1
|
Dolenšek J, Pohorec V, Skelin Klemen M, Gosak M, Stožer A. Ultrafast multicellular calcium imaging of calcium spikes in mouse beta cells in tissue slices. Acta Physiol (Oxf) 2025; 241:e14261. [PMID: 39803792 PMCID: PMC11726428 DOI: 10.1111/apha.14261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/29/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND The crucial steps in beta cell stimulus-secretion coupling upon stimulation with glucose are oscillatory changes in metabolism, membrane potential, intracellular calcium concentration, and exocytosis. The changes in membrane potential consist of bursts of spikes, with silent phases between them being dominated by membrane repolarization and absence of spikes. Assessing intra- and intercellular coupling at the multicellular level is possible with ever-increasing detail, but our current ability to simultaneously resolve spikes from many beta cells remains limited to double-impalement electrophysiological recordings. METHODS Since multicellular calcium imaging of spikes would enable a better understanding of coupling between changes in membrane potential and calcium concentration in beta cell collectives, we set out to design an appropriate methodological approach. RESULTS Combining the acute tissue slice method with ultrafast calcium imaging, we were able to resolve and quantify individual spikes within bursts at a temporal resolution of >150 Hz over prolonged periods, as well as describe their glucose-dependent properties. In addition, by simultaneous patch-clamp recordings we were able to show that calcium spikes closely follow membrane potential changes. Both bursts and spikes coordinate across islets in the form of intercellular waves, with bursts typically displaying global and spikes more local patterns. CONCLUSIONS This method and the associated findings provide additional insight into the complex signaling within beta cell networks. Once extended to tissue from diabetic animals and human donors, this approach could help us better understand the mechanistic basis of diabetes and find new molecular targets.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Faculty of MedicineUniversity of MariborMariborSlovenia
- Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
| | | | | | - Marko Gosak
- Faculty of MedicineUniversity of MariborMariborSlovenia
- Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
- Alma Mater Europaea UniversityMariborSlovenia
| | - Andraž Stožer
- Faculty of MedicineUniversity of MariborMariborSlovenia
| |
Collapse
|
2
|
Šterk M, Zhang Y, Pohorec V, Leitgeb EP, Dolenšek J, Benninger RKP, Stožer A, Kravets V, Gosak M. Network representation of multicellular activity in pancreatic islets: Technical considerations for functional connectivity analysis. PLoS Comput Biol 2024; 20:e1012130. [PMID: 38739680 PMCID: PMC11115366 DOI: 10.1371/journal.pcbi.1012130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/23/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
Within the islets of Langerhans, beta cells orchestrate synchronized insulin secretion, a pivotal aspect of metabolic homeostasis. Despite the inherent heterogeneity and multimodal activity of individual cells, intercellular coupling acts as a homogenizing force, enabling coordinated responses through the propagation of intercellular waves. Disruptions in this coordination are implicated in irregular insulin secretion, a hallmark of diabetes. Recently, innovative approaches, such as integrating multicellular calcium imaging with network analysis, have emerged for a quantitative assessment of the cellular activity in islets. However, different groups use distinct experimental preparations, microscopic techniques, apply different methods to process the measured signals and use various methods to derive functional connectivity patterns. This makes comparisons between findings and their integration into a bigger picture difficult and has led to disputes in functional connectivity interpretations. To address these issues, we present here a systematic analysis of how different approaches influence the network representation of islet activity. Our findings show that the choice of methods used to construct networks is not crucial, although care is needed when combining data from different islets. Conversely, the conclusions drawn from network analysis can be heavily affected by the pre-processing of the time series, the type of the oscillatory component in the signals, and by the experimental preparation. Our tutorial-like investigation aims to resolve interpretational issues, reconcile conflicting views, advance functional implications, and encourage researchers to adopt connectivity analysis. As we conclude, we outline challenges for future research, emphasizing the broader applicability of our conclusions to other tissues exhibiting complex multicellular dynamics.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Yaowen Zhang
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
| | - Viljem Pohorec
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Richard K. P. Benninger
- Department of Bioengineering, Barbara Davis Center for Diabetes, Aurora, Colorado, United States of America
- Barbara Davis Center for Childhood Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Vira Kravets
- Department of Pediatrics, Department of Bioengineering, University of California, San Diego, La Jolla, California, United States of America
- Department of Bioengineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, California, United States of America
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, Maribor
| |
Collapse
|
3
|
Paradiž Leitgeb E, Kerčmar J, Križančić Bombek L, Pohorec V, Skelin Klemen M, Slak Rupnik M, Gosak M, Dolenšek J, Stožer A. Exendin-4 affects calcium signalling predominantly during activation and activity of beta cell networks in acute mouse pancreas tissue slices. Front Endocrinol (Lausanne) 2024; 14:1315520. [PMID: 38292770 PMCID: PMC10826511 DOI: 10.3389/fendo.2023.1315520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Tight control of beta cell stimulus-secretion coupling is crucial for maintaining homeostasis of energy-rich nutrients. While glucose serves as a primary regulator of this process, incretins augment beta cell function, partly by enhancing cytosolic [Ca2+] dynamics. However, the details of how precisely they affect beta cell recruitment during activation, their active time, and functional connectivity during plateau activity, and how they influence beta cell deactivation remain to be described. Performing functional multicellular Ca2+ imaging in acute mouse pancreas tissue slices enabled us to systematically assess the effects of the GLP-1 receptor agonist exendin-4 (Ex-4) simultaneously in many coupled beta cells with high resolution. In otherwise substimulatory glucose, Ex-4 was able to recruit approximately a quarter of beta cells into an active state. Costimulation with Ex-4 and stimulatory glucose shortened the activation delays and accelerated beta cell activation dynamics. More specifically, active time increased faster, and the time required to reach half-maximal activation was effectively halved in the presence of Ex-4. Moreover, the active time and regularity of [Ca2+]IC oscillations increased, especially during the first part of beta cell response. In contrast, subsequent addition of Ex-4 to already active cells did not significantly enhance beta cell activity. Network analyses further confirmed increased connectivity during activation and activity in the presence of Ex-4, with hub cell roles remaining rather stable in both control experiments and experiments with Ex-4. Interestingly, Ex-4 demonstrated a biphasic effect on deactivation, slightly prolonging beta cell activity at physiological concentrations and shortening deactivation delays at supraphysiological concentrations. In sum, costimulation by Ex-4 and glucose increases [Ca2+]IC during beta cell activation and activity, indicating that the effect of incretins may, to an important extent, be explained by enhanced [Ca2+]IC signals. During deactivation, previous incretin stimulation does not critically prolong cellular activity, which corroborates their low risk of hypoglycemia.
Collapse
Affiliation(s)
- Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jasmina Kerčmar
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Vilijem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
4
|
Félix-Martínez GJ, Godínez-Fernández JR. A primer on modelling pancreatic islets: from models of coupled β-cells to multicellular islet models. Islets 2023; 15:2231609. [PMID: 37415423 PMCID: PMC10332213 DOI: 10.1080/19382014.2023.2231609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Pancreatic islets are mini-organs composed of hundreds or thousands of ɑ, β and δ-cells, which, respectively, secrete glucagon, insulin and somatostatin, key hormones for the regulation of blood glucose. In pancreatic islets, hormone secretion is tightly regulated by both internal and external mechanisms, including electrical communication and paracrine signaling between islet cells. Given its complexity, the experimental study of pancreatic islets has been complemented with computational modeling as a tool to gain a better understanding about how all the mechanisms involved at different levels of organization interact. In this review, we describe how multicellular models of pancreatic cells have evolved from the early models of electrically coupled β-cells to models in which experimentally derived architectures and both electrical and paracrine signals have been considered.
Collapse
Affiliation(s)
- Gerardo J. Félix-Martínez
- Investigador por México CONAHCYT-Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Mexico, Mexico
| | | |
Collapse
|
5
|
Bertram R, Marinelli I, Fletcher PA, Satin LS, Sherman AS. Deconstructing the integrated oscillator model for pancreatic β-cells. Math Biosci 2023; 365:109085. [PMID: 37802364 PMCID: PMC10991200 DOI: 10.1016/j.mbs.2023.109085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Electrical bursting oscillations in the β-cells of pancreatic islets have been a focus of investigation for more than fifty years. This has been aided by mathematical models, which are descendants of the pioneering Chay-Keizer model. This article describes the key biophysical and mathematical elements of this model, and then describes the path forward from there to the Integrated Oscillator Model (IOM). It is both a history and a deconstruction of the IOM that describes the various elements that have been added to the model over time, and the motivation for adding them. Finally, the article is a celebration of the 40th anniversary of the publication of the Chay-Keizer model.
Collapse
Affiliation(s)
- Richard Bertram
- Department of Mathematics and Programs in Neuroscience and Molecular Biophysics, Florida State University, Tallahassee, FL, United States.
| | - Isabella Marinelli
- Centre for Systems Modeling and Quantitative Biomedicine, University of Birmingham, United Kingdom
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| | - Leslie S Satin
- Department of Pharmacology and Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur S Sherman
- Laboratory of Biological Modeling, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
6
|
Šterk M, Barać U, Stožer A, Gosak M. Both electrical and metabolic coupling shape the collective multimodal activity and functional connectivity patterns in beta cell collectives: A computational model perspective. Phys Rev E 2023; 108:054409. [PMID: 38115462 DOI: 10.1103/physreve.108.054409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/20/2023] [Indexed: 12/21/2023]
Abstract
Pancreatic beta cells are coupled excitable oscillators that synchronize their activity via different communication pathways. Their oscillatory activity manifests itself on multiple timescales and consists of bursting electrical activity, subsequent oscillations in the intracellular Ca^{2+}, as well as oscillations in metabolism and exocytosis. The coordination of the intricate activity on the multicellular level plays a key role in the regulation of physiological pulsatile insulin secretion and is incompletely understood. In this paper, we investigate theoretically the principles that give rise to the synchronized activity of beta cell populations by building up a phenomenological multicellular model that incorporates the basic features of beta cell dynamics. Specifically, the model is composed of coupled slow and fast oscillatory units that reflect metabolic processes and electrical activity, respectively. Using a realistic description of the intercellular interactions, we study how the combination of electrical and metabolic coupling generates collective rhythmicity and shapes functional beta cell networks. It turns out that while electrical coupling solely can synchronize the responses, the addition of metabolic interactions further enhances coordination, the spatial range of interactions increases the number of connections in the functional beta cell networks, and ensures a better consistency with experimental findings. Moreover, our computational results provide additional insights into the relationship between beta cell heterogeneity, their activity profiles, and functional connectivity, supplementing thereby recent experimental results on endocrine networks.
