1
|
Zhong C, Deng K, Lang X, Shan D, Xie Y, Pan W, Yu J. Therapeutic potential of natural flavonoids in atherosclerosis through endothelium-protective mechanisms: An update. Pharmacol Ther 2025; 271:108864. [PMID: 40274196 DOI: 10.1016/j.pharmthera.2025.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/27/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Atherosclerosis and its associated cardiovascular complications remain significant global public health challenges, underscoring the urgent need for effective therapeutic strategies. Endothelial cells are critical for maintaining vascular health and homeostasis, and their dysfunction is a key contributor to the initiation and progression of atherosclerosis. Targeting endothelial dysfunction has, therefore, emerged as a promising approach for the prevention and management of atherosclerosis. Among natural products, flavonoids, a diverse class of plant-derived phenolic compounds, have garnered significant attention for their anti-atherosclerotic properties. A growing body of evidence demonstrates that flavonoids can mitigate endothelial dysfunction, highlighting their potential as endothelial dysfunction-targeted therapeutics for atherosclerosis. In this review, we summarize current knowledge on the roles of natural flavonoids in modulating various aspects of endothelial dysfunction and their therapeutic effects on atherosclerosis, focusing on the underlying molecular mechanisms. We also discuss the challenges and future prospects of translating natural flavonoids into clinical applications for cardiovascular medicine. This review aims to provide critical insights to advance the development of novel endothelium-protective pharmacotherapies for atherosclerosis.
Collapse
Affiliation(s)
- Chao Zhong
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Keke Deng
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xiaoya Lang
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Dan Shan
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yanfei Xie
- Center for Translational Medicine, Discipline of Chinese and Western Integrative Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Wen Pan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Jiangxi University of Chinese Medicine, Nanchang 330006, China.
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
2
|
Atabay M, Inci F, Saylan Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens Bioelectron 2025; 277:117275. [PMID: 39999607 DOI: 10.1016/j.bios.2025.117275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/25/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Cancer affects millions of people, and early detection and efficient treatment are two strong levers to hurdle this disease. Recent studies on exosomes, a subset of extracellular vesicles, have deliberately shown the potential to function as a biomarker or treatment tool, thereby attracting the attention of researchers who work on developing biosensors. Due to the ability of computational methods to predict of the behavior of biomolecules, the combination of experimental and computational methods would enhance the analytical performance of the biosensor, including sensitivity, accuracy, and specificity, even detecting such vesicles from bodily fluids. In this regard, the role of computational methods such as molecular docking, molecular dynamics simulation, and density functional theory is overviewed in the development of biosensors. This review highlights the investigations and studies that have been reported using these methods to design exosome-based biosensors. This review concludes with the role of the quantum mechanics/molecular mechanics method in the investigation of chemical processes of biomolecular systems and the deficiencies in using this approach to develop exosome-based biosensors. In addition, the artificial intelligence theory is explained briefly to show its importance in the study of these biosensors.
Collapse
Affiliation(s)
- Maryam Atabay
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, Ankara, Turkey; Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Moisă (Stoica) R, Rusu CM, Deftu AT, Bacalum M, Radu M, Radu BM. Are You a Friend or an Enemy? The Dual Action of Methylglyoxal on Brain Microvascular Endothelial Cells. Int J Mol Sci 2025; 26:5104. [PMID: 40507916 PMCID: PMC12154078 DOI: 10.3390/ijms26115104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2025] [Revised: 05/22/2025] [Accepted: 05/23/2025] [Indexed: 06/16/2025] Open
Abstract
Methylglyoxal is a reactive dicarbonyl intermediate in the advanced glycation end-product (AGE) pathway, and alterations in its levels have been detected in the plasma, cerebrospinal fluid, and brain parenchyma in various pathologies, particularly in diabetes. In this study, we investigate the effects of methylglyoxal (MGO) on murine brain microvascular endothelial cells at both physiological and pathological concentrations. We evaluate molecular parameters, including reactive oxygen species (ROS) production, cytosolic calcium signaling, and ATP synthesis, as well as cellular responses such as cytoskeletal remodeling, cell migration, adhesion, and permeability, across a concentration range of 0-1000 μM. At low concentrations (below ~250 μM), MGO does not induce oxidative stress; instead, it leads to an increase in cytosolic calcium levels and ATP production. At higher concentrations, however, MGO induces significant oxidative stress, which is accompanied by a marked decrease in cell viability, particularly at concentrations exceeding 500 μM. The modulation of key functional processes, including purinergic calcium signaling, actin filament synthesis, cell migration, and adhesion, reveals a threshold concentration beyond which cellular function is impaired due to oxidative stress. Below this threshold, the observed effects appear to be mediated primarily by non-oxidative mechanisms, likely involving protein glycation. In conclusion, our results suggest a dual action of methylglyoxal on brain endothelial cells, with distinct molecular mechanisms underlying its effects at physiological versus pathological concentrations.
Collapse
Affiliation(s)
- Roberta Moisă (Stoica)
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Călin Mircea Rusu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
| | - Antonia Teona Deftu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
| | - Mihaela Bacalum
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Romania;
| | - Beatrice Mihaela Radu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania; (R.M.); (C.M.R.); (A.T.D.); (B.M.R.)
| |
Collapse
|
4
|
Tang Y, Tong W, Peng Y, Sun S. Targeting cholesterol-driven pyroptosis: a promising strategy for the prevention and treatment of atherosclerosis. Mol Biol Rep 2025; 52:459. [PMID: 40372511 DOI: 10.1007/s11033-025-10554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Funding Pyroptosis is a type of programmed cell death (PCD) pathway distinguished by inflammation. It is activated by specific inflammasomes. Once activated, it causes the physical breakdown of the cell, along with the discharge of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Abundant evidence has demonstrated the existence of pyroptotic cell death within atherosclerotic plaques, which has significance for the development of atherosclerosis (AS). As a result, pyroptosis has become a new and important topic in cardiovascular disease (CVD) research. Cholesterol, it is recognized to have a connection with inflammation, exerts a crucial function in the development process of AS, and has been linked to the initiation of pyroptosis. This review aims to briefly summarize the fundamental aspects of pyroptosis and the influence of cholesterol-related inflammation in AS. Additionally, this review will explore potential therapeutic approaches based on pyroptosis that could be utilized for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yuehong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yujiao Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
5
|
Zhou Y, Guo Y. Circ-PSMB1 knockdown inhibits the pyroptosis of ox-LDL treated human aortic cells via the miR-624-3p/ASC axis. J Cardiothorac Surg 2025; 20:226. [PMID: 40317040 PMCID: PMC12048961 DOI: 10.1186/s13019-025-03457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/21/2025] [Indexed: 05/04/2025] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a cardiovascular disease that is caused by a variety of factors, including hypertension, diabetes, hyperlipidaemia and smoking. Circular RNAs (circRNAs) have been reported to participate in the progression of AS. Here, we investigated the mechanism by which circ-proteasome 20 S subunit beta 1 (PSMB1) participates in AS. METHODS HAECs were stimulated with oxidized low-density lipoprotein (ox-LDL) to establish a model of AS in vitro. Cell viability was investigated with MTT assays. Western blotting and qRT‒PCR were used to measure relative protein and mRNA expression. Cell pyroptosis was analysed by flow cytometry. Lactate dehydrogenase (LDH) levels were measured with a commercial kit. RESULTS We found that circ-PSMB1 and apoptosis-associated speck-like protein containing a CARD (ASC) were overexpressed and miR-624-3p was expressed at low levels in HAECs treated with ox-LDL. Circ-PSMB1 silencing enhanced cell viability and decreased pyroptosis, as shown by the downregulation of IL-1β and IL-18 mRNA expression as well as NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and GasderminD-N (GSDMD-N) protein expression. In addition, the miR-624-3p inhibitor neutralized the effects of si-circ-PSMB1, and ASC overexpression neutralized the effects of the miR-624-3p mimic in ox-LDL-treated HAECs. CONCLUSION This research demonstrated that circ-PSMB1 might participate in AS development through regulating the pyroptosis of HAECs via the miR-624-3p/ASC axis.
Collapse
Affiliation(s)
- Yupu Zhou
- Department of Vascular Surgery, Jiangjin Centre Hospital, No. 725, Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, Chongqing, 402260, China
| | - Yongchuan Guo
- Department of Vascular Surgery, Jiangjin Centre Hospital, No. 725, Jiangzhou Avenue, Dingshan Street, Jiangjin District, Chongqing, Chongqing, 402260, China.
| |
Collapse
|
6
|
Lien JC, Hsu SY, Chueh FS, Ma YS, Chu YL, Chou YC, Lai KC, Chen JC, Huang YP, Wu RSC. Newly Synthesized PW06 Induced Cell Apoptosis in Human Glioblastoma Multiforme GBM 8401 Cells Through Caspase- and Mitochondria-Dependent Pathways. J Biochem Mol Toxicol 2025; 39:e70264. [PMID: 40258141 DOI: 10.1002/jbt.70264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/08/2025] [Accepted: 04/04/2025] [Indexed: 04/23/2025]
Abstract
Glioblastoma multiforme (GBM) is the most common, aggressive, and dangerous lethal tumor in the brain, which develops in adults. Currently, the efficiency of chemotherapy treatment for GBM patients is still unsatisfactory. PW06 was synthesized by Dr. Lien's laboratory (China Medical University, Taichung, Taiwan), and it was demonstrated to induce cancer cell apoptosis in human pancreatic carcinoma MIA PaCa-2 cells. However, the anti-cancer activities of PW06 on human GBM cancer cells are not reported. Thus, herein, PW06 was investigated on the anticancer activity on human glioblastoma multiforme GBM 8401 cells. Both PI exclusion and Annexin V/PI double staining methods were conducted for investing cell viability and apoptosis in GBM 8401 cells, respectively; they were analyzed with flow cytometer assay. Results showed that PW06 decreased total viable cell number with the process of cell apoptosis in GBM 8401 cells. Both productions of reactive oxygen species (ROS) and Ca2+, affect mitochondria membrane potential (ΔΨm) levels, and activities of caspase-3, -8, and -9 in GBM 8401 cells after exposure with PW06 were assayed by flow cytometer. Results showed that PW06 promoted ROS production and Ca2+ release from ER but lowered the levels of ΔΨm, and it also induced higher activities in caspase-3, -8, and -9 in GBM 8401 cells. Evaluation of protein expressions associated with apoptosis in GBM 8401 cells after being incubated with PW06 were conducted by Western blot analysis. Results show that PW06 increased GADD153, BiP, ATF-6α, ATF-6β, eIF2α, eIF2αpSer51, CHOP, and caspase-4, and they are associated with ER stress-associated protein expression. However, it induced higher pro-apoptotic proteins (Bax and Bad) expression and inhibited anti-apoptotic proteins (Bcl-2, Bcl-xl, and Mcl-1) expression, even promoting higher cleaved caspase-8, -9, and -3 protein expression and increased EndoG and AIF in GBM 8401 cells. Collectively, it may suggest PW06 exits anti-GBM activity to process cell apoptosis in the human GBM 8401 cells in vitro.
