1
|
Yin L, Zhang H, Shang Y, Wu S, Jin T. NLRP3 inflammasome: From drug target to drug discovery. Drug Discov Today 2025; 30:104375. [PMID: 40345614 DOI: 10.1016/j.drudis.2025.104375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/20/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025]
Abstract
The immune system employs innate and adaptive immunity to combat pathogens and stress stimuli. Innate immunity rapidly detects pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) via pattern recognition receptors (PRRs), whereas adaptive immunity mediates antigen-specific T/B cell responses. The NLRP3 inflammasome, a key cytoplasmic PRR, consists of leucine-rich repeat, nucleotide-binding, and pyrin domains. Its activation requires priming (signal 1: Toll-like receptors/NOD-like receptors/cytokine receptors) and activation (signal 2: PAMPs/DAMPs/particulates). NLRP3 triggers cytokine storms and neuroinflammation, contributing to inflammatory diseases. Emerging therapies target NLRP3 via nuclear receptors (transcriptional regulation), adeno-associated virus (AAV) vectors (gene delivery), and microRNAs (post-transcriptional modulation). This review highlights NLRP3's signaling cascade, pathological roles, and combinatorial treatments leveraging nuclear receptors, AAVs, and microRNAs for immunomodulation.
Collapse
Affiliation(s)
- Ling Yin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; College of Medicine, University of Florida, Gainesville, FL 32608, USA; Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China
| | - Yuhua Shang
- Anhui Genebiol Biotech. Ltd., Hefei 230000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui 323000, China; Anhui Genebiol Biotech. Ltd., Hefei 230000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027 China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei 230001, China.
| |
Collapse
|
2
|
Toghraie FS, Bayat M, Hosseini MS, Ramezani A. Tumor-infiltrating myeloid cells; mechanisms, functional significance, and targeting in cancer therapy. Cell Oncol (Dordr) 2025; 48:559-590. [PMID: 39998754 PMCID: PMC12119771 DOI: 10.1007/s13402-025-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor-infiltrating myeloid cells (TIMs), which encompass tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), and tumor-associated dendritic cells (TADCs), are of great importance in tumor microenvironment (TME) and are integral to both pro- and anti-tumor immunity. Nevertheless, the phenotypic heterogeneity and functional plasticity of TIMs have posed challenges in fully understanding their complexity roles within the TME. Emerging evidence suggested that the presence of TIMs is frequently linked to prevention of cancer treatment and improvement of patient outcomes and survival. Given their pivotal function in the TME, TIMs have recently been recognized as critical targets for therapeutic approaches aimed at augmenting immunostimulatory myeloid cell populations while depleting or modifying those that are immunosuppressive. This review will explore the important properties of TIMs related to immunity, angiogenesis, and metastasis. We will also document the latest therapeutic strategies targeting TIMs in preclinical and clinical settings. Our objective is to illustrate the potential of TIMs as immunological targets that may improve the outcomes of existing cancer treatments.
Collapse
Affiliation(s)
- Fatemeh Sadat Toghraie
- Institute of Biotechnology, Faculty of the Environment and Natural Sciences, Brandenburg University of Technology, Cottbus, Germany
| | - Maryam Bayat
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Sadat Hosseini
- Regenerative Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Bandyopadhyay A, Sinha S, Roy R, Biswas N. Autophagy mediated immune response regulation and drug resistance in cancer. Mol Biol Rep 2025; 52:492. [PMID: 40402380 DOI: 10.1007/s11033-025-10573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 05/02/2025] [Indexed: 05/23/2025]
Abstract
Autophagy is a critical regulator of cellular homeostasis. The proteins involved in autophagy orchestrate the functions to strike the balance between cell survival and cell death in context-specific situations like aging, infections, inflammation and most importantly carcinogenesis. One of the major dead-locks in cancer treatment is the development of resistance to the available drugs (multi-drug resistance) as well as immune-suppressions in patients. Different studies over time have shown that autophagy is being involved in chemotherapy by working hand in hand with apoptosis or drug resistance through proliferative signals. Resistance to various drugs, such as, Cisplatin, Vincristine, Tamoxifen (TAM) occurs by epigenetic modifications, changed expression levels of microRNAs (miRNAs/miRs), and long non-coding RNAs (lncRNAs), which are regulated by the aberrant autophagy levels in lung, and breast cancers. More interestingly in the tumour microenvironment the immune suppressor cells also bring in autophagy in different pathway regulations either helping or opposing the whole carcinogenesis process. Macrophages, T cells, B cells, dendritic cells (DCs), neutrophils, and fibroblasts show involvement of autophagy in their differentiation and development in the tumor microenvironment (TME). Here, this extensive review for the first time tries to bring under a single canopy, several recent examples of autophagy-mediated immune regulations and autophagy-mediated epigenetically regulated drug resistance in different types of cancers.
Collapse
Affiliation(s)
- Anupriya Bandyopadhyay
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Samraj Sinha
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Rajdeep Roy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India
| | - Nabendu Biswas
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
4
|
Hasnat S, Metsäniitty M, Nurmi K, Eklund KK, Salem A. Intracellular bacterial LPS drives pyroptosis and promotes aggressive phenotype in oral squamous cell carcinoma. Med Oncol 2025; 42:205. [PMID: 40338411 PMCID: PMC12062154 DOI: 10.1007/s12032-025-02766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Intracellular bacterial components represent an emerging tumor element that has recently been documented in multiple cancer types, yet their biological functions remain poorly understood. Oral squamous cell carcinoma (OSCC) is a particularly aggressive malignancy lacking highly effective targeted treatments. Here, we explored the functional significance of intracellular bacterial lipopolysaccharide (LPS) in OSCC. Normal human oral keratinocytes (HOKs), HPV-transformed oral keratinocytes (IHGK), and three OSCC cell lines were transfected with ultrapure bacterial LPS. Cytotoxicity was assessed via lactate dehydrogenase (LDH) release assays. Production of interleukin (IL)-1β and IL-18 was measured using ELISA. Impact on tumor progression was evaluated using cell proliferation, migration, invasion, and tubulogenesis assays. Intracellular LPS-induced significant LDH release and increased secretion of IL-18 and IL-1β in IHGK and cancer cells, but not in normal HOKs, indicating selective cytotoxicity and pyroptosis. Notably, metastatic cancer cells exhibited enhanced invasive and vessel-like structures upon LPS exposure, while IHGK cells exhibited increased proliferation without changes in migration. Our findings suggest that intracellular LPS may not merely reside passively within the tumor milieu, but could contribute to OSCC progression by triggering noncanonical inflammasome activation and pyroptosis. This process may enhance pro-inflammatory signaling and more aggressive cellular phenotypes, especially in metastatic settings. Targeting intracellular LPS or its downstream inflammasome pathways may thus represent a promising therapeutic strategy for OSCC, warranting further in vivo and clinical investigations.
Collapse
Affiliation(s)
- Shrabon Hasnat
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Marjut Metsäniitty
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Katariina Nurmi
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland
| | - Kari K Eklund
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland
- Department of Rheumatology, University of Helsinki and Helsinki University Hospital, 00014, Helsinki, Finland
| | - Abdelhakim Salem
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Translational Immunology Research Program (TRIMM), Research Program Unit (RPU), University of Helsinki, 00014, Helsinki, Finland.
- Head and Neck Oncobiome Group, Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
5
|
Shi R, Zhuang X, Liu T, Yao SN, Xue FS. The Role of NLRP3 Inflammasome in Oral Squamous Cell Carcinoma. J Inflamm Res 2025; 18:5601-5609. [PMID: 40303006 PMCID: PMC12039833 DOI: 10.2147/jir.s512770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common malignant tumor in the head and neck. More and more evidence emphasizes the importance of inflammation in the progression of OSCC. The main signaling pathway of acute and chronic inflammation consists of the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Objective This review focuses on the role of NLRP3 immune kinase body and giving a contribution to the development of new treatment strategies against OSCC. Conclusion The NLRP3 inflammasome plays a vital role in the pathogenesis and development of OSCC and may serve as a promising therapeutic target for autoimmune diseases.
Collapse
Affiliation(s)
- Rui Shi
- Department of Oral and Maxillofacial Reconstruction, The Affiliated Hospital of Qingdao University 266600, Qingdao, 266555, People’s Republic of China
- School of Stomatology of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Xuan Zhuang
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Tong Liu
- The Affiliated Tai’an City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Song-nan Yao
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| | - Feng-shan Xue
- Cardiac Surgery Intensive Care Unit Department, the Affiliated Hospital of Qingdao University, Qingdao, 266555, People’s Republic of China
| |
Collapse
|
6
|
Singh V, Ubaid S, Kashif M, Singh T, Singh G, Pahwa R, Singh A. Role of inflammasomes in cancer immunity: mechanisms and therapeutic potential. J Exp Clin Cancer Res 2025; 44:109. [PMID: 40155968 PMCID: PMC11954315 DOI: 10.1186/s13046-025-03366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/15/2025] [Indexed: 04/01/2025] Open
Abstract
Inflammasomes are multi-protein complexes that detect pathogenic and damage-associated molecular patterns, activating caspase-1, pyroptosis, and the maturation of pro-inflammatory cytokines such as IL-1β and IL-18Within the tumor microenvironment, inflammasomes like NLRP3 play critical roles in cancer initiation, promotion, and progression. Their activation influences the crosstalk between innate and adaptive immunity by modulating immune cell recruitment, cytokine secretion, and T-cell differentiation. While inflammasomes can contribute to tumor growth and metastasis through chronic inflammation, their components also present novel therapeutic targets. Several inhibitors targeting inflammasome components- such as sensor proteins (e.g., NLRP3, AIM2), adaptor proteins (e.g., ASC), caspase-1, and downstream cytokines- are being explored to modulate inflammasome activity. These therapeutic strategies aim to modulate inflammasome activity to enhance anti-tumor immune responses and improve clinical outcomes. Understanding the role of inflammasomes in cancer immunity is crucial for developing interventions that effectively bridge innate and adaptive immune responses for better therapeutic outcomes.
