1
|
Nguchu BA, Lu Y, Han Y, Wang Y, Liu J, Li H, Shaw P. Modulation and distribution of extracellular free water and tract deficits in rhesus macaques before and after the initiation of emtricitabine + tenofovir disoproxil fumarate + dotutegravir treatment. Front Immunol 2025; 16:1463434. [PMID: 40093003 PMCID: PMC11906442 DOI: 10.3389/fimmu.2025.1463434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Understanding the specific timing of cART initiation, its effectiveness, and failures, as well as assessing how well the current cART regimens control viral replication and rebound, enhance immune function, and repair or curb early injury in the central nervous system (CNS), is crucial to improving the livelihood of people living with HIV. Methods Here, we use an animal model to provide controlled environments to understand how the bodies of Chinese-origin rhesus monkeys, both the immune system and CNS, respond to a combination of emtricitabine (EMTBL/FTC), dolutegravir (DTG), and tenofovir disoproxil fumarate (TDF) following the induction of Simian Immunodeficiency Virus (SIV). We injected the rhesus monkeys with a dose of SIVmac239 (i.e., TCID50-a 50-fold half-tissue culture infective dose) through brachial veins and conducted seven follow-ups at baseline, day 10, day 35, day 84, day 168, day 252, and day 336 for MRI imaging and blood/CSF assays of SIV copies and immunity levels. Results and discussion Our experimental data demonstrate that the immune system is compromised as early as 7 days after infection, with a rapid rise of SIV copies in ml and a significant drop of CD4/CD8 ratio below ~1 within the first 14 days of infection. The alterations in the extracellular environments, manifesting as increased free water volume fraction (FW-VF) in MRI data and changes in the diffusivity properties of fiber tissues appearing in FW-corrected FA and FW-corrected MD, occur in parallel with an compromised immune system, suggesting that SIV enters the brain parenchyma in the early days of infection via a weakened brain defense system, causing inflammatory processes affecting the CNS. Our findings demonstrate that our current FTC+TDF+DTG regimen can enhance the immune system, suppress SIV replication, and slow damage to the intra- and extracellular environments. However, it is still ineffective in controlling viral rebound and experiences resistance in some rhesus monkeys, which may lead to further damage to the CNS. Our findings also provide the first SIVmac239-based evidence that extracellular FW-VF may be a more reliable biomarker of abnormal inflammatory processes, thus providing a better understanding of SIV disease progression than previously anticipated.
Collapse
Affiliation(s)
- Benedictor Alexander Nguchu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yifei Han
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanming Wang
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiaojiao Liu
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hongjun Li
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, & Brain Health), Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Moretti S, Virtuoso S, Sernicola L, Farcomeni S, Maggiorella MT, Borsetti A. Advances in SIV/SHIV Non-Human Primate Models of NeuroAIDS. Pathogens 2021; 10:pathogens10081018. [PMID: 34451482 PMCID: PMC8398602 DOI: 10.3390/pathogens10081018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 01/09/2023] Open
Abstract
Non-human primates (NHPs) are the most relevant model of Acquired Immunodeficiency Syndrome (AIDS) and neuroAIDS, being of great importance in explaining the pathogenesis of HIV-induced nervous system damage. Simian Immunodeficiency Virus (SIV)/ Simian-Human Immunodeficiency Virus (SHIV)-infected monkeys have provided evidence of complex interactions between the virus and host that include host immune response, viral genetic diversity, and genetic susceptibility, which may explain virus-associated central nervous system (CNS) pathology and HIV-associated neurocognitive disorders (HAND). In this article, we review the recent progress contributions obtained using monkey models of HIV infection of the CNS, neuropathogenesis and SIV encephalitis (SIVE), with an emphasis on pharmacologic therapies and dependable markers that predict development of CNS AIDS.
Collapse
|
3
|
Sharma H, Chinnappan M, Agarwal S, Dalvi P, Gunewardena S, O'Brien-Ladner A, Dhillon NK. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse. FASEB J 2018; 32:5174-5185. [PMID: 29672222 PMCID: PMC6103174 DOI: 10.1096/fj.201701558r] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Our previous studies consistently demonstrate enhanced pulmonary vascular remodeling in HIV–infected intravenous drug users, and in simian immunodeficiency virus–infected macaques or HIV-transgenic rats exposed to opioids or cocaine. Although we reported an associated increase in perivascular inflammation, the exact role of inflammatory cells in the development of pulmonary vascular remodeling remains unknown. In this study, HIV–infected and cocaine (H+C)–treated human monocyte derived macrophages released a higher number of extracellular vesicles (EVs), compared to HIV-infected or uninfected cocaine-treated macrophages, with a significant increase in the particle size range to 100–150 nm. Treatment of primary human pulmonary arterial smooth muscle cells (HPASMCs) with these EVs resulted in a significant increase in smooth muscle proliferation. We also observed a significant increase in the miRNA-130a level in the EVs derived from H+C-treated macrophages that corresponded with the decrease in the expression of phosphatase and tensin homolog and tuberous sclerosis 1 and 2 and activation of PI3K/protein kinase B signaling in HPASMCs on addition of these EVs. Transfection of HPASMCs with antagomir-130a–ameliorated the EV-induced effect. Thus, we conclude that EVs derived from H+C-treated macrophages promote pulmonary smooth muscle proliferation by delivery of its prosurvival miRNA cargo, which may play a crucial role in the development of PAH.—Sharma, H., Chinnappan, M., Agarwal, S., Dalvi, P., Gunewardena, S., O’Brien-Ladner, A., Dhillon, N. K. Macrophage-derived extracellular vesicles mediate smooth muscle hyperplasia: role of altered miRNA cargo in response to HIV infection and substance abuse.
Collapse
Affiliation(s)
- Himanshu Sharma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Mahendran Chinnappan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Pranjali Dalvi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Amy O'Brien-Ladner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA; and.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Reiss CS. Innate Immunity in Viral Encephalitis. NEUROTROPIC VIRAL INFECTIONS 2016. [PMCID: PMC7153449 DOI: 10.1007/978-3-319-33189-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Carol Shoshkes Reiss
- Departments of Biology and Neural Science, New York University, New York, New York USA
| |
Collapse
|
5
|
Marcondes MCG, Ojakian R, Bortell N, Flynn C, Conti B, Fox HS. Osteopontin expression in the brain triggers localized inflammation and cell death when immune cells are activated by pertussis toxin. Mediators Inflamm 2014; 2014:358218. [PMID: 25525298 PMCID: PMC4265371 DOI: 10.1155/2014/358218] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022] Open
Abstract
Upregulation of osteopontin (OPN) is a characteristic of central nervous system pathologies. However, the role of OPN in inflammation is still controversial, since it can both prevent cell death and induce the migration of potentially damaging inflammatory cells. To understand the role of OPN in inflammation and cell survival, we expressed OPN, utilizing an adenoviral vector, in the caudoputamen of mice deficient in OPN, using beta-galactosidase- (β-gal-) expressing vector as control. The tissue pathology and the expression of proinflammatory genes were compared in both treatments. Interestingly, inflammatory infiltrate was only found when the OPN-vector was combined with a peripheral treatment with pertussis toxin (Ptx), which activated peripheral cells to express the OPN receptor CD44v6. Relative to β-gal, OPN increased the levels of inflammatory markers, including IL13Rα1, CXCR3, and CD40L. In Ptx-treated OPN KOs, apoptotic TUNEL+ cells surrounding the OPN expression site increased, compared to β-gal. Together, these results show that local OPN expression combined with a peripheral inflammatory stimulus, such as Ptx, may be implicated in the development of brain inflammation and induction of cell death, by driving a molecular pattern characteristic of cytotoxicity. These are characteristics of inflammatory pathologies of the CNS in which OPN upregulation is a hallmark.
