1
|
Sato Y. Immune Aging and Its Implication for Age-Related Disease Progression. Physiology (Bethesda) 2025; 40:0. [PMID: 39887318 DOI: 10.1152/physiol.00051.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/18/2024] [Accepted: 01/25/2025] [Indexed: 02/01/2025] Open
Abstract
As life expectancy increases globally, the prevalence and severity of age-related diseases have risen, significantly impacting patients' quality of life and increasing dependency on the healthcare system. Age-related diseases share several pathological commonalities, and emerging evidence suggests that targeting these biological processes ameliorates multiple age-related diseases. Immune aging plays a critical role in the pathogenesis of age-related diseases, given its involvement not only in controlling infection and cancer but also in facilitating tissue homeostasis and repair. Aging causes compositional and functional changes in both innate and adaptive immune cells, thereby significantly contributing to the pathogenesis of age-related disease and systemic low-grade inflammation, termed "inflammaging." This review article aims to describe the current understanding of immune aging and its impact on age-related diseases with particular emphasis on kidney and autoimmune diseases. In addition, this review highlights tertiary lymphoid structures (TLS) as a hallmark of immune aging, exploring their roles in inflammation, tissue damage, and potential therapeutic targeting.
Collapse
Affiliation(s)
- Yuki Sato
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
- Department of Immunology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Marshall L, Raychaudhuri S, Viatte S. Understanding rheumatic disease through continuous cell state analysis. Nat Rev Rheumatol 2025:10.1038/s41584-025-01253-6. [PMID: 40335652 DOI: 10.1038/s41584-025-01253-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/09/2025]
Abstract
Autoimmune rheumatic diseases are a heterogeneous group of conditions, including rheumatoid arthritis (RA) and systemic lupus erythematosus. With the increasing availability of large single-cell datasets, novel disease-associated cell types continue to be identified and characterized at multiple omics layers, for example, 'T peripheral helper' (TPH) (CXCR5- PD-1hi) cells in RA and systemic lupus erythematosus and MerTK+ myeloid cells in RA. Despite efforts to define disease-relevant cell atlases, the very definition of a 'cell type' or 'lineage' has proven controversial as higher resolution assays emerge. This Review explores the cell types and states involved in disease pathogenesis, with a focus on the shifting perspectives on immune and stromal cell taxonomy. These understandings of cell identity are closely related to the computational methods adopted for analysis, with implications for the interpretation of single-cell data. Understanding the underlying cellular architecture of disease is also crucial for therapeutic research as ambiguity hinders translation to the clinical setting. We discuss the implications of different frameworks for cell identity for disease treatment and the discovery of predictive biomarkers for stratified medicine - an unmet clinical need for autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Lysette Marshall
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Soumya Raychaudhuri
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology, Inflammation and Immunity and Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
| | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK.
- NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Su QY, Zheng XX, Han XT, Li Q, Gao YR, Zhang SX, Li XF. The role of age-associated B cells in systemic lupus erythematosus. J Autoimmun 2025; 154:103433. [PMID: 40334618 DOI: 10.1016/j.jaut.2025.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025]
Abstract
Age-associated B cells (ABCs) are a distinct subset of B cells. This B-cell population expands in the elderly but is also abnormally expanded in patients with autoimmune diseases like systemic lupus erythematosus (SLE). ABC differentiation requires unique signaling stimuli, including BCR stimulation, TLR7 and TLR9 signaling, and the action of cytokines. The role of ABCs in the pathogenesis and treatment strategies of SLE has been a research hotspot in recent years. Possible pathogenic mechanisms include the production of autoantibodies and cytokines, as well as stimulation of spontaneous germinal center. Specifically targeting ABCs is a promising strategy for treating SLE. This article reviews the role of ABCs in SLE. Understanding the origin and differentiation of ABCs and their role in SLE will facilitate the discovery of novel drug targets for the treatment of SLE.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Xin Zheng
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xin-Ting Han
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Qian Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ya-Ru Gao
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Xiao-Feng Li
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Xu X, Wang L, Sun Y, Yang C, Wang X, Guo P, Mei D. Unveiling the differences: infection disorders associated with tumor necrosis factor α inhibitors in pediatric patients-a pharmacovigilance study (2004-2023). Eur J Pediatr 2025; 184:324. [PMID: 40317305 DOI: 10.1007/s00431-025-06152-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
