1
|
Kim G, Cha Y, Baek SH. Identification of KANK1 as a tumor suppressor gene in pancreatic ductal adenocarcinoma. Biochem Biophys Res Commun 2025; 766:151885. [PMID: 40288262 DOI: 10.1016/j.bbrc.2025.151885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Pancreatic cancer is a highly lethal malignancy with poor survival outcomes, primarily due to late-stage diagnosis and resistance to conventional therapies. Identifying key oncogenes and tumor suppressor genes is therefore critical for the development of effective treatment strategies. In this study, we identified KANK1 as a novel tumor suppressor gene in pancreatic ductal adenocarcinoma (PDAC) through an integrated mRNA-protein abundance correlation analysis. Elevated KANK1 expression was consistently associated with improved patient survival across multiple datasets, whereas its expression was markedly reduced in pancreatic tumors compared to normal tissues. Single-cell RNA sequencing and immunoblot analyses confirmed the downregulation of KANK1 at both the mRNA and protein levels in PDAC. Further investigation revealed that KANK1 downregulation is driven by copy number loss and tumor hypoxia, supported by data from the TCGA and CCLE databases and validated experimentally under hypoxic conditions. Functional assays demonstrated that KANK1 knockdown promotes pancreatic cancer cell proliferation and migration, along with activation of ERK signaling. Collectively, our findings establish KANK1 as a tumor suppressor in PDAC, whose loss facilitates tumor progression and presents a potential therapeutic target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Gibeom Kim
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul, 08826, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yoonho Cha
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul, 08826, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, Seoul National University, Seoul, 08826, South Korea; Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
2
|
Zhao K, Lin J, Li Y, Xu S, Wang F, Yang Y. Pan-Cancer Analysis of KANK2: Clinical and Molecular Insights into Tumor Progression and Therapeutic Implications. J Cancer 2025; 16:1149-1166. [PMID: 39895803 PMCID: PMC11786046 DOI: 10.7150/jca.105098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND KANK2, a gene crucial for cell migration and movement, is implicated in neoplastic and non-neoplastic diseases. This study aimed to analyze KANK2's expression and its diagnostic and prognostic significance across 33 cancers using multiple online databases. METHODS This study aimed to comprehensively analyze KANK2 in 33 cancers using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) database. Multiple web platforms and software were used for data analysis, including R, Cytoscape, HPA, TISIDB, UALCAN, GEO, cBioPortal, STRING, GSCALite, and CancerSEA. WB and qPCR experiments were used to verify the results. RESULTS KANK2 is widely expressed in various tissues and has significant diagnostic value in multiple cancers, with AUC values exceeding 0.75 in 13 cancer types. Survival analysis indicated that KANK2 expression is significantly associated with overall survival (OS) and disease-specific survival (DSS) in several cancers. KANK2 expression varied significantly across different molecular and immune subtypes and was associated with specific genetic mutations and DNA methylation patterns. Functional state analysis highlighted correlations with processes such as EMT, angiogenesis, and apoptosis. GSEA identified pathways related to proliferation, migration, and extracellular matrix remodeling. The key interacting proteins were identified by PPI network analysis, and the sensitive drug molecules were found by GSCA database. The results were also confirmed by two GEO datasets and WB and qPCR results. CONCLUSION KANK2 serves as a valuable biomarker for diagnosis and prognosis in various cancers, and its expression is intricately linked to multiple molecular and cellular processes, offering potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Changchun, Jilin Province, China
| | - Jie Lin
- Department of Hepatobiliary and Pancreatic Surgery, Changchun, Jilin Province, China
| | - Yongzhi Li
- Department of Hepatobiliary and Pancreatic Surgery, Changchun, Jilin Province, China
| | - Shenghao Xu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Fei Wang
- Department of Endocrinology, Weifang People's Hospital, Weifang, Shandong Province, China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, Changchun, Jilin Province, China
| |
Collapse
|
3
|
Huang K, Zeng T, Koc S, Pettet A, Zhou J, Jain M, Sun D, Ruiz C, Ren H, Howe L, Richardson TG, Cortes A, Aiello K, Branson K, Pfenning A, Engreitz JM, Zhang MJ, Leskovec J. Small-cohort GWAS discovery with AI over massive functional genomics knowledge graph. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.03.24318375. [PMID: 39677475 PMCID: PMC11643201 DOI: 10.1101/2024.12.03.24318375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Genome-wide association studies (GWASs) have identified tens of thousands of disease associated variants and provided critical insights into developing effective treatments. However, limited sample sizes have hindered the discovery of variants for uncommon and rare diseases. Here, we introduce KGWAS, a novel geometric deep learning method that leverages a massive functional knowledge graph across variants and genes to improve detection power in small-cohort GWASs significantly. KGWAS assesses the strength of a variant's association to disease based on the aggregate GWAS evidence across molecular elements interacting with the variant within the knowledge graph. Comprehensive simulations and replication experiments showed that, for small sample sizes ( N =1-10K), KGWAS identified up to 100% more statistically significant associations than state-of-the-art GWAS methods and achieved the same statistical power with up to 2.67× fewer samples. We applied KGWAS to 554 uncommon UK Biobank diseases ( N case <5K) and identified 183 more associations (46.9% improvement) than the original GWAS, where the gain further increases to 79.8% for 141 rare diseases (N case <300). The KGWAS-only discoveries are supported by abundant functional evidence, such as rs2155219 (on 11q13) associated with ulcerative colitis potentially via regulating LRRC32 expression in CD4+ regulatory T cells, and rs7312765 (on 12q12) associated with the rare disease myasthenia gravis potentially via regulating PPHLN1 expression in neuron-related cell types. Furthermore, KGWAS consistently improves downstream analyses such as identifying disease-specific network links for interpreting GWAS variants, identifying disease-associated genes, and identifying disease-relevant cell populations. Overall, KGWAS is a flexible and powerful AI model that integrates growing functional genomics data to discover novel variants, genes, cells, and networks, especially valuable for small cohort diseases.
Collapse
|
4
|
Sandran NG, Badawi N, Gecz J, van Eyk CL. Cerebral palsy as a childhood-onset neurological disorder caused by both genetic and environmental factors. Semin Fetal Neonatal Med 2024; 29:101551. [PMID: 39523172 DOI: 10.1016/j.siny.2024.101551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Cerebral palsy (CP) is a clinical term used to describe a spectrum of movement and posture disorders resulting from non-progressive disturbances in the developing fetal brain. The clinical diagnosis of CP does not include pathological or aetiological defining features, therefore both genetic and environmental causal pathways are encompassed under the CP diagnostic umbrella. In this review, we explore several genetic causal pathways, including both monogenic and polygenic risks, and present evidence supporting the multifactorial contributions to CP. Historically, CP has been associated with various risk factors such as pre-term birth, multiple gestation, intrauterine growth restriction (IUGR), maternal infection, and perinatal asphyxia. Thus, we also examine genetic predispositions that may contribute to these risk factors. Understanding the specific aetiology of CP enables more tailored treatments, especially with the increasing potential for early genetic testing.
Collapse
Affiliation(s)
- Nandini G Sandran
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Nadia Badawi
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, Australia; Grace Centre for Newborn Intensive Care, The Children's Hospital Westmead, Sydney, Australia; Discipline of Child and Adolescent Health, Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, Australia
| | - Jozef Gecz
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, Australia; South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Clare L van Eyk
- Neurogenetics Research Program, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Australian Collaborative Cerebral Palsy Research Group, Robinson Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
5
|
Imamura I, Kiyama R. Potential involvement of KANK1 haploinsufficiency in centrosome aberrations. Biochim Biophys Acta Gen Subj 2024; 1868:130648. [PMID: 38830559 DOI: 10.1016/j.bbagen.2024.130648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 06/05/2024]
Abstract
KANK1 was found as a tumor suppressor gene based on frequent deletions in renal cell carcinoma and the inhibitory activity of tumor cell proliferation. Previously, we reported that knockdown of KANK1 induced centrosomal amplification, leading to abnormal cell division, through the hyperactivation of RhoA small GTPase. Here, we investigated the loss of KANK1 function by performing CRISPR/Cas9-based genome editing to knockout the gene. After several rounds of genome editing, however, there were no cell lines with complete loss of KANK1, and the less the wild-type KANK1 dosage, the greater the number of cells with abnormal numbers of centrosomes and rates of cell-doubling and apoptosis, suggesting the involvement of KANK1 haploinsufficiency in centrosome aberrations. The rescue of KANK1-knockdown cells with a KANK1-expressing plasmid restored the rates of cells exhibiting centrosomal amplification to the control level. RNA-sequencing analysis of the cells with reduced dosages of functional KANK1 revealed potential involvement of other cell proliferation-related genes, such as EGR1, MDGA2, and BMP3, which have been reported to show haploinsufficiency when they function. When EGR1 protein expression was reduced by siRNA technology, the number of cells exhibiting centrosomal amplification increased, along with the reduction of KANK1 protein expression, suggesting their functional relationship. Thus, KANK1 haploinsufficiency may contribute to centrosome aberrations through the network of haploinsufficiency-related genes.
Collapse
Affiliation(s)
- Ikumi Imamura
- Faculty of Life Science, Kyushu Sangyo University, Japan
| | - Ryoiti Kiyama
- Faculty of Life Science, Kyushu Sangyo University, Japan.
| |
Collapse
|
6
|
Latif‐Hernandez A, Yang T, Butler RR, Losada PM, Minhas PS, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson KI, Wyss‐Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. Alzheimers Dement 2024; 20:4434-4460. [PMID: 38779814 PMCID: PMC11247716 DOI: 10.1002/alz.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
INTRODUCTION Tropomyosin related kinase B (TrkB) and C (TrkC) receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid beta (Aβ) toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. METHODS PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APPL/S) and wild-type controls. Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA sequencing. RESULTS In APPL/S mice, BD10-2 treatment improved memory and LTP deficits. This was accompanied by normalized phosphorylation of protein kinase B (Akt), calcium-calmodulin-dependent kinase II (CaMKII), and AMPA-type glutamate receptors containing the subunit GluA1; enhanced activity-dependent recruitment of synaptic proteins; and increased excitatory synapse number. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. DISCUSSION BD10-2 prevented APPL/S/Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response. HIGHLIGHTS Small molecule modulation of tropomyosin related kinase B (TrkB) and C (TrkC) restores long-term potentiation (LTP) and behavior in an Alzheimer's disease (AD) model. Modulation of TrkB and TrkC regulates synaptic activity-dependent transcription. TrkB and TrkC receptors are candidate targets for translational therapeutics. Electrophysiology combined with transcriptomics elucidates synaptic restoration. LTP identifies neuron and microglia AD-relevant human-mouse co-expression modules.
