1
|
Gomes Von Borowski R, Chat S, Schneider R, Nonin-Lecomte S, Bouaziz S, Giudice E, Rigon Zimmer A, Baggio Gnoatto SC, Macedo AJ, Gillet R. Capsicumicine, a New Bioinspired Peptide from Red Peppers Prevents Staphylococcal Biofilm In Vitro and In Vivo via a Matrix Anti-Assembly Mechanism of Action. Microbiol Spectr 2021; 9:e0047121. [PMID: 34704807 PMCID: PMC8549733 DOI: 10.1128/spectrum.00471-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococci are pathogenic biofilm-forming bacteria and a source of multidrug resistance and/or tolerance causing a broad spectrum of infections. These bacteria are enclosed in a matrix that allows them to colonize medical devices, such as catheters and tissues, and that protects against antibiotics and immune systems. Advances in antibiofilm strategies for targeting this matrix are therefore extremely relevant. Here, we describe the development of the Capsicum pepper bioinspired peptide "capsicumicine." By using microbiological, microscopic, and nuclear magnetic resonance (NMR) approaches, we demonstrate that capsicumicine strongly prevents methicillin-resistant Staphylococcus epidermidis biofilm via an extracellular "matrix anti-assembly" mechanism of action. The results were confirmed in vivo in a translational preclinical model that mimics medical device-related infection. Since capsicumicine is not cytotoxic, it is a promising candidate for complementary treatment of infectious diseases. IMPORTANCE Pathogenic biofilms are a global health care concern, as they can cause extensive antibiotic resistance, morbidity, mortality, and thereby substantial economic loss. So far, no effective treatments targeting the bacteria in biofilms have been developed. Plants are constantly attacked by a wide range of pathogens and have protective factors, such as peptides, to defend themselves. These peptides are common components in Capsicum baccatum (red pepper). Here, we provide insights into an antibiofilm strategy based on the development of capsicumicine, a natural peptide that strongly controls biofilm formation by Staphylococcus epidermidis, the most prevalent pathogen in device-related infections.
Collapse
Affiliation(s)
- Rafael Gomes Von Borowski
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sophie Chat
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
| | - Rafael Schneider
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Sylvie Nonin-Lecomte
- Université de Paris, CNRS, CiTCoM (Cibles Thérapeutiques et Conception de Médicaments) UMR 8038, Faculté de Pharmacie, Paris, France
| | - Serge Bouaziz
- Université de Paris, CNRS, CiTCoM (Cibles Thérapeutiques et Conception de Médicaments) UMR 8038, Faculté de Pharmacie, Paris, France
| | - Emmanuel Giudice
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
| | - Aline Rigon Zimmer
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Simone Cristina Baggio Gnoatto
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexandre José Macedo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Reynald Gillet
- Université de Rennes, CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Rennes, France
| |
Collapse
|
2
|
Recombinant production and characterisation of two chitinases from Rasamsonia emersonii, and assessment of their potential industrial applicability. Appl Microbiol Biotechnol 2021; 105:7769-7783. [PMID: 34581845 DOI: 10.1007/s00253-021-11578-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
Rasamsonia emersonii (previously Talaromyces emersonii) is a thermophilic filamentous fungus displaying optimum growth at 45 °C. It has a history of use in commercial food enzyme production. Its unfractionated chitinolytic secretome was partially characterised in the early 1990s; however, no individual chitinase from this source has been described in literature previously. This study describes two GH18 chitinases originating from the R. emersonii genome, expressed in the methylotrophic yeast P. pastoris. Chit1 comprises of a GH18 catalytic domain and Chit2 comprises of a GH18 catalytic domain and a chitin-binding motif at the C-terminal. The chitinases were expressed as glycoproteins. The apparent molecular weight of Chit1 was 35.8-42.1 kDa with a smearing tail associated with glyco-sidechains visible up to 72.2 kDa. This became two bands of 30.8 and 29.0 kDa upon de-glycosylation. The apparent molecular weight of Chit2 was 50.4 kDa, reducing to 48.2 kDa upon de-glycosylation. Both chitinases displayed endo-chitinase and chitobiosidase activity, temperature optima of 50-55 °C and low pH optima (pH 4.5 or lower); Chit1 displayed a pH optimum of 3.5, retaining > 60% maximum activity at pH 2.2, a pH range lower than most enzymes of fungal origin. Chit2 displayed the highest chitin-degrading ability at 3456 µmol/mg on 4-NP-triacetylchitotriose, but lost activity faster than Chit1, which displayed 403 µmol/mg on the same substrate. The predicted D values (time required to reduce the enzyme activity to 10% of its original value at 50 °C) were 19.2 and 2.3 days for Chit1 and Chit2, respectively. Thus, Chit1 can be considered one of few hyperthermostable chitinase enzymes described in literature to date. Their physicochemical properties render these chitinases likely suitable for shrimp chitin processing including one-step chitin hydrolysis and alternative sustainable protein processing and the attractive emerging application of mushroom food waste valorisation.Key points• Two GH18 chitinases originating from the industrially relevant thermophilic fungus R. emersonii were cloned and expressed in P. pastoris.• The purified recombinant chitinases showed low pH and high temperature optima and appreciable thermostability at industrially relevant temperatures.• The chitinases displayed characteristics that indicate their likely suitability to several industrial applications including sustainable alternative protein processing, food waste valorisation of commercial mushroom production and one-step shrimp chitin processing.
Collapse
|
3
|
Yang Y, Sossah FL, Li Z, Hyde KD, Li D, Xiao S, Fu Y, Yuan X, Li Y. Genome-Wide Identification and Analysis of Chitinase GH18 Gene Family in Mycogone perniciosa. Front Microbiol 2021; 11:596719. [PMID: 33505368 PMCID: PMC7829358 DOI: 10.3389/fmicb.2020.596719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Mycogone perniciosa causes wet bubble disease in Agaricus bisporus and various Agaricomycetes species. In a previous work, we identified 41 GH18 chitinase genes and other pathogenicity-related genes in the genome of M. perniciosa Hp10. Chitinases are enzymes that degrade chitin, and they have diverse functions in nutrition, morphogenesis, and pathogenesis. However, these important genes in M. perniciosa have not been fully characterized, and their functions remain unclear. Here, we performed a genome-wide analysis of M. perniciosa GH18 genes and analyzed the transcriptome profiles and GH18 expression patterns in M. perniciosa during the time course of infection in A. bisporus. Phylogenetic analysis of the 41 GH18 genes with those of 15 other species showed that the genes were clustered into three groups and eight subgroups based on their conserved domains. The GH18 genes clustered in the same group shared different gene structures but had the same protein motifs. All GH18 genes were localized in different organelles, were unevenly distributed on 11 contigs, and had orthologs in the other 13 species. Twelve duplication events were identified, and these had undergone both positive and purifying selection. The transcriptome analyses revealed that numerous genes, including transporters, cell wall degrading enzymes (CWDEs), cytochrome P450, pathogenicity-related genes, secondary metabolites, and transcription factors, were significantly upregulated at different stages of M. perniciosa Hp10 infection of A. bisporus. Twenty-three out of the 41 GH18 genes were differentially expressed. The expression patterns of the 23 GH18 genes were different and were significantly expressed from 3 days post-inoculation of M. perniciosa Hp10 in A. bisporus. Five differentially expressed GH18 genes were selected for RT-PCR and gene cloning to verify RNA-seq data accuracy. The results showed that those genes were successively expressed in different infection stages, consistent with the previous sequencing results. Our study provides a comprehensive analysis of pathogenicity-related and GH18 chitinase genes’ influence on M. perniciosa mycoparasitism of A. bisporus. Our findings may serve as a basis for further studies of M. perniciosa mycoparasitism, and the results have potential value for improving resistance in A. bisporus and developing efficient disease-management strategies to mitigate wet bubble disease.
Collapse
Affiliation(s)
- Yang Yang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Frederick Leo Sossah
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Zhuang Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai' an, China
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Dan Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,Guizhou Key Laboratory of Edible Fungi Breeding, Guizhou Academy of Agricultural Sciences, Guiyang, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Shijun Xiao
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yongping Fu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Xiaohui Yuan
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| |
Collapse
|
4
|
Abstract
Wheat germ agglutinin is a hevein class N-Acetylglucosamine–binding protein with specific toxicity and biomedical potential. It is extractable from wheat germ—a low-value byproduct of the wheat industry—using well–established extraction methods based on salt precipitation and affinity chromatography. Due to its N-Acetylglucosamine affinity, wheat germ agglutinin exhibits antifungal properties as well as cytotoxic properties. Its anticancer properties have been demonstrated for various cancer cells, and toxicity mechanisms are well described. Wheat germ agglutinin has been demonstrated as a viable solution for various biomedical and therapeutic applications, such as chemotherapy, targeted drug delivery, antibiotic-resistant bacteria monitoring and elimination. This is performed mostly in conjunction with nanoparticles, liposomes, and other carrier mechanisms via surface functionalization. Combined with abundant wheat byproduct sources, wheat germ agglutinin has the potential to improve the biomedical field considerably.