Collapse
Affiliation(s)
- Maria Cecilia Garibaldi Marcondes
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ryan Ojakian
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nikki Bortell
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Claudia Flynn
- Immunology and Microbial Science Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bruno Conti
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
- Chemical Physiology Department, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
6
|
Pepping JK, Freeman LR, Gupta S, Keller JN, Bruce-Keller AJ. NOX2 deficiency attenuates markers of adiposopathy and brain injury induced by high-fat diet. Am J Physiol Endocrinol Metab 2013; 304:E392-404. [PMID: 23233541 PMCID: PMC3566505 DOI: 10.1152/ajpendo.00398.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The consumption of high-fat/calorie diets in modern societies is likely a major contributor to the obesity epidemic, which can increase the prevalence of cancer, cardiovascular disease, and neurological impairment. Obesity may precipitate decline via inflammatory and oxidative signaling, and one factor linking inflammation to oxidative stress is the proinflammatory, pro-oxidant enzyme NADPH oxidase. To reveal the role of NADPH oxidase in the metabolic and neurological consequences of obesity, the effects of high-fat diet were compared in wild-type C57Bl/6 (WT) mice and in mice deficient in the NAPDH oxidase subunit NOX2 (NOX2KO). While diet-induced weight gains in WT and NOX2KO mice were similar, NOX2KO mice had smaller visceral adipose deposits, attenuated visceral adipocyte hypertrophy, and diminished visceral adipose macrophage infiltration. Moreover, the detrimental effects of HFD on markers of adipocyte function and injury were attenuated in NOX2KO mice; NOX2KO mice had improved glucose regulation, and evaluation of NOX2 expression identified macrophages as the primary population of NOX2-positive cells in visceral adipose. Finally, brain injury was assessed using markers of cerebrovascular integrity, synaptic density, and reactive gliosis, and data show that high-fat diet disrupted marker expression in WT but not NOX2KO mice. Collectively, these data indicate that NOX2 is a significant contributor to the pathogenic effects of high-fat diet and reinforce a key role for visceral adipose inflammation in metabolic and neurological decline. Development of NOX-based therapies could accordingly preserve metabolic and neurological function in the context of metabolic syndrome.
Collapse
Affiliation(s)
- Jennifer K Pepping
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
7
|
Role of β-catenin and TCF/LEF family members in transcriptional activity of HIV in astrocytes. J Virol 2011; 86:1911-21. [PMID: 22156527 DOI: 10.1128/jvi.06266-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in diverse cell functions governing development and disease. β-Catenin, a central mediator of this pathway, binds to members of the TCF/LEF family of transcription factors to modulate hundreds of genes. Active Wnt/β-catenin/TCF-4 signaling plays a significant role in repression of HIV-1 replication in multiple cell targets, including astrocytes. To determine the mechanism by which active β-catenin/TCF-4 leads to inhibition of HIV replication, we knocked down β-catenin or TCF/LEF members in primary astrocytes and astrocytomas transiently transfected with an HIV long terminal repeat (LTR)-luciferase reporter that contained an integrated copy of the HIV LTR-luciferase construct. Knockdown of either β-catenin or TCF-4 induced LTR activity by 2- to 3-fold under both the episomal and integrated conditions. This knockdown also increased presence of serine 2-phosphorylated RNA polymerase II (Pol II) on the HIV LTR as well as enhanced its processivity. Knockdown of β-catenin/TCF-4 also impacted tethering of other transcription factors on the HIV promoter. Specifically, knockdown of TCF-4 enhanced binding of C/EBPβ, C/EBPδ, and NF-κB to the HIV LTR, while β-catenin knockdown increased binding of C/EBPβ and C/EBPδ but had no effect on NF-κB. Approximately 150 genes in astrocytes were impacted by β-catenin knockdown, including genes involved in inflammation/immunity, uptake/transport, vesicular transport/exocytosis, apoptosis/cellular stress, and cytoskeleton/trafficking. These findings indicate that modulation of the β-catenin/TCF-4 axis impacts the basal level of HIV transcription in astrocytes, which may drive low level/persistent HIV in astrocytes that can contribute to ongoing neuroinflammation, and this axis also has profound effects on astrocyte biology.
Collapse
|
8
|
Li W, Henderson LJ, Major EO, Al-Harthi L. IFN-gamma mediates enhancement of HIV replication in astrocytes by inducing an antagonist of the beta-catenin pathway (DKK1) in a STAT 3-dependent manner. THE JOURNAL OF IMMUNOLOGY 2011; 186:6771-8. [PMID: 21562161 DOI: 10.4049/jimmunol.1100099] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Typically, IFN-γ is an antiviral cytokine that inhibits the replication of many viruses, including HIV. However, in the CNS, IFN-γ induces HIV-productive replication in astrocytes. Although astrocytes in vitro are refractory to HIV replication, recent in vivo evidence demonstrated that astrocytes are infected by HIV, and their degree of infection is correlated with proximity to activated macrophages/microglia. The ability of IFN-γ to induce HIV replication in astrocytes suggests that the environmental milieu is critical in regulating the permissiveness of astrocytes to HIV infection. We evaluated the mechanism by which IFN-γ relieves restricted HIV replication in astrocytes. We demonstrate that although astrocytes have robust endogenous β-catenin signaling, a pathway that is a potent inhibitor of HIV replication, IFN-γ diminished β-catenin signaling in astrocytes by 40%, as evaluated by both active β-catenin protein expression and β-catenin-mediated T cell factor/lymphoid enhancer reporter (TOPflash) activity. Further, IFN-γ-mediated inhibition of β-catenin signaling was dependent on its ability to induce an antagonist of the β-catenin signaling pathway, Dickkopf-related protein 1, in a STAT 3-dependent manner. Inhibition of STAT3 and Dickkopf-related protein 1 abrogated the ability of IFN-γ to enhance HIV replication in astrocytes. These data demonstrated that IFN-γ induces HIV replication in astrocytes by antagonizing the β-catenin pathway. To our knowledge, this is the first report to point to an intricate cross-talk between IFN-γ signaling and β-catenin signaling that may have biologic and virologic effects on HIV outcome in the CNS, as well as on broader processes where the two pathways interface.
Collapse
Affiliation(s)
- Wei Li
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
9
|
Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, Gendelman HE, Poluektova L. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:2938-49. [PMID: 21088215 DOI: 10.2353/ajpath.2010.100536] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Few rodent models of human immunodeficiency virus type one (HIV-1) infection can reflect the course of viral infection in humans. To this end, we investigated the relationships between progressive HIV-1 infection, immune compromise, and neuroinflammatory responses in NOD/scid-IL-2Rγ(c)(null) mice reconstituted with human hematopoietic CD34(+) stem cells. Human blood-borne macrophages repopulated the meninges and perivascular spaces of chimeric animals. Viral infection in lymphoid tissue led to the accelerated entry of human cells into the brain, marked neuroinflammation, and HIV-1 replication in human mononuclear phagocytes. A meningitis and less commonly an encephalitis followed cM-T807 antibody-mediated CD8(+) cell depletion. We conclude that HIV-1-infected NOD/scid-IL-2Rγ(c)(null) humanized mice can, at least in part, recapitulate lentiviral neuropathobiology. This model of neuroAIDS reflects the virological, immunological, and early disease-associated neuropathological components of human disease.