The increasing use of tumor necrosis factor inhibitors (TNFi) in pediatric patients has raised concerns about their potential impact on the immune system and related adverse events. Infection-related adverse events (AEs) caused by TNFi have already raised widespread concerns in real-world settings. This study aims to comprehensively analyze and summarize the infection-related AEs associated with TNFi in pediatric patients. A retrospective pharmacovigilance study was conducted to identify cases of TNFi-related infections reported to the FDA Adverse Event Reporting System (FAERS) database between Q1 2004 and Q1 2023. TNFi reports were carefully reviewed to exclude confounding factors like other AEs, concomitant medications, and prescription indications. Proportionality analysis was conducted by comparing TNFi reports to the entire FAERS database to identify infection-related AEs significantly associated with TNFi use. Infection-related AEs accounted for 8.36% of all TNFi-related adverse event reports in the FAERS database. A total of 8050 cases of TNFi-associated infections were identified in the pediatric population, with 2.57% of reports resulting in fatalities. Infliximab and golimumab showed a stronger association with infection-related AEs compared to other TNFi. Notably, only adalimumab shows a lower risk of viral infections, while it exhibits an increased risk of bacterial and mycobacterial infections, similar to other TNFi. CONCLUSIONS This study identified a significant association between TNFi use and infection-related AEs in pediatric patients, providing the foothold for further research. However, due to its retrospective nature, further investigations are warranted to confirm these findings and identify potential risk factors in a controlled, prospective study setting. WHAT IS KNOWN • There is sufficient evidence to demonstrate the infection risk associated with TNFi in adult patients. • Pediatric patients, whose immune systems are still developing, are more vulnerable to certain infections. WHAT IS NEW • There is a significant association between TNFi use and infection-related adverse events in pediatric patients, and different TNFi have distinct infection profiles.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China
| | - Luquan Wang
- Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yixin Sun
- Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoling Wang
- Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China
| | - Peng Guo
- Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China.
| | - Dong Mei
- Department of Pharmacy, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, 100045, China.
| |
Collapse
|
5
|
Sadighi Akha AA, Csomós K, Ujházi B, Walter JE, Kumánovics A. Evolving Approach to Clinical Cytometry for Immunodeficiencies and Other Immune Disorders. Immunol Allergy Clin North Am 2025; 45:205-221. [PMID: 40287169 DOI: 10.1016/j.iac.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Primary immunodeficiencies were initially identified on the basis of recurrent, severe or unusual infections. Subsequently, it was noted that these diseases can also manifest with autoimmunity, autoinflammation, allergy, lymphoproliferation and malignancy, hence a conceptual change and their renaming as inborn errors of immunity. Ongoing advances in flow cytometry provide the opportunity to expand or modify the utility and scope of existing laboratory tests in this field to mirror this conceptual change. Here we have used the B cell subset, variably known as CD21low B cells, age-associated B cells and T-bet+ B cells, as an example to demonstrate this possibility.
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Krisztián Csomós
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Boglárka Ujházi
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Jolán E Walter
- Division of Pediatric Allergy/Immunology, University of South Florida, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Attila Kumánovics
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Nguyen TH, Chandrakasan S. Biomarkers of Immune Dysregulation and What They Tell Us: Gene Sequencing Is Not the Answer to Every Question. Immunol Allergy Clin North Am 2025; 45:173-188. [PMID: 40287167 DOI: 10.1016/j.iac.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Primary immune regulatory disorders (PIRDs) are inborn errors of immunity, with autoimmune, hyperinflammatory, and lymphoproliferative manifestations as presenting features rather than recurrent infections. Genetic testing remains the primary tool for diagnosing patients with immune defects. Not all suspected PIRDs have a known genetic cause. Many hyperinflammatory disorders require urgent intervention, limiting the usefulness of gene sequencing in some cases. Current clinically approved immunology tests can detect immune dysregulation even without apparent immune deficiency. This review presents commonly known patterns of immune dysregulation that can be detected with currently available immune testing and additional testing in the clinical immunology laboratories' pipeline.
Collapse
Affiliation(s)
- Thinh H Nguyen
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115-5737, USA
| | - Shanmuganathan Chandrakasan
- Immune Dysregulation and Immunohematology Program, Department of Pediatrics, Aflac Cancer and Blood Disorder Center, Children's Healthcare of Atlanta, Emory University School of Medicine, 1760 Haygood Drive NE, W-368, Atlanta, GA 30322, USA.
