1
|
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition. Arch Biochem Biophys 2021; 710:108984. [PMID: 34252392 DOI: 10.1016/j.abb.2021.108984] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/07/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a biological process that plays an important role during embryonic development. During this process, the epithelial cells lose their polarity and acquire mesenchymal properties. In addition to embryonic development, EMT is also well-known to participate in tissue repair, inflammation, fibrosis, and tumor metastasis. In the present review, we address the basics of epithelial to mesenchymal transition during both development and disease conditions and emphasize the role of various transcription factors and miRNAs involved in the process.
Collapse
Affiliation(s)
| | - Harini Srinivasan
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India
| | - Krishna Priya Mani
- ASK-II, 212, Vascular Research Lab, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
2
|
Svolacchia F, Svolacchia L. Adipose tissue micrograft in a scaffold of plasma-gel combined with platelet-derived growth factors in dermal wrinkle regeneration. SCRIPTA MEDICA 2021. [DOI: 10.5937/scriptamed52-30316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Background: The dermal aging process and the formation of deep wrinkles are a biological involution that also involves the regeneration system of cells immersed in the extracellular matrix and the papillary dermis. The progressive loss of niches of adult stem cells (MSCs) is more evident after the first third of life; it increases the phenotypic expression and the characteristics of the tissue senescence process. The purpose of this study was to clinically demonstrate that in viable micrograft there may be an improvement of deep wrinkles and surrounding tissues. Methods: This study involved 11 female patients who underwent the correction of deep dermal wrinkles through a suspension containing 0.8 mL of viable micrografts in a 5 mL plasma gel scaffold, obtained from the centrifugation of a 20 cc venous sample peripheral blood, gelled by heat in a dry steriliser and the buffy coat coming from the same venous sample, in order verify overtime the improvement of the interested anatomical area. Individual signs of wrinkles and the degree of correction obtained for each treatment and each area were objectively evaluated by using a 10-0 visual analog scale (VAS), Modified Vancouver scale and Berardesca's scale. Results: With this technique excellent results were obtained. In fact, wrinkles were improved, as well as surrounding tissues, even after 60 days, as shown by the Berardesca's, VAS and Modified Vancouver scales. Conclusion: This retrospective clinical evaluation allowed us to consider the excellent clinical results obtained with this method for the treatment of deep wrinkles and surrounding tissues, through a suspension of progenitors with MSCs derived from adipose tissue (ADSCa) in a not inflammatory plasma gel scaffold combined with buffy coat.
Collapse
|
3
|
Akgul Y, Kenkel JM. Commentary on: Cell-Free Fat Extract Increases Dermal Thickness by Enhancing Angiogenesis and Extracellular Matrix Production in Nude Mice. Aesthet Surg J 2020; 40:914-916. [PMID: 32077917 DOI: 10.1093/asj/sjaa001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yucel Akgul
- Department of Plastic Surgery, UT Southwestern Medical Center, Dallas, TX
| | | |
Collapse
|
4
|
Quaglino D, Boraldi F, Lofaro FD. The biology of vascular calcification. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 354:261-353. [PMID: 32475476 DOI: 10.1016/bs.ircmb.2020.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascular calcification (VC), characterized by different mineral deposits (i.e., carbonate apatite, whitlockite and hydroxyapatite) accumulating in blood vessels and valves, represents a relevant pathological process for the aging population and a life-threatening complication in acquired and in genetic diseases. Similarly to bone remodeling, VC is an actively regulated process in which many cells and molecules play a pivotal role. This review aims at: (i) describing the role of resident and circulating cells, of the extracellular environment and of positive and negative factors in driving the mineralization process; (ii) detailing the types of VC (i.e., intimal, medial and cardiac valve calcification); (iii) analyzing rare genetic diseases underlining the importance of altered pyrophosphate-dependent regulatory mechanisms; (iv) providing therapeutic options and perspectives.
Collapse
Affiliation(s)
- Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
5
|
Taurone S, Spoletini M, Ralli M, Gobbi P, Artico M, Imre L, Czakò C, Kovàcs I, Greco A, Micera A. Ocular mucous membrane pemphigoid: a review. Immunol Res 2019; 67:280-289. [DOI: 10.1007/s12026-019-09087-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Nagalingam RS, Al-Hattab DS, Czubryt MP. What’s in a name? On fibroblast phenotype and nomenclature. Can J Physiol Pharmacol 2019; 97:493-497. [DOI: 10.1139/cjpp-2018-0555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fibroblasts have long been recognized as important stromal cells, playing key roles in synthesizing and maintaining the extracellular matrix, but historically were treated as a relatively uniform cell type. Studies in recent years have revealed a surprising level of heterogeneity of fibroblasts across tissues, and even within organs such as the skin and heart. This heterogeneity may have functional consequences, including during stress and disease. While the field has moved forward quickly to begin to address the scientific import of this heterogeneity, the descriptive language used for these cells has not kept pace, particularly when considering the phenotype changes that occur as fibroblasts convert to myofibroblasts in response to injury. We discuss here the nature and sources of the heterogeneity of fibroblasts, and review how our understanding of the complexity of the fibroblast to myofibroblast phenotype conversion has changed with increasing scrutiny. We propose that the time is opportune to reevaluate how we name and describe these cells, particularly as they transition to myofibroblasts through discrete stages. A standardized nomenclature is essential to address the confusion that currently exists in the literature as to the usage of terms like myofibroblast and the description of fibroblast phenotype changes in disease.
Collapse
Affiliation(s)
- Raghu S. Nagalingam
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba and Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Danah S. Al-Hattab
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba and Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| | - Michael P. Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba and Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada
| |
Collapse
|
7
|
Svolacchia F, Svolacchia L. Dermal regeneration with MilliGraft® Kit of nanofat: The micrograft of adipose tissue: A clinical assessment study. SCRIPTA MEDICA 2019. [DOI: 10.5937/scriptamed50-21881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
8
|
Gambini E, Perrucci GL, Bassetti B, Spaltro G, Campostrini G, Lionetti MC, Pilozzi A, Martinelli F, Farruggia A, DiFrancesco D, Barbuti A, Pompilio G. Preferential myofibroblast differentiation of cardiac mesenchymal progenitor cells in the presence of atrial fibrillation. Transl Res 2018; 192:54-67. [PMID: 29245016 DOI: 10.1016/j.trsl.2017.11.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 10/27/2017] [Accepted: 11/11/2017] [Indexed: 10/18/2022]
Abstract
Atrial fibrillation (AF) is characterized by electrical, contractile, and structural remodeling mediated by interstitial fibrosis. It has been shown that human cardiac mesenchymal progenitor cells (CMPCs) can be differentiated into endothelial, smooth muscle, and fibroblast cells. Here, we have investigated, for the first time, the contribution of CMPCs in the fibrotic process occurring in AF. As expected, right auricolae samples displayed significantly higher fibrosis in AF vs control (CTR) patients. In tissue samples of AF patients only, double staining for c-kit and the myofibroblast marker α-smooth muscle actin (α-SMA) was detected. The number of c-kit-positive CMPC was higher in atrial subepicardial regions of CTR than AF cells. AF-derived CMPC (AF-CMPC) and CTR-derived CMPC (Ctr-CMPC) were phenotypically similar, except for CD90 and c-kit, which were significantly more present in AF and CTR cells, respectively. Moreover, AF showed a lower rate of population doubling and fold enrichment vs Ctr-CMPC. When exogenously challenged with the profibrotic transforming growth factor-β1 (TGF-β1), AF-CMPC showed a significantly higher nuclear translocation of SMAD2 than Ctr-CMPC. In addition, TGF-β1 treatment induced the upregulation of COL1A1 and COL1A2 in AF-CMPC only. Further, both a marked production of soluble collagen and α-SMA upregulation have been observed in AF-CMPC only. Finally, electrophysiological studies showed that the inwardly rectifying potassium current (IK1) was evenly present in AF- and Ctr-CMPC in basal conditions and similarly disappeared after TGF-β1 exposure. All together, these data suggest that AF steers the resident atrial CMPC compartment toward an electrically inert profibrotic phenotype.