Collapse
Affiliation(s)
- Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Yao H, Bethel-Brown C, Li CZ, Buch SJ. HIV neuropathogenesis: a tight rope walk of innate immunity. J Neuroimmune Pharmacol 2010; 5:489-95. [PMID: 20354805 DOI: 10.1007/s11481-010-9211-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/11/2010] [Indexed: 12/12/2022]
Abstract
During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.
Collapse
Affiliation(s)
- Honghong Yao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | | | | | | |
Collapse
|
11
|
Wikoff WR, Pendyala G, Siuzdak G, Fox HS. Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques. J Clin Invest 2008; 118:2661-9. [PMID: 18521184 DOI: 10.1172/jci34138] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Accepted: 04/16/2008] [Indexed: 11/17/2022] Open
Abstract
HIV infiltrates the CNS soon after an individual has become infected with the virus, and can cause dementia and encephalitis in late-stage disease. Here, a global metabolomics approach was used to find and identify metabolites differentially regulated in the cerebrospinal fluid (CSF) of rhesus macaques with SIV-induced CNS disease, as we hypothesized that this might provide biomarkers of virus-induced CNS damage. The screening platform used a non-targeted, mass-based metabolomics approach beginning with capillary reverse phase chromatography and electrospray ionization with accurate mass determination, followed by novel, nonlinear data alignment and online database screening to identify metabolites. CSF was compared before and after viral infection. Significant changes in the metabolome specific to SIV-induced encephalitis were observed. Metabolites that were increased during infection-induced encephalitis included carnitine, acyl-carnitines, fatty acids, and phospholipid molecules. The elevation in free fatty acids and lysophospholipids correlated with increased expression of specific phospholipases in the brains of animals with encephalitis. One of these, a phospholipase A2 isoenzyme, is capable of releasing a number of the fatty acids identified. It was expressed in different areas of the brain in conjunction with glial activation, rather than linked to regions of SIV infection and inflammation, indicating widespread alterations in infected brains. The identification of specific metabolites as well as mechanisms of their increase illustrates the potential of mass-based metabolomics to address problems in CNS biochemistry and neurovirology, as well as neurodegenerative diseases.
Collapse
Affiliation(s)
- William R Wikoff
- Department of Molecular Biology and Center for Mass Spectrometry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
12
|
Peterson KE, Chesebro B. Influence of proinflammatory cytokines and chemokines on the neuropathogenesis of oncornavirus and immunosuppressive lentivirus infections. Curr Top Microbiol Immunol 2007; 303:67-95. [PMID: 16570857 DOI: 10.1007/978-3-540-33397-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Retroviral infection of the CNS can lead to severe debilitating neurological diseases in humans and other animals. Four general types of pathogenic effects with various retroviruses have been observed including: hemorrhage (TR1.3), spongiform encephalopathy (CasBrE, FrCasE, PVC211, NT40, Mol-ts1), demyelination with inflammatory lesions (HTLV-1, visna, CAEV), and encephalopathy with gliosis and proinflammatory chemokines and cytokines, usually with microglial giant cells and nodules [human immunodeficiencyvirus (HIV), feline immunodeficiencyvirus (FIV), simian immunodeficiency virus (SIV), Fr98]. This review focuses on this fourth group of retroviruses. In this latter group, proinflammatory cytokine and chemokine upregulation accompanies the disease process, and may influence pathogenesis by direct effects on resident CNS cells. The review first discusses the Fr98 murine polytropic virus system with particular reference to the roles of cytokines and chemokines in the pathogenic process. The Fr98 data are then compared and contrasted to the cytokine and chemokine data in the lentivirus systems, HIV, SIV, and FIV. Finally, various mechanisms are presented by which tumor necrosis factor (TNF) and several chemokines may alter the pathogenesis of retrovirus infection of the CNS.
Collapse
Affiliation(s)
- K E Peterson
- Dept. of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
13
|
Cinque P, Brew BJ, Gisslen M, Hagberg L, Price RW. Cerebrospinal fluid markers in central nervous system HIV infection and AIDS dementia complex. HANDBOOK OF CLINICAL NEUROLOGY 2007; 85:261-300. [PMID: 18808988 DOI: 10.1016/s0072-9752(07)85017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Paola Cinque
- Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | | |
Collapse
|
14
|
Vance DE, Burrage JW. Promoting successful cognitive aging in adults with HIV: strategies for intervention. J Gerontol Nurs 2006; 32:34-41. [PMID: 17112136 DOI: 10.3928/00989134-20061101-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aging individuals with HIV may be at risk for developing more age-related cognitive decline, mild cognitive impairment, or even dementia. The incidence of HIV-related dementia was reduced sharply with the introduction of HAART. Positive mediators, such as good nutrition or cognitive remediation therapy, can potentially mitigate some of the negative cognitive consequences of aging with HIV.
Collapse
Affiliation(s)
- David E Vance
- School of Nursing, University of Alabama at Birmingham 35294-2110, USA
| | | |
Collapse
|
15
|
Pendyala G, Want EJ, Webb W, Siuzdak G, Fox HS. Biomarkers for NeuroAIDS: The Widening Scope of Metabolomics. J Neuroimmune Pharmacol 2006; 2:72-80. [DOI: 10.1007/s11481-006-9041-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 08/15/2006] [Indexed: 10/24/2022]
|
16
|
Kuljis RO, Shapshak P, Alcabes P, Rodríguez de la Vega P, Fujimura R, Petito CK. Increased density of neurons containing NADPH diaphorase and nitric oxide synthase in the cerebral cortex of patients with HIV-1 infection and drug abuse. ACTA ACUST UNITED AC 2006; 2:19-36. [PMID: 16873197 DOI: 10.1300/j128v02n03_02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To determine whether nitrogen monoxide (nitric oxide; NO) synthase (NOS) and NADPH diaphorase (NDP) co-containing cerebrocortical neurons (NOSN) neurons are affected in patients infected with human immunodeficiency virus type 1 (HIV-1) with and without associated intake of drugs of abuse, we examined the temporal neocortex of 24 individuals: 12 HIV-1 positive (including 3 drug users, 9 non-drug users) and 12 HIV-1 negative (including 6 drug users, and 6 non-drug users). Histochemical labeling for NDP-an enzymatic domain co-expressed in the NOS enzyme-was employed to visualize NOSN. Drug abuse and HIV-1 infection cause independently an increase in NOSN density, but combined they result in up to a 38-fold increase in NOSN density, suggesting that the combination of these factors induces NOS expression powerfully in neurons that normally do not synthesize NDP/NOS. This is associated with an increase in the proportion of NOSN displaying dystrophic changes, indicating that NOSN undergo massive degeneration in association with NOS synthesis induction. The increase in density of NOSN in HIV-1 infected drug abusers may be among the important sources of NO mediating cerebrocortical dysfunction, and the degeneration of NOS-containing local circuit neurons in patients with HIV-1 infection or drug abuse may underlie in part their neuropsychiatric manifestations.