| |
Collapse
|
7
|
Khosravi-Maharlooei M, Vecchione A, Danzl N, Li HW, Nauman G, Madley R, Waffarn E, Winchester R, Ruiz A, Ding X, Fousteri G, Sykes M. Follicular helper- and peripheral helper-like T cells drive autoimmune disease in human immune system mice. eLife 2025; 13:RP99389. [PMID: 40293219 PMCID: PMC12037178 DOI: 10.7554/elife.99389] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants, and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdcscid Il2rgtm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1+CD4+ peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh-like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies, and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Immunology, Department of Biochemistry and Molecular Biology, Mayo ClinicPhoenixUnited States
| | - Andrea Vecchione
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- San Raffaele HospitalMilanItaly
| | - Nichole Danzl
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Grace Nauman
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Rachel Madley
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Elizabeth Waffarn
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Robert Winchester
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Amanda Ruiz
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | - Xiaolan Ding
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| | | | - Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Microbiology and Immunology, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
- Department of Surgery, Columbia University Medical Center, Columbia UniversityNew YorkUnited States
| |
Collapse
|
8
|
Lee AY, Reed JH. Highlights of 2024: The rising role of age-associated B cells in autoimmune diseases. Immunol Cell Biol 2025. [PMID: 40288955 DOI: 10.1111/imcb.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
In this Research Highlight, we explore 5 influential basic and translational articles published in 2024 that shed light on the biology of age-associated B cells (ABCs) and their emerging role in autoimmunity.
Collapse
Affiliation(s)
- Adrian Ys Lee
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
- Department of Immunology, Westmead Hospital and Institute of Clinical Pathology and Medical Research, NSW Health Pathology, Westmead, NSW, Australia
| | - Joanne H Reed
- Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
9
|
Qiu X, Wen R, Wu F, Mao J, Azad T, Wang Y, Zhu J, Zhou X, Xie H, Hong K, Li B, Zhang L, Wen C. The role of double-negative B cells in the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 2025; 24:103821. [PMID: 40274006 DOI: 10.1016/j.autrev.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/06/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
B cells are essential to the pathophysiology of systemic lupus erythematosus (SLE), a chronic autoimmune illness. IgD-CD27-double negative B cells (DNB cells) are one of the aberrant B cell subsets linked to SLE that have attracted much scientific interest. There is growing evidence that DNB cells play a significant role in the development of the disease and are strongly linked to the activity of lupus. These cells play a pivotal role in the pathogenesis of SLE by producing a diverse array of autoantibodies, which form immune complexes that drive target organ damage. A comprehensive understanding of SLE pathophysiology necessitates in-depth investigation into DNB cells, not only to elucidate their mechanistic contributions but also to uncover novel therapeutic strategies. According to available data, treatments that target B cells have proven effective in managing SLE; nevertheless, a significant breakthrough in precision medicine for SLE may come from targeting DNB cells specifically. Despite growing interest in DNB cells, their precise characteristics, developmental trajectories, and regulatory mechanisms remain incompletely defined, posing significant challenges to the field. A comprehensive investigation of the regulatory mechanisms governing DNB cell differentiation and expansion in SLE may facilitate novel therapeutic discoveries. This review aims to provide an updated synthesis of current research on DNB cells, with a focus on their origins, developmental trajectories in SLE, and potential as precision therapeutic targets.
Collapse
Affiliation(s)
- Xinying Qiu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China; The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China
| | - RuiFan Wen
- Medical School, Hunan University of Chinese Medicine, No.300 Xueshi Road, Hanpu Science & Education District, Changsha, Hunan 410208, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Tasnim Azad
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Kimsor Hong
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Binbin Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Liang Zhang
- The Affiliated Children's Hospital of Xiangya School of Medicine, Central South University, Changsha 410007, Hunan, China; Department of Nephrology, Rheumatology and Immunology, Hunan Children's Hospital, Changsha 410007, Hunan, China.
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, 410011 Changsha, China.
| |
Collapse
|
10
|
Nicholas CA, Tensun FA, Evans SA, Toole KP, Prendergast JE, Broncucia H, Hesselberth JR, Gottlieb PA, Wells KL, Smith MJ. Activated polyreactive B cells are clonally expanded in autoantibody positive and patients with recent-onset type 1 diabetes. Cell Rep 2025; 44:115425. [PMID: 40117290 PMCID: PMC12068228 DOI: 10.1016/j.celrep.2025.115425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/21/2025] [Accepted: 02/21/2025] [Indexed: 03/23/2025] Open
Abstract
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). We isolated pancreatic islet antigen-reactive B cells from the peripheral blood of non-diabetic autoantibody-negative first-degree relatives, autoantibody-positive, and recent-onset T1D donors. Single-cell RNA sequencing analysis revealed that islet antigen-reactive B cells from autoantibody-positive and T1D donors had altered gene expression in pathways associated with B cell signaling and inflammation. Additionally, BCR sequencing uncovered a similar shift in islet antigen-reactive B cell repertoires among autoantibody-positive and T1D donors where greater clonal expansion was also observed. Notably, a substantial fraction of islet antigen-reactive B cells in autoantibody-positive and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell phenotypes during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
Collapse
Affiliation(s)
- Catherine A Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Fatima A Tensun
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Spencer A Evans
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin P Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jessica E Prendergast
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Mia J Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
11
|
Gergues M, Bari R, Koppisetti S, Gosiewska A, Kang L, Hariri RJ. Senescence, NK cells, and cancer: navigating the crossroads of aging and disease. Front Immunol 2025; 16:1565278. [PMID: 40255394 PMCID: PMC12006071 DOI: 10.3389/fimmu.2025.1565278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Abstract
Cellular senescence, a state of stable cell cycle arrest, acts as a double-edged sword in cancer biology. In young organisms, it acts as a barrier against tumorigenesis, but in the aging population, it may facilitate tumor growth and metastasis through the senescence-associated secretory phenotype (SASP). Natural killer (NK) cells play a critical role in the immune system, particularly in the surveillance, targeting, and elimination of malignant and senescent cells. However, age-related immunosenescence is characterized by declining NK cell function resulting in diminished ability to fight infection, eliminate senescent cells and suppress tumor development. This implies that preserving or augmenting NK cell function may be central to defense against age-related degenerative and malignant diseases. This review explores the underlying mechanisms behind these interactions, focusing on how aging influences the battle between the immune system and cancer, the implications of senescent NK cells in disease progression, and the potential of adoptive NK cell therapy as a countermeasure to these age-related immunological challenges.