Collapse
|
5
|
Dang K, Zhang W, Jiang S, Lin X, Qian A. Application of Lectin Microarrays for Biomarker Discovery. ChemistryOpen 2020; 9:285-300. [PMID: 32154049 PMCID: PMC7050261 DOI: 10.1002/open.201900326] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Many proteins in living organisms are glycosylated. As their glycan patterns exhibit protein-, cell-, and tissue-specific heterogeneity, changes in the glycosylation levels could serve as useful indicators of various pathological and physiological states. Thus, the identification of glycoprotein biomarkers from specific changes in the glycan profiles of glycoproteins is a trending field. Lectin microarrays provide a new glycan analysis platform, which enables rapid and sensitive analysis of complex glycans without requiring the release of glycans from the protein. Recent developments in lectin microarray technology enable high-throughput analysis of glycans in complex biological samples. In this review, we will discuss the basic concepts and recent progress in lectin microarray technology, the application of lectin microarrays in biomarker discovery, and the challenges and future development of this technology. Given the tremendous technical advancements that have been made, lectin microarrays will become an indispensable tool for the discovery of glycoprotein biomarkers.
Collapse
Affiliation(s)
- Kai Dang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Wenjuan Zhang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Shanfeng Jiang
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Xiao Lin
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life SciencesNorthwestern Polytechnical UniversityXi'an710072, ShaanxiChina
| |
Collapse
|
6
|
Volk H, Marton K, Flajšman M, Radišek S, Tian H, Hein I, Podlipnik Č, Thomma BPHJ, Košmelj K, Javornik B, Berne S. Chitin-Binding Protein of Verticillium nonalfalfae Disguises Fungus from Plant Chitinases and Suppresses Chitin-Triggered Host Immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1378-1390. [PMID: 31063047 DOI: 10.1094/mpmi-03-19-0079-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During fungal infections, plant cells secrete chitinases, which digest chitin in the fungal cell walls. The recognition of released chitin oligomers via lysin motif (LysM)-containing immune host receptors results in the activation of defense signaling pathways. We report here that Verticillium nonalfalfae, a hemibiotrophic xylem-invading fungus, prevents these digestion and recognition processes by secreting a carbohydrate-binding motif 18 (CBM18)-chitin-binding protein, VnaChtBP, which is transcriptionally activated specifically during the parasitic life stages. VnaChtBP is encoded by the Vna8.213 gene, which is highly conserved within the species, suggesting high evolutionary stability and importance for the fungal lifestyle. In a pathogenicity assay, however, Vna8.213 knockout mutants exhibited wilting symptoms similar to the wild-type fungus, suggesting that Vna8.213 activity is functionally redundant during fungal infection of hop. In a binding assay, recombinant VnaChtBP bound chitin and chitin oligomers in vitro with submicromolar affinity and protected fungal hyphae from degradation by plant chitinases. Moreover, the chitin-triggered production of reactive oxygen species from hop suspension cells was abolished in the presence of VnaChtBP, indicating that VnaChtBP also acts as a suppressor of chitin-triggered immunity. Using a yeast-two-hybrid assay, circular dichroism, homology modeling, and molecular docking, we demonstrated that VnaChtBP forms dimers in the absence of ligands and that this interaction is stabilized by the binding of chitin hexamers with a similar preference in the two binding sites. Our data suggest that, in addition to chitin-binding LysM (CBM50) and Avr4 (CBM14) fungal effectors, structurally unrelated CBM18 effectors have convergently evolved to prevent hydrolysis of the fungal cell wall against plant chitinases and to interfere with chitin-triggered host immunity.
Collapse
Affiliation(s)
- Helena Volk
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Kristina Marton
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Marko Flajšman
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Radišek
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega tabora 2, SI-3310 Žalec, Slovenia
| | - Hui Tian
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ingo Hein
- The James Hutton Institute (JHI), Invergowrie, Dundee DD2 5DA, Scotland, U.K
- The University of Dundee, School of Life Sciences, Division of Plant Sciences at the JHI, Invergowrie
| | - Črtomir Podlipnik
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Katarina Košmelj
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Branka Javornik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Hoßbach J, Bußwinkel F, Kranz A, Wattjes J, Cord-Landwehr S, Moerschbacher BM. A chitin deacetylase of Podospora anserina has two functional chitin binding domains and a unique mode of action. Carbohydr Polym 2018; 183:1-10. [DOI: 10.1016/j.carbpol.2017.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023]
|
8
|
Kini SG, Wong KH, Tan WL, Xiao T, Tam JP. Morintides: cargo-free chitin-binding peptides from Moringa oleifera. BMC PLANT BIOLOGY 2017; 17:68. [PMID: 28359256 PMCID: PMC5374622 DOI: 10.1186/s12870-017-1014-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/17/2017] [Indexed: 05/11/2023]
Abstract
BACKGROUND Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. RESULTS Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. CONCLUSIONS Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.
Collapse
Affiliation(s)
- Shruthi G. Kini
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ka H. Wong
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Wei Liang Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Tianshu Xiao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - James P. Tam
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
9
|
Identification of host proteins, Spata3 and Dkk2, interacting with Toxoplasma gondii micronemal protein MIC3. Parasitol Res 2016; 115:2825-35. [PMID: 27053129 DOI: 10.1007/s00436-016-5033-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/27/2016] [Indexed: 12/19/2022]
Abstract
As an obligate intracellular protozoan, Toxoplasma gondii is a successful pathogen infecting a variety of animals, including humans. As an adhesin involving in host invasion, the micronemal protein MIC3 plays important roles in host cell attachment, as well as modulation of host EGFR signaling cascade. However, the specific host proteins that interact with MIC3 are unknown and the identification of such proteins will increase our understanding of how MIC3 exerts its functions. This study was designed to identify host proteins interacting with MIC3 by yeast two-hybrid screens. Using MIC3 as bait, a library expressing mouse proteins was screened, uncovering eight mouse proteins that showed positive interactions with MIC3. Two of which, spermatogenesis-associated protein 3 (Spata3) and dickkopf-related protein 2 (Dkk2), were further confirmed to interact with MIC3 by additional protein-protein interaction tests. The results also revealed that the tandem repeat EGF domains of MIC3 were critical in mediating the interactions with the identified host proteins. This is the first study to show that MIC3 interacts with host proteins that are involved in reproduction, growth, and development. The results will provide a clearer understanding of the functions of adhesion-associated micronemal proteins in T. gondii.
Collapse
|
10
|
Kini SG, Nguyen PQT, Weissbach S, Mallagaray A, Shin J, Yoon HS, Tam JP. Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis. Biochemistry 2015; 54:6639-49. [DOI: 10.1021/acs.biochem.5b00872] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Shruthi G. Kini
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Phuong Q. T. Nguyen
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | - Joon Shin
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Ho Sup Yoon
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - James P. Tam
- School
of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
11
|
|
12
|
Roer R, Abehsera S, Sagi A. Exoskeletons across the Pancrustacea: Comparative Morphology, Physiology, Biochemistry and Genetics. Integr Comp Biol 2015; 55:771-91. [DOI: 10.1093/icb/icv080] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
13
|
Blanco N, Sanz AB, Rodríguez-Peña JM, Nombela C, Farkaš V, Hurtado-Guerrero R, Arroyo J. Structural and functional analysis of yeast Crh1 and Crh2 transglycosylases. FEBS J 2015; 282:715-31. [DOI: 10.1111/febs.13176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 10/28/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Noelia Blanco
- Departamento de Microbiología II; Facultad de Farmacia; Universidad Complutense de Madrid; IRYCIS; Spain
| | - Ana B. Sanz
- Departamento de Microbiología II; Facultad de Farmacia; Universidad Complutense de Madrid; IRYCIS; Spain
| | - Jose M. Rodríguez-Peña
- Departamento de Microbiología II; Facultad de Farmacia; Universidad Complutense de Madrid; IRYCIS; Spain
| | - César Nombela
- Departamento de Microbiología II; Facultad de Farmacia; Universidad Complutense de Madrid; IRYCIS; Spain
| | - Vladimír Farkaš
- Department of Glycobiology; Center for Glycomics, Institute of Chemistry; Center for Glycomics; Slovak Academy of Sciences; Bratislava Slovakia
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI); University of Zaragoza; BIFI-IQFR (CSIC) Joint Unit; Spain
- Fundacion ARAID; Zaragoza Spain
| | - Javier Arroyo
- Departamento de Microbiología II; Facultad de Farmacia; Universidad Complutense de Madrid; IRYCIS; Spain
| |
Collapse
|
14
|
Cregeen S, Radisek S, Mandelc S, Turk B, Stajner N, Jakse J, Javornik B. Different Gene Expressions of Resistant and Susceptible Hop Cultivars in Response to Infection with a Highly Aggressive Strain of Verticillium albo-atrum. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:689-704. [PMID: 25999664 PMCID: PMC4432018 DOI: 10.1007/s11105-014-0767-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Verticillium wilt has become a serious threat to hop production in Europe due to outbreaks of lethal wilt caused by a highly virulent strain of Verticillium albo-atrum. In order to enhance our understanding of resistance mechanisms, the fungal colonization patterns and interactions of resistant and susceptible hop cultivars infected with V. albo-atrum were analysed in time course experiments. Quantification of fungal DNA showed marked differences in spatial and temporal fungal colonization patterns in the two cultivars. Two differential display methods obtained 217 transcripts with altered expression, of which 84 showed similarity to plant proteins and 8 to fungal proteins. Gene ontology categorised them into cellular and metabolic processes, response to stimuli, biological regulation, biogenesis and localization. The expression patterns of 17 transcripts with possible implication in plant immunity were examined by real-time PCR (RT-qPCR). Our results showed strong expression of genes encoding pathogenesis-related (PR) proteins in susceptible plants and strong upregulation of genes implicated in ubiquitination and vesicle trafficking in the incompatible interaction and their downregulation in susceptible plants, suggesting the involvement of these processes in the hop resistance reaction. In the resistant cultivar, the RT-qPCR expression patterns of most genes showed their peak at 20 dpi and declined towards 30 dpi, comparable to the gene expression pattern of in planta detected fungal protein and coinciding with the highest fungal biomass in plants at 15 dpi. These expression patterns suggest that the defence response in the resistant cultivar is strong enough at 20 dpi to restrict further fungus colonization.