Collapse
Affiliation(s)
- Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Sheng-Yao Hsu
- Department of Ophthalmology, Kaohsiung Show Chwan Memorial Hospital, Tainan, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
| | - Yi-Shih Ma
- School of Chinese Medicine for Post-Baccalaureate, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan
| | - Yung-Lin Chu
- Department of Food Science, College of Agriculture, National Pingtung University of Science Technology, Pingtung, Taiwan
| | - Yu-Cheng Chou
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Applied Chemistry, National Chi Nan University, Nantou, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kuang-Chi Lai
- Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jaw-Chyun Chen
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Yi-Ping Huang
- Department of Physiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
- Department of Anesthesiology, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Zhang S, Liu J, Ouyang X, Liu W, Wang Y, Zhong J. Polyinosinic-polycytidylic acid modulates Porphyromonas gingivalis-induced cell apoptosis via the janus kinase/ signal transducer and activator of transcription signaling pathway. J Dent Sci 2025; 20:811-818. [PMID: 40224116 PMCID: PMC11993021 DOI: 10.1016/j.jds.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/23/2024] [Indexed: 04/15/2025] Open
Abstract
Background/Purpose Porphyromonas gingivalis (P. gingivalis) has been shown to induce apoptosis in endothelial cells and contribute to the progression of atherosclerosis. While Polyinosinic-polycytidylic acid (Poly (I:C)) is known to activate the innate immune response against infections, its potential interference with P. gingivalis-induced atherosclerosis remains unclear. This study aimed to elucidate the role and underlying mechanisms of Poly (I:C) in mediating human umbilical vein endothelial cells (HUVECs) apoptosis induced by P. gingivalis. Materials and methods A mice model of atherosclerosis and a model of P. gingivalis-induced bacteremia were established to investigate the effects of Poly (I:C) on P. gingivalis-induced apoptosis in the aortic root, as well as the expression levels of apoptosis-related proteins including Caspase 3, Caspase 9, Bax, and Bcl-2. Subsequently, HUVECs were cultured in vitro to compare cell apoptosis and the expression of these apoptosis-related proteins under stimulation with P. gingivalis, both with and without Poly (I:C) treatment; additionally, the activation status of the JAK/STAT signaling pathway was assessed. Results The administration of Poly (I:C) diminished apoptosis in the aortic root cells of mice, enhanced the expression of the anti-apoptotic protein Bcl-2, and decreased the levels of Bax, Caspase 3 and 9. Furthermore, Poly (I:C) exhibited similar effects on HUVECs cultured in vitro. Additionally, treatment with Poly (I:C) activated the JAK/STAT signaling pathway, while STAT inhibitor was found to attenuate its effects. Conclusion Poly (I:C) attenuated P. gingivalis-induced cellular apoptosis, with the involvement of the JAK/STAT signaling pathway in this mechanism.
Collapse
Affiliation(s)
- Shengnan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jianru Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Xiangying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Wenyi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yuanbo Wang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jinsheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| |
Collapse
|
8
|
Tilp A, Nasias D, Carley A, Park MY, Mooring A, Tirumalasetty MB, Abumrad NA, Wang Y, Miao QR, Lewandowski D, Alemán J, Goldberg IJ, Cabodevilla AG. Extracellular vesicles from chylomicron-treated endothelial cells drive macrophage inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640926. [PMID: 40093163 PMCID: PMC11908131 DOI: 10.1101/2025.02.28.640926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Movement of circulating lipids into tissues and arteries requires transfer across the endothelial cell barrier. This process allows the heart to obtain fatty acids (FAs), its chief source of energy and apolipoprotein B (apoB)-containing lipoproteins to cross the arterial endothelial barrier leading to cholesterol accumulation in the subendothelial space. Multiple studies have established elevated postprandial triglyceride-rich lipoproteins (TRLs) as an independent risk factor for cardiovascular disease (CVD). We explored how chylomicrons affect ECs and transfer their FAs across the EC barrier. Methods We had reported that media from chylomicron-treated ECs leads to lipid droplet (LD) formation in macrophages. To determine the responsible component of this media, we assessed whether removing the extracellular vesicles (EVs) would obviate this effect. EVs from control and treated cells were then characterized by protein, lipid and microRNA (miR) content. We also studied the EV-induced transcription changes in macrophages and ECs and whether knockdown of scavenger receptor-BI (SR-BI) altered these responses. In addition, using chylomicrons labeled with [ 13 C]oleate, we studied the uptake and release of this labed by ECs. Results Chylomicron treatment of ECs led to an inflammatory response that included production of EVs that drove macrophage LD accumulation. The EVs contained little free fatty acids and triglyceride, but abundant phospholipids and diacylglycerols. In concert with this, [ 13 ]C labeled chylomicron triglycerides exited ECs primarily in phospholipids. EVs from chylomicron treated versus untreated ECs were larger, more abundant, and contained specific miRs. Treatment of macrophages and naïve ECs with media from chylomicron-treated ECs increased expression of inflammatory genes. Conclusions EC chylomicron metabolism produces EVs that increase macrophage inflammation and create LDs. Media containing these EVs also increases EC inflammation, illustrating an autocrine inflammatory process. FAs within chylomicron triglycerides are converted to phospholipids within EVs. Thus, EC uptake of chylomicrons constitutes an important pathway for vascular inflammation and tissue lipid acquisition.
Collapse
|
9
|
Páramo JA, Cenarro A, Civeira F, Roncal C. Extracellular vesicles in atherosclerosis: Current and forthcoming impact. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2025; 37:100718. [PMID: 38714381 DOI: 10.1016/j.arteri.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/09/2024]
Abstract
Atherosclerosis is the main pathogenic substrate for cardiovascular diseases (CVDs). Initially categorized as a passive cholesterol storage disease, nowadays, it is considered an active process, identifying inflammation among the key players for its initiation and progression. Despite these advances, patients with CVDs are still at high risk of thrombotic events and death, urging to deepen into the molecular mechanisms underlying atherogenesis, and to identify novel diagnosis and prognosis biomarkers for their stratification. In this context, extracellular vesicles (EVs) have been postulated as an alternative in search of novel biomarkers in atherosclerotic diseases, as well as to investigate the crosstalk between the cells participating in the processes leading to arterial remodelling. EVs are nanosized lipidic particles released by most cell types in physiological and pathological conditions, that enclose lipids, proteins, and nucleic acids from parental cells reflecting their activation status. First considered cellular waste disposal systems, at present, EVs have been recognized as active effectors in a myriad of cellular processes, and as potential diagnosis and prognosis biomarkers also in CVDs. This review summarizes the role of EVs as potential biomarkers of CVDs, and their involvement into the processes leading to atherosclerosis.
Collapse
Affiliation(s)
- José A Páramo
- Hematology Service, Clínica Universidad de Navarra, Pamplona, Spain; Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain
| | - Ana Cenarro
- CIBERCV, ISCIII, Madrid, Spain; Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Fernando Civeira
- CIBERCV, ISCIII, Madrid, Spain; Hospital Universitario Miguel Servet, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Universidad de Zaragoza, Zaragoza, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain; CIBERCV, ISCIII, Madrid, Spain.
| |
Collapse
|
10
|
Zhao G, Zhao L, Miao Y, Yang L, Huang L, Hu Z. HSPB1 Orchestrates the Inflammation-Associated Transcriptome Profile of Atherosclerosis in HUVECs. FRONT BIOSCI-LANDMRK 2025; 30:36306. [PMID: 40018940 DOI: 10.31083/fbl36306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 03/01/2025]
Abstract
BACKGROUND Atherosclerosis (AS), with a profound inflammatory response, is the basis of cardiovascular diseases. Previous reports showed that heat shock protein family B member 1 (HSPB1) has a protective effect against AS, but the specific mechanism is still unclear. In this study, we aim to explore the functions and downstream targets of HSPB1 in human umbilical vein endothelial cells (HUVECs). METHODS Expression of the HSPB1 gene was knocked down in HUVECs. Cellular phenotype was then assessed and transcriptome data (RNA-seq) was analyzed to identify the potential targets regulated by HSPB1. Moreover, RNA-seq data for human fibroatheroma (GSE104140) from the gene expression omnibus (GEO) database was re-analyzed to verify the targets of HSPB1 in AS. RESULTS Silencing of HSPB1 significantly reduced apoptosis (p < 0.0001) and increased the proliferation (p < 0.05) of HUVECs. The 608 differentially expressed genes (DEGs) were identified after HSPB1 knockdown, including 423 upregulated genes. DEGs, including CXCL1, CXCL8, CXCL2, TRIB3, GAS5, SELE, and TNIP1, were enriched in inflammatory and immune response pathways. HSPB1 was also shown to affect alternative splicing patterns of hundreds of genes, especially those enriched in apoptotic processes, including ACIN1, IFI27, PAK4, UBE2D3, and FIS1. An overlapping gene set was found between the HSPB1-regulated and AS-induced transcriptome. This included 171 DEGs and 250 alternatively spliced genes that were also enriched in inflammatory/immune response- and apoptosis-associated pathways, respectively. CONCLUSION In summary, HSPB1 knockdown modulates the proliferation and apoptosis of HUVECs by regulating RNA levels and alternative splicing patterns. HSPB1 plays an important role in AS pathogenesis by modulating the inflammatory and immune response. This study provides novel insights for the investigation of future AS therapeutic strategies.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Li Zhao
- Department of Anesthesiology, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Yulin Miao
- Clinical Medical School, Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Lei Yang
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Lizhen Huang
- Clinical Medical School, Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| | - Zhipeng Hu
- Department of Vascular Surgery, General Hospital of Ningxia Medical University, 750004 Yinchuan, Ningxia, China
| |
Collapse
|
11
|
Li K, Wang S, Li J, Wang L, Zhang Q, Hou L, Yu X, Liu Z, Lv T, Shang L. Low shear stress induces vascular endothelial cells apoptosis via miR-330 /SOD2 /HSP70 signaling pathway. Exp Cell Res 2025; 445:114410. [PMID: 39788367 DOI: 10.1016/j.yexcr.2025.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/30/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Atherosclerosis (AS) is a chronic disease initiated by vascular endothelial dysfunction, with low shear stress (SS) being a critical inducing factor in this dysfunction. Apoptosis, a form of programmed cell death, is closely associated with AS progression. However, the impact of low SS on endothelial apoptosis and its specific molecular mechanisms remains unclear. Our study revealed that low SS induces apoptosis in endothelial cells and contributes to endothelial dysfunction. Under low SS conditions, miR-330 expression was markedly upregulated, which subsequently targeted and inhibited SOD2 expression, leading to ROS accumulation and oxidative stress. Overexpression of SOD2 under low SS conditions markedly elevated HSP70 expression, contributing to endothelial homeostasis. However, when HSP70 expression was inhibited in the context of SOD2 overexpression, there was a significant increase in pro-apoptotic proteins (BAX and cleaved-caspase-3) and total apoptosis rate, along with a significant reduction in endothelial function markers such as nitric oxide and endothelial nitric oxide synthase. Notably, our experiments indicated no direct interaction between SOD2 and HSP70. Furthermore, inhibiting ROS production significantly raised HSP70 expression, suggesting that SOD2 regulates HSP70 in an indirect process involving ROS. In summary, our findings elucidate that low SS induces endothelial apoptosis and dysfunction through the miR-330/SOD2/HSP70 signaling pathway, providing valuable insights into AS intervention and prevention.
