 DOI: 10.1371/journal.pone.0252534] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/17/2021] [Indexed: 01/02/2023] Open
Abstract
Many recent disease outbreaks in humans had a zoonotic virus etiology. Bats in particular have been recognized as reservoirs to a large variety of viruses with the potential to cross-species transmission. In order to assess the risk of bats in Switzerland for such transmissions, we determined the virome of tissue and fecal samples of 14 native and 4 migrating bat species. In total, sequences belonging to 39 different virus families, 16 of which are known to infect vertebrates, were detected. Contigs of coronaviruses, adenoviruses, hepeviruses, rotaviruses A and H, and parvoviruses with potential zoonotic risk were characterized in more detail. Most interestingly, in a ground stool sample of a Vespertilio murinus colony an almost complete genome of a Middle East respiratory syndrome-related coronavirus (MERS-CoV) was detected by Next generation sequencing and confirmed by PCR. In conclusion, bats in Switzerland naturally harbour many different viruses. Metagenomic analyses of non-invasive samples like ground stool may support effective surveillance and early detection of viral zoonoses.
Collapse
Affiliation(s)
| | - Nadja Aeberhard
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Center Zurich, Zurich, Switzerland
| | | | | | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, University of Zurich, Zurich, Switzerland
| | - Cornel Fraefel
- Institute of Virology, University of Zurich, Zurich, Switzerland
| | - Jakub Kubacki
- Institute of Virology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
A Confocal Microscopic Study of Gene Transfer into the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta, Using Mouse Adeno-Associated Viral Vectors. Int J Mol Sci 2021; 22:ijms22115661. [PMID: 34073457 PMCID: PMC8199053 DOI: 10.3390/ijms22115661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022] Open
Abstract
To date, data on the presence of adenoviral receptors in fish are very limited. In the present work, we used mouse recombinant adeno-associated viral vectors (rAAV) with a calcium indicator of the latest generation GCaMP6m that are usually applied for the dorsal hippocampus of mice but were not previously used for gene delivery into fish brain. The aim of our work was to study the feasibility of transduction of rAAV in the mouse hippocampus into brain cells of juvenile chum salmon and subsequent determination of the phenotype of rAAV-labeled cells by confocal laser scanning microscopy (CLSM). Delivery of the gene in vivo was carried out by intracranial injection of a GCaMP6m-GFP-containing vector directly into the mesencephalic tegmentum region of juvenile (one-year-old) chum salmon, Oncorhynchus keta. AAV incorporation into brain cells of the juvenile chum salmon was assessed at 1 week after a single injection of the vector. AAV expression in various areas of the thalamus, pretectum, posterior-tuberal region, postcommissural region, medial and lateral regions of the tegmentum, and mesencephalic reticular formation of juvenile O. keta was evaluated using CLSM followed by immunohistochemical analysis of the localization of the neuron-specific calcium binding protein HuCD in combination with nuclear staining with DAPI. The results of the analysis showed partial colocalization of cells expressing GCaMP6m-GFP with red fluorescent HuCD protein. Thus, cells of the thalamus, posterior tuberal region, mesencephalic tegmentum, cells of the accessory visual system, mesencephalic reticular formation, hypothalamus, and postcommissural region of the mesencephalon of juvenile chum salmon expressing GCaMP6m-GFP were attributed to the neuron-specific line of chum salmon brain cells, which indicates the ability of hippocampal mammal rAAV to integrate into neurons of the central nervous system of fish with subsequent expression of viral proteins, which obviously indicates the neuronal expression of a mammalian adenoviral receptor homolog by juvenile chum salmon neurons.
Collapse
|
9
|
Ntumvi NF, Diffo JLD, Tamoufe U, Ndze VN, Takuo JM, Mouiche MMM, Nwobegahay J, LeBreton M, Gillis A, Rimoin AW, Schneider BS, Monagin C, McIver DJ, Joly DO, Wolfe ND, Rubin EM, Lange CE. Evaluation of bat adenoviruses suggests co-evolution and host roosting behaviour as drivers for diversity. Microb Genom 2021; 7:000561. [PMID: 33871330 PMCID: PMC8208681 DOI: 10.1099/mgen.0.000561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses (AdVs) are diverse pathogens of humans and animals, with several dozen bat AdVs already identified. Considering that over 100 human AdVs are known, and the huge diversity of bat species, many bat AdVs likely remain undiscovered. To learn more about AdV prevalence, diversity and evolution, we sampled and tested bats in Cameroon using several PCR assays for viral and host DNA. AdV DNA was detected in 14 % of the 671 sampled animals belonging to 37 different bat species. There was a correlation between species roosting in larger groups and AdV DNA detection. The detected AdV DNA belonged to between 28 and 44 different, mostly previously unknown, mastadenovirus species. The novel isolates are phylogenetically diverse and while some cluster with known viruses, others appear to form divergent new clusters. The phylogenetic tree of novel and previously known bat AdVs does not mirror that of the various host species, but does contain structures consistent with a degree of virus-host co-evolution. Given that closely related isolates were found in different host species, it seems likely that at least some bat AdVs have jumped species barriers, probably in the more recent past; however, the tree is also consistent with such events having taken place throughout bat AdV evolution. AdV diversity was highest in bat species roosting in large groups. The study significantly increased the diversity of AdVs known to be harboured by bats, and suggests that host behaviours, such as roosting size, may be what limits some AdVs to one species rather than an inability of AdVs to infect other related hosts.
Collapse
Affiliation(s)
- Nkom F. Ntumvi
- Metabiota Cameroon Ltd, Yaoundé, Centre Region, Cameroon
| | | | - Ubald Tamoufe
- Metabiota Cameroon Ltd, Yaoundé, Centre Region, Cameroon
| | - Valantine Ngum Ndze
- Metabiota Cameroon Ltd, Yaoundé, Centre Region, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé, Yaoundé, Centre Region, Cameroon
| | | | | | | | | | | | | | - Bradley S. Schneider
- Metabiota Inc., San Francisco, CA, USA
- Etiologic, Oakland, CA, USA
- Pinpoint Science, San Francisco, CA, USA
| | - Corina Monagin
- Metabiota Inc., San Francisco, CA, USA
- One Health Institute, School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Damien O. Joly
- Metabiota Inc, Nanaimo, British Columbia, Canada
- British Columbia Ministry of Environment and Climate Change Strategy, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
10
|
Niczyporuk JS, Kozdrun W, Czekaj H, Piekarska K, Stys-Fijoł N. Isolation and molecular characterization of Fowl adenovirus strains in Black grouse: First reported case in Poland. PLoS One 2020; 15:e0234532. [PMID: 32991587 PMCID: PMC7523988 DOI: 10.1371/journal.pone.0234532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/01/2020] [Indexed: 11/21/2022] Open
Abstract
This article describes the isolation, molecular characterization, and genotyping of two fowl adenovirus (FAdVs) strains with GenBank Accession numbers (MT478054, JSN-G033-18-L and MT478055, JSN-G033-18-B) obtained from the internal organs of black grouse (Lyrurus tetrix). This study also reveals the first confirmation of fowl adenovirus in Poland, supporting one of the hypotheses about the probability of fowl adenovirus interspecies transmission. The adenovirus strain sequences were investigated via phylogenetic analysis and were found to have an overall mean pairwise distance of 2.189. The heterogeneity, Relative Synonymous Codon Usage (RSCU), codon composition, and nucleotide frequencies were examined. Statistical analyses and Tajima’s test for the examined sequences were carried out. The Maximum Likelihood for the examined sequences substitutions was performed. The results of the sequence analysis identified MT478054, JSN-G033-18-L and MT478055, JSN-G033-18-B as strains of fowl adenovirus 2/11/D, with the Fowl adenovirus D complete sequence showing a 93% match. Wild birds may act as a natural reservoir for FAdVs and likely play an important role in the spreading of these viruses in the environment. The findings reported here suggest horizontal transmission within and between avian species.
Collapse
Affiliation(s)
| | - Wojciech Kozdrun
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Hanna Czekaj
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Karolina Piekarska
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Natalia Stys-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
11
|
Schachner A, Grafl B, Hess M. Spotlight on avian pathology: fowl adenovirus (FAdV) in chickens and beyond - an unresolved host-pathogen interplay. Avian Pathol 2020; 50:2-5. [PMID: 32795192 DOI: 10.1080/03079457.2020.1810629] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fowl adenovirus (FAdV) infections in chickens have undergone substantial changes in recent decades, driven by host and pathogen factors. Based on the pathogenesis of inclusion body hepatitis (IBH) and hepatitis-hydropericardium syndrome (HHS), modern broilers are much more inclined to have difficulties keeping the metabolic homeostasis, whereas adenoviral gizzard erosion (AGE) is noticed equally in broilers and egg-layers. Defining the importance of certain serotypes for specific FAdV diseases is a major achievement of recent years but the isolation of viruses from clinically healthy birds remains unexplained, as virulence factors are hardly known and continue to be a "black box". Together with further studies on pathogenesis of FAdV-induced diseases, such knowledge on virulence factors would help to improve protection strategies, which presently mainly concentrate on autogenous vaccines of breeders to prevent vertical transmission.
Collapse
Affiliation(s)
- Anna Schachner
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine Vienna, Austria
| | - Beatrice Grafl
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| | - Michael Hess
- Christian Doppler Laboratory for Innovative Poultry Vaccines, University of Veterinary Medicine Vienna, Austria.,Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Austria
| |
Collapse
|
12
|
Cellular Virotherapy Increases Tumor-Infiltrating Lymphocytes (TIL) and Decreases their PD-1 + Subsets in Mouse Immunocompetent Models. Cancers (Basel) 2020; 12:cancers12071920. [PMID: 32708639 PMCID: PMC7409201 DOI: 10.3390/cancers12071920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023] Open
Abstract
Oncolytic virotherapy uses viruses designed to selectively replicate in cancer cells. An alternative to intratumoral administration is to use mesenchymal stem cells (MSCs) to transport the oncolytic viruses to the tumor site. Following this strategy, our group has already applied this treatment to children and adults in a human clinical trial and a veterinary trial, with good clinical responses and excellent safety profiles. However, the development of immunocompetent cancer mouse models is still necessary for the study and improvement of oncolytic viroimmunotherapies. Here we have studied the antitumor efficacy, immune response, and mechanism of action of a complete murine version of our cellular virotherapy in mouse models of renal adenocarcinoma and melanoma. We used mouse MSCs infected with the mouse oncolytic adenovirus dlE102 (OAd-MSCs). In both models, treatment with OAd-MSCs significantly reduced tumor volumes by 50% and induced a pro-inflammatory tumor microenvironment. Furthermore, treated mice harboring renal adenocarcinoma and melanoma tumors presented increased infiltration of tumor-associated macrophages (TAMs), natural killer cells, and tumor-infiltrating lymphocytes (TILs). Treated mice also presented lower percentage of TILs expressing programmed cell death protein 1 (PD-1)-the major regulator of T cell exhaustion. In conclusion, treatment with OAd-MSCs significantly reduced tumor volume and induced changes in tumor-infiltrating populations of melanoma and renal cancer.