Collapse
Affiliation(s)
- Vivek Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saba Ubaid
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Mohammad Kashif
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Tanvi Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Gaurav Singh
- Department of Biochemistry, King George'S Medical University (KGMU), U.P, Lucknow, 226003, India
| | - Roma Pahwa
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Singh
- Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
7
|
Owida HA, Abed AY, Altalbawy FMA, H M, Abbot V, Jakhonkulovna SM, Mohammad SI, Vasudevan A, Khalaf RM, Zwamel AH. NLRP3 inflammasome-based therapies by natural products: a new development in the context of cancer therapy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04030-0. [PMID: 40116873 DOI: 10.1007/s00210-025-04030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
The leucine-rich repeat containing protein (NLR) canonical inflammasome family includes Nod-like receptor protein 3 (NLRP3). Via the mediation of apoptosis proteins and immunological reactions, it controls the pathogenesis of malignancy. Experimental studies showed a relationship among lymphogenesis, cancer metastasis, and NLRP3 expression. Natural products have also been used as lead-based substances in a number of investigations to speed up the creation of novel, specific NLRP3 inhibitors. Via the mediation of apoptotic proteins and immunological responses, it controls the pathogenesis of malignancy. Moreover, it was recently noted that among human cancers, chemotherapy activates NLRP3. Induction of NLRP3 could encourage the generation of IL-1β and IL-22 to facilitate the propagation of malignancy. Additionally, prior research has demonstrated that the usage of NLRP3 in cancer therapy may result in resistance to drugs. The depletion of NLRP3 could affect the survival of cells. Natural products have been used as lead materials in a number of studies to help generate novel, specific NLRP3 antagonists more quickly. In the present review, we examine the mechanism behind the beneficial effects of the natural substances on the inhibition of cancer growth and progression, with special focus on NLRP3 regulation.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Department of Medical Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman, 19328, Jordan
| | - Ahmed Yaseen Abed
- Department of Medical Laboratories Techniques, College of Health and Medical Technology, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Malathi H
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjeri, Mohali, 140307, Punjab, India
| | | | - Suleiman Ibrahim Mohammad
- Electronic Marketing and Social Media, Economic and Administrative Sciences, Zarqa University, Zarqa, Jordan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | - Asokan Vasudevan
- Faculty of Business and Communications, INTI International University, 71800, Negeri Sembilan, Malaysia
| | | | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
8
|
Yao Y, Chen Y, Yao T, Li C, Li S, Wang N. Anticancer effects of OSW-1 on colorectal cancer cells via the ROS/NLRP3/Caspase-1 pyroptosis signaling pathway. Int Immunopharmacol 2025; 148:114054. [PMID: 39823797 DOI: 10.1016/j.intimp.2025.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Pyroptosis, a form of programmed cell death, has recently emerged as a compelling molecular mechanism associated with the efficacy of chemotherapeutic drugs in tumor treatment. OSW-1, derived from the bulbs of Ornithogalum saundersiae Baker, exhibits a diverse range of pharmacological effects. However, its specific antitumor effects on colorectal cancer (CRC) and the mechanisms underlying these effects remain elusive. In this study, we explored whether OSW-1 can induce pyroptosis in CRC cells, aiming to expand its potential clinical applications. Various functional experiments, including Cell Counting Kit-8 (CCK-8), plate colony formation, wound healing, and Transwell assays, were conducted to assess cell proliferation, migration, and invasion. The results of in vitro experiments revealed apparent inhibitory effects of OSW-1 on CRC cells, and we observed a pyroptosis-like morphology in treated cells by scanning electron microscopy (SEM). OSW-1 was found to induce pyroptosis through the NOD-like receptor thermal protein domain associated protein 3 (NLRP3)/cysteinyl aspartate specific proteinase-1 (Caspase-1) pathway, with the production of reactive oxygen species (ROS) mediating this pyroptotic pathway. The results from xenograft animal models further demonstrated that OSW-1 facilitated pyroptosis in CRC cells, significantly inhibiting tumor growth. In summary, our findings suggest that OSW-1 activates pyroptosis in CRC cells through the ROS/NLRP3/Caspase-1 pathway. These results provide valuable evidence regarding the role of pyroptosis in various tumor types, emphasizing the potential of OSW-1 as a therapeutic agent in tumor treatment.
Collapse
Affiliation(s)
- Yao Yao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University Dalian Liaoning PR China
| | - Yuqing Chen
- Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Dalian Medical University Dalian Liaoning PR China
| | - Tengfei Yao
- The Institute of Laboratory Medicine Dalian Medical University Dalian Liaoning PR China
| | - Chaoyang Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University Dalian Liaoning PR China
| | - Si Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University Dalian Liaoning PR China.
| | - Nan Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University Dalian Liaoning PR China.
| |
Collapse
|
9
|
Oyende Y, Taus LJ, Fatatis A. IL-1β in Neoplastic Disease and the Role of Its Tumor-Derived Form in the Progression and Treatment of Metastatic Prostate Cancer. Cancers (Basel) 2025; 17:290. [PMID: 39858071 PMCID: PMC11763358 DOI: 10.3390/cancers17020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Since its discovery, IL-1β has taken center stage as a key mediator of a very broad spectrum of diseases revolving around immuno-mediated and inflammatory events. Predictably, the pleiotropic nature of this cytokine in human pathology has led to the development of targeted therapeutics with multiple treatment indications in the clinic. Following the accumulated findings of IL-1β's central modulatory role in the immune system and the implication of inflammatory pathways in cancer, the use of IL-1β antagonists was first proposed and then also pursued for oncology disorders. However, this approach has consistently relied on the perceived need of interfering with IL-1β synthesized and secreted by immune cells. Herein, we discuss the importance of IL-1β derived from cancer cells which impacts primary tumors, particularly metastatic lesions, separately from and in addition to its more recognized role in immune-mediated inflammatory events. To this end, we focus on the instrumental contribution of IL-1β in the establishment and progression of advanced prostate adenocarcinoma. Special emphasis is placed on the potential role that the standard-of-care treatment strategies for prostate cancer patients have in unleashing IL-1β expression and production at metastatic sites. We conclude by reviewing the therapeutics currently used for blocking IL-1β signaling and propose a rationale for their concomitant use with standard-of-care treatments to improve the clinical outcomes of advanced prostate cancer.
Collapse
Affiliation(s)
- Yetunde Oyende
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
| | - Luke J. Taus
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA; (Y.O.); (L.J.T.)
- Sidney Kimmel Comprehensive Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
10
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
11
|
Zhou X, Tao Y, Shi Y. Unraveling the NLRP family: Structure, function, activation, critical influence on tumor progression, and potential as targets for cancer therapy. Cancer Lett 2024; 605:217283. [PMID: 39366544 DOI: 10.1016/j.canlet.2024.217283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The innate immune system serves as the body's initial defense, swiftly detecting danger via pattern recognition receptors (PRRs). Among these, nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing proteins (NLRPs) are pivotal in recognizing pathogen-associated and damage-associated molecular patterns, thereby triggering immune responses. NLRPs, the most extensively studied subset within the NLR family, form inflammasomes that regulate inflammation, essential for innate immunity activation. Recent research highlights NLRPs' significant impact on various human diseases, including cancer. With differential expression across organs, NLRPs influence cancer progression by modulating immune reactions, cell fate, and proliferation. Their clinical significance in cancer makes them promising therapeutic targets. This review provides a comprehensive overview of the structure, function, activation mechanism of the NLRPs family and its potential role in cancer progression. In addition, we particularly focused on the concept of NLRP as a therapeutic target and its potential value in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Xueqing Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| | - Ying Shi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
12
|
Liu Z, Xu S, Chen L, Gong J, Wang M. The role of pyroptosis in cancer: key components and therapeutic potential. Cell Commun Signal 2024; 22:548. [PMID: 39548573 PMCID: PMC11566483 DOI: 10.1186/s12964-024-01932-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
Pyroptosis is a lytic and inflammatory form of gasdermin protein-mediated programmed cell death that is typically initiated by inflammasomes. The inflammasome response is an effective mechanism for eradicating germs and cancer cells in the event of cellular injury. The gasdermin family is responsible for initiating pyroptosis, a process in which holes are made in the cell membrane to allow inflammatory chemicals to escape. Mounting evidence indicates that pyroptosis is critical for controlling the development of cancer. In this review, we provide a general overview of pyroptosis, examine the relationship between the primary elements of pyroptosis and tumors, and stress the necessity of pyroptosis-targeted therapy in tumors. Furthermore, we explore its dual nature as a double-edged sword capable of both inhibiting and facilitating the growth of cancer, depending on the specific conditions. Ultimately, pyroptosis is a phenomenon that has both positive and negative effects on tumors. Using this dual impact in a reasonable manner may facilitate investigation into the initiation and progression of tumors and offer insights for the development of novel treatments centered on pyroptosis.
Collapse
Affiliation(s)
- Zixi Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Simiao Xu
- Division of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lin Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|
13
|
Ashmore AA, Balasubramanian B, Phillips A, Asher V, Bali A, Ordóñez-Morán P, Khan R. Bioinformatic and experimental data pertaining to the role of the NLRP3 inflammasome in ovarian cancer. J Cancer Res Clin Oncol 2024; 150:488. [PMID: 39516433 PMCID: PMC11549120 DOI: 10.1007/s00432-024-05988-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The Nod-Like Receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome plays a role in regulating inflammatory signaling and is a well-established contributor to pyroptotic cell death. It has been investigated extensively in cancer but there remains limited evidence of its role within ovarian cancer (OC). Bioinformatic investigation of gene expression data has highlighted that higher expression of NLRP3 and genes associated with the NLRP3 complex appear to be positively correlated with OC and may also have prognostic significance. However, heterogeneity exists within the results and experimental data is limited and contradictory. If the NLRP3 inflammasome is to be exploited as a therapeutic target, further laboratory-based investigation is required to determine its role in cancer. Furthermore, its relationship with clinically important characteristics such as histopathological subtype may be of key significance in developing targeted therapies towards specific cohorts of patients.
Collapse
Affiliation(s)
- Ayisha A Ashmore
- Derby Gynaecological Cancer Centre, Royal Derby Hospital, University Hospitals of Derby and Burton, Derby, UK.