Collapse
Affiliation(s)
- Ke Li
- Department of Gastroenterology, 215 Hospital of Shaanxi Province, Xianyang, 712000, China; School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Shaohu Wang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Immunization and Planning, Heping District Center for Disease Control and Prevention, Tianjin, 300041, China
| | - Jiana Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Gastroenterology, No.983rd Hospital of the Chinese People's Liberation Army Joint Logistics and Security Forces, Tianjin, 300143, China
| | - Lingling Wang
- Department of Gastroenterology, 215 Hospital of Shaanxi Province, Xianyang, 712000, China
| | - Qin Zhang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Liming Hou
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xinyi Yu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Zhendong Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Ting Lv
- Department of Gastroenterology, 215 Hospital of Shaanxi Province, Xianyang, 712000, China.
| | - Luxiang Shang
- School of Clinical and Basic Medical Sciences, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250117, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, 250014, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
12
|
Shao CL, Meng WT, Wang YC, Liu JJ, Ning K, Hou XX, Guo HD. Regulating NETs contributes to a novel antiatherogenic effect of MTHSWD via inhibiting endothelial injury and apoptosis. Int Immunopharmacol 2024; 143:113368. [PMID: 39418732 DOI: 10.1016/j.intimp.2024.113368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Neutrophil extracellular traps (NETs) are implicated in the occurrence and progression of atherosclerosis (AS), which can result in adverse cardiovascular events. We investigated the potential mechanism of action of Modified Taohong Siwu Decoction (MTHSWD) against AS based on its effect on NETs. A model of unstable plaque in AS was established by tandem stenosis (TS) of the right common carotid artery in ApoE-/- mice combined with a western diet (WD). The research found that MTHSWD reduced the weight of mice with AS to varying degrees, and significantly decreased the levels of plasma total cholesterol (TC) and triglycerides (TG). Meanwhile, we found that MTHSWD not only significantly improved cardiac EF, FS, cardiac hypertrophy, and ventricular remodeling, but also ameliorated the silent and depressed hypoactivity state caused by AS in ApoE-/- mice. Additionally, the study revealed that MTHSWD improved the severity of AS, protected the vascular structure, increased plaque stability and vessel patency. It also significantly reduced vascular cell apoptosis, platelet aggregation, and the presence of inflammatory cells such as neutrophils (NEUs), as well as the expression of neutrocyte elastase (NE) and myeloperoxidase (MPO), which are components of NETs. Subsequently, NEUs studies have shown that MTHSWD not only significantly reduces the dsDNA content of NETs, but also lowers the expression of NETs components NE and citH3. NETs treating the human umbilical vein endothelial cells (HUVECs) demonstrated that NETs differentially increased the protein expression of endothelial inflammatory adhesion factors CD62P, VCAM-1 and ICAM-1, while significantly decreasing the viability of HUVECs. Pharmacological treatment discovered that MTHSWD significantly improved HUVECs viability impaired by NETs, and promoted the growth and proliferation of endothelial cells. Furthermore, it significantly reduced early and late apoptosis of HUVECs caused by NETs, decreased the expression of pro-apoptotic proteins BAX and Cleaved-Caspase-3, and increased the expression of anti-apoptotic protein Bcl-2. Thus, study suggests that MTHSWD may improve body weight, lipid levels, cardiac function, vigour, and the severity of AS in ApoE-/- AS mice. The novel effect of MTHSWD against AS may be attributed to the inhibition of endothelial injury and apoptosis through the regulation of NETs. This, in turn, reduces the levels of platelets, inflammatory cells, and components of NETs in AS plaques, achieving a benign cycle that protects endothelial cells and vascular structure and function. This result provides some clues and evidence for studying the mechanism of action and clinical application of MTHSWD and its active ingredients against AS.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Extracellular Traps/drug effects
- Extracellular Traps/metabolism
- Humans
- Male
- Mice
- Human Umbilical Vein Endothelial Cells
- Mice, Inbred C57BL
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Neutrophils/drug effects
- Neutrophils/immunology
- Apolipoproteins E/genetics
- Mice, Knockout
- Disease Models, Animal
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/pathology
- Mice, Knockout, ApoE
- Cells, Cultured
Collapse
Affiliation(s)
- Chang-le Shao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wan-Ting Meng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Chao Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Liu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Ning
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xin-Xin Hou
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hai-Dong Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Kim S, Jung UJ, Kim SR. Role of Oxidative Stress in Blood-Brain Barrier Disruption and Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:1462. [PMID: 39765790 PMCID: PMC11673141 DOI: 10.3390/antiox13121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Upregulation of reactive oxygen species (ROS) levels is a principal feature observed in the brains of neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). In these diseases, oxidative stress can disrupt the blood-brain barrier (BBB). This disruption allows neurotoxic plasma components, blood cells, and pathogens to enter the brain, leading to increased ROS production, mitochondrial dysfunction, and inflammation. Collectively, these factors result in protein modification, lipid peroxidation, DNA damage, and, ultimately, neural cell damage. In this review article, we present the mechanisms by which oxidative damage leads to BBB breakdown in brain diseases. Additionally, we summarize potential therapeutic approaches aimed at reducing oxidative damage that contributes to BBB disruption in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
| |
Collapse
|
14
|
Tang Y, Dong MH, Pang XW, Zhang H, Chu YH, Zhou LQ, Yang S, Zhang LY, You YF, Zhu LF, Wang W, Qin C, Tian DS. Macrophage exosomal miR-30c-2-3p in atherosclerotic plaques aggravates microglial neuroinflammation during large-artery atherosclerotic stroke via TGF-β/SMAD2 pathway. J Neuroinflammation 2024; 21:292. [PMID: 39511683 PMCID: PMC11545805 DOI: 10.1186/s12974-024-03281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Circulating miR-30c-2-3p has been closely related to vascular diseases, however, its role and underlying mechanisms in ischemic stroke remained unclear. Our study addressed this gap by observing elevated levels of exosomal miR-30c-2-3p in patients with acute ischemic stroke due to large artery atherosclerosis. Further investigation revealed that these exosomal miR-30c-2-3p primarily originated from macrophages within atherosclerotic plaques, exacerbating ischemic stroke by targeting microglia. Exosomes enriched with miR-30c-2-3p increased microglial inflammatory properties in vivo and aggravated neuroinflammation by inhibiting SMAD2. In summary, our findings revealed a novel mechanism whereby macrophage-derived foam cells within atherosclerotic plaques secrete exosomes with high levels of miR-30c-2-3p, thus aggravate brain damage during ischemic stroke, which serves as crucial link between the periphery and brain.
Collapse
Affiliation(s)
- Yue Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Hang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China.
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, People's Republic of China.
| |
Collapse
|
15
|
Zhang Z, Gao J, Wang J, Mi Z, Li H, Dai Z, Pan Y, Dong J, Chen S, Lu S, Tan X, Chen H. Mechanism of Zhishi Xiebai Guizhi decoction to treat atherosclerosis: Insights into experiments, network pharmacology and molecular docking. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118466. [PMID: 38885915 DOI: 10.1016/j.jep.2024.118466] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhishi Xiebai Guizhi Decoction (ZSXBGZD) is a traditional herbal manuscript used to treat cardiovascular disease, including atherosclerosis and coronary heart disease. The decoction has demonstrated its capability to protect arteries and resist atherosclerosis. Its mechanisms for anti-atherosclerosis effect, nevertheless, remain unknown. AIMS OF THE STUDY The goal of the present study is to explore the effectiveness of ZSXBGZD acting on atherosclerosis and its key components based on experimental verification and network pharmacology analysis. MATERIALS AND METHODS The ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and databases were used to identify chemical components in ZSXBGZD. Network pharmacological analysis and molecular docking were implemented in order to reveal the possible therapeutic targets of ZSXBGZD. To form the model of atherosclerosis, we gave Apolipoprotein E knocked out mice a high-fat diet. H&E staining was performed to observe the effects of ZSXBGZD on atherosclerosis. Immunofluorescence and Western blot were used to investigate whether ZSXBGZD could affect autophagy, apoptosis, AGE-RAGE signaling pathway and other related mechanisms. RESULTS In total, 30 core compounds were screened through intersecting UPLC-Q-TOF-MS and the databases. The anti-atherosclerotic effect of ZSXBGZD might relate to the AGE-RAGE signaling pathway via network pharmacology analysis. ZSXBGZD could inhibit apoptosis, activate autophagy and ease inflammation by modifying AGE-RAGE signaling pathway to reduce the area of atherosclerotic plaque. CONCLUSION ZSXBGZD could treat atherosclerosis by regulating autophagy and apoptosis via adjusting the AGE-RAGE signaling pathway.
Collapse
Affiliation(s)
- Zhuojun Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Jin Gao
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Junpeng Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zishuo Mi
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Haoyang Li
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhicen Dai
- School of Health Economics and Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujing Pan
- School of Public Administration, Hohai University, Nanjing, 210000, China
| | - Jiming Dong
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Sihan Chen
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shu Lu
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Xiaodong Tan
- Department of Cardiovascular, Wuxi Hospital of Traditional Chinese Medicine, Wuxi, 214000, China.
| | - Hao Chen
- School of Acupuncture and Massage, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
16
|
Atkin-Smith GK, Santavanond JP, Light A, Rimes JS, Samson AL, Er J, Liu J, Johnson DN, Le Page M, Rajasekhar P, Yip RKH, Geoghegan ND, Rogers KL, Chang C, Bryant VL, Margetts M, Keightley MC, Kilpatrick TJ, Binder MD, Tran S, Lee EF, Fairlie WD, Ozkocak DC, Wei AH, Hawkins ED, Poon IKH. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat Commun 2024; 15:8802. [PMID: 39438460 PMCID: PMC11496675 DOI: 10.1038/s41467-024-52867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Endothelial cells are integral components of all vasculature within complex organisms. As they line the blood vessel wall, endothelial cells are constantly exposed to a variety of molecular factors and shear force that can induce cellular damage and stress. However, how endothelial cells are removed or eliminate unwanted cellular contents, remains unclear. The generation of large extracellular vesicles (EVs) has emerged as a key mechanism for the removal of cellular waste from cells that are dying or stressed. Here, we used intravital microscopy of the bone marrow to directly measure the kinetics of EV formation from endothelial cells in vivo under homoeostatic and malignant conditions. These large EVs are mitochondria-rich, expose the 'eat me' signal phosphatidylserine, and can interact with immune cell populations as a potential clearance mechanism. Elevated levels of circulating EVs correlates with degradation of the bone marrow vasculature caused by acute myeloid leukaemia. Together, our study provides in vivo spatio-temporal characterization of EV formation in the murine vasculature and suggests that circulating, large endothelial cell-derived EVs can provide a snapshot of vascular damage at distal sites.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| | - Jascinta P Santavanond
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Er
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joy Liu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Mélanie Le Page
- ARAFlowCore, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Raymond K H Yip
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Chang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mai Margetts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Cristina Keightley
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Walter D Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Fang X, Zhang Y, Zhang Y, Guan H, Huang X, Miao R, Yin R, Tian J. Endothelial extracellular vesicles: their possible function and clinical significance in diabetic vascular complications. J Transl Med 2024; 22:944. [PMID: 39415278 PMCID: PMC11481601 DOI: 10.1186/s12967-024-05760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024] Open
Abstract
Diabetic vascular complications attract increased attention due to their high morbidity, mortality and disability rate. Comprehensive and in-depth exploration of the etiology and pathogenesis of diabetic vascular complications is important for diagnosis and treatment. Endothelial extracellular vesicles (EVs) serve as potential intercellular communicators, transmitting biological information from the donor cell to the recipient cell, exerting both harmful and beneficial effects on vascular function. Endothelial EVs are new diagnostic and therapeutic targets and biomarkers in diabetic vascular complications. This review summarizes the biogenesis and release of endothelial EVs, as well as isolation and characterization methods, and discusses the role of endothelial EVs in the maintenance of vascular homeostasis along with their contributions to vascular dysfunction. Finally, the article illustrates the impact of endothelial EVs on the pathogenesis of diabetic vascular complications and evaluates their potential as therapeutic tools and diagnostic markers in diabetic vascular complications.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Huifang Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Jilin, 130117, China
| | - Xinyue Huang
- First Clinical Medical College, Changzhi Medical College, Shanxi, 046013, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
- Graduate College, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China.
