1
|
Zhang J, Zhi M, Gao D, Zhu Q, Gao J, Zhu G, Cao S, Han J. Research progress and application prospects of stable porcine pluripotent stem cells. Biol Reprod 2022; 107:226-236. [PMID: 35678320 DOI: 10.1093/biolre/ioac119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/14/2022] Open
Abstract
Pluripotent stem cells (PSCs) harbor the capacity of unlimited self-renewal and multi-lineage differentiation potential which are crucial for basic research and biomedical science. Establishment of PSCs with defined features were previously reported from mice and humans, while generation of stable large animal PSCs has experienced a relatively long trial stage and only recently has made breakthroughs. Pigs are regarded as ideal animal models for their similarities in physiology and anatomy to humans. Generation of porcine PSCs would provide cell resources for basic research, genetic engineering, animal breeding and cultured meat. In this review, we summarize the progress on the derivation of porcine PSCs and reprogrammed cells and elucidate the mechanisms of pluripotency changes during pig embryo development. This will be beneficial for understanding the divergence and conservation between different species involved in embryo development and the pluripotent regulated signaling pathways. Finally, we also discuss the promising future applications of stable porcine PSCs.
Collapse
Affiliation(s)
- Jinying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Minglei Zhi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dengfeng Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qianqian Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Gaoxiang Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jianyong Han
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Baek SK, Jeon SB, Seo BG, Hwangbo C, Shin KC, Choi JW, An CS, Jeong MA, Kim TS, Lee JH. The Presence or Absence of Alkaline Phosphatase Activity to Discriminate Pluripotency Characteristics in Porcine Epiblast Stem Cell-Like Cells. Cell Reprogram 2021; 23:221-238. [PMID: 34227846 DOI: 10.1089/cell.2021.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Porcine embryonic stem cells (pESCs) would provide potentials for agricultural- and biotechnological-related applications. However, authentic pESCs have not been established yet because standards for porcine stem cell-specific markers and culture conditions are not clear. Therefore, the present study reports attempts to derive pluripotent epiblast stem cells either from in vitro or in vivo derived porcine embryos. Nine epiblast cell lines (seven lines from Berkshire and two lines from Duroc) could only be isolated from day 9- to 9.5-old in vivo derived early conceptuses. Pluripotency features were analyzed in relation to the presence or absence of alkaline phosphatase (AP) activity. Interestingly, the mRNA expression of several marker genes for pluripotency or epiblast was different between putative epiblast stem cells of the two groups [AP-positive (+) pEpiSC-like cell 2 line and AP-negative (-) pEpiSC-like cell 8 line]. For example, expressions of OCT-3/4, NANOG, SOX2, c-MYC, FGF2, and NODAL in AP-negative (-) porcine epiblast stem cell (pEpiSC)-like cells were higher than those in AP-positive (+) pEpiSC-like cells. Expression of surface markers differed between the two groups to some extent. SSEA-1 was strongly expressed only in AP-negative (-) pEpiSC-like cells, whereas AP-positive (+) pEpiSC-like cells did not express. In addition, we report to have some differences in the in vitro differentiation capacity between AP-positive (+) and AP-negative (-) epiblast cell lines. Primary embryonic germ layer markers (cardiac actin, nestin, and GATA 6) and primordial germ cell markers (Dazl and Vasa) were strongly expressed in embryoid bodies (EBs) aggregated from AP-negative (-) pEpiSC-like cells, whereas EBs aggregated from AP-positive (+) pEpiSCs did not show expression of primary embryonic germ layers and primordial germ cell markers except GATA 6. These results indicate that pEpiSC-like cells display different pluripotency characteristics in relation to AP activity.
Collapse
Affiliation(s)
- Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo-Gyeong Seo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Keum-Chul Shin
- Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Department of Forest Environmental Resources, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Chang-Seop An
- Gyeongsangnamdo Livestock Experiment Station, Sancheong, Republic of Korea
| | - Mi-Ae Jeong
- Gyeongsangnamdo Livestock Experiment Station, Sancheong, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.,Institute of Agriculture & Life Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
3
|
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2020; 32:11-39. [PMID: 32188555 DOI: 10.1071/rd19272] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Collapse
Affiliation(s)
- Micaela Navarro
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Delia A Soto
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA
| | - Carlos A Pinzon
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, 450 Bioletti Way, Davis, CA 95616, USA; and Corresponding author.
| |
Collapse
|
4
|
Rasmussen MK. Porcine cytochrome P450 3A: current status on expression and regulation. Arch Toxicol 2020; 94:1899-1914. [PMID: 32172306 DOI: 10.1007/s00204-020-02710-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
The cytochrome P450s (CYPs) constitute a family of enzymes maintaining vital functions in the body and are mostly recognized for their significant role in detoxification. Of the CYP subfamilies, CYP3A, is one of the most active in the clearance of drugs and other xenobiotics. During the last decades, much focus has been on exploring different models for human CYP3A regulation, expression and activity. In that respect, the growing knowledge of the porcine CYP3As is of great interest. Although many aspects of porcine CYP3A regulation and activity are still unknown, the current literature provides a basic understanding of the porcine CYP3As that can be used e.g., when translating results from studies done in the porcine model into human settings. In this review, the current knowledge about porcine CYP3A expression, regulation, activity and metabolic significance are highlighted. Future research needs are also identified.
Collapse
|
5
|
Baek SK, Cho YS, Kim IS, Jeon SB, Moon DK, Hwangbo C, Choi JW, Kim TS, Lee JH. A Rho-Associated Coiled-Coil Containing Kinase Inhibitor, Y-27632, Improves Viability of Dissociated Single Cells, Efficiency of Colony Formation, and Cryopreservation in Porcine Pluripotent Stem Cells. Cell Reprogram 2019; 21:37-50. [DOI: 10.1089/cell.2018.0020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Sang-Ki Baek
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Soo Cho
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
| | - Ik-Sung Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Soo-Been Jeon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Dae-Ky Moon
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), IALS, PMBBRC, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, College of Natural Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Tae-Suk Kim
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Joon-Hee Lee
- Department of Animal Bioscience, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Purification of Intracellular Bacterial Communities during Experimental Urinary Tract Infection Reveals an Abundant and Viable Bacterial Reservoir. Infect Immun 2018; 86:IAI.00740-17. [PMID: 29378794 DOI: 10.1128/iai.00740-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 12/17/2022] Open
Abstract
Urinary tract infections (UTIs) are a major infection of humans, particularly affecting women. Recurrent UTIs can cause significant discomfort and expose patients to high levels of antibiotic use, which in turn contributes to the development of higher antibiotic resistance rates. Most UTIs are caused by uropathogenic Escherichia coli, which is able to form intracellular collections (termed intracellular bacterial communities [IBCs]) within the epithelial cells lining the bladder lumen. IBCs are seen in both infected mice and humans and are a potential cause of recurrent UTI. Genetic and molecular studies of IBCs have been hampered both by the low number of bacteria in IBCs relative to the number extracellular bacteria and by population bottlenecks that occur during IBC formation. We now report the development of a simple and rapid technique for isolating pure IBCs from experimentally infected mice. We verified the specificity and purity of the isolated IBCs via microscopy, gene expression, and culture-based methods. Our results further demonstrated that our isolation technique practically enables specific molecular studies of IBCs. In the first such direct measurement, we determined that a single epithelial cell containing an early IBC typically contains 103 viable bacteria. Our isolation technique complements recent progress in low-input, single-cell genomics to enable future genomic studies of the formation of IBCs and their activation pathways during recurrent UTI, which may lead to novel strategies to eliminate them from the bladder.
Collapse
|
7
|
Talbot NC, Caperna TJ, Willard RR, Meekin JH, Garrett WM. Characterization of Two Subpopulations of the PICM-19 Porcine Liver Stem Cell Line for use in Cell-Based Extracorporeal Liver Assistance Devices. Int J Artif Organs 2018. [DOI: 10.1177/039139881003300603] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two cell lines, PICM-19H and PICM-19B, were derived from the bipotent PICM-19 pig liver stem cell line and assessed for their potential application in artificial liver devices (ALD). The study included assessments of growth rate and cell density in culture, morphological features, serum protein production, γ-glutamyltranspeptidase (GGT) activity and hepatocyte detoxification functions, i.e., inducible P450 activity, ammonia clearance, and urea production. The PICM-19H cell line was derived by temperature selection at 33–34°C. After each passage, PICM-19H cells grew to a nearly confluent monolayer of cells of hepatocyte morphology, i.e., cuboidal cells with centrally located nuclei joined by biliary canaliculi. No differentiation and self-organization into multi-cellular bile ductules, as observed in the parental PICM-19 cell line, occurred within the PICM-19H cell monolayers. The PICM-19H cells contained numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies and occasional lipid vacuoles. The cells had a doubling time of 48–72 h and reached a final density of 1.5 x 105 cells/cm2 at ∼10 d post-passage from a 1:6 split ratio. PICM-19H cells displayed inducible P450 activity, cleared ammonia, and produced urea in a glutamine-free medium. The PICM-19B cells were colony-cloned after spontaneous generation from the PICM-19 parental cell line. PICM-19B cells grew as a tightly knit dome-forming monolayer with no visible biliary canaliculi. Their doubling time was 48–72 h with a final cell density of 2.6 x 105 cells/cm2. Ultrastructural analysis of the PICM-19B monolayers showed the roughly cuboidal cells displayed basal-apical polarization and were joined by tight junction-like complexes. Other ultrastructure features were similar to those of PICM-19H cells except that they possessed numerous cell bodies resembling mucus vacuoles. The PICM-19B cells had relatively high levels of GGT activity, but did retain some inducible P450 activity, and some ammonia clearance and urea synthesis ability. PICM-19B cells produced markedly less serum proteins than PICM-19H cells. These data indicated that both cell lines, either together or alone, may be useful as the cellular substrate for an ALD.