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, UK.
| | - Brinda Balasubramanian
- Translational Medical Sciences Unit, Biodiscovery Institute, Centre for Cancer Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew Phillips
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Viren Asher
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Anish Bali
- Derby Gynaecological Cancer Centre, Royal Derby Hospital, University Hospitals of Derby and Burton, Derby, UK
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, UK
| | - Paloma Ordóñez-Morán
- Translational Medical Sciences Unit, Biodiscovery Institute, Centre for Cancer Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Raheela Khan
- Translational Medical Sciences Unit, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
14
|
Dawson RE, Jenkins BJ. The Role of Inflammasome-Associated Innate Immune Receptors in Cancer. Immune Netw 2024; 24:e38. [PMID: 39513025 PMCID: PMC11538610 DOI: 10.4110/in.2024.24.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Dysregulated activation of the innate immune system is a critical driver of chronic inflammation that is associated with at least 30% of all cancers. Innate immunity can also exert tumour-promoting effects (e.g. proliferation) directly on cancer cells in an intrinsic manner. Conversely, innate immunity can influence adaptive immunity-based anti-tumour immune responses via Ag-presenting dendritic cells that activate natural killer and cytotoxic T cells to eradicate tumours. While adaptive anti-tumour immunity has underpinned immunotherapy approaches with immune checkpoint inhibitors and chimeric Ag receptor-T cells, the clinical utility of innate immunity in cancer is underexplored. Innate immune responses are governed by pattern recognition receptors, which comprise several families, including Toll-like, nucleotide-binding oligomerization domain-containing (NOD)-like and absent-in-melanoma 2 (AIM2)-like receptors. Notably, a subset of NOD-like and AIM2-like receptors can form large multiprotein "inflammasome" complexes which control maturation of biologically active IL-1β and IL-18 cytokines. Over the last decade, it has emerged that inflammasomes can coordinate contrasting pro- and anti-tumour responses in cancer and non-cancer (e.g. immune, stromal) cells. Considering the importance of inflammasomes to the net output of innate immune responses, here we provide an overview and discuss recent advancements on the diverse role of inflammasomes in cancer that have underpinned their potential targeting in diverse malignancies.
Collapse
Affiliation(s)
- Ruby E. Dawson
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| | - Brendan J. Jenkins
- South Australian immunoGENomics Cancer Institute (SAiGENCI), The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
15
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Goswami A, Goyal S, Khurana P, Singh K, Deb B, Kulkarni A. Small molecule innate immune modulators in cancer therapy. Front Immunol 2024; 15:1395655. [PMID: 39318624 PMCID: PMC11419979 DOI: 10.3389/fimmu.2024.1395655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Immunotherapy has proved to be a breakthrough in cancer treatment. So far, a bulk of the approved/late-stage cancer immunotherapy are antibody-based. Although these antibody-based drugs have demonstrated great promise, a majority of them are limited due to their access to extracellular targets, lack of oral bioavailability, tumor microenvironment penetration, induction of antibody dependent cytotoxicity etc. In recent times, there has been an increased research focus on the development of small molecule immunomodulators since they have the potential to overcome the aforementioned limitations posed by antibodies. Furthermore, while most biologics based therapeutics that are in clinical use are limited to modulating the adaptive immune system, very few clinically approved therapeutic modalities exist that modulate the innate immune system. The innate immune system, which is the body's first line of defense, has the ability to turn cold tumors hot and synergize strongly with existing adaptive immune modulators. In preclinical studies, small molecule innate immune modulators have demonstrated synergistic efficacy as combination modalities with current standard-of-care immune checkpoint antibodies. In this review, we highlight the recent advances made by small molecule innate immunomodulators in cancer immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Barnali Deb
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
| | - Aditya Kulkarni
- Aten Porus Lifesciences Pvt. Ltd., Bengaluru, India
- Avammune Therapeutics, Philadelphia, PA, United States
| |
Collapse
|
17
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
18
|
Zhang Z, Chen Y, Pan X, Li P, Ren Z, Wang X, Chen Y, Shen S, Wang T, Lin A. IL-1β mediates Candida tropicalis-induced immunosuppressive function of MDSCs to foster colorectal cancer. Cell Commun Signal 2024; 22:408. [PMID: 39164774 PMCID: PMC11337875 DOI: 10.1186/s12964-024-01771-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND There is increasing evidence that gut fungi dysbiosis plays a crucial role in the development and progression of colorectal cancer (CRC). It has been reported that gut fungi exacerbate the severity of CRC by regulating tumor immunity. Our previous studies have shown that the opportunistic pathogenic fungal pathogen, Candida tropicalis (C. tropicalis) promotes CRC progression by enhancing the immunosuppressive function of MDSCs and activating the NLRP3 inflammasome of MDSCs. However, the relationship between IL-1β produced by NLRP3 inflammasome activation and the immunosuppressive function of MDSCs enhanced by C. tropicalis in CRC remains unclear. METHODS The TCGA database was used to analyze the relationship between IL-1β and genes related to immunosuppressive function of MDSCs in human CRC. The expression of IL-1β in human CRC tissues was detected by immunofluorescence staining. The proteomic analysis was performed on the culture supernatant of C. tropicalis-stimulated MDSCs. The experiments of supplementing and blocking IL-1β as well as inhibiting the NLRP3 inflammasome activation were conducted. A mouse colon cancer xenograft model was established by using MC38 colon cancer cell line. RESULTS Analysis of CRC clinical samples showed that the high expression of IL-1β was closely related to the immunosuppressive function of tumor-infiltrated MDSCs. The results of in vitro experiments revealed that IL-1β was the most secreted cytokine of MDSCs stimulated by C. tropicalis. In vitro supplementation of IL-1β further enhanced the immunosuppressive function of C. tropicalis-stimulated MDSCs and NLRP3-IL-1β axis mediated the immunosuppressive function of MDSCs enhanced by C. tropicalis. Finally, blockade of IL-1β secreted by MDSCs augmented antitumor immunity and mitigated C. tropicalis-associated colon cancer. CONCLUSIONS C. tropicalis promotes excessive secretion of IL-1β from MDSCs via the NLRP3 inflammasome. IL-1β further enhances the immunosuppressive function of MDSCs to inhibit antitumor immunity, thus promoting the progression of CRC. Therefore, targeting IL-1β secreted by MDSCs may be a potential immunotherapeutic strategy for the treatment of CRC.
Collapse
Affiliation(s)
- Zhiyong Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Ying Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xinyi Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Pengfei Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Zhengqian Ren
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Xiuzhu Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Yuxi Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
| | - Aihua Lin
- Department of Critical Care Medicine, Sucheng District, Suqian Hospital of Nanjing Drum Tower Hospital Group, 138 Huanghe South Road, Suqian City, China.
| |
Collapse
|
19
|
Jain T, Chandra A, Mishra SP, Khairnar M, Rajoria S, Maheswari R, Keerthika R, Tiwari S, Agrawal R. Unravelling the Significance of NLRP3 and IL-β1 in Oral Squamous Cell Carcinoma and Potentially Malignant Oral Disorders: A Diagnostic and Prognostic Exploration. Head Neck Pathol 2024; 18:77. [PMID: 39141262 PMCID: PMC11324625 DOI: 10.1007/s12105-024-01685-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Nucleotide-binding domain-like receptor protein 3 (NLRP3), an inflammasome, is reported to be dysregulated or aberrantly expressed in chronic inflammation, leading to a myriad of inflammatory disorders, autoimmune diseases, and cancer. This study aimed to explore the expression and role of NLRP3 protein and the secreted cytokine IL-β1 in oral squamous cell carcinoma (OSCC) and potentially malignant oral disorders (PMOD). MATERIAL & METHODS Tissue NLRP3 expression was quantified using sandwich ELISA in 30 cases each of OSCC, PMOD, and normal oral mucosa. Serum IL-β1 level was also measured by ELISA to determine their correlation. In surgically treated OSCC cases, pathological parameters such as tumor size, depth of invasion (DOI), pTNM stage, and perineural & lymphovascular invasion were assessed and correlated with NLRP3 & IL-β1 levels to investigate their roles in tumor progression, invasion, and metastasis. RESULTS Tissue NLRP3 expression was markedly elevated in OSCC, with significant IL-β1 levels observed in the serum of both OSCC and PMOD cases. Both markers showed a pronounced increase with the severity of dysplasia, indicating a strong association (p = 0.003%). The expression levels of tissue NLRP3 and serum IL-β1 were positively correlated with DOI and tumor size. Furthermore, their elevated levels, alongside higher histological grades, indicate roles in the dedifferentiation and progression of tumor cells. CONCLUSION The findings indicated that increased expression of NLRP3 and IL-β1 in PMOD correlates with higher transformation rates, along with tumor progression and dedifferentiation in OSCC. Consequently, these markers hold promise as valuable targets for prognostic assessment, diagnostics, and therapeutic strategies in OSCC.
Collapse
Affiliation(s)
- Trupti Jain
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Akhilesh Chandra
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Surendra Pratap Mishra
- Department of Biochemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Mahesh Khairnar
- Unit of Public Health Dentistry, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shivangni Rajoria
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - R Maheswari
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - R Keerthika
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Shivam Tiwari
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rahul Agrawal
- Unit of Oral & Maxillofacial Pathology and Oral Microbiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
20
|
Ma X, Chen J, Chen S, Lan X, Wei Z, Gao H, Hou E. Immunotherapy for renal cell carcinoma: New therapeutic combinations and adverse event management strategies: A review. Medicine (Baltimore) 2024; 103:e38991. [PMID: 39058879 PMCID: PMC11272340 DOI: 10.1097/md.0000000000038991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitor (ICI) combinations, as well as ICIs combined with tyrosine kinase inhibitors, have considerable potential for renal cell carcinoma (RCC) treatment. Newer targeted medications, gut microbiome, nanomedicines, and cyclin-dependent kinase (CDK) inhibitors demonstrate significant potential in preventing side effects and resistance associated with RCC treatment. Most patients, including those demonstrating long-term treatment effects, eventually demonstrate cancer progression. Nevertheless, recent studies have further revealed RCC pathogenesis and many acquired drug resistance mechanisms, which together have led to the identification of promising therapeutic targets. In addition to having roles in metabolism, immunogenicity, and the immune response to tumors, CDK4 and CDK6 regulate the cell cycle. Targeting CDK4 and CDK6, either separately or in combination with already approved treatments, may improve therapeutic outcomes in patients with kidney cancer. Other novel drugs, including pegylated interleukin 10, colony-stimulating factor 1 receptor inhibitors, CD40 agonists, and C-X-C receptor 4 inhibitors affect the tumor microenvironment and cancer cell metabolism. Moreover, a triple ICI combination has been noted to be efficacious. In general, compared with sunitinib as a single-drug treatment, newer ICI combinations improve overall survival in patients with RCC. Future research on the prevention of adverse events and medication resistance related to newer therapies may aid in ensuring effective treatment outcomes among patients with RCC. This article aims to summarize innovative immunotherapy drug combinations for RCC treatment and the mechanisms of action, drug resistance, and treatment of adverse events associated with these combinations.