Collapse
Affiliation(s)
- Marko Šterk
- Department of Physics, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, University of Maribor, 2000 Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, Taborska ulica 8, University of Maribor, 2000 Maribor, Slovenia
- Alma Mater Europaea, Slovenska ulica 17, 2000 Maribor, Slovenia
| | - Uroš Barać
- Department of Physics, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, University of Maribor, 2000 Maribor, Slovenia
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, Taborska ulica 8, University of Maribor, 2000 Maribor, Slovenia
| | - Marko Gosak
- Department of Physics, Faculty of Natural Sciences and Mathematics, Koroška cesta 160, University of Maribor, 2000 Maribor, Slovenia
- Institute of Physiology, Faculty of Medicine, Taborska ulica 8, University of Maribor, 2000 Maribor, Slovenia
- Alma Mater Europaea, Slovenska ulica 17, 2000 Maribor, Slovenia
| |
Collapse
|
7
|
Skelin Klemen M, Dolenšek J, Križančić Bombek L, Pohorec V, Gosak M, Slak Rupnik M, Stožer A. The effect of forskolin and the role of Epac2A during activation, activity, and deactivation of beta cell networks. Front Endocrinol (Lausanne) 2023; 14:1225486. [PMID: 37701894 PMCID: PMC10494243 DOI: 10.3389/fendo.2023.1225486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Beta cells couple stimulation by glucose with insulin secretion and impairments in this coupling play a central role in diabetes mellitus. Cyclic adenosine monophosphate (cAMP) amplifies stimulus-secretion coupling via protein kinase A and guanine nucleotide exchange protein 2 (Epac2A). With the present research, we aimed to clarify the influence of cAMP-elevating diterpene forskolin on cytoplasmic calcium dynamics and intercellular network activity, which are two of the crucial elements of normal beta cell stimulus-secretion coupling, and the role of Epac2A under normal and stimulated conditions. To this end, we performed functional multicellular calcium imaging of beta cells in mouse pancreas tissue slices after stimulation with glucose and forskolin in wild-type and Epac2A knock-out mice. Forskolin evoked calcium signals in otherwise substimulatory glucose and beta cells from Epac2A knock-out mice displayed a faster activation. During the plateau phase, beta cells from Epac2A knock-out mice displayed a slightly higher active time in response to glucose compared with wild-type littermates, and stimulation with forskolin increased the active time via an increase in oscillation frequency and a decrease in oscillation duration in both Epac2A knock-out and wild-type mice. Functional network properties during stimulation with glucose did not differ in Epac2A knock-out mice, but the presence of Epac2A was crucial for the protective effect of stimulation with forskolin in preventing a decline in beta cell functional connectivity with time. Finally, stimulation with forskolin prolonged beta cell activity during deactivation, especially in Epac2A knock-out mice.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Alma Mater Europaea, European Center Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Noguera Hurtado H, Gresch A, Düfer M. NMDA receptors - regulatory function and pathophysiological significance for pancreatic beta cells. Biol Chem 2023; 404:311-324. [PMID: 36626848 DOI: 10.1515/hsz-2022-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Due to its unique features amongst ionotropic glutamate receptors, the NMDA receptor is of special interest in the physiological context but even more as a drug target. In the pathophysiology of metabolic disorders, particularly type 2 diabetes mellitus, there is evidence that NMDA receptor activation contributes to disease progression by impairing beta cell function. Consequently, channel inhibitors are suggested for treatment, but up to now there are many unanswered questions about the signaling pathways NMDA receptors are interfering with in the islets of Langerhans. In this review we give an overview about channel structure and function with special regard to the pancreatic beta cells and the regulation of insulin secretion. We sum up which signaling pathways from brain research have already been transferred to the beta cell, and what still needs to be proven. The main focus is on the relationship between an over-stimulated NMDA receptor and the production of reactive oxygen species, the amount of which is crucial for beta cell function. Finally, pilot studies using NMDA receptor blockers to protect the islet from dysfunction are reviewed and future perspectives for the use of such compounds in the context of impaired glucose homeostasis are discussed.
Collapse
Affiliation(s)
- Héctor Noguera Hurtado
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Anne Gresch
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, Department of Pharmacology, University of Münster, Corrensstraße 48, D-48149 Münster, Germany
| |
Collapse
|
9
|
Duan K, Zhou M, Wang Y, Oberholzer J, Lo JF. Visualizing hypoxic modulation of beta cell secretions via a sensor augmented oxygen gradient. MICROSYSTEMS & NANOENGINEERING 2023; 9:14. [PMID: 36760229 PMCID: PMC9902275 DOI: 10.1038/s41378-022-00482-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/04/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
One distinct advantage of microfluidic-based cell assays is their scalability for multiple concentrations or gradients. Microfluidic scaling can be extremely powerful when combining multiple parameters and modalities. Moreover, in situ stimulation and detection eliminates variability between individual bioassays. However, conventional microfluidics must combat diffusion, which limits the spatial distance and time for molecules traveling through microchannels. Here, we leveraged a multilayered microfluidic approach to integrate a novel oxygen gradient (0-20%) with an enhanced hydrogel sensor to study pancreatic beta cells. This enabled our microfluidics to achieve spatiotemporal detection that is difficult to achieve with traditional microfluidics. Using this device, we demonstrated the in situ detection of calcium, insulin, and ATP (adenosine triphosphate) in response to glucose and oxygen stimulation. Specifically, insulin was quantified at levels as low as 25 pg/mL using our imaging technique. Furthermore, by analyzing the spatial detection data dynamically over time, we uncovered a new relationship between oxygen and beta cell oscillations. We observed an optimum oxygen level between 10 and 12%, which is neither hypoxic nor normoxic in the conventional cell culture sense. These results provide evidence to support the current islet oscillator model. In future applications, this spatial microfluidic technique can be adapted for discrete protein detection in a robust platform to study numerous oxygen-dependent tissue dysfunctions.
Collapse
Affiliation(s)
- Kai Duan
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Mengyang Zhou
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| | - Yong Wang
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Jose Oberholzer
- Department of Surgery/Transplant, University of Virginia, Charlottesville, VA 22908 USA
| | - Joe F. Lo
- Department of Mechanical Engineering, Bioengineering Program, University of Michigan at Dearborn, Dearborn, MI 48128 USA
| |
Collapse
|
10
|
Morales-Reyes I, Atwater I, Esparza-Aguilar M, Pérez-Armendariz EM. Impact of biotin supplemented diet on mouse pancreatic islet β-cell mass expansion and glucose induced electrical activity. Islets 2022; 14:149-163. [PMID: 35758027 PMCID: PMC9733685 DOI: 10.1080/19382014.2022.2091886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Biotin supplemented diet (BSD) is known to enhance β-cell replication and insulin secretion in mice. Here, we first describe BSD impact on the islet β-cell membrane potential (Vm) and glucose-induced electrical activity. BALB/c female mice (n ≥ 20) were fed for nine weeks after weaning with a control diet (CD) or a BSD (100X). In both groups, islet area was compared in pancreatic sections incubated with anti-insulin and anti-glucagon antibodies; Vm was recorded in micro dissected islet β-cells during perfusion with saline solutions containing 2.8, 5.0, 7.5-, or 11.0 mM glucose. BSD increased the islet and β-cell area compared with CD. In islet β-cells of the BSD group, a larger ΔVm/Δ[glucose] was found at sub-stimulatory glucose concentrations and the threshold glucose concentration for generation of action potentials (APs) was increased by 1.23 mM. Moreover, at 11.0 mM glucose, a significant decrease was found in AP amplitude, frequency, ascending and descending slopes as well as in the calculated net charge influx and efflux of islet β-cells from BSD compared to the CD group, without changes in slow Vm oscillation parameters. A pharmacological dose of biotin in mice increases islet insulin cell mass, shifts islet β-cell intracellular electrical activity dose response curve toward higher glucose concentrations, very likely by increasing KATP conductance, and decreases voltage gated Ca2+ and K+ conductance at stimulatory glucose concentrations.
Collapse
Affiliation(s)
- Israel Morales-Reyes
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
| | - Illani Atwater
- Human Genetics Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcelino Esparza-Aguilar
- Unidad de Investigación en Epidemiología, Instituto Nacional de Pediatría, México. Ciudad de México, México
| | - E. Martha Pérez-Armendariz
- Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMXLaboratorio de sinapsis eléctricas. Departamento de Biología Celular y , México
- CONTACT E. Martha Pérez-Armendariz ; Laboratorio de sinapsis eléctricas. Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Interior S/N, Universidad Nacional Autónoma de México, C.U., CDMX, C.P. 04510, México
| |
Collapse
|
11
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
12
|
Pohorec V, Križančić Bombek L, Skelin Klemen M, Dolenšek J, Stožer A. Glucose-Stimulated Calcium Dynamics in Beta Cells From Male C57BL/6J, C57BL/6N, and NMRI Mice: A Comparison of Activation, Activity, and Deactivation Properties in Tissue Slices. Front Endocrinol (Lausanne) 2022; 13:867663. [PMID: 35399951 PMCID: PMC8988149 DOI: 10.3389/fendo.2022.867663] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Although mice are a very instrumental model in islet beta cell research, possible phenotypic differences between strains and substrains are largely neglected in the scientific community. In this study, we show important phenotypic differences in beta cell responses to glucose between C57BL/6J, C57BL/6N, and NMRI mice, i.e., the three most commonly used strains. High-resolution multicellular confocal imaging of beta cells in acute pancreas tissue slices was used to measure and quantitatively compare the calcium dynamics in response to a wide range of glucose concentrations. Strain- and substrain-specific features were found in all three phases of beta cell responses to glucose: a shift in the dose-response curve characterizing the delay to activation and deactivation in response to stimulus onset and termination, respectively, and distinct concentration-encoding principles during the plateau phase in terms of frequency, duration, and active time changes with increasing glucose concentrations. Our results underline the significance of carefully choosing and reporting the strain to enable comparison and increase reproducibility, emphasize the importance of analyzing a number of different beta cell physiological parameters characterizing the response to glucose, and provide a valuable standard for future studies on beta cell calcium dynamics in health and disease in tissue slices.
Collapse
Affiliation(s)
- Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | | | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- *Correspondence: Andraž Stožer, ; Jurij Dolenšek,
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- *Correspondence: Andraž Stožer, ; Jurij Dolenšek,
| |
Collapse
|
13
|
Hauke S, Rada J, Tihanyi G, Schilling D, Schultz C. ATP is an essential autocrine factor for pancreatic β-cell signaling and insulin secretion. Physiol Rep 2022; 10:e15159. [PMID: 35001557 PMCID: PMC8743876 DOI: 10.14814/phy2.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 06/14/2023] Open
Abstract
ATP has been previously identified as an autocrine signaling factor that is co-released with insulin to modulate and propagate β-cell activity within islets of Langerhans. Here, we show that β-cell activity and insulin secretion essentially rely on the presence of extracellular ATP. For this, we monitored changes of the intracellular Ca2+ concentration ([Ca2+ ]i oscillations) as an immediate read-out for insulin secretion in live cell experiments. Extensive washing of cells or depletion of extracellular ATP levels by recombinant apyrase reduced [Ca2+ ]i oscillations and insulin secretion in pancreatic cell lines and primary β-cells. Following ATP depletion, [Ca2+ ]i oscillations were stimulated by the replenishment of ATP in a concentration-dependent manner. Inhibition of endogenous ecto-ATP nucleotidases increased extracellular ATP levels, along with [Ca2+ ]i oscillations and insulin secretion, indicating that there is a constant supply of ATP to the extracellular space. Our combined results demonstrate that extracellular ATP is essential for β-cell activity. The presented work suggests extracellular ATPases as potential drug targets for the modulation of insulin release. We further found that exogenous fatty acids compensated for depleted extracellular ATP levels by the recovery of [Ca2+ ]i oscillations, indicating that autocrine factors mutually compensate for the loss of others. Thereby, our results contribute to a more detailed and complete understanding of the general role of autocrine signaling factors as a fundamental regulatory mechanism of β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Jona Rada
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Gergely Tihanyi
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Danny Schilling
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Carsten Schultz
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| |
Collapse
|
14
|
Cocha G, Tedesco V, D'Attellis C, Amorena C. An algorithm mimicking pancreas pulsatile behavior improves artificial pancreas performance. Int J Artif Organs 2021; 44:756-764. [PMID: 34348505 DOI: 10.1177/03913988211027176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Artificial pancreas design using subcutaneous insulin infusion without pre-meal feed-forward boluses often induces an over-response leading to hypoglycemia due to the increase of blood insulin concentration sustained in time. The objective of this work was to create an algorithm for controlling the function of insulin pumps in closed-loop systems to improve blood glucose management in type 1 diabetic patients by mimicking the pulsatile behaviour of the pancreas. METHODS A controller tuned in a pulsatile way promotes damped oscillations of blood insulin concentration injected through an insulin pump. We tested it in a simulated environment, using nine 'in silica' subjects. The control algorithm is founded on feedback linearization where through a change of variables, the nonlinear system turns into an equivalent linear system, suitable for implementing through a PID controller. We compared the results obtained 'in silica' with the volume injected by an insulin pump controlled by this algorithm. RESULTS The use of this algorithm resulted in a pulsatile control of postprandial blood glucose concentration, avoiding hypoglycaemic episodes. The results obtained 'in silica' were replicated in a real pump 'in vitro'. CONCLUSIONS With this proposed linear system, an appropriate control input can be designed. The controller works with a damped pulsatile pattern making the insulin infusion from the pump and blood insulin concentration pulsatile. This operational would improve the performance of an artificial pancreas.