Collapse
Affiliation(s)
- Neil C. Talbot
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| | - Thomas J. Caperna
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| | - Ryan R. Willard
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| | - John H. Meekin
- HepaLife Technologies, Inc., Boston, Massachusetts - USA
| | - Wesley M. Garrett
- US Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland - USA
| |
Collapse
|
8
|
Feeder-cell-independent culture of the pig embryonic stem cell-derived exocrine pancreatic cell line, PICM-31. In Vitro Cell Dev Biol Anim 2018; 54:321-330. [PMID: 29442225 DOI: 10.1007/s11626-017-0218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/22/2017] [Indexed: 10/18/2022]
Abstract
The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the derivative cell line, PICM-31A1. PICM-31A1 cells were adapted to growth on a polymerized collagen matrix using feeder cell-conditioned medium and were designated PICM-31FF. Like the parental cells, the PICM-31FF cells were small and grew relatively slowly in closely knit colonies that eventually coalesced into a continuous monolayer. The PICM-31FF cells were extensively cultured: 40 passages at 1:2, 1:3, and finally 1:5 split ratios over a 1-yr period. Ultrastructure analysis showed the cells' epithelial morphology and revealed that they retained their secretory granules typical of pancreas acinar cells. The cells maintained their expression of digestive enzymes, including carboxypeptidase A1 (CPA1), amylase 2A (AMY2A), and phospholipase A2 (PLA2G1B). Alpha-fetoprotein (AFP), a fetal cell marker, continued to be expressed by the cells as was the pancreas alpha cell-associated gene, transthyretin. Several pancreas-associated developmental genes were also expressed by the cells, including pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor, 1a (PTF1A). Proteomic analysis of cellular proteins confirmed the cells' production of digestive enzymes and showed that the cells expressed cytokeratin-8 and cytokeratin-18. The PICM-31FF cell line provides an in vitro model of fetal pig pancreatic exocrine cells without the complicating presence of feeder cells.
Collapse
|
9
|
Abstract
OBJECTIVES The aim of this study was to identify an epithelial cell line isolated from the spontaneous differentiation of totipotent pig epiblast cells. METHODS PICM-31 and its colony-cloned derivative cell line, PICM-31A, were established from the culture and differentiation of an epiblast mass isolated from an 8-day-old pig blastocyst. The cell lines were analyzed by transmission electron microscopy, marker gene expression, and mass spectroscopy-based proteomics. RESULTS The PICM-31 cell lines were continuously cultured and could be successively colony cloned. They spontaneously self-organized into acinarlike structures. Transmission electron microscopy indicated that the cell lines' cells were epithelial and filled with secretory granules. Candidate gene expression analysis of the cells showed an exocrine pancreatic profile that included digestive enzyme expression, for example, carboxypeptidase A1, and expression of the fetal marker, α-fetoprotein. Pancreatic progenitor marker expression included pancreatic and duodenal homeobox 1, NK6 homeobox 1, and pancreas-specific transcription factor 1a, but not neurogenin 3. Proteomic analysis of cellular proteins confirmed the cells' production of digestive enzymes and showed that the cells expressed cytokeratins 8 and 18. CONCLUSIONS The PICM-31 cell lines provide in vitro models of fetal pig pancreatic exocrine cells. They are the first demonstration of continuous cultures, that is, cell lines, of nontransformed pig pancreas cells.
Collapse
|
10
|
Shiue YL, Yang JR, Liao YJ, Kuo TY, Liao CH, Kang CH, Tai C, Anderson GB, Chen LR. Derivation of porcine pluripotent stem cells for biomedical research. Theriogenology 2016; 86:176-81. [DOI: 10.1016/j.theriogenology.2016.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 01/25/2023]
|
11
|
Derivation of Porcine Embryonic Stem-Like Cells from In Vitro-Produced Blastocyst-Stage Embryos. Sci Rep 2016; 6:25838. [PMID: 27173828 PMCID: PMC4865852 DOI: 10.1038/srep25838] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 04/22/2016] [Indexed: 01/12/2023] Open
Abstract
Efficient isolation of embryonic stem (ES) cells from pre-implantation porcine embryos has remained a challenge. Here, we describe the derivation of porcine embryonic stem-like cells (pESLCs) by seeding the isolated inner cell mass (ICM) from in vitro-produced porcine blastocyst into α-MEM with basic fibroblast growth factor (bFGF). The pESL cells kept the normal karyotype and displayed flatten clones, similar in phenotype to human embryonic stem cells (hES cells) and rodent epiblast stem cells. These cells exhibited alkaline phosphatase (AP) activity and expressed pluripotency markers such as OCT4, NANOG, SOX2, SSEA-4, TRA-1-60, and TRA-1-81 as determined by both immunofluorescence and RT-PCR. Additionally, these cells formed embryoid body (EB), teratomas and also differentiated into 3 germ layers in vitro and in vivo. Microarray analysis showed the expression of the pluripotency markers, PODXL, REX1, SOX2, KLF5 and NR6A1, was significantly higher compared with porcine embryonic fibroblasts (PEF), but expression of OCT4, TBX3, REX1, LIN28A and DPPA5, was lower compared to the whole blastocysts or ICM of blastocyst. Our results showed that porcine embryonic stem-like cells can be established from in vitro-produced blastocyst-stage embryos, which promote porcine naive ES cells to be established.
Collapse
|
12
|
Xue B, Li Y, He Y, Wei R, Sun R, Yin Z, Bou G, Liu Z. Porcine Pluripotent Stem Cells Derived from IVF Embryos Contribute to Chimeric Development In Vivo. PLoS One 2016; 11:e0151737. [PMID: 26991423 PMCID: PMC4798268 DOI: 10.1371/journal.pone.0151737] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022] Open
Abstract
Although the pig is considered an important model of human disease and an ideal animal for the preclinical testing of cell transplantation, the utility of this model has been hampered by a lack of genuine porcine embryonic stem cells. Here, we derived a porcine pluripotent stem cell (pPSC) line from day 5.5 blastocysts in a newly developed culture system based on MXV medium and a 5% oxygen atmosphere. The pPSCs had been passaged more than 75 times over two years, and the morphology of the colony was similar to that of human embryonic stem cells. Characterization and assessment showed that the pPSCs were alkaline phosphatase (AKP) positive, possessed normal karyotypes and expressed classic pluripotent markers, including OCT4, SOX2 and NANOG. In vitro differentiation through embryonic body formation and in vivo differentiation via teratoma formation in nude mice demonstrated that the pPSCs could differentiate into cells of the three germ layers. The pPSCs transfected with fuw-DsRed (pPSC-FDs) could be passaged with a stable expression of both DsRed and pluripotent markers. Notably, when pPSC-FDs were used as donor cells for somatic nuclear transfer, 11.52% of the reconstructed embryos developed into blastocysts, which was not significantly different from that of the reconstructed embryos derived from porcine embryonic fibroblasts. When pPSC-FDs were injected into day 4.5 blastocysts, they became involved in the in vitro embryonic development and contributed to the viscera of foetuses at day 50 of pregnancy as well as the developed placenta after the chimeric blastocysts were transferred into recipients. These findings indicated that the pPSCs were porcine pluripotent cells; that this would be a useful cell line for porcine genetic engineering and a valuable cell line for clarifying the molecular mechanism of pluripotency regulation in pigs.