Collapse
Affiliation(s)
| | | | | | | | - Lin Kang
- Research and Development, Celularity Inc., Florham Park, NJ, United States
| | | |
Collapse
|
12
|
Khosravi-Maharlooei M, Li HW, Sykes M. T Cell Development and Responses in Human Immune System Mice. Annu Rev Immunol 2025; 43:83-112. [PMID: 39705163 PMCID: PMC12031645 DOI: 10.1146/annurev-immunol-082223-041615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Human Immune System (HIS) mice constructed with mature human immune cells or with human hematopoietic stem cells and thymic tissue have provided an important tool for human immunological research. In this article, we first review the different types of HIS mice based on human tissues transplanted and sources of the tissues. We then focus on knowledge of human T cell development and responses obtained using HIS mouse models. These areas include the development of human T cell subsets, with a focus on αβ conventional T cells and regulatory T cells, and human T cell responses in the settings of infection, transplantation rejection and tolerance, autoimmune disease, cancer immunotherapy, and regulatory T cell therapy. We also discuss the limitations and potential future applications of HIS mouse models.
Collapse
Affiliation(s)
- Mohsen Khosravi-Maharlooei
- Department of Immunology and Department of Biochemistry and Molecular Biology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Hao Wei Li
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| | - Megan Sykes
- Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, Columbia University, New York, NY, USA;
| |
Collapse
|
13
|
Yin Y, Liu Y, Du L, Wu S. Compromised B-cell homeostasis: Unraveling the link between major depression, infection and autoimmune disorders. J Affect Disord 2025; 374:565-578. [PMID: 39842671 DOI: 10.1016/j.jad.2025.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/22/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Major depression can increase susceptibility to viral infections and autoimmune diseases. B cell responses are crucial for immune defense against infections but can trigger autoimmunity when deregulated. However, it remains unclear whether compromised B-cell homeostasis in major depression contributes to an increased risk of infection and autoimmunity. METHODS Chronic unpredictable mild stress (CUMS) procedure was applied to adult C57BL/6 J mice to generate a reliable depression model. Mice were immunized with (4-hydroxy-3-nitrophenyl) acetyl (NP) keyhole limpet hemocyanin (NP-KLH) to elicit B-cell-mediated humoral immune responses. CUMS mice were subjected to a collagen-induced arthritis model or a Bm12-induced systemic lupus erythematosus model to assess the contribution of major depression to autoimmunity. RNA sequencing was performed to understand the effects of CUMS on B-cell homeostasis at the transcriptomic level. RESULTS CUMS mice exhibited an impaired humoral immune response, as evidenced by reduced germinal centers (GCs), plasma cells, and antigen-specific antibodies. Unimmunized CUMS mice displayed aberrant spontaneous expansion of GC B cells, plasma cells, age-associated B cells and autoantibody production. CUMS mice also demonstrated a greater exacerbation of autoimmune manifestations. RNA sequencing revealed that genes involved in B-cell-mediated immune response were downregulated in B cells from CUMS mice, while the pathways related to autoimmunity seem to be upregulated. LIMITATIONS Further research is needed to understand the specific targets, mechanisms, and role of B cell dysfunction in major depression. CONCLUSIONS Our results provide novel insights into B-cell-dependent mechanisms that involve the association of increased susceptibility to infections and autoimmunity in major depression.