Collapse
Affiliation(s)
- Elisa Gambini
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy.
| | - Gianluca Lorenzo Perrucci
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - Beatrice Bassetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Gabriella Spaltro
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Giulia Campostrini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Maria Chiara Lionetti
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Alberto Pilozzi
- Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Federico Martinelli
- Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Andrea Farruggia
- Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| | - Dario DiFrancesco
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Andrea Barbuti
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Giulio Pompilio
- Unità di Biologia Vascolare e Medicina Rigenerativa, Centro Cardiologico Monzino-IRCCS, Milano, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy; Dipartimento di Chirurgia Cardiovascolare, Centro Cardiologico Monzino-IRCCS, Milano, Italy
| |
Collapse
|
9
|
Abstract
Gingival overgrowth occurs mainly as a result of certain anti-seizure, immunosuppressive, or antihypertensive drug therapies. Excess gingival tissues impede oral function and are disfiguring. Effective oral hygiene is compromised in the presence of gingival overgrowth, and it is now recognized that this may have negative implications for the systemic health of affected patients. Recent studies indicate that cytokine balances are abnormal in drug-induced forms of gingival overgrowth. Data supporting molecular and cellular characteristics that distinguish different forms of gingival overgrowth are summarized, and aspects of gingival fibroblast extracellular matrix metabolism that are unique to gingival tissues and cells are reviewed. Abnormal cytokine balances derived principally from lymphocytes and macrophages, and unique aspects of gingival extracellular matrix metabolism, are elements of a working model presented to facilitate our gaining a better understanding of mechanisms and of the tissue specificity of gingival overgrowth.
Collapse
Affiliation(s)
- P C Trackman
- Boston University Goldman School of Dental Medicine, Department of Periodontology and Oral Biology, Division of Oral Biology, Boston, MA 02118, USA.
| | | |
Collapse
|
10
|
Micera A, Stampachiacchiere B, Di Zazzo A, Sgrulletta R, Cortes M, Normando EM, Lambiase A, Bonini S. NGF Modulates trkANGFR/p75NTR in αSMA-Expressing Conjunctival Fibroblasts from Human Ocular Cicatricial Pemphigoid (OCP). PLoS One 2015; 10:e0142737. [PMID: 26569118 PMCID: PMC4646573 DOI: 10.1371/journal.pone.0142737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 10/26/2015] [Indexed: 11/19/2022] Open
Abstract
Objective In a previous study, we reported the upregulation of Nerve Growth Factor (NGF) and trkANGFR expression in Ocular Cicatricial Pemphigoid (OCP), an inflammatory and remodeling eye disease. Herein, we hypothesize a potential NGF-driven mechanism on fibroblasts (FBs) during OCP remodeling events. To verify, human derived OCP-FBs were isolated and characterized either at baseline or after NGF exposure. Materials and Methods Conjunctival biopsies were obtained from 7 patients having OCP and 6 control subjects (cataract surgery). Both conjunctivas and primary FB cultures were characterised for αSMA, NGF and trkANGFR/p75NTR expression. Subcultures were exposed to NGF and evaluated for αSMA, NGF, trkANGFR/p75NTR expression as well as TGFβ1/IL4 release. For analysis, early and advanced subgroups were defined according to clinical parameters. Results OCP-conjunctivas showed αSMA-expressing FBs and high NGF levels. Advanced OCP-FBs showed higher αSMA expression associated with higher p75NTR and lower trkANGFR expression, as compared to early counterparts. αSMA expression was in keeping with disease severity and correlated to p75NTR. NGF exposure did not affect trkANGFR levels in early OCP-FBs while decreased both αSMA/p75NTR expression and TGFβ1/IL4 release. These effects were not observed in advanced OCP-FBs. Conclusions Taken together, these data are suggestive for a NGF/p75NTR task in the potential modulation of OCP fibrosis and encourages further studies to fully understand the underlying mechanism occurring in fibrosis. NGF/p75NTR might be viewed as a potential therapeutic target.
Collapse
Affiliation(s)
| | | | - Antonio Di Zazzo
- Department of Ophthalmology, University Campus Bio-Medico, Rome, Italy
| | | | | | - Eduardo Maria Normando
- Glaucoma & Retinal Degeneration Research Group, Visual Neurosciences, UCL Institute of Ophthalmology, 11–43 Bath Street, London, EC1V 9EL, United Kingdom
- The Western Eye Hospital, Imperial College Healthcare Trust, Marylebone Road, London, NW1 5QH, United Kingdom
| | - Alessandro Lambiase
- Ophthalmology, Dept. Organi di senso, University of Rome “Sapienza”, Rome, Italy
| | - Stefano Bonini
- Department of Ophthalmology, University Campus Bio-Medico, Rome, Italy
- * E-mail: (AM); (SB)
| |
Collapse
|
11
|
Qiu LQ, Lai WS, Bradbury A, Zeldin DC, Blackshear PJ. Tristetraprolin (TTP) coordinately regulates primary and secondary cellular responses to proinflammatory stimuli. J Leukoc Biol 2015; 97:723-36. [PMID: 25657290 DOI: 10.1189/jlb.3a0214-106r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
TTP is an anti-inflammatory protein that acts by binding to AREs in its target mRNAs, such as Tnf mRNA, and promoting their deadenylation and decay. TNF released from inflammatory cells can then stimulate gene expression in tissue cells, such as fibroblasts. To determine whether TTP could affect the decay of TNF-induced transcripts in fibroblasts, we exposed primary embryonic fibroblasts and stable fibroblast cell lines, derived from WT and TTP KO mice, to TNF. The decay rates of transcripts encoded by several early-response genes, including Cxcl1, Cxcl2, Ier3, Ptgs2, and Lif, were significantly slowed in TTP-deficient fibroblasts after TNF stimulation. These changes were associated with TTP-dependent increases in CXCL1, CXCL2, and IER3 protein levels. The TTP-susceptible transcripts contained multiple, conserved, closely spaced, potential TTP binding sites in their 3'-UTRs. WT TTP, but not a nonbinding TTP zinc finger mutant, bound to RNA probes that were based on the mRNA sequences of Cxcl1, Cxcl2, Ptgs2, and Lif. TTP-promoted decay of transcripts encoding chemokines and other proinflammatory mediators is thus a critical post-transcriptional regulatory mechanism in the response of secondary cells, such as fibroblasts, to TNF released from primary immune cells.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Wi S Lai
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Alyce Bradbury
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Darryl C Zeldin
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Perry J Blackshear
- *Laboratories of Signal Transduction and Respiratory Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA; and Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
12
|
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ J 2015; 79:245-54. [PMID: 25744738 DOI: 10.1253/circj.cj-14-1372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac fibroblasts play critical roles in maintaining normal cardiac function and in cardiac remodeling during pathological conditions such as myocardial infarction (MI). Adult cardiomyocytes (CMs) have little to no regenerative capacity; damaged CMs in the heart after MI are replaced by cardiac fibroblasts that become activated and transform into myofibroblasts, which preserves the structural integrity. Unfortunately, this process typically causes fibrosis and reduces cardiac function. Directly reprogramming adult cardiac fibroblasts into induced CM-like cells (iCMs) holds great promise for restoring heart function. Direct cardiac reprogramming also provides a new research model to investigate which transcription factors and microRNAs control the molecular network that guides cardiac cell fate. We review the approaches and characterization of in vitro and in vivo reprogrammed iCMs from different laboratories, and outline the future directions needed to translate this new approach into a practical therapy for damaged hearts.
Collapse
Affiliation(s)
- Ji-Dong Fu
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, USA; Gladstone Institute of Cardiovascular Disease, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | |
Collapse
|
13
|
Molecular and cellular basis of scleroderma. J Mol Med (Berl) 2014; 92:913-24. [DOI: 10.1007/s00109-014-1190-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/02/2014] [Accepted: 06/05/2014] [Indexed: 01/11/2023]
|
14
|
Stenmark KR, Nozik-Grayck E, Gerasimovskaya E, Anwar A, Li M, Riddle S, Frid M. The adventitia: Essential role in pulmonary vascular remodeling. Compr Physiol 2013; 1:141-61. [PMID: 23737168 DOI: 10.1002/cphy.c090017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rapidly emerging concept is that the vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and comprises a variety of cells including fibroblasts, immunomodulatory cells, resident progenitor cells, vasa vasorum endothelial cells, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to then influence tone and structure of the vessel wall. Experimental data indicate that the adventitial fibroblast, the most abundant cellular constituent of adventitia, is a critical regulator of vascular wall function. In response to vascular stresses such as overdistension, hypoxia, or infection, the adventitial fibroblast is activated and undergoes phenotypic changes that include proliferation, differentiation, and production of extracellular matrix proteins and adhesion molecules, release of reactive oxygen species, chemokines, cytokines, growth factors, and metalloproteinases that, collectively, affect medial smooth muscle cell tone and growth directly and that stimulate recruitment and retention of circulating inflammatory and progenitor cells to the vessel wall. Resident dendritic cells also participate in "sensing" vascular stress and actively communicate with fibroblasts and progenitor cells to simulate repair processes that involve expansion of the vasa vasorum, which acts as a conduit for further delivery of inflammatory/progenitor cells. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of pulmonary vascular wall function and structure from the "outside in."