Collapse
Affiliation(s)
- Guillermo Cocha
- CODAPLI, Departamento de Ingenieria Eléctrica, UTN FRLP, La Plata, Buenos Aires, Argentina
| | | | | | - Carlos Amorena
- ECyT, UNSAM, San Martin, Buenos Aires, Argentina.,CONICET National Research Council, Buenos Aires, Argentina
| |
Collapse
|
15
|
Stožer A, Skelin Klemen M, Gosak M, Križančić Bombek L, Pohorec V, Slak Rupnik M, Dolenšek J. Glucose-dependent activation, activity, and deactivation of beta cell networks in acute mouse pancreas tissue slices. Am J Physiol Endocrinol Metab 2021; 321:E305-E323. [PMID: 34280052 DOI: 10.1152/ajpendo.00043.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022]
Abstract
Many details of glucose-stimulated intracellular calcium changes in β cells during activation, activity, and deactivation, as well as their concentration-dependence, remain to be analyzed. Classical physiological experiments indicated that in islets, functional differences between individual cells are largely attenuated, but recent findings suggest considerable intercellular heterogeneity, with some cells possibly coordinating the collective responses. To address the above with an emphasis on heterogeneity and describing the relations between classical physiological and functional network properties, we performed functional multicellular calcium imaging in mouse pancreas tissue slices over a wide range of glucose concentrations. During activation, delays to activation of cells and any-cell-to-first-responder delays are shortened, and the sizes of simultaneously responding clusters increased with increasing glucose concentrations. Exactly the opposite characterized deactivation. The frequency of fast calcium oscillations during activity increased with increasing glucose up to 12 mM glucose concentration, beyond which oscillation duration became longer, resulting in a homogenous increase in active time. In terms of functional connectivity, islets progressed from a very segregated network to a single large functional unit with increasing glucose concentration. A comparison between classical physiological and network parameters revealed that the first-responders during activation had longer active times during plateau and the most active cells during the plateau tended to deactivate later. Cells with the most functional connections tended to activate sooner, have longer active times, and deactivate later. Our findings provide a common ground for recent differing views on β cell heterogeneity and an important baseline for future studies of stimulus-secretion and intercellular coupling.NEW & NOTEWORTHY We assessed concentration-dependence in coupled β cells, degree of functional heterogeneity, and uncovered possible specialized subpopulations during the different phases of the response to glucose at the level of many individual cells. To this aim, we combined acute mouse pancreas tissue slices with functional multicellular calcium imaging over a wide range from threshold (7 mM) and physiological (8 and 9 mM) to supraphysiological (12 and 16 mM) glucose concentrations, classical physiological, and advanced network analyses.
Collapse
Affiliation(s)
- Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Viljem Pohorec
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea-European Center Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
16
|
Stožer A, Paradiž Leitgeb E, Pohorec V, Dolenšek J, Križančić Bombek L, Gosak M, Skelin Klemen M. The Role of cAMP in Beta Cell Stimulus-Secretion and Intercellular Coupling. Cells 2021; 10:1658. [PMID: 34359828 PMCID: PMC8304079 DOI: 10.3390/cells10071658] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Pancreatic beta cells secrete insulin in response to stimulation with glucose and other nutrients, and impaired insulin secretion plays a central role in development of diabetes mellitus. Pharmacological management of diabetes includes various antidiabetic drugs, including incretins. The incretin hormones, glucagon-like peptide-1 and gastric inhibitory polypeptide, potentiate glucose-stimulated insulin secretion by binding to G protein-coupled receptors, resulting in stimulation of adenylate cyclase and production of the secondary messenger cAMP, which exerts its intracellular effects through activation of protein kinase A or the guanine nucleotide exchange protein 2A. The molecular mechanisms behind these two downstream signaling arms are still not fully elucidated and involve many steps in the stimulus-secretion coupling cascade, ranging from the proximal regulation of ion channel activity to the central Ca2+ signal and the most distal exocytosis. In addition to modifying intracellular coupling, the effect of cAMP on insulin secretion could also be at least partly explained by the impact on intercellular coupling. In this review, we systematically describe the possible roles of cAMP at these intra- and inter-cellular signaling nodes, keeping in mind the relevance for the whole organism and translation to humans.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Viljem Pohorec
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Lidija Križančić Bombek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
- Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (A.S.); (E.P.L.); (V.P.); (J.D.); (L.K.B.); (M.G.)
| |
Collapse
|
17
|
Ng XW, Chung YH, Piston DW. Intercellular Communication in the Islet of Langerhans in Health and Disease. Compr Physiol 2021; 11:2191-2225. [PMID: 34190340 PMCID: PMC8985231 DOI: 10.1002/cphy.c200026] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Blood glucose homeostasis requires proper function of pancreatic islets, which secrete insulin, glucagon, and somatostatin from the β-, α-, and δ-cells, respectively. Each islet cell type is equipped with intrinsic mechanisms for glucose sensing and secretory actions, but these intrinsic mechanisms alone cannot explain the observed secretory profiles from intact islets. Regulation of secretion involves interconnected mechanisms among and between islet cell types. Islet cells lose their normal functional signatures and secretory behaviors upon dispersal as compared to intact islets and in vivo. In dispersed islet cells, the glucose response of insulin secretion is attenuated from that seen from whole islets, coordinated oscillations in membrane potential and intracellular Ca2+ activity, as well as the two-phase insulin secretion profile, are missing, and glucagon secretion displays higher basal secretion profile and a reverse glucose-dependent response from that of intact islets. These observations highlight the critical roles of intercellular communication within the pancreatic islet, and how these communication pathways are crucial for proper hormonal and nonhormonal secretion and glucose homeostasis. Further, misregulated secretions of islet secretory products that arise from defective intercellular islet communication are implicated in diabetes. Intercellular communication within the islet environment comprises multiple mechanisms, including electrical synapses from gap junctional coupling, paracrine interactions among neighboring cells, and direct cell-to-cell contacts in the form of juxtacrine signaling. In this article, we describe the various mechanisms that contribute to proper islet function for each islet cell type and how intercellular islet communications are coordinated among the same and different islet cell types. © 2021 American Physiological Society. Compr Physiol 11:2191-2225, 2021.
Collapse
Affiliation(s)
- Xue W Ng
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - Yong H Chung
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University, St Louis, Missouri, USA
| |
Collapse
|
18
|
Scialla S, Loppini A, Patriarca M, Heinsalu E. Hubs, diversity, and synchronization in FitzHugh-Nagumo oscillator networks: Resonance effects and biophysical implications. Phys Rev E 2021; 103:052211. [PMID: 34134340 DOI: 10.1103/physreve.103.052211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 11/06/2022]
Abstract
Using the FitzHugh-Nagumo equations to represent the oscillatory electrical behavior of β-cells, we develop a coupled oscillator network model with cubic lattice topology, showing that the emergence of pacemakers or hubs in the system can be viewed as a natural consequence of oscillator population diversity. The optimal hub to nonhub ratio is determined by the position of the diversity-induced resonance maximum for a given set of FitzHugh-Nagumo equation parameters and is predicted by the model to be in a range that is fully consistent with experimental observations. The model also suggests that hubs in a β-cell network should have the ability to "switch on" and "off" their pacemaker function. As a consequence, their relative amount in the population can vary in order to ensure an optimal oscillatory performance of the network in response to environmental changes, such as variations of an external stimulus.
Collapse
Affiliation(s)
- Stefano Scialla
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Alessandro Loppini
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Á. del Portillo 21, 00128 Rome, Italy
| | - Marco Patriarca
- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
| | - Els Heinsalu
- National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 15042, Estonia
| |
Collapse
|
19
|
Šterk M, Križančić Bombek L, Skelin Klemen M, Slak Rupnik M, Marhl M, Stožer A, Gosak M. NMDA receptor inhibition increases, synchronizes, and stabilizes the collective pancreatic beta cell activity: Insights through multilayer network analysis. PLoS Comput Biol 2021; 17:e1009002. [PMID: 33974632 PMCID: PMC8139480 DOI: 10.1371/journal.pcbi.1009002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/21/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
NMDA receptors promote repolarization in pancreatic beta cells and thereby reduce glucose-stimulated insulin secretion. Therefore, NMDA receptors are a potential therapeutic target for diabetes. While the mechanism of NMDA receptor inhibition in beta cells is rather well understood at the molecular level, its possible effects on the collective cellular activity have not been addressed to date, even though proper insulin secretion patterns result from well-synchronized beta cell behavior. The latter is enabled by strong intercellular connectivity, which governs propagating calcium waves across the islets and makes the heterogeneous beta cell population work in synchrony. Since a disrupted collective activity is an important and possibly early contributor to impaired insulin secretion and glucose intolerance, it is of utmost importance to understand possible effects of NMDA receptor inhibition on beta cell functional connectivity. To address this issue, we combined confocal functional multicellular calcium imaging in mouse tissue slices with network science approaches. Our results revealed that NMDA receptor inhibition increases, synchronizes, and stabilizes beta cell activity without affecting the velocity or size of calcium waves. To explore intercellular interactions more precisely, we made use of the multilayer network formalism by regarding each calcium wave as an individual network layer, with weighted directed connections portraying the intercellular propagation. NMDA receptor inhibition stabilized both the role of wave initiators and the course of waves. The findings obtained with the experimental antagonist of NMDA receptors, MK-801, were additionally validated with dextrorphan, the active metabolite of the approved drug dextromethorphan, as well as with experiments on NMDA receptor KO mice. In sum, our results provide additional and new evidence for a possible role of NMDA receptor inhibition in treatment of type 2 diabetes and introduce the multilayer network paradigm as a general strategy to examine effects of drugs on connectivity in multicellular systems.