Collapse
|
13
|
Vaz FF, Raso TF, Agius JE, Hunt T, Leishman A, Eden JS, Phalen DN. Opportunistic sampling of wild native and invasive birds reveals a rich diversity of adenoviruses in Australia. Virus Evol 2020; 6:veaa024. [PMID: 32411389 PMCID: PMC7211397 DOI: 10.1093/ve/veaa024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Little is known about the diversity of adenoviruses in wild birds and how they have evolved and are maintained in complex ecosystems. In this study, 409 samples were collected from woodland birds caught for banding (droppings), birds submitted to a wildlife hospital (droppings and tissues), silver gulls (droppings or tissues), and feral pigeons (Columbia livia; oral, cloacal swabs, or tissues) from the Greater Sydney area in NSW, Australia. Additional samples were from native pigeons and doves (swabs) presented to the Healesville Sanctuary, VIC, Australia. Samples were screened for adenovirus DNA using degenerate primers and polymerase chain reaction. Adenovirus sequences were detected in eighty-three samples representing thirty-five novel amino acid sequences. Fourteen novel sequences were atadenoviruses, seven were aviadenoviruses, twelve were siadenoviruses, and one was a mastadenovirus. Sequences from passerine birds were predominately found to form a single lineage within the atadenoviruses, a second lineage in the siadenoviruses, and a third smaller aviadenovirus lineage. These viruses appeared to have co-evolved with a diverse group of woodland birds that share similar habitat. Evidence for host/virus co-evolution in some viruses and a wide host range in others was observed. A high prevalence of adenovirus infection was found in rainbow lorikeets (Trichoglossus haematodus), galahs (Eolophus roseicapilla), and sulphur-crested cockatoos (Cacatua galerita). Sequences were either identical to or mapped to already established lineages in the Aviadenovirus, Siadenovirus, and Atadenovirus genera, suggesting a possible origin of the psittacine adenoviruses in ancestral Australian psittacine birds. The sequences of passerine and psittacine origin provided insight into diversity and structure of the Atadenovirus genus and demonstrated for the first-time viruses of passerine origin in the Aviadenovirus genus. Four unrelated adenovirus sequences were found in silver gull samples (Chroicocephalus novaehollandiae), including one of pigeon origin, suggesting environmental virus exposure. Three pigeon adenovirus types were detected in feral pigeons and infection prevalence was high. Evidence for host switching between invasive species and native species and native species and invasive species was documented. A variant of a murine adenovirus was detected in kidney tissue from two bird species suggesting mouse to bird transmission.
Collapse
Affiliation(s)
- Frederico F Vaz
- School of Veterinary Medicine and Animal Science, University of São Paulo, Orlando marques de Paiva, 87 05508-270, São Paulo, Brazil
| | - Tânia F Raso
- School of Veterinary Medicine and Animal Science, University of São Paulo, Orlando marques de Paiva, 87 05508-270, São Paulo, Brazil
| | - Jessica E Agius
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia
| | - Tony Hunt
- 16 Alderson Avenue North Rocks, NSW 2151, Australia
| | - Alan Leishman
- 4/101 Centaur Street, Revesby Heights, NSW 2122, Australia
| | - John-Sebastian Eden
- Sydney Medical School, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia
| | - David N Phalen
- Sydney School of Veterinary Science, University of Sydney, Camden, NSW, Australia.,Schubot Exotic Bird Health, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843-4467, USA
| |
Collapse
|
14
|
Characterization of the First Genome of Porcine mastadenovirus B (HNU1 Strain) and Implications on Its Lymphoid and Special Origin. Virol Sin 2020; 35:528-537. [PMID: 32236817 DOI: 10.1007/s12250-020-00210-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 01/04/2023] Open
Abstract
Porcine adenoviruses (PAdVs) are classified into three species, PAdV-A, PAdV-B, and PAdV-C. The genomes of PAdV-A and PAdV-C have been well characterized. However, the genome of PAdV-B has never been completely sequenced, and the epidemiology of PAdV-B remains unclear. In our study, we have identified a novel strain of PAdV-B, named PAdV-B-HNU1, in porcine samples collected in China by viral metagenomic assay and general PCR. The genome of PAdV-B-HNU1 is 31,743 bp in length and highly similar to that of California sea lion adenovirus 1 (C. sea lion AdV-1), which contains typical mastadenoviral structures and some unique regions at the carboxy-terminal end. Especially, PAdV-B-HNU1 harbors a dUTPase coding region not clustering with other mastadenoviruses except for C. sea lion AdV-1 and a fiber coding region homologous with galectin 4 and 9 of animals. However, the variance of GC contents between PAdV-B-HNU1 (55%) and C. sea lion AdV-1 (36%) indicates their differential evolutionary paths. Further epidemiologic study revealed a high positive rate (51.7%) of PAdV-B-HNU1 in porcine lymph samples, but low positive rates of 10.2% and 16.1% in oral swabs and rectal swabs, respectively. In conclusion, this study characterized a novel representative genome of a lymphotropic PAdV-B with unique evolutionary origin, which contributes to the taxonomical and pathogenic studies of PAdVs.
Collapse
|
15
|
Pan Q, Wang J, Gao Y, Wang Q, Cui H, Liu C, Qi X, Zhang Y, Wang Y, Li K, Gao L, Liu A, Wang X. Identification of chicken CAR homology as a cellular receptor for the emerging highly pathogenic fowl adenovirus 4 via unique binding mechanism. Emerg Microbes Infect 2020; 9:586-596. [PMID: 32174269 PMCID: PMC7144210 DOI: 10.1080/22221751.2020.1736954] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since 2015, the prevalence of severe hepatitis-hydropericardium syndrome, which is caused by the novel genotype fowl adenovirus serotype 4 (FAdV-4), has increased in China and led to considerable economic losses. The replication cycle of FAdV-4, especially the emerging highly pathogenic novel genotype FAdV-4, remains largely unknown. The adenovirus fibre interacts with the cellular receptor as the initial step in adenovirus (AdV) infection. In our previous studies, the complete genome sequence showed that the fibre patterns of FAdV-4 were distinct from all other AdVs. Here, protein-blockage and antibody-neutralization assays were performed to confirm that the novel FAdV-4 short fibre was critical for binding to susceptible leghorn male hepatocellular (LMH) cells. Subsequently, fibre 1 was used as bait to investigate the receptor on LMH cells via mass spectrometry. The chicken coxsackie and adenovirus receptor (CAR) protein was confirmed as the novel FAdV-4 receptor in competition assays. We further identified the D2 domain of CAR (D2-CAR) as the active domain responsible for binding to the short fibre of the novel FAdV-4. Taken together, these findings demonstrate for the first time that the chicken CAR homolog is a cellular receptor for the novel FAdV-4, which facilitates viral entry by interacting with the viral short fibre through the D2 domain. Collectively, these findings provide an in-depth understanding of the mechanisms of the emerging novel genotype FAdV-4 invasion and pathogenesis.
Collapse
Affiliation(s)
- Qing Pan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Jing Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Qi Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Hongyu Cui
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Changjun Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yanping Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Kai Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Li Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Aijing Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
16
|
Niczyporuk JS, Kozdruń W, Czekaj H, Styś-Fijoł N, Piekarska K. Detection of fowl adenovirus D strains in wild birds in Poland by Loop-Mediated Isothermal Amplification (LAMP). BMC Vet Res 2020; 16:58. [PMID: 32059679 PMCID: PMC7023798 DOI: 10.1186/s12917-020-2271-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/31/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The present study on the role of strains of adenovirus in wildlife reservoirs, and their prevalence is under exploration. In several previous studies, the presence of adenovirus strains in wild birds has been investigated. Worldwide distribution and outbreaks of adenovirus infections have been reported by many authors. The present study investigated the prevalence of FAdVs in 317 samples of different bird species from the northwestern region of Poland. An applied specific, sensitive, and efficient, without cross-reactivity loop-mediated isothermal amplification (LAMP) method to gauge the prevalence of fowl adenovirus strains in wild birds was developed and used. RESULTS The method was based on the sequence of the loop L1 HVR1-4 region of the hexon gene of the FAdV genome reference strains FAdV-2 KT862805 (ANJ02325), FAdV-3 KT862807 (ANJ02399) and FAdV-11 KC750784 (AGK29904). The results obtained by LAMP were confirmed by real-time PCR. Among 317 samples obtained from wild birds, eight FAdV isolates (2.52%) were identified and produced a cytopathic effect (CPE) in chicken embryo kidney cells (CEK). Three FAdV types belonging to species Fowl adenovirus D were detected, which were isolated from three adenovirus types 2/3/11, and have been confirmed in three mute swans (Cygnus olor), three wild ducks (Anas platyrhynchos), one owl (Strigiformes), and one common wood pigeon (Columba palumbus). CONCLUSIONS This study provides the first accurate quantitative data for the replication of fowl adenovirus strains in wild birds in Poland, indicating adenovirus interspecies transmission, and demonstrating the circulation of FAdVs in wild birds.