Collapse
Affiliation(s)
- Sara Cregeen
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Sebastjan Radisek
- Slovenian Institute for Hop Research and Brewing, Cesta ŽalskegaTabora 2, SI-3320 Žalec, Slovenia
| | - Stanislav Mandelc
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Natasa Stajner
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Jernej Jakse
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Branka Javornik
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Thermal, chemical and pH induced unfolding of turmeric root lectin: modes of denaturation. PLoS One 2014; 9:e103579. [PMID: 25140525 PMCID: PMC4139268 DOI: 10.1371/journal.pone.0103579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
Curcuma longa rhizome lectin, of non-seed origin having antifungal, antibacterial and α-glucosidase inhibitory activities, forms a homodimer with high thermal stability as well as acid tolerance. Size exclusion chromatography and dynamic light scattering show it to be a dimer at pH 7, but it converts to a monomer near pH 2. Circular dichroism spectra and fluorescence emission maxima are virtually indistinguishable from pH 7 to 2, indicating secondary and tertiary structures remain the same in dimer and monomer within experimental error. The tryptophan environment as probed by acrylamide quenching data yielded very similar data at pH 2 and pH 7, implying very similar folding for monomer and dimer. Differential scanning calorimetry shows a transition at 350.3 K for dimer and at 327.0 K for monomer. Thermal unfolding and chemical unfolding induced by guanidinium chloride for dimer are both reversible and can be described by two-state models. The temperatures and the denaturant concentrations at which one-half of the protein molecules are unfolded, are protein concentration-dependent for dimer but protein concentration-independent for monomer. The free energy of unfolding at 298 K was found to be 5.23 Kcal mol−1 and 14.90 Kcal mol−1 for the monomer and dimer respectively. The value of change in excess heat capacity upon protein denaturation (ΔCp) is 3.42 Kcal mol−1 K−1 for dimer. The small ΔCp for unfolding of CLA reflects a buried hydrophobic core in the folded dimeric protein. These unfolding experiments, temperature dependent circular dichroism and dynamic light scattering for the dimer at pH 7 indicate its higher stability than for the monomer at pH 2. This difference in stability of dimeric and monomeric forms highlights the contribution of inter-subunit interactions in the former.
Collapse
|
16
|
Dall'antonia F, Pavkov-Keller T, Zangger K, Keller W. Structure of allergens and structure based epitope predictions. Methods 2014; 66:3-21. [PMID: 23891546 PMCID: PMC3969231 DOI: 10.1016/j.ymeth.2013.07.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/14/2013] [Accepted: 07/15/2013] [Indexed: 12/27/2022] Open
Abstract
The structure determination of major allergens is a prerequisite for analyzing surface exposed areas of the allergen and for mapping conformational epitopes. These may be determined by experimental methods including crystallographic and NMR-based approaches or predicted by computational methods. In this review we summarize the existing structural information on allergens and their classification in protein fold families. The currently available allergen-antibody complexes are described and the experimentally obtained epitopes compared. Furthermore we discuss established methods for linear and conformational epitope mapping, putting special emphasis on a recently developed approach, which uses the structural similarity of proteins in combination with the experimental cross-reactivity data for epitope prediction.
Collapse
Affiliation(s)
- Fabio Dall'antonia
- European Molecular Biology Laboratory, Hamburg Outstation, Hamburg, Germany
| | - Tea Pavkov-Keller
- ACIB (Austrian Centre of Industrial Biotechnology), Petersgasse 14, 8010 Graz, Austria; Institute of Molecular Biosciences, University of Graz, Austria
| | - Klaus Zangger
- Institute of Chemistry, University of Graz, 8010 Graz, Austria
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Austria.
| |
Collapse
|
17
|
Abstract
Monocot chimeric jacalins are a small group of lectins (currently with nine members), each typically consisting of a dirigent domain and a jacalin-related lectin domain. This unique module structure, along with their limited taxonomic distribution and short time window in molecular evolution, makes them a novel family of lectins. Recent studies have shown that these proteins play important roles in plant stress responses and development. Our knowledge of these proteins in functional domain and evolution has also made significant progress.
Collapse
Affiliation(s)
- Qing-Hu Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
18
|
Yang J, Yu Y, Li J, Zhu W, Geng Z, Jiang D, Wang Y, Zhang KQ. Characterization and functional analyses of the chitinase-encoding genes in the nematode-trapping fungus Arthrobotrys oligospora. Arch Microbiol 2013; 195:453-62. [PMID: 23661195 DOI: 10.1007/s00203-013-0894-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/08/2013] [Accepted: 04/11/2013] [Indexed: 01/17/2023]
Abstract
Nematode-trapping fungi can secrete many extracellular hydrolytic enzymes such as serine proteases and chitinases to digest and penetrate nematode/egg-cuticles. However, little is known about the structure and function of chitinases in these fungi. In this study, 16 ORFs encoding putative chitinases, which all belong to glycoside hydrolase (GH) family 18, were identified from the Arthrobotrys oligospora genome. Bioinformatics analyses showed that these 16 putative chitinases differ in their functional domains, molecular weights and pI. Phylogenetic analysis grouped these A. oligospora chitinases into four clades: clades I, II, III and IV, respectively, including an A. oligospora-specific subclade (Clade IV-B) that contained high-molecular weight chitinases (≥100 kDa). Transcriptional analysis of A. oligospora chitinases suggested that the expression of most chitinases was repressed by carbon starvation, and all chitinases were up-regulated under nitrogen starvation. However, chitinase AO-190 was up-regulated under carbon and/or nitrogen starvation. Moreover, several chitinases (such as AO-59, AO-190 and AO-801) were up-regulated in the presence of chitinous substrates or a plant pathogenic fungus, indicating that they could play a role in biocontrol applications of A. oligospora. Our results provided a basis for further understanding the functions, diversities and evolutionary relationships between chitinase genes in nematode-trapping fungi.
Collapse
Affiliation(s)
- Jinkui Yang
- Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hirabayashi J, Yamada M, Kuno A, Tateno H. Lectin microarrays: concept, principle and applications. Chem Soc Rev 2013; 42:4443-58. [PMID: 23443201 DOI: 10.1039/c3cs35419a] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The lectin microarray is a novel platform for glycan analysis, having emerged only in recent years. Unlike other conventional methods, e.g., liquid chromatography and mass spectrometry, it enables rapid and high-sensitivity profiling of complex glycan features without the need for liberation of glycans. Target samples include an extensive range of glycoconjugates involved in cells, tissues, body fluids, as well as synthetic glycans and their mimics. Various procedures for rapid differential glycan profiling have been developed for glycan-related biomarkers. Such glycoproteomics targeting allows precise diagnosis of chronic diseases potentially related to cancer. Application of this method to evaluation of various types of stem cells resulted in the discovery of a new pluripotent cell-specific glycan marker. To explore this technology a more fundamental and extensive understanding of lectins is necessary in relation to the structural uniqueness of glycans. In this chapter, the essence of the lectin microarray is described with some focus on an evanescent-field-activated fluorescence detection principle as a system to achieve in situ (i.e., washing free) aqueous-phase observation under equilibrium conditions. The developed lectin microarray system allows even researchers with poor experience in glycan profiling to perform extensive high-throughput analysis targeting various forms of glycans and even cells.
Collapse
Affiliation(s)
- Jun Hirabayashi
- National Institute of Advanced Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | | | | | | |
Collapse
|
20
|
Porto WF, Souza VA, Nolasco DO, Franco OL. In silico identification of novel hevein-like peptide precursors. Peptides 2012; 38:127-36. [PMID: 22981805 DOI: 10.1016/j.peptides.2012.07.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/27/2012] [Accepted: 07/27/2012] [Indexed: 01/10/2023]
Abstract
Lectins are proteins with ability to bind reversibly and non-enzymatically to a specific carbohydrate. They are involved in numerous biological processes and show enormous biotechnological potential. Among plant lectins, the hevein domain is extremely common, being observed in several kinds of lectins. Moreover, this domain is also observed in an important class of antimicrobial peptides named hevein-like peptides. Due to higher cysteine residues conservation, hevein-like peptides could be mined among the sequence databases. By using the pattern CX(4,5)CC[GS]X(2)GXCGX[GST]X(2,3)[FWY]C[GS]X[AGS] novel hevein-like peptide precursors were found from three different plants: Oryza sativa, Vitis vinifera and Selaginella moellendorffii. In addition, an hevein-like peptide precursor from the phytopathogenic fungus Phaeosphaeria nodorum was also identified. The molecular models indicate that they have the same scaffold as others, composed of an antiparallel β-sheet and short helices. Nonetheless, the fungal hevein-like peptide probably has a different disulfide bond pattern. Despite this difference, the complexes between peptide and N,N,N-triacetylglucosamine are stable, according to molecular dynamics simulations. This is the first report of an hevein-like peptide from an organism outside the plant kingdom. The exact role of an hevein-like peptide in the fungal biology must be clarified, while in plants they are clearly involved in plant defense. In summary, data here reported clear shows that an in silico strategy could lead to the identification of novel hevein-like peptides that could be used as biotechnological tools in the fields of health and agribusiness.