Collapse
Affiliation(s)
- Xiaohan Ma
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jibing Chen
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Sheng Chen
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xuan Lan
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zengzhao Wei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hongjun Gao
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Encun Hou
- Ruikang Hospital, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
21
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Yang HL, Chang CW, Vadivalagan C, Pandey S, Chen SJ, Lee CC, Hseu JH, Hseu YC. Coenzyme Q 0 inhibited the NLRP3 inflammasome, metastasis/EMT, and Warburg effect by suppressing hypoxia-induced HIF-1α expression in HNSCC cells. Int J Biol Sci 2024; 20:2790-2813. [PMID: 38904007 PMCID: PMC11186366 DOI: 10.7150/ijbs.93943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/01/2024] [Indexed: 06/22/2024] Open
Abstract
Coenzyme Q0 (CoQ0), a quinone derivative from Antrodia camphorata, has antitumor capabilities. This study investigated the antitumor effect of noncytotoxic CoQ0, which included NLRP3 inflammasome inhibition, anti-EMT/metastasis, and metabolic reprogramming via HIF-1α inhibition, in HNSCC cells under normoxia and hypoxia. CoQ0 suppressed hypoxia-induced ROS-mediated HIF-1α expression in OECM-1 and SAS cells. Under normoxia and hypoxia, the inflammatory NLRP3, ASC/caspase-1, NFκB, and IL-1β expression was reduced by CoQ0. CoQ0 reduced migration/invasion by enhancing epithelial marker E-cadherin and suppressing mesenchymal markers Twist, N-cadherin, Snail, and MMP-9, and MMP-2 expression. CoQ0 inhibited glucose uptake, lactate accumulation, GLUT1 levels, and HIF-1α-target gene (HK-2, PFK-1, and LDH-A) expressions that are involved in aerobic glycolysis. Notably, CoQ0 reduced ECAR as well as glycolysis, glycolytic capability, and glycolytic reserve and enhanced OCR, basal respiration, ATP generation, maximal respiration, and spare capacity in OECM-1 cells. Metabolomic analysis using LC-ESI-MS showed that CoQ0 treatment decreased the levels of glycolytic intermediates, including lactate, 2/3-phosphoglycerate, fructose 1,6-bisphosphate, and phosphoenolpyruvate, and increased the levels of TCA cycle metabolites, including citrate, isocitrate, and succinate. HIF-1α silencing reversed CoQ0-mediated anti-metastasis (N-Cadherin, Snail, and MMP-9) and metabolic reprogramming (GLUT1, HK-2, and PKM-2) under hypoxia. CoQ0 prevents cancer stem-like characteristics (upregulated CD24 expression and downregulated CD44, ALDH1, and OCT4) under normoxia and/or hypoxia. Further, in IL-6-treated SG cells, CoQ0 attenuated fibrosis by inhibiting TGF-β and Collagen I expression and suppressed EMT by downregulating Slug and upregulating E-cadherin expression. Interesting, CoQ0 inhibited the growth of OECM-1 tumors in xenografted mice. Our results advocate CoQ0 for the therapeutic application against HNSCC.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Che-Wei Chang
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Chithravel Vadivalagan
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109, United States
| | - Sudhir Pandey
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Siang-Jyun Chen
- Institute of Nutrition, College of Health Care, China Medical University, Taichung 406040, Taiwan
| | - Chuan-Chen Lee
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
| | - Jhih-Hsuan Hseu
- Department of Dermatology, Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - You-Cheng Hseu
- Department of Cosmeceutics, College of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
- Chinese Medicine Research Center, China Medical University, Taichung 404333, Taiwan
- Research Center of Chinese Herbal Medicine, China Medical University, Taichung 404333, Taiwan
| |
Collapse
|
23
|
Sekaran S, Warrier S, Selvaraj V, Ganapathy D, Ramasamy P. NLRP3 Inflammasome: A Potential Therapeutic Target in Head and Neck Cancers. Clin Oncol (R Coll Radiol) 2024; 36:e115-e117. [PMID: 38368227 DOI: 10.1016/j.clon.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 02/19/2024]
Affiliation(s)
- S Sekaran
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - S Warrier
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - V Selvaraj
- Department of Biomedical Engineering, Indian Institute of Technology, Chennai, Tamil Nadu, India
| | - D Ganapathy
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - P Ramasamy
- Department of Prosthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India; Polymer Research Laboratory, Centre for Marine Research and Conservation, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
24
|
Chen KY, Liu SY, Tang JJ, Liu MK, Chen XY, Liu ZP, Ferrandon D, Lai KF, Li Z. NLRP3 knockout in mice provided protection against Serratia marcescens-induced acute pneumonia by decreasing PD-L1 and PD-1 expression in macrophages. Int Immunopharmacol 2024; 129:111559. [PMID: 38330794 DOI: 10.1016/j.intimp.2024.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Antibiotic-resistant Serratia marcescens (Sm) is known to cause bloodstream infections, pneumonia, etc. The nod-like receptor family, pyrin domain-containing 3 (NLRP3), has been implicated in various lung infections. Yet, its role in Sm-induced pneumonia was not well understood. In our study, we discovered that deletion of Nlrp3 in mice significantly improved Sm-induced survival rates, reduced bacterial loads in the lungs, bronchoalveolar lavage fluid (BALF), and bloodstream, and mitigated the severity of acute lung injury (ALI) compared to wild-type (WT) mice. Mechanistically, we observed that 24 h post-Sm infection, NLRP3 inflammasome activation occurred, leading to gasdermin D NH2-terminal (GSDMD-NT)-induced pyroptosis in macrophages and IL-1β secretion. The NLRP3 or NLRP3 inflammasome influenced the expression PD-L1 and PD-1, as well as the count of PD-L1 or PD-1-expressing macrophages, alveolar macrophages, interstitial macrophages, PD-L1-expressing neutrophils, and the count of macrophage receptors with collagenous structure (MARCO)-expressing macrophages, particularly MARCO+ alveolar macrophages. The frequency of MARCO+ alveolar macrophages, PD-1 expression, particularly PD-1+ interstitial macrophages were negatively or positively correlated with the Sm load, respectively. Additionally, IL-1β levels in BALF correlated with three features of acute lung injury: histologic score, protein concentration and neutrophil count in BALF. Consequently, our findings suggest that Nlrp3 deletion offers protection agaisnt acute Sm pneumonia in mice by inhibiting inflammasome activation and reducing Sm infection-induced PD-L1/PD-1 or MARCO expression, particularly in macrophages. This highlights potential therapeutic targets for Sm and other gram-negative bacteria-induced acute pneumonia.
Collapse
Affiliation(s)
- Kan-Yao Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Clinical Laboratory, Guangdong Provincial People's Hospital Zhuhai Hospital, Zhuhai, China
| | - Shu-Yan Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; Department of Clinical Laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Juan-Juan Tang
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Meng-Ke Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xu-Yang Chen
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhi-Peng Liu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China; Université de Strasbourg, RIDI UPR9022 du CNRS, F-67000 Strasbourg, France
| | - Ke-Fang Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China.
| | - Zi Li
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China; The Second Affiliated Hospital of Guangzhou Medical University, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
25
|
Stergiou IE, Tsironis C, Papadakos SP, Tsitsilonis OE, Dimopoulos MA, Theocharis S. Unraveling the Role of the NLRP3 Inflammasome in Lymphoma: Implications in Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:2369. [PMID: 38397043 PMCID: PMC10889189 DOI: 10.3390/ijms25042369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome's implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics.
Collapse
Affiliation(s)
- Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Christos Tsironis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (I.E.S.); (C.T.)
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Ourania E. Tsitsilonis
- Flow Cytometry Unit, Department of Biology, School of Science, National and Kapodistrian University of Athens, 15784 Athens, Greece;
| | - Meletios Athanasios Dimopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Alexandra Hospital, 11528 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
26
|
Cui JW, Li Y, Yang Y, Yang HK, Dong JM, Xiao ZH, He X, Guo JH, Wang RQ, Dai B, Zhou ZL. Tumor immunotherapy resistance: Revealing the mechanism of PD-1 / PD-L1-mediated tumor immune escape. Biomed Pharmacother 2024; 171:116203. [PMID: 38280330 DOI: 10.1016/j.biopha.2024.116203] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/29/2024] Open
Abstract
Tumor immunotherapy, an innovative anti-cancer therapy, has showcased encouraging outcomes across diverse tumor types. Among these, the PD-1/PD-L1 signaling pathway is a well-known immunological checkpoint, which is significant in the regulation of immune evasion by tumors. Nevertheless, a considerable number of patients develop resistance to anti-PD-1/PD-L1 immunotherapy, rendering it ineffective in the long run. This research focuses on exploring the factors of PD-1/PD-L1-mediated resistance in tumor immunotherapy. Initially, the PD-1/PD-L1 pathway is characterized by its role in facilitating tumor immune evasion, emphasizing its role in autoimmune homeostasis. Next, the primary mechanisms of resistance to PD-1/PD-L1-based immunotherapy are analyzed, including tumor antigen deletion, T cell dysfunction, increased immunosuppressive cells, and alterations in the expression of PD-L1 within tumor cells. The possible ramifications of altered metabolism, microbiota, and DNA methylation on resistance is also described. Finally, possible resolution strategies for dealing with anti-PD-1/PD-L1 immunotherapy resistance are discussed, placing particular emphasis on personalized therapeutic approaches and the exploration of more potent immunotherapy regimens.
Collapse
Affiliation(s)
- Jia-Wen Cui
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Yao Li
- College of Pharmacy, Macau University of Science and Technology (MUST), China
| | - Yang Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China
| | - Hai-Kui Yang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Mei Dong
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhi-Hua Xiao
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin He
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Jia-Hao Guo
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China; College of Pharmacy, Jinan University, Guangzhou, China
| | - Rui-Qi Wang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| | - Bo Dai
- Department of Cardiology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan City 528200, Guangdong Province, China.
| | - Zhi-Ling Zhou
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China.
| |
Collapse
|
27
|
Jiao Z, Zhang J. Interplay between inflammasomes and PD-1/PD-L1 and their implications in cancer immunotherapy. Carcinogenesis 2023; 44:795-808. [PMID: 37796835 DOI: 10.1093/carcin/bgad072] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023] Open
Abstract
The inflammasomes play crucial roles in inflammation and cancer development, while the PD-1/PD-L1 pathway is critical for immune suppression in the tumor microenvironment (TME). Recent research indicates a reciprocal regulatory relationship between inflammasomes and PD-1/PD-L1 signaling in cancer development and PD-1 blockade treatment. By activating in diverse cells in tumor tissues, inflammasome upregulates PD-L1 level in the TME. Moreover, the regulation of PD-1/PD-L1 activity by inflammasome activation involves natural killer cells, tumor-associated macrophages and myeloid-derived suppressor cells. Conversely, PD-1 blockade can activate the inflammasome, potentially influencing treatment outcomes. The interplay between inflammasomes and PD-1/PD-L1 has profound and intricate effects on cancer development and treatment. In this review, we discuss the crosstalk between inflammasomes and PD-1/PD-L1 in cancers, exploring their implications for tumorigenesis, metastasis and immune checkpoint inhibitor (ICI) resistance. The combined therapeutic strategies targeting both inflammasomes and checkpoint molecules hold promising potential as treatments for cancer.