Collapse
Affiliation(s)
- Kurt R Stenmark
- University of Colorado Denver - Pediatric Critical Care, Aurora, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Goruppi S, Dotto GP. Mesenchymal stroma: primary determinant and therapeutic target for epithelial cancer. Trends Cell Biol 2013; 23:593-602. [PMID: 24074947 DOI: 10.1016/j.tcb.2013.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/19/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022]
Abstract
Multifocal and recurrent epithelial tumors, originating from either dormant or de novo cancer cells, are major causes of morbidity and mortality. The age-dependent increase of cancer incidence has long been assumed to result from the sequential accumulation of cancer-driving or -facilitating mutations with induction of cellular senescence as a protective mechanism. However, recent evidence suggests that the initiation and development of epithelial cancer results from a close interplay with its altered tissue microenvironment, with chronic inflammation, stromal senescence, autophagy, and the activation of cancer-associated fibroblasts (CAFs) playing possible primary roles. We will discuss recent progress in these areas, and highlight how this understanding may be used for devising novel preventive and therapeutic approaches to the epithelial cancer problem.
Collapse
Affiliation(s)
- Sandro Goruppi
- Cutaneous Biology Research Center, Massachusetts General Hospital, 13th Street Building 149, Charlestown, MA 02129, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
16
|
MicroRNAs in pulmonary arterial remodeling. Cell Mol Life Sci 2013; 70:4479-94. [PMID: 23739951 PMCID: PMC3827895 DOI: 10.1007/s00018-013-1382-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 12/12/2022]
Abstract
Pulmonary arterial remodeling is a presently irreversible pathologic hallmark of pulmonary arterial hypertension (PAH). This complex disease involves pathogenic dysregulation of all cell types within the small pulmonary arteries contributing to vascular remodeling leading to intimal lesions, resulting in elevated pulmonary vascular resistance and right heart dysfunction. Mutations within the bone morphogenetic protein receptor 2 gene, leading to dysregulated proliferation of pulmonary artery smooth muscle cells, have been identified as being responsible for heritable PAH. Indeed, the disease is characterized by excessive cellular proliferation and resistance to apoptosis of smooth muscle and endothelial cells. Significant gene dysregulation at the transcriptional and signaling level has been identified. MicroRNAs are small non-coding RNA molecules that negatively regulate gene expression and have the ability to target numerous genes, therefore potentially controlling a host of gene regulatory and signaling pathways. The major role of miRNAs in pulmonary arterial remodeling is still relatively unknown although research data is emerging apace. Modulation of miRNAs represents a possible therapeutic target for altering the remodeling phenotype in the pulmonary vasculature. This review will focus on the role of miRNAs in regulating smooth muscle and endothelial cell phenotypes and their influence on pulmonary remodeling in the setting of PAH.
Collapse
|
17
|
Stenmark KR, Yeager ME, El Kasmi KC, Nozik-Grayck E, Gerasimovskaya EV, Li M, Riddle SR, Frid MG. The adventitia: essential regulator of vascular wall structure and function. Annu Rev Physiol 2012; 75:23-47. [PMID: 23216413 PMCID: PMC3762248 DOI: 10.1146/annurev-physiol-030212-183802] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The vascular adventitia acts as a biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. It is the most complex compartment of the vessel wall and is composed of a variety of cells, including fibroblasts, immunomodulatory cells (dendritic cells and macrophages), progenitor cells, vasa vasorum endothelial cells and pericytes, and adrenergic nerves. In response to vascular stress or injury, resident adventitial cells are often the first to be activated and reprogrammed to influence the tone and structure of the vessel wall; to initiate and perpetuate chronic vascular inflammation; and to stimulate expansion of the vasa vasorum, which can act as a conduit for continued inflammatory and progenitor cell delivery to the vessel wall. This review presents the current evidence demonstrating that the adventitia acts as a key regulator of vascular wall function and structure from the outside in.
Collapse
Affiliation(s)
- Kurt R. Stenmark
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Michael E. Yeager
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Karim C. El Kasmi
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Eva Nozik-Grayck
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | | | - Min Li
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Suzette R. Riddle
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| | - Maria G. Frid
- University of Colorado Denver, Division of Pediatric Critical Care, Aurora, CO 80045
| |
Collapse
|
18
|
Transcription factor networks in invasion-promoting breast carcinoma-associated fibroblasts. CANCER MICROENVIRONMENT 2012; 6:91-107. [PMID: 23090154 DOI: 10.1007/s12307-012-0121-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/04/2012] [Indexed: 12/31/2022]
Abstract
Carcinoma-associated fibroblasts (CAFs) contribute to both tumor growth and cancer progression. In this report, we applied an emerging transcription factor (TF) activity array to fibroblasts to capture the activity of the intracellular signaling network and to define a signature that distinguishes mammary CAFs from normal mammary fibroblasts. Normal fibroblasts that restrained cancer cell invasion developed into an invasion-promoting CAF phenotype through exposure to conditioned medium from MDA-MB-231 breast cancer cells. A myofibroblast-like CAF cell line expressing high levels of smooth muscle actin was compared to normal mammary fibroblasts before and after induction. Comparison of TF activity profiles for all three fibroblast types identified a TF activity signature common to CAFs which included activation of reporters for TFs ELK1, GATA1, retinoic acid receptor (RAR), serum response factor (SRF), and vitamin D receptor (VDR). Additionally, CAFs resembling myofibroblasts, relative to normal fibroblasts, had elevated activation corresponding to NF-kappaB, RUNX2, and YY1, and distinct activity patterns for several differentiation-related TF reporters. Induction of CAFs by exposure of normal fibroblasts to conditioned medium from MDA-MB-231 cells resulted in increased activation of reporters for HIF1, several STAT TFs, and proliferation-related TFs such as AP1. Myofibroblast-like CAFs and induced normal mammary fibroblasts promoted invasion of breast cancer cells by distinct mechanisms, consistent with their distinct patterns of TF activation. The TF activity profiles of CAF subtypes provide an overview of intracellular signaling associated with the induction of a pro-invasive stroma, and provide a mechanistic link between the microenvironmental stimuli and phenotypic response.
Collapse
|
19
|
Fontanilla MR, Espinosa LG. In VitroandIn VivoAssessment of Oral Autologous Artificial Connective Tissue Characteristics That Influence Its Performance as a Graft. Tissue Eng Part A 2012; 18:1857-66. [DOI: 10.1089/ten.tea.2011.0421] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Marta Raquel Fontanilla
- Tissue Engineering Group, Department of Pharmacy, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lady Giovanna Espinosa
- Tissue Engineering Group, Department of Pharmacy, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
20
|
Differential expression of matrix metalloproteases in human fibroblasts with different origins. Biochem Res Int 2012; 2012:875742. [PMID: 22500233 PMCID: PMC3303709 DOI: 10.1155/2012/875742] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/25/2011] [Indexed: 01/07/2023] Open
Abstract
Fibroblasts are widely distributed cells and are responsible for the deposition of extracellular matrix (ECM) components but also secrete ECM-degrading matrix metalloproteases. A finely balanced equilibrium between deposition and degradation of ECM is essential for structural integrity of tissues. In the past, fibroblasts have typically been understood as a uniform cell population with comparable functions regardless of their origin. Here, we determined growth curves of fibroblasts derived from heart, skin, and lung and clearly show the lowest proliferation rate for cardiac fibroblasts. Furthermore, we examined basal expression levels of collagen and different MMPs in these three types of fibroblasts and compared these concerning their site of origin. Interestingly, we found major differences in basal mRNA expression especially for MMP1 and MMP3. Moreover, we treated fibroblasts with TNF-α and observed different alterations under these proinflammatory conditions. In conclusion, fibroblasts show different properties in proliferation and MMP expression regarding their originated tissue.