Collapse
Affiliation(s)
- William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil
| | | | | | | |
Collapse
|
21
|
Ahmed NU, Park JI, Jung HJ, Kang KK, Hur Y, Lim YP, Nou IS. Molecular characterization of stress resistance-related chitinase genes of Brassica rapa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:106-115. [PMID: 22796900 DOI: 10.1016/j.plaphy.2012.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/19/2012] [Indexed: 06/01/2023]
Abstract
Brassica is an important vegetable group worldwide that is impacted by biotic and abiotic stresses. Molecular biology techniques offer the most efficient approach to address these concerns. Inducible plant defense responses include the production of pathogenesis-related (PR) proteins, and chitinases are very important PR proteins. We collected 30 chitinase like genes, three from our full-length cDNA library of Brassica rapa cv. Osome and 27 from Brassica databases. Sequence analysis and comparison study confirmed that they were all class I-V and VII chitinase genes. These genes also showed a high degree of homology with other biotic stress resistance-related plant chitinases. An organ-specific expression of these genes was observed and among these, seven genes showed significant responses after infection with Fusarium oxysporum f.sp. conglutinans in cabbage and sixteen genes showed responsive expression after abiotic stress treatments in Chinese cabbage. BrCLP1, 8, 10, 17 and 18 responded commonly after biotic and abiotic stress treatments indicating their higher potentials. Taken together, the results presented herein suggest that these chitinase genes may be useful resources in the development of stress resistant Brassica.
Collapse
Affiliation(s)
- Nasar Uddin Ahmed
- Department of Horticulture, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-742, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
A selective assay to detect chitin and biologically active nano-machineries for chitin-biosynthesis with their intrinsic chitin-synthase molecules. Int J Mol Sci 2010; 11:3122-37. [PMID: 20957083 PMCID: PMC2956084 DOI: 10.3390/ijms11093122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/14/2010] [Accepted: 08/26/2010] [Indexed: 11/17/2022] Open
Abstract
A new assay system for chitin has been developed. It comprises the chitin-binding protein ChbB in fusion with a His-tag as well as with a Strep-tag, the latter of which was chemically coupled to horseradish peroxidase. With the resulting complex, minimal quantities of chitin are photometrically detectable. In addition, the assay allows rapid scoring of the activity of chitin-synthases. As a result, a refined procedure for the rapid purification of yeast chitosomes (nano-machineries for chitin biosynthesis) has been established. Immuno-electronmicroscopical studies of purified chitosomes, gained from a yeast strain carrying a chitin-synthase gene fused to that for GFP (green-fluorescence protein), has led to the in situ localization of chitin-synthase-GFP molecules within chitosomes.
Collapse
|
23
|
Chatterjee A, Carpentieri A, Ratner DM, Bullitt E, Costello CE, Robbins PW, Samuelson J. Giardia cyst wall protein 1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. PLoS Pathog 2010; 6:e1001059. [PMID: 20808847 PMCID: PMC2924369 DOI: 10.1371/journal.ppat.1001059] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/22/2010] [Indexed: 11/18/2022] Open
Abstract
The infectious and diagnostic stage of Giardia lamblia (also known as G. intestinalis or G. duodenalis) is the cyst. The Giardia cyst wall contains fibrils of a unique beta-1,3-linked N-acetylgalactosamine (GalNAc) homopolymer and at least three cyst wall proteins (CWPs) composed of Leu-rich repeats (CWP(LRR)) and a C-terminal conserved Cys-rich region (CWP(CRR)). Our goals were to dissect the structure of the cyst wall and determine how it is disrupted during excystation. The intact Giardia cyst wall is thin (approximately 400 nm), easily fractured by sonication, and impermeable to small molecules. Curled fibrils of the GalNAc homopolymer are restricted to a narrow plane and are coated with linear arrays of oval-shaped protein complex. In contrast, cyst walls of Giardia treated with hot alkali to deproteinate fibrils of the GalNAc homopolymer are thick (approximately 1.2 microm), resistant to sonication, and permeable. The deproteinated GalNAc homopolymer, which forms a loose lattice of curled fibrils, is bound by native CWP1 and CWP2, as well as by maltose-binding protein (MBP)-fusions containing the full-length CWP1 or CWP1(LRR). In contrast, neither MBP alone nor MBP fused to CWP1(CRR) bind to the GalNAc homopolymer. Recombinant CWP1 binds to the GalNAc homopolymer within secretory vesicles of Giardia encysting in vitro. Fibrils of the GalNAc homopolymer are exposed during excystation or by treatment of heat-killed cysts with chymotrypsin, while deproteinated fibrils of the GalNAc homopolymer are degraded by extracts of Giardia cysts but not trophozoites. These results show the Leu-rich repeat domain of CWP1 is a lectin that binds to curled fibrils of the GalNAc homopolymer. During excystation, host and Giardia proteases appear to degrade bound CWPs, exposing fibrils of the GalNAc homopolymer that are digested by a stage-specific glycohydrolase.
Collapse
Affiliation(s)
- Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Andrea Carpentieri
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Daniel M. Ratner
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Esther Bullitt
- Department of Biophysics and Physiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Phillips W. Robbins
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Guan Y, Chye ML. A Brassica juncea chitinase with two-chitin binding domains show anti-microbial properties against phytopathogens and Gram-negative bacteria. PLANT SIGNALING & BEHAVIOR 2008; 3:1103-1105. [PMID: 19704507 PMCID: PMC2634468 DOI: 10.4161/psb.3.12.7006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 09/16/2008] [Indexed: 05/28/2023]
Abstract
In our recent paper in the Journal of Experimental Botany, we demonstrated that Brassica juncea BjCHI1 shows anti-fungal properties against phytopathogens, Colletotrichum truncatum, C. acutatum, Botrytis cinerea and Ascochyta rabiei. Furthermore, BjCHI1 which is an unusual plant chitinase with two (almost identical) chitin-binding domains, agglutinates Gram-negative bacteria, adversely affecting their growth. In contrast, BjCHI1 derivatives lacking one or both domains do not show agglutination activity, suggesting that both chitin-binding domains are essential for agglutination. Observations that agglutination could be relieved by addition of galactose, glucose or lactose, imply that BjCHI1 interacts with the carbohydrate components of the Gram-negative bacterial cell wall. We propose here, a model for BjCHI1-mediated agglutination between Gram-negative bacteria, through interaction of their adjacent cell walls mediated by the two chitin-binding domains of BjCHI1. BjCHI1 is a plant chitinase which has evolved towards acquiring an enhanced role in plant defense against fungi and Gram-negative bacteria. Hence, it is a promising candidate for applications against phytopathogens in plant genetic engineering via nuclear or plastid transformation.
Collapse
Affiliation(s)
- Y Guan
- School of Biological Sciences; The University of Hong Kong; Pokfulam;Hong Kong China
| | | |
Collapse
|
25
|
Guan Y, Ramalingam S, Nagegowda D, Taylor PWJ, Chye ML. Brassica juncea chitinase BjCHI1 inhibits growth of fungal phytopathogens and agglutinates Gram-negative bacteria. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3475-84. [PMID: 18669819 PMCID: PMC2529242 DOI: 10.1093/jxb/ern197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 07/02/2008] [Accepted: 07/03/2008] [Indexed: 05/26/2023]
Abstract
Brassica juncea BjCHI1 is a plant chitinase with two chitin-binding domains. Its expression, induced in response to wounding, methyl jasmonate treatment, Aspergillus niger infection, and caterpillar Pieris rapae feeding, suggests that it plays a role in defence. In this study, to investigate the potential of using BjCHI1 in agriculture, Pichia-expressed BjCHI1 and its deletion derivatives that lack one or both chitin-binding domains were tested against phytopathogenic fungi and bacteria. Transplastomic tobacco expressing BjCHI1 was also generated and its extracts assessed. In radial growth-inhibition assays, BjCHI1 and its derivative with one chitin-binding domain showed anti-fungal activities against phytopathogens, Colletotrichum truncatum, C. acutatum, Botrytis cinerea, and Ascochyta rabiei. BjCHI1 also inhibited spore germination of C. truncatum. Furthermore, BjCHI1, but not its derivatives lacking one or both domains, inhibited the growth of Gram-negative bacteria (Escherichia coli, Ralstonia solanacearum, Pseudomonas aeruginosa) more effectively than Gram-positive bacteria (Micrococcus luteus and Bacillus megaterium), indicating that the duplicated chitin-binding domain, uncommon in chitinases, is essential for bacterial agglutination. Galactose, glucose, and lactose relieved agglutination, suggesting that BjCHI1 interacts with the carbohydrate components of the Gram-negative bacterial cell wall. Retention of chitinase and bacterial agglutination activities in transplastomic tobacco extracts implicates that BjCHI1 is potentially useful against both fungal and bacterial phytopathogens in agriculture.
Collapse
Affiliation(s)
- Yuanfang Guan
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | - Dinesh Nagegowda
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Paul W. J. Taylor
- BioMarka, School of Agriculture and Food Systems, The University of Melbourne, Victoria 3010, Australia
| | - Mee-Len Chye
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
26
|
Abstract
Microneme secretion supports several key cellular processes including gliding motility, active cell invasion and migration through cells, biological barriers, and tissues. The modular design of microneme proteins enables these molecules to assist each other in folding and passage through the quality control system, accurately target to the micronemes, oligimerizing with other parasite proteins, and engaging a variety of host receptors for migration and cell invasion. Structural and biochemical analyses of MIC domains is providing new perspectives on how adhesion is regulated and the potentially distinct roles MICs might play in long or short range interactions during parasite attachment and entry. New access to complete genome sequences and ongoing advances in genetic manipulation should provide fertile ground for refining current models and defining exciting new roles for MICs in apicomplexan biology.