Collapse
Affiliation(s)
- Zhongyu Jiao
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology (Peking University), Peking University Health Science Center, Beijing 100191, P.R. China
| |
Collapse
|
28
|
Pérez-Gómez JM, Montero-Hidalgo AJ, Fuentes-Fayos AC, Sarmento-Cabral A, Guzmán-Ruiz R, Malagón MM, Herrera-Martínez AD, Gahete MD, Luque RM. Exploring the role of the inflammasomes on prostate cancer: Interplay with obesity. Rev Endocr Metab Disord 2023; 24:1165-1187. [PMID: 37819510 PMCID: PMC10697898 DOI: 10.1007/s11154-023-09838-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Obesity is a weight-related disorder characterized by excessive adipose tissue growth and dysfunction which leads to the onset of a systemic chronic low-grade inflammatory state. Likewise, inflammation is considered a classic cancer hallmark affecting several steps of carcinogenesis and tumor progression. In this regard, novel molecular complexes termed inflammasomes have been identified which are able to react to a wide spectrum of insults, impacting several metabolic-related disorders, but their contribution to cancer biology remains unclear. In this context, prostate cancer (PCa) has a markedly inflammatory component, and patients frequently are elderly individuals who exhibit weight-related disorders, being obesity the most prevalent condition. Therefore, inflammation, and specifically, inflammasome complexes, could be crucial players in the interplay between PCa and metabolic disorders. In this review, we will: 1) discuss the potential role of each inflammasome component (sensor, molecular adaptor, and targets) in PCa pathophysiology, placing special emphasis on IL-1β/NF-kB pathway and ROS and hypoxia influence; 2) explore the association between inflammasomes and obesity, and how these molecular complexes could act as the cornerstone between the obesity and PCa; and, 3) compile current clinical trials regarding inflammasome targeting, providing some insights about their potential use in the clinical practice.
Collapse
Affiliation(s)
- Jesús M Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio J Montero-Hidalgo
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - André Sarmento-Cabral
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Rocio Guzmán-Ruiz
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - María M Malagón
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Aura D Herrera-Martínez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Endocrinology and Nutrition Service, HURS/IMIBIC, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), IMIBIC Building, Av. Menéndez Pidal s/n, 14004, Córdoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Hospital Universitario Reina Sofía (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERobn), Cordoba, Spain.
| |
Collapse
|
29
|
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z, Wu K. Exploiting innate immunity for cancer immunotherapy. Mol Cancer 2023; 22:187. [PMID: 38008741 PMCID: PMC10680233 DOI: 10.1186/s12943-023-01885-w] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/28/2023] Open
Abstract
Immunotherapies have revolutionized the treatment paradigms of various types of cancers. However, most of these immunomodulatory strategies focus on harnessing adaptive immunity, mainly by inhibiting immunosuppressive signaling with immune checkpoint blockade, or enhancing immunostimulatory signaling with bispecific T cell engager and chimeric antigen receptor (CAR)-T cell. Although these agents have already achieved great success, only a tiny percentage of patients could benefit from immunotherapies. Actually, immunotherapy efficacy is determined by multiple components in the tumor microenvironment beyond adaptive immunity. Cells from the innate arm of the immune system, such as macrophages, dendritic cells, myeloid-derived suppressor cells, neutrophils, natural killer cells, and unconventional T cells, also participate in cancer immune evasion and surveillance. Considering that the innate arm is the cornerstone of the antitumor immune response, utilizing innate immunity provides potential therapeutic options for cancer control. Up to now, strategies exploiting innate immunity, such as agonists of stimulator of interferon genes, CAR-macrophage or -natural killer cell therapies, metabolic regulators, and novel immune checkpoint blockade, have exhibited potent antitumor activities in preclinical and clinical studies. Here, we summarize the latest insights into the potential roles of innate cells in antitumor immunity and discuss the advances in innate arm-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ming Yi
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000, People's Republic of China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China
| | - Bin Zhao
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| | - Zhijun Dai
- Department of Breast Surgery, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, People's Republic of China.
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
30
|
Zhang C, Tang B, Zheng X, Luo Q, Bi Y, Deng H, Yu J, Lu Y, Han L, Chen H, Lu C. Analysis of the potential pyroptosis mechanism in psoriasis and experimental validation of NLRP3 in vitro and in vivo. Int Immunopharmacol 2023; 124:110811. [PMID: 37647679 DOI: 10.1016/j.intimp.2023.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Pyroptosis provides new perspectives on the mechanisms underlying psoriasis and the development of new treatment strategies. Here, we aimed to identify pyroptosis-related genes (PRGs) involved in the pathogenesis and progression of psoriasis. Based on the inclusion/exclusion criteria, three gene datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differential gene expression, weighted gene co-expression network analysis (WGCNA), and functional enrichment analyses were performed to identify candidate PRGs for psoriasis. Least absolute shrinkage and selection operator (LASSO) regression was used to identify hub genes, and receiver operating characteristic (ROC) curves were used to determine the clinical value of the hub genes. Imiquimod-inducedpsoriasis-like mice and lipopolysaccharide (LPS)-induced RAW 264.7 cells were employed to verify the pro-inflammatory factors that may drive changes in pyroptosis. In total, 159 skin samples were analysed, and a total of 21 common targets were obtained by crossing PRGs with all the differentially expressed genes (DEGs) in different disease states. 11 genes were identified via LASSO screening. Similarly, the last six PRGs biomarkers and the green module genes were screened. All hub genes with an area under the ROC curve > 0.5 were intersected, and NLRP3 was identified. NLRP3 expression was elevated in imiquimod-induced psoriatic lesions in mice and LPS-stimulated RAW 264.7 cells. The mice exhibited reduced psoriasis area and severity index scores, hyperproliferation, and inflammation after treatment with MCC950 (a specific inhibitor of NLRP3). MCC950 decreased IL-1β, IL-6, and TNF-α mRNA expression, and NLRP3 and p-p65 protein levels in LPS-stimulated RAW 264.7 cells. Our study indicates that NLRP3 may be a promising therapeutic target for the treatment of psoriasis.
Collapse
Affiliation(s)
- Chen Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of clinical pharmacy, Guangzhou First People's Hospital, Guangzhou, China
| | - Bin Tang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuwei Zheng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qianqian Luo
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yang Bi
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hao Deng
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjie Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China
| | - Ling Han
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiming Chen
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, China; Guangdong Provincial Clinical Medicine Research Center for Chinese Medicine Dermatology, Guangzhou, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
31
|
Accogli T, Hibos C, Vegran F. Canonical and non-canonical functions of NLRP3. J Adv Res 2023; 53:137-151. [PMID: 36610670 PMCID: PMC10658328 DOI: 10.1016/j.jare.2023.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Since its discovery, NLRP3 is almost never separated from its major role in the protein complex it forms with ASC, NEK7 and Caspase-1, the inflammasome. This key component of the innate immune response mediates the secretion of proinflammatory cytokines IL-1β and IL-18 involved in immune response to microbial infection and cellular damage. However, NLRP3 has also other functions that do not involve the inflammasome assembly nor the innate immune response. These non-canonical functions have been poorly studied. Nevertheless, NLRP3 is associated with different kind of diseases probably through its inflammasome dependent function as through its inflammasome independent functions. AIM OF THE REVIEW The study and understanding of the canonical and non-canonical functions of NLRP3 can help to better understand its involvement in various pathologies. In parallel, the description of the mechanisms of action and regulation of its various functions, can allow the identification of new therapeutic strategies. KEY SCIENTIFIC CONCEPTS OF THE REVIEW NLRP3 functions have mainly been studied in the context of the inflammasome, in myeloid cells and in totally deficient transgenic mice. However, for several year, the work of different teams has proven that NLRP3 is also expressed in other cell types where it has functions that are independent of the inflammasome. If these studies suggest that NLRP3 could play different roles in the cytoplasm or the nucleus of the cells, the mechanisms underlying NLRP3 non-canonical functions remain unclear. This is why we propose in this review an inventory of the canonical and non-canonical functions of NLRP3 and their impact in different pathologies.
Collapse
Affiliation(s)
- Théo Accogli
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE
| | - Christophe Hibos
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Université de Bourgogne Franche-Comté, Dijon 21000, FRANCE
| | - Frédérique Vegran
- Faculté des Sciences de Santé- University of Burgundy, Dijon 21000, FRANCE; CAdIR Team - Centre de Recherche INSERM - UMR 1231, Dijon 21000, FRANCE; Department of Biology and Pathology of Tumors - Centre anticancéreux GF Leclerc, Dijon 21000, FRANCE.
| |
Collapse
|
32
|
Tengesdal IW, Dinarello CA, Marchetti C. NLRP3 and cancer: Pathogenesis and therapeutic opportunities. Pharmacol Ther 2023; 251:108545. [PMID: 37866732 PMCID: PMC10710902 DOI: 10.1016/j.pharmthera.2023.108545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
More than a decade ago IL-1 blockade was suggested as an add-on therapy for the treatment of cancer. This proposal was based on the overall safety record of anti-IL-1 biologics and the anti-tumor properties of IL-1 blockade in animal models of cancer. Today, a new frontier in IL-1 activity regulation has developed with several orally active NLRP3 inhibitors currently in clinical trials, including cancer. Despite an increasing body of evidence suggesting a role of NLRP3 and IL-1-mediated inflammation driving cancer initiation, immunosuppression, growth, and metastasis, NLRP3 activation in cancer remains controversial. In this review, we discuss the recent advances in the understanding of NLRP3 activation in cancer. Further, we discuss the current opportunities for NLRP3 inhibition in cancer intervention with novel small molecules.