Collapse
Affiliation(s)
- Jowita Samanta Niczyporuk
- Department of Poultry Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| | - Wojciech Kozdruń
- Department of Poultry Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Hanna Czekaj
- Department of Poultry Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Natalia Styś-Fijoł
- Department of Poultry Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Karolina Piekarska
- Department of Poultry Diseases, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| |
Collapse
|
17
|
Harrach B, Tarján ZL, Benkő M. Adenoviruses across the animal kingdom: a walk in the zoo. FEBS Lett 2019; 593:3660-3673. [PMID: 31747467 DOI: 10.1002/1873-3468.13687] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Adenoviruses (AdVs) infect representatives of numerous species from almost every major vertebrate class, albeit their incidence shows great variability. AdVs infecting birds, reptiles, and bats are the most common and diverse, whereas only one AdV has been so far isolated both from fish and amphibians. The family Adenoviridae is divided into five genera, each corresponding to an independent evolutionary lineage that supposedly coevolved with its respective vertebrate hosts. Members of genera Mastadenovirus and Aviadenovirus seem to infect exclusively mammals and birds, respectively. The genus Ichtadenovirus includes the single known AdV from fish. The majority of AdVs in the genus Atadenovirus originated from squamate reptiles (lizards and snakes), but also certain mammalian and avian AdVs are classified within this genus. The genus Siadenovirus contains the only AdV isolated from frog, along with numerous avian AdVs. In turtles, members of a sixth AdV lineage have been discovered, pending official recognition as an independent genus. The most likely scenario for AdV evolution includes long-term cospeciation with the hosts, as well as occasional switches between closely or, rarely, more distantly related hosts.
Collapse
Affiliation(s)
- Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán L Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
18
|
Lee DN, Angiel M. Two novel adenoviruses found in Cave Myotis bats (Myotis velifer) in Oklahoma. Virus Genes 2019; 56:99-103. [PMID: 31797220 PMCID: PMC7089485 DOI: 10.1007/s11262-019-01719-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022]
Abstract
Bats are carriers of potentially zoonotic viruses, therefore it is crucial to identify viruses currently found in bats to better understand how they are maintained in bat populations and evaluate risks for transmission to other species. Adenoviruses have been previously detected in bats throughout the world, but sampling is still limited. In this study, 30 pooled-guano samples were collected from a cave roost of Myotis velifer in Oklahoma. A portion of the DNA polymerase gene from Adenoviridae was amplified successfully in 18 M. velifer samples; however, DNA sequence was obtained from only 6 of these M. velifer samples. One was collected in October 2016, one in March 2017, and 4 in July 2017. The October and March samples contained viral DNA that was 3.1% different from each other but 33% different than the novel viral sequence found in the July 2017 samples. Phylogenetic analysis of these fragments confirmed our isolates were from the genus Mastadenovirus and had genetic diversity ranging from 20 to 50% when compared to other bat adenoviruses.
Collapse
Affiliation(s)
- Dana N Lee
- Department of Agriculture, Biology & Health Sciences, Cameron University, 2800 W. Gore Blvd, Lawton, OK, 73505, USA.
| | - Meagan Angiel
- Department of Agriculture, Biology & Health Sciences, Cameron University, 2800 W. Gore Blvd, Lawton, OK, 73505, USA
| |
Collapse
|
19
|
Kaján GL, Doszpoly A, Tarján ZL, Vidovszky MZ, Papp T. Virus-Host Coevolution with a Focus on Animal and Human DNA Viruses. J Mol Evol 2019; 88:41-56. [PMID: 31599342 PMCID: PMC6943099 DOI: 10.1007/s00239-019-09913-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/23/2019] [Indexed: 01/21/2023]
Abstract
Viruses have been infecting their host cells since the dawn of life, and this extremely long-term coevolution gave rise to some surprising consequences for the entire tree of life. It is hypothesised that viruses might have contributed to the formation of the first cellular life form, or that even the eukaryotic cell nucleus originates from an infection by a coated virus. The continuous struggle between viruses and their hosts to maintain at least a constant fitness level led to the development of an unceasing arms race, where weapons are often shuttled between the participants. In this literature review we try to give a short insight into some general consequences or traits of virus–host coevolution, and after this we zoom in to the viral clades of adenoviruses, herpesviruses, nucleo-cytoplasmic large DNA viruses, polyomaviruses and, finally, circoviruses.
Collapse
Affiliation(s)
- Győző L Kaján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary.
| | - Andor Doszpoly
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Zoltán László Tarján
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| | - Tibor Papp
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária krt. 21, Budapest, 1143, Hungary
| |
Collapse
|
20
|
Surveillance for Adenoviruses in Bats in Italy. Viruses 2019; 11:v11060523. [PMID: 31174292 PMCID: PMC6631154 DOI: 10.3390/v11060523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/28/2019] [Accepted: 06/04/2019] [Indexed: 01/16/2023] Open
Abstract
Adenoviruses are important pathogens of humans and animals. Bats have been recognized as potential reservoirs of novel viruses, with some viruses being regarded as a possible zoonotic threat to humans. In this study, we report the detection and analysis of adenoviruses from different bat species in northern Italy. Upon sequence and phylogenetic analysis, based on a short diagnostic fragment of the highly-conserved DNA polymerase gene, we identified potential novel candidate adenovirus species, including an avian-like adenovirus strain. An adenovirus isolate was obtained in simian cell lines from the carcass of a Pipistrellus kuhlii, and the complete genome sequence was reconstructed using deep sequencing technologies. The virus displayed high nucleotide identity and virtually the same genome organization as the Pipistrellus pipistrellus strain PPV1, isolated in Germany in 2007. Gathering data on epidemiology and the genetic diversity of bat adenoviruses may be helpful to better understand their evolution in the mammalian and avian hosts.
Collapse
|
21
|
Agrawal B, Gupta N, Vedi S, Singh S, Li W, Garg S, Li J, Kumar R. Heterologous Immunity between Adenoviruses and Hepatitis C Virus (HCV): Recombinant Adenovirus Vaccine Vectors Containing Antigens from Unrelated Pathogens Induce Cross-Reactive Immunity Against HCV Antigens. Cells 2019; 8:E507. [PMID: 31130710 PMCID: PMC6562520 DOI: 10.3390/cells8050507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/13/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Host immune responses play an important role in the outcome of infection with hepatitis C virus (HCV). They can lead to viral clearance and a positive outcome, or progression and severity of chronic disease. Extensive research in the past >25 years into understanding the immune responses against HCV have still resulted in many unanswered questions implicating a role for unknown factors and events. In our earlier studies, we made a surprising discovery that peptides derived from structural and non-structural proteins of HCV have substantial amino acid sequence homologies with various proteins of adenoviruses and that immunizing mice with a non-replicating, non-recombinant adenovirus vector leads to induction of a robust cross-reactive cellular and humoral response against various HCV antigens. In this work, we further demonstrate antibody cross-reactivity between Ad and HCV in vivo. We also extend this observation to show that recombinant adenoviruses containing antigens from unrelated pathogens also possess the ability to induce cross-reactive immune responses against HCV antigens along with the induction of transgene antigen-specific immunity. This cross-reactive immunity can (a) accommodate the making of dual-pathogen vaccines, (b) play an important role in the natural course of HCV infection and (c) provide a plausible answer to many unexplained questions regarding immunity to HCV.
Collapse
Affiliation(s)
- Babita Agrawal
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Nancy Gupta
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Satish Vedi
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Shakti Singh
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Wen Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Saurabh Garg
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Jie Li
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| | - Rakesh Kumar
- Department of Laboratory Medicine & Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2S2, Canada.
| |
Collapse
|
22
|
Jönsson F, Hagedorn C, Kreppel F. Combined Genetic and Chemical Capsid Modifications of Adenovirus-Based Gene Transfer Vectors for Shielding and Targeting. J Vis Exp 2018. [PMID: 30417881 DOI: 10.3791/58480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Adenovirus vectors are potent tools for genetic vaccination and oncolytic virotherapy. However, they are prone to multiple undesired vector-host interactions, especially after in vivo delivery. It is a consensus that the limitations imposed by undesired vector-host interactions can only be overcome if defined modifications of the vector surface are performed. These modifications include shielding of the particles from unwanted interactions and targeting by the introduction of new ligands. The goal of the protocol presented here is to enable the reader to generate shielded and, if desired, retargeted human adenovirus gene transfer vectors or oncolytic viruses. The protocol will enable researchers to modify the surface of adenovirus vector capsids by specific chemical attachment of synthetic polymers, carbohydrates, lipids, or other biological or chemical moieties. It describes the cutting-edge technology of combined genetic and chemical capsid modifications, which have been shown to facilitate the understanding and overcoming of barriers for in vivo delivery of adenovirus vectors. A detailed and commented description of the crucial steps for performing specific chemical reactions with biologically active viruses or virus-derived vectors is provided. The technology described in the protocol is based on the genetic introduction of (naturally absent) cysteine residues into solvent-exposed loops of adenovirus-derived vectors. These cysteine residues provide a specific chemical reactivity that can, after production of the vectors to high titers, be exploited for highly specific and efficient covalent chemical coupling of molecules from a wide variety of substance classes to the vector particles. Importantly, this protocol can easily be adapted to perform a broad variety of different (non-thiol-based) chemical modifications of adenovirus vector capsids. Finally, it is likely that non-enveloped virus-based gene transfer vectors other than adenovirus can be modified from the basis of this protocol.