Collapse
|
21
|
López-Guisa JM, Cai X, Collins SJ, Yamaguchi I, Okamura DM, Bugge TH, Isacke CM, Emson CL, Turner SM, Shankland SJ, Eddy AA. Mannose receptor 2 attenuates renal fibrosis. J Am Soc Nephrol 2011; 23:236-51. [PMID: 22095946 DOI: 10.1681/asn.2011030310] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mannose receptor 2 (Mrc2) expresses an extracellular fibronectin type II domain that binds to and internalizes collagen, suggesting that it may play a role in modulating renal fibrosis. Here, we found that Mrc2 levels were very low in normal kidneys but subsets of interstitial myofibroblasts and macrophages upregulated Mrc2 after unilateral ureteral obstruction (UUO). Renal fibrosis and renal parenchymal damage were significantly worse in Mrc2-deficient mice. Similarly, Mrc2-deficient Col4α3(-/-) mice with hereditary nephritis had significantly higher levels of total kidney collagen, serum BUN, and urinary protein than Mrc2-sufficient Col4α3(-/-) mice. The more severe phenotype seemed to be the result of reduced collagen turnover, because procollagen III (α1) mRNA levels and fractional collagen synthesis in the wild-type and Mrc2-deficient kidneys were similar after UUO. Although Mrc2 associates with the urokinase receptor, differences in renal urokinase activity did not account for the increased fibrosis in the Mrc2-deficient mice. Treating wild-type mice with a cathepsin inhibitor, which blocks proteases implicated in Mrc2-mediated collagen degradation, worsened UUO-induced renal fibrosis. Cathepsin mRNA profiles were similar in Mrc2-positive fibroblasts and macrophages, and Mrc2 genotype did not alter relative cathepsin mRNA levels. Taken together, these data establish an important fibrosis-attenuating role for Mrc2-expressing renal interstitial cells and suggest the involvement of a lysosomal collagen turnover pathway.
Collapse
Affiliation(s)
- Jesús M López-Guisa
- Seattle Children's Research Institute and Department of Pediatrics, University of Washington, Seattle, WA 98101-1309, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kumar S, Gupta S. Thymosin beta 4 prevents oxidative stress by targeting antioxidant and anti-apoptotic genes in cardiac fibroblasts. PLoS One 2011; 6:e26912. [PMID: 22046407 PMCID: PMC3201979 DOI: 10.1371/journal.pone.0026912] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 10/06/2011] [Indexed: 12/19/2022] Open
Abstract
Rationale Thymosin beta-4 (Tβ4) is a ubiquitous protein with diverse functions relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory responses. The effecter molecules targeted by Tβ4 for cardiac protection remains unknown. The purpose of this study is to determine the molecules targeted by Tβ4 that mediate cardio-protection under oxidative stress. Methods Rat neonatal fibroblasts cells were exposed to hydrogen peroxide (H2O2) in presence and absence of Tβ4 and expression of antioxidant, apoptotic and pro-fibrotic genes was evaluated by quantitative real-time PCR and western blotting. Reactive oxygen species (ROS) levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant and antiapoptotic genes were silenced by siRNA transfections in cardiac fibroblasts and the effect of Tβ4 on H2O2-induced profibrotic events was evaluated. Results Pre-treatment with Tβ4 resulted in reduction of the intracellular ROS levels induced by H2O2 in the cardiac fibroblasts. This was associated with an increased expression of antioxidant enzymes Cu/Zn superoxide dismutase (SOD) and catalase and reduction of Bax/Bcl2 ratio. Tβ4 treatment reduced the expression of pro-fibrotic genes [connective tissue growth factor (CTGF), collagen type-1 (Col-I) and collagen type-3 (Col-III)] in the cardiac fibroblasts. Silencing of Cu/Zn-SOD and catalase gene triggered apoptotic cell death in the cardiac fibroblasts, which was prevented by treatment with Tβ4. Conclusion This is the first report that exhibits the targeted molecules modulated by Tβ4 under oxidative stress utilizing the cardiac fibroblasts. Tβ4 treatment prevented the profibrotic gene expression in the in vitro settings. Our findings indicate that Tβ4 selectively targets and upregulates catalase, Cu/Zn-SOD and Bcl2, thereby, preventing H2O2-induced profibrotic changes in the myocardium. Further studies are warranted to elucidate the signaling pathways involved in the cardio-protection afforded by Tβ4.
Collapse
Affiliation(s)
- Sandeep Kumar
- Division of Molecular Cardiology, Department of Molecular Medicine, College of Medicine, Texas A&M Health Science Center, Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
| | - Sudhiranjan Gupta
- Division of Molecular Cardiology, Department of Molecular Medicine, College of Medicine, Texas A&M Health Science Center, Scott & White, Central Texas Veterans Health Care System, Temple, Texas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Rudnick JA, Arendt LM, Klebba I, Hinds JW, Iyer V, Gupta PB, Naber SP, Kuperwasser C. Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS One 2011; 6:e24605. [PMID: 21957456 PMCID: PMC3177828 DOI: 10.1371/journal.pone.0024605] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/14/2011] [Indexed: 12/31/2022] Open
Abstract
Fibroblasts are important in orchestrating various functions necessary for maintaining normal tissue homeostasis as well as promoting malignant tumor growth. Significant evidence indicates that fibroblasts are functionally heterogeneous with respect to their ability to promote tumor growth, but markers that can be used to distinguish growth promoting from growth suppressing fibroblasts remain ill-defined. Here we show that human breast fibroblasts are functionally heterogeneous with respect to tumor-promoting activity regardless of whether they were isolated from normal or cancerous breast tissues. Rather than significant differences in fibroblast marker expression, we show that fibroblasts secreting abundant levels of prostaglandin (PGE2), when isolated from either reduction mammoplasty or carcinoma tissues, were both capable of enhancing tumor growth in vivo and could increase the number of cancer stem-like cells. PGE2 further enhanced the tumor promoting properties of fibroblasts by increasing secretion of IL-6, which was necessary, but not sufficient, for expansion of breast cancer stem-like cells. These findings identify a population of fibroblasts which both produce and respond to PGE2, and that are functionally distinct from other fibroblasts. Identifying markers of these cells could allow for the targeted ablation of tumor-promoting and inflammatory fibroblasts in human breast cancers.
Collapse
Affiliation(s)
- Jenny A. Rudnick
- Graduate Program in Cell, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Lisa M. Arendt
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Ina Klebba
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - John W. Hinds
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Vandana Iyer
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Piyush B. Gupta
- Whitehead Institute for Biomedical Research, Broad Institute, Department of Biology, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, United States of America
| | - Stephen P. Naber
- Department of Pathology, Tufts Medical Center, Boston, Massachusetts, United States of America
| | - Charlotte Kuperwasser
- Graduate Program in Cell, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Takeda N, Manabe I. Cellular Interplay between Cardiomyocytes and Nonmyocytes in Cardiac Remodeling. Int J Inflam 2011; 2011:535241. [PMID: 21941677 PMCID: PMC3175723 DOI: 10.4061/2011/535241] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/28/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023] Open
Abstract
Cardiac hypertrophy
entails complex structural remodeling involving
rearrangement of muscle fibers, interstitial
fibrosis, accumulation of extracellular matrix,
and angiogenesis. Many of the processes
underlying cardiac remodeling have features in
common with chronic inflammatory processes.
During these processes, nonmyocytes, such as
endothelial cells, fibroblasts, and immune cells,
residing in or infiltrating into the myocardial
interstitium play active roles. This paper
mainly addresses the functional roles of
nonmyocytes during cardiac remodeling. In
particular, we focus on the communication
between cardiomyocytes and nonmyocytes through
direct cell-cell interactions and
autocrine/paracrine-mediated
pathways.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cell and Developmental Biology and Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
25
|
|
26
|
Abstract
Fibroblasts are at the heart of cardiac function and are the principal determinants of cardiac fibrosis. Nevertheless, cardiac fibroblasts remain poorly characterized in molecular terms. Evidence is evolving that the cardiac fibroblast is a highly heterogenic cell population, and that such heterogeneity is caused by the distinct origins of fibroblasts in the heart. Cardiac fibroblasts can derive either from resident fibroblasts, from endothelial cells via an endothelial-mesenchynmal transition or from bone marrow-derived circulating progenitor cells, monocytes and fibrocytes. Here, we review the function and origin of fibroblasts in cardiac fibrosis.NB. The information given is correct.