Collapse
Affiliation(s)
- Isak W Tengesdal
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Carlo Marchetti
- Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.
| |
Collapse
|
33
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
34
|
Shadab A, Mahjoor M, Abbasi-Kolli M, Afkhami H, Moeinian P, Safdarian AR. Divergent functions of NLRP3 inflammasomes in cancer: a review. Cell Commun Signal 2023; 21:232. [PMID: 37715239 PMCID: PMC10503066 DOI: 10.1186/s12964-023-01235-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/17/2023] [Indexed: 09/17/2023] Open
Abstract
The cancer is a serious health problem, which is The cancer death rate (cancer mortality) is 158.3 per 100,000 men and women per year (based on 2013-2017 deaths). Both clinical and translational studies have demonstrated that chronic inflammation is associated with Cancer progression. However, the precise mechanisms of inflammasome, and the pathways that mediate this phenomenon are not fully characterized. One of the most recently identified signaling pathways, whose activation seems to affect many metabolic disorders, is the "inflammasome" a multiprotein complex composed of NLRP3 (nucleotide-binding domain and leucine-rich repeat protein 3), ASC (apoptosis associated speck-like protein containing a CARD), and procaspase-1. NLRP3 inflammasome activation leads to the processing and secretion of the proinflammatory cytokines interleukin-1β (IL-1β) and IL-18. The goal of this paper is to review new insights on the effects of the NLRP3 inflammasome activation in the complex mechanisms of crosstalk between different organs, for a better understanding of the role of chronic inflammation in cancer pathogenesis. We will provide here a perspective on the current research on NLRP3 inflammasome, which may represent an innovative therapeutic target to reverse the malignancy condition consequences of the inflammation. Video Abstract.
Collapse
Affiliation(s)
- Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Mohamad Mahjoor
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Immunology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir-Reza Safdarian
- Immunology Board for Transplantation and Cell-Based Therapeutics (Immuno TACT), Universal Scientific Education and Research Network (USERN) Chicago, Chicago, IL, USA.
- Department of Immunology and Microbiology, Faculty of Veterinary Medicine, Tehran University, Tehran, Iran.
| |
Collapse
|
35
|
Zhang MJ, Liu J, Wan SC, Li JX, Wang S, Fidele NB, Huang CF, Sun ZJ. CSRP2 promotes cell stemness in head and neck squamous cell carcinoma. Head Neck 2023; 45:2161-2172. [PMID: 37466293 DOI: 10.1002/hed.27464] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Cysteine-rich protein 2 (CSRP2) is discovered as oncogene. The study aims to investigate the clinical significance and potential mechanism of CSRP2 in head and neck squamous cell carcinoma (HNSCC). METHODS CSRP2 expression was explored by immunohistochemistry tissue microarrays and Western blotting in HNSCC. The effect of CSRP2 on the cancer stemness and epithelial-to-mesenchymal transition (EMT) of HNSCC cells was investigated by sphere formation, wound healing, and transwell assays. The vitro and vivo experiments revealed that CSRP2 modulated cancer stemness and EMT phenotypes in HNSCC. RESULTS CSRP2 was overexpressed in HNSCC patients and presented poor prognosis. CSRP2 knockdown inhibited the migration and invasion ability of the HNSCC cells. And CSRP2 expression was closely associated with CSCs markers, EMT-transcription factor, new oncoprotein, and immune checkpoint. CONCLUSION The overexpression of CSRP2 indicates poor prognosis and plays a key role in maintaining the cancer cell stemness and EMT.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shu-Cheng Wan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jia-Xing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Nyimi Bushabu Fidele
- The National keys laboratory of Basic Sciences of Stomatology of Kinshasa University, School of Medical University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Cong-Fa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Deng Z, Lu L, Li B, Shi X, Jin H, Hu W. The roles of inflammasomes in cancer. Front Immunol 2023; 14:1195572. [PMID: 37497237 PMCID: PMC10366604 DOI: 10.3389/fimmu.2023.1195572] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Inflammation is a key characteristic of all stages of tumor development, including tumor initiation, progression, malignant transformation, invasion, and metastasis. Inflammasomes are an important component of the inflammatory response and an indispensable part of the innate immune system. Inflammasomes regulate the nature of infiltrating immune cells by signaling the secretion of different cytokines and chemokines, thus regulating the anti-tumor immunity of the body. Inflammasome expression patterns vary across different tumor types and stages, playing different roles during tumor progression. The complex diversity of the inflammasomes is determined by both internal and external factors relating to tumor establishment and progression. Therefore, elucidating the specific effects of different inflammasomes in anti-tumor immunity is critical for promoting the discovery of inflammasome-targeting drugs. This review focuses on the structure, activation pathway, and identification methods of the NLRP3, NLRC4, NLRP1 and AIM2 inflammasomes. Herein, we also explore the role of inflammasomes in different cancers and their complex regulatory mechanisms, and discuss current and future directions for targeting inflammasomes in cancer therapy. A detailed knowledge of inflammasome function and regulation may lead to novel therapies that target the activation of inflammasomes as well as the discovery of new drug targets.
Collapse
Affiliation(s)
- Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lisen Lu
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Binghui Li
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weidong Hu
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
37
|
Chen Y, Ye X, Escames G, Lei W, Zhang X, Li M, Jing T, Yao Y, Qiu Z, Wang Z, Acuña-Castroviejo D, Yang Y. The NLRP3 inflammasome: contributions to inflammation-related diseases. Cell Mol Biol Lett 2023; 28:51. [PMID: 37370025 DOI: 10.1186/s11658-023-00462-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
The NOD-like receptor protein 3 (NLRP3) inflammasome is a protein complex that regulates innate immune responses by activating caspase-1 and the inflammatory cytokines interleukin (IL)-1β and IL-18. Multiple studies have demonstrated the importance of the NLRP3 inflammasome in the development of immune and inflammation-related diseases, including arthritis, Alzheimer's disease, inflammatory bowel disease, and other autoimmune and autoinflammatory diseases. This review first explains the activation and regulatory mechanism of the NLRP3 inflammasome. Secondly, we focus on the role of the NLRP3 inflammasome in various inflammation-related diseases. Finally, we look forward to new methods for targeting the NLRP3 inflammasome to treat inflammation-related diseases, and provide new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xingyan Ye
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Germaine Escames
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain
- Ibs. Granada and CIBERfes, Granada, Spain
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain
| | - Wangrui Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Xin Zhang
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Meng Li
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Tong Jing
- Department of Cardiology, Affiliated Hospital, Yan'an University, Yan'an, China
| | - Yu Yao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zhenye Qiu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Darío Acuña-Castroviejo
- Biomedical Research Center, Health Sciences Technology Park, University of Granada, Avda. del Conocimiento s/n, Granada, Spain.
- Ibs. Granada and CIBERfes, Granada, Spain.
- UGC of Clinical Laboratories, University San Cecilio's Hospital, Granada, Spain.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China.
- Department of Neurology, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China.
| |
Collapse
|
38
|
Elgohary S, El Tayebi HM. Inflammasomes in breast cancer: the ignition spark of progression and resistance? Expert Rev Mol Med 2023; 25:e22. [PMID: 37337426 DOI: 10.1017/erm.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Inflammation and immune evasion are major key players in breast cancer (BC) progression. Recently, the FDA approved the use of anti-programmed death-ligand 1 antibody (anti-PD-L1) and phosphoinositide 3-kinase (PI3K) inhibitors against aggressive BC. Despite the paradigm shift in BC treatments, patients still suffer from resistance, recurrence and serious immune-related adverse events. These obstacles require unravelling of the hidden molecular contributors for such therapy failure hence yielding therapeutics that are at least as efficient yet safer. Inflammasome pathway is activated when the pattern recognition receptor senses danger signals (danger-associated molecular patterns) from damagedRdying cells or pathogen-associated molecular patterns found in microbes, leading to secretion of the active pro-inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). It has been shown throughout numerous studies that inflammasome pathway enhanced invasion, metastasis, provoked BC progression and therapy resistance. Additionally, inflammasomes upregulated the proliferative index ki67 and enhanced PD-L1 expression leading to immunotherapy resistance. IL-1β contributed to significant decrease in oestrogen receptor levels and promoted BC chemo-resistance. High levels of IL-18 in sera of BC patients were associated with worst prognosis. Stimulation of purinergic receptors and modulation of adipokines in obese subjects activated inflammasomes that evoked radiotherapy resistance and BC progression. The micro RNA miR-223-3p attenuated the inflammasome over-expression leading to lowered tumour volume and lessened angiogenesis in BC. This review sheds the light on the molecular pathways of inflammasomes and their impacts in distinct BC subtypes. In addition, it highlights novel strategies in treatment and prevention of BC.
Collapse
Affiliation(s)
- Sawsan Elgohary
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
39
|
Tuncer M, Alcan S. Pyroptosis: a new therapeutic strategy in cancer. Mol Biol Rep 2023:10.1007/s11033-023-08482-6. [PMID: 37243815 DOI: 10.1007/s11033-023-08482-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/29/2023]
Abstract
Programmed cell death pathways play important roles in a wide variety of physiological processes. Although it has similarities with apoptosis pyroptosis is a different type of programmed cell death. Pyroptosis can be triggered by different molecules originating from the cells or their environment. Once a pyroptotic pathway is started, it is followed by different molecular steps, and, it ends with the disruption of cell membrane integrity and the onset of inflammatory processes. In addition to the role of pyroptosis in the host's innate immunity against pathogens, uncontrolled pyroptosis can lead to increased inflammation and lead various diseases. The contradictory role of pyroptosis-related molecular changes in the pathogenesis of cancer has attracted attention lately. Excessive or decreased expression of molecules involved in pyroptotic pathways is associated with various cancers. There are ongoing studies on the use of different treatment methods for cancer in combination with new therapies targeting pyroptosis. The potential beneficial effects or side-effect profiles of these protocols targeting pyroptosis still need to be investigated. This will provide us with more efficient and safer options to treat cancer. This review aims to overview the main pathways and mechanisms of pyroptosis and to discuss its role in cancer.