Collapse
Affiliation(s)
- Amira Latif‐Hernandez
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Tao Yang
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Robert R. Butler
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Patricia Moran Losada
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| | - Paras S. Minhas
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Halle White
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Kevin C. Tran
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Harry Liu
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Danielle A. Simmons
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Vanessa Langness
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
| | - Katrin I. Andreasson
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- Chan Zuckerberg BiohubSan FranciscoCaliforniaUSA
| | - Tony Wyss‐Coray
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
- The Phil and Penny Knight Initiative for Brain ResilienceStanford UniversityStanfordCaliforniaUSA
| | - Frank M. Longo
- Department of Neurology & Neurological SciencesStanford University School of MedicinePalo AltoCaliforniaUSA
- Wu Tsai Neurosciences Institute, Stanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
7
|
Sun Z, Ke P, Shen Y, Ma K, Wang B, Lin D, Wang Y. MXRA7 is involved in monocyte-to-macrophage differentiation. Mol Immunol 2024; 171:12-21. [PMID: 38735126 DOI: 10.1016/j.molimm.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Macrophages are critical in mediating immune and inflammatory responses, while monocyte-to-macrophage differentiation is one of the main macrophage resources that involves various matrix proteins. Matrix remodeling associated 7 (MXRA7) was recently discovered to affect a variety of physiological and pathological processes related to matrix biology. In the present study, we investigated the role of MXRA7 in monocyte-to-macrophage differentiation in vitro. We found that knockdown of MXRA7 inhibited the proliferation of THP-1 human monocytic cells. Knockdown of MXRA7 increased the adhesion ability of THP-1 cells through upregulation the expression of adhesion molecules VCAM-1 and ICAM1. Knockdown of MXRA7 alone could promoted the differentiation of THP-1 cells to macrophages. Furthermore, the MXRA7-knockdown THP-1 cells produced a more significant upregulation pattern with M1-type cytokines (TNF-α, IL-1β and IL-6) than with those M2-type molecules (TGF-β1 and IL-1RA) upon PMA stimulation, indicating that knockdown of MXRA7 facilitated THP-1 cells differentiation toward M1 macrophages. RNA sequencing analysis revealed the potential biological roles of MXRA7 in cell adhesion, macrophage and monocyte differentiation. Moreover, MXRA7 knockdown promoted the expression of NF-κB p52/p100, while PMA stimulation could increase the expression of NF-κB p52/p100 and activating MAPK signaling pathways in MXRA7 knockdown cells. In conclusion, MXRA7 affected the differentiation of THP-1 cells toward macrophages possibly through NF-κB signaling pathways.
Collapse
Affiliation(s)
- Zhenjiang Sun
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Peng Ke
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Ying Shen
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China
| | - Kunpeng Ma
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Benfang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China
| | - Dandan Lin
- Institute of Blood and Marrow Transplantation, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215006, China.
| | - Yiqiang Wang
- MOH Key Lab of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou 215007, China; Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
8
|
Oda K, Katayama K, Zang L, Toda M, Tanoue A, Saiki R, Yasuma T, D’Alessandro-Gabazza CN, Shimada Y, Mori M, Suzuki Y, Murata T, Hirai T, Tryggvason K, Gabazza EC, Dohi K. The Protective Role of KANK1 in Podocyte Injury. Int J Mol Sci 2024; 25:5808. [PMID: 38891998 PMCID: PMC11172089 DOI: 10.3390/ijms25115808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Approximately 30% of steroid-resistant nephrotic syndromes are attributed to monogenic disorders that involve 27 genes. Mutations in KANK family members have also been linked to nephrotic syndrome; however, the precise mechanism remains elusive. To investigate this, podocyte-specific Kank1 knockout mice were generated to examine phenotypic changes. In the initial assessment under normal conditions, Kank1 knockout mice showed no significant differences in the urinary albumin-creatinine ratio, blood urea nitrogen, serum creatinine levels, or histological features compared to controls. However, following kidney injury with adriamycin, podocyte-specific Kank1 knockout mice exhibited a significantly higher albumin-creatinine ratio and a significantly greater sclerotic index than control mice. Electron microscopy revealed more extensive foot process effacement in the knockout mice than in control mice. In addition, KANK1-deficient human podocytes showed increased detachment and apoptosis following adriamycin exposure. These findings suggest that KANK1 may play a protective role in mitigating podocyte damage under pathological conditions.
Collapse
Affiliation(s)
- Keiko Oda
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu 514-8507, Mie, Japan;
| | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Akiko Tanoue
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Ryosuke Saiki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Corina N. D’Alessandro-Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Yasuhito Shimada
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan;
| | - Mutsuki Mori
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Yasuo Suzuki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Tomohiro Murata
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| | - Toshinori Hirai
- Department of Pharmacy, Faculty of Medicine, Mie University Hospital, Tsu 514-8507, Mie, Japan;
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden;
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (M.T.); (T.Y.); (C.N.D.-G.); (E.C.G.)
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Mie, Japan; (K.O.); (A.T.); (R.S.); (M.M.); (Y.S.); (T.M.); (K.D.)
| |
Collapse
|
9
|
Tan WH, Rücklin M, Larionova D, Ngoc TB, Joan van Heuven B, Marone F, Matsudaira P, Winkler C. A Collagen10a1 mutation disrupts cell polarity in a medaka model for metaphyseal chondrodysplasia type Schmid. iScience 2024; 27:109405. [PMID: 38510140 PMCID: PMC10952040 DOI: 10.1016/j.isci.2024.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/21/2023] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
Heterozygous mutations in COL10A1 lead to metaphyseal chondrodysplasia type Schmid (MCDS), a skeletal disorder characterized by epiphyseal abnormalities. Prior analysis revealed impaired trimerization and intracellular retention of mutant collagen type X alpha 1 chains as cause for elevated endoplasmic reticulum (ER) stress. However, how ER stress translates into structural defects remained unclear. We generated a medaka (Oryzias latipes) MCDS model harboring a 5 base pair deletion in col10a1, which led to a frameshift and disruption of 11 amino acids in the conserved trimerization domain. col10a1Δ633a heterozygotes recapitulated key features of MCDS and revealed early cell polarity defects as cause for dysregulated matrix secretion and deformed skeletal structures. Carbamazepine, an ER stress-reducing drug, rescued this polarity impairment and alleviated skeletal defects in col10a1Δ633a heterozygotes. Our data imply cell polarity dysregulation as a potential contributor to MCDS and suggest the col10a1Δ633a medaka mutant as an attractive MCDS animal model for drug screening.
Collapse
Affiliation(s)
- Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Martin Rücklin
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, the Netherlands
| | - Daria Larionova
- Department of Biology, Research Group Evolutionary Developmental Biology, Ghent University, Ghent, Belgium
| | - Tran Bich Ngoc
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | | | - Federica Marone
- Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Paul Matsudaira
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
10
|
Oishi M, Shinjo K, Takanari K, Muraoka A, Suzuki MM, Kanbe M, Higuchi S, Ebisawa K, Hashikawa K, Kamei Y, Kondo Y. Exclusive expression of KANK4 promotes myofibroblast mobility in keloid tissues. Sci Rep 2024; 14:8725. [PMID: 38622256 PMCID: PMC11018845 DOI: 10.1038/s41598-024-59293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
Keloids are characterized by abnormal wound healing with excessive accumulation of extracellular matrix. Myofibroblasts are the primary contributor to extracellular matrix secretion, playing an essential role in the wound healing process. However, the differences between myofibroblasts involved in keloid formation and normal wound healing remain unclear. To identify the specific characteristics of keloid myofibroblasts, we initially assessed the expression levels of well-established myofibroblast markers, α-smooth muscle actin (α-SMA) and transgelin (TAGLN), in scar and keloid tissues (n = 63 and 51, respectively). Although myofibroblasts were present in significant quantities in keloids and immature scars, they were absent in mature scars. Next, we conducted RNA sequencing using myofibroblast-rich areas from keloids and immature scars to investigate the difference in RNA expression profiles among myofibroblasts. Among significantly upregulated 112 genes, KN motif and ankyrin repeat domains 4 (KANK4) was identified as a specifically upregulated gene in keloids. Immunohistochemical analysis showed that KANK4 protein was expressed in myofibroblasts in keloid tissues; however, it was not expressed in any myofibroblasts in immature scar tissues. Overexpression of KANK4 enhanced cell mobility in keloid myofibroblasts. Our results suggest that the KANK4-mediated increase in myofibroblast mobility contributes to keloid pathogenesis.
Collapse
Affiliation(s)
- Mayumi Oishi
- Department of Plastic and Reconstructive Surgery, Aichi Children's Health and Medical Center, Obu, Japan
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan.
| | - Keisuke Takanari
- Division of Plastic and Reconstructive Surgery, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Ayako Muraoka
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miho M Suzuki
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Miki Kanbe
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Shinichi Higuchi
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Katsumi Ebisawa
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Kazunobu Hashikawa
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan
| | - Yuzuru Kamei
- Department of Plastic and Reconstructive Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8560, Japan.
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
11
|
Roccatello D, Lan HY, Sciascia S, Sethi S, Fornoni A, Glassock R. From inflammation to renal fibrosis: A one-way road in autoimmunity? Autoimmun Rev 2024; 23:103466. [PMID: 37848157 DOI: 10.1016/j.autrev.2023.103466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023]
Abstract
Renal fibrosis is now recognized as a main determinant of renal pathology to include chronic kidney disease. Deposition of pathological matrix in the walls of glomerular capillaries, the interstitial space, and around arterioles predicts and contributes to the functional demise of the nephron and its surrounding vasculature. The recent identification of the major cell populations of fibroblast precursors in the kidney interstitium such as pericytes and tissue-resident mesenchymal stem cells, or bone-marrow-derived macrophages, and in the glomerulus such as podocytes, parietal epithelial and mesangial cells, has enabled the study of the fibrogenic process thought the lens of involved immunological pathways. Besides, a growing body of evidence is supporting the role of the lymphatic system in modulating the immunological response potentially leading to inflammation and ultimately renal damage. These notions have moved our understanding of renal fibrosis to be recognized as a clinical entity and new main player in autoimmunity, impacting directly the management of patients.
Collapse
Affiliation(s)
- Dario Roccatello
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy.
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases,Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Savino Sciascia
- University Center of Excellence on Nephrologic, Rheumatologic and Rare Diseases (ERK-net, ERN-Reconnect and RITA-ERN Member) with Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases (CMID), Coordinating Center of the Interregional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino and Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy
| | - Sanjeev Sethi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center, Katz Family Division of Nephrology and Hypertension, Department of Medicine, Miller School of Medicine, University of Miami, Miami, USA
| | - Richard Glassock
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
12
|
Guo K, Zhang J, Huang P, Xu Y, Pan W, Li K, Chen L, Luo L, Yu W, Chen S, He S, Wei Z, Yu C. KANK1 shapes focal adhesions by orchestrating protein binding, mechanical force sensing, and phase separation. Cell Rep 2023; 42:113321. [PMID: 37874676 DOI: 10.1016/j.celrep.2023.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/27/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
Focal adhesions (FAs) are dynamic protein assemblies that connect cytoskeletons to the extracellular matrix and are crucial for cell adhesion and migration. KANKs are scaffold proteins that encircle FAs and act as key regulators of FA dynamics, but the molecular mechanism underlying their specified localization and functions remains poorly understood. Here, we determine the KANK1 structures in complex with talin and liprin-β, respectively. These structures, combined with our biochemical and cellular analyses, demonstrate how KANK1 scaffolds the FA core and associated proteins to modulate the FA shape in response to mechanical force. Additionally, we find that KANK1 undergoes liquid-liquid phase separation (LLPS), which is important for its localization at the FA edge and cytoskeleton connections to FAs. Our findings not only indicate the molecular basis of KANKs in bridging the core and periphery of FAs but also provide insights into the LLPS-mediated dynamic regulation of FA morphology.