Collapse
Affiliation(s)
- Guido Krenning
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Elisabeth M. Zeisberg
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Raghu Kalluri
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Harvard-MIT Division of Health Sciences and Technology, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Enoch S, Wall I, Peake M, Davies L, Farrier J, Giles P, Baird D, Kipling D, Price P, Moseley R, Thomas D, Stephens P. Increased Oral Fibroblast Lifespan Is Telomerase-independent. J Dent Res 2009; 88:916-21. [DOI: 10.1177/0022034509342979] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Oral mucosal wound-healing is characterized by rapid re-epithelialization and remodeling, with minimal scar formation. This may be attributed to the distinct phenotypic characteristics of the resident fibroblasts. To test this hypothesis, we investigated patient-matched oral mucosal and skin fibroblasts. Compared with skin fibroblasts, oral mucosal fibroblasts had longer proliferative lifespans, underwent more population doublings, and experienced senescence later, which was directly related to longer telomere lengths within oral mucosal fibroblasts. The presence of these longer telomeres was independent of telomerase expression, since both oral oral mucosal fibroblasts and skin fibroblasts were negative for active telomerase, as assessed according to the Telomeric Repeat Amplification Protocol. This study has demonstrated that, compared with skin fibroblasts, oral mucosal fibroblasts are ‘younger’, with a more embryonic/fetal-like phenotype that may provide a notable advantage for their ability to repair wounds in a scarless fashion.
Collapse
Affiliation(s)
- S. Enoch
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - I. Wall
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - M. Peake
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - L. Davies
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - J. Farrier
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - P. Giles
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - D. Baird
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - D. Kipling
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - P. Price
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - R. Moseley
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - D. Thomas
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| | - P. Stephens
- Wound Biology Group, Cardiff Institute of Tissue Engineering and Repair, Tissue Engineering and Reparative Dentistry, School of Dentistry,
- Dept. of Pathology, School of Medicine, and
- Wound Healing Research Unit, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XY, Wales, UK
| |
Collapse
|
28
|
Gene and microRNA expression signatures of human mesenchymal stromal cells in comparison to fibroblasts. Cell Tissue Res 2008; 335:565-73. [DOI: 10.1007/s00441-008-0729-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 10/27/2008] [Indexed: 01/08/2023]
|
29
|
Joshi SD, Webb K. Variation of cyclic strain parameters regulates development of elastic modulus in fibroblast/substrate constructs. J Orthop Res 2008; 26:1105-13. [PMID: 18327797 DOI: 10.1002/jor.20626] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dynamic mechanical culture systems are a widely studied approach for improving the functional mechanical properties of tissue engineering constructs intended for loading-bearing orthopedic applications such as tendon/ligament reconstruction. The design of effective mechanical stimulation regimes requires a fundamental understanding of the effects of cyclic strain parameters on the resulting construct properties. Toward this end, these studies employed a modular cyclic strain bioreactor system and fibroblast-seeded, porous polyurethane substrates to systematically investigate the effect of varying cyclic strain amplitude, rate, frequency, and daily cycle number on construct mechanical properties. Significant differences were observed in response to variation of all four loading parameters tested. In general, the highest values of elastic modulus within each experimental group were observed at low to intermediate values of the experimental variables tested, corresponding to the low to subphysiological range (2.5% strain amplitude, 25%/s strain rate, 0.1-0.5 Hz frequency, and 7,200-28,800 cycles/day). These studies demonstrate that fibroblasts are sensitive and responsive to multiple characteristics of their mechanical environment, and suggest that systematic optimization of dynamic culture conditions may be useful for the acceleration of construct maturation and mechanical function.
Collapse
Affiliation(s)
- Sagar D Joshi
- Department of Bioengineering, Micro-Environmental Engineering Laboratory, Clemson University, 501 Rhodes Research Center, Clemson, South Carolina 29634, USA.
| | | |
Collapse
|
30
|
Abstract
Stromal-epithelial interactions mediated by paracrine signaling mechanisms dictate prostate development and progression of prostate cancer. The regulatory role of androgens in both the prostate stromal and epithelial compartments set the prostate apart from many other organs and tissues with regard to gene targeting. The identification of androgen-dependent prostate epithelial promoters has allowed successful gene targeting to the prostate epithelial compartment. Currently, there are no transgenic mouse models available to specifically alter gene expression within the prostate stromal compartment. As a primary metastatic site for prostate cancer is bone, the functional dissection of the bone stromal compartment is important for understanding stromal-epithelial interactions associated with metastatic tumor growth. Use of currently available methodologies for the expression or deletion of gene expression in recent research studies has advanced our understanding of the stroma. However, the complexity of stromal heterogeneity within the prostate remains a challenge to obtaining compartment or cell-lineage-specific in vivo models necessary for furthering our understanding of prostatic developmental, benign, tumorigenic, and metastatic growth.
Collapse
Affiliation(s)
- Roger S Jackson
- Department of Urologic Surgery, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232-2765, USA
| | | | | |
Collapse
|
31
|
Barisic-Dujmovic T, Boban I, Clark SH. Regulation of collagen gene expression in the Tsk2 mouse. J Cell Physiol 2008; 215:464-71. [PMID: 17960558 DOI: 10.1002/jcp.21319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tight skin 2 (Tsk2) mutation is an ENU induced dominant mutation localized on mouse chromosome 1. While the molecular defect is unknown, Tsk2/+ mice display cutaneous thickening associated with excessive matrix production and are used as a model of scleroderma. The purpose of this study was to examine the cellular mechanisms associated with the excessive synthesis of matrix macromolecules using a collagen promoter GFP reporter transgene (pOBCol3.6GFP) as a marker of Col1a1 expression. This analysis of pOBCol3.6GFP expression in Tsk2/+ skin showed an increase in transgene activity compared to wild-type (+/+) samples. In addition, an increased area of "high" GFP fluorescence in Tsk2/+ dermis in both 1- and 4-month-old mice was observed that was also associated with an increased number of dermal fibroblasts per unit area of dermis. These data collectively suggest an important mechanism of Tsk2/+ skin fibrosis; an increased number of collagen expressing cells as well as elevated collagen expression on a per cell basis. During this study it was noted that Tsk2/+ mice appeared consistently smaller than wild-type (+/+) siblings and measurements of body length revealed a decrease (5-10%) in 1- and 2-month-old Tsk2/+ mice as well as a decrease in body weight in both age groups as compared to wild-type (+/+) control mice. Femur length was also decreased (2-9%) in Tsk2/+ mice. Finally, in contrast to Tsk/+ mice that display an emphysema-like lung pathology, histological sections of lungs from Tsk2/+ mice were normal and indistinguishable from wild-type (+/+) controls.
Collapse
Affiliation(s)
- Tatjana Barisic-Dujmovic
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
32
|
Lysy PA, Smets F, Sibille C, Najimi M, Sokal EM. Human skin fibroblasts: From mesodermal to hepatocyte-like differentiation. Hepatology 2007; 46:1574-85. [PMID: 17969047 DOI: 10.1002/hep.21839] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The phenotypic homology of fibroblasts and mesenchymal stem cells (MSCs) has been recently described. Our study investigated the in vitro potential of human skin fibroblasts to differentiate into mesodermal (osteocyte and adipocyte) and endodermal (hepatocyte) cell lineages by comparison with human bone marrow (hBM) MSCs. The endodermal potential of fibroblasts was then explored in vivo in a mouse model of liver injury. Fibroblasts were able to acquire osteocyte and adipocyte phenotypes as assessed by cytochemistry and gene expression analyses. After exposure to a specific differentiation cocktail, these cells presented hepatocyte-like morphology and acquired liver-specific markers on protein and gene expression levels. Furthermore, these fibroblast-derived hepatocyte-like cells (FDHLCs) displayed the ability to store glycogen and synthesize small amounts of urea. By gene expression analysis, we observed that fibroblasts remained in a mesenchymal-epithelial transition state after hepatocyte differentiation. Moreover, FDHLCs lost their hepatocyte-like phenotype after dedifferentiation. In vivo, human fibroblasts infused directly into the liver of hepatectomized severe combined immunodeficient (SCID) mice engrafted in situ and expressed hepatocyte markers (albumin, alpha-fetoprotein, and cytokeratin 18) together with the mesodermal marker fibronectin. Despite lower liver-specific marker expression, the in vitro and in vivo differentiation profile of fibroblasts was comparable to that of mesenchymal-derived hepatocyte-like cells (MDHLCs). In conclusion, our work demonstrates that human skin fibroblasts are able to display mesodermal and endodermal differentiation capacities and provides arguments that these cells share MSCs features both on the phenotypic and functional levels.