| |
Collapse
|
18
|
Cao X, Yang J, He L, Liu C. Circ_0005699 Expedites ox-LDL-Triggered Endothelial Cell Injury via Targeting miR-384/ASPH Axis. Cardiovasc Toxicol 2024; 24:1067-1076. [PMID: 38976139 DOI: 10.1007/s12012-024-09889-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/30/2024] [Indexed: 07/09/2024]
Abstract
Atherosclerosis (AS) is an inflammatory disease with multiple causes. Multiple circular RNAs (circRNAs) are known to be involved in the pathogenesis of AS. To explore the function and mechanism of circ_0005699 in oxidative low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) injury. Ox-LDL treatment restrained HUVECs viability, cell proliferation, and angiogenesis ability, and accelerated HUVECs apoptosis, inflammatory response, and oxidative stress. Circ_0005699 was up-regulated in the serum samples of AS patients and ox-LDL-induced HUVECs. Interference of circ_0005699 effectively rescued ox-LDL-induced injury in HUVECs. Additionally, miR-384 could bind to circ_0005699, and miR-384 depletion inverted the effects of circ_0005699 deficiency on ox-LDL-mediated HUVEC injury. Moreover, ASPH was a direct target of miR-384, and the enforced expression of ASPH overturned miR-384-induced effects on ox-LDL-induced HUVECs. Importantly, circ_0005699 regulated ASPH expression via sponging miR-384. Interference of circ_0005699 protected against ox-LDL-induced injury in HUVECs at least partly by regulating ASPH expression via acting as a miR-384 sponge.
Collapse
Affiliation(s)
- Xiaobiao Cao
- Department of Internal Medicine, Chinese People Liberation Army (PLA) 93864 Military Hospital, Changji, China
| | - Jun Yang
- Department of Neurology, Chinese PLA Xinjiang Military Region General Hospital, Urumqi, China
| | - Lujun He
- Department of Burn and Plastic Surgery, Chinese PLA Xinjiang Military Region General Hospital, Urumqi, China
| | - Cangcang Liu
- Department of Ophthalmology, Xinjiang 474 Hospital, No. 754, Beijing Middle Road, Xinshi District, Urumqi, 830000, China.
| |
Collapse
|
19
|
Tian Y, Liu YF, Wang YY, Li YZ, Ding WY, Zhang C. Molecular mechanisms of PTEN in atherosclerosis: A comprehensive review. Eur J Pharmacol 2024; 979:176857. [PMID: 39094923 DOI: 10.1016/j.ejphar.2024.176857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/17/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease of the arterial wall caused by an imbalance of lipid metabolism and a maladaptive inflammatory response. A variety of harmful cellular changes associated with atherosclerosis include endothelial dysfunction, the migration of circulating inflammatory cells to the arterial wall, the production of proinflammatory cytokines, lipid buildup in the intima, local inflammatory responses in blood vessels, atherosclerosis-associated apoptosis, and autophagy. PTEN inhibits the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT)/mammalian target of rapamycin (mTOR) pathway through its lipid phosphatase activity. Previous studies have shown that PTEN is closely related to atherosclerosis. This article reviews the role of PTEN in atherosclerosis from the perspectives of autophagy, apoptosis, inflammation, proliferation, and angiogenesis.
Collapse
Affiliation(s)
- Yuan Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yi-Fan Liu
- Research Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yan-Yue Wang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Yong-Zhen Li
- Department of Pathology, The First People's Hospital of Zigong, Zigong, China, 643099, People's Republic of China
| | - Wen-Yan Ding
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Chi Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan province, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, People's Republic of China.
| |
Collapse
|
20
|
Long H, Yu Y, Ouyang J, Lu H, Zhao G. Insights into RNA N6-methyladenosine and programmed cell death in atherosclerosis. Mol Med 2024; 30:137. [PMID: 39227813 PMCID: PMC11373444 DOI: 10.1186/s10020-024-00901-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
N6-methyladenosine (m6A) modification stands out among various RNA modifications as the predominant form within eukaryotic cells, influencing numerous cellular processes implicated in disease development. m6A modification has gained increasing attention in the development of atherosclerosis and has become a research hotspot in recent years. Programmed cell death (PCD), encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis, plays a pivotal role in atherosclerosis pathogenesis. In this review, we delve into the intricate interplay between m6A modification and diverse PCD pathways, shedding light on their complex association during the onset and progression of atherosclerosis. Clarifying the relationship between m6A and PCD in atherosclerosis is of great significance to provide novel strategies for cardiovascular disease treatment.
Collapse
Affiliation(s)
- Haijiao Long
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yulu Yu
- Afliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, Guangdong, China
| | - Jie Ouyang
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hongwei Lu
- Health Management Center, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
- Department of Cardiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Guojun Zhao
- Afliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, Guangdong, China.
| |
Collapse
|
21
|
Bayyurt B, Akın Ş, Özbilüm Şahin N, Yelkuvan İ. Association between NKILA and some apoptotic gene expression in atherosclerosis. PeerJ 2024; 12:e17915. [PMID: 39184397 PMCID: PMC11344533 DOI: 10.7717/peerj.17915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Oxidized light-density lipoprotein (ox-LDL) causes endothelial dysfunction, which is an important determinant of atherogenesis, and subsequently leads to apoptosis. Atherosclerosis is one of the most significant cardiovascular diseases (CVDs) threatening human health and causes death worldwide. Recently, long noncoding RNAs (lncRNAs) have been suggested to involved in vascular biology. Ox-LDL activates nuclear factor kappa-B (NF-κB), and NF-κB interacting lncRNA (NKILA) inhibits NF-κB signaling. In this study, the hypothesis is that NKILA may regulate endothelial cell (EC) apoptosis and, therefore, play a role in the pathogenesis of atherosclerosis. This hypothesis is based on the knowledge that EC apoptosis contributes to atherosclerosis development and that NKILA has become a prominent lncRNA in CVDs. The expression of Bcl-2-associated X protein (BAX), caspase 9 (CASP9), cytochrome c (Cyt c, CYCS), apoptotic protease activating factor 1 (APAF1), and B-cell lymphoma 2 (BCL-2) genes in human umbilical vein endothelial cells (HUVEC) treated with ox-LDL and transfected with NKILA siRNA was analyzed using quantitative reverse transcription polymerase chain reaction (RT-qPCR). BAX, CASP9, CYCS, APAF1, and BCL-2 gene expression was downregulated in ox-LDL and NKILA siRNA-treated HUVEC. In addition, when threshold/quantification cycle (Cq) values of NKILA gene expression increased, Cq values of BAX, CASP9, APAF1, and BCL-2 gene expression increased statistics significantly. The expression detection of all these genes, resulting from NKILA gene silencing, may provide guidance for epigenetic studies on EC apoptosis in atherosclerosis.
Collapse
Affiliation(s)
- Burcu Bayyurt
- Department of Medical Biology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Şeyda Akın
- Department of Medical Biology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Nil Özbilüm Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, Turkey
| | - İzzet Yelkuvan
- Department of Medical Biology, Faculty of Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
22
|
Xiong C, Tang Y, Li F, Ye Y, Li X, Lin J, Dai S. 3,3'-Diindolylmethane inhibits the proliferation of esophageal squamous cell carcinoma cells via downregulation of STIM1. Oncol Lett 2024; 28:339. [PMID: 38855503 PMCID: PMC11157662 DOI: 10.3892/ol.2024.14473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/15/2024] [Indexed: 06/11/2024] Open
Abstract
3,3'-Diindolylmethane (DIM) is a natural phytochemical derived from cruciferous plants that has inhibitory effects on a wide range of tumor cells; however, its relevant effects on esophageal cancer cells have been poorly studied. Therefore, in the present study, a pharmacology network approach was used to predict the possible core targets of DIM acting on esophageal cancer. Subsequently, using in vitro experiments, TE-1 human esophageal cancer cells were treated with different concentrations of DIM (0, 40, 60 and 80 µM) for 24 h. Changes in cell activity were detected by Cell Counting Kit-8 assay, and changes in the expression levels of stromal interaction molecule 1 (STIM1) and apoptosis-related proteins, B-cell lymphoma-2 (Bcl-2) and Bax, were assessed by western blotting, followed by the upregulation of STIM1 by thapsigargin (Tg). Network pharmacology analysis showed that there were 39 potential core targets of DIM in esophageal cancer. The results of the in vitro experiments showed that DIM could inhibit the viability of esophageal cancer cells, downregulate the expression of STIM1 and Bcl-2 proteins and upregulate the expression of Bax protein, all in a concentration-dependent manner. The results also demonstrated that toxic carotenoids were agonist against STIM1 protein and upregulated STIM1 and Bax protein expression. After agonizing STIM1 protein expression using Tg, DIM was able to counteract the expression trend of STIM1, Bcl-2 and Bax protein in TE-1 cells. In summary, DIM induced apoptosis and inhibited the viability of esophageal cancer cells by downregulating the expression of STIM1 protein; therefore, the natural phytochemical, DIM, may be a potential substance for the early prevention and treatment of esophageal cancer cells.
Collapse
Affiliation(s)
- Chenyi Xiong
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Yining Tang
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaoran Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Jinxing Lin
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Sunxian Dai
- Cell Medicine Laboratory, School of Medicine, Soochow University, Soochow, Jiangsu 215000, P.R. China
| |
Collapse
|
23
|
Sukhnanan K, Ross JR, Chao NJ, Chen BJ. Endothelial Cell Derived Extracellular Vesicles and Hematopoiesis. Radiat Res 2024; 202:215-226. [PMID: 38918003 DOI: 10.1667/rade-24-00039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.