Collapse
Affiliation(s)
- Kaitong Guo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, Guangdong, China
| | - Jing Zhang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, Guangdong, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pei Huang
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, Guangdong, China
| | - Yuqun Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wenfei Pan
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kaiyue Li
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lu Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, Guangdong, China
| | - Li Luo
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Weichun Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, Guangdong, China
| | - Shuai Chen
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Sicong He
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhiyi Wei
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Cong Yu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
13
|
Mougeot JLC, Beckman MF, Hovan AJ, Hasséus B, Legert KG, Johansson JE, von Bültzingslöwen I, Brennan MT, Bahrani Mougeot F. Identification of single nucleotide polymorphisms (SNPs) associated with chronic graft-versus-host disease in patients undergoing allogeneic hematopoietic cell transplantation. Support Care Cancer 2023; 31:587. [PMID: 37731134 PMCID: PMC10511391 DOI: 10.1007/s00520-023-08044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023]
Abstract
INTRODUCTION Chronic graft-versus-host disease (cGVHD) is a debilitating side effect of allogeneic hematopoietic cell transplantation (HCT), affecting the quality of life of patients. We used whole exome sequencing to identify candidate SNPs and complete a multi-marker gene-level analysis using a cohort of cGVHD( +) (N = 16) and cGVHD( -) (N = 66) HCT patients. METHODS Saliva samples were collected from HCT patients (N = 82) pre-conditioning in a multi-center study from March 2011 to May 2018. Exome sequencing was performed and FASTQ files were processed for sequence alignments. Significant SNPs were identified by logistic regression using PLINK2v3.7 and Fisher's exact test. One cGVHD( -) patient sample was excluded from further analysis since no SNP was present in at least 10% of the sample population. The FUMA platform's SNP2GENE was utilized to annotate SNPs and generate a MAGMA output. Chromatin state visualization of lead SNPs was completed using Epilogos tool. FUMA's GENE2FUNC was used to obtain gene function and tissue expression from lead genomic loci. RESULTS Logistic regression classified 986 SNPs associated with cGVHD( +). SNP2GENE returned three genomic risk loci, four lead SNPs, 48 candidate SNPs, seven candidate GWAS tagged SNPs, and four mapped genes. Fisher's exact test identified significant homozygous genotypes of four lead SNPs (p < 0.05). GENE2FUNC analysis of multi-marker SNP sets identified one positional gene set including lead SNPs for KANK1 and KDM4C and two curated gene sets including lead SNPs for PTPRD, KDM4C, and/or KANK1. CONCLUSIONS Our data suggest that SNPs in three genes located on chromosome 9 confer genetic susceptibility to cGVHD in HCT patients. These genes modulate STAT3 expression and phosphorylation in cancer pathogenesis. The findings may have implications in the modulation of pathways currently targeted by JAK inhibitors in cGVHD clinical trials.
Collapse
Affiliation(s)
- Jean-Luc C Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health - Carolinas Medical Center, Charlotte, NC, USA.
| | - Micaela F Beckman
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health - Carolinas Medical Center, Charlotte, NC, USA
| | - Allan J Hovan
- BC Cancer, Oral Oncology and Dentistry, Vancouver, BC, Canada
| | - Bengt Hasséus
- Department of Oral Medicine and Pathology, University of Gothenburg, Gothenburg, Sweden
| | | | - Jan-Erik Johansson
- Department of Hematology and Coagulation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Michael T Brennan
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health - Carolinas Medical Center, Charlotte, NC, USA
- Department of Otolaryngology/Head & Neck Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Farah Bahrani Mougeot
- Translational Research Laboratories, Department of Oral Medicine/Oral & Maxillofacial Surgery, Atrium Health - Carolinas Medical Center, Charlotte, NC, USA.
| |
Collapse
|
14
|
Latif-Hernandez A, Yang T, Raymond-Butler R, Losada PM, Minhas P, White H, Tran KC, Liu H, Simmons DA, Langness V, Andreasson K, Wyss-Coray T, Longo FM. A TrkB and TrkC partial agonist restores deficits in synaptic function and promotes activity-dependent synaptic and microglial transcriptomic changes in a late-stage Alzheimer's mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.558138. [PMID: 37781573 PMCID: PMC10541128 DOI: 10.1101/2023.09.18.558138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Introduction TrkB and TrkC receptor signaling promotes synaptic plasticity and interacts with pathways affected by amyloid-β (Aβ)-toxicity. Upregulating TrkB/C signaling could reduce Alzheimer's disease (AD)-related degenerative signaling, memory loss, and synaptic dysfunction. Methods PTX-BD10-2 (BD10-2), a small molecule TrkB/C receptor partial agonist, was orally administered to aged London/Swedish-APP mutant mice (APP L/S ) and wild-type controls (WT). Effects on memory and hippocampal long-term potentiation (LTP) were assessed using electrophysiology, behavioral studies, immunoblotting, immunofluorescence staining, and RNA-sequencing. Results Memory and LTP deficits in APP L/S mice were attenuated by treatment with BD10-2. BD10-2 prevented aberrant AKT, CaMKII, and GLUA1 phosphorylation, and enhanced activity-dependent recruitment of synaptic proteins. BD10-2 also had potentially favorable effects on LTP-dependent complement pathway and synaptic gene transcription. Conclusions BD10-2 prevented APP L/S /Aβ-associated memory and LTP deficits, reduced abnormalities in synapse-related signaling and activity-dependent transcription of synaptic genes, and bolstered transcriptional changes associated with microglial immune response.
Collapse
|
15
|
Dai Z, Xie B, Yang B, Chen X, Hu C, Chen Q. KANK3 mediates the p38 MAPK pathway to regulate the proliferation and invasion of lung adenocarcinoma cells. Tissue Cell 2023; 80:101974. [PMID: 36463587 DOI: 10.1016/j.tice.2022.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the major subtypes of lung cancer and is the most common cause of cancer deaths globally. The Kank (kidney or KN motif and ankyrin repeat domain-containing) family of proteins has been characterized as critical for regulating the capacity of cells to migrate and their anti-tumor drug sensitivity. The current research designs to explore the specific effects and potential regulatory molecular mechanism of KANK3 on LUAD cells. METHOD Two datasets (TCGA-LUAD and GSE116959) were analyzed to confirm the differently expressed genes. qRT-PCR was carried out to measure KANK3 level in LUAD tissue samples and adjacent non-cancerous tissue samples. Western blot assay was utilized to investigate the KANK3, p-p38 and p38 protein levels. MTT assay were employed to investigate the cell proliferation. Cell invasion and migration were assessed using Transwell and wound healing assay. RESULT KANK3 was down-regulated in LUAD tissues and the expressions of KANK3 had a strong influence on prognosis of LUAD patients. Overexpression of KANK3 significantly inhibited, whereas KANK3 silencing observably enhanced the capacity of NCI-H1975 and PC-9 cells to proliferate, invade and migrate. GSEA showed that, differentially expressed genes which regulated by KANK3 enriched in cell adhesion, chemokine, focal adhesion or MAPK signaling pathway. Further experiments proved that KANK3 regulated LUAD cells proliferation and metastasis through p38 MAPK pathway. CONCLUSION KANK3 exerts antitumor effect in LUAD through regulation of p38 MAPK signaling pathway. These outcomes foreboded that KANK3 could be a novel therapeutic target for further study of LUAD.
Collapse
Affiliation(s)
- Ziyu Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bin Xie
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Baishuang Yang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi Chen
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Qiong Chen
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
16
|
Deng AY, Menard A, Deng DW. Shifting Paradigm from Gene Expressions to Pathways Reveals Physiological Mechanisms in Blood Pressure Control in Causation. Int J Mol Sci 2023; 24:1262. [PMID: 36674778 PMCID: PMC9863686 DOI: 10.3390/ijms24021262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Genetics for blood pressure (BP) in human and animals has been partitioned into two separate specialties. However, this divide is mechanistically-misleading. BP physiology is mechanistically participated by products of quantitative trait loci (QTLs). The key to unlocking its mechanistic mystery lies in the past with mammalian ancestors before humans existed. By pivoting from effects to causes, physiological mechanisms determining BP by six QTLs have been implicated. Our work relies on congenic knock-in genetics in vivo using rat models, and has reproduced the physiological outcome based on a QTL being molecularly equal to one gene. A gene dose for a QTL is irrelevant to physiological BP controls in causation. Together, QTLs join one another as a group in modularized Mendelian fashion to achieve polygenicity. Mechanistically, QTLs in the same module appear to function in a common pathway. Each is involved in a different step in the pathway toward polygenic hypertension. This work has implicated previously-concealed components of these pathways. This emerging concept is a departure from the human-centric precept that the level of QTL expressions, not physiology, would ultimately determine BP. The modularity/pathway paradigm breaks a unique conceptual ground for unravelling the physiological mechanisms of polygenic and quantitative traits like BP.
Collapse
Affiliation(s)
- Alan Y. Deng
- Research Centre, CRCHUM (Centre Hospitalier de l’Université de Montréal), Department of Medicine, Université de Montréal, Montreal, QC H2X 0A9, Canada
| | | | | |
Collapse
|
17
|
Shevell M. The evolution of our understanding of the conceptualization and genetics of cerebral palsy: Implications for genetic testing. Mol Genet Metab 2022; 137:449-453. [PMID: 33423928 DOI: 10.1016/j.ymgme.2020.12.294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Michael Shevell
- Department of Pediatrics, McGill University, Montreal Children's Hospital-McGill University Health Centre, Room B.RC. 6354, 1001 Decarie Blvd, Montreal, Quebec H4A 3J1, Canada.