Collapse
Affiliation(s)
- Philippe A Lysy
- Université Catholique de Louvain et Cliniques Universitaires Saint Luc, HPED Department, PEDI Unit, Laboratory of Pediatric Hepatology and Cell Therapy, 1200 Brussels, Belgium
| | | | | | | | | |
Collapse
|
33
|
Abstract
Cardiac function is determined by the dynamic interaction of various cell types and the extracellular matrix that composes the heart. This interaction varies with the stage of development and the degree and duration of mechanical, chemical, and electrical signals between the various cell types and the ECM. Understanding how these complex signals interact at the molecular, cellular, and organ levels is critical to understanding the function of the heart under a variety of physiological and pathophysiological conditions. Quantitative approaches, both in vivo and in vitro, are essential to understand the dynamic interaction of mechanical, chemical, and electrical stimuli that govern cardiac function. The fibroblast can thus be a friend in normal function or a foe in pathophysiological conditions.
Collapse
Affiliation(s)
- Troy A Baudino
- Department of Cell and Developmental Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
34
|
Stenmark KR, Davie N, Frid M, Gerasimovskaya E, Das M. Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 2006; 21:134-45. [PMID: 16565479 DOI: 10.1152/physiol.00053.2005] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An increasing volume of experimental data indicates that the adventitial fibroblast, in both the pulmonary and systemic circulations, is a critical regulator of vascular wall function in health and disease. A rapidly emerging concept is that the vascular adventitia acts as biological processing center for the retrieval, integration, storage, and release of key regulators of vessel wall function. In response to stress or injury, resident adventitial cells can be activated and reprogrammed to exhibit different functional and structural behaviors. In fact, under certain conditions, the adventitial compartment may be considered the principal injury-sensing tissue of the vessel wall. In response to vascular stresses such as overdistension and hypoxia, the adventitial fibroblast is activated and undergoes phenotypic changes, which include proliferation, differentiation, upregulation of contractile and extracellular matrix proteins, and release of factors that directly affect medial smooth muscle cell tone and growth and that stimulate recruitment of inflammatory and progenitor cells to the vessel wall. Each of these changes in fibroblast phenotype modulates either directly or indirectly changes in overall vascular function and structure. The purpose of this review is to present the current evidence demonstrating that the adventitial fibroblast acts as a key regulator of pulmonary vascular function and structure from the "outside-in."
Collapse
Affiliation(s)
- Kurt R Stenmark
- Division of Pediatric Critical Care, University of Colorado at Denver and Health Sciences Center, Denver, Colorado, USA.
| | | | | | | | | |
Collapse
|
35
|
Acharya PS, Zukas A, Chandan V, Katzenstein ALA, Puré E. Fibroblast activation protein: a serine protease expressed at the remodeling interface in idiopathic pulmonary fibrosis. Hum Pathol 2006; 37:352-60. [PMID: 16613331 DOI: 10.1016/j.humpath.2005.11.020] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fibroblast activation protein (FAPalpha) is a member of the cell surface dipeptidyl peptidase (DPP) family of serine proteases. In its dimer form, FAPalpha exhibits gelatinase, collagenase, and DPP activity in vitro. Reactive fibroblasts in healing wounds and stromal fibroblasts associated with epithelial tumors express FAPalpha. Idiopathic pulmonary fibrosis (IPF) is a disease of the lung characterized by progressive fibrosis with no clear etiology or molecular marker for disease activity. Recently, it has been shown that fibroblast FAPalpha expression is induced in liver cirrhosis, with an expression pattern distinct from alpha-smooth muscle actin (alpha-SMA). In this study, we determine whether FAPalpha expression is selectively induced in areas of ongoing tissue remodeling characterized by fibroblast foci in IPF. Human lung tissue was obtained from patients with IPF, centrilobular emphysema, and normal lung. Immunohistochemical studies were performed using anti-FAPalpha antibody and antibodies against alpha-SMA and CD26 (DPPIV), another member of the DPP family. We found that FAPalpha was not expressed in normal human lung tissue or tissue with evidence of centriacinar emphysema, but was induced in all patients with IPF and With a pattern distinct from that of CD26 found primarily on hyperplastic alveolar epithelium. Specifically, FAPalpha was detected in fibroblast foci and in fibrotic interstitium and not in the interstitium of adjacent architecturally normal lung. Alveolar/airway epithelium and vascular smooth muscle did not express FAPalpha. This is the first report of FAPalpha expression in IPF and our results suggest that FAPalpha is selectively induced in fibrotic foci, but not in normal or emphysematous lung. Future studies will address whether FAPalpha may be used as a marker for disease activity in IPF.
Collapse
Affiliation(s)
- Pinak S Acharya
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
36
|
White ES, Atrasz RG, Hu B, Phan SH, Stambolic V, Mak TW, Hogaboam CM, Flaherty KR, Martinez FJ, Kontos CD, Toews GB. Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). Am J Respir Crit Care Med 2005; 173:112-21. [PMID: 16179636 PMCID: PMC1434700 DOI: 10.1164/rccm.200507-1058oc] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Myofibroblasts are primary effector cells in idiopathic pulmonary fibrosis (IPF). Defining mechanisms of myofibroblast differentiation may be critical to the development of novel therapeutic agents. OBJECTIVE To show that myofibroblast differentiation is regulated by phosphatase and tensin homolog deleted on chromosome 10 (PTEN) activity in vivo, and to identify a potential mechanism by which this occurs. METHODS We used tissue sections of surgical lung biopsies from patients with IPF to localize expression of PTEN and alpha-smooth muscle actin (alpha-SMA). We used cell culture of pten(-/-) and wild-type fibroblasts, as well as adenoviral strategies and pharmacologic inhibitors, to determine the mechanism by which PTEN inhibits alpha-SMA, fibroblast proliferation, and collagen production. RESULTS In human lung specimens of IPF, myofibroblasts within fibroblastic foci demonstrated diminished PTEN expression. Furthermore, inhibition of PTEN in mice worsened bleomycin-induced fibrosis. In pten(-/-) fibroblasts, and in normal fibroblasts in which PTEN was inhibited, alpha-SMA, proliferation, and collagen production was upregulated. Addition of transforming growth factor-beta to wild-type cells, but not pten(-/-) cells, resulted in increased alpha-SMA expression in a time-dependent fashion. In pten(-/-) cells, reconstitution of PTEN decreased alpha-SMA expression, proliferation, and collagen production, whereas overexpression of PTEN in wild-type cells inhibited transforming growth factor-beta-induced myofibroblast differentiation. It was observed that both the protein and lipid phosphatase actions of PTEN were capable of modulating the myofibroblast phenotype. CONCLUSIONS The results indicate that in IPF, myofibroblasts have diminished PTEN expression. Inhibition of PTEN in vivo promotes fibrosis, and PTEN inhibits myofibroblast differentiation in vitro.
Collapse
Affiliation(s)
- Eric S White
- Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, 6301 MSRB III/0642, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0642, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ishii G, Sangai T, Sugiyama K, Ito T, Hasebe T, Endoh Y, Magae J, Ochiai A. In vivo characterization of bone marrow-derived fibroblasts recruited into fibrotic lesions. Stem Cells 2005; 23:699-706. [PMID: 15849177 DOI: 10.1634/stemcells.2004-0183] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibroblasts, which are widely distributed and play a key part in tissue fibrosis, are phenotypically and functionally heterogeneous. Recent studies reported that bone marrow can be a source of tissue fibroblast. In the study reported here, we investigated in vivo characterization of bone marrow-derived fibroblasts recruited into various fibrotic lesions. Mice were engrafted with bone marrow isolated from transgenic mice expressing green fluorescent protein (GFP), and fibrotic lesions were induced by cancer implantation (skin), excisional wounding (skin), and bleomycin administration (lung). A small population of GFP+ fibroblast was found even in nonfibrotic skin (8.7% +/- 4.6%) and lung (8.9% +/- 2.5%). The proportion of GFP+ fibroblasts was significantly increased after cancer implantation(59.7% +/- 16.3%) and excisional wounding (32.2% +/- 4.8%), whereas it was not elevated after bleomycin administration (7.1% +/- 2.4%). Almost all GFP+ fibroblasts in fibrotic lesions expressed type I collagen, suggesting that bone marrow-derived fibroblasts would contribute to tissue fibrosis. GFP+ fibroblasts expressed CD45, Thy-1, and alpha-smooth muscle actin at various proportions. Our results suggested that bone marrow-derived fibroblasts expressed several fibroblastic markers in vivo and could be efficiently recruited into fibrotic lesions in response to injurious stimuli; however, the degree of recruitment frequency might depend on the tissue microenvironment.