Collapse
Affiliation(s)
- Rodrigo O Kuljis
- Deparment of Psychiatry and Behavioral Sciences, University of Miami School of Medicine, FL, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Neuroimmunity and the blood-brain barrier: molecular regulation of leukocyte transmigration and viral entry into the nervous system with a focus on neuroAIDS. J Neuroimmune Pharmacol 2006; 1:160-81. [PMID: 18040782 DOI: 10.1007/s11481-006-9017-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 02/27/2006] [Indexed: 01/07/2023]
Abstract
HIV infection of the central nervous system (CNS) can result in neurologic dysfunction with devastating consequences in a significant number of individuals with AIDS. Two main CNS complications in individuals with HIV are encephalitis and dementia, which are characterized by leukocyte infiltration into the CNS, microglia activation, aberrant chemokine expression, blood-brain barrier (BBB) disruption, and eventual damage and/or loss of neurons. One of the major mediators of NeuroAIDS is the transmigration of HIV-infected leukocytes across the BBB into the CNS. This review summarizes new key findings that support a critical role of the BBB in regulating leukocyte transmigration. In addition, we discuss studies on communication among cells of the immune system, BBB, and the CNS parenchyma, and suggest how these interactions contribute to the pathogenesis of NeuroAIDS. We also describe some of the animal models that have been used to study and characterize important mechanisms that have been proposed to be involved in HIV-induced CNS dysfunction. Finally, we review the pharmacologic interventions that address neuroinflammation, and the effect of substance abuse on HIV-1 related neuroimmunity.
Collapse
|
18
|
van Marle G, Power C. Human immunodeficiency virus type 1 genetic diversity in the nervous system: evolutionary epiphenomenon or disease determinant? J Neurovirol 2005; 11:107-28. [PMID: 16036790 DOI: 10.1080/13550280590922838] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Over the past decade there has been a revolution in the understanding and care of human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS)-associated disease. Much of this progress stems from a broader recognition of the importance of differences in viral types, including receptor preference(s), replication properties, and reservoirs, as contributing factors to immunosuppresion and disease progression. In contrast, there is limited conceptualizatin of viral diversity and turnover in the brain and circulation in relation to neurocognitive impairments. Herein, the authors review current concepts regarding viral molecular diversity and phenotypes together with features of HIV-1 neuroinvasion, neurotropism, neurovirulence and neurosusceptiblity. Viral genetic and antigenic diversity is reduced within the brain compared to blood or other systemic organs within individuals. Conversely, viral molecular heterogeneity is greater in patients with HIV-associated dementia compared to nondemented patients, depending on the viral gene examined. Individual viral proteins exert multiple neuropathogenic effects, although the neurological consequences of different viral polymorphisms remain uncertain. Nonetheless, host genetic polymorphisms clearly influence neurological disease outcomes and likely dictate both acquired and innate immune responses, which in turn shape viral evolution within the host. Emerging issues include widespread antiretroviral therapy resistance and increasing awareness of viral superinfections together with viral recombination, all of which are likely to impact on both HIV genetic variation and neuropathogenesis. With the persisting prevalence of HIV-induced neurocognitive disabilities, despite marked improvements in managing immunosuppression, it remains imperative to fully define and understand the mechanisms by which viral dynamics and diversity contribute to neurological disease, permitting the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Guido van Marle
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
19
|
Potash MJ, Chao W, Bentsman G, Paris N, Saini M, Nitkiewicz J, Belem P, Sharer L, Brooks AI, Volsky DJ. A mouse model for study of systemic HIV-1 infection, antiviral immune responses, and neuroinvasiveness. Proc Natl Acad Sci U S A 2005; 102:3760-5. [PMID: 15728729 PMCID: PMC553332 DOI: 10.1073/pnas.0500649102] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We created a model of HIV-1 infection of conventional mice for investigation of viral replication, control, and pathogenesis. To target HIV-1 to mice, the coding region of gp120 in HIV-1/NL4-3 was replaced with that of gp80 from ecotropic murine leukemia virus, a retrovirus that infects only rodents. The resulting chimeric virus construct, EcoHIV, productively infected murine lymphocytes, but not human lymphocytes, in culture. Adult, immunocompetent mice were readily susceptible to infection by a single inoculation of EcoHIV as shown by detection of virus in splenic lymphocytes, peritoneal macrophages, and the brain. The virus produced in animals was infectious, as shown by passage in culture, and immunogenic, as shown by induction of antibodies to HIV-1 Gag and Tat. A second chimeric virus based on clade D HIV-1/NDK was also highly infectious in mice; it was detected in both spleen and brain 3 wk after tail vein inoculation, and it induced expression of infection response genes, MCP-1, STAT1, IL-1beta, and complement component C3, in brain tissue as determined by quantitative real-time PCR. EcoHIV infection of mice forms a useful model of HIV-1 infection of human beings for convenient and safe investigation of HIV-1 therapy, vaccines, and potentially pathogenesis.
Collapse
Affiliation(s)
- Mary Jane Potash
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, Columbia University Medical Center, 432 West 58th Street, New York, NY 10019, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Roberts ES, Burudi EME, Flynn C, Madden LJ, Roinick KL, Watry DD, Zandonatti MA, Taffe MA, Fox HS. Acute SIV infection of the brain leads to upregulation of IL6 and interferon-regulated genes: expression patterns throughout disease progression and impact on neuroAIDS. J Neuroimmunol 2005; 157:81-92. [PMID: 15579284 DOI: 10.1016/j.jneuroim.2004.08.030] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 10/26/2022]
Abstract
The virus/host interactions during the acute phase of human immunodeficiency virus (HIV) infection help determine the course of disease. During this time period, virus enters the brain. Here, we report clusters of genes whose transcripts are significantly upregulated in the frontal lobe of the brain during acute simian immunodeficiency virus (SIV) infection of rhesus monkeys. Many of these genes are involved in interferon (IFN) and/or interleukin (IL)-6 pathways. Although neither IFNalpha nor IFNgamma are elevated in the brain, IL6 is increased. Both IFNalpha and IL6 are elevated in plasma during this acute phase. The upregulation of STAT1, verified by immunohistochemical staining, can be due to both central nervous system (CNS) (SIV and IL6) and peripheral (IFNalpha and IL6) causes, and can itself drive the expression of many of these genes. Examination of the levels of expression of the upregulated genes in the post-acute and long-term phases of infection, as well as in SIV encephalitis, reveals increased expression throughout SIV infection, which may serve to protect the brain, but can have untoward long-term consequences.
Collapse
Affiliation(s)
- Eleanor S Roberts
- Department of Neuropharmacology, CVN-1, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Human immunodeficiency virus type I (HIV-1) infection leads to penetration of the central nervous system (CNS) in virtually all infected individuals and HIV-1-induced encephalopathy in a significant number of untreated patients. The molecular mechanisms by which HIV-1 enters the CNS and yields CNS dysfunction are still unclear. Our laboratories and others have begun to explore the direct effects of prioritized HIV-1-specific proteins on diverse human CNS cell types. One of these proteins, the accessory HIV-1 protein Vpr, is a critical moiety in these studies, and will be discussed in this article.