Collapse
Affiliation(s)
- Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
27
|
Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, Duarte J, Borges A, Teixeira AR. The role of plant defence proteins in fungal pathogenesis. MOLECULAR PLANT PATHOLOGY 2007; 8:677-700. [PMID: 20507530 DOI: 10.1111/j.1364-3703.2007.00419.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
SUMMARY It is becoming increasingly evident that a plant-pathogen interaction may be compared to an open warfare, whose major weapons are proteins synthesized by both organisms. These weapons were gradually developed in what must have been a multimillion-year evolutionary game of ping-pong. The outcome of each battle results in the establishment of resistance or pathogenesis. The plethora of resistance mechanisms exhibited by plants may be grouped into constitutive and inducible, and range from morphological to structural and chemical defences. Most of these mechanisms are defensive, exhibiting a passive role, but some are highly active against pathogens, using as major targets the fungal cell wall, the plasma membrane or intracellular targets. A considerable overlap exists between pathogenesis-related (PR) proteins and antifungal proteins. However, many of the now considered 17 families of PR proteins do not present any known role as antipathogen activity, whereas among the 13 classes of antifungal proteins, most are not PR proteins. Discovery of novel antifungal proteins and peptides continues at a rapid pace. In their long coevolution with plants, phytopathogens have evolved ways to avoid or circumvent the plant defence weaponry. These include protection of fungal structures from plant defence reactions, inhibition of elicitor-induced plant defence responses and suppression of plant defences. A detailed understanding of the molecular events that take place during a plant-pathogen interaction is an essential goal for disease control in the future.
Collapse
Affiliation(s)
- Ricardo B Ferreira
- Departamento de Botânica e Engenharia Biológica, Instituto Superior de Agronomia, Universidade Técnica de Lisboa, 1349-017 Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Giovanini MP, Saltzmann KD, Puthoff DP, Gonzalo M, Ohm HW, Williams CE. A novel wheat gene encoding a putative chitin-binding lectin is associated with resistance against Hessian fly. MOLECULAR PLANT PATHOLOGY 2007; 8:69-82. [PMID: 20507479 DOI: 10.1111/j.1364-3703.2006.00371.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
SUMMARY The gene-for-gene interaction triggering resistance of wheat against first-instar Hessian fly larvae utilizes specialized defence response genes not previously identified in other interactions with pests or pathogens. We characterized the expression of Hfr-3, a novel gene encoding a lectin-like protein with 68-70% identity to the wheat germ agglutinins. Within each of the four predicted chitin-binding hevein domains, the HFR-3 translated protein sequence contained five conserved saccharide-binding amino acids. Quantification of Hfr-3 mRNA levels confirmed a rapid response and gradual increase, up to 3000-fold above the uninfested control in the incompatible interaction 3 days after egg hatch. Hfr-3 mRNA abundance was influenced by the number of larvae per plant, suggesting that resistance is localized rather than systemic. In addition, Hfr-3 was responsive to another sucking insect, the bird cherry-oat aphid, but not to fall armyworm attack, wounding or exogenous application of methyl jasmonate, salicylic acid or abscisic acid. Western blot analysis demonstrated that HFR-3 protein increased in parallel to mRNA levels in crown tissues during incompatible interactions. HFR-3 protein was detected in both virulent and avirulent larvae, indicating ingestion. Anti-nutritional proteins, such as lectins, may be responsible for the apparent starvation of avirulent first-instar Hessian fly larvae during the initial few days of incompatible interactions with resistant wheat plants.
Collapse
Affiliation(s)
- Marcelo P Giovanini
- Department of Agronomy, Purdue University, 915 W. State St., West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
29
|
Van Dellen KL, Chatterjee A, Ratner DM, Magnelli PE, Cipollo JF, Steffen M, Robbins PW, Samuelson J. Unique posttranslational modifications of chitin-binding lectins of Entamoeba invadens cyst walls. EUKARYOTIC CELL 2006; 5:836-48. [PMID: 16682461 PMCID: PMC1459681 DOI: 10.1128/ec.5.5.836-848.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Entamoeba histolytica, which causes amebic dysentery and liver abscesses, is spread via chitin-walled cysts. The most abundant protein in the cyst wall of Entamoeba invadens, a model for amebic encystation, is a lectin called EiJacob1. EiJacob1 has five tandemly arrayed, six-Cys chitin-binding domains separated by low-complexity Ser- and Thr-rich spacers. E. histolytica also has numerous predicted Jessie lectins and chitinases, which contain a single, N-terminal eight-Cys chitin-binding domain. We hypothesized that E. invadens cyst walls are composed entirely of proteins with six-Cys or eight-Cys chitin-binding domains and that some of these proteins contain sugars. E. invadens genomic sequences predicted seven Jacob lectins, five Jessie lectins, and three chitinases. Reverse transcription-PCR analysis showed that mRNAs encoding Jacobs, Jessies, and chitinases are increased during E. invadens encystation, while mass spectrometry showed that the cyst wall is composed of an approximately 30:70 mix of Jacob lectins (cross-linking proteins) and Jessie and chitinase lectins (possible enzymes). Three Jacob lectins were cleaved prior to Lys at conserved sites (e.g., TPSVDK) in the Ser- and Thr-rich spacers between chitin-binding domains. A model peptide was cleaved at the same site by papain and E. invadens Cys proteases, suggesting that the latter cleave Jacob lectins in vivo. Some Jacob lectins had O-phosphodiester-linked carbohydrates, which were one to seven hexoses long and had deoxysugars at reducing ends. We concluded that the major protein components of the E. invadens cyst wall all contain chitin-binding domains (chitinases, Jessie lectins, and Jacob lectins) and that the Jacob lectins are differentially modified by site-specific Cys proteases and O-phosphodiester-linked glycans.
Collapse
Affiliation(s)
- Katrina L Van Dellen
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Olson SK, Bishop JR, Yates JR, Oegema K, Esko JD. Identification of novel chondroitin proteoglycans in Caenorhabditis elegans: embryonic cell division depends on CPG-1 and CPG-2. J Cell Biol 2006; 173:985-94. [PMID: 16785326 PMCID: PMC2063922 DOI: 10.1083/jcb.200603003] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Accepted: 05/11/2006] [Indexed: 01/13/2023] Open
Abstract
Vertebrates produce multiple chondroitin sulfate proteoglycans that play important roles in development and tissue mechanics. In the nematode Caenorhabditis elegans, the chondroitin chains lack sulfate but nevertheless play essential roles in embryonic development and vulval morphogenesis. However, assignment of these functions to specific proteoglycans has been limited by the lack of identified core proteins. We used a combination of biochemical purification, Western blotting, and mass spectrometry to identify nine C. elegans chondroitin proteoglycan core proteins, none of which have homologues in vertebrates or other invertebrates such as Drosophila melanogaster or Hydra vulgaris. CPG-1/CEJ-1 and CPG-2 are expressed during embryonic development and bind chitin, suggesting a structural role in the egg. RNA interference (RNAi) depletion of individual CPGs had no effect on embryonic viability, but simultaneous depletion of CPG-1/CEJ-1 and CPG-2 resulted in multinucleated single-cell embryos. This embryonic lethality phenocopies RNAi depletion of the SQV-5 chondroitin synthase, suggesting that chondroitin chains on these two proteoglycans are required for cytokinesis.
Collapse
Affiliation(s)
- Sara K Olson
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
31
|
Taupin V, Méténier G, Delbac F, Vivarès CP, Prensier G. Expression of two cell wall proteins during the intracellular development of Encephalitozoon cuniculi: an immunocytochemical and in situ hybridization study with ultrathin frozen sections. Parasitology 2006; 132:815-25. [PMID: 16469199 DOI: 10.1017/s0031182005009777] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/16/2005] [Accepted: 11/22/2005] [Indexed: 11/06/2022]
Abstract
The microsporidian Encephalitozoon cuniculi is an obligate intracellular parasite that develops asynchronously inside parasitophorous vacuoles. Spore differentiation involves the construction of a cell wall commonly divided into an outer layer (exospore) and a thicker, chitin-rich inner layer (endospore). The developmental patterns of protein deposition and mRNA expression for 2 different spore wall proteins were studied using immunocytochemical and in situ hybridization procedures with ultrathin frozen sections. The onset of deposition of an exospore-destined protein (SWP1) correlated with the formation of lamellar protuberances during meront-to-sporont conversion. No evidence for a release of SWP1 towards the parasitophorous vacuole lumen was obtained. An endospore-destined protein (EnP1) was detected early on the plasma membrane of meronts prior to extensive accumulation within the chitin-rich layer of sporoblasts. swp1 mRNA was preferentially synthesized in early sporogony while enp1 mRNA was transcribed during merogony and a large part of sporogony. The level of both mRNAs was reduced in mature spores. Considering the availability of the E. cuniculi genome sequence, the application of nucleic and/or protein probes to cryosections should facilitate the screening of various genes for stage-specific expression during microsporidian development.