Collapse
Affiliation(s)
- Marko Šterk
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | | | - Marjan Slak Rupnik
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
- Alma Mater Europaea–ECM, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
20
|
Zmazek J, Klemen MS, Markovič R, Dolenšek J, Marhl M, Stožer A, Gosak M. Assessing Different Temporal Scales of Calcium Dynamics in Networks of Beta Cell Populations. Front Physiol 2021; 12:612233. [PMID: 33833686 PMCID: PMC8021717 DOI: 10.3389/fphys.2021.612233] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/26/2021] [Indexed: 01/06/2023] Open
Abstract
Beta cells within the pancreatic islets of Langerhans respond to stimulation with coherent oscillations of membrane potential and intracellular calcium concentration that presumably drive the pulsatile exocytosis of insulin. Their rhythmic activity is multimodal, resulting from networked feedback interactions of various oscillatory subsystems, such as the glycolytic, mitochondrial, and electrical/calcium components. How these oscillatory modules interact and affect the collective cellular activity, which is a prerequisite for proper hormone release, is incompletely understood. In the present work, we combined advanced confocal Ca2+ imaging in fresh mouse pancreas tissue slices with time series analysis and network science approaches to unveil the glucose-dependent characteristics of different oscillatory components on both the intra- and inter-cellular level. Our results reveal an interrelationship between the metabolically driven low-frequency component and the electrically driven high-frequency component, with the latter exhibiting the highest bursting rates around the peaks of the slow component and the lowest around the nadirs. Moreover, the activity, as well as the average synchronicity of the fast component, considerably increased with increasing stimulatory glucose concentration, whereas the stimulation level did not affect any of these parameters in the slow component domain. Remarkably, in both dynamical components, the average correlation decreased similarly with intercellular distance, which implies that intercellular communication affects the synchronicity of both types of oscillations. To explore the intra-islet synchronization patterns in more detail, we constructed functional connectivity maps. The subsequent comparison of network characteristics of different oscillatory components showed more locally clustered and segregated networks of fast oscillatory activity, while the slow oscillations were more global, resulting in several long-range connections and a more cohesive structure. Besides the structural differences, we found a relatively weak relationship between the fast and slow network layer, which suggests that different synchronization mechanisms shape the collective cellular activity in islets, a finding which has to be kept in mind in future studies employing different oscillations for constructing networks.
Collapse
Affiliation(s)
- Jan Zmazek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | | | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Gosak
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
21
|
Das PN, Kumar A, Bairagi N, Chatterjee S. Effect of delay in transportation of extracellular glucose into cardiomyocytes under diabetic condition: a study through mathematical model. J Biol Phys 2020; 46:253-281. [PMID: 32583238 PMCID: PMC7441137 DOI: 10.1007/s10867-020-09551-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 05/26/2020] [Indexed: 01/02/2023] Open
Abstract
A four-dimensional model was built to mimic the cross-talk among plasma glucose, plasma insulin, intracellular glucose and cytoplasmic calcium of a cardiomyocyte. A time delay was considered to represent the time required for performing various cellular mechanisms between activation of insulin receptor and subsequent glucose entry from extracellular region into intracellular region of a cardiac cell. We analysed the delay-induced model and deciphered conditions for stability and bifurcation. Extensive numerical computations were performed to validate the analytical results and give further insights. Sensitivity study of the system parameters using LHS-PRCC method reveals that some rate parameters, which represent the input of plasma glucose, absorption of glucose by noncardiac cells and insulin production, are sensitive and may cause significant change in the system dynamics. It was observed that the time taken for transportation of extracellular glucose into the cell through GLUT4 plays an important role in maintaining physiological oscillations of the state variables. Parameter recalibration exercise showed that reduced input rate of glucose in the blood plasma or an alteration in transportation delay may be used for therapeutic targets in diabetic-like condition for maintaining normal cardiac function.
Collapse
Affiliation(s)
- Phonindra Nath Das
- Department of Mathematics, Memari College, Burdwan, West Bengal, 713146, India
| | - Ajay Kumar
- Non-communicable disease group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, 121001, India.
| |
Collapse
|
22
|
Calcium Signaling in ß-cell Physiology and Pathology: A Revisit. Int J Mol Sci 2019; 20:ijms20246110. [PMID: 31817135 PMCID: PMC6940736 DOI: 10.3390/ijms20246110] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic beta (β) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of β-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic β-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic β-cells and provides an in-depth look into the potential role of alterations in β-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.
Collapse
|
23
|
Scarl RT, Corbin KL, Vann NW, Smith HM, Satin LS, Sherman A, Nunemaker CS. Intact pancreatic islets and dispersed beta-cells both generate intracellular calcium oscillations but differ in their responsiveness to glucose. Cell Calcium 2019; 83:102081. [PMID: 31563790 DOI: 10.1016/j.ceca.2019.102081] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 01/19/2023]
Abstract
Pancreatic islets produce pulses of insulin and other hormones that maintain normal glucose homeostasis. These micro-organs possess exquisite glucose-sensing capabilities, allowing for precise changes in pulsatile insulin secretion in response to small changes in glucose. When communication among these cells is disrupted, precision glucose sensing falters. We measured intracellular calcium patterns in 6-mM-steps between 0 and 16 mM glucose, and also more finely in 2-mM-steps from 8 to 12 mM glucose, to compare glucose sensing systematically among intact islets and dispersed islet cells derived from the same mouse pancreas in vitro. The calcium activity of intact islets was uniformly low (quiescent) below 4 mM glucose and active above 8 mM glucose, whereas dispersed beta-cells displayed a broader activation range (2-to-10 mM). Intact islets exhibited calcium oscillations with 2-to-5-min periods, yet beta-cells exhibited longer 7-10 min periods. In every case, intact islets showed changes in activity with each 6-mM-glucose step, whereas dispersed islet cells displayed a continuum of calcium responses ranging from islet-like patterns to stable oscillations unaffected by changes in glucose concentration. These differences were also observed for 2-mM-glucose steps. Despite the diversity of dispersed beta-cell responses to glucose, the sum of all activity produced a glucose dose-response curve that was surprisingly similar to the curve for intact islets, arguing against the importance of "hub cells" for function. Beta-cells thus retain many of the features of islets, but some are more islet-like than others. Determining the molecular underpinnings of these variations could be valuable for future studies of stem-cell-derived beta-cell therapies.
Collapse
Affiliation(s)
- Rachel T Scarl
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Kathryn L Corbin
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Nicholas W Vann
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, United States
| | - Hallie M Smith
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Leslie S Satin
- Brehm Diabetes Research Center, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, NIDDK, NIH, Bethesda, MD, United States
| | - Craig S Nunemaker
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States; Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States.
| |
Collapse
|
24
|
Martinez-Pinna J, Marroqui L, Hmadcha A, Lopez-Beas J, Soriano S, Villar-Pazos S, Alonso-Magdalena P, Dos Santos RS, Quesada I, Martin F, Soria B, Gustafsson JÅ, Nadal A. Oestrogen receptor β mediates the actions of bisphenol-A on ion channel expression in mouse pancreatic beta cells. Diabetologia 2019; 62:1667-1680. [PMID: 31250031 DOI: 10.1007/s00125-019-4925-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
AIMS/HYPOTHESIS Bisphenol-A (BPA) is a widespread endocrine-disrupting chemical that has been associated with type 2 diabetes development. Low doses of BPA modify pancreatic beta cell function and induce insulin resistance; some of these effects are mediated via activation of oestrogen receptors α (ERα) and β (ERβ). Here we investigated whether low doses of BPA regulate the expression and function of ion channel subunits involved in beta cell function. METHODS Microarray gene profiling of isolated islets from vehicle- and BPA-treated (100 μg/kg per day for 4 days) mice was performed using Affymetrix GeneChip Mouse Genome 430.2 Array. Expression level analysis was performed using the normalisation method based on the processing algorithm 'robust multi-array average'. Whole islets or dispersed islets from C57BL/6J or oestrogen receptor β (ERβ) knockout (Erβ-/-) mice were treated with vehicle or BPA (1 nmol/l) for 48 h. Whole-cell patch-clamp recordings were used to measure Na+ and K+ currents. mRNA expression was evaluated by quantitative real-time PCR. RESULTS Microarray analysis showed that BPA modulated the expression of 1440 probe sets (1192 upregulated and 248 downregulated genes). Of these, more than 50 genes, including Scn9a, Kcnb2, Kcnma1 and Kcnip1, encoded important Na+ and K+ channel subunits. These findings were confirmed by quantitative RT-PCR in islets from C57BL/6J BPA-treated mice or whole islets treated ex vivo. Electrophysiological measurements showed a decrease in both Na+ and K+ currents in BPA-treated islets. The pharmacological profile indicated that BPA reduced currents mediated by voltage-activated K+ channels (Kv2.1/2.2 channels) and large-conductance Ca2+-activated K+ channels (KCa1.1 channels), which agrees with BPA's effects on gene expression. Beta cells from ERβ-/- mice did not present BPA-induced changes, suggesting that ERβ mediates BPA's effects in pancreatic islets. Finally, BPA increased burst duration, reduced the amplitude of the action potential and enlarged the action potential half-width, leading to alteration in beta cell electrical activity. CONCLUSIONS/INTERPRETATION Our data suggest that BPA modulates the expression and function of Na+ and K+ channels via ERβ in mouse pancreatic islets. Furthermore, BPA alters beta cell electrical activity. Altogether, these BPA-induced changes in beta cells might play a role in the diabetogenic action of BPA described in animal models.
Collapse
Affiliation(s)
- Juan Martinez-Pinna
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Laura Marroqui
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Abdelkrim Hmadcha
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Javier Lopez-Beas
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Sergi Soriano
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Sabrina Villar-Pazos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Paloma Alonso-Magdalena
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Reinaldo S Dos Santos
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
| | - Franz Martin
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Bernat Soria
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain
- Department of Cell Regeneration and Advanced Therapies, Andalusian Center for Molecular Biology and Regenerative Medicine-CABIMER, University of Pablo Olavide-University of Seville-CSIC, Seville, Spain
| | - Jan-Åke Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA
- Department of Biosciences and Nutrition, Karolinska Institut, Huddinge, Sweden
| | - Angel Nadal
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202, Elche, Spain.
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Spain, .
| |
Collapse
|
25
|
Loppini A, Chiodo L. Biophysical modeling of β-cells networks: Realistic architectures and heterogeneity effects. Biophys Chem 2019; 254:106247. [PMID: 31472460 DOI: 10.1016/j.bpc.2019.106247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 11/29/2022]
Abstract
The β-cells dynamics is the regulator of insulin secretion in the pancreas, and its investigation is a central aspect in designing effective treatment strategies for diabetes. Despite great efforts, much is still unknown about the complex organization of such endocrine cells and realistic mathematical modeling represents a useful tool to elucidate key aspects of glucose control in humans. In this contribution, we study the human β-cells collective behaviour, by modeling their electric and metabolic coupling in a cluster, of size and architecture similar to human islets of Langerhans. We focus on the effect of coupling on various dynamics regimes observed in the islets, that are spiking and bursting on multiple timescales. In particular, we test the effect of hubs, that are highly glucose-sensitive β-cells, on the overall network dynamics, observing different modulation depending on the timescale of the dynamics. By properly taking into account the role of cells heterogeneity, recently emerged, our model effectively describes the effect of hubs on the synchronization of the islet response and the correlation of β-cells activity.