Collapse
Affiliation(s)
- Roger J Pomerantz
- Biochemistry and Molecular Pharmacology, Division of Infectious Disease and Environmental Medicine, Center for Human Virology and Biodefense, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA.
| |
Collapse
|
22
|
Negishi T, Ishii Y, Kyuwa S, Kuroda Y, Yoshikawa Y. Primary culture of cortical neurons, type-1 astrocytes, and microglial cells from cynomolgus monkey (Macaca fascicularis) fetuses. J Neurosci Methods 2004; 131:133-40. [PMID: 14659833 DOI: 10.1016/j.jneumeth.2003.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We established selective primary cultures of neurons, astrocytes, and microglial cells from cryopreserved fetal cerebral cortex of cynomolgus monkeys (Macaca fascicularis). At 14 days in serum-containing medium, the cell cultures of the fetal cerebral cortex consisted primarily of neurons, astrocytes, and floating microglial cells. At 21 days, we observed a small number of myelin basic protein (MBP)-positive oligodendrocytes. The addition of cytosine arabinoside (a selective DNA synthesis inhibitor) at 2 days in culture eliminated proliferative glial cells, allowing adequate numbers of neurons to survive selectively. A chemically defined serum-free medium successfully supported neuronal survival at a level equivalent to that supported by the serum-containing medium. Brain-derived neurotrophic factor (BDNF) significantly affected the survival of primate neurons. Glutamate induced a significant degree of neuronal cell death against primate neurons and MK-801, a selective N-methyl-D-aspartate receptor (NMDAR) antagonist, blocked cell death, which suggests that primate cortical neurons have NMDAR and the glutamate-induced cell toxicity is mediated by NMDAR. In the serum-free medium, type-1 astrocytes responded to dibutyryl cyclic AMP and showed a process-bearing morphology. The growth of type-1 astrocytes in the serum-free medium was stimulated by epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and hydrocortisone, which are known growth factors in rat type-1 astrocytes. Cultured microglial cells expressed CD68, a monocyte marker. Macrophage-colony stimulating factor (M-CSF) stimulated microglial cell growth in the serum-free medium. These selective primary culture systems of primate cerebral cortical cells will be useful in issues involving species specificity in neuroscience.
Collapse
Affiliation(s)
- Takayuki Negishi
- Department of Biomedical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Infection with the human immunodeficiency virus (HIV) is associated with a syndrome of cognitive and motor abnormalities that may develop in the absence of opportunistic infections. Neurons are not productively infected by HIV. Thus, one hypothesis to explain the pathophysiology of HIV-associated dementia (HAD) suggests that signals released from other infected cell types in the CNS secondarily lead to neuronal injury. Microglia are the predominant resident CNS cell type productively infected by HIV-1. Neurologic dysfunction in HAD appears to be a consequence of microglial infection and activation. Several neurotoxic immunomodulatory factors are released from infected and activated microglia, leading to altered neuronal function, synaptic and dendritic degeneration, and eventual neuronal apoptosis. This review summarizes findings from clinical/pathological studies, animal models, and in vitro models of HAD. Most of these studies support the hypothesis that altered microglial physiology is the nidus for a cascade of events leading to neuronal dysfunction and death. Several molecular mediators of neuronal injury in HAD that emanate from microglia have been identified, and strategies for altering the impact of these neurotoxins are discussed.
Collapse
Affiliation(s)
- Gwenn A Garden
- Department of Neurology, University of Washington, Seattle, Washington
| |
Collapse
|
24
|
Burudi EM, Fox HS. Simian immunodeficiency virus model of HIV-induced central nervous system dysfunction. Adv Virus Res 2002; 56:435-68. [PMID: 11450309 DOI: 10.1016/s0065-3527(01)56035-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- E M Burudi
- Department of Neuropharmacology, Scripps Research Institute, CVN-8, La Jolla, California 92037, USA
| | | |
Collapse
|
25
|
Bruce-Keller AJ, Barger SW, Moss NI, Pham JT, Keller JN, Nath A. Pro-inflammatory and pro-oxidant properties of the HIV protein Tat in a microglial cell line: attenuation by 17 beta-estradiol. J Neurochem 2001; 78:1315-24. [PMID: 11579140 DOI: 10.1046/j.1471-4159.2001.00511.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglia are activated in humans following infection with human immunodeficiency virus (HIV), and brain inflammation is thought to be involved in neuronal injury and dysfunction during HIV infection. Numerous studies indicate a role for the HIV regulatory protein Tat in HIV-related inflammatory and neurodegenerative processes, although the specific effects of Tat on microglial activation, and the signal transduction mechanisms thereof, have not been elucidated. In the present study, we document the effects of Tat on microglial activation and characterize the signal transduction pathways responsible for Tat's pro-inflammatory effects. Application of Tat to N9 microglial cells increased multiple parameters of microglial activation, including superoxide production, phagocytosis, nitric oxide release and TNF alpha release. Tat also caused activation of both p42/p44 mitogen activated protein kinase (MAPK) and NF kappa B pathways. Inhibitor studies revealed that Tat-induced NF kappa B activation was responsible for increased nitrite release, while MAPK activation mediated superoxide release, TNF alpha release, and phagocytosis. Lastly, pre-treatment of microglial cells with physiological concentrations of 17 beta-estradiol suppressed Tat-mediated microglial activation by interfering with Tat-induced MAPK activation. Together, these data elucidate specific components of the microglial response to Tat and suggest that Tat could contribute to the neuropathology associated with HIV infection through microglial promulgation of oxidative stress.
Collapse
Affiliation(s)
- A J Bruce-Keller
- Department of Anatomy, University of Kentucky, Lexington, Kentucky, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Sanders VJ, Wiley CA, Hamilton RL. The mechanisms of neuronal damage in retroviral infections of the nervous system. Curr Top Microbiol Immunol 2001; 253:179-201. [PMID: 11417135 DOI: 10.1007/978-3-662-10356-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- V J Sanders
- Department of Neuroscience, University of California, San Diego, La Jolla, CA 92302, USA
| | | | | |
Collapse
|
27
|
Dörries R. The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr Top Microbiol Immunol 2001; 253:219-45. [PMID: 11417137 DOI: 10.1007/978-3-662-10356-2_11] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
T lymphocytes play a decisive role in the course and clinical outcome of viral CNS infection. Summarizing the information presented in this review, the following sequence of events might occur during acute virus infection: After invasion of the host and a few initial rounds of replication, the virus reaches the CNS in most cases by hematogeneous spread. After passage through the BBB, CNS cells are infected and replication of virus in brain cells causes activation of the surrounding microglia population. Moreover, local production of IFN-alpha/beta induces expression of MHC antigens on CNS cells, and microglial cells start to phagocytose cellular debris, which accumulates as a result of virus-induced cytopathogenic effects. Upon phagocytosis, microglia becomes more activated; they up-regulate MHC molecules, acquire antigen presentation capabilities and secrete chemokines. This will initiate up-regulation of adhesion molecules on adjacent endothelial cells of the BBB. Transmigration of activated T lymphocytes through the BBB is followed by interaction with APC, presenting the appropriate peptides in the context of MHC antigens. It appears that CD8+ T lymphocytes are amongst the first mononuclear cells to arrive at the infected tissue. Without a doubt, their induction and attraction is deeply influenced by natural killer cells, which, after virus infection, secrete IFN-gamma, a cytokine that stimulates CD8+ T cells and diverts the immune response to a TH1-type CD4+ T cell-dominated response. Following the CD8+ T lymphocytes, tissue-penetrating, TH1 CD4+ T cells contact local APC. This results in a tremendous up-regulation of MHC molecules and secretion of more chemotactic and toxic substances. Consequently an increasing number of inflammatory cells, including macrophages/microglia and finally antibody-secreting plasma cells, are attracted to the site of virus infection. All trapped cells are mainly terminally differentiated cells that are going to enter apoptosis during or shortly after exerting their effector functions. The clinical consequences and the influence of the effector phase on the further course of the infection depends on the balance and fine-tuning of the contributing lymphoid cell populations. Generally, any delay in the recruitment of effector lymphocytes to the tissue or an unbalanced combination of lymphocyte subsets allows the virus to spread in the CNS, which in turn will cause severe immune-mediated tissue effects as well as disease. If either too late or partially deficient, the immune system response may contribute to a lethal outcome or cause autosensitization to brain-specific antigens by epitope spreading to the antigen-presenting system in peripheral lymphoid tissue. This could form the basis for subsequent booster reactions of autosensitized CD4+ T cells--a process that finally will end in an inflammatory autoimmune reaction, which in humans we call multiple sclerosis. In contrast, a rapid and specific local response in the brain tissue will result in efficient limitation of viral spread and thereby a subclinical immune system-mediated termination of the infection. After clearance of virus-infected cells, downsizing of the local response probably occurs via self-elimination of the contributing T cell populations and/or by so far unidentified signal pathways. However, much of this is highly speculative, and more data have to be collected to make decisive conclusions regarding this matter. Several strategies have been developed by viruses to escape T cell-mediated eradication, including interference with the MHC class I presentation pathway of the host cell or "hiding" in cells which lack MHC class I expression. This may result in life-long persistence of the virus in the brain, a state which probably is actively controlled by T lymphocytes. Under severe immunosuppression, however, reactivation of viral replication can occur, which is a lethal threat to the host.