Collapse
Affiliation(s)
- Binghua Xue
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong He
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Renyue Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ruizhen Sun
- Department of Histology and Embryology, Harbin Medical University, Harbin, 150081, China
| | - Zhi Yin
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Gerelchimeg Bou
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
- * E-mail:
| |
Collapse
|
13
|
Kim E, Hwang SU, Yoo H, Yoon JD, Jeon Y, Kim H, Jeung EB, Lee CK, Hyun SH. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors. Theriogenology 2016; 85:601-16. [DOI: 10.1016/j.theriogenology.2015.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/20/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022]
|
14
|
Cheong SA, Kim E, Kwak SS, Jeon Y, Hyun SH. Improvement in the blastocyst quality and efficiency of putative embryonic stem cell line derivation from porcine embryos produced in vitro using a novel culturing system. Mol Med Rep 2015; 12:2140-8. [PMID: 25892608 DOI: 10.3892/mmr.2015.3634] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 03/26/2015] [Indexed: 11/05/2022] Open
Abstract
Porcine embryonic stem cells (pESCs) have great potential for application in translational biomedical research, including xenotransplantation and disease models. Obtaining high-quality blastocysts is the most important factor in the isolation and colonization of primary ESCs and the establishment of ESC lines. In pigs, in vitro-derived blastocysts have a limited cell number compared to in vivo-derived blastocysts and show an indefinite inner cell mass, which may result in failure to establish pESC lines. In the present study, the effects of resveratrol (RES), granulocyte-macrophage colony stimulating factor (GM-CSF) and β-mercaptoethanol (β-ME) on the quality of blastocysts and the efficiency of colony derivation were investigated for the establishment of ESCs. A novel culturing system was developed in which 2 µM RES was added to the oocyte in vitro maturation (IVM) medium, and 10 ng/ml pGM-CSF and 10 µM β-ME were added to embryo in vitro culture (IVC) medium. This novel system showed significantly more parthenogenetic activation (PA) blastocysts (54.5 ± 1.8% vs. 43.4 ± 1.2%; P<0.05) and in vitro fertilization (IVF) blastocysts (36.9 ± 3.3% vs. 26.2 ± 2.9%; P<0.06) at day seven as compared with that in the control system. The PA and IVF blastocysts from the novel system showed a significantly greater hatching rate (P<0.05) and greater cell numbers (55.1 ± 2.0 vs. 45.6 ± 2.0; P<0.05 and 78.9 ± 6.8 vs. 58.5 ± 7.2; P<0.06, for PA and IVF, respectively) at day seven compared to that in the control system. After seeding on feeder cells, the PA blastocysts produced by the novel system showed a significantly increased rate of attachment (28.8 ± 3.9% vs. 17.2 ± 2.4%; P<0.062). Finally, two putative pESC lines from PA embryos produced by the novel system and one by the control system were established. In conclusion, the novel system improved blastocyst quality and increased the derivation efficiency of putative pESC lines from porcine PA and IVF embryos produced in vitro.
Collapse
Affiliation(s)
- Seung A Cheong
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Eunhye Kim
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Seong-Sung Kwak
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Yubyeol Jeon
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361‑763, Republic of Korea
| |
Collapse
|
15
|
Siriboon C, Lin YH, Kere M, Chen CD, Chen LR, Chen CH, Tu CF, Lo NW, Ju JC. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning. PLoS One 2015; 10:e0118165. [PMID: 25680105 PMCID: PMC4334543 DOI: 10.1371/journal.pone.0118165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 01/05/2015] [Indexed: 01/26/2023] Open
Abstract
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.
Collapse
Affiliation(s)
- Chawalit Siriboon
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Yu-Hsuan Lin
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Michel Kere
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chun-Da Chen
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan, ROC
| | - Chien-Hong Chen
- Agriculture Technology Research Institute 1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu City, 300, Taiwan, ROC
| | - Ching-Fu Tu
- Agriculture Technology Research Institute 1, Ln. 51, Dahu Rd., Xiangshan Dist., Hsinchu City, 300, Taiwan, ROC
| | - Neng-Wen Lo
- Department of Animal Science and Biotechnology, Tunghai University 181, Sec. 3, Taichung Harbor Road, Taichung, 407, Taiwan, ROC
| | - Jyh-Cherng Ju
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan, ROC
- Core Laboratory for Stem Cell Research, Medical Research Department, China Medical University Hospital, Taichung, Taiwan, ROC
- Agricultural Biotechnology and Biotechnology Centers, National Chung Hsing University, Taichung, Taiwan, ROC
- Department of Biomedical Informatics, College of Computer Science, Asia University, Taichung, Taiwan, ROC
- * E-mail:
| |
Collapse
|
16
|
Verma V, Huang B, Kallingappa PK, Oback B. Dual Kinase Inhibition Promotes Pluripotency in Finite Bovine Embryonic Cell Lines. Stem Cells Dev 2013; 22:1728-42. [DOI: 10.1089/scd.2012.0481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Vinod Verma
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | - Ben Huang
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| | | | - Björn Oback
- AgResearch, Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
17
|
Nowak-Imialek M, Niemann H. Pluripotent cells in farm animals: state of the art and future perspectives. Reprod Fertil Dev 2013; 25:103-28. [PMID: 23244833 DOI: 10.1071/rd12265] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pluripotent cells, such as embryonic stem (ES) cells, embryonic germ cells and embryonic carcinoma cells are a unique type of cell because they remain undifferentiated indefinitely in in vitro culture, show self-renewal and possess the ability to differentiate into derivatives of the three germ layers. These capabilities make them a unique in vitro model for studying development, differentiation and for targeted modification of the genome. True pluripotent ESCs have only been described in the laboratory mouse and rat. However, rodent physiology and anatomy differ substantially from that of humans, detracting from the value of the rodent model for studies of human diseases and the development of cellular therapies in regenerative medicine. Recently, progress in the isolation of pluripotent cells in farm animals has been made and new technologies for reprogramming of somatic cells into a pluripotent state have been developed. Prior to clinical application of therapeutic cells differentiated from pluripotent stem cells in human patients, their survival and the absence of tumourigenic potential must be assessed in suitable preclinical large animal models. The establishment of pluripotent cell lines in farm animals may provide new opportunities for the production of transgenic animals, would facilitate development and validation of large animal models for evaluating ESC-based therapies and would thus contribute to the improvement of human and animal health. This review summarises the recent progress in the derivation of pluripotent and reprogrammed cells from farm animals. We refer to our recent review on this area, to which this article is complementary.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institut of Farm Animal Genetics, Friedrich-Loefller-Institut (FLI), Biotechnology, Höltystrasse 10, Mariensee, 31535 Neustadt, Germany.
| | | |
Collapse
|
18
|
Brevini T, Pennarossa G, Maffei S, Gandolfi F. Pluripotency network in porcine embryos and derived cell lines. Reprod Domest Anim 2013; 47 Suppl 4:86-91. [PMID: 22827355 DOI: 10.1111/j.1439-0531.2012.02060.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Huge amounts of work have been dedicated to the establishment of embryonic stem cell lines from farm animal species since the successful isolation of embryonic stem cells from the mouse and from the human. However, no conclusive results have been obtained so far, and validated lines have yet to be established in domestic animals. Many limiting factors have been suggested and need to be studied further to isolate truly pluripotent cell lines from livestock. In this review, we will discuss the difficulties in deriving and maintaining embryonic stem cell lines from farm animal embryos and how can this lack of success be explained. We will summarize results obtained in our laboratory regarding derivation of pluripotent cells in the pigs. Problems related to the identification of standard methods for derivation, maintenance and characterization of cell lines will also be examined. We will focus our attention on the need for appropriate stemness-related marker molecules that can be used to reliably investigate pluripotency in domestic species. Finally, we will review data presently available on functional key pluripotency-maintaining pathways in farm animals.
Collapse
Affiliation(s)
- Tal Brevini
- Laboratory of Biomedical Embryology, Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy.
| | | | | | | |
Collapse
|
19
|
Rogée S, Talbot N, Caperna T, Bouquet J, Barnaud E, Pavio N. New models of hepatitis E virus replication in human and porcine hepatocyte cell lines. J Gen Virol 2012; 94:549-558. [PMID: 23175242 DOI: 10.1099/vir.0.049858-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis E virus (HEV) causes acute, enterically transmitted hepatitis in human. It is associated with large epidemics in tropical and subtropical regions where it is endemic or with sporadic cases in non-endemic regions. Unlike other hepatitis viruses, HEV has several animal reservoirs. Phylogenetic studies on HEV human and animal sequences, and the identification of cases of direct transmission from animal to human strongly suggest that HEV is a zoonotic agent. The lack of efficient cell culture models limits studies on molecular and cellular aspects of HEV infection and species barrier crossing. The present study reports on the development of two new in vitro models of HEV replication using a human hepatoma-derived cell line, HepaRG, and a porcine embryonic stem cell-derived cell line, PICM-19. These two cell lines have morphological and functional properties similar to primary hepatocytes. These in vitro culture systems support HEV replication and release of encapsidated RNA. These new models represent a powerful tool for studying the viral replication cycle, species barrier crossing and virulence factors.