Collapse
Affiliation(s)
- V Taupin
- Equipe Parasitologie Moléculaire et Cellulaire, LBP, UMR CNRS 6023, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | |
Collapse
|
32
|
Seidl V, Huemer B, Seiboth B, Kubicek CP. A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 2005; 272:5923-39. [PMID: 16279955 DOI: 10.1111/j.1742-4658.2005.04994.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genome-wide analysis of chitinase genes in the Hypocrea jecorina (anamorph: Trichoderma reesei) genome database revealed the presence of 18 ORFs encoding putative chitinases, all of them belonging to glycoside hydrolase family 18. Eleven of these encode yet undescribed chitinases. A systematic nomenclature for the H. jecorina chitinases is proposed, which designates the chitinases corresponding to their glycoside hydrolase family and numbers the isoenzymes according to their pI from Chi18-1 to Chi18-18. Phylogenetic analysis of H. jecorina chitinases, and those from other filamentous fungi, including hypothetical proteins of annotated fungal genome databases, showed that the fungal chitinases can be divided into three groups: groups A and B (corresponding to class V and III chitinases, respectively) also contained the so Trichoderma chitinases identified to date, whereas a novel group C comprises high molecular weight chitinases that have a domain structure similar to Kluyveromyces lactis killer toxins. Five chitinase genes, representing members of groups A-C, were cloned from the mycoparasitic species H. atroviridis (anamorph: T. atroviride). Transcription of chi18-10 (belonging to group C) and chi18-13 (belonging to a novel clade in group B) was triggered upon growth on Rhizoctonia solani cell walls, and during plate confrontation tests with the plant pathogen R. solani. Therefore, group C and the novel clade in group B may contain chitinases of potential relevance for the biocontrol properties of Trichoderma.
Collapse
Affiliation(s)
- Verena Seidl
- Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, TU Vienna, Austria.
| | | | | | | |
Collapse
|
33
|
Aboitiz N, Vila-Perelló M, Groves P, Asensio JL, Andreu D, Cañada FJ, Jiménez-Barbero J. NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides. Chembiochem 2005; 5:1245-55. [PMID: 15368576 DOI: 10.1002/cbic.200400025] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
HEV32, a 32-residue, truncated hevein lacking eleven C-terminal amino acids, was synthesized by solid-phase methodology and correctly folded with three cysteine bridge pairs. The affinities of HEV32 for small chitin fragments--in the forms of N,N',N"-triacetylchitotriose ((GlcNAc)3) (millimolar) and N,N',N",N"',N"",N""'-hexaacetylchitohexaose ((GlcNAc)6) (micromolar)--as measured by NMR and fluorescence methods, are comparable with those of native hevein. The HEV32 ligand-binding process is enthalpy driven, while entropy opposes binding. The NMR structure of ligand-bound HEV32 in aqueous solution was determined to be highly similar to the NMR structure of ligand-bound hevein. Solvated molecular-dynamics simulations were performed in order to monitor the changes in side-chain conformation of the binding site of HEV32 and hevein upon interaction with ligands. The calculations suggest that the Trp21 side-chain orientation of HEV32 in the free form differs from that in the bound state; this agrees with fluorescence and thermodynamic data. HEV32 provides a simple molecular model for studying protein-carbohydrate interactions and for understanding the physiological relevance of small native hevein domains lacking C-terminal residues.
Collapse
Affiliation(s)
- Nuria Aboitiz
- Department of Protein Structure and Function, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
34
|
Cérède O, Dubremetz JF, Soête M, Deslée D, Vial H, Bout D, Lebrun M. Synergistic role of micronemal proteins in Toxoplasma gondii virulence. ACTA ACUST UNITED AC 2005; 201:453-63. [PMID: 15684324 PMCID: PMC2213027 DOI: 10.1084/jem.20041672] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Apicomplexan parasites invade cells by a unique mechanism involving discharge of secretory vesicles called micronemes. Microneme proteins (MICs) include transmembrane and soluble proteins expressing different adhesive domains. Although the transmembrane protein TRAP and its homologues are thought to bridge cell surface receptors and the parasite submembranous motor, little is known about the function of other MICs. We have addressed the role of MIC1 and MIC3, two soluble adhesins of Toxoplasma gondii, in invasion and virulence. Single deletion of the MIC1 gene decreased invasion in fibroblasts, whereas MIC3 deletion had no effect either alone or in the mic1KO context. Individual disruption of MIC1 or MIC3 genes slightly reduced virulence in the mouse, whereas doubly depleted parasites were severely impaired in virulence and conferred protection against subsequent challenge. Single substitution of two critical amino acids in the chitin binding–like (CBL) domain of MIC3 abolished MIC3 binding to cells and generated the attenuated virulence phenotype. Our findings identify the CBL domain of MIC3 as a key player in toxoplasmosis and reveal the synergistic role of MICs in virulence, supporting the idea that parasites have evolved multiple ligand–receptor interactions to ensure invasion of different cells types during the course of infection.
Collapse
Affiliation(s)
- Odile Cérède
- UMR Université-INRA d'Immunologie Parasitaires, Faculté des Sciences Pharmaceutiques et Biologiques, 37200 Tours, France
| | | | | | | | | | | | | |
Collapse
|
35
|
Tang CM, Chye ML, Ramalingam S, Ouyang SW, Zhao KJ, Ubhayasekera W, Mowbray SL. Functional analyses of the chitin-binding domains and the catalytic domain of Brassica juncea chitinase BjCHI1. PLANT MOLECULAR BIOLOGY 2004; 56:285-298. [PMID: 15604744 DOI: 10.1007/s11103-004-3382-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We previously isolated a Brassica juncea cDNA encoding BjCHI1, a novel chitinase with two chitin-binding domains. Synthesis of its mRNA is induced by wounding, methyl jasmonate treatment, Aspergillus niger infection and caterpillar (Pieris rapae) feeding, suggesting that the protein has a role in defense. In that it possesses two chitin-binding domains, BjCHI1 resembles the precursor of Urtica dioica agglutinin but unlike that protein, BjCHI1 retains its chitinase catalytic domain after post-translational processing. To explore the properties of multi-domain BjCHI1, we have expressed recombinant BjCHI1 and two derivatives, which lack one (BjCHI2) or both (BjCHI3) chitin-binding domains, as secreted proteins in Pichia pastoris. Recombinant BjCHI1 and BjCHI2, showed apparent molecular masses on SDS-PAGE larger than calculated, and could be deglycosylated using alpha-mannosidase. Recombinant BjCHI3, without the proline/threonine-rich linker region containing predicted O-glycosylation sites, did not appear to be processed by alpha-mannosidase. BjCHI1's ability to agglutinate rabbit erythrocytes is unique among known chitinases. Both chitin-binding domains are essential for agglutination; this property is absent in recombinant BjCHI2 and BjCHI3. To identify potential catalytic residues, we generated site-directed mutations in recombinant BjCHI3. Mutation E212A showed the largest effect, exhibiting 0% of wild-type specific activity. H211N and R361A resulted in considerable (>91%) activity loss, implying these charged residues are also important in catalysis. E234A showed 36% retention of activity and substitution Y269D, 50%. The least affected mutants were E349A and D360A, with 73% and 68% retention, respectively. Like Y269, E349 and D360 are possibly involved in substrate binding rather than catalysis.
Collapse
Affiliation(s)
- Ce Mun Tang
- Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Fukusaki EI, Ogawa K, Okazawa A, Kajiyama SI, Kobayashi A. A chitin-oligomer binding peptide obtained by screening of a phage display random peptide library and its affinity modulation corresponding to oxidation–reduction state. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.molcatb.2004.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Reyes-López CA, Hernández-Santoyo A, Pedraza-Escalona M, Mendoza G, Hernández-Arana A, Rodríguez-Romero A. Insights into a conformational epitope of Hev b 6.02 (hevein). Biochem Biophys Res Commun 2004; 314:123-30. [PMID: 14715255 DOI: 10.1016/j.bbrc.2003.12.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hevein (Hev b 6.02) is a major IgE-binding allergen in natural rubber latex and manufactured products. Both tryptophans (Trp(21) and Trp(23)) of the hevein molecule were chemically modified with BNPS-skatole (2-nitrophenylsulfenyl-3-methyl-3(')-bromoindolenine); derivatized allergen failed to significantly inhibit binding of serum IgE in ELISA assays. Similarly, skin prick tests showed that hevein-positive patients gave no response with the modified allergen. Dot blot experiments carried out with anti-hevein mono- and polyclonal antibodies confirmed the importance of Trp(21) and Trp(23) for antibody-recognition, and demonstrated the specific cross-reactivity of other molecules containing hevein-like domains. We also report the structure of Hev b 6.02 at an extended resolution (1.5A) and compare its surface properties around Trp residues with those of similar regions in other allergens. Overall our results indicate that the central part of the protein, which comprises three aromatic and other acidic and polar residues, constitutes a conformational epitope.
Collapse
Affiliation(s)
- César A Reyes-López
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Cd. Universitaria, 04510, Coyoacán México, DF, Mexico
| | | | | | | | | | | |
Collapse
|
38
|
Hayashida M, Fujii T, Hamasu M, Ishiguro M, Hata Y. Similarity between Protein–Protein and Protein–Carbohydrate Interactions, Revealed by Two Crystal Structures of Lectins from the Roots of Pokeweed. J Mol Biol 2003; 334:551-65. [PMID: 14623194 DOI: 10.1016/j.jmb.2003.09.076] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The roots of pokeweed (Phytolacca americana) are known to contain the lectins designated PL-A, PL-B, PL-C, PL-D1, and PL-D2. Of these lectins, the crystal structures of two PLs, the ligand-free PL-C and the complex of PL-D2 with tri-N-acetylchitotriose, have been determined at 1.8A resolution. The polypeptide chains of PL-C and PL-D2 form three and two repetitive chitin-binding domains, respectively. In the crystal structure of the PL-D2 complex, one trisaccharide molecule is shared mainly between two neighboring molecules related to each other by a crystallographic 2(1)-screw axis, and infinite helical chains of complexed molecules are generated by the sharing of ligand molecules. The crystal structure of PL-C reveals that the molecule is a dimer of two identical subunits, whose polypeptide chains are located in a head-to-tail fashion by a molecular 2-fold axis. Three putative carbohydrate-binding sites in each subunit are located in the dimer interface. The dimerization of PL-C is performed through the hydrophobic interactions between the carbohydrate-binding sites of the opposite domains in the dimer, leading to a distinct dimerization mode from that of wheat-germ agglutinin. Three aromatic residues in each carbohydrate-binding site of PL-C are involved in the dimerization. These residues correspond to the residues that interact mainly with the trisaccharide in the PL-D2 complex and appear to mimic the saccharide residues in the complex. Consequently, the present structure of the PL-C dimer has no room for accommodating carbohydrate. The quaternary structure of PL-C formed through these putative carbohydrate-binding residues may lead to the lack of hemagglutinating activity.