| |
Collapse
|
18
|
Nguyen MT, Lee W. Kank1 Is Essential for Myogenic Differentiation by Regulating Actin Remodeling and Cell Proliferation in C2C12 Progenitor Cells. Cells 2022; 11:cells11132030. [PMID: 35805114 PMCID: PMC9265739 DOI: 10.3390/cells11132030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/05/2023] Open
Abstract
Actin cytoskeleton dynamics are essential regulatory processes in muscle development, growth, and regeneration due to their modulation of mechanotransduction, cell proliferation, differentiation, and morphological changes. Although the KN motif and ankyrin repeat domain-containing protein 1 (Kank1) plays a significant role in cell adhesion dynamics, actin polymerization, and cell proliferation in various cells, the functional significance of Kank1 during the myogenic differentiation of progenitor cells has not been explored. Here, we report that Kank1 acts as a critical regulator of the proliferation and differentiation of muscle progenitor cells. Kank1 was found to be expressed at a relatively high level in C2C12 myoblasts, and its expression was modulated during the differentiation. Depletion of Kank1 by siRNA (siKank1) increased the accumulation of filamentous actin (F-actin). Furthermore, it facilitated the nuclear localization of Yes-associated protein 1 (YAP1) by diminishing YAP1 phosphorylation in the cytoplasm, which activated the transcriptions of YAP1 target genes and promoted proliferation and cell cycle progression in myoblasts. Notably, depletion of Kank1 suppressed the protein expression of myogenic regulatory factors (i.e., MyoD and MyoG) and dramatically inhibited myoblast differentiation and myotube formation. Our results show that Kank1 is an essential regulator of actin dynamics, YAP1 activation, and cell proliferation and that its depletion impairs the myogenic differentiation of progenitor cells by promoting myoblast proliferation triggered by the F-actin-induced nuclear translocation of YAP1.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Korea;
- Channelopathy Research Center, Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Korea
- Correspondence: ; Tel.: +82-54-770-2409
| |
Collapse
|
19
|
Zhang S, Cooper-Knock J, Weimer AK, Shi M, Moll T, Marshall JNG, Harvey C, Nezhad HG, Franklin J, Souza CDS, Ning K, Wang C, Li J, Dilliott AA, Farhan S, Elhaik E, Pasniceanu I, Livesey MR, Eitan C, Hornstein E, Kenna KP, Veldink JH, Ferraiuolo L, Shaw PJ, Snyder MP. Genome-wide identification of the genetic basis of amyotrophic lateral sclerosis. Neuron 2022; 110:992-1008.e11. [PMID: 35045337 PMCID: PMC9017397 DOI: 10.1016/j.neuron.2021.12.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 02/01/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex disease that leads to motor neuron death. Despite heritability estimates of 52%, genome-wide association studies (GWASs) have discovered relatively few loci. We developed a machine learning approach called RefMap, which integrates functional genomics with GWAS summary statistics for gene discovery. With transcriptomic and epigenetic profiling of motor neurons derived from induced pluripotent stem cells (iPSCs), RefMap identified 690 ALS-associated genes that represent a 5-fold increase in recovered heritability. Extensive conservation, transcriptome, network, and rare variant analyses demonstrated the functional significance of candidate genes in healthy and diseased motor neurons and brain tissues. Genetic convergence between common and rare variation highlighted KANK1 as a new ALS gene. Reproducing KANK1 patient mutations in human neurons led to neurotoxicity and demonstrated that TDP-43 mislocalization, a hallmark pathology of ALS, is downstream of axonal dysfunction. RefMap can be readily applied to other complex diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Annika K Weimer
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Minyi Shi
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Jack N G Marshall
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Helia Ghahremani Nezhad
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - John Franklin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Ke Ning
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Cheng Wang
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jingjing Li
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, the Bakar Computational Health Sciences Institute, the Parker Institute for Cancer Immunotherapy, and the Department of Neurology, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Allison A Dilliott
- Department of Neurology and Neurosurgery, the Montreal Neurological Institute, McGill University, Montreal, QC H3A 1A1, Canada
| | - Sali Farhan
- Department of Neurology and Neurosurgery, the Montreal Neurological Institute, McGill University, Montreal, QC H3A 1A1, Canada
| | - Eran Elhaik
- Department of Biology, Lunds Universitet, Lund 223 62, Sweden
| | - Iris Pasniceanu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Matthew R Livesey
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Chen Eitan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht 3584 CX, the Netherlands
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Michael P Snyder
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Pei Q, Ni W, Yuan Y, Yuan J, Zhang X, Yao M. HSP70 Ameliorates Septic Lung Injury via Inhibition of Apoptosis by Interacting with KANK2. Biomolecules 2022; 12:410. [PMID: 35327602 PMCID: PMC8946178 DOI: 10.3390/biom12030410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Acute lung injury is the most common type of organ damage with high incidence and mortality in sepsis, which is a poorly understood syndrome of disordered inflammation. The aims of this study are to explore whether heat shock protein 70 (HSP70), as a molecular chaperone, attenuates the septic lung injury, and to understand the underlying mechanisms. In our study, treatment with HSP70 ameliorated the survival rate, dysfunction of lung, inflammation, and apoptosis in cecal ligation and puncture (CLP)-treated mice as well as in LPS-treated human alveolar epithelial cells. Furthermore, HSP70 interacted with KANK2, leading to reversed cell viability and reduced apoptosis-inducing factor (AIF) and apoptosis. Additionally, knockdown of KANK2 in epithelial cells and deletion of hsp70.1 gene in CLP mice aggravated apoptosis and tissue damage, suggesting that interaction of KANK2 and HSP70 is critical for protecting lung injury induced by sepsis. HSP70 plays an important role in protection of acute lung injury caused by sepsis through interaction with KANK2 to reduce AIF release and apoptotic cell. HSP70 is a novel potential therapeutic approach for attenuation of septic lung injury.
Collapse
Affiliation(s)
- Qing Pei
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
| | - Wei Ni
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430000, China; (W.N.); (J.Y.)
| | - Yihang Yuan
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Jing Yuan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430000, China; (W.N.); (J.Y.)
| | - Xiong Zhang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Min Yao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
- Institute of Traumatic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
21
|
Sun (孙迪) D, Chai (柴思敏) S, Huang (黄鑫) X, Wang (王滢莹) Y, Xiao (肖琳琳) L, Xu (徐士霞) S, Yang (杨光) G. Novel Genomic Insights into Body Size Evolution in Cetaceans and a Resolution of Peto’s Paradox. Am Nat 2022; 199:E28-E42. [DOI: 10.1086/717768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Di Sun (孙迪)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Simin Chai (柴思敏)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| | - Xin Huang (黄鑫)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yingying Wang (王滢莹)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Linlin Xiao (肖琳琳)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shixia Xu (徐士霞)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Guang Yang (杨光)
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong 511458, China
| |
Collapse
|
22
|
Shankland SJ, Wang Y, Shaw AS, Vaughan JC, Pippin JW, Wessely O. Podocyte Aging: Why and How Getting Old Matters. J Am Soc Nephrol 2021; 32:2697-2713. [PMID: 34716239 PMCID: PMC8806106 DOI: 10.1681/asn.2021050614] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
The effects of healthy aging on the kidney, and how these effects intersect with superimposed diseases, are highly relevant in the context of the population's increasing longevity. Age-associated changes to podocytes, which are terminally differentiated glomerular epithelial cells, adversely affect kidney health. This review discusses the molecular and cellular mechanisms underlying podocyte aging, how these mechanisms might be augmented by disease in the aged kidney, and approaches to mitigate progressive damage to podocytes. Furthermore, we address how biologic pathways such as those associated with cellular growth confound aging in humans and rodents.
Collapse
Affiliation(s)
- Stuart J. Shankland
- Division of Nephrology, University of Washington, Seattle, Washington
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
| | - Yuliang Wang
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington
| | - Andrey S. Shaw
- Department of Research Biology, Genentech, South San Francisco, California
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Jeffrey W. Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Oliver Wessely
- Lerner Research Institute, Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
23
|
Li M, Wu W, Deng S, Shao Z, Jin X. TRAIP modulates the IGFBP3/AKT pathway to enhance the invasion and proliferation of osteosarcoma by promoting KANK1 degradation. Cell Death Dis 2021; 12:767. [PMID: 34349117 PMCID: PMC8339131 DOI: 10.1038/s41419-021-04057-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023]
Abstract
Osteosarcoma is one of the most common primary malignancies in bones and is characterized by high metastatic rates. Circulating tumor cells (CTCs) derived from solid tumors can give rise to metastatic lesions, increasing the risk of death in patients with cancer. Here, we used bioinformatics tools to compare the gene expression between CTCs and metastatic lesions in osteosarcoma to identify novel molecular mechanisms underlying osteosarcoma metastasis. We identified TRAIP as a key differentially expressed gene with prognostic significance in osteosarcoma. We demonstrated that TRAIP regulated the proliferation and invasion of osteosarcoma cells. In addition, we found that TRAIP promoted KANK1 polyubiquitination and subsequent degradation, downregulating IGFBP3 and activating the AKT pathway in osteosarcoma cells. These results support the critical role of the TRAIP/KANK1/IGFBP3/AKT signaling axis in osteosarcoma progression and suggest that TRAIP may represent a promising therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Mi Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Deng
- Cancer center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China.
| |
Collapse
|
24
|
Xu Y, Guo C, Pan W, Zhao C, Ding Y, Xie X, Wei Z, Sun Y, Yu C. Nephrotic-syndrome-associated mutation of KANK2 induces pathologic binding competition with physiological interactor KIF21A. J Biol Chem 2021; 297:100958. [PMID: 34274317 PMCID: PMC8368038 DOI: 10.1016/j.jbc.2021.100958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/17/2021] [Accepted: 07/09/2021] [Indexed: 10/25/2022] Open
Abstract
Nephrotic syndrome (NS) is a common kidney disorder caused by dysfunction of the glomerular filtration barrier. Some genetic mutations identified in NS patients cause amino acid substitutions of kidney ankyrin repeat-containing (KANK) proteins, which are scaffold proteins that regulate actin polymerization, microtubule targeting, and cell adhesion via binding to various molecules, including the kinesin motor protein KIF21A. However, the mechanisms by which these mutations lead to NS are unclear. Here, we unexpectedly found that the eukaryotic translation initiation factor 4A1 (eIF4A1) interacts with an NS-associated KANK2 mutant (S684F) but not the wild-type protein. Biochemical and structural analyses revealed that the pathological mutation induces abnormal binding of eIF4A1 to KANK2 at the physiological KIF21A-binding site. Competitive binding assays further indicated that eIF4A1 can compete with KIF21A to interact with the S684F mutant of KANK2. In cultured mouse podocytes, this S684F mutant interfered with the KANK2/KIF21A interaction by binding to eIF4A1, and failed to rescue the focal adhesion or cell adhesion that had been reduced or morphologically changed by KANK2 knockout. These structural, biochemical, and cellular results not only provide mechanistic explanations for the podocyte defects caused by the S684F mutation, but also show how a gain-of-binding mutation can lead to a loss-of-function effect.
Collapse
Affiliation(s)
- Yuqun Xu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chen Guo
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Wenfei Pan
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Chan Zhao
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yanyan Ding
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xingqiao Xie
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zhiyi Wei
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China; Brain Research Center, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Ying Sun
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern Univeristy of Science and Technology, Shenzhen, Guangdong, China.
| | - Cong Yu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Department of Biology, Southern Univeristy of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
25
|
Tadijan A, Samaržija I, Humphries JD, Humphries MJ, Ambriović-Ristov A. KANK family proteins in cancer. Int J Biochem Cell Biol 2021; 131:105903. [PMID: 33309958 DOI: 10.1016/j.biocel.2020.105903] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/29/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
The Kank (kidney or KN motif and ankyrin repeat domain-containing) family of proteins has been described as essential for crosstalk between actin and microtubules. Kank1, 2, 3 and 4 arose by gene duplication and diversification and share conserved structural domains. KANK proteins are localised mainly to the plasma membrane in focal adhesions, indirectly affecting RhoA and Rac1 thus regulating actin cytoskeleton. In addition, Kank proteins are part of the cortical microtubule stabilisation complex regulating microtubules. Most of the data have been collected for Kank1 protein whose expression promotes apoptosis and cell-cycle arrest while Kank3 was identified as hypoxia-inducible proapoptotic target of p53. A discrepancy in Kanks role in regulation of cell migration and sensitivity to antitumour drugs has been observed in different cell models. Since expression of Kank1 and 3 correlate positively with tumour progression and patient outcome, at least in some tumour types, they are candidates for tumour suppressors.
Collapse
Affiliation(s)
- Ana Tadijan
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia; Laboratory for Protein Dynamics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Ivana Samaržija
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia; Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, England, UK
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, M13 9PT, England, UK
| | - Andreja Ambriović-Ristov
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| |
Collapse
|
26
|
Guo SS, Seiwert A, Szeto IYY, Fässler R. Tissue distribution and subcellular localization of the family of Kidney Ankyrin Repeat Domain (KANK) proteins. Exp Cell Res 2020; 398:112391. [PMID: 33253712 DOI: 10.1016/j.yexcr.2020.112391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/30/2022]
Abstract
Kidney Ankyrin Repeat-containing Proteins (KANKs) comprise a family of four evolutionary conserved proteins (KANK1 to 4) that localize to the belt of mature focal adhesions (FAs) where they regulate integrin-mediated adhesion, actomyosin contractility, and link FAs to the cortical microtubule stabilization complex (CMSC). The human KANK proteins were first identified in kidney and have been associated with kidney cancer and nephrotic syndrome. Here, we report the distributions and subcellular localizations of the four Kank mRNAs and proteins in mouse tissues. We found that the KANK family members display distinct and rarely overlapping expression patterns. Whereas KANK1 is expressed at the basal side of epithelial cells of all tissues tested, KANK2 expression is mainly observed at the plasma membrane and/or cytoplasm of mesenchymal cells and KANK3 exclusively in vascular and lymphatic endothelial cells. KANK4 shows the least widespread expression pattern and when present, overlaps with KANK2 in contractile cells, such as smooth muscle cells and pericytes. Our findings show that KANKs are widely expressed in a cell type-specific manner, which suggests that they have cell- and tissue-specific functions.