Collapse
Affiliation(s)
- Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yuan Liu
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
14
|
Gomez-Diaz C, Greulich W, Wefers B, Wang M, Bolsega S, Effern M, Varga DP, Han Z, Chen M, Bérouti M, Leonardi N, Schillinger U, Holzmann B, Liesz A, Roers A, Hölzel M, Basic M, Wurst W, Hornung V. RNase T2 restricts TLR13-mediated autoinflammation in vivo. J Exp Med 2025; 222:e20241424. [PMID: 39853306 PMCID: PMC11758920 DOI: 10.1084/jem.20241424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 11/18/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
RNA-sensing TLRs are strategically positioned in the endolysosome to detect incoming nonself RNA. RNase T2 plays a critical role in processing long, structured RNA into short oligoribonucleotides that engage TLR7 or TLR8. In addition to its positive regulatory role, RNase T2 also restricts RNA recognition through unknown mechanisms, as patients deficient in RNase T2 suffer from neuroinflammation. Consistent with this, mice lacking RNase T2 exhibit interferon-dependent neuroinflammation, impaired hematopoiesis, and splenomegaly. However, the mechanism by which RNase T2 deficiency unleashes inflammation in vivo remains unknown. Here, we report that the inflammatory phenotype found in Rnaset2-/- mice is completely reversed in the absence of TLR13, suggesting aberrant accumulation of an RNA ligand for this receptor. Interestingly, this TLR13-driven inflammatory phenotype is also fully present in germ-free mice, suggesting a role for RNase T2 in limiting erroneous TLR13 activation by an as yet unidentified endogenous ligand. These results establish TLR13 as a potential self-sensor that is kept in check by RNase T2.
Collapse
Affiliation(s)
- Carlos Gomez-Diaz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Wilhelm Greulich
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Benedikt Wefers
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Meiyue Wang
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Maike Effern
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Daniel P. Varga
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zhe Han
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Minyi Chen
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marleen Bérouti
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natascia Leonardi
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrike Schillinger
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bernhard Holzmann
- Department of Surgery, TUM School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Arthur Liesz
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Axel Roers
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, Medical Faculty, University Hospital Bonn, Bonn, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- TUM School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen Site Munich, Munich, Germany
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
15
|
Tchouto MN, Bucher CH, Mess AK, Haas S, Schmidt-Bleek K, Duda GN, Beule D, Milek M. Pronounced impairment of B cell differentiation during bone regeneration in adult immune experienced mice. Front Immunol 2025; 16:1511902. [PMID: 40098964 PMCID: PMC11911212 DOI: 10.3389/fimmu.2025.1511902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Alterations of the adaptive immune system have been shown to impact bone healing and may result in impaired healing in some patients. Apart from T cells, B cells are the key drivers of adaptive immunity. Therefore, their role in age-associated impairments of bone healing might be essential to understand delays during the healing process. B cells are essential for bone formation, and their dysfunction has been associated with aging or autoimmune diseases. But whether age-associated changes in B cell phenotypes are involved in bone regeneration is unknown. Methods Here, we aimed to characterize the role of immune aging in B cell phenotypes during the early inflammatory phase of bone healing. By comparing non-immune experienced with young and immune experienced mice we aimed to analyze the effect of gained immune experience on B cells. Our single cell proteo-genomics analysis quantified thousands of transcriptomes of cells that were isolated from post osteotomy hematoma and the proximal and distal bone marrow cavities, and enabled us to evaluate cell proportion, differential gene expression and cell trajectories. Results While the B cell proportion in young and non-immune experienced animals did not significantly change from 2 to 5 days post osteotomy in the hematoma, we found a significant decrease of the B cell proportion in the immune experienced mice, which was accompanied by the decreased expression of B cell specific genes, suggesting a specific response in immune experienced animals. Furthermore, we detected the most extensive B cell differentiation block in immune-experienced mice compared to non-immune experienced and young animals, predominantly in the transition from immature to mature B cells. Discussion Our results suggest that the pronounced impairment of B cell production found in immune experienced animals plays an important role in the initial phase leading to delayed bone healing. Therefore, novel therapeutic approaches may be able target the B cell differentiation defect to retain B cell functionality even in the immune experienced setting, which is prone to delayed healing.