Collapse
Affiliation(s)
- Franziska Jönsson
- Center of Biomedical Education and Research, University Witten/Herdecke
| | - Claudia Hagedorn
- Center of Biomedical Education and Research, University Witten/Herdecke
| | - Florian Kreppel
- Center of Biomedical Education and Research, University Witten/Herdecke;
| |
Collapse
|
23
|
Ogawa H, Kajihara M, Nao N, Shigeno A, Fujikura D, Hang'ombe BM, Mweene AS, Mutemwa A, Squarre D, Yamada M, Higashi H, Sawa H, Takada A. Characterization of a Novel Bat Adenovirus Isolated from Straw-Colored Fruit Bat (Eidolon helvum). Viruses 2017; 9:v9120371. [PMID: 29207524 PMCID: PMC5744146 DOI: 10.3390/v9120371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022] Open
Abstract
Bats are important reservoirs for emerging zoonotic viruses. For extensive surveys of potential pathogens in straw-colored fruit bats (Eidolon helvum) in Zambia, a total of 107 spleen samples of E. helvum in 2006 were inoculated onto Vero E6 cells. The cell culture inoculated with one of the samples (ZFB06-106) exhibited remarkable cytopathic changes. Based on the ultrastructural property in negative staining and cross-reactivity in immunofluorescence assays, the virus was suspected to be an adenovirus, and tentatively named E. helvum adenovirus 06-106 (EhAdV 06-106). Analysis of the full-length genome of 30,134 bp, determined by next-generation sequencing, showed the presence of 28 open reading frames. Phylogenetic analyses confirmed that EhAdV 06-106 represented a novel bat adenovirus species in the genus Mastadenovirus. The virus shared similar characteristics of low G + C contents with recently isolated members of species Bat mastadenoviruses E, F and G, from which EhAdV 06-106 diverged by more than 15% based on the distance matrix analysis of DNA polymerase amino acid sequences. According to the taxonomic criteria, we propose the tentative new species name “Bat mastadenovirus H”. Because EhAdV 06-106 exhibited a wide in vitro cell tropism, the virus might have a potential risk as an emerging virus through cross-species transmission.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
| | - Masahiro Kajihara
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
| | - Naganori Nao
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
| | - Asako Shigeno
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
| | - Daisuke Fujikura
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
| | - Bernard M Hang'ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
| | - Aaron S Mweene
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
| | - Alisheke Mutemwa
- Provincial Veterinary Office, Department of Veterinary Services, Ministry of Fisheries and Livestock, P.O. Box 70416, Ndola 50100, Zambia.
| | - David Squarre
- Department of National Parks and Wildlife, Ministry of Tourism and Arts, Private Bag 1, Chilanga 10101, Zambia.
| | - Masao Yamada
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hideaki Higashi
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
- Division of Infection and Immunity, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
- Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
| | - Hirofumi Sawa
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
- Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
- Global Virus Network, 801 W Baltimore St, Baltimore, MD 21201, USA.
| | - Ayato Takada
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia.
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020, Japan.
| |
Collapse
|
24
|
Hu D, Zhu C, Wang Y, Ai L, Yang L, Ye F, Ding C, Chen J, He B, Zhu J, Qian H, Xu W, Feng Y, Tan W, Wang C. Virome analysis for identification of novel mammalian viruses in bats from Southeast China. Sci Rep 2017; 7:10917. [PMID: 28883450 PMCID: PMC5589946 DOI: 10.1038/s41598-017-11384-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/23/2017] [Indexed: 11/09/2022] Open
Abstract
Bats have been shown as important mammal resevoirs to carry a variety of zoonotic pathogens. To analyze pathogenic species in bats from southeast coastal regions of China, we performed metagenomic sequencing technology for high throughput sequencing of six sentinels from southeast coastal area of China. We obtained 5,990,261 high quality reads from intestine and lung tissue of 235 bats, including 2,975,371 assembled sequences. 631,490 reads predicted overlapping sequences for the open reading frame (ORF), which accounts for 2.37% of all the sequences (15,012/631,490). Further, the acquired virus sequences were classified into 25 viral families, including 16 vertebrate viruses, four plant viruses and five insect viruses. All bat samples were screened by specific PCR and phylogenetic analysis. Using these techniques, we discovered many novel bat viruses and some bat viruses closely-related to known human/animal pathogens, including coronavirus, norovirus, adenovirus, bocavirus, astrovirus, and circovirus. In summary, this study extended our understanding of bats as the viral reservoirs. Additionally, it also provides a basis for furher studying the transmission of viruses from bats to humans.
Collapse
Affiliation(s)
- Dan Hu
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.,Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Changqiang Zhu
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Yi Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China.,Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Lele Ai
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Lu Yang
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Fuqiang Ye
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Chenxi Ding
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Jiafeng Chen
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Biao He
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin, China
| | - Jin Zhu
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Youjun Feng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Weilong Tan
- Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China.
| | - Changjun Wang
- Department of Epidemiology, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China. .,Department of Epidemiology, Research Institute for Medicine of Nanjing Command, Nanjing, 210002, China.
| |
Collapse
|
25
|
Evolution and Cryo-electron Microscopy Capsid Structure of a North American Bat Adenovirus and Its Relationship to Other Mastadenoviruses. J Virol 2017; 91:JVI.01504-16. [PMID: 27807242 DOI: 10.1128/jvi.01504-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/30/2016] [Indexed: 12/20/2022] Open
Abstract
Since the first description of adenoviruses in bats in 2006, a number of micro- and megabat species in Europe, Africa, and Asia have been shown to carry a wide diversity of adenoviruses. Here, we report on the evolutionary, biological, and structural characterization of a novel bat adenovirus (BtAdV) recovered from a Rafinesque's big-eared bat (Corynorhinus rafinesquii) in Kentucky, USA, which is the first adenovirus isolated from North American bats. This virus (BtAdV 250-A) exhibits a close phylogenetic relationship with Canine mastadenovirus A (CAdV A), as previously observed with other BtAdVs. To further investigate the relationships between BtAdVs and CAdVs, we conducted mass spectrometric analysis and single-particle cryo-electron microscopy reconstructions of the BtAdV 250-A capsid and also analyzed the in vitro host ranges of both viruses. Our results demonstrate that BtAdV 250-A represents a new mastadenovirus species that, in contrast to CAdV, has a unique capsid morphology that contains more prominent extensions of protein IX and can replicate efficiently in a phylogenetically diverse range of species. These findings, in addition to the recognition that both the genetic diversity of BtAdVs and the number of different bat species from disparate geographic regions infected with BtAdVs appears to be extensive, tentatively suggest that bats may have served as a potential reservoir for the cross-species transfer of adenoviruses to other hosts, as theorized for CAdV. IMPORTANCE Although many adenoviruses are host specific and likely codiverged with their hosts over millions of years, other adenoviruses appear to have emerged through successful cross-species transmission events on more recent time scales. The wide geographic distribution and genetic diversity of adenoviruses in bats and their close phylogenetic relationship to Canine mastadenovirus A (CAdV A) has raised important questions about how CAdV A, and possibly other mammalian adenoviruses, may have emerged. Although most adenoviruses tend to cause limited disease in their natural hosts, CAdV A is unusual in that it may cause high morbidity and sometimes fatal infections in immunocompetent hosts and is thus an important pathogen of carnivores. Here, we performed a comparative evolutionary and structural study of representative bat and canine adenoviruses to better understand the relationship between these two viral groups.
Collapse
|
26
|
Genome-Wide Estimation of the Spontaneous Mutation Rate of Human Adenovirus 5 by High-Fidelity Deep Sequencing. PLoS Pathog 2016; 12:e1006013. [PMID: 27824949 PMCID: PMC5100877 DOI: 10.1371/journal.ppat.1006013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/20/2016] [Indexed: 11/19/2022] Open
Abstract
Rates of spontaneous mutation determine the ability of viruses to evolve, infect new hosts, evade immunity and undergo drug resistance. Contrarily to RNA viruses, few mutation rate estimates have been obtained for DNA viruses, because their high replication fidelity implies that new mutations typically fall below the detection limits of Sanger and standard next-generation sequencing. Here, we have used a recently developed high-fidelity deep sequencing technique (Duplex Sequencing) to score spontaneous mutations in human adenovirus 5 under conditions of minimal selection. Based on >200 single-base spontaneous mutations detected throughout the entire viral genome, we infer an average mutation rate of 1.3 × 10−7 per base per cell infection cycle. This value is similar to those of other, large double-stranded DNA viruses, but an order of magnitude lower than those of single-stranded DNA viruses, consistent with the possible action of post-replicative repair. Although the mutation rate did not vary strongly along the adenovirus genome, we found several sources of mutation rate heterogeneity. First, two regions mapping to transcription units L3 and E1B-IVa2 were significantly depleted for mutations. Second, several point insertions/deletions located within low-complexity sequence contexts appeared recurrently, suggesting mutational hotspots. Third, mutation probability increased at GpC dinucleotides. Our findings suggest that host factors may influence the distribution of spontaneous mutations in human adenoviruses and potentially other nuclear DNA viruses. Next-generation sequencing has provided a powerful tool for studying microbial genetic diversity but suffers from relatively low per-base accuracy, limiting our ability to detect low-frequency polymorphisms and spontaneous mutations. However, this limitation has been solved recently by the development of high-fidelity deep sequencing techniques. Taking advantage of these advancements, here we provide the first unbiased genome-wide characterization of the rate of spontaneous mutation of a human DNA virus (adenovirus 5) under controlled laboratory conditions. The adenovirus genome shows a relatively low mutation rate, consistent with high replication fidelity and the action of post-replicative repair. We also found evidence for mutation rate heterogeneities and regions of genetic instability in the viral genome. Together with previous reports, our findings indicate that DNA viruses with large double-stranded genomes mutate significantly slower than those with small single-stranded genomes.
Collapse
|
27
|
Using the E4orf6-Based E3 Ubiquitin Ligase as a Tool To Analyze the Evolution of Adenoviruses. J Virol 2016; 90:7350-7367. [PMID: 27252531 DOI: 10.1128/jvi.00420-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/26/2016] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED E4orf6 proteins from all human adenoviruses form Cullin-based ubiquitin ligase complexes that, in association with E1B55K, target cellular proteins for degradation. While most are assembled with Cul5, a few utilize Cul2. BC-box motifs enable all these E4orf6 proteins to assemble ligase complexes with Elongins B and C. We also identified a Cul2-box motif used for Cul2 selection in all Cul2-based complexes. With this information, we set out to determine if other adenoviruses also possess the ability to form the ligase complex and, if so, to predict their Cullin usage. Here we report that all adenoviruses known to encode an E4orf6-like protein (mastadenoviruses and atadenoviruses) maintain the potential to form the ligase complex. We could accurately predict Cullin usage for E4orf6 products of mastadenoviruses and all but one atadenovirus. Interestingly, in nonhuman primate adenoviruses, we found a clear segregation of Cullin binding, with Cul5 utilized by viruses infecting great apes and Cul2 by Old/New World monkey viruses, suggesting that a switch from Cul2 to Cul5 binding occurred during the period when great apes diverged from monkeys. Based on the analysis of Cullin selection, we also suggest that the majority of human adenoviruses, which exhibit a broader tropism for the eye and the respiratory tract, exhibit Cul5 specificity and resemble viruses infecting great apes, whereas those that infect the gastrointestinal tract may have originated from monkey viruses that share Cul2 specificity. Finally, aviadenoviruses also appear to contain E4orf6 genes that encode proteins with a conserved XCXC motif followed by, in most cases, a BC-box motif. IMPORTANCE Two early adenoviral proteins, E4orf6 and E1B55K, form a ubiquitin ligase complex with cellular proteins to ubiquitinate specific substrates, leading to their degradation by the proteasome. In studies with representatives of each human adenovirus species, we (and others) previously discovered that some viruses use Cul2 to form the complex, while others use Cul5. In the present study, we expanded our analyses to all sequenced adenoviruses and found that E4orf6 genes from all mast- and atadenoviruses encode proteins containing the motifs necessary to form the ligase complex. We found a clear separation in Cullin specificity between adenoviruses of great apes and Old/New World monkeys, lending support for a monkey origin for human viruses of the Human mastadenovirus A, F, and G species. We also identified previously unrecognized E4orf6 genes in the aviadenoviruses that encode proteins containing motifs permitting formation of the ubiquitin ligase.