Collapse
Affiliation(s)
- A Loppini
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy.
| | - L Chiodo
- Department of Engineering, University Campus Bio-Medico of Rome, Via Á. del Portillo 21, 00128 Rome, Italy
| |
Collapse
|
26
|
Hauke S, Keutler K, Phapale P, Yushchenko DA, Schultz C. Endogenous Fatty Acids Are Essential Signaling Factors of Pancreatic β-Cells and Insulin Secretion. Diabetes 2018; 67:1986-1998. [PMID: 29748290 DOI: 10.2337/db17-1215] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022]
Abstract
The secretion of insulin from β-cells depends on extracellular factors, in particular glucose and other small molecules, some of which act on G-protein-coupled receptors. Fatty acids (FAs) have been discussed as exogenous secretagogues of insulin for decades, especially after the FA receptor GPR40 (G-protein-coupled receptor 40) was discovered. However, the role of FAs as endogenous signaling factors has not been investigated until now. In the present work, we demonstrate that lowering endogenous FA levels in β-cell medium by stringent washing or by the application of FA-free (FAF) BSA immediately reduced glucose-induced oscillations of cytosolic Ca2+ ([Ca2+]i oscillations) in MIN6 cells and mouse primary β-cells, as well as insulin secretion. Mass spectrometry confirmed BSA-mediated removal of FAs, with palmitic, stearic, oleic, and elaidic acid being the most abundant species. [Ca2+]i oscillations in MIN6 cells recovered when BSA was replaced by buffer or as FA levels in the supernatant were restored. This was achieved by recombinant lipase-mediated FA liberation from membrane lipids, by the addition of FA-preloaded FAF-BSA, or by the photolysis of cell-impermeant caged FAs. Our combined data support the hypothesis of FAs as essential endogenous signaling factors for β-cell activity and insulin secretion.
Collapse
Affiliation(s)
- Sebastian Hauke
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kaya Keutler
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| | - Prasad Phapale
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Dmytro A Yushchenko
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of Czech Republic, Prague, Czech Republic
| | - Carsten Schultz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR
| |
Collapse
|
27
|
Veklich TO, Palladin Institute of Biochemistry, National Academy Sciences of Ukraine, Kyiv, Nikonishyna YV, Kosterin SO, Palladin Institute of Biochemistry, National Academy Sciences of Ukraine, Kyiv, Palladin Institute of Biochemistry, National Academy Sciences of Ukraine, Kyiv. Pathways and mechanisms of transmembrane calcium ions exchange in the cell nucleus. UKRAINIAN BIOCHEMICAL JOURNAL 2018. [DOI: 10.15407/ubj90.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
28
|
Lei CL, Kellard JA, Hara M, Johnson JD, Rodriguez B, Briant LJ. Beta-cell hubs maintain Ca 2+ oscillations in human and mouse islet simulations. Islets 2018; 10:151-167. [PMID: 30142036 PMCID: PMC6113907 DOI: 10.1080/19382014.2018.1493316] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
Islet β-cells are responsible for secreting all circulating insulin in response to rising plasma glucose concentrations. These cells are a phenotypically diverse population that express great functional heterogeneity. In mice, certain β-cells (termed 'hubs') have been shown to be crucial for dictating the islet response to high glucose, with inhibition of these hub cells abolishing the coordinated Ca2+ oscillations necessary for driving insulin secretion. These β-cell hubs were found to be highly metabolic and susceptible to pro-inflammatory and glucolipotoxic insults. In this study, we explored the importance of hub cells in human by constructing mathematical models of Ca2+ activity in human islets. Our simulations revealed that hubs dictate the coordinated Ca2+ response in both mouse and human islets; silencing a small proportion of hubs abolished whole-islet Ca2+ activity. We also observed that if hubs are assumed to be preferentially gap junction coupled, then the simulations better adhere to the available experimental data. Our simulations of 16 size-matched mouse and human islet architectures revealed that there are species differences in the role of hubs; Ca2+ activity in human islets was more vulnerable to hub inhibition than mouse islets. These simulation results not only substantiate the existence of β-cell hubs, but also suggest that hubs may be favorably coupled in the electrical and metabolic network of the islet, and that targeted destruction of these cells would greatly impair human islet function.
Collapse
Affiliation(s)
- Chon-Lok Lei
- Doctoral Training Centre, University of Oxford, Oxford, UK
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Joely A. Kellard
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Manami Hara
- Department of Medicine, The University of Chicago, Chicago, USA
| | - James D. Johnson
- Department of Cellular and Physiological Sciences, Diabetes Research Group, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, UK
| | - Linford J.B. Briant
- Department of Computer Science, University of Oxford, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| |
Collapse
|
29
|
Rorsman P, Ashcroft FM. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol Rev 2018; 98:117-214. [PMID: 29212789 PMCID: PMC5866358 DOI: 10.1152/physrev.00008.2017] [Citation(s) in RCA: 518] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/30/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
The pancreatic β-cell plays a key role in glucose homeostasis by secreting insulin, the only hormone capable of lowering the blood glucose concentration. Impaired insulin secretion results in the chronic hyperglycemia that characterizes type 2 diabetes (T2DM), which currently afflicts >450 million people worldwide. The healthy β-cell acts as a glucose sensor matching its output to the circulating glucose concentration. It does so via metabolically induced changes in electrical activity, which culminate in an increase in the cytoplasmic Ca2+ concentration and initiation of Ca2+-dependent exocytosis of insulin-containing secretory granules. Here, we review recent advances in our understanding of the β-cell transcriptome, electrical activity, and insulin exocytosis. We highlight salient differences between mouse and human β-cells, provide models of how the different ion channels contribute to their electrical activity and insulin secretion, and conclude by discussing how these processes become perturbed in T2DM.
Collapse
Affiliation(s)
- Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Frances M Ashcroft
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, United Kingdom; Department of Neuroscience and Physiology, Metabolic Research Unit, Göteborg, Sweden; and Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
30
|
Gosak M, Stožer A, Markovič R, Dolenšek J, Perc M, Rupnik MS, Marhl M. Critical and Supercritical Spatiotemporal Calcium Dynamics in Beta Cells. Front Physiol 2017; 8:1106. [PMID: 29312008 PMCID: PMC5743929 DOI: 10.3389/fphys.2017.01106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
A coordinated functioning of beta cells within pancreatic islets is mediated by oscillatory membrane depolarization and subsequent changes in cytoplasmic calcium concentration. While gap junctions allow for intraislet information exchange, beta cells within islets form complex syncytia that are intrinsically nonlinear and highly heterogeneous. To study spatiotemporal calcium dynamics within these syncytia, we make use of computational modeling and confocal high-speed functional multicellular imaging. We show that model predictions are in good agreement with experimental data, especially if a high degree of heterogeneity in the intercellular coupling term is assumed. In particular, during the first few minutes after stimulation, the probability distribution of calcium wave sizes is characterized by a power law, thus indicating critical behavior. After this period, the dynamics changes qualitatively such that the number of global intercellular calcium events increases to the point where the behavior becomes supercritical. To better mimic normal in vivo conditions, we compare the described behavior during supraphysiological non-oscillatory stimulation with the behavior during exposure to a slightly lower and oscillatory glucose challenge. In the case of this protocol, we observe only critical behavior in both experiment and model. Our results indicate that the loss of oscillatory changes, along with the rise in plasma glucose observed in diabetes, could be associated with a switch to supercritical calcium dynamics and loss of beta cell functionality.
Collapse
Affiliation(s)
- Marko Gosak
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Andraž Stožer
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
- Faculty of Energy Technology, University of Maribor, Krško, Slovenia
| | - Jurij Dolenšek
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Center for Applied Mathematics and Theoretical Physics, University of Maribor, Maribor, Slovenia
- Complexity Science Hub, Vienna, Austria
| | - Marjan S. Rupnik
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
- Institute of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Faculty of Education, University of Maribor, Maribor, Slovenia
| |
Collapse
|
31
|
Skelin Klemen M, Dolenšek J, Slak Rupnik M, Stožer A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse β cells and their translational relevance. Islets 2017; 9:109-139. [PMID: 28662366 PMCID: PMC5710702 DOI: 10.1080/19382014.2017.1342022] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In β cells, stimulation by metabolic, hormonal, neuronal, and pharmacological factors is coupled to secretion of insulin through different intracellular signaling pathways. Our knowledge about the molecular machinery supporting these pathways and the patterns of signals it generates comes mostly from rodent models, especially the laboratory mouse. The increased availability of human islets for research during the last few decades has yielded new insights into the specifics in signaling pathways leading to insulin secretion in humans. In this review, we follow the most central triggering pathway to insulin secretion from its very beginning when glucose enters the β cell to the calcium oscillations it produces to trigger fusion of insulin containing granules with the plasma membrane. Along the way, we describe the crucial building blocks that contribute to the flow of information and focus on their functional role in mice and humans and on their translational implications.
Collapse
Affiliation(s)
- Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
32
|
Villar-Pazos S, Martinez-Pinna J, Castellano-Muñoz M, Alonso-Magdalena P, Marroqui L, Quesada I, Gustafsson JA, Nadal A. Molecular mechanisms involved in the non-monotonic effect of bisphenol-a on ca2+ entry in mouse pancreatic β-cells. Sci Rep 2017; 7:11770. [PMID: 28924161 PMCID: PMC5603522 DOI: 10.1038/s41598-017-11995-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022] Open
Abstract
In regulatory toxicology, the dose-response relationship is a key element towards fulfilling safety assessments and satisfying regulatory authorities. Conventionally, the larger the dose, the greater the response, following the dogma “the dose makes the poison”. Many endocrine disrupting chemicals, including bisphenol-A (BPA), induce non-monotonic dose response (NMDR) relationships, which are unconventional and have tremendous implications in risk assessment. Although several molecular mechanisms have been proposed to explain NMDR relationships, they are largely undemonstrated. Using mouse pancreatic β-cells from wild-type and oestrogen receptor ERβ−/− mice, we found that exposure to increasing doses of BPA affected Ca2+ entry in an NMDR manner. Low doses decreased plasma membrane Ca2+ currents after downregulation of Cav2.3 ion channel expression, in a process involving ERβ. High doses decreased Ca2+ currents through an ERβ-mediated mechanism and simultaneously increased Ca2+ currents via oestrogen receptor ERα. The outcome of both molecular mechanisms explains the NMDR relationship between BPA and Ca2+ entry in β-cells.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Juan Martinez-Pinna
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
| | - Manuel Castellano-Muñoz
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Paloma Alonso-Magdalena
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Laura Marroqui
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Ivan Quesada
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain
| | - Jan-Ake Gustafsson
- Department of Cell Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA.,Department of Biosciences and Nutrition, Karolinska Institut, Huddinge, Sweden
| | - Angel Nadal
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) and Institute of Bioenginering, Miguel Hernández University of Elche, Elche, Alicante, Spain.
| |
Collapse
|
33
|
Loppini A, Pedersen MG, Braun M, Filippi S. Gap-junction coupling and ATP-sensitive potassium channels in human β-cell clusters: Effects on emergent dynamics. Phys Rev E 2017; 96:032403. [PMID: 29346932 DOI: 10.1103/physreve.96.032403] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/07/2022]
Abstract
The importance of gap-junction coupling between β cells in pancreatic islets is well established in mouse. Such ultrastructural connections synchronize cellular activity, confine biological heterogeneity, and enhance insulin pulsatility. Dysfunction of coupling has been associated with diabetes and altered β-cell function. However, the role of gap junctions between human β cells is still largely unexplored. By using patch-clamp recordings of β cells from human donors, we previously estimated electrical properties of these channels by mathematical modeling of pairs of human β cells. In this work we revise our estimate by modeling triplet configurations and larger heterogeneous clusters. We find that a coupling conductance in the range 0.005-0.020 nS/pF can reproduce experiments in almost all the simulated arrangements. We finally explore the consequence of gap-junction coupling of this magnitude between β cells with mutant variants of the ATP-sensitive potassium channels involved in some metabolic disorders and diabetic conditions, translating studies performed on rodents to the human case. Our results are finally discussed from the perspective of therapeutic strategies. In summary, modeling of more realistic clusters with more than two β cells slightly lowers our previous estimate of gap-junction conductance and gives rise to patterns that more closely resemble experimental traces.