Collapse
Affiliation(s)
- Mireille Ngokingha Tchouto
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian H. Bucher
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ann-Kathrin Mess
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies, Charité – Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Simon Haas
- Systems Hematology, Stem Cells & Precision Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Miha Milek
- Core Unit Bioinformatics, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
16
|
Wang X, Li L, Liu D, Jin Y, Zhao X, Li S, Hou R, Guan Z, Ma W, Zheng J, Lv M, Shi M. LILRB4 as a novel immunotherapeutic target for multiple diseases. Biochem Pharmacol 2025; 233:116762. [PMID: 39842553 DOI: 10.1016/j.bcp.2025.116762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/31/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025]
Abstract
Immune checkpoints are critical for maintaining autoimmune homeostasis and are implicated in various autoimmune diseases, with their significance increasingly recognized. Investigating the functions and mechanisms of these checkpoints is essential for the development of more effective treatments. Leukocyte immunoglobulin-like receptor subfamily B member 4 (LILRB4) stands out as a unique immune checkpoint, with limited expression in most normal tissues but prominent presence in various hematological and solid tumors. It is also expressed on numerous immune and stromal cells, functioning as both a "Tumor Immune Checkpoint" and a "Tumor Stromal Immune Checkpoint." Due to its distinct expression profile, LILRB4 plays a pivotal role in tumors, autoimmune diseases, allergic reactions, and the maintenance of immune homeostasis during transplantation and pregnancy. A thorough understanding of its ligands, functions, mechanisms, and ongoing therapeutic strategies targeting LILRB4 will be crucial for the development of advanced therapeutic options. This review examines LILRB4 expression and function across multiple diseases and discusses therapeutic approaches targeting LILRB4 in various contexts. Additionally, the potential of combining current drugs with LILRB4-targeted therapies is explored. Challenges in developing LILRB4-targeting drugs are also addressed, offering valuable insights for future research.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Lanying Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Yuhang Jin
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Wen Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| | - Ming Lv
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou, Zhejiang, PR China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
17
|
Fan F, Liu S, Wang B, Song X, Wang W. Integrated analyses uncover new features of atypical memory B cells and novel targets for intervention. Immunobiology 2025; 230:152877. [PMID: 39938454 DOI: 10.1016/j.imbio.2025.152877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/21/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND Atypical memory B (AMB) is a novel subset of B lymphocytes, but its immune features and pathogenetic roles in systemic rheumatic diseases are still largely elusive. This study aimed to characterize transcriptomic features, immune phenotypes and potential signaling pathways of AMB, and also to confirm its alternations in systemic rheumatic diseases via combined transcriptome analyses. METHOD B cell subsets and their transcriptomic signatures were identified via analyses of single cell RNA-sequencing (scRNA-seq) data. Functional characterization of AMB was performed with bioinformatics and CyTOF-based phenotyping. Alternation of AMB in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA) and Sjögren's syndrome (SjS) was evaluated via bioinformatic approaches. RESULT A total of 11 B cell subsets including AMB were identified through scRNA-seq transcriptome analyses. Both transcriptome analyses and CyTOF-based immune phenotyping confirmed that AMB had increased levels of TBX21 (T-bet), ITGAX (CD11c), CD19, CD20 and CXCR3 (P < 0.05), and it had decreased expressions of CD27, CD38, CXCR4, CXCR5 and CD62L (P < 0.05). More than 50 % of T-bet+ B cells did not express CD11c, and more than 30 % expressed CD27. AMB was characterized by activated mTORC1 signaling and increased p-P38 level (P < 0.05). AMB transcriptional signature was significantly enriched in the peripheral blood and disease tissues of patients of SLE, RA and SjS (P < 0.05), suggesting the expanded AMB cells in those patients. CONCLUSION This study defines the transcriptomic signature, immune phenotypes and potential signaling pathways of AMB, and also confirms the involvement of AMB in systemic rheumatic diseases including SLE, RA and SjS via transcriptomic approaches. mTORC1 signaling and P38/MAPK signaling are promising therapeutic targets for systemic rheumatic diseases mediated by AMB.
Collapse
Affiliation(s)
- Fuli Fan
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China
| | - Shubei Liu
- Department of Rheumatology and Immunology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Bin Wang
- Central Laboratory, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, China; Department of Traumatology and Orthopaedics, Weifang People's Hospital, Shandong Second Medical University, Weifang 261000, China.
| | - Xiaojian Song
- Weiriver Novel Research Association, Weifang 262212, China
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, China.