Collapse
Affiliation(s)
- Genichiro Ishii
- Pathology Division, National Cancer Center Research Institute East, Kashiwa-City, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Brown RD, Ambler SK, Mitchell MD, Long CS. The cardiac fibroblast: therapeutic target in myocardial remodeling and failure. Annu Rev Pharmacol Toxicol 2005; 45:657-87. [PMID: 15822192 DOI: 10.1146/annurev.pharmtox.45.120403.095802] [Citation(s) in RCA: 509] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac fibroblasts play a central role in the maintenance of extracellular matrix in the normal heart and as mediators of inflammatory and fibrotic myocardial remodeling in the injured and failing heart. In this review, we evaluate the cardiac fibroblast as a therapeutic target in heart disease. Unique features of cardiac fibroblast cell biology are discussed in relation to normal and pathophysiological cardiac function. The contribution of cardiac fibrosis as an independent risk factor in the outcome of heart failure is considered. Candidate drug therapies that derive benefit from actions on cardiac fibroblasts are summarized, including inhibitors of angiotensin-aldosterone systems, endothelin receptor antagonists, statins, anticytokine therapies, matrix metalloproteinase inhibitors, and novel antifibrotic/anti-inflammatory agents. These findings point the way to future challenges in cardiac fibroblast biology and pharmacotherapy.
Collapse
Affiliation(s)
- R Dale Brown
- Division of Cardiology, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | | | | | |
Collapse
|
39
|
Ishii G, Sangai T, Ito T, Hasebe T, Endoh Y, Sasaki H, Harigaya K, Ochiai A. In vivo andin vitro characterization of human fibroblasts recruited selectively into human cancer stroma. Int J Cancer 2005; 117:212-20. [PMID: 15900602 DOI: 10.1002/ijc.21199] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Fibroblasts, which are a major component of cancer-induced stroma, can have a significant impact on the progression of adjacent malignant epithelia. To characterize fibroblasts recruited into cancer-induced stroma, we examined the recruitment efficiency of 9 human fibroblast cell lines into experimental tumors generated in immunodeficient mice. Green fluorescence protein (GFP)-labeled fibroblast cell lines and human pancreatic cancer cell line Capan-1 were injected i.p. at different sites; the GFP-labeled cells within xenografts were then analyzed. KM104GFP (bone marrow) and VA-13GFP (lung) were selectively recruited into cancer stroma more efficiently than the other cell lines. KM104GFP cells did not affect tumor volume; however, VA-13GFP cells increased tumor volume by about 2-fold. After 5 cyclic in vivo passages of KM104GFP in Capan-1, we selected a subpopulation with an 8.4-fold higher recruitment efficiency (KM104GFP-5G) compared to parental KM104GFP. KM104GFP-5G also exhibited higher chemotaxis and chemoinvasion activity compared to KM104GFP in response to cancer-released chemoattractant(s). Oligonucleotide microarray analysis identified 8 genes with >3-fold upregulation and 6 genes with >3-fold downregulation in KM104GFP-5G. Immunohistochemistry confirmed that fibroblasts recruited into pancreatic cancer stroma strongly expressed carbonic anhydrase IX and keratin-8, whose transcripts were upregulated in KM104GFP-5G by oligonucleotide microarray analysis, whereas their expression in fibroblasts within noncancerous pancreatic stroma were under the detection level. Our results indicate that fibroblast recruitment is not selective with respect to organ origin and that particular fibroblast subpopulations with specific phenotypic characteristics could be recruited efficiently into cancer-induced stroma.
Collapse
Affiliation(s)
- Genichiro Ishii
- Pathology Division, National Cancer Center Research Institute East, Kashiwa, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Xu X, Rivkind A, Pikarsky A, Pappo O, Bischoff SC, Levi-Schaffer F. Mast cells and eosinophils have a potential profibrogenic role in Crohn disease. Scand J Gastroenterol 2004; 39:440-7. [PMID: 15180181 DOI: 10.1080/00365520310008566] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Mast cells and eosinophils have an important role in allergic inflammation and probably also in chronic inflammatory diseases resulting in fibrosis, such as Crohn disease where fibrosis is present as strictures. The involvement of mast cells and eosinophils in Crohn disease fibrosis was investigated. METHODS Biopsies from diseased foci were stained for mast cells, eosinophils, anti-collagen type IV and VIII, laminin and alpha-smooth muscle actin (alpha-SMA) (IHC). Fibroblasts outgrown from the biopsies and a normal fetal intestinal fibroblast line were cultured in the presence of the human mast cell line HMC-1, or of human peripheral blood eosinophil (MACS, purity > 98%) sonicates, or of selected mediators. Fibroblast proliferation (3H-thymidine), collagen synthesis ([3H]-proline) and collagen gel contraction were evaluated. RESULTS Mast cells were present in all the biopsies and only faintly positive for extra cellular matrix (ECM) products. Pronounced eosinophilia was detected in only two cases. Mast cell sonicates increased both Crohn disease (alpha-SMA positive) and control fibroblast proliferation, decreased collagen production and increased collagen gel contraction. Eosinophil sonicates increased fibroblast proliferation, gel contraction and collagen production. TNF-alpha decreased collagen production. Histamine, tryptase and chymase had no influence. CONCLUSIONS These in vitro data show that mast cells and eosinophils could be involved in modulating Crohn disease fibrosis by directly influencing intestinal fibroblast properties.
Collapse
Affiliation(s)
- X Xu
- Dept. of Pharmacology, School of Pharmacy, David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
41
|
Jun JB, Kuechle M, Harlan JM, Elkon KB. Fibroblast and endothelial apoptosis in systemic sclerosis. Curr Opin Rheumatol 2004; 15:756-60. [PMID: 14569206 DOI: 10.1097/00002281-200311000-00012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Systemic sclerosis is a disease characterized by vascular and skin changes associated with activation of fibroblasts and increased synthesis of matrix components. These abnormalities lead to fibrosis and impaired function of internal organs such as the lung, kidney, and gastrointestinal tract. Recent evidence suggests that although activation of cells in and around the blood vessels and in the skin occurs in systemic sclerosis, injury to the vascular endothelium and defective apoptosis of skin fibroblasts may also contribute to disease. The purpose of this review is to discuss these findings in the context of the pathophysiology of systemic sclerosis. RECENT FINDINGS This review highlights concepts and recent findings relating to apoptosis of vascular endothelium and skin fibroblasts. Important paradigms of fibroblast cell death in wound healing and keloid formation are discussed. Recent observations describing resistance of systemic sclerosis fibroblasts to Fas-mediated apoptosis and activation of the antiapoptotic protein kinase, Akt, are mentioned as possible contributors to fibroblast selection in this disease. SUMMARY Improved understanding of how death and survival signals affect vascular endothelial cells and skin and visceral fibroblasts will lead to new approaches to therapy.
Collapse
Affiliation(s)
- Jae-Bum Jun
- Division of Rheumatology, Hospital for Rheumatic Diseases, Hanyang University School of Medicine, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 2004. [PMID: 14679171 DOI: 10.1172/jci200320530] [Citation(s) in RCA: 1811] [Impact Index Per Article: 86.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a central mechanism for diversifying the cells found in complex tissues. This dynamic process helps organize the formation of the body plan, and while EMT is well studied in the context of embryonic development, it also plays a role in the genesis of fibroblasts during organ fibrosis in adult tissues. Emerging evidence from studies of renal fibrosis suggests that more than a third of all disease-related fibroblasts originate from tubular epithelia at the site of injury. This review highlights recent advances in the process of EMT signaling in health and disease and how it may be attenuated or reversed by selective cytokines and growth factors.
Collapse
Affiliation(s)
- Raghu Kalluri
- Center for Matrix Biology, Beth Israel Deaconess Medical Center, 330 Brookline Ave. (DANA 514), Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
43
|
Ishii G, Sangai T, Oda T, Aoyagi Y, Hasebe T, Kanomata N, Endoh Y, Okumura C, Okuhara Y, Magae J, Emura M, Ochiya T, Ochiai A. Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 2003; 309:232-40. [PMID: 12943687 DOI: 10.1016/s0006-291x(03)01544-4] [Citation(s) in RCA: 237] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To confirm whether human cancer-induced stromal cells are derived from bone marrow, bone marrow (BM) cells obtained from beta-galactosidase transgenic and recombination activating gene 1 (RAG-1) deficient double-mutant mice (H-2b) were transplanted into sublethally irradiated severe combined immunodeficient (SCID) mice (H-2d). The human pancreatic cancer cell line Capan-1 was subcutaneously xenotransplanted into SCID recipients and stromal formation was analyzed on day 14 and on day 28. Immunohistochemical and immunofluorescence studies revealed that BM-derived endothelial cells (X-gal/CD31 or H-2b/CD31 double-positive cells) and myofibroblasts (X-gal/alpha-smooth muscle actin or H-2b/alpha-smooth muscle actin double-positive cells) were present within and around the cancer nests. On day 14, the frequencies of BM-derived endothelial cells and BM-derived myofibroblasts were 25.3+/-4.4% and 12.7+/-9.6%, respectively. On day 28, the frequency of BM-derived endothelial cells was 26.7+/-9.7%, which was similar to the value on day 14. However, the frequency of BM-derived myofibroblasts was significantly higher (39.8+/-17.1%) on day 28 than on day 14 (P<0.05). The topoisomerase IIalpha-positive ratio was 2.2+/-1.2% for the H-2b-positive myofibroblasts, as opposed to only 0.3+/-0.4% for the H-2b-negative myofibroblasts, significant proliferative activity was observed in the BM-derived myofibroblasts (P<0.05). Our results indicate that BM-derived myofibroblasts become a major component of cancer-induced stromal cells in the later stage of tumor development.