Collapse
|
28
|
Szirovicza L, López P, Kopena R, Benkő M, Martín J, Pénzes JJ. Random Sampling of Squamate Reptiles in Spanish Natural Reserves Reveals the Presence of Novel Adenoviruses in Lacertids (Family Lacertidae) and Worm Lizards (Amphisbaenia). PLoS One 2016; 11:e0159016. [PMID: 27399970 PMCID: PMC4939969 DOI: 10.1371/journal.pone.0159016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/24/2016] [Indexed: 12/15/2022] Open
Abstract
Here, we report the results of a large-scale PCR survey on the prevalence and diversity of adenoviruses (AdVs) in samples collected randomly from free-living reptiles. On the territories of the Guadarrama Mountains National Park in Central Spain and of the Chafarinas Islands in North Africa, cloacal swabs were taken from 318 specimens of eight native species representing five squamate reptilian families. The healthy-looking animals had been captured temporarily for physiological and ethological examinations, after which they were released. We found 22 AdV-positive samples in representatives of three species, all from Central Spain. Sequence analysis of the PCR products revealed the existence of three hitherto unknown AdVs in 11 Carpetane rock lizards (Iberolacerta cyreni), nine Iberian worm lizards (Blanus cinereus), and two Iberian green lizards (Lacerta schreiberi), respectively. Phylogeny inference showed every novel putative virus to be a member of the genus Atadenovirus. This is the very first description of the occurrence of AdVs in amphisbaenian and lacertid hosts. Unlike all squamate atadenoviruses examined previously, two of the novel putative AdVs had A+T rich DNA, a feature generally deemed to mirror previous host switch events. Our results shed new light on the diversity and evolution of atadenoviruses.
Collapse
Affiliation(s)
- Leonóra Szirovicza
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 21 Hungária krt., Budapest, H-1143, Hungary
| | - Pilar López
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Renáta Kopena
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 21 Hungária krt., Budapest, H-1143, Hungary
| | - José Martín
- Departamento de Ecología Evolutiva, Museo Nacional de Ciencias Naturales, C.S.I.C, José Gutiérrez Abascal 2, E-28006, Madrid, Spain
| | - Judit J. Pénzes
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, 21 Hungária krt., Budapest, H-1143, Hungary
| |
Collapse
|
29
|
Nguyen TH, Vidovszky MZ, Ballmann MZ, Sanz-Gaitero M, Singh AK, Harrach B, Benkő M, van Raaij MJ. Crystal structure of the fibre head domain of bovine adenovirus 4, a ruminant atadenovirus. Virol J 2015; 12:81. [PMID: 25994880 PMCID: PMC4451742 DOI: 10.1186/s12985-015-0309-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 01/20/2023] Open
Abstract
Background In adenoviruses, primary host cell recognition is generally performed by the head domains of their homo-trimeric fibre proteins. This first interaction is reversible. A secondary, irreversible interaction subsequently takes place via other adenovirus capsid proteins and leads to a productive infection. Although many fibre head structures are known for human mastadenoviruses, not many animal adenovirus fibre head structures have been determined, especially not from those belonging to adenovirus genera other than Mastadenovirus. Methods We constructed an expression vector for the fibre head domain from a ruminant atadenovirus, bovine adenovirus 4 (BAdV-4), consisting of amino acids 414–535, expressed the protein in Escherichia coli, purified it by metal affinity and cation exchange chromatography and crystallized it. The structure was solved using single isomorphous replacement plus anomalous dispersion of a mercury derivative and refined against native data that extended to 1.2 Å resolution. Results Like in other adenoviruses, the BAdV-4 fibre head monomer contains a beta-sandwich consisting of ABCJ and GHID sheets. The topology is identical to the fibre head of the other studied atadenovirus, snake adenovirus 1 (SnAdV-1), including the alpha-helix in the DG-loop, despite of them having a sequence identity of only 15 %. There are also differences which may have implications for ligand binding. Beta-strands G and H are longer and differences in several surface-loops and surface charge are observed. Conclusions Chimeric adenovirus fibres have been used to retarget adenovirus-based anti-cancer and gene therapy vectors. Ovine adenovirus 7 (OAdV-7), another ruminant atadenovirus, is intensively tested as a basis for such a vector. Here, we present the high-resolution atomic structure of the BAdV-4 fibre head domain, the second atadenovirus fibre head structure known and the first of an atadenovirus that infects a mammalian host. Future research should focus on the receptor-binding properties of these fibre head domains.
Collapse
Affiliation(s)
- Thanh H Nguyen
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain.
| | - Márton Z Vidovszky
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Mónika Z Ballmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Marta Sanz-Gaitero
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain. .,Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland.
| | - Abhimanyu K Singh
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain. .,Current address: School of Biosciences, Stacey Building, University of Kent, Canterbury, Kent, CT2 7NJ, United Kingdom.
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Mária Benkő
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary.
| | - Mark J van Raaij
- Departamento de Estructura de Macromoleculas, Centro Nacional de Biotecnologia (CNB-CSIC), calle Darwin 3, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Seimon TA, Olson SH, Lee KJ, Rosen G, Ondzie A, Cameron K, Reed P, Anthony SJ, Joly DO, McAloose D, Lipkin WI. Adenovirus and herpesvirus diversity in free-ranging great apes in the Sangha region of the Republic Of Congo. PLoS One 2015; 10:e0118543. [PMID: 25781992 PMCID: PMC4362762 DOI: 10.1371/journal.pone.0118543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/20/2015] [Indexed: 12/30/2022] Open
Abstract
Infectious diseases have caused die-offs in both free-ranging gorillas and chimpanzees. Understanding pathogen diversity and disease ecology is therefore critical for conserving these endangered animals. To determine viral diversity in free-ranging, non-habituated gorillas and chimpanzees in the Republic of Congo, genetic testing was performed on great-ape fecal samples collected near Odzala-Kokoua National Park. Samples were analyzed to determine ape species, identify individuals in the population, and to test for the presence of herpesviruses, adenoviruses, poxviruses, bocaviruses, flaviviruses, paramyxoviruses, coronaviruses, filoviruses, and simian immunodeficiency virus (SIV). We identified 19 DNA viruses representing two viral families, Herpesviridae and Adenoviridae, of which three herpesviruses had not been previously described. Co-detections of multiple herpesviruses and/or adenoviruses were present in both gorillas and chimpanzees. Cytomegalovirus (CMV) and lymphocryptovirus (LCV) were found primarily in the context of co-association with each other and adenoviruses. Using viral discovery curves for herpesviruses and adenoviruses, the total viral richness in the sample population of gorillas and chimpanzees was estimated to be a minimum of 23 viruses, corresponding to a detection rate of 83%. These findings represent the first description of DNA viral diversity in feces from free-ranging gorillas and chimpanzees in or near the Odzala-Kokoua National Park and form a basis for understanding the types of viruses circulating among great apes in this region.
Collapse
Affiliation(s)
- Tracie A. Seimon
- Zoological Health Program, Wildlife Conservation Society, Bronx, New York, United States of America
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Sarah H. Olson
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
- Center for Sustainability and the Global Environment, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Kerry Jo Lee
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Gail Rosen
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Alain Ondzie
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Kenneth Cameron
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Patricia Reed
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Simon J. Anthony
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| | - Damien O. Joly
- Wildlife Health and Health Policy Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - Denise McAloose
- Zoological Health Program, Wildlife Conservation Society, Bronx, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Columbia University, New York, New York, United States of America
| |
Collapse
|
31
|
Molecular characterization of a lizard adenovirus reveals the first atadenovirus with two fiber genes and the first adenovirus with either one short or three long fibers per penton. J Virol 2014; 88:11304-14. [PMID: 25056898 DOI: 10.1128/jvi.00306-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Although adenoviruses (AdVs) have been found in a wide variety of reptiles, including numerous squamate species, turtles, and crocodiles, the number of reptilian adenovirus isolates is still scarce. The only fully sequenced reptilian adenovirus, snake adenovirus 1 (SnAdV-1), belongs to the Atadenovirus genus. Recently, two new atadenoviruses were isolated from a captive Gila monster (Heloderma suspectum) and Mexican beaded lizards (Heloderma horridum). Here we report the full genomic and proteomic characterization of the latter, designated lizard adenovirus 2 (LAdV-2). The double-stranded DNA (dsDNA) genome of LAdV-2 is 32,965 bp long, with an average G+C content of 44.16%. The overall arrangement and gene content of the LAdV-2 genome were largely concordant with those in other atadenoviruses, except for four novel open reading frames (ORFs) at the right end of the genome. Phylogeny reconstructions and plesiomorphic traits shared with SnAdV-1 further supported the assignment of LAdV-2 to the Atadenovirus genus. Surprisingly, two fiber genes were found for the first time in an atadenovirus. After optimizing the production of LAdV-2 in cell culture, we determined the protein compositions of the virions. The two fiber genes produce two fiber proteins of different sizes that are incorporated into the viral particles. Interestingly, the two different fiber proteins assemble as either one short or three long fiber projections per vertex. Stoichiometry estimations indicate that the long fiber triplet is present at only one or two vertices per virion. Neither triple fibers nor a mixed number of fibers per vertex had previously been reported for adenoviruses or any other virus. IMPORTANCE Here we show that a lizard adenovirus, LAdV-2, has a penton architecture never observed before. LAdV-2 expresses two fiber proteins-one short and one long. In the virion, most vertices have one short fiber, but a few of them have three long fibers attached to the same penton base. This observation raises new intriguing questions on virus structure. How can the triple fiber attach to a pentameric vertex? What determines the number and location of each vertex type in the icosahedral particle? Since fibers are responsible for primary attachment to the host, this novel architecture also suggests a novel mode of cell entry for LAdV-2. Adenoviruses have a recognized potential in nanobiomedicine, but only a few of the more than 200 types found so far in nature have been characterized in detail. Exploring the taxonomic wealth of adenoviruses should improve our chances to successfully use them as therapeutic tools.