| |
Collapse
|
18
|
Henning S, Reimers T, Abdulahad W, Fierro JJ, Doornbos-van der Meer B, Bootsma H, Horvath B, de Leeuw K, Westra J. Low-density granulocytes and neutrophil extracellular trap formation are increased in incomplete systemic lupus erythematosus. Rheumatology (Oxford) 2025; 64:1234-1242. [PMID: 38775454 PMCID: PMC11879334 DOI: 10.1093/rheumatology/keae300] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE To investigate the proportion of low-density granulocytes (LDGs), circulating plasma neutrophil extracellular traps (NETs) and serum-induced NET formation in patients with incomplete SLE (iSLE) and SLE. METHODS LDGs were measured cross-sectionally in 18 iSLE patients, 11 SLE patients and 14 healthy controls (HCs), whereas circulating NETs and serum-induced NET formation were assessed in 35 iSLE patients, 41 SLE patients and 16 HCs. LDGs (CD14lowCD15+) were measured in peripheral blood mononuclear cells (PBMCs) using flow cytometry, and circulating plasma NETs were measured using anti-myeloperoxidase-DNA, anti-citrullinated histone H3 and anti-elastase-DNA complex ELISAs. Serum-induced NET formation was assessed by incubating healthy neutrophils with serum from iSLE patients, SLE patients or HCs and visualizing NETs with fluorescence microscopy. RESULTS Proportions of LDGs and circulating plasma NETs were similarly elevated in iSLE and SLE patients compared with those in HCs. Furthermore, patients under HCQ treatment had lower proportions of LDGs than those without. Serum from iSLE and SLE patients similarly induced NET formation in healthy neutrophils. In iSLE patients, myeloperoxidase-DNA complexes were correlated with proportions of age-associated B-cells, memory B-cells and negatively with naïve B-cells, while we did not find associations between measures of NETs or serum-induced NET formation and interferon score or clinical parameters. CONCLUSION These results show that neutrophil dysfunction, including higher proportions of LDGs, and increased NET formation, already occur in iSLE, similar to SLE, despite differences in disease manifestations. Thereby, neutrophil dysfunction may contribute to sustained exposure to autoantigens and autoreactivity in early stages of SLE.
Collapse
Affiliation(s)
- Svenja Henning
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Tobias Reimers
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Wayel Abdulahad
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Juan J Fierro
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
- Reproduction Group, Department of Microbiology and Parasitology, University of Antioquia UdeA, Medellin, Colombia
| | - Berber Doornbos-van der Meer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hendrika Bootsma
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Barbara Horvath
- Department of Dermatology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Johanna Westra
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
19
|
Xie G, Chen X, Gao Y, Yang M, Zhou S, Lu L, Wu H, Lu Q. Age-Associated B Cells in Autoimmune Diseases: Pathogenesis and Clinical Implications. Clin Rev Allergy Immunol 2025; 68:18. [PMID: 39960645 PMCID: PMC11832777 DOI: 10.1007/s12016-025-09021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
As a heterogeneous B cell subset, age-associated B cells (ABCs) exhibit distinct transcription profiles, extrafollicular differentiation processes, and multiple functions in autoimmunity. TLR7 and TLR9 signals, along with IFN-γ and IL-21 stimulation, are both essential for ABC differentiation, which is also regulated by chemokine receptors including CXCR3 and CCR2 and integrins including CD11b and CD11c. Given their functions in antigen uptake and presentation, autoantibody and proinflammatory cytokine secretion, and T helper cell activation, ABCs display potential in the prognosis, diagnosis, and therapy for autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, multiple sclerosis, neuromyelitis optica spectrum disorders, and ankylosing spondylitis. Specifically targeting ABCs by inhibiting T-bet and CD11c and activating CD11b and ARA2 represents potential therapeutic strategies for SLE and RA. Although single-cell sequencing technologies have recently revealed the heterogeneous characteristics of ABCs, further investigations to explore and validate ABC-target therapies are still warranted.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Xiaojing Chen
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Yixia Gao
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Suqing Zhou
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Hong Kong, China.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong, China.
| | - Haijing Wu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Qianjin Lu
- Department of Dermatology, the Second Xiangya Hospital, Hunan Key Laboratory of Medical Epigenomics, Central South University, Changsha, Hunan, China.
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Georgakis S, Ioannidou K, Mora BB, Orfanakis M, Brenna C, Muller YD, Del Rio Estrada PM, Sharma AA, Pantaleo G, de Leval L, Comte D, Gottardo R, Petrovas C. Cellular and molecular determinants mediating the dysregulated germinal center immune dynamics in systemic lupus erythematosus. Front Immunol 2025; 16:1530327. [PMID: 40070830 PMCID: PMC11894538 DOI: 10.3389/fimmu.2025.1530327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/17/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Systemic lupus erythematosus (SLE) is characterized by dysregulated humoral immunity, leading to the generation of autoreactive B cells that can differentiate both within and outside of lymph node (LN) follicles. Methods Here, we employed spatial transcriptomics and multiplex imaging to investigate the follicular immune landscaping and the in situ transcriptomic profile in LNs from SLE individuals. Results Our spatial transcriptomic analysis revealed robust type I IFN and plasma cell signatures in SLE compared to reactive, control follicles. Cell deconvolution revealed that follicular T cell subsets are mainly affected by the type I IFN fingerprint of SLE follicles. Dysregulation of TFH differentiation was documented by i) the significant reduction of Bcl6hi TFH cells, ii) the reduced cell density of potential IL-4 producing TFH cell subsets associated with the impaired transcriptomic signature of follicular IL-4 signaling and iii) the loss of their correlation with GC-B cells. This profile was accompanied by a marked reduction of Bcl6hi B cells and an enrichment of extrafollicular CD19hiCD11chiTbethi, age-associated B cells (ABCs), known for their autoreactive potential. The increased prevalence of follicular IL-21hi cells further reveals a hyperactive microenvironment in SLE compared to control. Discussion Taken together, our findings highlight the altered immunological landscape of SLE follicles, likely fueled by potent inflammatory signals such as sustained type I IFN and/or IL-21 signaling. Our work provides novel insights into the spatial molecular and cellular signatures of SLE follicular B and TFH cell dynamics, and points to druggable targets to restore immune tolerance and enhance vaccine responses in SLE patients.