Collapse
Affiliation(s)
| | - Joel R Ross
- Department of Medicine, Duke University, Durham, North Carolina
| | - Nelson J Chao
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Pathology, Duke University, Durham, North Carolina
- Department of Immunology, Duke University, Durham, North Carolina
- Duke Cancer Institute, Duke University, Durham, North Carolina
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Benny J Chen
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Immunology, Duke University, Durham, North Carolina
- Duke Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina
- Duke Regeneration Center, Duke University, Durham, North Carolina
| |
Collapse
|
24
|
Zuo C, Cai L, Li Y, Ding C, Liu G, Zhang C, Wang H, Zhang Y, Ji M. The Molecular Mechanism of Radix Paeoniae Rubra.-Cortex Moutan. Herb Pair in the Treatment of Atherosclerosis: A Work Based on Network Pharmacology and In Vitro Experiments. Cardiovasc Toxicol 2024; 24:800-817. [PMID: 38951468 DOI: 10.1007/s12012-024-09881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/10/2024] [Indexed: 07/03/2024]
Abstract
Radix Paeoniae Rubra. (Chishao, RPR) and Cortex Moutan. (Mudanpi, CM) are a pair of traditional Chinese medicines that play an important role in the treatment of atherosclerosis (AS). The main objective of this study was to identify potential synergetic function and underlying mechanisms of RPR-CM in the treatment of AS. The main active ingredients, targets of RPR-CM and AS-related genes were obtained from public databases. A Venn diagram was utilized to screen the common targets of RPR-CM in treating AS. The protein-protein interaction network was established based on STRING database. Biological functions and pathways of potential targets were analyzed through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Cytoscape was used to construct the drug-compound-target-signal pathway network. Molecular docking was performed to verify the binding ability of the bioactive ingredients and the target proteins. The endothelial inflammation model was constructed with human umbilical vein endothelial cells stimulated with ox-LDL, and the function of RPR-CM in treating AS was verified by CCK-8 assay, enzyme-linked immunosorbent assay, and qPCR. In this study, 12 active components and 401 potential target genes of RPR-CM were identified, among which quercetin, kaempferol and baicalein were considered to be the main active components. A total of 1903 AS-related genes were identified through public databases and four GEO datasets (GSE57691, GSE72633, GSE6088 and GSE199819). There are 113 common target genes of RPR-CM in treating AS. PPI network analysis identified 17 genes in cluster 1 as the core targets. Bioinformatics analysis showed that RPR-CM in AS treatment was associated with multiple downstream biological processes and signal pathways. PTGS2, JUN, CASP3, TNF, IL1B, IL6, FOS, STAT1 were identified as the core targets of RPR-CM, and molecular docking showed that the main bioactive components of RPR-CM had good binding ability with the core targets. RPR-CM extract significantly inhibited the levels of inflammatory factors TNF-α, IL-6, IL-1β, MCP-1, VCAM-1 and ICAM-1 in HUVECs, and inhibited endothelial inflammation. This study revealed the active ingredients of RPR-CM, and identified the key downstream targets and signaling pathways in the treatment of AS, providing theoretical basis for the application of RPR-CM in prevention and treatment of AS.
Collapse
Affiliation(s)
- Caojian Zuo
- Department of Cardiology, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Lianshui County, No 6, Hongri East Avenue, Huai'an, 223400, Jiangsu, China.
- Department of Cardiology, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China.
| | - Lidong Cai
- Department of Cardiology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Ya Li
- Department of Cardiology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Chencheng Ding
- Department of Cardiology, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Guiying Liu
- Department of Cardiology, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Changmei Zhang
- Department of Cardiology, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Hexiang Wang
- Department of Cardiology, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Yang Zhang
- Department of Cardiology, Shanghai Deji Hospital, Qingdao University, Shanghai, 200331, China
| | - Mingyue Ji
- Department of Cardiology, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Lianshui County, No 6, Hongri East Avenue, Huai'an, 223400, Jiangsu, China
| |
Collapse
|
25
|
Al-Kuraishy HM, Al-Gareeb AI, Elekhnawy E, Batiha GES. Possible role of LCZ696 in atherosclerosis: new inroads and perspective. Mol Cell Biochem 2024; 479:1895-1908. [PMID: 37526794 DOI: 10.1007/s11010-023-04816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/15/2023] [Indexed: 08/02/2023]
Abstract
LCZ696 blocks both angiotensin receptor type 1 (ATR1) and neprilysin (NEP), which are intricate in the degradation of natriuretic peptides (NPs) and other endogenous peptides. It has been shown NEP inhibitors and LCZ696 could be effectively in the management of atherosclerosis (AS). However, the underlying mechanism of LCZ696 in AS is needed to be clarified entirely. Hence, this review is directed to reconnoiter the mechanistic role of LCZ696 in AS. The anti-inflammatory role of LCZ696 is related to the inhibition of transforming growth factor beta (TGF-β)-activated kinase 1 (TAK) and nod-like receptor pyrin 3 receptor (NLRP3) inflammasome. Moreover, LCZ696, via inhibition of pro-inflammatory cytokines, oxidative stress, apoptosis and endothelial dysfunction can attenuate the development and progression of AS. In conclusion, LCZ696 could be effective in the management of AS through modulation of inflammatory and oxidative signaling. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, AL-Mustansiriyia University, Baghdad, Iraq
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AL Beheira, Egypt.
| |
Collapse
|
26
|
Chen DX, Lu CH, Na N, Yin RX, Huang F. Endothelial progenitor cell-derived extracellular vesicles: the world of potential prospects for the treatment of cardiovascular diseases. Cell Biosci 2024; 14:72. [PMID: 38840175 DOI: 10.1186/s13578-024-01255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/28/2024] [Indexed: 06/07/2024] Open
Abstract
Cardiovascular diseases (CVDs) have emerged as a predominant threat to human health, surpassing the incidence and mortality rates of neoplastic diseases. Extracellular vesicles (EVs) serve as vital mediators in intercellular communication and material exchange. Endothelial progenitor cells (EPCs), recognized as precursors of vascular endothelial cells (ECs), have garnered considerable attention in recent years due to the potential therapeutic value of their derived extracellular vesicles (EPC-EVs) in the context of CVDs. This comprehensive review systematically explores the origins, characteristics, and functions of EPCs, alongside the classification, properties, biogenesis, and extraction techniques of EVs, with particular emphasis on their protective roles in CVDs. Additionally, we delve into the essential bioactive components of EPC-EVs, including microRNAs, long non-coding RNAs, and proteins, analyzing their beneficial effects in promoting angiogenesis, anti-inflammatory and anti-oxidant activities, anti-fibrosis, anti-apoptosis, and myocardial regeneration. Furthermore, this review comprehensively investigates the therapeutic potential of EPC-EVs across various CVDs, encompassing acute myocardial infarction, myocardial ischemia-reperfusion injury, atherosclerosis, non-ischemic cardiomyopathies, and diabetic cardiovascular disease. Lastly, we summarize the potential challenges associated with the clinical application of EPC-EVs and outline future directions, aiming to offer a valuable resource for both theoretical insights and practical applications of EPC-EVs in managing CVDs.
Collapse
Affiliation(s)
- De-Xin Chen
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Chuang-Hong Lu
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Na Na
- Department of Neuroscience, Scripps Research Institute, No.10550 North Torrey Pines Road, La Jolla, San Diego, CA, 92037, USA
| | - Rui-Xing Yin
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Feng Huang
- Department of Cardiology & Guangxi Key Laboratory of Precision Medicine in Cardio-cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
27
|
Li JN, Wang MY, Tan YR, Wang LL. Multidirectional Intervention of Chinese Herbal Medicine in the Prevention and Treatment of Atherosclerosis: From Endothelial Protection to Immunomodulation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:925-947. [PMID: 38798151 DOI: 10.1142/s0192415x24500381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Atherosclerosis is a significant risk factor for developing cardiovascular disease and a leading cause of death worldwide. The occurrence of atherosclerosis is closely related to factors such as endothelial injury, lipid deposition, immunity, and inflammation. Conventional statins, currently used in atherosclerosis treatment, have numerous adverse side effects that limit their clinical utility, prompting the urgent need to identify safer and more effective therapeutic alternatives. Growing evidence indicates the significant potential of Chinese herbs in atherosclerosis treatment. Herbal monomer components, such as natural flavonoid compounds extracted from herbs like Coptis chinensis and Panax notoginseng, have been utilized for their lipid-lowering and inflammation-inhibiting effects in atherosclerosis treatment. These herbs can be used as single components in treating diseases and with other Chinese medicines to form herbal combinations. This approach targets the disease mechanism in multiple ways, enhancing the therapeutic effects. Thus, this review examines the roles of Chinese herbal medicine monomers and Chinese herbal compounds in inhibiting atherosclerosis, including regulating lipids, improving endothelial function, reducing oxidative stress, regulating inflammation and the immune response, and apoptosis. By highlighting these roles, our study offers new perspectives on atherosclerosis treatment with Chinese herbs and is anticipated to contribute to advancements in related research fields.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Meng-Yu Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Yu-Rong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| | - Li-Li Wang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Xiangya Road 88, Changsha 410078, Hunan, P. R. China
| |
Collapse
|
28
|
Liu X, Zheng T, Zhang Y, Zhao Y, Liu F, Dai S, Zhang M, Zhang W, Zhang C, Zhang M, Li X. Endothelial Dickkopf-1 Promotes Smooth Muscle Cell-derived Foam Cell Formation via USP53-mediated Deubiquitination of SR-A During Atherosclerosis. Int J Biol Sci 2024; 20:2943-2964. [PMID: 38904030 PMCID: PMC11186357 DOI: 10.7150/ijbs.91957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/27/2024] [Indexed: 06/22/2024] Open
Abstract
Background: Shear stress-induced Dickkopf-1 (DKK1) secretion by endothelial cells (ECs) promotes EC dysfunction and accelerates atherosclerosis (AS). However, the paracrine role of endothelial DKK1 in modulating adjacent smooth muscle cells (SMCs) in atherosclerosis remains unclear. This study investigated the role of EC-secreted DKK1 in SMC-derived foam cell formation under shear stress, in vitro and in vivo. Methods: Parallel-plate co-culture flow system was used to explore the cellular communication between ECs and SMCs under shear stress in vitro. Endothelium-specific knockout of DKK1 (DKK1ECKO/APOE-/-) and endothelium-specific overexpression of DKK1 (DKK1ECTg) mice were constructed to investigate the role of endothelial DKK1 in atherosclerosis and SMC-derived foam cell formation in vivo. RNA sequencing (RNA-seq) was used to identify the downstream targets of DKK1. Reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blot, coimmunoprecipitation (Co-IP) assays and chromatin immunoprecipitation (ChIP) experiments were conducted to explore the underlying regulatory mechanisms. Results: DKK1 is transcriptionally upregulated in ECs under conditions of low shear stress, but not in co-cultured SMCs. However, DKK1 protein in co-cultured SMCs is increased via uptake of low shear stress-induced endothelial DKK1, thereby promoting lipid uptake and foam cell formation in co-cultured SMCs via the post-translational upregulation of scavenger receptor-A (SR-A) verified in parallel-plate co-culture flow system, DKK1ECKO and DKK1ECTg mice. RNA sequencing revealed that DKK1-induced SR-A upregulation in SMCs is dependent on Ubiquitin-specific Protease 53 (USP53), which bound to SR-A via its USP domain and cysteine at position 41, exerting deubiquitination to maintain the stability of the SR-A protein by removing the K48 ubiquitin chain and preventing proteasomal pathway degradation, thereby mediating the effect of DKK1 on lipid uptake in SMCs. Moreover, DKK1 regulates the transcription of USP53 by facilitating the binding of transcription factor CREB to the USP53 promoter. SMC-specific overexpression of USP53 via adeno-associated virus serotype 2 vectors in DKK1ECKO/APOE-/- mice reversed the alleviation of atherosclerotic plaque burden, SR-A expression and lipid accumulation in SMCs within plaques resulting from DKK1 deficiency. Conclusions: Our findings demonstrate that, endothelial DKK1, induced by pathological low shear stress, acts as an intercellular mediator, promoted the foam cell formation of SMCs. These results suggest that targeted intervention with endothelial DKK1 may confer beneficial effects on atherosclerosis.