Collapse
Affiliation(s)
- Sophie Rogée
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Neil Talbot
- USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Thomas Caperna
- USDA, ARS, Animal and Natural Resources Institute, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA
| | - Jérôme Bouquet
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Elodie Barnaud
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| | - Nicole Pavio
- UMR 1161 Virology, Ecole Nationale Vétérinaire d'Alfort, 94706 Maisons-Alfort, France.,UMR 1161 Virology, INRA, 94706 Maisons-Alfort, France.,UMR 1161 Virology, ANSES, Laboratoire de Santé Animale, 94706 Maisons-Alfort, France
| |
Collapse
|
20
|
Talbot NC, Caperna TJ, Garrett WM. Growth and Development Symposium: Development, characterization, and use of a porcine epiblast-derived liver stem cell line: ARS-PICM-19. J Anim Sci 2012; 91:66-77. [PMID: 23148238 DOI: 10.2527/jas.2012-5748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Totipotent embryonic stem cell lines have not been established from ungulates; however, we have developed a somatic stem cell line from the in vitro culture of pig epiblast cells. The cell line, ARS-PICM-19, was isolated via colony cloning and was found to spontaneously differentiate into hepatic parenchymal epithelial cell types, namely hepatocytes and bile duct cells. Hepatocytes form as monolayers and bile duct cells as 3-dimensional bile ductules. Transmission electron microscopy revealed that the ductules were composed of radially arranged, monociliated cells with their cilia projecting into the lumen of the ductule whereas hepatocytes were arranged in monolayers with lateral canalicular structures containing numerous microvilli and connected by tight junctions and desmosomes. Extensive Golgi and rough endoplasmic reticulum networks were also present, indicative of active protein synthesis. Analysis of conditioned medium by 2-dimensional electrophoresis and mass spectrometry indicated a spectrum of serum-protein secretion by the hepatocytes. The PICM-19 cell line maintains a range of inducible cytochrome P450 activities and, most notably, is the only nontransformed cell line that synthesizes urea in response to ammonia challenge. The PICM-19 cell line has been used for several biomedical- and agricultural-related purposes, such as the in vitro replication of hepatitis E virus, a zoonotic virus of pigs, and a spaceflight experiment to evaluate somatic stem cell differentiation and liver cell function in microgravity. The cell line was also evaluated as a platform for toxicity testing and has been used in a commercial artificial liver rescue device bioreactor. A PICM-19 subclone, PICM-19H, which only differentiates into hepatocytes, was isolated and methods are currently under development to grow PICM-19 cells without feeder cells. Feeder-cell-independent growth will facilitate the study of mesenchymal-parenchymal interactions that influence the divergent differentiation of the PICM-19 cells, enhance our ability to genetically modify the cells, and provide a better model system to investigate porcine hepatic metabolism.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
21
|
Cytochrome P450 expression profile of the PICM-19H pig liver cell line: potential application to rapid liver toxicity assays. In Vitro Cell Dev Biol Anim 2011; 46:11-9. [PMID: 19915937 DOI: 10.1007/s11626-009-9244-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
Liver in vitro models are needed to replace animal models for rapid assessment of drug biotransformation and toxicity. The PICM-19 pig liver stem cell line may fulfill this need since these cells have activities associated with xenobiotic phase I and II metabolism lacking in other liver cell lines. The objective of this study was to characterize phase I and II metabolic functions of a PICM-19 derivative cell line, PICM-19H, compared to the tumor-derived human HepG2 C3A cell line and primary cultures of adult porcine hepatocytes. Following exposure of PICM-19H cells to either 3-methylcholanthrene, rifampicin or phenobarbital, the induced activities of cytochrome P450 (CYP450) isozymes CYP-1A, -2, and-3A were assessed. Relative to adult porcine hepatocytes, PICM- 19H cells exhibited 30% and 43%, respectively, of CYP1A and 3A activities, while HepG2 C3A cells exhibited 7% and 0% of those activities. Fluorescent metabolites were extensively conjugated, i.e., 52% and 96% of CYP450-1A and-3A metabolites were released from medium samples following treatment with β-glucuronidase/arylsulfatase. Rifampicin induction of CYP450 isozyme activities was confirmed by conversion of testosterone to 6β-OH-, 2α-OH- and 2β-OH-testosterone, as determined by mass spectrometry. Susceptibility of PICM-19H cells to acetaminophen toxicity was determined; CD50 was calculated to be 14.9±0.9 mM. Toxicity and bioactivation of aflatoxin B1 was determined in 3-methylcholanthrenetreated cultures and untreated controls; CD50 were 1.59 μM and 31 μM, respectively. These results demonstrate the potential use of PICM-19H cells in drug biotransformation and toxicity testing and further support their use in extracorporeal artificial liver device technology.
Collapse
|
22
|
Nowak-Imialek M, Kues W, Carnwath JW, Niemann H. Pluripotent stem cells and reprogrammed cells in farm animals. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2011; 17:474-497. [PMID: 21682936 DOI: 10.1017/s1431927611000080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.
Collapse
Affiliation(s)
- Monika Nowak-Imialek
- Institute of Farm Animal Genetics (FLI), Biotechnology, Mariensee, 31535 Neustadt, Germany
| | | | | | | |
Collapse
|
23
|
Wolf XA, Rasmussen MA, Schauser K, Jensen AT, Schmidt M, Hyttel P. OCT4 Expression in Outgrowth Colonies Derived from Porcine Inner Cell Masses and Epiblasts. Reprod Domest Anim 2011; 46:385-92. [DOI: 10.1111/j.1439-0531.2010.01675.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Kumar D, Anand T, Singh KP, Singh MK, Shah RA, Chauhan MS, Palta P, Singla SK, Manik RS. Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. J Assist Reprod Genet 2011; 28:679-88. [PMID: 21573679 DOI: 10.1007/s10815-011-9572-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/20/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The aim of the present study is to compare the ability of homologous and heterologous embryonic fibroblast feeder layers to support isolation and proliferation of buffalo ES-like cells generated from hatched and expanded blastocysts produced by in vitro fertilization and characterization of derived cells through expression of pluripotent markers. METHODS Embryonic stem cells were derived from hatched and expanded blastocysts through intact blastocyst culture and enzymatic method respectively and compared for proliferation rate on homologous (buffalo) and heterologous feeder layers (goat and sheep). RESULTS A total of 69 hatched and 83 expanded blastocysts were used for isolation of inner cell masses which were seeded on buffalo, goat and sheep embryonic feeder layers. Following seeding, attachment rate, primary colony formation rate and survival to maximum number of passages were observed to be higher on homologous feeder layers. CONCLUSIONS Upon comparison of different feeder layer cells for derivation and maintenance of buffalo ES-like cells from hatched and expanded blastocysts, buffalo embryonic fibroblast cells were able to provide a better environment for maintaining pluripotency in culture conditions.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 132001, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Alberio R, Croxall N, Allegrucci C. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 2011; 19:1627-36. [PMID: 20210627 DOI: 10.1089/scd.2010.0012] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Activin/Nodal signaling is required for maintaining pluripotency and self-renewal of mouse epiblast stem cells and human embryonic stem cells (hESC). In this study, we investigated whether this signaling mechanism is also operative in cultured epiblasts derived from Days 10.5-12 pig embryos. Pig epiblast stem cell lines (pEpiSC) were established on mouse feeder layers and medium supplemented with basic fibroblast growth factor (bFGF). pEpiSC express the core pluripotency factors OCT4 (or POU5F1), NANOG, SOX2, and NODAL, but they do not express REX1 or alkaline phosphatase activity. Blocking leukemia inhibitory factor (LIF)/JAK/STAT3 pathway by adding the specific JAK I inhibitor 420099 and an anti-LIF antibody over 3 passages did not affect pluripotency of pEpiSC. In contrast, cells grown with the Alk-5 inhibitor SB431542, which blocks Activin/Nodal pathway, differentiated readily toward the neural lineage. pEpiSC are pluripotent, as established by their differentiation potential to ectoderm, mesoderm, and endoderm. These cells can be induced to differentiate toward trophectoderm and to germ cell precursors in response to bone morphogenetic protein 4 (BMP-4). In conclusion, our study demonstrates that pig epiblasts express the core pluripotency genes and that the capacity for maintaining self-renewal in pEpiSC depends on Activin/Nodal signaling. This study provides further evidence that maintenance of pluripotency via Activin/Nodal signal is conserved in mammals.
Collapse
Affiliation(s)
- Ramiro Alberio
- Division of Animal Sciences, School of Biosciences, University of Nottingham, Loughborough, United Kingdom.
| | | | | |
Collapse
|
26
|
Li Y, Cang M, Lee AS, Zhang K, Liu D. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 2011; 6:e15947. [PMID: 21253598 PMCID: PMC3017083 DOI: 10.1371/journal.pone.0015947] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 11/30/2010] [Indexed: 01/03/2023] Open
Abstract
Animal embryonic stem cells (ESCs) provide powerful tool for studies of early embryonic development, gene targeting, cloning, and regenerative medicine. However, the majority of attempts to establish ESC lines from large animals, especially ungulate mammals have failed. Recently, another type of pluripotent stem cells, known as induced pluripotent stem cells (iPSCs), have been successfully generated from mouse, human, monkey, rat and pig. In this study we show sheep fibroblasts can be reprogrammed to pluripotency by defined factors using a drug-inducible system. Sheep iPSCs derived in this fashion have a normal karyotype, exhibit morphological features similar to those of human ESCs and express AP, Oct4, Sox2, Nanog and the cell surface marker SSEA-4. Pluripotency of these cells was further confirmed by embryoid body (EB) and teratoma formation assays which generated derivatives of all three germ layers. Our results also show that the substitution of knockout serum replacement (KSR) with fetal bovine serum in culture improves the reprogramming efficiency of sheep iPSCs. Generation of sheep iPSCs places sheep on the front lines of large animal preclinical trials and experiments involving modification of animal genomes.