Collapse
Affiliation(s)
- Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06100, Sıhhiye-Ankara, Turkey.
| | - Simay Alcan
- Department of Physiology, Faculty of Medicine, Hacettepe University, 06100, Sıhhiye-Ankara, Turkey
| |
Collapse
|
40
|
Tang Y, Zhang C, Ye C, Tian K, Zeng J, Cheng S, Zeng W, Yang B, Liu Y, Yu Y. Construction and validation of programmed cell death-based molecular clusters for prognostic and therapeutic significance of clear cell renal cell carcinoma. Heliyon 2023; 9:e15693. [PMID: 37305457 PMCID: PMC10256830 DOI: 10.1016/j.heliyon.2023.e15693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 06/13/2023] Open
Abstract
As the dominant histological subtype of kidney cancer, clear cell renal cell carcinoma (ccRCC) poorly responds to conventional chemotherapy and radiotherapy. Although novel immunotherapies such as immune checkpoint inhibitors could have a durable effect in treating ccRCC patients, the limited availability of dependable biomarkers has restricted their application in clinic. In the study of carcinogenesis and cancer therapies, there has been a recent emphasis on researching programmed cell death (PCD). In the current study, we discovered the enriched and prognostic PCD in ccRCC utilizing gene set enrichment analysis (GSEA) and investigate the functional status of ccRCC patients with different PCD risks. Then, genes related to PCD that had prognostic value in ccRCC were identified for the conduction of non-negative matrix factorization to cluster ccRCC patients. Next, the tumor microenvironment, immunogenicity, and therapeutic response in different molecular clusters were analyzed. Among PCD, apoptosis and pyroptosis were enriched in ccRCC and correlated with prognosis. Patients with high PCD levels were related to poor prognosis and a rich but suppressive immune microenvironment. PCD-based molecular clusters were identified to differentiate the clinical status and prognosis of ccRCC. Moreover, the molecular cluster with high PCD levels may correlate with high immunogenicity and a favorable therapeutic response to ccRCC. Furthermore, a simplified PCD-based gene classifier was established to facilitate clinical application and used transcriptome sequencing data from clinical ccRCC samples to validate the applicability of the gene classifier. We thoroughly extended the understanding of PCD in ccRCC and constructed a PCD-based gene classifier for differentiation of the prognosis and therapeutic efficacy in ccRCC.
Collapse
Affiliation(s)
- Yanlin Tang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Changzheng Zhang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Weinan Zeng
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Bowen Yang
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
41
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng X, Zhou T, Wang Y. NLRP3 inflammasome-induced pyroptosis in digestive system tumors. Front Immunol 2023; 14:1074606. [PMID: 37081882 PMCID: PMC10110858 DOI: 10.3389/fimmu.2023.1074606] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Programmed cell death (PCD) refers to cell death in a manner that depends on specific genes encoding signals or activities. PCD includes apoptosis, pyroptosis, autophagy and necrosis (programmed necrosis). Among these mechanisms, pyroptosis is mediated by the gasdermin family and is accompanied by inflammatory and immune responses. When pathogens or other danger signals are detected, cytokine action and inflammasomes (cytoplasmic multiprotein complexes) lead to pyroptosis. The relationship between pyroptosis and cancer is complex and the effect of pyroptosis on cancer varies in different tissue and genetic backgrounds. On the one hand, pyroptosis can inhibit tumorigenesis and progression; on the other hand, pyroptosis, as a pro-inflammatory death, can promote tumor growth by creating a microenvironment suitable for tumor cell growth. Indeed, the NLRP3 inflammasome is known to mediate pyroptosis in digestive system tumors, such as gastric cancer, pancreatic ductal adenocarcinoma, gallbladder cancer, oral squamous cell carcinoma, esophageal squamous cell carcinoma, in which a pyroptosis-induced cellular inflammatory response inhibits tumor development. The same process occurs in hepatocellular carcinoma and some colorectal cancers. The current review summarizes mechanisms and pathways of pyroptosis, outlining the involvement of NLRP3 inflammasome-mediated pyroptosis in digestive system tumors.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Bin Xuan
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yang Liu
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Liwei Wang
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Li He
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Xiangcai Meng
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Tao Zhou
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| |
Collapse
|
42
|
Thapa P, Upadhyay SP, Singh V, Boinpelly VC, Zhou J, Johnson DK, Gurung P, Lee ES, Sharma R, Sharma M. Chalcone: A potential scaffold for NLRP3 inflammasome inhibitors. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2023; 7:100100. [PMID: 37033416 PMCID: PMC10081147 DOI: 10.1016/j.ejmcr.2022.100100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Overactivated NLRP3 inflammasome has been shown to associate with an increasing number of disease conditions. Activation of the NLRP3 inflammasome results in caspase-1-catalyzed formation of active pro-inflammatory cytokines (IL-1β and IL-18) resulting in pyroptosis. The multi-protein composition of the NLRP3 inflammasome and its sensitivity to several damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) make this extensively studied inflammasome an attractive target to treat chronic conditions. However, none of the known NLRP3 inhibitors has been approved for clinical use. Sulfonylurea and covalent inhibitors with electrophilic warhead (Michael acceptor) are among the prominent classes of compounds explored for their NLRP3 inhibitory effects. Chalcone, a small molecule with α, β unsaturated carbonyl group (Michael acceptor), has also been studied as a promising scaffold for the development of NLRP3 inhibitors. Low molecular weight, easy to manipulate lipophilicity and cost-effectiveness have attracted many to use chalcone scaffold for drug development. In this review, we highlight chalcone derivatives with NLRP3 inflammasome inhibitory activities. Recent developments and potential new directions summarized here will, hopefully, serve as valuable perspectives for investigators including medicinal chemists and drug discovery researchers to utilize chalcone as a scaffold for developing novel NLRP3 inflammasome inhibitors.
Collapse
Affiliation(s)
- Pritam Thapa
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Sunil P. Upadhyay
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Vikas Singh
- Division of Neurology, KCVA Medical Center, Kansas City, MO, USA
| | - Varun C. Boinpelly
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - Jianping Zhou
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| | - David K. Johnson
- Department of Computational Chemical Biology Core, Molecular Graphics and Modeling Core, University of Kansas, KS, 66047, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, IA, 52242, USA
| | - Eung Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Ram Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
| | - Mukut Sharma
- Drug Discovery Program, Midwest Veterans’ Biomedical Research Foundation, KCVA Medical Center, Kansas City, MO, 64128, USA
- Renal Research Laboratory, Kansas City VA Medical Center, Kansas City, MO, USA
| |
Collapse
|
43
|
Albanese V, Missiroli S, Perrone M, Fabbri M, Boncompagni C, Pacifico S, De Ventura T, Ciancetta A, Dondio G, Kricek F, Pinton P, Guerrini R, Preti D, Giorgi C. Novel Aryl Sulfonamide Derivatives as NLRP3 Inflammasome Inhibitors for the Potential Treatment of Cancer. J Med Chem 2023; 66:5223-5241. [PMID: 36972104 DOI: 10.1021/acs.jmedchem.3c00175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The NLRP3 inflammasome is a critical component of innate immunity that senses diverse pathogen- and host-derived molecules. However, its aberrant activation has been associated with the pathogenesis of multiple diseases, including cancer. In this study, we designed and synthesized a series of aryl sulfonamide derivatives (ASDs) to inhibit the NLRP3 inflammasome. Among these, compounds 6c, 7n, and 10 specifically inhibited NLRP3 activation at nanomolar concentrations without affecting the activation of the NLRC4 and AIM2 inflammasomes. Furthermore, we demonstrated that these compounds reduce interleukin-1β (IL-1β) production in vivo and attenuate melanoma tumor growth. Moreover, metabolic stability in liver microsomes of 6c, 7n, and 10 was studied along with plasma exposure in mice of the most interesting compound 6c. Therefore, we generated potent NLRP3 inflammasome inhibitors, which can be considered in future medicinal chemistry and pharmacological studies aimed at developing a new therapeutic approach for NLRP3 inflammasome-driven cancer.
Collapse
|
44
|
Zhang Z, Li X, Wang Y, Wei Y, Wei X. Involvement of inflammasomes in tumor microenvironment and tumor therapies. J Hematol Oncol 2023; 16:24. [PMID: 36932407 PMCID: PMC10022228 DOI: 10.1186/s13045-023-01407-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/08/2023] [Indexed: 03/19/2023] Open
Abstract
Inflammasomes are macromolecular platforms formed in response to damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns, whose formation would cause maturation of interleukin-1 (IL-1) family members and gasdermin D (GSDMD), leading to IL-1 secretion and pyroptosis respectively. Several kinds of inflammasomes detecting different types of dangers have been found. The activation of inflammasomes is regulated at both transcription and posttranscription levels, which is crucial in protecting the host from infections and sterile insults. Present findings have illustrated that inflammasomes are involved in not only infection but also the pathology of tumors implying an important link between inflammation and tumor development. Generally, inflammasomes participate in tumorigenesis, cell death, metastasis, immune evasion, chemotherapy, target therapy, and radiotherapy. Inflammasome components are upregulated in some tumors, and inflammasomes can be activated in cancer cells and other stromal cells by DAMPs, chemotherapy agents, and radiation. In some cases, inflammasomes inhibit tumor progression by initiating GSDMD-mediated pyroptosis in cancer cells and stimulating IL-1 signal-mediated anti-tumor immunity. However, IL-1 signal recruits immunosuppressive cell subsets in other cases. We discuss the conflicting results and propose some possible explanations. Additionally, we also summarize interventions targeting inflammasome pathways in both preclinical and clinical stages. Interventions targeting inflammasomes are promising for immunotherapy and combination therapy.
Collapse
Affiliation(s)
- Ziqi Zhang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xue Li
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- grid.13291.380000 0001 0807 1581Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
45
|
Hamza S, Garanina EE, Alsaadi M, Khaiboullina SF, Tezcan G. Blocking the Hormone Receptors Modulates NLRP3 in LPS-Primed Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24054846. [PMID: 36902278 PMCID: PMC10002867 DOI: 10.3390/ijms24054846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
NOD-like receptor protein 3 (NLRP3) may contribute to the growth and propagation of breast cancer (BC). The effect of estrogen receptor-α (ER-α), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) on NLRP3 activation in BC remains unknown. Additionally, our knowledge of the effect of blocking these receptors on NLRP3 expression is limited. We used GEPIA, UALCAN, and the Human Protein Atlas for transcriptomic profiling of NLRP3 in BC. Lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP) were used to activate NLRP3 in luminal A MCF-7 and in TNBC MDA-MB-231 and HCC1806 cells. Tamoxifen (Tx), mifepristone (mife), and trastuzumab (Tmab) were used to block ER-α, PR, and HER2, respectively, on inflammasome activation in LPS-primed MCF7 cells. The transcript level of NLRP3 was correlated with ER-ɑ encoding gene ESR1 in luminal A (ER-α+, PR+) and TNBC tumors. NLRP3 protein expression was higher in untreated and LPS/ATP-treated MDA-MB-231 cells than in MCF7 cells. LPS/ATP-mediated NLRP3 activation reduced cell proliferation and recovery of wound healing in both BC cell lines. LPS/ATP treatment prevented spheroid formation in MDA-MB-231 cells but did not affect MCF7. HGF, IL-3, IL-8, M-CSF, MCP-1, and SCGF-b cytokines were secreted in both MDA-MB-231 and MCF7 cells in response to LPS/ATP treatment. Tx (ER-α inhibition) promoted NLRP3 activation and increased migration and sphere formation after LPS treatment of MCF7 cells. Tx-mediated activation of NLRP3 was associated with increased secretion of IL-8 and SCGF-b compared to LPS-only-treated MCF7 cells. In contrast, Tmab (Her2 inhibition) had a limited effect on NLRP3 activation in LPS-treated MCF7 cells. Mife (PR inhibition) opposed NLRP3 activation in LPS-primed MCF7 cells. We have found that Tx increased the expression of NLRP3 in LPS-primed MCF7. These data suggest a link between blocking ER-α and activation of NLRP3, which was associated with increased aggressiveness of the ER-α+ BC cells.