Collapse
Affiliation(s)
- Xiaolin Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Tengfei Zheng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yachao Zhao
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fengming Liu
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shen Dai
- Department of Physiology & Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Meng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Martins B, Pires M, Ambrósio AF, Girão H, Fernandes R. Contribution of extracellular vesicles for the pathogenesis of retinal diseases: shedding light on blood-retinal barrier dysfunction. J Biomed Sci 2024; 31:48. [PMID: 38730462 PMCID: PMC11088087 DOI: 10.1186/s12929-024-01036-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Retinal degenerative diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), loom as threats to vision, causing detrimental effects on the structure and function of the retina. Central to understanding these diseases, is the compromised state of the blood-retinal barrier (BRB), an effective barrier that regulates the influx of immune and inflammatory components. Whether BRB breakdown initiates retinal distress, or is a consequence of disease progression, remains enigmatic. Nevertheless, it is an indication of retinal dysfunction and potential vision loss.The intricate intercellular dialogues among retinal cell populations remain unintelligible in the complex retinal milieu, under conditions of inflammation and oxidative stress. The retina, a specialized neural tissue, sustains a ceaseless demand for oxygen and nutrients from two vascular networks. The BRB orchestrates the exchange of molecules and fluids within this specialized region, comprising the inner BRB (iBRB) and the outer BRB (oBRB). Extracellular vesicles (EVs) are small membranous structures, and act as messengers facilitating intercellular communication in this milieu.EVs, both from retinal and peripheral immune cells, increase complexity to BRB dysfunction in DR and AMD. Laden with bioactive cargoes, these EVs can modulate the retinal microenvironment, influencing disease progression. Our review delves into the multifaceted role of EVs in retinal degenerative diseases, elucidating the molecular crosstalk they orchestrate, and their microRNA (miRNA) content. By shedding light on these nanoscale messengers, from their biogenesis, release, to interaction and uptake by target cells, we aim to deepen the comprehension of BRB dysfunction and explore their therapeutic potential, therefore increasing our understanding of DR and AMD pathophysiology.
Collapse
Affiliation(s)
- Beatriz Martins
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - Maria Pires
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
| | - António Francisco Ambrósio
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal
| | - Henrique Girão
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal
| | - Rosa Fernandes
- University Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, 3000- 548, Portugal.
- University of Coimbra, Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, 3000-548, Portugal.
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, 3004-531, Portugal.
- Clinical Academic Center of Coimbra (CACC), Coimbra, 3004-561, Portugal.
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548, Portugal.
| |
Collapse
|
30
|
Zhou ZY, Wu L, Liu YF, Tang MY, Tang JY, Deng YQ, Liu L, Nie BB, Zou ZK, Huang L. IRE1α: from the function to the potential therapeutic target in atherosclerosis. Mol Cell Biochem 2024; 479:1079-1092. [PMID: 37310588 DOI: 10.1007/s11010-023-04780-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Inositol requiring enzyme 1 (IRE1) is generally thought to control the most conserved pathway in the unfolded protein response (UPR). Two isoforms of IRE1, IRE1α and IRE1β, have been reported in mammals. IRE1α is a ubiquitously expressed protein whose knockout shows marked lethality. In contrast, the expression of IRE1β is exclusively restricted in the epithelial cells of the respiratory and gastrointestinal tracts, and IRE1β-knockout mice are phenotypically normal. As research continues to deepen, IRE1α was showed to be tightly linked to inflammation, lipid metabolism regulation, cell death and so on. Growing evidence also suggests an important role for IRE1α in promoting atherosclerosis (AS) progression and acute cardiovascular events through disrupting lipid metabolism balance, facilitating cells apoptosis, accelerating inflammatory responses and promoting foam cell formation. In addition, IRE1α was recognized as novel potential therapeutic target in AS prevention. This review provides some clues about the relationship between IRE1α and AS, hoping to contribute to further understanding roles of IRE1α in atherogenesis and to be helpful for the design of novel efficacious therapeutics agents targeting IRE1α-related pathways.
Collapse
Affiliation(s)
- Zheng-Yang Zhou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Li Wu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Yi-Fan Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Mu-Yao Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jing-Yi Tang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Anaesthesiology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ya-Qian Deng
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Lei Liu
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Bin-Bin Nie
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zi-Kai Zou
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Clinical Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Liang Huang
- The Laboratory of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
31
|
Cappe B, Vandenabeele P, Riquet FB. A guide to the expanding field of extracellular vesicles and their release in regulated cell death programs. FEBS J 2024; 291:2068-2090. [PMID: 37872002 DOI: 10.1111/febs.16981] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Homeostasis disruption is visible at the molecular and cellular levels and may often lead to cell death. This vital process allows us to maintain the more extensive system's integrity by keeping the different features (genetic, metabolic, physiologic, and individual) intact. Interestingly, while cells can die in different manners, dying cells still communicate with their environment. This communication was, for a long time, perceived as only driven by the release of soluble factors. However, it has now been reconsidered with the increasing interest in extracellular vesicles (EVs), which are discovered to be released during different regulated cell death programs, with the observation of specific effects. EVs are game changers in the paradigm of cell-cell communication with tremendous implications in fundamental research with regard to noncell autonomous functions, as well as in biomarkers research, all of which are geared toward diagnostic and therapeutic purposes. This review is composed of two main parts. The first is a comprehensive presentation of the state of the art of the EV field at large. In the second part, we focus on EVs discovered to be released during different regulated cell death programs, also known as cell death EVs (cdEVs), and EV-associated specific effects on recipient cells in the context of cell death and inflammation/inflammatory responses.
Collapse
Affiliation(s)
- Benjamin Cappe
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research (IRC), Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- University of Lille, CNRS, UMR 8523 - PhLAM - Physique des Lasers Atomes et Molécules, France
| |
Collapse
|
32
|
Xu X, Yu D, Wang Y, Xu P, Jiang X, Lu F, Liu S. Integrating network pharmacology and renal metabonomics to reveal the protective mechanism of resveratrol on gouty nephropathy. Biomed Chromatogr 2024; 38:e5839. [PMID: 38402638 DOI: 10.1002/bmc.5839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 02/27/2024]
Abstract
Resveratrol (Res) has been demonstrated to have beneficial effects on gouty nephropathy (GN). However, the mechanisms of Res on GN remain unclear. This study aimed to investigate the mechanisms of Res on GN. In this study, network pharmacology technology was used to predict the Res targets in the prevention and treatment of GN. Renal metabonomics was used to identify differential metabolites in kidney tissue of GN model rats. Finally, molecular docking technology was used to verify the binding ability of Res to key targets. Metabonomics analysis showed that 24 potentially important metabolites were involved in the prevention and treatment of GN with Res. After exposure to Res, metabolite levels normalized. The network pharmacology analysis showed that 24 key targets were involved in the prevention and treatment of GN disease. According to the metabolite-gene network diagram, we identified two core genes, PTGS1 and PTGS2, and found that both were involved in the arachidonic acid metabolism pathway. Molecular docking further verified the affinity of Res binding to PTGS1 and PTGS2. In conclusion, the mechanism of Res against GN may be the regulation of arachidonic acid metabolism through the regulation of PTGS 1 and PTGS 2.
Collapse
Affiliation(s)
- Xiaomin Xu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Donghua Yu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Yu Wang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Peng Xu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Xin Jiang
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Fang Lu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Shumin Liu
- Research Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| |
Collapse
|
33
|
Garcia LFC, Wowk PF, Albrecht L. Unraveling the Impact of Extracellular Vesicle-Depleted Serum on Endothelial Cell Characteristics over Time. Int J Mol Sci 2024; 25:4761. [PMID: 38731980 PMCID: PMC11084606 DOI: 10.3390/ijms25094761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are produced by all kinds of cells, including endothelial cells. It has been observed that EVs present in fetal bovine serum (FBS), broadly used in cell culture, can be a confounding factor and lead to misinterpretation of results. To investigate this phenomenon, human brain microvascular endothelial cells (HBMECs) were cultured for 2 or 24 h in the presence of EV-depleted FBS (EVdS). Cell death, gene and protein expression, and the presence of EVs isolated from these cells were evaluated. The uptake of EVs, intercellular adhesion molecule 1 (ICAM-1) expression, and monocyte adhesion to endothelial cells exposed to EVs were also evaluated. Our results revealed higher apoptosis rates in cells cultured with EVdS for 2 and 24 h. There was an increase in interleukin 8 (IL8) expression after 2 h and a decrease in interleukin 6 (IL6) and IL8 expression after 24 h of culture. Among the proteins identified in EVs isolated from cells cultured for 2 h (EV2h), several were related to ribosomes and carbon metabolism. EVs from cells cultured for 24 h (EV24h) presented a protein profile associated with cell adhesion and platelet activation. Additionally, HBMECs exhibited increased uptake of EV2h. Treatment of endothelial cells with EV2h resulted in greater ICAM-1 expression and greater adherence to monocytes than did treatment with EV24h. According to our data, HBMEC cultivated with EVdS produce EVs with different physical characteristics and protein levels that vary over time.
Collapse
Affiliation(s)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, PR, Brazil;
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, ICC-Fiocruz-PR, Curitiba 81350-010, PR, Brazil;
| |
Collapse
|
34
|
Kalinin R, Suchkov I, Klimentova E. Influence of nitric oxide metabolites and markers of apoptosis on restenosis of the reconstruction zone after hybrid interventions. RUSSIAN JOURNAL OF CARDIOLOGY AND CARDIOVASCULAR SURGERY 2024; 17:14. [DOI: 10.17116/kardio20241701114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Objective. To evaluate the markers of apoptosis and nitric oxide metabolites in patients with peripheral artery disease (PAD) after hybrid interventions; to estimate the influence of these indicators on postoperative restenosis. Material and methods. The study enrolled 30 patients with PAD stage IIB—III (mean age 68.3±4.2 years) who underwent hybrid procedures. We analyzed the markers of apoptosis (sFas, Bcl-2) and endothelial dysfunction (nitric oxide (NO)) metabolites at various times of perioperative period. Results. Nine out of 30 patients developed restenosis after 12 [10; 13] months. In the first hours after surgery, patients with restenosis had more obvious decrease in level of Bcl-2 (p=0.002), on the 1st day — Bcl-2 (p=0.0002) and NO (p=0.002), after a month — NO (p=0.019). After 7 days, Bcl-2 (p<0.01) and NO (p<0.01) significantly increased in patients without restenosis, after 14 days — NO (p<0.01). After 21 days, sFas decreased (p=0.01) in patients without this complication. Conclusion. Hybrid intervention activates the markers of various pathways of apoptosis affecting endothelial dysfunction. Bcl-2≤1.82 ng/ml within the first hours, NO≤240.4 mmol/ml after 14 days and sFas≥0.82 ng/ml after 21 days are associated with higher risk of restenosis.
Collapse
|
35
|
Krajcsir B, Pócsi M, Fejes Z, Nagy B, Kappelmayer J, Beke Debreceni I. Ponatinib Induces a Procoagulant Phenotype in Human Coronary Endothelial Cells via Inducing Apoptosis. Pharmaceutics 2024; 16:559. [PMID: 38675220 PMCID: PMC11055157 DOI: 10.3390/pharmaceutics16040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BCR-ABL tyrosine kinase inhibitors (TKIs) are effective drugs in the treatment of patients with chronic myeloid leukemia. However, based on clinical studies, ponatinib was associated with the development of thrombotic complications. Since endothelial cells (ECs) regulate blood coagulation, their abnormal phenotype may play a role in the development of thrombotic events. We here aimed to investigate the effect of ponatinib on the procoagulant activity of cultured endothelial cells in vitro. Human coronary artery endothelial cells (HCAECs) were incubated with 50, 150, and 1000 nM of ponatinib. Subsequently, phosphatidylserine (PS) exposure and endothelial microvesicles (EMVs) were measured by flow cytometry. In addition, EC- and EMV-dependent thrombin generation was analyzed. To investigate pro-apoptotic effects of ponatinib, the level of Bax and Bcl-xL proteins were studied using Western blot and F3, THBD, and VCAM1 mRNAs were quantified by qPCR. Therapeutic concentrations of ponatinib significantly increased PS expression on ECs and the amount of EMVs which significantly shortened the time parameters of thrombin generation. In addition, these changes were associated with an increased ratio of Bax and Bcl-xL proteins in the presence of the decreased THBD mRNA level. Overall, ponatinib enhances the procoagulant activity of ECs via inducing apoptosis, which may contribute to thrombotic events.