Collapse
Affiliation(s)
- Shiny Shengzhen Guo
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Andrea Seiwert
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Irene Y Y Szeto
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
27
|
Zhang YH, Pan X, Zeng T, Chen L, Huang T, Cai YD. Identifying the RNA signatures of coronary artery disease from combined lncRNA and mRNA expression profiles. Genomics 2020; 112:4945-4958. [PMID: 32919019 DOI: 10.1016/j.ygeno.2020.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/28/2020] [Accepted: 09/05/2020] [Indexed: 12/23/2022]
Abstract
Coronary artery disease (CAD) is the most common cardiovascular disease. CAD research has greatly progressed during the past decade. mRNA is a traditional and popular pipeline to investigate various disease, including CAD. Compared with mRNA, lncRNA has better stability and thus may serve as a better disease indicator in blood. Investigating potential CAD-related lncRNAs and mRNAs will greatly contribute to the diagnosis and treatment of CAD. In this study, a computational analysis was conducted on patients with CAD by using a comprehensive transcription dataset with combined mRNA and lncRNA expression data. Several machine learning algorithms, including feature selection methods and classification algorithms, were applied to screen for the most CAD-related RNA molecules. Decision rules were also reported to provide a quantitative description about the effect of these RNA molecules on CAD progression. These new findings (CAD-related RNA molecules and rules) can help understand mRNA and lncRNA expression levels in CAD.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai 200444, China; Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Xiaoyong Pan
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China.
| | - Tao Zeng
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai 201210, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
28
|
Kastnerova L, Martinek P, Grossmann P, Steiner P, Vanecek T, Kyclova J, Ferak I, Zalud R, Slehobr O, Svajdler P, Sulc M, Bradamante M, Banik M, Hadravsky L, Sticova E, Hajkova V, Ptakova N, Michal M, Kazakov DV. A Clinicopathological Study of 29 Spitzoid Melanocytic Lesions With ALK Fusions, Including Novel Fusion Variants, Accompanied by Fluorescence In Situ Hybridization Analysis for Chromosomal Copy Number Changes, and Both TERT Promoter and Next-Generation Sequencing Mutation Analysis. Am J Dermatopathol 2020; 42:578-592. [PMID: 32701692 DOI: 10.1097/dad.0000000000001632] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ALK-fused spitzoid neoplasms represent a distinctive group of melanocytic lesions. To date, few studies addressed genetic and chromosomal alterations in these lesions beyond the ALK rearrangements. Our objective was to study genetic alterations, including ALK gene fusions, telomerase reverse transcriptase promoter (TERT-p) mutations, chromosomal copy number changes, and mutations in other genes. We investigated 29 cases of Spitz lesions (11 Spitz nevi and 18 atypical Spitz tumors), all of which were ALK immunopositive. There were 16 female and 13 male patients, with age ranging from 1 to 43 years (mean, 18.4 years). The most common location was the lower extremity. Microscopically, all neoplasms were polypoid or dome shaped with a plexiform, predominantly dermally located proliferation of fusiform to spindled melanocytes with mild to moderate pleomorphism. The break-apart test for ALK was positive in 17 of 19 studied cases. ALK fusions were detected in 23 of 26 analyzable cases by Archer FusionPlex Solid Tumor Kit. In addition to the previously described rearrangements, 3 novel fusions, namely, KANK1-ALK, MYO5A-ALK, and EEF2-ALK, were found. Fluorescence in situ hybridization for copy number changes yielded one case with the loss of RREB1 among 21 studied cases. TERT-p hotspot mutation was found in 1 of 23 lesions. The mutation analysis of 271 cancer-related genes using Human Comprehensive Cancer Panel was performed in 4 cases and identified in each case mutations in several genes with unknown significance, except for a pathogenic variant in the BLM gene. Our study confirms that most ALK fusion spitzoid neoplasms can be classified as atypical Spitz tumors, which occurs in young patients with acral predilection and extends the spectrum of ALK fusions in spitzoid lesions, including 3 hitherto unreported fusions. TERT-p mutations and chromosomal copy number changes involving 6p25 (RRB1), 11q13 (CCND1), 6p23 (MYB), 9p21 (CDKN2A), and 8q24 (MYC) are rare in these lesions. The significance of mutation in other genes remains unknown.
Collapse
Affiliation(s)
- Liubov Kastnerova
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Petr Martinek
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Petr Grossmann
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Petr Steiner
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Tomas Vanecek
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Jitka Kyclova
- Department of Pathology, University Hospital, Brno, Czech Republic
| | - Ivan Ferak
- Agel Laboratory, Novy Jicin, Czech Republic
| | - Radim Zalud
- Department of Pathology, Regional Hospital, Kolin, Czech Republic
| | - Ondrej Slehobr
- Department of Pathology, Regional Hospital, Kolin, Czech Republic
| | - Peter Svajdler
- Department of Pathology, L. Pausteur University Hospital, Kosice, Czech Republic
| | - Miroslav Sulc
- Pathology Laboratory Chomutov, Chomutov, Czech Republic
| | | | - Martin Banik
- Department of Pathology, Regional Hospital, Karlovy Vary, Czech Republic
| | - Ladislav Hadravsky
- Department of Pathology, 1st Faculty of Medicine and General University Hospital, Charles University in Prague, Czech Republic; and
| | - Eva Sticova
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | - Michal Michal
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| | - Dmitry V Kazakov
- Sikl's Department of Pathology, Medical Faculty in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Bioptical Laboratory, Pilsen, Czech Republic
| |
Collapse
|
29
|
Malhotra D, Casey JR. Molecular Mechanisms of Fuchs and Congenital Hereditary Endothelial Corneal Dystrophies. Rev Physiol Biochem Pharmacol 2020; 178:41-81. [PMID: 32789790 DOI: 10.1007/112_2020_39] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cornea, the eye's outermost layer, protects the eye from the environment. The cornea's innermost layer is an endothelium separating the stromal layer from the aqueous humor. A central role of the endothelium is to maintain stromal hydration state. Defects in maintaining this hydration can impair corneal clarity and thus visual acuity. Two endothelial corneal dystrophies, Fuchs Endothelial Corneal Dystrophy (FECD) and Congenital Hereditary Endothelial Dystrophy (CHED), are blinding corneal diseases with varied clinical presentation in patients across different age demographics. Recessive CHED with an early onset (typically age: 0-3 years) and dominantly inherited FECD with a late onset (age: 40-50 years) have similar phenotypes, although caused by defects in several different genes. A range of molecular mechanisms have been proposed to explain FECD and CHED pathology given the involvement of multiple causative genes. This critical review provides insight into the proposed molecular mechanisms underlying FECD and CHED pathology along with common pathways that may explain the link between the defective gene products and provide a new perspective to view these genetic blinding diseases.
Collapse
Affiliation(s)
- Darpan Malhotra
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada
| | - Joseph R Casey
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, Canada.
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology and Visual Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
30
|
Kariri YA, Joseph C, Kurozumi S, Toss MS, Alsaleem M, Raafat S, Mongan NP, Aleskandarany MA, Green AR, Rakha EA. Prognostic significance of KN motif and ankyrin repeat domains 1 (KANK1) in invasive breast cancer. Breast Cancer Res Treat 2019; 179:349-357. [PMID: 31679074 PMCID: PMC6987050 DOI: 10.1007/s10549-019-05466-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/23/2022]
Abstract
Background KN motif and ankyrin repeat domains 1 (KANK1) plays an important role in cytoskeleton maintenance and contributes to the regulation of cell proliferation, adhesion and apoptosis. KANK1 is involved in progression of a variety of solid tumours; however, its role in invasive breast cancer (BC) remains unknown. This study aims to evaluate the clinicopathological and prognostic value of KANK1 expression in operable BC. Methods KANK1 expression was assessed at the transcriptomic level using multiple BC cohorts; the Molecular Taxonomy of BC International Consortium cohort (METABRIC; n = 1980), The Cancer Genome Atlas BC cohort (TCGA; n = 949) and the publicly available BC transcriptomic data hosted by BC Gene-Expression Miner (bc-GenExMiner v4.0) and Kaplan–Meier plotter?. The Nottingham BC cohort (n = 1500) prepared as tissue microarrays was used to assess KANK1 protein expression using immunohistochemistry (IHC). The association between clinicopathological variables and patient outcome was investigated. Results In the METABRIC cohort, high expression of KANK1 mRNA was associated with characteristics of good prognosis including lower grade, absence of lymphovascular invasion and HER2 negativity (all; p < 0.001) and with better outcome [p = 0.006, Hazards ratio, (HR) 0.70, 95% CI 0.54–0.91]. High KANK1 protein expression was correlated with smaller tumour size and HER2 negativity, and better outcome in terms of longer breast cancer-specific survival [p = 0.013, HR 0.7, 95% CI 0.536–0.893] and time to distant metastasis [p = 0.033, HR 0.65, 95% CI 0.51–0.819]. Conclusion These results supported that upregulation of KANK1 works as a tumour suppressor gene in BC and is associated with improved patients’ outcomes. Electronic supplementary material The online version of this article (10.1007/s10549-019-05466-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yousif A Kariri
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK.,Faculty of Applied Medical Science, Shaqra University, Riyadh, Saudi Arabia
| | - Chitra Joseph
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Sasagu Kurozumi
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Michael S Toss
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Mansour Alsaleem
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Sara Raafat
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Cancer Biology and Translational Research, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.,Department of Pharmacology, Weill Cornell Medicine, New York, USA
| | - Mohammed A Aleskandarany
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Andrew R Green
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK
| | - Emad A Rakha
- Division of Cancer and Stem Cells, School of Medicine, Nottingham City Hospital, The University of Nottingham, Nottingham, UK. .,Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital Campus, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
31
|
Zhu J, Wu K, Lin Z, Bai S, Wu J, Li P, Xue H, Du J, Shen B, Wang H, Liu Y. Identification of susceptibility gene mutations associated with the pathogenesis of familial nonmedullary thyroid cancer. Mol Genet Genomic Med 2019; 7:e1015. [PMID: 31642198 PMCID: PMC6900395 DOI: 10.1002/mgg3.1015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/24/2019] [Accepted: 10/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Familial nonmedullary thyroid cancer (FNMTC) accounts for approximately 3%–9% of all thyroid cancers; however, the mechanisms underlying FNMTC remain unclear. Environmental and genetic (especially genetic mutation) factors may play important roles in FNMTC etiology, development, and pathogenesis. Methods Three affected members, including two first‐degree relatives, and three healthy members of a family with FNMTC were studied. We performed whole‐exome and targeted gene sequencing to identify gene mutations that may be associated with FNMTC pathogenesis. The results were analyzed using Exome Aggregation Consortium data and the Genome Aggregation Database and further validated using Sanger sequencing. Results Of 28 pivotal genes with rare nonsynonymous mutations found, 7 were identified as novel candidate FNMTC pathogenic genes (ANO7, CAV2, KANK1, PIK3CB, PKD1L1, PTPRF, and RHBDD2). Among them, three genes (PIK3CB, CAV2, and KANK1) are reportedly involved in tumorigenesis through the PI3K/Akt signaling pathway. Conclusion We identified seven pathogenic genes in affected members of a family with FNMTC. The PI3K/Akt signaling pathway is thought to be closely related to the development of FNMTC, and three of the susceptibility genes identified herein are associated with this pathway. These findings expand our understanding of FNMTC pathogenesis and underscore PI3K/Akt pathology as a potential therapy target.