Collapse
Affiliation(s)
- Yang Li
- Stem Cell Research Center, Peking University Health Science Center, Beijing, China
- Department of Cell Biology, Peking University Health Science Center, Beijing, China
- * E-mail: (YL); (DL)
| | - Ming Cang
- Lab Animal Research Center, College of Life Sciences, Inner Mongolia University, Huhhot, China
| | - Andrew Stephen Lee
- Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Kehua Zhang
- Department of Immunity, Clinical Medicine Institute, China Japan Friendship Hospital, Beijing, China
| | - Dongjun Liu
- Lab Animal Research Center, College of Life Sciences, Inner Mongolia University, Huhhot, China
- * E-mail: (YL); (DL)
| |
Collapse
|
27
|
Gong G, Roach ML, Jiang L, Yang X, Tian XC. Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell Reprogram 2010; 12:151-60. [PMID: 20677930 DOI: 10.1089/cell.2009.0049] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The goals of the current study were to (1) improve culture conditions and (2) chemical passaging of bovine embryonic stem cell-like (bESC-like) cells. Specifically, the effects of human leukemia inhibitory factor (hLIF), two types of feeders, mouse embryonic fibroblast (MEF) and bovine embryonic fibroblast (BEF), as well as three different enzymatic treatments including Trypsin-EDTA, TrypLE, and Liberase Blendzymes 3 were investigated. The addition of hLIF at 1000 U/mL to the culture medium (41.2 and 36.9%), and the use of either MEF or BEF feeders (40.3 and 38.1%) had no significant effect on the ability of inner cell masses (ICMs) to form primary cell colonies compared to controls. All bESC-like cells were first dissociated mechanically for three passages followed by enzymatic dissociation. The ability to maintain ESC morphology to passage 10 was compared among the three enzymes above. More bESC-like cell lines survived beyond passage 10 when treated with TrypLE compared to Trypson-EDTA (28.8 and 12.6%; p < 0.05), and bESC-like cells differentiated quickly when treated with Liberase Blendzyme 3. The bESC-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as SSEA-1, AP, OCT-4, and Nanog. When removed from feeders, these bESC-like cells formed embryoid bodies (EBs) in a suspension culture. When EBs were cultured on tissue culture plates, they differentiated into various cell types. In summary, we were able to culture bESC-like cells more than 10 passages by enzymatic dissociation, which is important in gene targeting, maintenance, and banking of bESC lines.
Collapse
Affiliation(s)
- Guochun Gong
- Department of Animal Science and Center for Regenerative Biology, University of Connecticut , Storrs, CT 06269-4243, USA
| | | | | | | | | |
Collapse
|
28
|
No shortcuts to pig embryonic stem cells. Theriogenology 2010; 74:544-50. [DOI: 10.1016/j.theriogenology.2010.04.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 04/16/2010] [Accepted: 04/18/2010] [Indexed: 12/15/2022]
|
29
|
Gómez M, Serrano M, Pope CE, Jenkins J, Biancardi M, López M, Dumas C, Galiguis J, Dresser B. Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. Theriogenology 2010; 74:498-515. [DOI: 10.1016/j.theriogenology.2010.05.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 10/19/2022]
|
30
|
Talbot NC, Blomberg LA, Garrett WM, Caperna TJ. Feeder-independent continuous culture of the PICM-19 pig liver stem cell line. In Vitro Cell Dev Biol Anim 2010; 46:746-57. [PMID: 20607619 DOI: 10.1007/s11626-010-9336-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/16/2010] [Indexed: 01/28/2023]
Abstract
The PICM-19 pig liver stem cell line is a bipotent cell line, i.e., capable of forming either bile ductules or hepatocyte monolayers in vitro, that was derived from the primary culture of pig embryonic stem cells. The cell line has been strictly feeder-dependent in that cell replication, morphology, and function were lost if the cells were cultured without STO feeder cells. A method for the feeder-independent continuous culture of PICM-19 cells (FI-PICM-19) is presented. PICM-19 cells were maintained and grown without feeder cells on collagen I-coated tissue culture plastic for 26 passages (P26) with initial split ratios of 1:3 that diminished to split ratios of less than 1:2 after passage 16. Once plated, the FI-PICM-19 cells were overlaid with a 1:12 to 1:50 dilution of Matrigel or related extracellular matrix product. Growth of the cells was stimulated by daily refeedings with STO feeder-cell conditioned medium. The FI-PICM-19 cells grew to an approximate confluence of 50% prior to each passage at 2-wk intervals. Growth curve analysis showed their average cell number doubling time to be ~96 h. Morphologically, the feeder-independent cells closely resembled PICM-19 cells grown on feeder cells, and biliary canalicui were present at cell-to-cell junctions. However, no spontaneous multicellular ductules formed in the monolayers of FI-PICM-19 cells. Ultrastructural subcellular features of the FI-PICM-19 cells were similar to those of PICM-19 cells cultured on feeder cells. The FI-PICM-19 cells produced a spectrum of serum proteins and expressed many liver/hepatocyte-specific genes. Importantly, cytochrome P450 (EROD) activity, ammonia clearance, and urea production were maintained by the feeder-independent cells. This simple method for the propagation of the PICM-19 cell line without feeder cells should simplify the generation and selection of functional mutants within the population and enhances the cell line's potential for use in toxicological/pharmacological screening assays and for use in an artificial liver device.
Collapse
Affiliation(s)
- Neil C Talbot
- U. S. Department of Agriculture, Agricultural Research Service, Animal and Natural Resources Institute, Animal Biosciences and Biotechnology Laboratory, Beltsville Agricultural Research Center, Bldg. 200, Rm. 13, BARC-East, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
31
|
The effects of space flight and microgravity on the growth and differentiation of PICM-19 pig liver stem cells. In Vitro Cell Dev Biol Anim 2010; 46:502-15. [PMID: 20333478 DOI: 10.1007/s11626-010-9302-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 01/16/2010] [Indexed: 10/19/2022]
Abstract
The PICM-19 pig liver stem cell line was cultured in space for nearly 16 d on the STS-126 mission to assess the effects of spaceflight on the liver's parenchymal cells-PICM-19 cells to differentiate into either monolayers of fetal hepatocytes or 3-dimensional bile ductules (cholangiocytes). Semi-quantitative data included light microscopic assessments of final cell density, cell morphology, and response to glucagon stimulation and electron microscopic assessment of the cells' ultrastructural features and cell-to-cell connections and physical relationships. Quantitative assessments included assays of hepatocyte detoxification functions, i.e., inducible P450 activities and urea production and quantitation of the mRNA levels of several liver-related genes. Three post-passage age groups were included: 4-d-, 10-d-, and 14-d-old cultures. In comparing flight vs. ground-control cultures 17 h after the space shuttle's return to earth, no differences were found between the cultures with the exception being that some genes were differentially expressed. By light microscopy both young and older cultures, flight and ground, had grown and differentiated normally in the Opticell culture vessels. The PICM-19 cells had grown to approximately 75% confluency, had few signs of apoptosis or necrosis, and had either differentiated into monolayer patches of hepatocytes with biliary canaliculi visible between the cells or into 3-dimensional bile ductules with well-defined lumens. Ultrastructural features between flight and ground were similar with the PICM-19 cells displaying numerous mitochondria, Golgi apparatus, smooth and rough endoplasmic reticulum, vesicular bodies, and occasional lipid vacuoles. Cell-to-cell arrangements were typical in both flight and ground-control samples; biliary canaliculi were well-formed between the PICM-19 cells, and the cells were sandwiched between the STO feeder cells. PICM-19 cells displayed inducible P450 activities. They produced urea in a glutamine-free medium and produced more urea in response to ammonia. The experiment's aim to gather preliminary data on the PICM-19 cell line's suitability as an in vitro model for assessments of liver function in microgravity was demonstrated, and differences between flight and ground-control cultures were minor.
Collapse
|
32
|
Puy LD, Chuva de Sousa Lopes SM, Haagsman HP, Roelen BA. Differentiation of Porcine Inner Cell Mass Cells Into Proliferating Neural Cells. Stem Cells Dev 2010; 19:61-70. [DOI: 10.1089/scd.2009.0075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Leonie du Puy
- Department of Farm Animal Health and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Henk P. Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A.J. Roelen
- Department of Farm Animal Health and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
33
|
Abstract
In contrast to differentiated cells, embryonic stem cells (ESC) maintain an undifferentiated state, have the ability to self-renew, and exhibit pluripotency, i.e., they can give rise to most if not all somatic cell types and to the germ cells, egg and sperm. These characteristics make ES cell lines important resources for the advancement of human regenerative medicine, and, if established for domesticated ungulates, would help make possible the improvement of farm animals through their contribution to genetic engineering technology. Combining other genetic engineering technologies, such as somatic cell nuclear transfer with ESC technology may result in synergistic gains in the ability to precisely make and study genetic alterations in mammals. Unfortunately, despite significant advances in our understanding of human and mouse ESC, the derivation of ES cell lines from ungulate species has been unsuccessful. This may result from a lack of understanding of species-specific mechanisms that promote or influence cell pluripotency. Thorough molecular characterizations, including the elucidation of stem cell "marker" signaling cascade hierarchy, species-appropriate pluripotency markers, and pluripotency-associated chromatin alterations in the genomes of ungulate species, should improve the chances of developing efficient, reproducible technologies for the establishment of ES cell lines of economically important species like the pig, cow, goat, sheep and horse.