Collapse
Affiliation(s)
- A Loppini
- Nonlinear Physics and Mathematical Modeling Laboratory, Campus Bio-Medico University of Rome, I-00128 Rome, Italy
| | - M G Pedersen
- Department of Information Engineering, University of Padua, I-35131 Padua, Italy
| | - M Braun
- Alberta Diabetes Institute, Department of Pharmacology, University of Alberta, Edmonton, T6G 2H7 Alberta, Canada
| | - S Filippi
- Nonlinear Physics and Mathematical Modeling Laboratory, Campus Bio-Medico University of Rome, I-00128 Rome, Italy
| |
Collapse
|
34
|
Yildirim V, Bertram R. Calcium Oscillation Frequency-Sensitive Gene Regulation and Homeostatic Compensation in Pancreatic β-Cells. Bull Math Biol 2017; 79:1295-1324. [PMID: 28497293 DOI: 10.1007/s11538-017-0286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/27/2017] [Indexed: 02/03/2023]
Abstract
Pancreatic islet [Formula: see text]-cells are electrically excitable cells that secrete insulin in an oscillatory fashion when the blood glucose concentration is at a stimulatory level. Insulin oscillations are the result of cytosolic [Formula: see text] oscillations that accompany bursting electrical activity of [Formula: see text]-cells and are physiologically important. ATP-sensitive [Formula: see text] channels (K(ATP) channels) play the key role in setting the overall activity of the cell and in driving bursting, by coupling cell metabolism to the membrane potential. In humans, when there is a defect in K(ATP) channel function, [Formula: see text]-cells fail to respond appropriately to changes in the blood glucose level, and electrical and [Formula: see text] oscillations are lost. However, mice compensate for K(ATP) channel defects in islet [Formula: see text]-cells by employing alternative mechanisms to maintain electrical and [Formula: see text] oscillations. In a recent study, we showed that in mice islets in which K(ATP) channels are genetically knocked out another [Formula: see text] current, provided by inward-rectifying [Formula: see text] channels, is increased. With mathematical modeling, we demonstrated that a sufficient upregulation in these channels can account for the paradoxical electrical bursting and [Formula: see text] oscillations observed in these [Formula: see text]-cells. However, the question of determining the correct level of upregulation that is necessary for this compensation remained unanswered, and this question motivates the current study. [Formula: see text] is a well-known regulator of gene expression, and several examples have been shown of genes that are sensitive to the frequency of the [Formula: see text] signal. In this mathematical modeling study, we demonstrate that a [Formula: see text] oscillation frequency-sensitive gene transcription network can adjust the gene expression level of a compensating [Formula: see text] channel so as to rescue electrical bursting and [Formula: see text] oscillations in a model [Formula: see text]-cell in which the key K(ATP) current is removed. This is done without the prescription of a target [Formula: see text] level, but evolves naturally as a consequence of the feedback between the [Formula: see text]-dependent enzymes and the cell's electrical activity. More generally, the study indicates how [Formula: see text] can provide the link between gene expression and cellular electrical activity that promotes wild-type behavior in a cell following gene knockout.
Collapse
Affiliation(s)
- Vehpi Yildirim
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Richard Bertram
- Department of Mathematics and Programs in Molecular Biophysics and Neuroscience, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
35
|
Abstract
The pancreatic β-cell secretes insulin in response to elevated plasma glucose. This review applies an external bioenergetic critique to the central processes of glucose-stimulated insulin secretion, including glycolytic and mitochondrial metabolism, the cytosolic adenine nucleotide pool, and its interaction with plasma membrane ion channels. The control mechanisms responsible for the unique responsiveness of the cell to glucose availability are discussed from bioenergetic and metabolic control standpoints. The concept of coupling factor facilitation of secretion is critiqued, and an attempt is made to unravel the bioenergetic basis of the oscillatory mechanisms controlling secretion. The need to consider the physiological constraints operating in the intact cell is emphasized throughout. The aim is to provide a coherent pathway through an extensive, complex, and sometimes bewildering literature, particularly for those unfamiliar with the field.
Collapse
Affiliation(s)
- David G Nicholls
- Buck Institute for Research on Aging, Novato, California; and Department of Clinical Sciences, Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmo, Sweden
| |
Collapse
|
36
|
Alonso MT, Rodríguez-Prados M, Navas-Navarro P, Rojo-Ruiz J, García-Sancho J. Using aequorin probes to measure Ca 2+ in intracellular organelles. Cell Calcium 2017; 64:3-11. [PMID: 28214023 DOI: 10.1016/j.ceca.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 11/28/2022]
Abstract
Aequorins are excellent tools for measuring intra-organellar Ca2+ and assessing its role in physiological and pathological functions. Here we review targeting strategies to express aequorins in various organelles. We address critical topics such as probe affinity tuning as well as normalization and calibration of the signal. We also focus on bioluminescent Ca2+ imaging in nucleus or mitochondria of living cells. Finally, recent advances with a new chimeric GFP-aequorin protein (GAP), which can be used either as luminescent or fluorescent Ca2+ probe, are presented. GAP is robustly expressed in transgenic flies and mice, where it has proven to be a suitable Ca2+ indicator for monitoring physiological Ca2+ signaling ex vivo and in vivo.
Collapse
Affiliation(s)
- María Teresa Alonso
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain.
| | - Macarena Rodríguez-Prados
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Paloma Navas-Navarro
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Jonathan Rojo-Ruiz
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain
| | - Javier García-Sancho
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), c/Sanz y Forés 3, 47003 Valladolid, Spain.
| |
Collapse
|
37
|
Barber AF, Erion R, Holmes TC, Sehgal A. Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells. Genes Dev 2016; 30:2596-2606. [PMID: 27979876 PMCID: PMC5204352 DOI: 10.1101/gad.288258.116] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
Abstract
Barber et al. show that Drosophila insulin-producing cells (IPCs) are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding. Circadian clocks regulate much of behavior and physiology, but the mechanisms by which they do so remain poorly understood. While cyclic gene expression is thought to underlie metabolic rhythms, little is known about cycles in cellular physiology. We found that Drosophila insulin-producing cells (IPCs), which are located in the pars intercerebralis and lack an autonomous circadian clock, are functionally connected to the central circadian clock circuit via DN1 neurons. Insulin mediates circadian output by regulating the rhythmic expression of a metabolic gene (sxe2) in the fat body. Patch clamp electrophysiology reveals that IPCs display circadian clock-regulated daily rhythms in firing event frequency and bursting proportion under light:dark conditions. The activity of IPCs and the rhythmic expression of sxe2 are additionally regulated by feeding, as demonstrated by night feeding-induced changes in IPC firing characteristics and sxe2 levels in the fat body. These findings indicate circuit-level regulation of metabolism by clock cells in Drosophila and support a role for the pars intercerebralis in integrating circadian control of behavior and physiology.
Collapse
Affiliation(s)
- Annika F Barber
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Renske Erion
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92697, USA
| | - Amita Sehgal
- Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
38
|
Scattolini V, Luni C, Zambon A, Galvanin S, Gagliano O, Ciubotaru CD, Avogaro A, Mammano F, Elvassore N, Fadini GP. Simvastatin Rapidly and Reversibly Inhibits Insulin Secretion in Intact Single-Islet Cultures. Diabetes Ther 2016; 7:679-693. [PMID: 27830474 PMCID: PMC5118248 DOI: 10.1007/s13300-016-0210-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Epidemiological studies suggest that statins may promote the development or exacerbation of diabetes, but whether this occurs through inhibition of insulin secretion is unclear. This lack of understanding is partly due to the cellular models used to explore this phenomenon (cell lines or pooled islets), which are non-physiologic and have limited clinical transferability. METHODS Here, we study the effect of simvastatin on insulin secretion using single-islet cultures, an optimal compromise between biological observability and physiologic fidelity. We develop and validate a microfluidic device to study single-islet function ex vivo, which allows for switching between media of different compositions with a resolution of seconds. In parallel, fluorescence imaging provides real-time analysis of the membrane voltage potential, cytosolic Ca2+ dynamics, and insulin release during perfusion under 3 or 11 mM glucose. RESULTS We found that simvastatin reversibly inhibits insulin secretion, even in high-glucose. This phenomenon is very rapid (<60 s), occurs without affecting Ca2+ concentrations, and is likely unrelated to cholesterol biosynthesis and protein isoprenylation, which occur on a time span of hours. CONCLUSIONS Our data provide the first real-time live demonstration that a statin inhibits insulin secretion in intact islets and that single islets respond differently from cell lines on a short time scale. FUNDING University of Padova, EASD Foundation.
Collapse
Affiliation(s)
- Valentina Scattolini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35129, Padua, Italy
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128, Padua, Italy
| | - Camilla Luni
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128, Padua, Italy
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 99 Haike Road, Shanghai, 201210, China
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padua, Italy
| | - Alessandro Zambon
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128, Padua, Italy
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padua, Italy
| | - Silvia Galvanin
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128, Padua, Italy
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padua, Italy
| | - Onelia Gagliano
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128, Padua, Italy
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padua, Italy
| | | | - Angelo Avogaro
- Department of Medicine, University of Padova, Via Giustiniani 2, 35129, Padua, Italy
| | - Fabio Mammano
- CNR Institute of Cell Biology and Neurobiology, 00015, Monterotondo, Italy
- Department of Physics, University of Padova, Via Marzolo 8, 35131, Padua, Italy
| | - Nicola Elvassore
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128, Padua, Italy.
- Department of Industrial Engineering, University of Padova, Via Marzolo 9, 35131, Padua, Italy.
| | - Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35129, Padua, Italy.