Collapse
Affiliation(s)
- Bálint Krajcsir
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
- Laki Kálmán Doctoral School, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Marianna Pócsi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Zsolt Fejes
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Béla Nagy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - János Kappelmayer
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| | - Ildikó Beke Debreceni
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (B.K.); (M.P.); (Z.F.); (J.K.)
| |
Collapse
|
36
|
Yu L, Dou G, Kuang H, Bao L, Liu H, Ye Q, Wang Z, Yang X, Ren L, Li Z, Liu H, Li B, Liu S, Ge S, Liu S. Apoptotic Extracellular Vesicles Induced Endothelial Cell-Mediated Autologous Stem Cell Recruitment Dominates Allogeneic Stem Cell Therapeutic Mechanism for Bone Repair. ACS NANO 2024; 18:8718-8732. [PMID: 38465955 DOI: 10.1021/acsnano.3c11050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Although stem cell therapy is proved to be a promising strategy for bone repair and regeneration, transplanted allogeneic stem cells generally suffer from unfavorable apoptosis instead of differentiation into osteocytes. How the apoptotic stem cells promote bone regeneration still needs to be uncovered. In this work, we found that apoptotic extracellular vesicles released by allogeneic stem cells are critical mediators for promoting bone regeneration. Based on the results of in vivo experiments, a mechanism of apoptotic stem cells determined autologous stem cell recruitment and enhance osteogenesis was proposed. The nanoscaled apoptotic extracellular vesicles released from transplanted stem cells were endocytosed by vascular endothelial cells and preferentially distribute at endoplasmic reticular region. The oxidized phosphatidylcholine enriched in the vesicles activated the endoplasmic reticulum stress and triggered the reflective elevation of adhesion molecules, which induced the recruitment of autologous stem cells located in the blood vessels, transported them into the defect region, and promoted osteogenesis and bone repair. These findings not only reveal the mechanism of stem cell therapy of bone defects but also provide a cue for investigation of the biological process of stem cell therapy for other diseases and develop stem cell therapeutic strategies.
Collapse
Affiliation(s)
- Lu Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong 250012, China
| | - Geng Dou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Huijuan Kuang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Lili Bao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Huan Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Qingyuan Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Digital Dentistry Center, School of Stomatology, The Fourth Military Medical University, Shaanxi 710032, China
| | - Zhengyan Wang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong 250012, China
| | - Xiaoshan Yang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Lili Ren
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zihan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Bei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Siying Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong 250012, China
| | - Shiyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
37
|
Li Z, Zhu H, Liu H, Liu D, Liu J, Zhang Y, Qin Z, Xu Y, Peng Y, Ruan L, Li J, He Y, Liu B, Long Y. Synergistic dual cell therapy for atherosclerosis regression: ROS-responsive Bio-liposomes co-loaded with Geniposide and Emodin. J Nanobiotechnology 2024; 22:129. [PMID: 38528554 DOI: 10.1186/s12951-024-02389-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024] Open
Abstract
The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.
Collapse
Affiliation(s)
- Zhenxian Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Haimei Zhu
- Department of Pain, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hao Liu
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dayue Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianhe Liu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yi Zhang
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Zhang Qin
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yijia Xu
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yuan Peng
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Lihua Ruan
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Jintao Li
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Yao He
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| | - Yun Long
- Department of Cardiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China.
| |
Collapse
|
38
|
Yang R, Lin F, Wang W, Dai G, Ke X, Wu G. Investigating the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles in atherosclerosis treatment. Cell Commun Signal 2024; 22:178. [PMID: 38475787 PMCID: PMC10936069 DOI: 10.1186/s12964-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/05/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Carthamus tinctorius L., a traditional herbal medicine used for atherosclerosis (AS), lacks a clear understanding of its therapeutic mechanisms. This study aimed to investigate the therapeutic effects and mechanisms of Carthamus tinctorius L.-derived nanovesicles (CDNVs) in AS treatment. METHODS CDNVs were isolated and characterized using improved isolation methods. Transmission electron microscopy, nanoparticle tracking analysis, and protein analysis confirmed their morphology, size, and protein composition. Small RNA sequencing was performed to identify the miRNA profile of CDNVs, and bioinformatics analysis was used to determine their potential biological roles. In vivo biodistribution and toxicity studies were conducted in mice to assess the stability and safety of orally administered CDNVs. The anti-atherosclerotic effects of CDNVs were evaluated in ApoE-/- mice through plaque burden analysis. The protective effects of CDNVs on ox-LDL-treated endothelial cells were assessed through proliferation, apoptosis, reactive oxygen species activation, and monocyte adhesion assays. miRNA and mRNA sequencing of CDNV-treated endothelial cells were performed to explore their regulatory effects and potential target genes. RESULTS CDNVs were successfully isolated and purified from Carthamus tinctorius L. tissue lysates. They exhibited a saucer-shaped or cup-shaped morphology, with an average particle size of 142.6 ± 0.7 nm, and expressed EV markers CD63 and TSG101. CDNVs contained proteins, small RNAs, and metabolites, including the therapeutic compound HSYA. Small RNA sequencing identified 95 miRNAs, with 10 common miRNAs accounting for 72.63% of the total miRNAs. These miRNAs targeted genes involved in cell adhesion, apoptosis, and cell proliferation, suggesting their relevance in cardiovascular disease. Orally administered CDNVs were stable in the gastrointestinal tract, absorbed into the bloodstream, and accumulated in the liver, lungs, heart, and aorta. They significantly reduced the burden of atherosclerotic plaques in ApoE-/- mice and exhibited superior effects compared to HSYA. In vitro studies demonstrated that CDNVs were taken up by HUVECs, promoted proliferation, attenuated ox-LDL-induced apoptosis and ROS activation, and reduced monocyte adhesion. CDNV treatment resulted in significant changes in miRNA and mRNA expression profiles of HUVECs, with enrichment in inflammation-related genes. CXCL12 was identified as a potential direct target of miR166a-3p. CONCLUSION CDNVs isolated from Carthamus tinctorius L. tissue lysates represent a promising oral therapeutic option for cardiovascular diseases. The delivery of miRNAs by CDNVs regulates inflammation-related genes, including CXCL12, in HUVECs, suggesting their potential role in modulating endothelial inflammation. These findings provide valuable insights into the therapeutic potential of CDNVs and their miRNAs in cardiovascular disease.
Collapse
Affiliation(s)
- Rongfeng Yang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Shenzhen, China
| | - Fengxia Lin
- Department of Cardiology, Shenzhen Bao'an Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Wenlin Wang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China
- Department of Clinical Medicine, University of South China, Hengyang, China
| | - Gang Dai
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Shenzhen, China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences (Shenzhen Sun Yat-sen Cardiovascular Hospital), Shenzhen, China.
| | - Guifu Wu
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Guangdong Innovative Engineering and Technology Research Center for Assisted Circulation, Shenzhen, China.
- NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Shenzhen, China.
| |
Collapse
|
39
|
Xiong M, Chen Z, Tian J, Peng Y, Song D, Zhang L, Jin Y. Exosomes derived from programmed cell death: mechanism and biological significance. Cell Commun Signal 2024; 22:156. [PMID: 38424607 PMCID: PMC10905887 DOI: 10.1186/s12964-024-01521-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomes are nanoscale extracellular vesicles present in bodily fluids that mediate intercellular communication by transferring bioactive molecules, thereby regulating a range of physiological and pathological processes. Exosomes can be secreted from nearly all cell types, and the biological function of exosomes is heterogeneous and depends on the donor cell type and state. Recent research has revealed that the levels of exosomes released from the endosomal system increase in cells undergoing programmed cell death. These exosomes play crucial roles in diseases, such as inflammation, tumors, and autoimmune diseases. However, there is currently a lack of systematic research on the differences in the biogenesis, secretion mechanisms, and composition of exosomes under different programmed cell death modalities. This review underscores the potential of exosomes as vital mediators of programmed cell death processes, highlighting the interconnection between exosome biosynthesis and the regulatory mechanisms governing cell death processes. Furthermore, we accentuate the prospect of leveraging exosomes for the development of innovative biomarkers and therapeutic strategies across various diseases.
Collapse
Affiliation(s)
- Min Xiong
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Zhen Chen
- School of Public Health, Weifang Medical University, Weifang, 261000, China
| | - Jiaqi Tian
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Yanjie Peng
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China
| | - Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250001, China.
- Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Jinan, 250001, China.
| | - Yulan Jin
- School of Public Health, North China University of Science and Technology, Tangshan, 063000, China.
- Hebei Key Laboratory of Coal Health and Safety, Tangshan, 063000, China.
| |
Collapse
|
40
|
Ni D, Lei C, Liu M, Peng J, Yi G, Mo Z. Cell death in atherosclerosis. Cell Cycle 2024; 23:495-518. [PMID: 38678316 PMCID: PMC11135874 DOI: 10.1080/15384101.2024.2344943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/24/2024] [Accepted: 04/14/2024] [Indexed: 04/29/2024] Open
Abstract
A complex and evolutionary process that involves the buildup of lipids in the arterial wall and the invasion of inflammatory cells results in atherosclerosis. Cell death is a fundamental biological process that is essential to the growth and dynamic equilibrium of all living things. Serious cell damage can cause a number of metabolic processes to stop, cell structure to be destroyed, or other irreversible changes that result in cell death. It is important to note that studies have shown that the two types of programmed cell death, apoptosis and autophagy, influence the onset and progression of atherosclerosis by controlling these cells. This could serve as a foundation for the creation of fresh atherosclerosis prevention and treatment strategies. Therefore, in this review, we summarized the molecular mechanisms of cell death, including apoptosis, pyroptosis, autophagy, necroptosis, ferroptosis and necrosis, and discussed their effects on endothelial cells, vascular smooth muscle cells and macrophages in the process of atherosclerosis, so as to provide reference for the next step to reveal the mechanism of atherosclerosis.