Collapse
|
34
|
Brevini TAL, Antonini S, Pennarossa G, Gandolfi F. Recent Progress in Embryonic Stem Cell Research and Its Application in Domestic Species. Reprod Domest Anim 2008; 43 Suppl 2:193-9. [DOI: 10.1111/j.1439-0531.2008.01161.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Blomberg LA, Schreier LL, Talbot NC. Expression analysis of pluripotency factors in the undifferentiated porcine inner cell mass and epiblast during in vitro culture. Mol Reprod Dev 2008; 75:450-63. [PMID: 17680630 DOI: 10.1002/mrd.20780] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Limited understanding of the importance of known pluripotency factors in pig embryonic stem cells (ESC) impedes the establishment and validation of porcine ESC lines. This study evaluated the expression of known mouse ESC and human ESC (hESC) pluripotency markers in in vivo inner cell mass (ICM) and in vitro-cultured undifferentiated porcine epiblast cells isolated from 8-day porcine blastocysts, primary cultures of epiblast-derived neuroprogenitor cells, and endoderm cells. The expression profile of common pluripotency markers (POU domain 5 transcript factor 1, SRY-box containing gene 2, and Nanog homeobox), species-specific markers, ESC-associated factors, and differentiation markers was evaluated. The mRNA of uncultured ICMs, cultured epiblast cells, epiblast-derived neuroprogenitor cells, and endoderm cells was amplified prior to expression analysis of candidate genes by real-time RT-PCR. ESC factors whose expression correlated best with the undifferentiated epiblast state were identified by comparative mRNA expression analysis between porcine epiblast-derived somatic cell lines, fetal fibroblasts, and adult tissues. Across tissue types Nanog homeobox exhibited ubiquitous expression, whereas POU domain 5 transcript factor 1, teratocarcinoma-derived growth factor 1, and RNA exonuclease homolog 1 transcript expression was restricted primarily to undifferentiated epiblasts. Our results suggested that expression of pluripotency markers in undifferentiated pig epiblast cells more closely resembled that observed in hESC. Expression alterations of ESC-associated factors in epiblast cells were also observed during in vitro culture. Our data demonstrate the potential use of some pluripotency factors as markers of porcine epiblast stem cells and indicate that the in vitro environment may influence the cultured epiblast's developmental state.
Collapse
Affiliation(s)
- Le Ann Blomberg
- Biotechnology and Germplasm Laboratory, USDA Agricultural Research Service, Beltsville, Maryland 20705, USA.
| | | | | |
Collapse
|
36
|
Brevini TAL, Antonini S, Cillo F, Crestan M, Gandolfi F. Porcine embryonic stem cells: Facts, challenges and hopes. Theriogenology 2007; 68 Suppl 1:S206-13. [PMID: 17582486 DOI: 10.1016/j.theriogenology.2007.05.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Embryonic stem cells (ESCs) represent a promising tool for cell therapy, regenerative medicine and tissue repair. At the same time they constitute an invaluable model for basic investigations in developmental biology, nuclear reprogramming and differentiation process. ESCs are very unique due to their unlimited self-renewal ability and high plasticity that allow them to differentiate into all embryonic tissues. However, these properties have been so far only demonstrated in the mouse and, to a lesser extent, in man. Assessment of ESC capabilities in species different from the mouse is an ongoing topic of interest and is crucial in view of their potential use as experimental models in pre-clinical applications. The mouse model is not adequate when long-term effects of cell replacement need to be evaluated. The pig has been considered for a long time among the best models for pre-clinical development of therapeutic approaches and represents an innovative model due to its morphological and functional affinity with man; therefore, pig ESCs are attracting renewed interest. However, a number of open questions need to be addressed since no validated protocols for the derivation and maintenance of pig ESCs have yet been established. In the present paper data from the literature will be presented together with experimental evidence recently obtained in our laboratory. We will discuss aspects related to the timing of isolation, the initiation of primary cultures, the use of different culture conditions and cytokines. The identification of pluripotency-related molecular markers in the pig will also be examined. Finally, the ability to respond to specifically formulated medium with spontaneous as well as induced differentiation will be assessed.
Collapse
Affiliation(s)
- T A L Brevini
- Biomedical Embryology Unit, Department of Animal Science, Centre for Stem Cell Research, University of Milan, via Celoria 10, Milan, Italy.
| | | | | | | | | |
Collapse
|
37
|
Talbot NC, Blomberg LA, Mahmood A, Caperna TJ, Garrett WM. Isolation and characterization of porcine visceral endoderm cell lines derived from in vivo 11-day blastocysts. In Vitro Cell Dev Biol Anim 2007; 43:72-86. [PMID: 17570021 DOI: 10.1007/s11626-007-9014-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 02/02/2007] [Indexed: 10/23/2022]
Abstract
Two porcine cell lines of yolk-sac visceral endoderm, designated as PE-1 and PE-2, were derived from in vivo 11-d porcine blastocysts that were either ovoid (PE-1) or at the early tubular stage of elongation (PE-2). Primary and secondary culture of the cell lines was done on STO feeder cells. The PE-1 and PE-2 cells morphologically resembled visceral endoderm previously cultured from in vivo-derived ovine and equine blastocysts and from in vitro-derived bovine blastocysts. Analysis of the PE-1- and PE-2-conditioned medium by 2D-gel electrophoresis and matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry demonstrated that they produced serum proteins. Reverse transcriptase polymerase chain reaction analysis showed that the cells expressed several genes typical for yolk-sac endoderm differentiation and function including GATA-6, DAB-2, REX-1, HNF-1, transthyretin, alpha-fetoprotein, and albumin. Unlike a porcine liver cell line, the PE-1 and PE-2 cell lines had relatively low inducible P-450 content and EROD activity, and, while they cleared ammonia from the cell culture medium, they did not produce urea. Transmission electron microscopy revealed that the cells were a polarized epithelium connected by complex junctions resembling tight junctions and by lateral desmosomes. Rough endoplasmic reticulum was prominent within the cells. Immunocytochemistry indicated that the PE-1 cells expressed cytokeratin 18 and had robust microtubule networks similar to those observed in in vivo porcine yolk-sac endoderm. Metaphase spreads prepared at passage 26 of the PE-1 cell line indicated a diploid porcine karyotype of 38 chromosomes. The cells have been grown for over 1 yr for multiple passages at 1:10 or 1:20 split ratios on STO feeder cells. The cell lines will be of interest as an in vitro model of the porcine preimplantation yolk-sac tissue.
Collapse
Affiliation(s)
- Neil C Talbot
- Biotechnology and Germplasm Laboratory, Animal and Natural Resources Institute, ARS, USDA, Bldg. 200, Rm. 13, BARC-East, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|
38
|
Orsi NM, Reischl JB. Mammalian embryo co-culture: Trials and tribulations of a misunderstood method. Theriogenology 2007; 67:441-58. [PMID: 17118433 DOI: 10.1016/j.theriogenology.2006.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 11/17/2022]
Abstract
Embryo-somatic cell co-culture was devised over 40 years ago in an attempt to improve the development and viability of mammalian preimplantation embryos generated and cultured in vitro. While initial endeavours were successful in this respect, other studies soon highlighted a number of significant long-term detrimental impacts of this approach. Surprisingly little is known about the mechanisms underlying the beneficial effects of co-culture, although the production of embryotrophic compounds, modulation of nutrient profile, protection against culture-induced stress and/or toxin clearance are all contenders. The extent to which the inadvertent exposure of embryos to serum accounts for many of these effects remains open to question. Although the popularity of somatic cell co-culture has recently declined in favour of the use of sequential media due to concerns associated with its risk of disease transmission and long-term sequelae, we argue that complete dismissal of this technique is ill advised, given that our limited understanding of basic somatic cell interactions has prevented us from fully exploiting its potential. In this respect, there is some merit in focussing future research strategies based on reconstructed maternal tract tissue. Although the use of co-culture in clinical practice is unacceptable and its implementation in domestic species for commercial purposes should be viewed with diffidence, this technique can still provide a wealth of information on the development of novel, more physiological embryo in vitro culture systems. The proviso for acquiring such information is to gain a fuller understanding of the culture requirements/biochemistry of somatic cells and their interaction with the early conceptus.