Collapse
Affiliation(s)
- Junwei Zhu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Kaile Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhangying Lin
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jing Wu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Peikun Li
- Department of General surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haowei Xue
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Huiyin Wang
- Department of Pathology, Microbiology & Immunology, Vanderbilt Children's Hospital, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yehai Liu
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
32
|
Yu M, Le S, Ammon YC, Goult BT, Akhmanova A, Yan J. Force-Dependent Regulation of Talin-KANK1 Complex at Focal Adhesions. NANO LETTERS 2019; 19:5982-5990. [PMID: 31389241 DOI: 10.1021/acs.nanolett.9b01732] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
KANK proteins mediate cross-talk between dynamic microtubules and integrin-based adhesions to the extracellular matrix. KANKs interact with the integrin/actin-binding protein talin and with several components of microtubule-stabilizing cortical complexes. Because of actomyosin contractility, the talin-KANK complex is likely under mechanical force, and its mechanical stability is expected to be a critical determinant of KANK recruitment to focal adhesions. Here, we quantified the lifetime of the complex of the talin rod domain R7 and the KN domain of KANK1 under shear-force geometry and found that it can withstand forces for seconds to minutes over a physiological force range up to 10 pN. Complex stability measurements combined with cell biological experiments suggest that shear-force stretching promotes KANK1 localization to the periphery of focal adhesions. These results indicate that the talin-KANK1 complex is mechanically strong, enabling it to support the cross-talk between microtubule and actin cytoskeleton at focal adhesions.
Collapse
Affiliation(s)
- Miao Yu
- Mechanobiology Institute , National University of Singapore , Singapore
| | - Shimin Le
- Department of Physics , National University of Singapore, Singapore
| | - York-Christoph Ammon
- Cell Biology, Department of Biology, Faculty of Science , Utrecht University , Utrecht , The Netherlands
| | - Benjamin T Goult
- School of Biosciences , University of Kent , Canterbury , United Kingdom
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science , Utrecht University , Utrecht , The Netherlands
| | - Jie Yan
- Mechanobiology Institute , National University of Singapore , Singapore
- Department of Physics , National University of Singapore, Singapore
- Centre for Bioimaging Sciences , National University of Singapore, Singapore
| |
Collapse
|
33
|
Zhao J, Wang L, Kong D, Hu G, Wei B. Construction of Novel DNA Methylation-Based Prognostic Model to Predict Survival in Glioblastoma. J Comput Biol 2019; 27:718-728. [PMID: 31460783 DOI: 10.1089/cmb.2019.0125] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is a most aggressive primary cancer in brain with poor prognosis. This study aimed to identify novel tumor biomarkers with independent prognostic values in GBMs. The DNA methylation profiles were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus database. Differential methylated genes (DMGs) were screened from recurrent GBM samples using limma package in R software. Functional enrichment analysis was performed to identify major biological processes and signaling pathways. Furthermore, critical DMGs associated with the prognosis of GBM were screened according to univariate and multivariate cox regression analysis. A risk score-based prognostic model was constructed for these DMGs and prediction ability of this model was validated in training and validation data set. In total, 495 DMGs were identified between recurrent samples and disease-free samples, including 356 significantly hypermethylated and 139 hypomethylated genes. Functional and pathway items for these DMGs were mainly related to sensory organ development, neuroactive ligand-receptor interaction, pathways in cancer, etc. Five genes with abnormal methylation level were significantly correlated with prognosis according to survival analysis, such as ALX1, KANK1, NUDT12, SNED1, and SVOP. Finally, the risk model provided an effective ability for prognosis prediction both in training and validation data set. We constructed a novel prognostic model for survival prediction of GBMs. In addition, we identified five DMGs as critical prognostic biomarkers in GBM progression.
Collapse
Affiliation(s)
- Jingwei Zhao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Wang
- Department of Ophthalmology, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Daliang Kong
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guozhang Hu
- Department of Emergency Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
34
|
Fan H, Tian H, Cheng X, Chen Y, Liang S, Zhang Z, Liao Y, Xu P. Aberrant Kank1 expression regulates YAP to promote apoptosis and inhibit proliferation in OSCC. J Cell Physiol 2019; 235:1850-1865. [PMID: 31338836 DOI: 10.1002/jcp.29102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022]
Abstract
The kidney ankyrin repeat-containing protein 1 (Kank1) gene is one of the most important members of the KANK family. Kank1 has hybridity deletion and promoter methylation in the cancer tissues of the brain, lung, kidney and the corresponding cell lines, leading to downregulation of the gene expression. Meanwhile, Kank1 also plays a key role in the occurrence and development of various types of tumors, suggesting that Kank1 may be an anti-oncogene. However, its role and the potential mechanisms in the Oral Squamous Cell Carcinoma (OSCC) remain unclear. We examined the expression of Kank1 in OSCC tissues and explored its clinical significance. In addition, we investigated the effects of Kank1 on the biological behavior of OSCC cells and their specific molecular mechanisms. We found that Kank1 was poorly expressed in OSCC tissues and it is correlated with the OSCC stage and the patient's poor prognosis. By overexpression of Kank1, we found that the proliferation ability of the OSCC cells decreased both in vitro and in vivo, the proportion of apoptotic cells increased, and the mitochondrial transmembrane potential decreased. In terms of the molecular mechanism, we confirmed that Kank1 could inhibit the occurrence of OSCC by regulating Yap to inhibit the proliferation and promote apoptosis of the OSCC cells. Moreover, it was found that the overexpression of YAP reversed those effects caused by Kank1 overexpression on the OSCC cells. In conclusion, the research indicated that Kank1 might play an anti-oncogenic role in OSCC and it could be considered to be a target for the diagnosis and the treatment of OSCC.
Collapse
Affiliation(s)
- Hui Fan
- Hainan Provincial Stomatology Centre, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hao Tian
- Department of Head and Neck Surgery, Hunan Cancer Hospital, Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiang Cheng
- Department of Hepatoliliary Surgery, Xiehe Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanan Chen
- Hainan Provincial Stomatology Centre, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shoujian Liang
- Suizhou Hospital, Hubei University of Medicine, Hubei, China
| | - Zhenjian Zhang
- Suizhou Hospital, Hubei University of Medicine, Hubei, China
| | - Yong Liao
- Department of Hepatobiliary Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Pu Xu
- Hainan Provincial Stomatology Centre, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
35
|
Abstract
Congenital spastic cerebral palsy (СР) is a large group of non-progressive disorders of the nervous system. The basis of the pathogenesis of these conditions is considered the impact of many factors. The clinical diversity of the disease and the syndromic principle of classification determine the existing uncertainties in the diagnosis of these diseases. The multifactorial nature of the underlying brain lesions is obvious and beyond doubt. The volume of information accumulated to date does not allow one to exclude the role and significance of the direct effect of acute asphyxiation in childbirth on a fetus normally formed during pregnancy, the role of infectious brain lesions, and disorders of neuronal migration. It is impossible to ignore the dependence of the clinical picture of the disease on what stage of ontogenesis the impact of the damaging agent occurs. As one of the pathogenetic factors, the genetic determinism of the phenotype of the clinical picture of a disease is fairly considered. This review focuses on the genetic aspects of the pathogenesis of this pathology. The information on monogenic mechanisms of inheritance is analyzed in detail. Such genetically determined mechanisms of pathogenesis as the inheritance of prerequisites for brain trauma in the perinatal period are considered separately. The new clinically significant variants of chromosomal mutations found in patients with CР are reviewed in detail, the evidence of the influence of genetic factors on the development of cerebral palsy in the absence of a pronounced monogenic cause of the disease, obtained through twin studies, is reviewed. Lit search of polymorphisms markers of predisposition to the development of cerebral palsy genes of the folate cycle, genes of glutamate receptors, the gene of apolipoprotein and of the gene for the transcription factor of oligodendrocytes (OLIG2) in Detail the role of epigenetic effects on the activity of genes coding for mitochondrial proteins.
Collapse
|
36
|
Zhou Z, Shen Y, Yin J, Xi F, Xu R, Lin D, Saijilafu, Chen J, Wang Y. Matrix remodeling associated 7 promotes differentiation of bone marrow mesenchymal stem cells toward osteoblasts. J Cell Physiol 2019; 234:18053-18064. [PMID: 30843215 DOI: 10.1002/jcp.28438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 01/15/2023]
Abstract
The matrix remodeling associated 7 (MXRA7) gene had been ill-studied and its biology remained to be discovered. Inspired by our previous findings and public datasets concerning MXRA7, we hypothesized that the MXRA7 gene might be involved in bone marrow mesenchymal stem cells (BMSCs) functions related to bone formation, which was checked by utilizing in vivo or in vitro methodologies. Micro-computed tomography of MXRA7-deficient mice demonstrated retarded osteogenesis, which was reflected by shorter femurs, lower bone mass in both trabecular and cortical bones compared with wild-type (WT) mice. Histology confirmed the osteopenia-like feature including thinner growth plates in MXRA7-deficient femurs. Immunofluorescence revealed less osteoblasts in MXRA7-deficient femurs. Polymerase chain reaction or western blot analysis showed that when WT BMSCs were induced to differentiate toward osteoblasts or adipocytes in culture, MXRA7 messenger RNA or protein levels were significantly increased alongside osteoblasts induction, but decreased upon adipocytes induction. Cultured MXRA7-deficient BMSCs showed decreased osteogenesis upon osteogenic differentiation induction as reflected by decreased calcium deposition or lower expression of genes responsible for osteogenesis. When recombinant MXRA7 proteins were supplemented in a culture of MXRA7-deficient BMSCs, osteogenesis or gene expression was fully restored. Upon osteoblast induction, the level of active β-catenin or phospho-extracellular signal-regulated kinase in MXRA7-deficient BMSCs was decreased compared with that in WT BMSCs, and these impairments could be rescued by recombinant MXRA7 proteins. In adipogenesis induction settings, the potency of MXRA7-deficient BMSCs to differentiate into adipocytes was increased over the WT ones. In conclusion, this study demonstrated that MXRA7 influences bone formation via regulating the balance between osteogenesis and adipogenesis in BMSCs.
Collapse
Affiliation(s)
- Zhishuai Zhou
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Juanjuan Yin
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Feng Xi
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Renjie Xu
- Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Dandan Lin
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Saijilafu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, China
| | - Yiqiang Wang
- MOH Key Laboratory of Thrombosis and Hemostasis, Collaborative Innovation Center of Hematology-Thrombosis and Hemostasis Group, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Wallis MJ, Boys A, Tassano E, Delatycki MB. Small interstitial 9p24.3 deletions principally involving KANK1 are likely benign copy number variants. Eur J Med Genet 2019; 63:103618. [PMID: 30684669 DOI: 10.1016/j.ejmg.2019.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/14/2018] [Accepted: 01/19/2019] [Indexed: 11/24/2022]
Abstract
A small heterozygous deletion involving KANK1 was originally reported in 2005 to cause cerebral palsy in one large Israeli family of Jewish Moroccan origin. There were nine affected children over two generations to five unaffected fathers. All of these children had congenital hypotonia that evolved into spastic quadriplegia over the first year of life, along with intellectual impairment and brain atrophy. The subsequent clinical depictions of other individuals with neurological disease harbouring a comparable KANK1 deletion have been extremely variable and most often quite dissimilar to the original family. The reported pathogenicity of these deletions has also been variable, due to an inconsistent nature of reported disease associations and limited data. We therefore sought to perform a review of the significance of small distal interstitial chromosome 9p24.3 deletions principally involving KANK1, including data from the VCGS cytogenetics laboratory. We found that carrier parents do not appear to display an increased frequency of neurological disease, individuals with a small KANK1 deletion have sometimes been found to have an alternate genetic diagnosis that explained their neurological condition, and small KANK1 deletions can be seen with approximate equal frequency in case and control populations. These data led us to conclude that small deletions involving KANK1 do not cause a highly-penetrant influence of large effect size and they are unlikely to contribute significantly to the aetiology of disease in patients with development delay, intellectual disability, autism or cerebral palsy. We recommend searching for an alternate explanation for disease in individuals with a neurological disorder found to have a small deletion involving KANK1.