Collapse
Affiliation(s)
- R Dörries
- Department of Virology, Institute of Medical Microbiology and Hygiene, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany.
| |
Collapse
|
28
|
|
29
|
Blond D, Raoul H, Le Grand R, Dormont D. Nitric oxide synthesis enhances human immunodeficiency virus replication in primary human macrophages. J Virol 2000; 74:8904-12. [PMID: 10982333 PMCID: PMC102085 DOI: 10.1128/jvi.74.19.8904-8912.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Macrophages are suspected to play a major role in human immunodeficiency virus (HIV) infection pathogenesis, not only by their contribution to virus dissemination and persistence in the host but also through the dysregulation of immune functions. The production of NO, a highly reactive free radical, is thought to act as an important component of the host immune response in several viral infections. The aim of this study was to evaluate the effects of HIV type 1 (HIV-1) Ba-L replication on inducible nitric oxide synthase (iNOS) mRNA expression in primary cultures of human monocyte-derived macrophages (MDM) and then examine the effects of NO production on the level of HIV-1 replication. Significant induction of the iNOS gene was observed in cultured MDM concomitantly with the peak of virus replication. However, this induction was not accompanied by a measurable production of NO, suggesting a weak synthesis of NO. Surprisingly, exposure to low concentrations of a NO-generating compound (sodium nitroprusside) and L-arginine, the natural substrate of iNOS, results in a significant increase in HIV replication. Accordingly, reduction of L-arginine bioavailability after addition of arginase to the medium significantly reduced HIV replication. The specific involvement of NO was further demonstrated by a dose-dependent inhibition of viral replication that was observed in infected macrophages exposed to N(G)-monomethyl L-arginine and N(G)-nitro-L-arginine methyl ester (L-NAME), two inhibitors of the iNOS. Moreover, an excess of L-arginine reversed the addition of L-NAME, confirming that an arginine-dependent mechanism is involved. Finally, inhibitory effects of hemoglobin which can trap free NO in culture supernatants and in biological fluids in vivo confirmed that endogenously produced NO could interfere with HIV replication in human macrophages.
Collapse
Affiliation(s)
- D Blond
- Service de Neurovirologie, Commissariat à l'Energie Atomique, DSV/DRM, CRSSA, Institut Paris-Sud sur les Cytokines, Fontenay aux Roses, France
| | | | | | | |
Collapse
|
30
|
Edwards JA, Denis F, Talbot PJ. Activation of glial cells by human coronavirus OC43 infection. J Neuroimmunol 2000; 108:73-81. [PMID: 10900340 PMCID: PMC7119868 DOI: 10.1016/s0165-5728(00)00266-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1999] [Revised: 03/20/2000] [Accepted: 03/21/2000] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an immune-mediated demyelinating disease that could be triggered by a viral infection. Coronaviruses induce an MS-like disease in rodents, are neuroinvasive in humans and can infect primary cultures of human astrocytes and microglia. Infection of the human astrocytic cell line U-373MG by the OC43 strain of human coronavirus caused an upregulation of IL-6, TNF-alpha, and MCP-1 mRNA expression. This virus also modulated the activity of matrix metalloproteinases-2 and -9 and augmented nitric oxide production in both U-373MG cells and the human microglial cell line CHME-5. Thus, a coronaviral infection of glial cells could lead to the production of inflammatory molecules that have been associated with central nervous system pathologies such as MS.
Collapse
Affiliation(s)
| | | | - Pierre J Talbot
- Laboratory of Neuroimmunovirology, Human Health Research Center, INRS-Institut Armand-Frappier, Université du Québec, 531 Boulevard des Prairies, Laval, Québec, Canada H7V 1B7
| |
Collapse
|
31
|
Fox HS, Weed MR, Huitron-Resendiz S, Baig J, Horn TF, Dailey PJ, Bischofberger N, Henriksen SJ. Antiviral treatment normalizes neurophysiological but not movement abnormalities in simian immunodeficiency virus-infected monkeys. J Clin Invest 2000; 106:37-45. [PMID: 10880046 PMCID: PMC314358 DOI: 10.1172/jci9102] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.
Collapse
Affiliation(s)
- H S Fox
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Caffrey M, Braddock DT, Louis JM, Abu-Asab MA, Kingma D, Liotta L, Tsokos M, Tresser N, Pannell LK, Watts N, Steven AC, Simon MN, Stahl SJ, Wingfield PT, Clore GM. Biophysical characterization of gp41 aggregates suggests a model for the molecular mechanism of HIV-associated neurological damage and dementia. J Biol Chem 2000; 275:19877-82. [PMID: 10747981 DOI: 10.1074/jbc.m001036200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In human immunodeficiency virus (HIV)-infected individuals, the level of the HIV envelope protein gp41 in brain tissue is correlated with neurological damage and dementia. In this paper we show by biochemical methods and electron microscopy that the extracellular ectodomain of purified HIV and simian immunodeficiency virus gp41 (e-gp41) forms a mixture of soluble high molecular weight aggregate and native trimer at physiological pH. The e-gp41 aggregate is shown to be largely alpha-helical and relatively stable to denaturants. The high molecular weight form of e-gp41 is variable in size ranging from 7 to 70 trimers, which associate by interactions at the interior of the aggregate involving the loop that connects the N- and C-terminal helices of the e-gp41 core. The trimers are predominantly arranged with their long axes oriented radially, and the width of the high molecular weight aggregate corresponds to the length of two e-gp41 trimers (approximately 200 A). Using both light and electron microscopy combined with immunohistochemistry we show that HIV gp41 accumulates as an extracellular aggregate in the brains of HIV-infected patients diagnosed with dementia. We postulate that the high molecular weight aggregates of e-gp41 are responsible for HIV-associated neurological damage and dementia, consistent with known mechanisms of encephalopathy.