Collapse
|
32
|
Lopez-Gordo E, Podgorski II, Downes N, Alemany R. Circumventing antivector immunity: potential use of nonhuman adenoviral vectors. Hum Gene Ther 2014; 25:285-300. [PMID: 24499174 DOI: 10.1089/hum.2013.228] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Adenoviruses are efficient gene delivery vectors based on their ability to transduce a wide variety of cell types and drive high-level transient transgene expression. While there have been advances in modifying human adenoviral (HAdV) vectors to increase their safety profile, there are still pitfalls that need to be further addressed. Preexisting humoral and cellular immunity against common HAdV serotypes limits the efficacy of gene transfer and duration of transgene expression. As an alternative, nonhuman AdV (NHAdV) vectors can circumvent neutralizing antibodies against HAdVs in immunized mice and monkeys and in human sera, suggesting that NHAdV vectors could circumvent preexisting humoral immunity against HAdVs in a clinical setting. Consequently, there has been an increased interest in developing NHAdV vectors for gene delivery in humans. In this review, we outline the recent advances and limitations of HAdV vectors for gene therapy and describe examples of NHAdV vectors focusing on their immunogenicity, tropism, and potential as effective gene therapy vehicles.
Collapse
Affiliation(s)
- Estrella Lopez-Gordo
- 1 Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow , Glasgow G12 8TA, United Kingdom
| | | | | | | |
Collapse
|
33
|
Marek A, Ballmann MZ, Kosiol C, Harrach B, Schlötterer C, Hess M. Whole-genome sequences of two turkey adenovirus types reveal the existence of two unknown lineages that merit the establishment of novel species within the genus Aviadenovirus. J Gen Virol 2014; 95:156-170. [DOI: 10.1099/vir.0.057711-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There are eight species established for aviadenoviruses: Fowl adenovirus A–E, Goose adenovirus A, Falcon adenovirus A and Turkey adenovirus B. The aim of this study was to sequence and analyse the complete genomes of turkey adenovirus 4 (TAdV-4) and TAdV-5 (strain 1277BT) in addition to almost two-thirds of the genome of another TAdV-5 strain (strain D1648). By applying next-generation sequencing, the full genomes were found to be 42 940 and 43 686 bp and the G+C content was 48.5 and 51.6 mol% for TAdV-4 and TAdV-5, respectively. One fiber gene was identified in TAdV-4, whereas two fiber genes were found in TAdV-5. The genome organization of TAdV-4 resembled that of fowl adenovirus 5 (FAdV-5), but it had ORF1C near the left end of the genome. TAdV-4 also had five 123 bp tandem repeats followed by five 33 bp tandem repeats, but they occurred before and not after ORF8, as in several fowl adenoviruses. The genome organization of TAdV-5 was almost the same as that of FAdV-1 but with a possible difference in the splicing pattern of ORF11 and ORF26. Phylogenetic analyses and G+C content showed differences that seem to merit the establishment of two new species within the genus Aviadenovirus: Turkey adenovirus C (for TAdV-4) and Turkey adenovirus D (for TAdV-5). Our analyses suggest a common evolutionary origin of TAdV-5 and FAdV-1.
Collapse
Affiliation(s)
- Ana Marek
- Clinic for Avian, Reptile and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| | - Mónika Z. Ballmann
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Carolin Kosiol
- Institut für Populationsgenetik, University of Veterinary Medicine, Vienna, Austria
| | - Balázs Harrach
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Michael Hess
- Clinic for Avian, Reptile and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
34
|
Ge X, Wu Y, Wang M, Wang J, Wu L, Yang X, Zhang Y, Shi Z. Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China. Virol Sin 2013; 28:280-90. [PMID: 24132758 DOI: 10.1007/s12250-013-3365-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/28/2013] [Indexed: 11/28/2022] Open
Abstract
East Lake (Lake Donghu), located in Wuhan, China, is a typical city freshwater lake that has been experiencing eutrophic conditions and algal blooming during recent years. Marine and fresh water are considered to contain a large number of viruses. However, little is known about their genetic diversity because of the limited techniques for culturing viruses. In this study, we conducted a viral metagenomic analysis using a high-throughput sequencing technique with samples collected from East Lake in Spring, Summer, Autumn, and Winter. The libraries from four samples each generated 234,669, 71,837, 12,820, and 34,236 contigs (> 90 bp each), respectively. The genetic structure of the viral community revealed a high genetic diversity covering 23 viral families, with the majority of contigs homologous to DNA viruses, including members of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and Microviridae, which infect bacteria or algae, and members of Circoviridae, which infect invertebrates and vertebrates. The highest viral genetic diversity occurred in samples collected in August, then December and June, and the least diversity in March. Most contigs have low-sequence identities with known viruses. PCR detection targeting the conserved sequences of genes (g20, psbA, psbD, and DNApol) of cyanophages further confirmed that there are novel cyanophages in the East Lake. Our viral metagenomic data provide the first preliminary understanding of the virome in one freshwater lake in China and would be helpful for novel virus discovery and the control of algal blooming in the future.
Collapse
Affiliation(s)
- Xingyi Ge
- Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Peters M, Vidovszky MZ, Harrach B, Fischer S, Wohlsein P, Kilwinski J. Squirrel adenovirus type 1 in red squirrels (Sciurus vulgaris
) in Germany. Vet Rec 2011; 169:182. [DOI: 10.1136/vr.d2610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- M. Peters
- Staatliches Veterinäruntersuchungsamt; Zur Taubeneiche 10-12 59821 Arnsberg Germany
| | - M. Z. Vidovszky
- Veterinary Medical Research Institute; Hungarian Academy of Sciences; Hungária krt 21 1143 Budapest Hungary
| | - B. Harrach
- Veterinary Medical Research Institute; Hungarian Academy of Sciences; Hungária krt 21 1143 Budapest Hungary
| | - S. Fischer
- Department for Pathology; University of Veterinary Medicine; Bünteweg 17 30559 Hannover Germany
| | - P. Wohlsein
- Department for Pathology; University of Veterinary Medicine; Bünteweg 17 30559 Hannover Germany
| | - J. Kilwinski
- Staatliches Veterinäruntersuchungsamt; Zur Taubeneiche 10-12 59821 Arnsberg Germany
| |
Collapse
|
36
|
Novel adenoviruses in wild primates: a high level of genetic diversity and evidence of zoonotic transmissions. J Virol 2011; 85:10774-84. [PMID: 21835802 DOI: 10.1128/jvi.00810-11] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenoviruses (AdVs) broadly infect vertebrate hosts, including a variety of nonhuman primates (NHPs). In the present study, we identified AdVs in NHPs living in their natural habitats, and through the combination of phylogenetic analyses and information on the habitats and epidemiological settings, we detected possible horizontal transmission events between NHPs and humans. Wild NHPs were analyzed with a pan-primate AdV-specific PCR using a degenerate nested primer set that targets the highly conserved adenovirus DNA polymerase gene. A plethora of novel AdV sequences were identified, representing at least 45 distinct AdVs. From the AdV-positive individuals, 29 nearly complete hexon genes were amplified and, based on phylogenetic analysis, tentatively allocated to all known human AdV species (Human adenovirus A to Human adenovirus G [HAdV-A to -G]) as well as to the only simian AdV species (Simian adenovirus A [SAdV-A]). Interestingly, five of the AdVs detected in great apes grouped into the HAdV-A, HAdV-D, HAdV-F, or SAdV-A clade. Furthermore, we report the first detection of AdVs in New World monkeys, clustering at the base of the primate AdV evolutionary tree. Most notably, six chimpanzee AdVs of species HAdV-A to HAdV-F revealed a remarkably close relationship to human AdVs, possibly indicating recent interspecies transmission events.
Collapse
|
37
|
Barlan A, Danthi P, Wiethoff C. Lysosomal localization and mechanism of membrane penetration influence nonenveloped virus activation of the NLRP3 inflammasome. Virology 2011; 412:306-14. [PMID: 21315400 PMCID: PMC3060956 DOI: 10.1016/j.virol.2011.01.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/06/2010] [Accepted: 01/14/2011] [Indexed: 01/31/2023]
Abstract
Adenovirus (Ad) endosomal membrane penetration activates the NLRP3 inflammasome by releasing lysosomal cathepsin B (catB) into the cytoplasm. We therefore examined the extent to which inflammasome activation correlates with Ad colocalization with catB-enriched lysosomes. Inflammasome activation, is greater during infections with Ad5 possessing an Ad16 fiber (Ad5F16gfp), or Ad5gfp neutralized by human serum, than Ad5gfp alone. Enhanced IL-1β release by Ad5F16gfp is partially due to increased TLR9 signaling but also correlates with greater release of catB into the cytoplasm. This increased TLR9 signaling and catB release correlates with a greater localization of Ad5F16gfp to lysosomes prior to endosomal escape. Another nonenveloped virus, reovirus, requires catB to penetrate cell membranes. However, reovirus did not release catB into the cytoplasm despite significantly greater colocalization with lysosomes compared to Ad5gfp and efficient membrane penetration. Thus, not only lysosomal localization, but the mechanism of membrane penetration influences viral activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- A.U. Barlan
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| | - P. Danthi
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - C.M. Wiethoff
- Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153
| |
Collapse
|
38
|
Kovács ER, Benko M. Complete sequence of raptor adenovirus 1 confirms the characteristic genome organization of siadenoviruses. INFECTION GENETICS AND EVOLUTION 2011; 11:1058-65. [PMID: 21463713 DOI: 10.1016/j.meegid.2011.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/22/2011] [Accepted: 03/27/2011] [Indexed: 11/28/2022]
Abstract
Currently, the family Adenoviridae contains five genera, out of which Siadenovirus is one of the two least densely populated ones. A new member representing a new species in this genus has been detected in various birds of prey. The virus, named raptor adenovirus 1 (RAdV-1), could not be isolated, probably because no appropriate permissive cell-line was available. Partial genomic sequences, obtained by PCR and suggesting that the virus is a new siadenovirus species, have been published earlier. In the present paper, determination and analysis of the complete RAdV-1 genome are reported. This is the first complete genome sequence acquired from a non-isolated adenovirus (AdV). The sole source was a mixture of the internal organs of the diseased and dead birds. Until now, the genomic organization considered characteristic to siadenoviruses had been deduced from the detailed study of only two virus species, one of which originated from birds and the other from a frog. The present analysis of RAdV-1 confirmed the genus-specific genetic content and genomic features of siadenoviruses, and a putative novel gene was found as well. In general, AdVs and most of the AdV genera are thought to be strictly host specific. In the genus Siadenovirus, however, two virus species of rather divergent (avian and amphibian) host origin were present when the genus was found. Although by now the greatest number of known siadenoviruses infect birds, the original hosts of the genus remain unknown.