Collapse
Affiliation(s)
- Nicolas M Orsi
- Perinatal Research Group, Section of Pathology & Tumour Biology, Leeds Institute of Molecular Medicine, Level 4 Wellcome Trust Brenner Building, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK.
| | | |
Collapse
|
39
|
VACKOVA I, UNGROVA A, LOPES F. Putative Embryonic Stem Cell Lines from Pig Embryos. J Reprod Dev 2007; 53:1137-49. [DOI: 10.1262/jrd.19108] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Irena VACKOVA
- Institute of Animal Science
- Center for Cell Therapy and Tissue Repair, Charles University
| | | | - Federica LOPES
- Dipartimento di Scienze Biomediche Comparate, Teramo University
| |
Collapse
|
40
|
Brevini TAL, Tosetti V, Crestan M, Antonini S, Gandolfi F. Derivation and characterization of pluripotent cell lines from pig embryos of different origins. Theriogenology 2006; 67:54-63. [PMID: 17055567 DOI: 10.1016/j.theriogenology.2006.09.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Embryonic stem cells (ESCs) hold great promise for therapeutic use and represent a unique tool for investigating the process of self-renewal and differentiation. The properties that make ESCs unique are their capacity of unlimited self-renewal coupled with the property of re-entering the developmental process if returned inside a blastocyst. Such plasticity enable ESCs to form all embryonic tissues including germ cells. However, these remarkable properties, at present, have been demonstrated only for mouse ESCs even if cells with somehow more limited capacities have been derived in many different species including humans. The isolation of pluripotent embryonic cells lines from human embryos marked a crucial change of perspective in evaluating the properties defining an embryonic stem cell lines moving the focus from the generation of a germ-line chimera, obviously not feasible nor desirable in human, to the capacity of these cells to differentiate both in vivo and in vitro in fully mature and functional cell types of all kinds. Therefore, ESCs properties in species different from the mouse are being reassessed and re-evaluated, in view of their potential use as experimental models for the development of clinical applications. Among the species that may play a useful role in this field, the pig has a long-standing history as a prime animal model for pre-clinical biomedical applications and therefore, pig ESCs are attracting renewed interest. In this review, we will summarize the current knowledge on this topic and will contrast the relatively limited data available in this species with the much larger wealth of information available for mouse and human ESCs, in an attempt to assess whether or not pig ESCs can actually become a useful tool in the fast growing field of cell therapy.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Anatomy of Domestic Animals, Centre for Stem Cell Research, University of Milan, Via Celoria, 10, 20133 Milano, Italy
| | | | | | | | | |
Collapse
|
41
|
Keefer CL, Pant D, Blomberg L, Talbot NC. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim Reprod Sci 2006; 98:147-68. [PMID: 17097839 DOI: 10.1016/j.anireprosci.2006.10.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Embryonic stem (ES) cell lines provide an invaluable research tool for genetic engineering, developmental biology and disease models. These cells can be maintained indefinitely in culture and yet maintain competence to produce all the cells within a fetus. While mouse ES cell lines were first established over two decades ago and primate ES cells in the 1990 s, validated ES cell lines have yet to be established in ungulates. Why competent, pluripotent ES cells can be established from certain strains of mice and from primates, and not from cows, sheep, goats or pigs is an on-going topic of interest to animal reproduction scientists. The identification of appropriate stem cell markers, functional cytokine pathways, and key pluripotency-maintaining factors along with the release of more comprehensive bovine and porcine genomes, provide encouragement for establishment of ungulate ES cell lines in the near future.
Collapse
Affiliation(s)
- C L Keefer
- University of Maryland, Department of Animal and Avian Sciences, College Park, MD 20742-2311, USA.
| | | | | | | |
Collapse
|
42
|
Shiue YL, Liou JF, Shiau JW, Yang JR, Chen YH, Tailiu JJ, Chen LR. In vitro culture period but not the passage number influences the capacity of chimera production of inner cell mass and its deriving cells from porcine embryos. Anim Reprod Sci 2006; 93:134-43. [PMID: 16143474 DOI: 10.1016/j.anireprosci.2005.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 06/16/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Mammalian embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) of the blastocyst. These cells are able to proliferate continuously without differentiation in vitro under suitable conditions. Their capacity of pluripotency in differentiation will be resumed when they are reintroduced into host embryos, when they will contribute to the embryonic development to form chimeric individuals. Manipulation of ES cells has been mainly established from studies in the mouse, and is powerful in the production of transgenic animals. Porcine ICM-derived cell lines possess the same cellular morphology and in vitro behavior as those of murine ES cells, but have lower efficiency in chimera formation when reintroduced into host embryos. This study was to determine the influences of passage number and the duration of in vitro culture on the capacity of porcine ICM-derived cells in the generation of chimeric embryos. The results showed that when passage number of porcine ICM-derived cells was less than 15, there were no detrimental effects on its integration ability. Extending the culture time up to 6 days in each passage of porcine ICM-derived cells impaired its integration capacity into the host blastocyst. Porcine ICM-derived cells cultured for more than 4 days in each passage should not be used for blastocyst injection if high efficiency of chimera production is to be achieved.
Collapse
Affiliation(s)
- Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | | | | | | | | | | | | |
Collapse
|
43
|
Talbot NC, Caperna TJ, Powell AM, Ealy AD, Blomberg LA, Garrett WM. Isolation and characterization of a bovine visceral endoderm cell line derived from a parthenogenetic blastocyst. In Vitro Cell Dev Biol Anim 2006; 41:130-41. [PMID: 16153145 DOI: 10.1290/040901.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A cell line, BPE-1, was derived from a parthenogenetic 8-d in vitro-produced bovine blastocyst that produced a cell outgrowth on STO feeder cells. The BPE-1 cells resembled visceral endoderm previously cultured from blastocysts produced by in vitro fertilization (IVF). Analysis of the BPE-1 cells demonstrated that they produced serum proteins and were negative for interferon-tau production (a marker of trophectoderm). Transmission electron microscopy revealed that the cells were a polarized epithelium connected by complex junctions resembling tight junctions in conjunction with desmosomes. Rough endoplasmic reticulum was prominent within the cells as were lipid vacuoles. Immunocytochemistry indicated the BPE-1 cells had robust microtubule networks. These cells have been grown for over 2 yr for multiple passages at 1:10 or 1:20 split ratios on STO feeder cells. The BPE-1 cell line presumably arose from embryonic cells that became diploid soon after parthenogenetic activation and development of the early embryo. However, metaphase spreads prepared at passage 41 indicated that the cell population had a hypodiploid (2n = 60) unimodal chromosome content with a mode of 53 and a median and mean of 52. The cell line will be of interest for functional comparisons with bovine endoderm cell lines derived from IVF and nuclear transfer embryos.
Collapse
Affiliation(s)
- Neil C Talbot
- Agricultural Research Service, Animal and Natural Resources Institute, Biotechnology and Germplasm Laboratory, U.S. Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Lee CK, Piedrahita JA. Effects of growth factors and feeder cells on porcine primordial germ cells in vitro. ACTA ACUST UNITED AC 2005; 2:197-205. [PMID: 16218856 DOI: 10.1089/152045500454753] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
As embryonic stem (ES) cells are not available in swine, embryonic germ (EG) cells derived from primordial germ cells (PGCs) are an alternate source of pluripotent embryonic cells for genetic modification through homologous recombination. Although morphological and biochemical characteristics are similar between ES and EG cells, culture conditions are quite different. To optimize the culture condition for the establishment of porcine EG cells, porcine PGCs were cultured in vitro with various combinations of growth factors (leukemia inhibitory factor [LIF], stem cell factor [SCF], and basic fibroblast growth factor [bFGF]) and on different kinds of feeder cells (STO, TM(4), Sl/Sl(4) m220, porcine embryonic fibroblasts, and COS-7 cells). Optimal results were obtained when all three growth factors (LIF, SCF, and bFGF) were present in the media. Also, feeder cells expressing membrane-bound SCF are required for survival and establishment of porcine EG cells. Therefore, a combination of growth factors and proper feeder cells are critical for the establishment of undifferentiated porcine EG cells.
Collapse
Affiliation(s)
- C K Lee
- Department of Animal Science, Texas A&M University, College Station, TX 077843, USA
| | | |
Collapse
|
45
|
Rui R, Shim H, Moyer AL, Anderson DL, Penedo CT, Rowe JD, BonDurant RH, Anderson GB. Attempts to enhance production of porcine chimeras from embryonic germ cells and preimplantation embryos. Theriogenology 2004; 61:1225-35. [PMID: 15036957 DOI: 10.1016/j.theriogenology.2003.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2003] [Accepted: 06/02/2003] [Indexed: 11/18/2022]
Abstract
Porcine embryonic germ (EG) cells share common features with porcine embryonic stem (ES) cells, including morphology, alkaline phosphatase activity and capacity for in vitro differentiation. Porcine EG cells are also capable of in vivo development by producing chimeras after blastocyst injection; however, the proportion of injected embryos that yield a chimera and the proportion of cells contributed by the cultured cells in each chimera are too low for practical use in genetic manipulation. Moreover, somatic, but not germ-line chimerism, has been reported from blastocyst injection using porcine ES or EG cells. To test whether efficiency of chimera production from blastocyst injection can be improved upon by changing the host embryo, we used as host embryos four groups according to developmental stage or length in culture: fresh 4-cell and 8-cell stage embryos subsequently cultured into blastocysts, fresh morulae, fresh blastocysts, and cultured blastocysts. Injection and embryo transfer of fresh and cultured blastocysts produced similar percentages of live piglets (17% versus 19%). Four piglets were judged to have a small degree of pigmentation chimerism, but microsatellite analysis failed to confirm chimerism in these or other piglets. Polymerase chain reaction analysis for detection of the porcine SRY gene in female piglets born from embryos injected with male EG cells identified six chimeras, at least one, but not more than two, from each treatment. Chimerism was confirmed in two putative pigmentation chimeras and in four piglets without overt signs of chimerism. The low percentage of injected embryos that yielded a chimera and the small contribution by EG cells to development of each confirmed chimera indicated that procedural changes in how EG cells were combined with host embryos were unsuccessful in increasing the likelihood that porcine EG cells will participate in embryonic development. Alternatively, our results suggested that improvements are needed in EG cell isolation and culture procedures to ensure in vitro maintenance of EG cell developmental capacity.