Collapse
Affiliation(s)
- Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Ekaterina E. Garanina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Mohammad Alsaadi
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Svetlana F. Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| | - Gulcin Tezcan
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa 16059, Turkey
- Correspondence: or (S.F.K.); (G.T.); Fax: +1-775682-8258 (S.F.K.); +90-224-294-00-78 (G.T.)
| |
Collapse
|
46
|
Malkova AM, Gubal AR, Petrova AL, Voronov E, Apte RN, Semenov KN, Sharoyko VV. Pathogenetic role and clinical significance of interleukin-1β in cancer. Immunology 2023; 168:203-216. [PMID: 35462425 DOI: 10.1111/imm.13486] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/28/2022] [Indexed: 01/21/2023] Open
Abstract
In recent years, pro-oncogenic mechanisms of the tumour microenvironment (ТМЕ) have been actively discussed. One of the main cytokines of the TМЕ is interleukin-1 beta (IL-1β), which exhibits proinflammatory properties. Some studies have shown an association between an increase in IL-1β levels and tumour progression. The purpose of this review is to analyse the pathogenic mechanisms induced by IL-1β in the TМЕ, as well as the diagnostic significance of the presence of IL-1β in patients with cancer and the efficacy of treatment with IL-1β inhibitors. According to the literature, IL-1β can induce an increase in tumour angiogenesis due to its effects on the differentiation of epithelial cells, pro-angiogenic molecule secretion and expression of adhesion molecules, thus increasing tumour growth and metastasis. IL-1β is also involved in the suppression of anti-tumour immune responses. The expression and secretion of IL-1β has been noted in various types of tumours. In some clinical studies, an elevated level of IL-1β was found to be associated with low efficacy of anti-cancer therapy and a poor prognosis. In most experimental and clinical studies, the use of IL-1β inhibitors contributed to a decrease in tumour mass and an increase in the response to anti-tumour drugs.
Collapse
Affiliation(s)
- Anna M Malkova
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Anna R Gubal
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Elena Voronov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron N Apte
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Konstantin N Semenov
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia
| | - Vladimir V Sharoyko
- Saint Petersburg State University, Saint Petersburg, Russia.,Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia.,A. M. Granov Russian Research Centre for Radiology and Surgical Technologies, Saint Petersburg, Russia.,Medicinal Chemistry Center, Togliatti State University, Togliatti, Russia
| |
Collapse
|
47
|
Kong Q, Zhang Z. Cancer-associated pyroptosis: A new license to kill tumor. Front Immunol 2023; 14:1082165. [PMID: 36742298 PMCID: PMC9889862 DOI: 10.3389/fimmu.2023.1082165] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/03/2023] [Indexed: 01/19/2023] Open
Abstract
Pyroptosis is a programmed necrotic cell death mediated by pore-forming Gasdermin (GSDM) proteins. After being unleashed from the C-terminal auto-inhibitory domains by proteolytic cleavage, the N-terminal domains of GSDMs oligomerize and perforate on the plasma membrane to induce cytolytic pyroptosis, releasing immune mediators and alarming the immune system. Upon infection or danger signal perception, GSDMD that functions downstream of the inflammasome, a supramolecular complex for inflammatory caspase activation, is cleaved and activated by inflammasome-activated caspase-1/4/5/11 in immune cells and epithelial cells to trigger pyroptosis and exert anti-infection protection. Unlike this inflammasome-activated pyroptosis (IAP), recent studies also suggest an emerging role of cancer-associated pyroptosis (CAP), mediated by other GSDMs in cancer cells, in provoking anti-tumor immunity. IAP and CAP share common features like cell membrane rupture but also differ in occurrence sites, activating mechanisms, secreting cytokines and biological outcomes. Here we review the most recent knowledge of cancer-associated pyroptosis and present a promising avenue for developing therapeutic interventions to enhance anti-tumor immunity for cancer treatment.
Collapse
Affiliation(s)
- Qing Kong
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhibin Zhang
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
48
|
Chen L, Wan SC, Mao L, Huang CF, Bu LL, Sun ZJ. NLRP3 in tumor-associated macrophages predicts a poor prognosis and promotes tumor growth in head and neck squamous cell carcinoma. Cancer Immunol Immunother 2022; 72:1647-1660. [PMID: 36586012 DOI: 10.1007/s00262-022-03357-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays cell- and tissue-specific roles in cancer, meaning that its activation in different tumors or cells may play different roles in tumor progression. We have previously described the tumor-promoting function of tumor-intrinsic NLRP3/IL-1β signaling in head and neck squamous cell carcinoma (HNSCC), but its role in immune cells remains unclear. In this study, we found that NLRP3 was highly expressed in tumor-associated macrophages (TAMs) in both mouse and human HNSCC, and the expression of NLRP3 was positively correlated with the density of TAMs according to immunohistochemistry, immunofluorescence, and flow cytometry analyses. Importantly, the number of NLRP3high TAMs was related to worse overall survival in HNSCC patients. Knocking out NLRP3 inhibited M2-like macrophage differentiation in vitro. Moreover, the carcinogenic effect induced by 4-nitroquinoline-1-oxide was decreased in Nlrp3-deficient mice, which had smaller tumor sizes. Genetic depletion of NLRP3 reduced the expression of protumoral cytokines, such as IL-1β, IL-6, IL-10, and CCL2, and suppressed the accumulation of TAMs and myeloid-derived suppressor cells (MDSCs) in mouse HNSCC. Thus, activation of NLRP3 in TAMs may contribute to tumor progression and have prognostic significance in HNSCC.
Collapse
Affiliation(s)
- Lei Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Shu-Cheng Wan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
49
|
Programmed Cell Death-Ligand 1 in Head and Neck Squamous Cell Carcinoma: Molecular Insights, Preclinical and Clinical Data, and Therapies. Int J Mol Sci 2022; 23:ijms232315384. [PMID: 36499710 PMCID: PMC9738355 DOI: 10.3390/ijms232315384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the programmed cell death protein ligand 1 (PD-L1) constitutes one of the main immune evasion mechanisms of cancer cells. The approval of drugs against the PD-1-PD-L1 axis has given new impetus to the chemo-therapy of many malignancies. We performed a literature review from 1992 to August 2022, summarizing evidence regarding molecular structures, physiological and pathological roles, mechanisms of PD-L1 overexpression, and immunotherapy evasion. Furthermore, we summarized the studies concerning head and neck squamous cell carcinomas (HNSCC) immunotherapy and the prospects for improving the associated outcomes, such as identifying treatment response biomarkers, new pharmacological combinations, and new molecules. PD-L1 overexpression can occur via four mechanisms: genetic modifications; inflammatory signaling; oncogenic pathways; microRNA or protein-level regulation. Four molecular mechanisms of resistance to immunotherapy have been identified: tumor cell adaptation; changes in T-cell function or proliferation; alterations of the tumor microenvironment; alternative immunological checkpoints. Immunotherapy was indeed shown to be superior to traditional chemotherapy in locally advanced/recurrent/metastatic HNSCC treatments.
Collapse
|
50
|
Banna GL, Friedlaender A, Tagliamento M, Mollica V, Cortellini A, Rebuzzi SE, Prelaj A, Naqash AR, Auclin E, Garetto L, Mezquita L, Addeo A. Biological Rationale for Peripheral Blood Cell-Derived Inflammatory Indices and Related Prognostic Scores in Patients with Advanced Non-Small-Cell Lung Cancer. Curr Oncol Rep 2022; 24:1851-1862. [PMID: 36255605 DOI: 10.1007/s11912-022-01335-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2022] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW To describe the biological rationale of peripheral blood cells (PBC)-derived inflammatory indexes and assess the related prognostic scores for patients with advanced non-small cell lung cancer (aNSCLC) treated with immune-checkpoint inhibitors (ICI). RECENT FINDINGS Inflammatory indexes based on PBC may indicate a pro-inflammatory condition affecting the immune response to cancer. The lung immune prognostic index (LIPI), consisting of derived neutrophils-to-lymphocyte ratio (NLR) and lactate dehydrogenase, is a validated prognostic tool, especially for pretreated aNSCLC patients, where the combination of NLR and PD-L1 tumour expression might also be predictive of immunotherapy benefit. In untreated high-PD-L1 aNSCLC patients, the Lung-Immune-Prognostic score (LIPS), including NLR, ECOG PS and concomitant steroids, is prognostic, and its modified version might indicate patients with favourable outcomes despite an ECOG PS of 2. NLR times platelets (i.e., SII), included in the NHS-Lung score, might improve the prognostication for combined chemoimmunotherapy. PBC-derived inflammatory indexes and related scores represent accurate, reproducible and non-expensive prognostic tools with clinical and research utility.
Collapse
Affiliation(s)
| | - Alex Friedlaender
- Department of Oncology, Clinique Générale Beaulieu, Geneva, Switzerland
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Marco Tagliamento
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Alessio Cortellini
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties (Di.M.I.), University of Genoa, Genoa, Italy
- Medical Oncology Unit, Ospedale San Paolo, Savona, Italy
| | - Arsela Prelaj
- Medical Oncology Department 1, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Abdul Rafeh Naqash
- Medical Oncology/TSET Phase 1 Program, Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, USA
| | - Edouard Auclin
- Medical Oncology, Hôpital Européen Georges Pompidou, AP-HP, Université Paris Cité, Paris, France
| | - Lucia Garetto
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Turin, Italy
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Alfredo Addeo
- Department of Oncology, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|