Collapse
Affiliation(s)
- M Caffrey
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Roles proposed for nitric oxide (NO) in CNS pathophysiology are increasingly diverse and range from intercellular signaling, through necrotic killing of cells and invading pathogens, to the involvement of NO in apoptosis and tissue remodeling. In vitro evidence and observations from experimental animal models of a variety of human neuropathologies, including stroke, indicate that glial cells can produce NO. Regulation of at least one of the NO synthase genes (NOS-2) in glia has been well described; however, apart from hints emerging out of co-culture studies and extrapolation based upon the reactivity of NO, we are a long way from identifying functions for glial-derived NO in the CNS. Although the assumption is that NO is very often cytotoxic, it is evident that NO production does not always equate with tissue damage, and that both the cellular source of NO and the timing of NO production are important factors in terms of its effects. With the development of strategies to transfer or manipulate expression of the NOS genes in specific cells in situ, the ability to deliver NO into the CNS via long-lived chemical donors, and the emergence of more selective NOS inhibitors, an appreciation of the significance of glial-derived NO will change.
Collapse
Affiliation(s)
- S Murphy
- Department of Pharmacology and the Neuroscience Program, University of Iowa College of Medicine, Iowa City, USA.
| |
Collapse
|
34
|
Licinio J, Prolo P, McCann SM, Wong ML. Brain iNOS: current understanding and clinical implications. MOLECULAR MEDICINE TODAY 1999; 5:225-32. [PMID: 10322315 DOI: 10.1016/s1357-4310(99)01453-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) is a unique informational substance first identified as the endothelium-derived relaxing factor. It is generated by NO synthases and plays a prominent role in controlling a variety of organ functions in the cardiovascular, immune, reproductive and nervous systems. Inducible nitric oxide synthase (iNOS) is not normally present in the brain in youth but it can be detected in the brain after inflammatory, infectious or ischemic damage, as well as in the normal, aging brain. Brain iNOS seems to contribute to the pathophysiology of many diseases that involve the central nervous system, but the role of iNOS appears to go beyond tissue damage. Brain iNOS might be required for adequate repair following injury or damage. The effects of brain iNOS on the balance between damage and repair make this enzyme a promising therapeutic target in human disease.
Collapse
Affiliation(s)
- J Licinio
- Clinical Neuroendocrinology Branch, National Institute of Mental Health, NIH Bldg 10/2D46, 10 Center Dr MSC 1284, Bethesda, MD 20892-1284, USA.
| | | | | | | |
Collapse
|
35
|
Liang XH, Goldman JE, Jiang HH, Levine B. Resistance of interleukin-1beta-deficient mice to fatal Sindbis virus encephalitis. J Virol 1999; 73:2563-7. [PMID: 9971844 PMCID: PMC104506 DOI: 10.1128/jvi.73.3.2563-2567.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-1beta (IL-1beta) concentrations are frequently elevated in central nervous system (CNS) viral infections, but the pathophysiologic significance of such elevations is not known. To examine the role of IL-1beta in CNS viral pathogenesis, we compared the natural histories of IL-1beta-deficient and wild-type 129 SV(ev) mice infected with a neurovirulent viral strain, neuroadapted Sindbis virus (NSV). We found that the incidence of severe paralysis and death was markedly decreased in NSV-infected IL-1beta-/- mice compared to NSV-infected wild-type mice (4 versus 88%, P < 0.001). Despite this marked difference in clinical outcome, no differences in numbers of apoptotic cells or presence of histopathologic lesions in the brains of moribund wild-type mice and those of clinically healthy IL-1beta-/- mice could be detected. These results suggest that IL-1beta deficiency is protective against fatal Sindbis virus infection by a mechanism that does not involve resistance to CNS virus-induced apoptosis or histopathology.
Collapse
Affiliation(s)
- X H Liang
- Department of Medicine, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | |
Collapse
|
36
|
Abstract
CD23 is an activation antigen expressed by various human hematopoietic cells, tissular epithelial cells and represents the major low affinity receptor for IgE (Fc epsilon RII). In its membrane and soluble forms, CD23 has multiple ligands that enable this molecule to trigger various functions in human and murine cells. In this issue, we discussed the intracellular signaling events induced by soluble CD23 and the ligand involved in each target cell. Signal transduction through surface CD23 ligation is linked to cyclic nucleotides and nitric oxide (NO) pathways in various human cells and in rat macrophages. Recent in vivo data suggest a regulatory role for these signals during various human physiopathological situations such as hemopoiesis, anti-tumoral defense, inflammation, allergy, microbicidal activity of macrophages and eosinophils, skin disease, and HIV infection.
Collapse
Affiliation(s)
- M D Mossalayi
- Groupe d'Immuno-hématologie Moléculaire, CNRS URA625, Hôpital de La Pitié-Salpêtrière, Paris, France
| | | | | |
Collapse
|
37
|
Giovannoni G, Miller RF, Heales SJ, Land JM, Harrison MJ, Thompson EJ. Elevated cerebrospinal fluid and serum nitrate and nitrite levels in patients with central nervous system complications of HIV-1 infection: a correlation with blood-brain-barrier dysfunction. J Neurol Sci 1998; 156:53-8. [PMID: 9559987 DOI: 10.1016/s0022-510x(98)00021-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As nitric oxide (.NO) is hypothesised to play a role in the immunopathogenesis of neurological complications associated with inflammation, we compared levels of cerebrospinal fluid (CSF) and serum .NO metabolites in 24 patients with HIV-1 infection, to those in 58 non-HIV infected patients with neurological disorders. Levels of .NO metabolites were correlated with blood-brain-barrier dysfunction. CSF and serum nitrate and nitrite levels were measured by the nitrate reductase and Griess reaction methods. The .NO metabolites, nitrate and nitrite, were raised in the CSF and serum of patients with AIDS and central nervous system complications, when compared to non-HIV infected patients with inflammatory and non-inflammatory neurological disorders (median nitrate and nitrite: CSF=18.3 microM vs. 11.1 microM vs. 7.0 microM, P<0.001, and serum=53.8 microM vs. 50.3 microM vs. 41.4 microM, P=0.04, respectively). CSF nitrate and nitrite levels correlated with the albumin quotient. This study supports the evidence that .NO is a potential mediator of blood-brain-barrier breakdown in inflammatory diseases of the central nervous system.
Collapse
Affiliation(s)
- G Giovannoni
- Department of Neuroimmunology, The Natioinal Hospital for Neurology and Neurosurgery, London, UK.
| | | | | | | | | | | |
Collapse
|
38
|
Gold LH, Fox HS, Henriksen SJ, Buchmeier MJ, Weed MR, Taffe MA, Huitrón-Resendiz S, Horn TF, Bloom FE. Longitudinal analysis of behavioral, neurophysiological, viral and immunological effects of SIV infection in rhesus monkeys. J Med Primatol 1998; 27:104-12. [PMID: 9747951 DOI: 10.1111/j.1600-0684.1998.tb00234.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A model is proposed in which a neurovirulent, microglial-passaged, simian immunodeficiency virus (SIV) is used to produce central nervous system (CNS) pathology and behavioral deficits in rhesus monkeys reminiscent of those seen in humans infected with human immunodeficiency virus (HIV). The time course of disease progression was characterized by using functional measures of cognition and motor skill, as well as neurophysiologic monitoring. Concomitant assessment of immunological and virological parameters illustrated correspondence between impaired behavioral performance and viral pathogenesis. Convergent results were obtained from neuropathological findings indicative of significant CNS disease. In ongoing studies, this SIV model is being used to explore the behavioral sequelae of immunodeficiency virus infection, the viral and host factors leading to neurologic dysfunction, and to begin testing potential therapeutic agents.