Collapse
Affiliation(s)
- Endre R Kovács
- Veterinary Medical Research Institute, Hungarian Academy of Sciences, PO Box 18, H-1581 Budapest, Hungary.
| | | |
Collapse
|
39
|
Abstract
Adenovirus type 5 (Ad5) infection of macrophages results in rapid secretion of interleukin-1β (IL-1β) and is dependent on the inflammasome components NLRP3 and ASC and the catalytic activity of caspase-1. Using lentivirus-expressed short hairpin RNA (shRNA) and competitive inhibitors, we show that Ad-induced IL-1β release is dependent upon Toll-like receptor 9 (TLR9) sensing of the Ad5 double-stranded DNA (dsDNA) genome in human cell lines and primary monocyte-derived macrophages but not in mouse macrophages. Additionally, a temperature-sensitive mutant of Ad5 unable to penetrate endosomal membranes, ts1, is unable to induce IL-1β release in TLR2-primed THP-1 cells, suggesting that penetration of endosomal membranes is required for IL-1β release. Disruption of lysosomal membranes and the release of cathepsin B into the cytoplasm are required for Ad-induced NLRP3 activation. Ad5 cell entry also induces reactive oxygen species (ROS) production, and inhibitors of ROS prevent Ad-induced IL-1β release. Ad5 activation of NLRP3 also induces necrotic cell death, resulting in the release of the proinflammatory molecule HMGB1. This work further defines the mechanisms of virally induced inflammasome activation.
Collapse
|
40
|
Firth C, Kitchen A, Shapiro B, Suchard MA, Holmes EC, Rambaut A. Using time-structured data to estimate evolutionary rates of double-stranded DNA viruses. Mol Biol Evol 2010; 27:2038-51. [PMID: 20363828 PMCID: PMC3107591 DOI: 10.1093/molbev/msq088] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Double-stranded (ds) DNA viruses are often described as evolving through long-term codivergent associations with their hosts, a pattern that is expected to be associated with low rates of nucleotide substitution. However, the hypothesis of codivergence between dsDNA viruses and their hosts has rarely been rigorously tested, even though the vast majority of nucleotide substitution rate estimates for dsDNA viruses are based upon this assumption. It is therefore important to estimate the evolutionary rates of dsDNA viruses independent of the assumption of host-virus codivergence. Here, we explore the use of temporally structured sequence data within a Bayesian framework to estimate the evolutionary rates for seven human dsDNA viruses, including variola virus (VARV) (the causative agent of smallpox) and herpes simplex virus-1. Our analyses reveal that although the VARV genome is likely to evolve at a rate of approximately 1 x 10(-5) substitutions/site/year and hence approaching that of many RNA viruses, the evolutionary rates of many other dsDNA viruses remain problematic to estimate. Synthetic data sets were constructed to inform our interpretation of the substitution rates estimated for these dsDNA viruses and the analysis of these demonstrated that given a sequence data set of appropriate length and sampling depth, it is possible to use time-structured analyses to estimate the substitution rates of many dsDNA viruses independently from the assumption of host-virus codivergence. Finally, the discovery that some dsDNA viruses may evolve at rates approaching those of RNA viruses has important implications for our understanding of the long-term evolutionary history and emergence potential of this major group of viruses.
Collapse
Affiliation(s)
- Cadhla Firth
- Department of Biology, The Pennsylvania State University, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Wolff H, Greenwood AD. Did viral disease of humans wipe out the Neandertals? Med Hypotheses 2010; 75:99-105. [PMID: 20172660 PMCID: PMC7127019 DOI: 10.1016/j.mehy.2010.01.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 01/31/2010] [Indexed: 11/08/2022]
Abstract
Neandertals were an anatomically distinct hominoid species inhabiting a vast geographical area ranging from Portugal to western Siberia and from northern Europe to the Middle East. The species became extinct 28,000 years ago, coinciding with the arrival of anatomically modern humans (AMHs) in Europe 40,000 years ago. There has been considerable debate surrounding the main causes of the extinction of Neandertals. After at least 200,000 years of successful adaption to the climate, flora and fauna of Eurasia, it is not clear why they suddenly failed to survive. For many years, climate change or competition with anatomically modern human (AMH) have been the leading hypotheses. Recently these hypotheses have somewhat fallen out of favour due to the recognition that Neandertals were a highly developed species with complex social structure, culture and technical skills. Were AMHs lucky and survived some catastrophe that eradicated the Neandertals? It seems unlikely that this is the case considering the close timing of the arrival of AMHs and the disappearance of Neandertals. Perhaps the arrival of AMHs also brought additional new non-human microscopic inhabitants to the regions where Neandertals lived and these new inhabitants contributed to the disappearance of the species. We introduce a medical hypothesis that complements other recent explanations for the extinction of Neandertals. After the ancestors of Neandertals left Africa, their immune system adapted gradually to the pathogens in their new Eurasian environment. In contrast, AMHs continued to co-evolve with east African pathogens. More than 200,000 years later, AMHs carried pathogens that would have been alien to pre-historic Europe. First contact between long separated populations can be devastating. Recent European and American history provides evidence for similar events, where introduction of viral, protozoan or bacterial pathogens to immunologically naïve populations lead to mass mortality and local population extinction. We propose that a virus, possibly from the family Herpesviridae, contributed to Neandertal extinction.
Collapse
Affiliation(s)
- Horst Wolff
- Institute of Virology, Helmholtz Center Munich, Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany.
| | | |
Collapse
|
42
|
Reddy V, Natchiar S, Gritton L, Mullen TM, Stewart P, Nemerow G. Crystallization and preliminary X-ray diffraction analysis of human adenovirus. Virology 2010; 402:209-14. [PMID: 20394956 PMCID: PMC2871957 DOI: 10.1016/j.virol.2010.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/01/2010] [Accepted: 03/17/2010] [Indexed: 01/06/2023]
Abstract
Replication-defective and conditionally replicating adenovirus (AdV) vectors are currently being utilized in approximately 25% of human gene transfer clinical trials. Unfortunately, progress in vector development has been hindered by a lack of accurate structural information. Here we describe the crystallization and preliminary X-ray diffraction analysis of a HAdV5 vector that displays a short flexible fiber derived from HAdV35. Crystals of Ad35F were grown in 100mM HEPES pH 7.0, 200mM Ca(OAc)(2), 14% PEG 550 MME, 15% glycerol in 100mM Tris-HCl 8.5. Freshly grown crystals diffracted well to 4.5A resolution and weakly to 3.5A at synchrotron sources. HAdV crystals belong to space group P1 with unit cell parameters a=854.03A, b=855.17A, c=865.24A, alpha=119.57 degrees , beta=91.71 degrees , gamma=118.08 degrees with a single particle in the unit cell. Self-rotation and locked-rotation function analysis allowed the determination of the particle orientation. Molecular replacement, density modification and phase-extension procedures are being employed for structure determination.
Collapse
Affiliation(s)
- V.S. Reddy
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - S.K. Natchiar
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - L. Gritton
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - T.-M. Mullen
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - P.L. Stewart
- Vanderbilt University Medical Center, 2215 Garland Avenue, Nashville, TN 37232, USA
| | - G.R. Nemerow
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California, 92037, USA
| |
Collapse
|
43
|
Katoh H, Ogawa H, Ohya K, Fukushi H. A review of DNA viral infections in psittacine birds. J Vet Med Sci 2010; 72:1099-106. [PMID: 20424393 DOI: 10.1292/jvms.10-0022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To date, several DNA viral infections have been reported in psittacine birds. Psittacine beak and feather disease (PBFD) is characterized by symmetric feather dystrophy and loss and development of beak deformities. PBFD is caused by beak and feather virus, which belongs to the Circoviridae, and is the most important infection in psittacine birds worldwide. Avian polyomavirus infection causes acute death, abdominal distention, and feather abnormalities. Pacheco's disease (PD), which is caused by psittacid herpesvirus type 1, is an acute lethal disease without a prodrome. Psittacine adenovirus infections are described as having a clinical progression similar to PD. The clinical changes in psittacine poxvirus-infected birds include serious ocular discharge, rhinitis, and conjunctivitis, followed by the appearance of ulcerations on the medial canthi of the eyes. Internal papillomatosis of parrots (IPP) is a tumor disease characterized by progressive development of papillomas in the oral and cloacal mucosa. IPP has been suggested to caused by papillomavirus or herpesvirus. However, information about these diseases is limited. Here we review the etiology, clinical features, pathology, epidemiology, and diagnosis of these DNA viruses.