Collapse
Affiliation(s)
- Mathew J Wallis
- Clinical Genetics Service, Austin Health, Melbourne, Australia; Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia.
| | - Amber Boys
- Victorian Clinical Genetics Service, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Elisa Tassano
- Laboratorio di Citogenetica, Istituto Giannina Gaslini, Genova, Italy
| | - Martin B Delatycki
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Australia; Victorian Clinical Genetics Service, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia; Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Australia
| |
Collapse
|
38
|
LaFlamme SE, Mathew-Steiner S, Singh N, Colello-Borges D, Nieves B. Integrin and microtubule crosstalk in the regulation of cellular processes. Cell Mol Life Sci 2018; 75:4177-4185. [PMID: 30206641 PMCID: PMC6182340 DOI: 10.1007/s00018-018-2913-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022]
Abstract
Integrins engage components of the extracellular matrix, and in collaboration with other receptors, regulate signaling cascades that impact cell behavior in part by modulating the cell's cytoskeleton. Integrins have long been known to function together with the actin cytoskeleton to promote cell adhesion, migration, and invasion, and with the intermediate filament cytoskeleton to mediate the strong adhesion needed for the maintenance and integrity of epithelial tissues. Recent studies have shed light on the crosstalk between integrin and the microtubule cytoskeleton. Integrins promote microtubule nucleation, growth, and stabilization at the cell cortex, whereas microtubules regulate integrin activity and remodeling of adhesion sites. Integrin-dependent stabilization of microtubules at the cell cortex is critical to the establishment of apical-basal polarity required for the formation of epithelial tissues. During cell migration, integrin-dependent microtubule stabilization contributes to front-rear polarity, whereas microtubules promote the turnover of integrin-mediated adhesions. This review focuses on this interdependent relationship and its impact on cell behavior and function.
Collapse
Affiliation(s)
- Susan E LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Shomita Mathew-Steiner
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
- Indiana University, 975 W. Walnut Street, Indianapolis, IN, 46202, USA
| | - Neetu Singh
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Diane Colello-Borges
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| | - Bethsaida Nieves
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY, 12208, USA
| |
Collapse
|
39
|
Vanzo RJ, Twede H, Ho KS, Prasad A, Martin MM, South ST, Wassman ER. Clinical significance of copy number variants involving KANK1 in patients with neurodevelopmental disorders. Eur J Med Genet 2018; 62:15-20. [PMID: 29729439 DOI: 10.1016/j.ejmg.2018.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 02/18/2018] [Accepted: 04/22/2018] [Indexed: 12/12/2022]
Abstract
Copy number variants (CNV)s involving KANK1 are generally classified as variants of unknown significance. Several clinical case reports suggest that the loss of KANK1 on chromosome 9p24.3 has potential impact on neurodevelopment. These case studies are inconsistent in terms of patient phenotype and suspected pattern of inheritance. Further complexities arise because these published reports utilize a variety of genetic testing platforms with varying resolution of the 9p region; this ultimately causes uncertainty about the impacted genomic coordinates and gene transcripts. Beyond these case reports, large case-control studies and publicly available databases statistically cast doubt as to whether variants of KANK1 are clinically significant. However, these large data sources are neither easily extracted nor uniformly applied to clinical interpretation. In this report we provide an updated analysis of the data on this locus and its potential clinical relevance. This is based on a review of the literature as well as 28 patients who harbor a single copy number variant involving KANK1 with or without DOCK8 (27 of whom are not published previously) identified by our clinical laboratory using an ultra-high resolution chromosomal microarray analysis. We note that 13 of 16 patients have a documented diagnosis of autism spectrum disorder (ASD) while only two, with documented perinatal complications, have a documented diagnosis of cerebral palsy (CP). A careful review of the CNVs suggests a transcript-specific effect. After evaluation of our case series and reconsideration of the literature, we propose that KANK1 aberrations do not frequently cause CP but cannot exclude that they represent a risk factor for ASD, especially when the coding region of the shorter, alternate KANK1 transcript (termed "transcript 4" in the UCSC Genome Browser) is impacted.
Collapse
Affiliation(s)
- Rena J Vanzo
- Lineagen, Inc., Salt Lake City, UT, United States.
| | - Hope Twede
- Lineagen, Inc., Salt Lake City, UT, United States.
| | - Karen S Ho
- Lineagen, Inc., Salt Lake City, UT, United States; University of Utah, Department of Pediatrics, United States.
| | | | | | | | | |
Collapse
|
40
|
Lin D, Sun Z, Jin Z, Lei L, Liu Y, Hu B, Wang B, Shen Y, Wang Y. Matrix Remodeling Associated 7 Deficiency Alleviates Carbon Tetrachloride-Induced Acute Liver Injury in Mice. Front Immunol 2018; 9:773. [PMID: 29720975 PMCID: PMC5915751 DOI: 10.3389/fimmu.2018.00773] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/28/2018] [Indexed: 12/18/2022] Open
Abstract
Matrix remodeling associated 7 (MXRA7) was first noted to co-express with a group of matrix remodeling related genes, and its biological functions had remained unclear. In this study, we investigated the presumed function of MXRA7 in a carbon tetrachloride (CCl4)-induced acute liver injury model in mice. Wild-type, MXRA7−/− mice, and mice that were pulsed with hydrodynamic injection of vehicle or MXRA7-harboring plasmids were challenged with a single dose of CCl4 for injury induction. The sera, spleens, and livers were harvested from mice for assay of cytokines/chemokines expression, cellular responses, or histological features. We found that MXRA7 deficiency alleviated, and MXRA7 overexpression aggravated liver damage in CCl4-challenged mice. FACS analysis showed that MXRA7 deficiency reduced the recruitment of neutrophils through downregulation the expression of CXCL1 and CXCL2 in liver, decreased the number of CD8+ T cells in liver and spleen, suppressed the release of IFNγ and TNFα from T cells, and decreased IFNγ in serum and liver. Western blot assay demonstrated that MXRA7 deficiency suppressed the activation of MAPK pathway and AKT/NF-κB pathway, respectively. Lastly, MXRA7 deficiency or overexpression regulated the expression of two matrix remodeling-related genes (fibronectin and TIMP1) in the liver. We concluded that MXRA7 was an active player in CCl4-induced liver injury, hypothetically by mediating the inflammation or immune compartments and matrix remodeling processes. Further exploration of MXRA7 as a possible new therapeutic target for management of inflammation-mediated liver injury was discussed.
Collapse
Affiliation(s)
- Dandan Lin
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Zhenjiang Sun
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ziqi Jin
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Lei Lei
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yonghao Liu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Bo Hu
- Department of Hematology, Institute of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Benfang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Ying Shen
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| | - Yiqiang Wang
- Key Laboratory of Thrombosis and Hemostasis Ministry of Health, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Medical College, Soochow University, Suzhou, China
| |
Collapse
|
41
|
Kubota N, Yokoyama T, Hoshi N, Suyama M. Identification of a candidate enhancer for DMRT3 involved in spastic cerebral palsy pathogenesis. Biochem Biophys Res Commun 2018; 496:133-139. [PMID: 29305858 DOI: 10.1016/j.bbrc.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 10/18/2022]
Abstract
Cerebral palsy (CP) is a major neuronal disease and the most common movement disorder in children. Although environmental factors leading to CP have been greatly investigated, the genetic mechanism underlying CP is not well understood. Here we focused on two clinical reports that characterized a deletion involving the KANK1 gene locus in the 9p24.3 region. One report shows spastic CP and the other shows no spastic CP phenotype. Based on the epigenetic status and evolutionary conservation, we first found a functional genomic element at the noncoding region that was deleted only in patients with spastic CP. This element contains the retinoic acid receptor/retinoid X receptor (RAR/RXR) complex-binding motif that is widely conserved among placental mammals. RAR/RXR ChIP-seq data from mouse F9 embryonal carcinoma cells that were treated with trans-retinoic acids showed that the element has a binding ability. In addition, data regarding chromosome conformation capture from mouse neural progenitor and ES cells suggested that the element spatially interacts with the Doublesex and mab-3 related transcription factor 3 (Dmrt3) gene promoter that is located approximately 120 kb downstream of the RAR/RXR-binding site. Dmrt3 is detected in the developing mouse forebrain and in some interneurons in the spinal cord, and it works as a locomotion coordinator in horses and mice. Thus, the deletion of the cis-regulatory element for DMRT3 in humans may cause impaired development of the forebrain and gait abnormalities, resulting in spastic CP. In conclusion, this study provides new mechanistic insights into the genetic basis of CP.
Collapse
Affiliation(s)
- Naoto Kubota
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshifumi Yokoyama
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Nobuhiko Hoshi
- Laboratory of Animal Molecular Morphology, Department of Animal Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka 812-8582, Japan.
| |
Collapse
|
42
|
van Eyk C, Corbett M, Maclennan A. The emerging genetic landscape of cerebral palsy. HANDBOOK OF CLINICAL NEUROLOGY 2018; 147:331-342. [DOI: 10.1016/b978-0-444-63233-3.00022-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Pan W, Sun K, Tang K, Xiao Q, Ma C, Yu C, Wei Z. Structural insights into ankyrin repeat-mediated recognition of the kinesin motor protein KIF21A by KANK1, a scaffold protein in focal adhesion. J Biol Chem 2017; 293:1944-1956. [PMID: 29217769 DOI: 10.1074/jbc.m117.815779] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/29/2017] [Indexed: 01/25/2023] Open
Abstract
Kidney ankyrin repeat-containing proteins (KANK1/2/3/4) belong to a family of scaffold proteins, playing critical roles in cytoskeleton organization, cell polarity, and migration. Mutations in KANK proteins are implicated in cancers and genetic diseases, such as nephrotic syndrome. KANK proteins can bind various target proteins through different protein regions, including a highly conserved ankyrin repeat domain (ANKRD). However, the molecular basis for target recognition by the ANKRD remains elusive. In this study, we solved a high-resolution crystal structure of the ANKRD of KANK1 in complex with a short sequence of the motor protein kinesin family member 21A (KIF21A), revealing that the highly specific target-binding mode of the ANKRD involves combinatorial use of two interfaces. Mutations in either interface disrupted the KANK1-KIF21A interaction. Cellular immunofluorescence localization analysis indicated that binding-deficient mutations block recruitment of KIF21A to focal adhesions by KANK1. In conclusion, our structural study provides mechanistic explanations for the ANKRD-mediated recognition of KIF21A and for many disease-related mutations identified in human KANK proteins.