Collapse
Affiliation(s)
- L H Gold
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Blond D, Chéret A, Raoul H, Le Grand R, Caufour P, Théodoro F, Dormont D. Nitric oxide synthesis during acute SIV mac251 infection of macaques. RESEARCH IN VIROLOGY 1998; 149:75-86. [PMID: 9602502 DOI: 10.1016/s0923-2516(98)80083-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During HIV1 infection, nitric oxide (NO) could significantly contribute to immune dysregulation by its multiple effects on the modulation of the host immune response. The in vivo regulation of NO production is attributable to several nitric oxide synthases, one of which is a cytokine-inducible enzyme (iNOS). In vitro experiments suggest that iNOS expression in macrophages may be directly modulated by HIV infection. Acute infection of macaques with a pathogenic strain of the simian immunodeficiency virus (SIV) represents a relevant animal model for the in vivo study of the relationships between iNOS expression and lentiviral replication. Indeed, acute infection in this model is characterized by high rates of viral replication associated with early cytokine dysregulations, in the absence of opportunistic infection. In our experiment, two cynomolgus macaques were inoculated intravenously with a pathogenic isolate of SIVmac251, and iNOS gene expression was investigated ex vivo during acute infection in mononuclear cells obtained from bronchoalveolar lavage (BALMCs). An enhancement of this gene expression was observed as early as the second week of infection, at the time of peak of systemic viraemia, and increased until day 31 p.i. This overexpression was concomitant with a marked linear increase in IFN gamma expression in BALMCs. At the time of systemic viral load peak, the production of NO in plasma of these two monkeys was evidenced by the detection of large amounts of nitrate.
Collapse
Affiliation(s)
- D Blond
- CEA, Service de Neurovirologie, DSV/DRM/IPSC/CRSSA, Fontenay aux Roses, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Liang B, Larson DF, Watson RR. Oxidation and nutritional deficiency in AIDS: Promotion of immune dysfunction for cardiac toxicity? Nutr Res 1998. [DOI: 10.1016/s0271-5317(98)00031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
41
|
Faraci FM, Heistad DD. Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 1998; 78:53-97. [PMID: 9457169 DOI: 10.1152/physrev.1998.78.1.53] [Citation(s) in RCA: 608] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Several new concepts have emerged in relation to mechanisms that contribute to regulation of the cerebral circulation. This review focuses on some physiological mechanisms of cerebral vasodilatation and alteration of these mechanisms by disease states. One mechanism involves release of vasoactive factors by the endothelium that affect underlying vascular muscle. These factors include endothelium-derived relaxing factor (nitric oxide), prostacyclin, and endothelium-derived hyperpolarizing factor(s). The normal vasodilator influence of endothelium is impaired by some disease states. Under pathophysiological conditions, endothelium may produce potent contracting factors such as endothelin. Another major mechanism of regulation of cerebral vascular tone relates to potassium channels. Activation of potassium channels appears to mediate relaxation of cerebral vessels to diverse stimuli including receptor-mediated agonists, intracellular second messenger, and hypoxia. Endothelial- and potassium channel-based mechanisms are related because several endothelium-derived factors produce relaxation by activation of potassium channels. The influence of potassium channels may be altered by disease states including chronic hypertension, subarachnoid hemorrhage, and diabetes.
Collapse
Affiliation(s)
- F M Faraci
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, USA
| | | |
Collapse
|
42
|
Loihl AK, Murphy S. Expression of nitric oxide synthase-2 in glia associated with CNS pathology. PROGRESS IN BRAIN RESEARCH 1998; 118:253-67. [PMID: 9932447 PMCID: PMC7133158 DOI: 10.1016/s0079-6123(08)63213-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This chapter discusses the expression of nitric oxide synthase-2 (NOS-2) in glia associated with central nervous system (CNS) pathology. The production of nitric oxide (NO) in the nervous system is catalyzed by three, highly homologous isoforms of NO synthase (NOS). NOS-2, the dimeric, heme-containing, soluble protein whose activity is independent of a rise in intracellular calcium, is variously termed ‘inducible,’ ‘immunologic,’ and ‘macrophage NOS (macNOS).’ Nitric oxide inhibits not only NOS-2 activity but also regulates the level of NOS-2 messenger RNA (mRNA) expression through a mechanism involving NF-K B. There is specific evidence for the glial expression of NOS-2 associated with neuronal injury and infection of the CNS and in neurodegenerative and demyelinating diseases. Direct injury in the CNS results in a reactive gliosis, characterized by the induction of the glial fibrillary acidic protein gene and changes in astrocyte morphology.
Collapse
Affiliation(s)
- A K Loihl
- Department of Pharmacology and Neuroscience Program, University of Iowa College of Medicine, Iowa City 52242, USA
| | | |
Collapse
|
43
|
Tracey I, Lane J, Chang I, Navia B, Lackner A, González RG. 1H magnetic resonance spectroscopy reveals neuronal injury in a simian immunodeficiency virus macaque model. JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES AND HUMAN RETROVIROLOGY : OFFICIAL PUBLICATION OF THE INTERNATIONAL RETROVIROLOGY ASSOCIATION 1997; 15:21-7. [PMID: 9215650 DOI: 10.1097/00042560-199705010-00004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Infection with human immunodeficiency virus (HIV) commonly results in neurologic disease called the AIDS dementia complex. Neuronal loss and injury have been found in the HIV brain, but the underlying mechanisms are not understood. The simian immunodeficiency virus (SIV)-infected macaque is an excellent animal model for HIV infection, but neuronal loss has not been demonstrated. To determine whether neuronal damage occurs in the SIV brain, we quantified the neuronal marker N-acetylaspartate (NAA) using proton magnetic resonance spectroscopy (1H-MRS) in brain extracts of control and SIV-infected macaques and correlated these findings with histologic analyses. We found reduced NAA in the SIV-infected animals compared with controls (2.94 +/- 1.37 versus 6.21 +/- 1.73 micromol/g of wet weight; p = 0.004). A significant decrease in NAA was also found in SIV-infected animals sacrificed in the acute stages of infection 9 or 10 days after inoculation with SIVmacYnef. We conclude that SIV infection of rhesus macaques results in neuronal damage that is demonstrable shortly after infection and that 1H-MRS may be used to measure such injury. The results further support the SIV macaque as a useful model to study the mechanisms of neuropathogenesis by HIV.
Collapse
Affiliation(s)
- I Tracey
- NMR Center and Neuroradiology Division, Massachusetts General Hospital, Harvard Medical School, Charlestown 02129, USA
| | | | | | | | | | | |
Collapse
|
44
|
Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, Dawson TM, Dawson VL. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science 1996; 274:1917-21. [PMID: 8943206 DOI: 10.1126/science.274.5294.1917] [Citation(s) in RCA: 292] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Indirect mechanisms are implicated in the pathogenesis of the dementia associated with human immunodeficiency virus-type 1 (HIV-1) infection. Proinflammatory molecules such as tumor necrosis factor alpha and eicosanoids are elevated in the central nervous system of patients with HIV-1-related dementia. Nitric oxide (NO) is a potential mediator of neuronal injury, because cytokines may activate the immunologic (type II) isoform of NO synthase (iNOS). The levels of iNOS in severe HIV-1-associated dementia coincided with increased expression of the HIV-1 coat protein gp41. Furthermore, gp41 induced iNOS in primary cultures of mixed rat neuronal and glial cells and killed neurons through a NO-dependent mechanism. Thus, gp41-induced NO formation may contribute to the severe cognitive dysfunction associated with HIV-1 infection.
Collapse
Affiliation(s)
- D C Adamson
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Pathology 2-210, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | |
Collapse
|