Collapse
Affiliation(s)
- Hiroshi Katoh
- Department of Applied Veterinary Sciences, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | | | | | | |
Collapse
|
44
|
Abstract
Bats are the second largest group of mammals on earth and act as reservoirs of many emerging viruses. In this study, a novel bat adenovirus (AdV) (BtAdV-TJM) was isolated from bat fecal samples by using a bat primary kidney cell line. Infection studies indicated that most animal and human cell lines are susceptible to BtAdV-TJM, suggesting a possible wide host range. Genome analysis revealed 30 putative genes encoding proteins homologous to their counterparts in most known AdVs. Phylogenetic analysis placed BtAdV-TJM within the genus Mastadenovirus, most closely related to tree shrew and canine AdVs. PCR analysis of 350 bat fecal samples, collected from 19 species in five Chinese provinces during 2007 and 2008, indicated that 28 (or 8%) samples were positive for AdVs. The samples were from five bat species, Hipposideros armiger, Myotis horsfieldii, M. ricketti, Myotis spp., and Scotophilus kuhlii. The prevalence ranged from 6.25% (H. armiger in 2007) to 40% (M. ricketti in 2007). Comparison studies based on available partial sequences of the pol gene demonstrated a great genetic diversity among bat AdVs infecting different bat species as well as those infecting the same bat species. This is the first report of a genetically diverse group of DNA viruses in bats. Our results support the notion, derived from previous studies based on RNA viruses (especially coronaviruses and astroviruses), that bats seem to have the unusual ability to harbor a large number of genetically diverse viruses within a geographic location and/or within a taxonomic group.
Collapse
|
45
|
Rivera S, Wellehan JFX, McManamon R, Innis CJ, Garner MM, Raphael BL, Gregory CR, Latimer KS, Rodriguez CE, Diaz-Figueroa O, Marlar AB, Nyaoke A, Gates AE, Gilbert K, Childress AL, Risatti GR, Frasca S. Systemic adenovirus infection in Sulawesi tortoises (Indotestudo forsteni) caused by a novel siadenovirus. J Vet Diagn Invest 2009; 21:415-26. [PMID: 19564489 DOI: 10.1177/104063870902100402] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A novel siadenovirus was identified in the Sulawesi tortoise (Indotestudo forsteni). A group of 105 Sulawesi tortoises was obtained by the Turtle Survival Alliance. Many of the tortoises were in poor health. Clinical signs included anorexia, lethargy, mucosal ulcerations and palatine erosions of the oral cavity, nasal and ocular discharge, and diarrhea. Initial diagnostic tests included fecal testing for parasites, complete blood count and plasma biochemical analysis, mycoplasma serology, and polymerase chain reaction (PCR) testing for intranuclear coccidia and chelonian herpesvirus. Treatment included administration of antibiotics, antiparasitic medications, parenteral fluids, and nutritional support. Tissue samples from animals that died were submitted for histopathologic evaluation. Histopathologic examination revealed systemic inflammation and necrosis associated with intranuclear inclusions consistent with a systemic viral infection in 35 tortoises out of 50 examined. Fecal testing results and histopathologic findings revealed intestinal and hepatic amoebiasis and nematodiasis in 31 animals. Two of 5 tortoises tested by PCR were positive for Chlamydophila sp. Aeromonas hydrophila and Escherichia coli were cultured from multiple organs of 2 animals. The mycoplasma serology and PCR results for intranuclear coccidia and chelonian herpesvirus were negative. Polymerase chain reaction testing of tissues, plasma, and choanal/cloacal samples from 41 out of 42 tortoises tested were positive for an adenovirus, which was characterized by sequence analysis and molecular phylogenetic inference as a novel adenovirus of the genus Siadenovirus. The present report details the clinical and anatomic pathologic findings associated with systemic infection of Sulawesi tortoises by this novel Siadenovirus, which extends the known reptilian adenoviruses to the chelonians and extends the known genera of reptilian Adenoviridae beyond Atadenovirus to include the genus Siadenovirus.
Collapse
Affiliation(s)
- Sam Rivera
- Zoo Atlanta, 800 Cherokee Avenue SE, Atlanta, GA 30315-1440, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wellehan JFX, Greenacre CB, Fleming GJ, Stetter MD, Childress AL, Terrell SP. Siadenovirus infection in two psittacine bird species. Avian Pathol 2009; 38:413-7. [DOI: 10.1080/03079450903183660] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
47
|
Magalhães GF, Nogueira PA, Grava AF, Penati M, Silva LHPD, Orlandi PP. Rotavirus and adenovirus in Rondônia. Mem Inst Oswaldo Cruz 2007; 102:555-7. [PMID: 17710298 DOI: 10.1590/s0074-02762007005000067] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 05/28/2007] [Indexed: 11/22/2022] Open
Abstract
Acute gastroenteritis is one of the most common diseases in humans worldwide. Viral gastroenteritis is a global problem in infants and young children. In this study the incidence of diarrhea was assessed in 877 hospitalized children under five years old, over a period of 24 months and distributed in 470 cases of diarrhea and 407 age-matched group with other pathologies, as control group. Two antigen detection techniques based on enzyme immunoassay (EIA) and latex particles were used for detection of rotavirus and adenovirus. Rotavirus A was a major cause of gastroenteritis with 23.6% of cases, being 90% of these cases in young children. Adenovirus infections was detected by EIA with frequency of 6.4%. Rotavirus and adenovirus were detected in 10.1 and 1.7% of stools from control group, respectively. Interestingly, the frequency of the youngest children in the control group excreting Rotavirus A was comparable to that detected in stools from diarrheic children. We cannot rule out the existence of other enteric viruses because the etiology of 171 cases of diarrhea was not determined and active search for astrovirus and calicivirus was not done. This is the first study that shows the presence of enteric viruses in the infantile population from Western Brazilian Amazonia and it was important to help physicians in the treatment of viral gastroenteritis.
Collapse
|
48
|
Jones MS, Harrach B, Ganac RD, Gozum MMA, Dela Cruz WP, Riedel B, Pan C, Delwart EL, Schnurr DP. New adenovirus species found in a patient presenting with gastroenteritis. J Virol 2007; 81:5978-84. [PMID: 17360747 PMCID: PMC1900323 DOI: 10.1128/jvi.02650-06] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An unidentified agent was cultured in primary monkey cells at the Los Angeles County Public Health Department from each of five stool specimens submitted from an outbreak of gastroenteritis. Electron microscopy and an adenovirus-specific monoclonal antibody confirmed this agent to be an adenovirus. Since viral titers were too low, complete serotyping was not possible. Using the DNase-sequence-independent viral nucleic acid amplification method, we identified several nucleotide sequences with a high homology to human adenovirus 41 (HAdV-41) and simian adenovirus 1 (SAdV-1). However, using anti-SAdV-1 sera, it was determined that this virus was serologically different than SAdV-1. Genomic sequencing and phylogenetic analysis confirmed that this new adenovirus was so divergent from the known human adenoviruses that it was not only a new type but also represented a new species (human adenovirus G). In a retrospective clinical study, this new virus was detected by PCR in one additional patient from a separate gastroenteritis outbreak. This study suggests that HAdV-52 may be one of many agents causing gastroenteritis of unknown etiology.
Collapse
Affiliation(s)
- Morris Saffold Jones
- Clinical Investigation Facility, David Grant USAF Medical Center, 101 Bodin Circle, Travis AFB, CA 94535, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Harrach B, Benko M. Phylogenetic analysis of adenovirus sequences. METHODS IN MOLECULAR MEDICINE 2007; 131:299-334. [PMID: 17656792 DOI: 10.1007/978-1-59745-277-9_22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the family Adenoviridae have been isolated from a large variety of hosts, including representatives from every major vertebrate class from fish to mammals. The high prevalence, together with the fairly conserved organization of the central part of their genomes, make the adenoviruses one of (if not the) best models for studying viral evolution on a larger time scale. Phylogenetic calculation can infer the evolutionary distance among adenovirus strains on serotype, species, and genus levels, thus helping the establishment of a correct taxonomy on the one hand, and speeding up the process of typing new isolates on the other. Initially, four major lineages corresponding to four genera were recognized. Later, the demarcation criteria of lower taxon levels, such as species or types, could also be defined with phylogenetic calculations. A limited number of possible host switches have been hypothesized and convincingly supported. Application of the web-based BLAST and MultAlin programs and the freely available PHYLIP package, along with the TreeView program, enables everyone to make correct calculations. In addition to step-by-step instruction on how to perform phylogenetic analysis, critical points where typical mistakes or misinterpretation of the results might occur will be identified and hints for their avoidance will be provided.
Collapse
|
50
|
Schrenzel M, Oaks JL, Rotstein D, Maalouf G, Snook E, Sandfort C, Rideout B. Characterization of a new species of adenovirus in falcons. J Clin Microbiol 2005; 43:3402-13. [PMID: 16000466 PMCID: PMC1169131 DOI: 10.1128/jcm.43.7.3402-3413.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In 1996, a disease outbreak occurred at a captive breeding facility in Idaho, causing anorexia, dehydration, and diarrhea or sudden death in 72 of 110 Northern aplomado falcons (Falco femoralis septentrionalis) from 9 to 35 days of age and in 6 of 102 peregrine falcons (Falco peregrinus) from 14 to 25 days of age. Sixty-two Northern aplomado and six peregrine falcons died. Epidemiologic analyses indicated a point source epizootic, horizontal transmission, and increased relative risk associated with cross-species brooding of eggs. Primary lesions in affected birds were inclusion body hepatitis, splenomegaly, and enteritis. The etiology in all mortalities was determined by molecular analyses to be a new species of adenovirus distantly related to the group I avian viruses, serotypes 1 and 4, Aviadenovirus. In situ hybridization and PCR demonstrated that the virus was epitheliotropic and lymphotropic and that infection was systemic in the majority of animals. Adeno-associated virus was also detected by PCR in most affected falcons, but no other infectious agents or predisposing factors were found in any birds. Subsequent to the 1996 epizootic, a similar disease caused by the same adenovirus was found over a 5-year period in orange-breasted falcons (Falco deiroleucus), teita falcons (Falco fasciinucha), a merlin (Falco columbarius), a Vanuatu peregrine falcon (Falco peregrinus nesiotes), and gyrfalcon x peregrine falcon hybrids (Falco rusticolus/peregrinus) that died in Wyoming, Oklahoma, Minnesota, and California. These findings indicate that this newly recognized adenovirus is widespread in western and midwestern North America and can be a primary pathogen in different falcon species.
Collapse
Affiliation(s)
- Mark Schrenzel
- Zoological Society of San Diego, Center for Reproduction of Endangered Species, Department of Pathology, Molecular Diagnostics Laboratory, P.O. Box 120-551, San Diego, CA 92112, USA.
| | | | | | | | | | | | | |
Collapse
|