Collapse
Affiliation(s)
- Minoru Hayashida
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Kyoto, Japan
| | | | | | | | | |
Collapse
|
39
|
Suetake T, Aizawa T, Koganesawa N, Osaki T, Kobashigawa Y, Demura M, Kawabata SI, Kawano K, Tsuda S, Nitta K. Production and characterization of recombinant tachycitin, the Cys-rich chitin-binding protein. Protein Eng Des Sel 2002; 15:763-9. [PMID: 12456875 DOI: 10.1093/protein/15.9.763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tachycitin is an invertebrate chitin-binding protein with an amidated C-terminus, and possesses antimicrobial activity against both fungi and bacteria. The (1)H-NMR-based tertiary structure of tachycitin was recently determined [Suetake et al. (2000) J. Biol. Chem., 275, 17929-17932]. In order to examine the structural and functional features of tachycitin more closely, we performed for the first time, gene expression, refolding, (15)N-NMR-based characterizations, and antimicrobial activity measurements of a recombinant tachycitin (rTcn) that does not have the amide group at the C-terminus. The NMR analysis indicated that rTcn possesses the same structural construction as the native tachycitin. The backbone (15)N relaxation measurements showed that the molecular motional correlation time of rTcn increases as its concentration increases, indicating that tachycitins have a tendency to aggregate with each other. rTcn exhibits antimicrobial activity against fungi but not against bacteria. The cell surface of fungi contains chitin as an essential constituent, but that of bacteria does not. These results suggest that not only the chitin-binding region but also the C-terminal amide group of tachycitin plays a significant role in its antimicrobial properties.
Collapse
Affiliation(s)
- Tetsuya Suetake
- Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cérède O, Dubremetz JF, Bout D, Lebrun M. The Toxoplasma gondii protein MIC3 requires pro-peptide cleavage and dimerization to function as adhesin. EMBO J 2002; 21:2526-36. [PMID: 12032066 PMCID: PMC126022 DOI: 10.1093/emboj/21.11.2526] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Attachment and invasion of host cells by apicomplexan parasites involve the exocytosis of the micronemal proteins (MICs). Most MICs are adhesins, which show homology with adhesive domains from higher eukaryote proteins and undergo proteolytic processing of unknown biological significance during their transport to micronemes. In Toxoplasma gondii, the micronemal homodimeric protein MIC3 is a potent adhesin that displays features shared by most Apicomplexa MICs. We have developed an original MIC3-binding assay by transfection of mammalian cells with complete or truncated MIC3 gene sequences and demonstrated that the receptor binding site of MIC3 is located in the N-terminal chitin-binding-like domain, which remains poorly accessible until the adjacent pro-peptide has been cleaved, and that binding requires dimerization. We have localized the dimerization domain in the C-terminal end of the protein and shown that it is able to convert MIC8, a monomeric micronemal protein sharing the MIC3 lectin-like domain, into a dimer able to interact with host cell receptors. These findings shed new light on molecular mechanisms that control functional maturation of MICs.
Collapse
Affiliation(s)
| | - Jean François Dubremetz
- UMR Université-INRA d’Immunologie Parasitaire, Faculté des Sciences Pharmaceutiques et Biologiques, 31 Avenue Monge, F-37200 Tours and
UMR 5539 CNRS, Université de Montpellier 2, CP 107, Place Eugène Bataillon, F-34090 Montpellier, France Corresponding author e-mail:
| | | | - Maryse Lebrun
- UMR Université-INRA d’Immunologie Parasitaire, Faculté des Sciences Pharmaceutiques et Biologiques, 31 Avenue Monge, F-37200 Tours and
UMR 5539 CNRS, Université de Montpellier 2, CP 107, Place Eugène Bataillon, F-34090 Montpellier, France Corresponding author e-mail:
| |
Collapse
|
41
|
Soldati D, Dubremetz JF, Lebrun M. Microneme proteins: structural and functional requirements to promote adhesion and invasion by the apicomplexan parasite Toxoplasma gondii. Int J Parasitol 2001; 31:1293-302. [PMID: 11566297 DOI: 10.1016/s0020-7519(01)00257-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Host-cell invasion by apicomplexan parasites is extremely rapid and relies on a sequence of events that are tightly controlled in time and space. In most Apicomplexa, the gliding motility and host-cell invasion are tightly coupled to the release of microneme proteins at the apical tip of the parasites and their redistribution toward the posterior pole. This movement is dependent on an intact parasite actomyosin system. Micronemes are involved in the trafficking and storage of ligands (MICs) for host-cell receptors that are not only structurally related but also functionally conserved among the Apicomplexa. In Toxoplasma gondii, the repertoire of membrane-spanning microneme proteins includes adhesins such as TgMIC2 and escorters such as TgMIC6. The latter forms a complex with the soluble adhesins, TgMIC1 and TgMIC4 and assures their proper sorting to the mironemes. Escorters are also anticipated to bridge host-cell receptors to the parasite membrane during invasion. Most TgMICs are proteolytically cleaved either during their transport along the secretory pathway and/or after exocytosis. The biological significance of these processing events is largely unknown. One of these processing events targets a conserved motif close to the membrane-spanning domain causing the release of the processed form of the micronemes from the parasite surface. The cleavages occurring after release might contribute to the disassembly of the complexes and thus to fission between the parasitophorous vacuole and the host plasma membrane at the end of the invasion process. Gliding motility and host-cell penetration involve the redistribution of the micronemes toward the posterior pole of the parasites. This capping process involves actin polymerisation, myosin adenosine triphosphatase activation and the establishment of a connection between the MICs-receptor complexes and the actomyosin system of the parasite. The most carboxy-terminal end of the MICs cytoplasmic tails is implicated in this process, but the precise nature of the connection with the actomyosin system remains to be elucidated.
Collapse
Affiliation(s)
- D Soldati
- Zentrum für Molekulare Biologie der Universität Heidelberg, Heidelberg, Germany.
| | | | | |
Collapse
|
42
|
Dallagiovanna B, Plazanet-Menut C, Ogatta SF, Avila AR, Krieger MA, Goldenberg S. Trypanosoma cruzi: a gene family encoding chitin-binding-like proteins is posttranscriptionally regulated during metacyclogenesis. Exp Parasitol 2001; 99:7-16. [PMID: 11708829 DOI: 10.1006/expr.2001.4628] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of the representation of differential expression method has lead to the cloning of Trypanosoma cruzi stage-specific genes. We used this method to characterize a multicopy gene family differentially expressed during metacyclogenesis. The genomic and cDNA clones sequenced encoded three short cysteine-rich polypeptides, of two types, with predicted molecular masses of 7.1, 10.4, and 10.8 kDa. We searched GenBank for similar sequences and found that the sequences of these clones were similar to that encoding the wheat germ agglutinin protein. The region of similarity corresponds to the chitin-binding domain, with eight similarly positioned half-cysteines and conserved aromatic residues involved in chitin recognition. Multiple copies of the genes of this family are present on a high- molecular-mass chromosome. We studied the expression of genes of this family during metacyclogenesis by determining messenger RNA (mRNA) levels. The mRNAs for the members of this gene family were present in the total RNA fraction but were mobilized to the polysomal fraction of adhered (differentiating) epimastigotes during metacyclogenesis, with a peak of accumulation at 24 of differentiation. Polyclonal antisera were raised against a recombinant protein and a synthetic peptide. The specific sera obtained detected 7- and 11-kDa proteins in T. cruzi total protein extracts. The 11-kDa protein was present in similar amounts in the various cell populations, whereas the 7-kDa protein displayed differential synthesis during metacyclogenesis, with maximal levels in 24-h-adhered (differentiating) epimastigotes.
Collapse
Affiliation(s)
- B Dallagiovanna
- Instituto de Biologia Molecular do Paraná, IBMP, Rua Prof. Algacyr Munhoz Mader 3775, 8135-010 Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
43
|
Janković M, Vićovac L. A specific wheat germ agglutinin-immunoreactive protein in human placenta. Comp Biochem Physiol B Biochem Mol Biol 2000; 127:135-46. [PMID: 11079367 DOI: 10.1016/s0742-8413(00)00137-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study we examined human placenta for the presence of molecules antigenically related to a plant lectin, wheat germ agglutinin. The initial results of immunolocalization using polyclonal antibodies against wheat germ agglutinin showed that human placenta contains protein(s) recognized specifically. Staining of syncytiotrophoblast brush border and cytotrophoblast, granular in appearance was observed in first trimester human placenta. Specific binding was also seen in trophoblast-derived JAr and BeWo carcinoma cells. Isolation of wheat germ agglutinin-immunoreactive material from human placenta was achieved by ion-exchange- and affinity-chromatography on anti-wheat germ agglutinin-immunoglobulin G-Sepharose. The placental protein having molecular mass of 66 kD was identified as specific. The protein of 66 kD was characterized as a calcium-dependent, asialofetuin-binding molecule.