Collapse
Affiliation(s)
- Rong Rui
- Department of Animal Science, University of California, Davis, CA 95616-8521, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Talbot NC, Powell AM, Garrett WM. Spontaneous differentiation of porcine and bovine embryonic stem cells (epiblast) into astrocytes or neurons. In Vitro Cell Dev Biol Anim 2002; 38:191-7. [PMID: 12197769 DOI: 10.1290/1071-2690(2002)038<0191:sdopab>2.0.co;2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The culture of porcine or bovine epiblasts, i.e., embryonic stem cells, on STO feeder cells resulted in their spontaneous differentiation into multiple cell types that were subsequently isolated as separate cell lines. Some of these cell lines were "neuron-like" in morphology. Immunofluorescent analysis of two porcine epiblast-derived cell lines demonstrated that the cells were positive for the expression of vimentin and the glial fibrillary acidic protein (GFAP). Because of their stellate morphology and lack of neurofilament expression, it is possible that the cells are type 2 astrocytes. Similar analysis of a bovine epiblast-derived cell line showed that the cells were positive for vimentin but that they did not express GFAP. However, a few cells within the population expressed neurofilaments and alpha-internexin. It is possible that the bovine cells are neural precursor cells. The results confirm and extend the demonstrated in vitro pluripotency of porcine and bovine epiblast cultures and provide evidence for an in vitro model of embryonic neuroectoderm development.
Collapse
Affiliation(s)
- Neil C Talbot
- Gene Evaluation and Mapping Laboratory, Beltsville Agricultural Research Center, Building 200, Room 13, Maryland 20705, USA
| | | | | |
Collapse
|
47
|
Abstract
The introduction of foreign DNA into the genome of livestock and its stable integration into the germ line has been a major technical advance in agriculture. Production of transgenic livestock provides a method to rapidly introduce "new" genes into cattle, swine, sheep and goats without crossbreeding. It is a more extreme methodology, but in essence, not really different from crossbreeding or genetic selection in its result. Several recent developments will profoundly impact the use of transgenic technology in livestock production. These developments are: 1) the ability to isolate and maintain in vitro embryonic stem (ES) cells from preimplantation embryos, embryonic germ (EG) and somatic cells from fetuses; and somatic cells from adults, and 2) the ability to use these embryonic and somatic cells as nuclei donors in nuclear transfer or "cloning" strategies. Cell based (ES, EG, and somatic cells) strategies have several distinct advantages for use in the production of transgenic livestock that cannot be attained using pronuclear injection of DNA. There are many potential applications of transgenic methodology to develop new and improved strains of livestock. Practical applications of transgenesis in livestock production include enhanced prolificacy and reproductive performance, increased feed utilization and growth rate, improved carcass composition, improved milk production and/or composition and increased disease resistance. Development of transgenic farm animals will allow more flexibility in direct genetic manipulation of livestock.
Collapse
Affiliation(s)
- M B Wheeler
- Department of Animal Sciences, University of Illinois, Urbana 61801, USA
| | | |
Collapse
|
48
|
Talbot NC, Garrett WM. Ultrastructure of the embryonic stem cells of the 8-day pig blastocyst before and after in vitro manipulation: development of junctional apparatus and the lethal effects of PBS mediated cell-cell dissociation. THE ANATOMICAL RECORD 2001; 264:101-13. [PMID: 11505376 DOI: 10.1002/ar.1141] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ultrastructural examination of 8-day hatched pig blastocysts (large and small), their cultured inner cell mass (ICM), and cultured epiblast tissue (embryonic stem cells) was undertaken to assess the development of epiblast cell junctions and cytoskeletal elements. In small blastocysts, epiblast cells had no desmosomes or tight junction (TJ) connections and few organized microfilament bundles, whereas in large blastocysts the epiblast cells were connected by TJ and desmosomes with associated microfilaments. ICM isolation by immunodissection damaged the endoderm cells beneath the trophectoderm cells but did not appear to damage the epiblast cells or their associated endoderm cells. Epiblast cells in cultured ICMs were similar in character to those in the intact large blastocyst except that perinuclear microfilaments were observed. Isolated pig epiblasts, cultured for approximately 36 hr on STO feeder layers, formed a monolayer whose cells were connected by TJ, adherens junctions and desmosomes with prominent microfilament bundles running parallel to the apical cytoplasmic membranes. Perinuclear microfilaments were a consistent feature in the approximately 36 hr cultured epiblast cells. A feature characteristic of differentiation into notochordal cells, i.e., a solitary cilium, was also observed in the cultured epiblast. Exposure of the cultured epiblast cells to Ca(++)-Mg(++)-free phosphate buffered saline (PBS) for 5-10 min resulted in extensive cell blebbing and lysis. The results may indicate that pig epiblast cells could be more easily dissociated from early blastocysts ( approximately 400 microm in diameter) if immunodissection damage to the ICM can be avoided. It may be difficult, however, to establish them as embryonic stem cell lines because the cultured pig epiblast cells were easily lysed by standard cell-cell dissociation methods.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, LPSI, Gene Evaluation and Mapping Laboratory, Beltsville Agricultural Research Center, Beltsville, Maryland 20705, USA.
| | | |
Collapse
|
49
|
Talbot NC, Powell A, Garrett W, Edwards JL, Rexroad C. Ultrastructural and karyotypic examination of in vitro produced bovine embryos developed in the sheep uterus. Tissue Cell 2000; 32:9-27. [PMID: 10798314 DOI: 10.1054/tice.1999.0083] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study examined whether development of bovine in vitro produced (IVP) blastocysts in the sheep uterus resulted in morphologically and karyotypically normal elongation stage bovine blastocysts. Seven day IVP bovine blastocysts, resulting from either in vitro maturation and fertilization, nuclear transfer (NT), or parthenogenic activation, were surgically transferred at the blastocyst stage into sheep uteri. Sheep were sacrificed after 7-9 days, and blastocysts were flushed from their uteri. One of each kind of IVP bovine blastocyst was recovered from sheep uteri for analysis by transmission electron microscopy, and nine NT blastocysts were used to establish cell cultures that were analysed for chromosome complement. TEM analysis of in vivo-derived elongation stage bovine and ovine blastocysts was done for comparative purposes. Most ultrastructural features of the 13-19 day blastocysts were similar to earlier stage blastocysts except that distinct alternative mitochondrial morphologies were found between epiblast and trophectoderm cells. Monociliated cells, presumably nodal cells, were observed in the bovine epiblast and hypoblast, and retrovirus-like particles were elaborated by cells in these same areas. Development in the sheep uterus of IVP bovine blastocysts resulted in the presence of crystalloid bodies in the trophectoderm cells, and apoptotic and necrotic cells were observed in the epiblast tissue. Thus, in vivo incubation in the sheep uterus allowed nearly normal development to the elongated blastocyst stage and may be useful for assessment of NT bovine blastocyst developmental competence. Cell cultures derived from the NT blastocysts had normal chromosome complements suggesting that activation by ionomycin and 6-dimethyl-aminopurine did not cause detrimental changes in ploidy in those blastocysts that developed.
Collapse
Affiliation(s)
- N C Talbot
- USDA, ARS, LPSI, Gene Evaluation and Mapping Laboratory, Beltsville Agricultural Research Center, MD 20705, USA.
| | | | | | | | | |
Collapse
|
50
|
Chen LR, Shiue YL, Bertolini L, Medrano JF, BonDurant RH, Anderson GB. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 1999; 52:195-212. [PMID: 10734388 DOI: 10.1016/s0093-691x(99)00122-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Embryonic stem (ES) cells are pluripotent cells isolated from in vitro culture of preimplantation embryos. Experiments were undertaken to identify preimplantation embryonic stages and culture conditions under which pluripotent, porcine embryo-derived cell lines could be isolated. Cell lines were established from in vitro culture of intact, porcine early hatched blastocysts and isolated inner cell masses (ICM) from intermediate and late hatched blastocysts on feeder layers prepared from permanent mouse embryonic fibroblasts (STO). The cells of these porcine embryo-derived cell lines had a morphology similar to that of murine ES cells, but colony morphology was more epithelial-like. The cell lines retained a normal diploid karyotype, consistently expressed alkaline phosphatase activity, and survived cryopreservation. When subjected to in vitro differentiation, either spontaneous or induced, the embryo-derived cell lines differentiated extensively into a wide range of cell types representing the 3 embryonic germ layers. In vivo pluripotency of the cells was demonstrated by birth of a chimeric piglet, documented by pigmentation and DNA markers, and the ability to direct the development of nuclear-transfer embryos to the blastocyst stage. Such pluripotent embryo-derived cells provide a potential route for porcine genetic manipulation.
Collapse
Affiliation(s)
- L R Chen
- Department of Animal Science, University of California, Davis 95616-8521, USA
| | | | | | | | | | | |
Collapse
|