Collapse
Affiliation(s)
- Genichiro Ishii
- Pathology Division, National Cancer Center Research Institute East, 6-5-1, Kashiwanoha, Kashiwa-City, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yurovsky VV. Tumor necrosis factor-related apoptosis-inducing ligand enhances collagen production by human lung fibroblasts. Am J Respir Cell Mol Biol 2003; 28:225-31. [PMID: 12540490 DOI: 10.1165/rcmb.2002-0140oc] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL/APO-2L) is a member of the tumor necrosis factor family that induces apoptosis in a variety of transformed cell lines and in normal human hepatocytes and brain cells. Soluble TRAIL at high concentrations was found to induce apoptotic death in normal human lung fibroblasts, whereas at low concentrations it was found to stimulate collagen production by these cells. Collagen alpha2(I) mRNA expression was assessed by semiquantitative reverse transcriptase/polymerase chain reaction; total soluble collagen was measured in culture supernatants by the Sircol assay. Both alpha2(I) collagen mRNA level and total soluble collagen secretion were increased upon TRAIL stimulation, with peak response (> 4-fold increase in mRNA level) at 1 ng/ml TRAIL. Analysis of the transcriptional response in TRAIL-stimulated fibroblasts, using DNA microarray hybridization, revealed an augmented expression of a number of genes involved in tissue remodeling, including those related to the transforming growth factor-beta (TGF-beta) pathway. DNA microarray results for the increase in TGF-beta1 mRNA level were confirmed by Northern blot analysis and by measurements of total active TGF-beta1 in culture supernatants. In addition, pan-specific TGF-beta antibody was shown to inhibit TRAIL-stimulated collagen mRNA and protein expression. These data suggest that TRAIL can enhance extracellular matrix synthesis in fibroblasts by triggering TGF-beta production that acts in an autocrine manner.
Collapse
Affiliation(s)
- Vladimir V Yurovsky
- Research Service, Veterans Affairs Maryland Health Care System and Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| |
Collapse
|
45
|
Abstract
Tissue fibrosis, a serious and even deadly complication of chronic inflammation and environmental exposures, is regulated by a host of factors including interactions with the extracellular matrix, surface of inflammatory cells, hormones, and an extremely complex and redundant network of profibrotic cytokines. The nature of mechanisms by which cytokines regulate fibrosis is dual - indirect, through attraction of inflammatory cells, and direct, through binding to specific receptors on fibroblasts and stimulating proliferation, collagen production and secretion of autocrine factors. This review focuses on systematizing the direct effects of cytokines on fibroblasts. Understanding of the complexity of the cytokine-driven mechanisms of fibrosis is important for identification of potential molecular targets for future pharmacological interventions in prevention and treatment of tissue fibrosis.
Collapse
Affiliation(s)
- Sergei P Atamas
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Maryland School of Medicine, MSTF building, Room 8-34, 10 South Pine Street, Baltimore 21201, USA.
| |
Collapse
|
46
|
Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002. [PMID: 12163453 DOI: 10.1172/jci0215518] [Citation(s) in RCA: 1353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Interstitial fibroblasts are principal effector cells of organ fibrosis in kidneys, lungs, and liver. While some view fibroblasts in adult tissues as nothing more than primitive mesenchymal cells surviving embryologic development, they differ from mesenchymal cells in their unique expression of fibroblast-specific protein-1 (FSP1). This difference raises questions about their origin. Using bone marrow chimeras and transgenic reporter mice, we show here that interstitial kidney fibroblasts derive from two sources. A small number of FSP1(+), CD34(-) fibroblasts migrate to normal interstitial spaces from bone marrow. More surprisingly, however, FSP1(+) fibroblasts also arise in large numbers by local epithelial-mesenchymal transition (EMT) during renal fibrogenesis. Both populations of fibroblasts express collagen type I and expand by cell division during tissue fibrosis. Our findings suggest that a substantial number of organ fibroblasts appear through a novel reversal in the direction of epithelial cell fate. As a general mechanism, this change in fate highlights the potential plasticity of differentiated cells in adult tissues under pathologic conditions.
Collapse
Affiliation(s)
- Masayuki Iwano
- Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
INTRODUCTION One of the major advances in liver research in the past decade was the ability to isolate distinct liver cell populations. Although there are established methods of isolating hepatocytes, cholangiocytes, and stellate cells, before this study no technique for liver fibroblast isolation had been devised. Consequently, we developed a technique to isolate primary rat liver fibroblasts. METHODS Fibroblasts were isolated from a freshly perfused rat liver with a modification of the procedure for isolation of rat cholangiocytes. Cell markers were assessed with the use of confocal immunofluorescence. Cell morphology was assessed with transmission electron microscopy. Expression of procollagen-1 was assessed by reverse transcription polymerase chain reaction. RESULTS The appearance of cells with fibroblast morphology was first noted at 48 hours, and almost all cells in culture had fibroblast morphology at 96 hours. Putative fibroblasts stained for vimentin, but not for smooth muscle actin, von Willebrand factor, or cytokeratins. Cell morphology was consistent with that of fibroblasts and showed no features of epithelial, endothelial, or smooth muscle cells. Liver fibroblasts expressed procollagen-1 mRNA. CONCLUSION Primary isolated rat fibroblasts can be produced from a freshly perfused rat liver with a modification of standard cell culture methods. The role of fibroblasts in liver physiology can now be studied directly.
Collapse
Affiliation(s)
- Emma A Kruglov
- Department of Medicine and Yale Liver Center, Yale University School of Medicine, New Haven, Conn 06520, USA
| | | | | |
Collapse
|
48
|
Abe R, Donnelly SC, Peng T, Bucala R, Metz CN. Peripheral blood fibrocytes: differentiation pathway and migration to wound sites. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:7556-62. [PMID: 11390511 DOI: 10.4049/jimmunol.166.12.7556] [Citation(s) in RCA: 801] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fibrocytes are a distinct population of blood-borne cells that display a unique cell surface phenotype (collagen I+/CD11b+/CD13+/CD34+/CD45RO+/MHC class II+/CD86+) and exhibit potent immunostimulatory activities. Circulating fibrocytes rapidly enter sites of tissue injury, suggesting an important role for these cells in wound repair. However, the regulatory processes that govern the differentiation of blood-borne fibrocytes and the mechanisms that underlie the migration of these cells to wound sites are currently not known. We report herein that ex vivo cultured fibrocytes can differentiate from a CD14+-enriched mononuclear cell population and that this process requires contact with T cells. Furthermore, we demonstrate that TGF-beta1 (1-10 ng/ml), an important fibrogenic and growth-regulating cytokine involved in wound healing, increases the differentiation and functional activity of cultured fibrocytes. Because fibrocytes home to sites of tissue injury, we examined the role of chemokine/chemokine receptor interactions in fibrocyte trafficking. We show that secondary lymphoid chemokine, a ligand of the CCR7 chemokine receptor, acts as a potent stimulus for fibrocyte chemotaxis in vitro and for the homing of injected fibrocytes to sites of cutaneous tissue injury in vivo. Finally, we demonstrate that differentiated, cultured fibrocytes express alpha smooth muscle actin and contract collagen gels in vitro, two characteristic features of wound-healing myofibroblasts. These data provide important insight into the control of fibrocyte differentiation and trafficking during tissue repair and significantly expand their potential role during wound healing.
Collapse
Affiliation(s)
- R Abe
- Laboratory of. Vascular Biology and Medical Biochemistry, The Picower Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | |
Collapse
|