Collapse
Affiliation(s)
- Wenfei Pan
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Kang Sun
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, 518055 Shenzhen, China
| | - Kun Tang
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,College of Life Sciences, Nankai University, 300071 Tianjin, China, and
| | - Qingpin Xiao
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Faculty of Health Sciences, University of Macau, Macau Special Administrative Region, China
| | - Chenxue Ma
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Cong Yu
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, 518055 Shenzhen, China
| | - Zhiyi Wei
- From the Department of Biology, Southern University of Science and Technology, 518055 Shenzhen, China,
| |
Collapse
|
44
|
Glessner JT, Li J, Wang D, March M, Lima L, Desai A, Hadley D, Kao C, Gur RE, Cohen N, Sleiman PMA, Li Q, Hakonarson H. Copy number variation meta-analysis reveals a novel duplication at 9p24 associated with multiple neurodevelopmental disorders. Genome Med 2017; 9:106. [PMID: 29191242 PMCID: PMC5709845 DOI: 10.1186/s13073-017-0494-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022] Open
Abstract
Background Neurodevelopmental and neuropsychiatric disorders represent a wide spectrum of heterogeneous yet inter-related disease conditions. The overlapping clinical presentations of these diseases suggest a shared genetic etiology. We aim to identify shared structural variants spanning the spectrum of five neuropsychiatric disorders. Methods We investigated copy number variations (CNVs) in five cohorts, including schizophrenia (SCZ), bipolar disease (BD), autism spectrum disorders (ASD), attention deficit hyperactivity disorder (ADHD), and depression, from 7849 cases and 10,799 controls. CNVs were called based on intensity data from genome-wide SNP arrays and CNV frequency was compared between cases and controls in each disease cohort separately. Meta-analysis was performed via a gene-based approach. Quantitative PCR (qPCR) was employed to validate novel significant loci. Results In our meta-analysis, two genes containing CNVs with exonic overlap reached genome-wide significance threshold of meta P value < 9.4 × 10−6 for deletions and 7.5 × 10−6 for duplications. We observed significant overlap between risk CNV loci across cohorts. In addition, we identified novel significant associations of DOCK8/KANK1 duplications (meta P value = 7.5 × 10−7) across all cohorts, and further validated the CNV region with qPCR. Conclusions In the first large scale meta-analysis of CNVs across multiple neurodevelopmental/psychiatric diseases, we uncovered novel significant associations of structural variants in the locus of DOCK8/KANK1 shared by five diseases, suggesting common etiology of these clinically distinct neurodevelopmental conditions. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0494-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph T Glessner
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jin Li
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Dai Wang
- Janssen Research & Development, LLC, Raritan, NJ, 08869, USA
| | - Michael March
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leandro Lima
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Akshatha Desai
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Dexter Hadley
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Charlly Kao
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nadine Cohen
- Janssen Research & Development, LLC, Raritan, NJ, 08869, USA
| | - Patrick M A Sleiman
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingqin Li
- Janssen Research & Development, LLC, Titusville, NJ, 08560, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA. .,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA. .,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | | |
Collapse
|
45
|
Guo Q, Liao S, Zhu Z, Li Y, Li F, Xu C. Structural basis for the recognition of kinesin family member 21A (KIF21A) by the ankyrin domains of KANK1 and KANK2 proteins. J Biol Chem 2017; 293:557-566. [PMID: 29183992 DOI: 10.1074/jbc.m117.817494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
A well-controlled microtubule organization is essential for intracellular transport, cytoskeleton maintenance, and cell development. KN motif and ankyrin repeat domain-containing protein 1 (KANK1), a member of KANK family, recruits kinesin family member 21A (KIF21A) to the cell cortex to control microtubule growth via its C-terminal ankyrin domain. However, how the KANK1 ankyrin domain recognizes KIF21A and whether other KANK proteins can also bind KIF21A remain unknown. Here, using a combination of structural, site-directed mutagenesis, and biochemical studies, we found that a stretch of ∼22 amino acids in KIF21A is sufficient for binding to KANK1 and its close homolog KANK2. We further solved the complex structure of the KIF21A peptide with either the KANK1 ankyrin domain or the KANK2 ankyrin domain. In each complex, KIF21A is recognized by two distinct pockets of the ankyrin domain and adopts helical conformations upon binding to the ankyrin domain. The elucidated KANK structures may advance our understanding of the role of KANK1 as a scaffolding molecule in controlling microtubule growth at the cell periphery.
Collapse
Affiliation(s)
- Qiong Guo
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Shanhui Liao
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Zhongliang Zhu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Yue Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Fudong Li
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and.,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| | - Chao Xu
- From the Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China and .,the Key Laboratory of Structural Biology, Hefei Science Center of CAS, Chinese Academy of Sciences, Hefei 230027, China
| |
Collapse
|
46
|
Collar occupancy: A new quantitative imaging tool for morphometric analysis of oligodendrocytes. J Neurosci Methods 2017; 294:122-135. [PMID: 29174019 DOI: 10.1016/j.jneumeth.2017.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oligodendrocytes (OL) are the myelinating cells of the central nervous system. OL differentiation from oligodendrocyte progenitor cells (OPC) is accompanied by characteristic stereotypical morphological changes. Quantitative imaging of those morphological alterations during OPC differentiation is commonly used for characterization of new molecules in cell differentiation and myelination and screening of new pro-myelinating drugs. Current available imaging analysis methods imply a non-automated morphology assessment, which is time-consuming and prone to user subjective evaluation. NEW METHOD Here, we describe an automated high-throughput quantitative image analysis method entitled collar occupancy that allows morphometric ranking of different stages of in vitro OL differentiation in a high-content analysis format. Collar occupancy is based on the determination of the percentage of area occupied by OPC/OL cytoplasmic protrusions within a defined region that contains the protrusion network, the collar. RESULTS We observed that more differentiated cells have higher collar occupancy and, therefore, this parameter correlates with the degree of OL differentiation. COMPARISON WITH EXISTING METHODS In comparison with the method of manual categorization, we found the collar occupancy to be more robust and unbiased. Moreover, when coupled with myelin basic protein (MBP) staining to quantify the percentage of myelinating cells, we were able to evaluate the role of new molecules in OL differentiation and myelination, such as Dusp19 and Kank2. CONCLUSIONS Altogether, we have successfully developed an automated and quantitative method to morphologically characterize OL differentiation in vitro that can be used in multiple studies of OL biology.
Collapse
|
47
|
Weng Z, Shang Y, Yao D, Zhu J, Zhang R. Structural analyses of key features in the KANK1·KIF21A complex yield mechanistic insights into the cross-talk between microtubules and the cell cortex. J Biol Chem 2017; 293:215-225. [PMID: 29158259 DOI: 10.1074/jbc.m117.816017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/30/2017] [Indexed: 12/12/2022] Open
Abstract
The cross-talk between dynamic microtubules and the cell cortex plays important roles in cell division, polarity, and migration. A critical adaptor that links the plus ends of microtubules with the cell cortex is the KANK N-terminal motif and ankyrin repeat domains 1 (KANK1)/kinesin family member 21A (KIF21A) complex. Genetic defects in these two proteins are associated with various cancers and developmental diseases, such as congenital fibrosis of the extraocular muscles type 1. However, the molecular mechanism governing the KANK1/KIF21A interaction and the role of the conserved ankyrin (ANK) repeats in this interaction are still unclear. In this study, we present the crystal structure of the KANK1·KIF21A complex at 2.1 Å resolution. The structure, together with biochemical studies, revealed that a five-helix-bundle-capping domain immediately preceding the ANK repeats of KANK1 forms a structural and functional supramodule with its ANK repeats in binding to an evolutionarily conserved peptide located in the middle of KIF21A. We also show that several missense mutations present in cancer patients are located at the interface of the KANK1·KIF21A complex and destabilize its formation. In conclusion, our study elucidates the molecular basis underlying the KANK1/KIF21A interaction and also provides possible mechanistic explanations for the diseases caused by mutations in KANK1 and KIF21A.
Collapse
Affiliation(s)
- Zhuangfeng Weng
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Yuan Shang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Deqiang Yao
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China
| | - Jinwei Zhu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China.
| | - Rongguang Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201203, China; School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China; Shanghai Research Center, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
48
|
Chiu YC, Wang LJ, Hsiao TH, Chuang EY, Chen Y. Genome-wide identification of key modulators of gene-gene interaction networks in breast cancer. BMC Genomics 2017; 18:679. [PMID: 28984209 PMCID: PMC5629553 DOI: 10.1186/s12864-017-4028-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background With the advances in high-throughput gene profiling technologies, a large volume of gene interaction maps has been constructed. A higher-level layer of gene-gene interaction, namely modulate gene interaction, is composed of gene pairs of which interaction strengths are modulated by (i.e., dependent on) the expression level of a key modulator gene. Systematic investigations into the modulation by estrogen receptor (ER), the best-known modulator gene, have revealed the functional and prognostic significance in breast cancer. However, a genome-wide identification of key modulator genes that may further unveil the landscape of modulated gene interaction is still lacking. Results We proposed a systematic workflow to screen for key modulators based on genome-wide gene expression profiles. We designed four modularity parameters to measure the ability of a putative modulator to perturb gene interaction networks. Applying the method to a dataset of 286 breast tumors, we comprehensively characterized the modularity parameters and identified a total of 973 key modulator genes. The modularity of these modulators was verified in three independent breast cancer datasets. ESR1, the encoding gene of ER, appeared in the list, and abundant novel modulators were illuminated. For instance, a prognostic predictor of breast cancer, SFRP1, was found the second modulator. Functional annotation analysis of the 973 modulators revealed involvements in ER-related cellular processes as well as immune- and tumor-associated functions. Conclusions Here we present, as far as we know, the first comprehensive analysis of key modulator genes on a genome-wide scale. The validity of filtering parameters as well as the conservativity of modulators among cohorts were corroborated. Our data bring new insights into the modulated layer of gene-gene interaction and provide candidates for further biological investigations.
Collapse
Affiliation(s)
- Yu-Chiao Chiu
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Li-Ju Wang
- Research Center for Chinese Herbal Medicine, China Medical University, Taichung, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. .,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA. .,Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
49
|
Jia C, Zhang F, Zhu Y, Qi X, Wang Y. Public data mining plus domestic experimental study defined involvement of the old-yet-uncharacterized gene matrix-remodeling associated 7 (MXRA7) in physiopathology of the eye. Gene 2017; 632:43-49. [PMID: 28847716 DOI: 10.1016/j.gene.2017.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/12/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Abstract
Matrix-remodeling associated 7 (MXRA7) gene was first reported in 2002 and named so for its co-expression with several genes known to relate with matrix-remodeling. However, not any studies had been intentionally performed to characterize this gene. We started defining the functions of MXRA7 by integrating bioinformatics analysis and experimental study. Data mining of MXRA7 expression in BioGPS, Gene Expression Omnibus and EurExpress platforms highlighted high level expression of Mxra7 in murine ocular tissues. Real-time PCR was employed to measure Mxra7 mRNA in tissues of adult C57BL/6 mice and demonstrated that Mxra7 was preferentially expressed at higher level in retina, corneas and lens than in other tissues. Then the inflammatory corneal neovascularization (CorNV) model and fungal corneal infections were induced in Balb/c mice, and mRNA levels of Mxra7 as well as several matrix-remodeling related genes (Mmp3, Mmp13, Ecm1, Timp1) were monitored with RT-PCR. The results demonstrated a time-dependent Mxra7 under-expression pattern (U-shape curve along timeline), while all other matrix-remodeling related genes manifested an opposite changes pattern (dome-shape curve). When limited data from BioGPS concerning human MXRA7 gene expression in human tissues were looked at, it was found that ocular tissue was also the one expressing highest level of MXRA7. To conclude, integrative assay of MXRA7 gene expression in public databank as well as domestic animal models revealed a selective high expression MXRA7 in murine and human ocular tissues, and its change patterns in two corneal disease models implied that MXRA7 might play a role in pathological processes or diseases involving injury, neovascularization and would healing.
Collapse
Affiliation(s)
- Changkai Jia
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Feng Zhang
- Eye Clinic, Linyi People's Hospital, Linyi, China
| | - Ying Zhu
- Eye Hospital, Institute & School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Xia Qi
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Yiqiang Wang
- Shandong Provincial Key Lab of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China; Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China.
| |
Collapse
|
50
|
Chen T, Wang K, Tong X. In vivo and in vitro inhibition of human gastric cancer progress by upregulating Kank1 gene. Oncol Rep 2017; 38:1663-1669. [DOI: 10.3892/or.2017.5823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
|