- Venetian Institute of Molecular Medicine, Via Orus 2, 35128, Padua, Italy.
| |
Collapse
|
39
|
Johnston NR, Mitchell RK, Haythorne E, Pessoa MP, Semplici F, Ferrer J, Piemonti L, Marchetti P, Bugliani M, Bosco D, Berishvili E, Duncanson P, Watkinson M, Broichhagen J, Trauner D, Rutter GA, Hodson DJ. Beta Cell Hubs Dictate Pancreatic Islet Responses to Glucose. Cell Metab 2016; 24:389-401. [PMID: 27452146 PMCID: PMC5031557 DOI: 10.1016/j.cmet.2016.06.020] [Citation(s) in RCA: 345] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 12/02/2022]
Abstract
The arrangement of β cells within islets of Langerhans is critical for insulin release through the generation of rhythmic activity. A privileged role for individual β cells in orchestrating these responses has long been suspected, but not directly demonstrated. We show here that the β cell population in situ is operationally heterogeneous. Mapping of islet functional architecture revealed the presence of hub cells with pacemaker properties, which remain stable over recording periods of 2 to 3 hr. Using a dual optogenetic/photopharmacological strategy, silencing of hubs abolished coordinated islet responses to glucose, whereas specific stimulation restored communication patterns. Hubs were metabolically adapted and targeted by both pro-inflammatory and glucolipotoxic insults to induce widespread β cell dysfunction. Thus, the islet is wired by hubs, whose failure may contribute to type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Natalie R Johnston
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Ryan K Mitchell
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Elizabeth Haythorne
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Maria Paiva Pessoa
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Francesca Semplici
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Jorge Ferrer
- Beta Cell Genome Regulation Lab, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56126 Pisa, Italy
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| | - Ekaterine Berishvili
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| | - Philip Duncanson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Michael Watkinson
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Johannes Broichhagen
- Department of Chemistry, Ludwig-Maximilians-Universität München, and Munich Center for Integrated Protein Science, Butenandtstrasse 5-13, 81377 München, Germany
| | - Dirk Trauner
- Department of Chemistry, Ludwig-Maximilians-Universität München, and Munich Center for Integrated Protein Science, Butenandtstrasse 5-13, 81377 München, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, UK.
| | - David J Hodson
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College London, London W12 0NN, UK; Institute of Metabolism and Systems Research (IMSR) and Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK.
| |
Collapse
|
40
|
Takeda Y, Shimayoshi T, Holz GG, Noma A. Modeling analysis of inositol 1,4,5-trisphosphate receptor-mediated Ca2+ mobilization under the control of glucagon-like peptide-1 in mouse pancreatic β-cells. Am J Physiol Cell Physiol 2016; 310:C337-47. [PMID: 26741144 PMCID: PMC4888524 DOI: 10.1152/ajpcell.00234.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/19/2015] [Indexed: 01/22/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) is an intestinally derived blood glucose-lowering hormone that potentiates glucose-stimulated insulin secretion from pancreatic β-cells. The secretagogue action of GLP-1 is explained, at least in part, by its ability to stimulate cAMP production so that cAMP may facilitate the release of Ca(2+) from inositol trisphosphate receptor (IP3R)-regulated Ca(2+) stores. However, a quantitative model has yet to be provided that explains the molecular mechanisms and dynamic processes linking GLP-1-stimulated cAMP production to Ca(2+) mobilization. Here, we performed simulation studies to investigate how GLP-1 alters the abilities of Ca(2+) and IP3 to act as coagonists at IP3R Ca(2+) release channels. A new dynamic model was constructed based on the Kaftan model, which demonstrates dual steady-state allosteric regulation of the IP3R by Ca(2+) and IP3. Data obtained from β-cells were then analyzed to understand how GLP-1 facilitates IP3R-mediated Ca(2+) mobilization when UV flash photolysis is used to uncage Ca(2+) and IP3 intracellularly. When the dynamic model for IP3R activation was incorporated into a minimal cell model, the Ca(2+) transients and oscillations induced by GLP-1 were successfully reconstructed. Simulation studies indicated that transient and oscillatory responses to GLP-1 were produced by sequential positive and negative feedback regulation due to fast activation and slow inhibition of the IP3R by Ca(2+). The slow rate of Ca(2+)-dependent inhibition was revealed to provide a remarkable contribution to the time course of the decay of cytosolic Ca(2+) transients. It also served to drive and pace Ca(2+) oscillations that are significant when evaluating how GLP-1 stimulates insulin secretion.
Collapse
Affiliation(s)
- Yukari Takeda
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu City, Japan;
| | - Takao Shimayoshi
- Department of Systems Science, Kyoto University, Kyoto, Japan; and
| | - George G Holz
- Departments of Medicine and Pharmacology, SUNY Upstate Medical University, Syracuse, New York
| | - Akinori Noma
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Kusatsu City, Japan
| |
Collapse
|
41
|
Crutzen R, Virreira M, Markadieu N, Shlyonsky V, Sener A, Malaisse WJ, Beauwens R, Boom A, Golstein PE. Anoctamin 1 (Ano1) is required for glucose-induced membrane potential oscillations and insulin secretion by murine β-cells. PFLUGERS ARCHIV : EUROPEAN JOURNAL OF PHYSIOLOGY 2015. [PMID: 26582426 DOI: 10.1007/s00424‐015‐1758‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
Anions such as Cl(-) and HCO3 (-) are well known to play an important role in glucose-stimulated insulin secretion (GSIS). In this study, we demonstrate that glucose-induced Cl(-) efflux from β-cells is mediated by the Ca(2+)-activated Cl(-) channel anoctamin 1 (Ano1). Ano1 expression in rat β-cells is demonstrated by reverse transcriptase-polymerase chain reaction, western blotting, and immunohistochemistry. Typical Ano1 currents are observed in whole-cell and inside-out patches in the presence of intracellular Ca(++): at 1 μM, the Cl(-) current is outwardly rectifying, and at 2 μM, it becomes almost linear. The relative permeabilities of monovalent anions are NO3 (-) (1.83 ± 0.10) > Br(-) (1.42 ± 0.07) > Cl(-) (1.0). A linear single-channel current-voltage relationship shows a conductance of 8.37 pS. These currents are nearly abolished by blocking Ano1 antibodies or by the inhibitors 2-(5-ethyl-4-hydroxy-6-methylpyrimidin-2-ylthio)-N-(4-(4-methoxyphenyl)thiazol-2-yl)acetamide (T-AO1) and tannic acid (TA). These inhibitors induce a strong decrease of 16.7-mM glucose-stimulated action potential rate (at least 87 % on dispersed cells) and a partial membrane repolarization with T-AO1. They abolish or strongly inhibit the GSIS increment at 8.3 mM and at 16.7 mM glucose. Blocking Ano1 antibodies also abolish the 16.7-mM GSIS increment. Combined treatment with bumetanide and acetazolamide in low Cl(-) and HCO3 (-) media provokes a 65 % reduction in action potential (AP) amplitude and a 15-mV AP peak repolarization. Although the mechanism triggering Ano1 opening remains to be established, the present data demonstrate that Ano1 is required to sustain glucose-stimulated membrane potential oscillations and insulin secretion.
Collapse
Affiliation(s)
- Raphaël Crutzen
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Myrna Virreira
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Nicolas Markadieu
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Abdullah Sener
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Willy J Malaisse
- Department of Biochemistry, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Renaud Beauwens
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium.
| | - Alain Boom
- Laboratory of Histology, Histopathology and Neuroanatomy, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Philippe E Golstein
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| |
Collapse
|
42
|
Crutzen R, Virreira M, Markadieu N, Shlyonsky V, Sener A, Malaisse WJ, Beauwens R, Boom A, Golstein PE. Anoctamin 1 (Ano1) is required for glucose-induced membrane potential oscillations and insulin secretion by murine β-cells. Pflugers Arch 2015; 468:573-91. [PMID: 26582426 PMCID: PMC4792454 DOI: 10.1007/s00424-015-1758-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 11/08/2015] [Accepted: 11/09/2015] [Indexed: 12/20/2022]
Abstract
Anions such as Cl− and HCO3− are well known to play an important role in glucose-stimulated insulin secretion (GSIS). In this study, we demonstrate that glucose-induced Cl− efflux from β-cells is mediated by the Ca2+-activated Cl− channel anoctamin 1 (Ano1). Ano1 expression in rat β-cells is demonstrated by reverse transcriptase–polymerase chain reaction, western blotting, and immunohistochemistry. Typical Ano1 currents are observed in whole-cell and inside-out patches in the presence of intracellular Ca++: at 1 μM, the Cl− current is outwardly rectifying, and at 2 μM, it becomes almost linear. The relative permeabilities of monovalent anions are NO3− (1.83 ± 0.10) > Br− (1.42 ± 0.07) > Cl− (1.0). A linear single-channel current–voltage relationship shows a conductance of 8.37 pS. These currents are nearly abolished by blocking Ano1 antibodies or by the inhibitors 2-(5-ethyl-4-hydroxy-6-methylpyrimidin-2-ylthio)-N-(4-(4-methoxyphenyl)thiazol-2-yl)acetamide (T-AO1) and tannic acid (TA). These inhibitors induce a strong decrease of 16.7-mM glucose-stimulated action potential rate (at least 87 % on dispersed cells) and a partial membrane repolarization with T-AO1. They abolish or strongly inhibit the GSIS increment at 8.3 mM and at 16.7 mM glucose. Blocking Ano1 antibodies also abolish the 16.7-mM GSIS increment. Combined treatment with bumetanide and acetazolamide in low Cl− and HCO3− media provokes a 65 % reduction in action potential (AP) amplitude and a 15-mV AP peak repolarization. Although the mechanism triggering Ano1 opening remains to be established, the present data demonstrate that Ano1 is required to sustain glucose-stimulated membrane potential oscillations and insulin secretion.
Collapse
Affiliation(s)
- Raphaël Crutzen
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Myrna Virreira
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Nicolas Markadieu
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Vadim Shlyonsky
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Abdullah Sener
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Willy J Malaisse
- Department of Biochemistry, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Renaud Beauwens
- Laboratory of Cell and Molecular Physiology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium.
| | - Alain Boom
- Laboratory of Histology, Histopathology and Neuroanatomy, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| | - Philippe E Golstein
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium
| |
Collapse
|
43
|
Dolenšek J, Špelič D, Skelin Klemen M, Žalik B, Gosak M, Slak Rupnik M, Stožer A. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis. SENSORS 2015; 15:27393-419. [PMID: 26516866 PMCID: PMC4701238 DOI: 10.3390/s151127393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/11/2015] [Accepted: 10/14/2015] [Indexed: 12/17/2022]
Abstract
Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel physiological insights and reassessment of current concepts in unprecedented detail.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Denis Špelič
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
| | - Borut Žalik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (D.Š.); (B.Ž.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Center for Physiology and Pharmacology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; E-Mails: (J.D.); (M.S.K.); (M.G.); (M.S.R.)
- Center for Open Innovation and Research, Core@UM, University of Maribor, SI-2000 Maribor, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-2-2345843
| |
Collapse
|
44
|
Godini A, Ghasemi A, Zahediasl S. The Possible Mechanisms of the Impaired Insulin Secretion in Hypothyroid Rats. PLoS One 2015; 10:e0131198. [PMID: 26132582 PMCID: PMC4488449 DOI: 10.1371/journal.pone.0131198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/29/2015] [Indexed: 12/23/2022] Open
Abstract
Although the insulin secretion deficit in hypothyroid male rats has been documented, the underling mechanisms of the effect of hypothyroidism on insulin secretion are not clear. Isolated islets of the PTU-induced hypothyroid and control rats were exposed to glibenclamide, acetylcholine, and nifedipine in the presence of glucose concentrations of 2.8 or 8.3 and 16.7 mmol/L. Glucokinase and hexokinase specific activity, glucokinase content, and glucose transporter 2 protein expression were also determined in the isolated islets. Isolated islets from the hypothyroid rats showed a defect in insulin secretion in response to high glucose. In the presence of glibenclamide or acetylcholine, the isolated islets from the hypothyroid and control rats stimulated by glucose concentration of 16.7 mmol/L secreted similar amounts of insulin. In the presence of glucose concentrations of 8.3 mmol/L and 16.7 mmol/L, nifedipine was able to diminish insulin secretion from isolated islets of both groups, indicating that probably the defect may not arise from L type calcium channels or the steps beyond depolarization or the elements involved in the acetylcoline signaling pathway. Glucokinase content and hexokinase specific activity were also the same in the control and hypothyroid groups. On the other hand, glucokinase specific activity and glucose transporter 2 protein expression were significantly (p<0.001 and p<0.01 respectively) lower in the islets isolated from the hypothyroid rats (6.50 ± 0.46 mU/min/mg protein and 0.55 ± 0.09 arbitrary unit) compared to the controls (10.93 ± 0.83 mU/min/mg protein and 0.98 ± 0.07 arbitrary unit) respectively. In conclusion, the results of this study indicated that hypothyroidism reduced insulin secretion from isolated pancreatic islets, which confirms the finding of the previous studies; in addition, the insulin secretion deficit observed in hypothyroid rats may arise from the abnormalities in some parts of the glucose sensor apparatus of the pancreatic islets including glucokinase activity and glucose transporter 2 protein expression.