Collapse
Affiliation(s)
- M Janković
- Institute for the Application of Nuclear Energy - INEP, Zemun, Yugloslavia.
| | | |
Collapse
|
44
|
Garcia-Réguet N, Lebrun M, Fourmaux MN, Mercereau-Puijalon O, Mann T, Beckers CJ, Samyn B, Van Beeumen J, Bout D, Dubremetz JF. The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite. Cell Microbiol 2000; 2:353-64. [PMID: 11207591 DOI: 10.1046/j.1462-5822.2000.00064.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Assay of the adhesion of cultured cells on Toxoplasma gondii tachyzoite protein Western blots identified a major adhesive protein, that migrated at 90 kDa in non-reducing gels. This band comigrated with the previously described microneme protein MIC3. Cellular binding on Western blots was abolished by MIC3-specific monoclonal and polyclonal antibodies. The MIC3 protein affinity purified from tachyzoite lysates bound to the surface of putative host cells. In addition, T. gondii tachyzoites also bound to immobilized MIC3. Immunofluorescence analysis of T. gondii tachyzoite invasion showed that MIC3 was exocytosed and relocalized to the surface of the parasite during invasion. The cDNA encoding MIC3 and the corresponding gene have been cloned, allowing the determination of the complete coding sequence. The MIC3 sequence has been confirmed by affinity purification of the native protein and N-terminal sequencing. The deduced protein sequence contains five partially overlapping EGF-like domains and a chitin binding-like domain, which can be involved in protein-protein or protein-carbohydrate interactions. Taken together, these results suggest that MIC3 is a new microneme adhesin of T. gondii.
Collapse
Affiliation(s)
- N Garcia-Réguet
- Biologie moléculaire et Pathogénèse des Sporozoaires, Institut de Biologie de Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Muraki M, Morii H, Harata K. Chemically prepared hevein domains: effect of C-terminal truncation and the mutagenesis of aromatic residues on the affinity for chitin. Protein Eng Des Sel 2000; 13:385-9. [PMID: 10877847 DOI: 10.1093/protein/13.6.385] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chemically prepared hevein domains (HDs), N-terminal domain of an antifungal protein from Nicotiana tabacum (CBP20-N) and an antimicrobial peptide from Amaranthus caudatus (Ac-AMP2), were examined for their affinity for chitin, a beta-1,4-linked polymer of N-acetylglucosamine. An intact binding domain, CBP20-N, showed a higher affinity than a C-terminal truncated domain, Ac-AMP2. The formation of a pyroglutamate residue from N-terminal Gln of CBP20-N increased the affinity. The single replacement of any aromatic residue of Ac-AMP2 with Ala resulted in a significant reduction in affinity, suggesting the importance of the complete set of three aromatic residues in the ligand binding site. The mutations of Phe18 of Ac-AMP2 to the residues with larger aromatic rings, i.e. Trp, beta-(1-naphthyl)alanine or beta-(2-naphthyl)alanine, enhanced the affinity, whereas the mutation of Tyr20 to Trp reduced the affinity. The affinity of an HD for chitin might be improved by adjusting the size and substituent group of stacking aromatic rings.
Collapse
Affiliation(s)
- M Muraki
- Biomolecules Department, National Institute of Bioscience and Human Technology, 1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | |
Collapse
|
46
|
Does MP, Houterman PM, Dekker HL, Cornelissen BJ. Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco. PLANT PHYSIOLOGY 1999; 120:421-32. [PMID: 10364393 PMCID: PMC59280 DOI: 10.1104/pp.120.2.421] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/1998] [Accepted: 02/23/1999] [Indexed: 05/20/2023]
Abstract
The gene encoding the precursor to stinging nettle (Urtica dioica L. ) isolectin I was introduced into tobacco (Nicotiana tabacum). In transgenic plants this precursor was processed to mature-sized lectin. The mature isolectin is deposited intracellularly, most likely in the vacuoles. A gene construct lacking the C-terminal 25 amino acids was also introduced in tobacco to study the role of the C terminus in subcellular trafficking. In tobacco plants that expressed this construct, the mutant precursor was correctly processed and the mature isolectin was targeted to the intercellular space. These results indicate the presence of a C-terminal signal for intracellular retention of stinging nettle lectin and most likely for sorting of the lectin to the vacuoles. In addition, correct processing of this lectin did not depend on vacuolar deposition. Isolectin I purified from tobacco displayed identical biological activities as isolectin I isolated from stinging nettle. In vitro antifungal assays on germinated spores of the fungi Botrytis cinerea, Trichoderma viride, and Colletotrichum lindemuthianum revealed that growth inhibition by stinging nettle isolectin I occurs at a specific phase of fungal growth and is temporal, suggesting that the fungi had an adaptation mechanism.
Collapse
Affiliation(s)
- M P Does
- Section for Plant Pathology, Institute for Molecular Cell Biology, BioCentrum Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
47
|
Jensen C, Andersen SO, Roepstorff P. Primary structure of two major cuticular proteins from the migratory locust, Locusta migratoria, and their identification in polyacrylamide gels by mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1429:151-62. [PMID: 9920393 DOI: 10.1016/s0167-4838(98)00227-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The complete amino acid sequence has been determined for two proteins, LmACP21 and LmACP22, which are prominent components of adult pharate cuticle from the migratory locust, Locusta migratoria. The proteins have relative molecular masses (Mr) of 16853 and 16879, respectively. They were purified by standard chromatographic methods, and the primary structures were determined by combined use of mass spectrometry and automatic Edman degradation. The proteins are characterized by the presence of a conserved, hydrophilic central sequence with pronounced similarity to sequences reported for cuticular proteins from other insect species, while the N- and C-terminal regions are dominated by the amino acids alanine, valine and proline. The electrophoretic identity of the two proteins was confirmed by matrix assisted laser desorption ionization mass spectrometry (MALDIMS) of the electroeluted LmACP21/22 proteins from a two-dimensional electrophoresis gel. The mass spectrometric analysis established the presence of additional proteins in close proximity to the LmACP21/22 gel spot. One of these proteins, Mr 16134, was identified as LmACP18, and enzymatic digestion indicated that it is structurally closely related to LmACP21 and LmACP22.
Collapse
Affiliation(s)
- C Jensen
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
48
|
Gomes VM, Okorokov LA, Rose TL, Fernandes KV, Xavier-Filho J. Legume vicilins (7S storage globulins) inhibit yeast growth and glucose stimulated acidification of the medium by yeast cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1379:207-16. [PMID: 9528656 DOI: 10.1016/s0304-4165(97)00100-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vicilin (7S storage proteins) isolated from different legume seeds were shown to inhibit yeast growth and glucose stimulated acidification of the medium by yeast cells. The degree of growth inhibition varied with the origin of vicilins. It was more than 90% for vicilins from cowpea (Vigna unguiculata, cultivar pitiuba) and equal to 65% for vicilins from Vigna radiata, in the case of Saccharomyces cerevisae. Vicilins from cowpea seeds inhibited the glucose stimulated acidification of the medium by S. cerevisae up to 60%. We have also observed that vicilins bind to yeast cells. We suggest that vicilins bind to chitin-containing structures of yeast cells and that such association could result in inhibition of H+ pumping, cell growth and spore formation. A final consequence of the yeast growth inhibition by vicilins is (probably) the formation of spores.
Collapse
Affiliation(s)
- V M Gomes
- Curso de Pós Graduação em Biologia Molecular, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brazil
| | | | | | | | | |
Collapse
|
49
|
García-Hernández E, Zubillaga RA, Rojo-Domínguez A, Rodríguez-Romero A, Hernández-Arana A. New insights into the molecular basis of lectin-carbohydrate interactions: a calorimetric and structural study of the association of hevein to oligomers of N-acetylglucosamine. Proteins 1997; 29:467-77. [PMID: 9408944 DOI: 10.1002/(sici)1097-0134(199712)29:4<467::aid-prot7>3.0.co;2-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Isothermal titration calorimetry was used to characterize thermodynamically the association of hevein, a lectin from the rubber tree latex, with the dimer and trimer of N-acetylglucosamine (GlcNAc). Considering the changes in polar and apolar accessible surface areas due to complex formation, we found that the experimental binding heat capacities can be reproduced adequately by means of parameters used in protein-unfolding studies. The same conclusion applies to the association of the lectin concanavalin A with methyl-alpha-mannopyranoside. When reduced by the polar area change, binding enthalpy values show a minimal dispersion around 100 degrees C. These findings resemble the convergence observed in protein-folding events; however, the average of reduced enthalpies for lectin-carbohydrate associations is largely higher than that for the folding of proteins. Analysis of hydrogen bonds present at lectin-carbohydrate interfaces revealed geometries closer to ideal values than those observed in protein structures. Thus, the formation of more energetic hydrogen bonds might well explain the high association enthalpies of lectin-carbohydrate systems. We also have calculated the energy associated with the desolvation of the contact zones in the binding molecules and from it the binding enthalpy in vacuum. This latter resulted 20% larger than the interaction energy derived from the use of potential energy functions.
Collapse
Affiliation(s)
- E García-Hernández
- Departmento de Química, Universidad Autónoma Metropolitana Iztapalapa, México
| | | | | | | | | |
Collapse
|
50
|
Abstract
Among the crystal structures of lectins determined recently, three--snowdrop lectin, jacalin and amaranthin--represent new lectin families. Their polypeptide folds share remarkably similar features and consist exclusively of beta structure. Autonomously folded beta-sheet subdomains, inter-related by a pseudothreefold symmetry, assemble to form beta-prism or beta-barrel structures which are stabilized by a hydrophobic core.
Collapse
Affiliation(s)
- C S Wright
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond, USA.
| |
Collapse
|