Collapse
Affiliation(s)
- Dan Ni
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
| | - Cai Lei
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Minqi Liu
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Guanghui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, Hunan, China
| | - Zhongcheng Mo
- Guangxi Key Laboratory of Diabetic Systems Medicine, Department of Histology and Embryology, Guilin Medical University, Guilin, Guangxi, China
- Guangxi Province Postgraduate Co-training Base for Cooperative Innovation in Basic Medicine (Guilin Medical University and Yueyang Women & Children’s Medical Center), Yueyang, China
| |
Collapse
|
41
|
Gu M, Liu K, Xiong H, You Q. MiR-130a-3p inhibits endothelial inflammation by regulating the expression of MAPK8 in endothelial cells. Heliyon 2024; 10:e24541. [PMID: 38298633 PMCID: PMC10828701 DOI: 10.1016/j.heliyon.2024.e24541] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
MicroRNA-130a-3p (miR-130a-3p) has been reported as closely related to atherosclerosis (AS). This study is to survey the effects of miR-130a-3p in endothelial cells (ECs) treated with oxidized low-density lipoprotein (ox-LDL) and explore underlying mechanisms. The proliferation and apoptosis of ox-LDL-treated HUVEC cells were determined by CCK-8, EdU, and flow cytometry assays. ELISA and Western blot analysis measured the expressions of cytokines and protein levels. Bioinformatics and dual-luciferase reporter assay were performed to predict and confirm that Mitogen-activated protein kinase 8 (MAPK8) was a direct target of miR-130a-3p, and MAPK8 was negatively associated with miR-130a-3p. As expected, miR-130a-3p was down-regulated in ox-LDL-treated HUVEC cells, and up-regulation of miR-130a-3p promoted proliferation and inhibited apoptosis of ox-LDL-treated HUVEC cells. Furthermore, miR-130a-3p mimics suppressed the expressions of TNF-α and IL-6 and decreased the protein levels of VCAM-1, ICAM-1 and E-selectin. MAPK8 was highly expressed in ox-LDL-treated HUVEC cells, and silence of MAPK8 promoted proliferation inhibited apoptosis, suppressed inflammatory responses, and decreased the levels of VCAM-1, ICAM-1, and E-selectin, over-expression of MAPK8 partially restored the functional effects of miR-130a-3p on proliferation, inflammatory responses, and the expressions of VCAM-1, ICAM-1 and E-selectin. This study indicates that miR-130a-3p may emerge as an effective target for treating AS.
Collapse
Affiliation(s)
- Mingming Gu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Hui Xiong
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| |
Collapse
|
42
|
Sun JL, Ryu JH, Cho W, Oh H, Abd El-Aty AM, Özkal Eminoğlu D, Jeong JH, Jung TW. CTRP4 ameliorates inflammation, thereby attenuating the interaction between HUVECs and THP-1 monocytes through SIRT6/Nrf2 signaling. Biochem Biophys Res Commun 2024; 691:149293. [PMID: 38016337 DOI: 10.1016/j.bbrc.2023.149293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
CTRP4, identified as an adipokine, has demonstrated notable anti-inflammatory and anti-obesity effects in various disease models. Consequently, our research sought to explore the impact of CTRP4 on inflammation and the interaction between endothelial cells and monocytes in hyperlipidemic conditions. Using Western blotting, we assessed the expression levels of various proteins in HUVECs and THP-1 monocytes. Our study findings indicate that treatment with CTRP4 effectively mitigated the attachment of THP-1 monocytes to HUVECs. Furthermore, it reduced the expression of adhesion molecules and inflammation indicators in experimental cells exposed to hyperlipidemic conditions. Notably, CTRP4 treatment led to an increase in SIRT6 expression and the nuclear translocation of Nrf2. Interestingly, when SIRT6 or Nrf2 was silenced using siRNA, the positive effects of CTRP4 in HUVECs and THP-1 cells were nullified. Our results suggest that CTRP4 exhibits anti-inflammatory properties, thereby improving the interaction between endothelial cells and monocytes through the SIRT6/Nrf2-dependent pathway. This study provides insights into CTRP4 as a potential therapeutic target for mitigating obesity-related atherosclerosis.
Collapse
Affiliation(s)
- Jaw Long Sun
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Jae Hak Ryu
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211-Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Didem Özkal Eminoğlu
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea.
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Marzoog BA. Autophagy Behavior in Endothelial Cell Regeneration. Curr Aging Sci 2024; 17:58-67. [PMID: 37861048 DOI: 10.2174/0118746098260689231002044435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Autophagy plays a crucial role in maintaining endothelial cell homeostasis through the turnover of intracellular components during stress conditions in a lysosomal-dependent manner. The regeneration strategy involves several aspects, including autophagy. Autophagy is a catabolic degenerative lysosomal-dependent degradation of intracellular components. Autophagy modifies cellular and subcellular endothelial cell functions, including mitochondria stress, lysosomal stress, and endoplasmic reticulum unfolded protein response. Activation of common signaling pathways of autophagy and regeneration and enhancement of intracellular endothelial cell metabolism serve as the bases for the induction of endothelial regeneration. Endothelial progenitor cells include induced pluripotent stem cells (iPSC), embryonic stem cells, and somatic cells, such as fibroblasts. Future strategies of endothelial cell regeneration involve the induction of autophagy to minimize the metabolic degeneration of the endothelial cells and optimize the regeneration outcomes.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- World-Class Research Center «Digital Biodesign and Personalized Healthcare», I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
44
|
Liu H, Yao Q, Wang X, Xie H, Yang C, Gao H, Xie C. The research progress of crosstalk mechanism of autophagy and apoptosis in diabetic vascular endothelial injury. Biomed Pharmacother 2024; 170:116072. [PMID: 38147739 DOI: 10.1016/j.biopha.2023.116072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/28/2023] Open
Abstract
In recent years, the widespread prevalence of diabetes has become a major killer that threatens the health of people worldwide. Of particular concern is hyperglycemia-induced vascular endothelial injury, which is one of the factors that aggravate diabetic vascular disease. During the process of diabetic vascular endothelial injury, apoptosis is an important pathological manifestation and autophagy is a key regulatory mechanism. Autophagy and apoptosis interact with each other. Hence, the crosstalk mechanism between the two processes is an important means of regulating diabetic vascular endothelial injury. This article reviews the research progress in apoptosis in the context of diabetic vascular endothelial injury and discusses the crosstalk mechanism of autophagy and apoptosis and its role in this injury. The purpose is to guide the prevention and treatment of diabetic vascular endothelial injury in the future.
Collapse
Affiliation(s)
- Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Qiyuan Yao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Xueru Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Hongyan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China
| | - Chan Yang
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, PR China.
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan 610075, PR China; Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, PR China.
| |
Collapse
|
45
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
46
|
Jiang Y, Zhu Y, Shao Y, Yang K, Zhu L, Liu Y, Zhang P, Zhang X, Zhou Y. Platelet-Derived Apoptotic Vesicles Promote Bone Regeneration via Golgi Phosphoprotein 2 (GOLPH2)-AKT Signaling Axis. ACS NANO 2023; 17:25070-25090. [PMID: 38047915 PMCID: PMC10753896 DOI: 10.1021/acsnano.3c07717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Apoptotic vesicles (apoVs) are apoptotic-cell-derived nanosized vesicles that take on dominant roles in regulating bone homeostasis. We have demonstrated that mesenchymal stem cell (MSC)-derived apoVs are promising therapeutic agents for bone regeneration. However, clinical translation of MSC-derived apoVs has been hindered due to cell expansion and nuclear substance. As another appealing source for apoV therapy, blood cells could potentially eliminate these limitations. However, whether blood cells can release apoVs during apoptosis is uncertain, and the detailed characteristics and biological properties of respective apoVs are not elucidated. In this study, we showed that platelets (PLTs) could rapidly release abundant apoVs during apoptosis in a short time. To recognize the different protein expressions between PLT-derived apoVs and PLTs, we established their precise protein landscape. Furthermore, we identified six proteins specifically enriched in PLT-derived apoVs, which could be considered as specific biomarkers. More importantly, PLT-derived apoVs promoted osteogenesis of MSCs and rescued bone loss via Golgi phosphoprotein 2 (GOLPH2)-induced AKT phosphorylation, therefore, leading to the emergence of their potential in bone regeneration. In summary, we comprehensively determined characteristics of PLT-derived apoVs and confirmed their roles in bone metabolism through previously unrecognized GOPLH2-dependent AKT signaling, providing more understanding for exploring apoV-based therapy in bone tissue engineering.
Collapse
Affiliation(s)
- Yuhe Jiang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuan Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yuzi Shao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Kunkun Yang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Lei Zhu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Ping Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Xiao Zhang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology,
National Center of Stomatology, National Clinical Research Center
for Oral Disease, National Engineering Research Center of Oral Biomaterials
and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology,
Research Center of Engineering and Technology for Computerized Dentistry
Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing 100081, China
| |
Collapse
|
47
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
48
|
Shao Y, Xu J, Liang B, Zhang S, Chen W, Wang Y, Xing D. The role of CDR1as/ciRS-7 in cardio-cerebrovascular diseases. Biomed Pharmacother 2023; 167:115589. [PMID: 37776642 DOI: 10.1016/j.biopha.2023.115589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebellar degeneration-related protein 1 antisense RNA (CDR1as), also known as ciRS-7, is a circular natural antisense transcript of CDR1. It is a widely studied and powerful representative of circular RNAs. Based on its widely reported role in cancer, CDR1as is considered one of the most promising biomarkers for diagnosing and treating tumours. However, some recent studies have extensively focused on its regulatory role in cardio-cerebrovascular diseases instead of in tumours. Studies have shown that CDR1as plays a unique role in the occurrence of cardio-cerebrovascular diseases; thus, it may be a potential target for preventing and treating cardio-cerebrovascular diseases. Furthermore, CDR1as has also been found to be related to signal transduction pathways related to inflammatory response, oxidative stress, etc., which may reveal its potential mechanism in cardio-cerebrovascular diseases. However, there is no literature to summarize the role and possible mechanism of CDR1as in cardio-cerebrovascular diseases. Therefore, in the present review, we have comprehensively summarised the latest progress in the biological characteristics, development processes, regulatory mechanisms, and roles of CDR1as in cardio-cerebrovascular diseases, aiming to provide a reference and guidance for future studies.
Collapse
Affiliation(s)
- Yingchun Shao
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Bing Liang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Shuangshuang Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Wujun Chen
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Yanhong Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China.
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Li Y, Sun M, Li R, Dou M, Dong H, Xue L, Sun G. Acute effect of proprotein convertase subtilisin/kexin type 9 inhibitor on oxidized low-density lipoprotein and lipid profile in patients at cardiovascular risk. J Clin Biochem Nutr 2023; 73:249-254. [PMID: 37970546 PMCID: PMC10636578 DOI: 10.3164/jcbn.23-45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/06/2023] [Indexed: 11/17/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors are a new class of potent lipid-lowering drugs. Oxidized low-density lipoprotein (ox-LDL) is the key pathogenic factor leading to atherosclerosis. However, its effect on ox-LDL levels has not been clinically reported. The clinical data of 290 very high-risk atherosclerotic cardiovascular disease (ASCVD) patients diagnosed in the First Affiliated Hospital of Zhengzhou University from May 2022 to October 2022 were collected retrospectively. According to whether evolocumab (a PCSK9 inhibitor) was used after percutaneous coronary intervention (PCI), they were divided into evolocumab group (153 cases) and statin monotherapy group (137 cases). At hospital admission, ox-LDL, total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), apolipoproteinA1 (apoA1), apolipoprotein B-100 (apoB), lipoprotein (a) [Lp(a)], and high-sensitivity reactive protein (hs-CRP) levels were collected and used as baseline data. After two weeks of treatment, ox-LDL in the evolocumab group and statin monotherapy group were significantly lower than those before treatment (p<0.05). The decrease of ox-LDL in the evolocumab group was more than in the stain monotherapy group (p<0.05). In conclusion, PCSK9 inhibitors reduce ox-LDL levels in very high-risk ASCVD patients in a short time.
Collapse
Affiliation(s)
- Yiming Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Minni Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Ran Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Min Dou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Haozhe Dong
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Liqi Xue
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| | - Guoju Sun
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450000, China
| |
Collapse
|
50
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|