Collapse
Affiliation(s)
- Aliashraf Godini
- Department of Physiology and Neurophysiology Research Center, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail:
| | - Saleh Zahediasl
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Drews G, Bauer C, Edalat A, Düfer M, Krippeit-Drews P. Evidence against a Ca(2+)-induced potentiation of dehydrogenase activity in pancreatic beta-cells. Pflugers Arch 2015; 467:2389-97. [PMID: 25893711 DOI: 10.1007/s00424-015-1707-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/31/2015] [Accepted: 04/01/2015] [Indexed: 02/07/2023]
Abstract
Pancreatic beta-cells respond to an unchanging stimulatory glucose concentration with oscillations in membrane potential (Vm), cytosolic Ca(2+) concentration ([Ca(2+)]c), and insulin secretion. The underlying mechanisms are largely ascertained. Some particular details, however, are still in debate. Stimulus-secretion coupling (SSC) of beta-cells comprises glucose-induced Ca(2+) influx into the cytosol and thus into mitochondria. It is suggested that this activates (mitochondrial) dehydrogenases leading to an increase in reduction equivalents and ATP production. According to SSC, a glucose-induced increase in ATP production would thus further augment ATP production, i.e. induce a feed-forward loop that is hardly compatible with oscillations. Consistently, other studies favour a feedback mechanism that drives oscillatory mitochondrial ATP production. If Ca(2+) influx activates dehydrogenases, a change in [Ca(2+)]c should increase the concentration of reduction equivalents. We measured changes in flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) autofluorescence in response to changes in glucose concentration or glucose-independent changes in [Ca(2+)]c. The FAD signal was altered by glucose but not by alterations in [Ca(2+)]c. NAD(P)H was increased by glucose but even decreased by Ca(2+) influx evoked by tolbutamide. The mitochondrial membrane potential ΔΨ was hyperpolarized by 4 mM glucose. As adding tolbutamide then depolarized ΔΨ, we deduce that Ca(2+) does not activate mitochondrial activity but by contrast even inhibits it by reducing the driving force for ATP production. Inhibition of Ca(2+) influx reversed the Ca(2+)-induced changes in ΔΨ and NAD(P)H. The results are consistent with a feedback mechanism which transiently and repeatedly reduces ATP production and explain the oscillatory activity of pancreatic beta-cells at increased glucose concentrations.
Collapse
Affiliation(s)
- Gisela Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Cita Bauer
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
| | - Armin Edalat
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Martina Düfer
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Peter Krippeit-Drews
- Department of Pharmacology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076, Tübingen, Germany.
| |
Collapse
|
46
|
Markovič R, Stožer A, Gosak M, Dolenšek J, Marhl M, Rupnik MS. Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns. Sci Rep 2015; 5:7845. [PMID: 25598507 PMCID: PMC4297961 DOI: 10.1038/srep07845] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/16/2014] [Indexed: 01/11/2023] Open
Abstract
Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into the functional organization of the syncytium, we applied advanced analytical tools from the realm of complex network theory to uncover the functional connectivity pattern among cells composing the intact islet. The procedure is based on the determination of correlations between long temporal traces obtained from confocal functional multicellular calcium imaging of beta cells stimulated in a stepwise manner with a range of physiological glucose concentrations. Our results revealed that the extracted connectivity networks are sparse for low glucose concentrations, whereas for higher stimulatory levels they become more densely connected. Most importantly, for all ranges of glucose concentration beta cells within the islets form locally clustered functional sub-compartments, thereby indicating that their collective activity profiles exhibit a modular nature. Moreover, we show that the observed non-linear functional relationship between different network metrics and glucose concentration represents a well-balanced setup that parallels physiological insulin release.
Collapse
Affiliation(s)
- Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Andraž Stožer
- 1] Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia
| | - Marko Gosak
- 1] Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia [3] Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Marko Marhl
- 1] Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia [3] Faculty of Education, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| | - Marjan Slak Rupnik
- 1] Institute of Physiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia [2] Centre for Open Innovations and Research, University of Maribor, Slomškov trg 15, 2000 Maribor, Slovenia [3] Institute of Physiology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraβe 17, A-1090 Vienna, Austria
| |
Collapse
|
47
|
Optical control of insulin release using a photoswitchable sulfonylurea. Nat Commun 2014; 5:5116. [PMID: 25311795 PMCID: PMC4208094 DOI: 10.1038/ncomms6116] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022] Open
Abstract
Sulfonylureas are widely prescribed for the treatment of type 2 diabetes mellitus (T2DM). Through their actions on ATP-sensitive potassium (KATP) channels, sulfonylureas boost insulin release from the pancreatic beta cell mass to restore glucose homeostasis. A limitation of these compounds is the elevated risk of developing hypoglycemia and cardiovascular disease, both potentially fatal complications. Here, we describe the design and development of a photoswitchable sulfonylurea, JB253, which reversibly and repeatedly blocks KATP channel activity following exposure to violet-blue light. Using in situ imaging and hormone assays, we further show that JB253 bestows light sensitivity upon rodent and human pancreatic beta cell function. Thus, JB253 enables the optical control of insulin release and may offer a valuable research tool for the interrogation of KATP channel function in health and T2DM.
Collapse
|
48
|
Nunemaker CS, Satin LS. Episodic hormone secretion: a comparison of the basis of pulsatile secretion of insulin and GnRH. Endocrine 2014; 47:49-63. [PMID: 24610206 PMCID: PMC4382805 DOI: 10.1007/s12020-014-0212-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 02/13/2014] [Indexed: 01/01/2023]
Abstract
Rhythms govern many endocrine functions. Examples of such rhythmic systems include the insulin-secreting pancreatic beta-cell, which regulates blood glucose, and the gonadotropin-releasing hormone (GnRH) neuron, which governs reproductive function. Although serving very different functions within the body, these cell types share many important features. Both GnRH neurons and beta-cells, for instance, are hypothesized to generate at least two rhythms endogenously: (1) a burst firing electrical rhythm and (2) a slower rhythm involving metabolic or other intracellular processes. This review discusses the importance of hormone rhythms to both physiology and disease and compares and contrasts the rhythms generated by each system.
Collapse
Affiliation(s)
- Craig S. Nunemaker
- Division of Endocrinology and Metabolism, Department of, Medicine, University of Virginia, P.O. Box 801413, Charlottesville, VA 22901, USA,
| | - Leslie S. Satin
- Pharmacology Department, University of Michigan Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
- Brehm Diabetes Research Center, University of Michigan, Medical School, 5128 Brehm Tower, Ann Arbor, MI 48105, USA
| |
Collapse
|
49
|
Benninger RKP, Piston DW. Cellular communication and heterogeneity in pancreatic islet insulin secretion dynamics. Trends Endocrinol Metab 2014; 25:399-406. [PMID: 24679927 PMCID: PMC4112137 DOI: 10.1016/j.tem.2014.02.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/21/2014] [Accepted: 02/25/2014] [Indexed: 11/20/2022]
Abstract
Coordinated pulses of electrical activity and insulin secretion are a hallmark of the islet of Langerhans. These coordinated behaviors are lost when β cells are dissociated, which also leads to increased insulin secretion at low glucose levels. Islets without gap junctions exhibit asynchronous electrical activity similar to dispersed cells, but their secretion at low glucose levels is still clamped off, putatively by a juxtacrine mechanism. Mice lacking β cell gap junctions have near-normal average insulin levels, but are glucose intolerant due to reduced first-phase and pulsatile insulin secretion, illustrating the importance of temporal dynamics. Here, we review the quantitative data on islet synchronization and the current mathematical models that have been developed to explain these behaviors and generate greater understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Richard K P Benninger
- Department of Bioengineering and Barbara Davis Center, University of Colorado Anschutz Medical campus, Aurora, CO, USA.
| | - David W Piston
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
50
|
Abstract
Mathematical modeling of the electrical activity of the pancreatic β-cell has been extremely important for understanding the cellular mechanisms involved in glucose-stimulated insulin secretion. Several models have been proposed over the last 30 y, growing in complexity as experimental evidence of the cellular mechanisms involved has become available. Almost all the models have been developed based on experimental data from rodents. However, given the many important differences between species, models of human β-cells have recently been developed. This review summarizes how modeling of β-cells has evolved, highlighting the proposed physiological mechanisms underlying β-cell electrical activity.
Collapse
Key Words
- ADP, adenosine diphosphate
- ATP, adenosine triphosphate
- CK, Chay-Keizer
- CRAC, calcium release-activated current
- Ca2+, calcium ions
- DOM, dual oscillator model
- ER, endoplasmic reticulum
- F6P, fructose-6-phosphate
- FBP, fructose-1,6-bisphosphate
- GLUT, glucose transporter
- GSIS, glucose-stimulated insulin secretion
- HERG, human eter à-go-go related gene
- IP3R, inositol-1,4,5-trisphosphate receptors
- KATP, ATP-sensitive K+ channels
- KCa, Ca2+-dependent K+ channels
- Kv, voltage-dependent K+ channels
- MCU, mitochondrial Ca2+ uniporter
- NCX, Na+/Ca2+ exchanger
- PFK, phosphofructokinase
- PMCA, plasma membrane Ca2+-ATPase
- ROS, reactive oxygen species
- RyR, ryanodine receptors
- SERCA, sarco-endoplasmic reticulum Ca2+-ATPase
- T2D, Type 2 Diabetes
- TCA, trycarboxylic acid cycle
- TRP, transient receptor potential
- VDCC, voltage-dependent Ca2+ channels
- Vm, membrane potential
- [ATP]i, cytosolic ATP
- [Ca2+]i, intracellular calcium concentration
- [Ca2+]m, mitochondrial calcium
- [Na+], Na+ concentration
- action potentials
- bursting
- cAMP, cyclic AMP
- calcium
- electrical activity
- ion channels
- mNCX, mitochondrial Na+/Ca2+ exchanger
- mathematical model
- β-cell
Collapse
Affiliation(s)
- Gerardo J Félix-Martínez
- Department of Electrical Engineering; Universidad
Autónoma Metropolitana-Iztapalapa; México, DF,
México
- Correspondence to: Gerardo J
Félix-Martínez;
| | | |
Collapse
|