Collapse
Affiliation(s)
- Spiros Georgakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Bernat Bramon Mora
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michail Orfanakis
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Cloe Brenna
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Yannick D. Muller
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Perla M. Del Rio Estrada
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Ashish A. Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, GA, United States
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Laurence de Leval
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Denis Comte
- Service of Internal Medicine, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Raphael Gottardo
- Biomedical Data Science Center, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Constantinos Petrovas
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
21
|
Awaji K, Shibata S, Koyama A, Yamamoto T, Fukui Y, Toyama S, Omatsu J, Norimatsu Y, Ikawa T, Watanabe Y, Miyagawa T, Yamashita T, Nakayama Y, Trojanowska M, Sato S, Asano Y. Impact of Fli1 deletion on B cell populations: A focus on age-associated B cells and transcriptional dynamics. J Dermatol Sci 2025; 117:19-29. [PMID: 39818445 DOI: 10.1016/j.jdermsci.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Altered Fli1 expression is associated with various autoimmune diseases, yet its impact on B cells remains unexplored. OBJECTIVE This study investigated the direct effects of Fli1 depletion on B cell populations, focusing on age-associated B cells (ABCs). METHODS Splenocytes of Fli1 BcKO (Cd19-Cre+/-; Fli1flox/flox) and Cd19-Cre+/- mice were analyzed flow cytometrically. Transcriptional/epigenetic profiles of Cd11b+Cd11c+ ABCs were examined by RNA-sequencing and ATAC-sequencing. RESULTS Fli1 BcKO mice displayed a notable reduction in follicular and marginal zone B cells, with a concurrent rise in newly formed B cells compared to Cd19-Cre+/- mice. Additionally, a striking increase in B-1 B cells, as well as Cd11b+Cd11c+ or T-bet+Cd11c+ ABCs, was observed in Fli1 BcKO mice. Furthermore, these mice exhibited elevated Cd138 levels in follicular B cells. Conducting transcriptional analyses of Fli1-depleted ABCs unveiled upregulated genes associated with cell-cell adhesion, coupled with downregulated genes linked to cell activation or immune responses. Exploring the chromatin landscape found that Fli1 depletion dysregulated the chromatin accessibility of the interferon regulatory factor family, implying potential roles in autoimmunity. CONCLUSION These findings suggest complex modulations of B cell populations and immune-related gene expression due to Fli1 deficiency, shedding light on its involvement in autoimmune processes.
Collapse
Affiliation(s)
- Kentaro Awaji
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Sayaka Shibata
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | - Asumi Koyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Toyoki Yamamoto
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuki Fukui
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Satoshi Toyama
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Jun Omatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yuta Norimatsu
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, International University of Health and Welfare Graduate School of Medicine, Chiba, Japan
| | - Tetsuya Ikawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Watanabe
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takuya Miyagawa
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Takashi Yamashita
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yukiteru Nakayama
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Maria Trojanowska
- Arthritis & Autoimmune Diseases Research Center, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Shinichi Sato
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Yoshihide Asano
- Department of Dermatology, University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
22
|
de Vries C, Huang W, Sharma RK, Wangriatisak K, Turcinov S, Cîrciumaru A, Rönnblom L, Grönwall C, Hensvold A, Lundberg K, Malmström V. Rheumatoid Arthritis Related B-Cell Changes Are Found Already in the Risk-RA Phase. Eur J Immunol 2025; 55:e202451391. [PMID: 39931747 PMCID: PMC11811808 DOI: 10.1002/eji.202451391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025]
Abstract
Anti-cyclic citrullinated peptide2 (CCP2) antibody positivity in rheumatoid arthritis (RA) and in the predisease phase, together with the success of B-cell depletion, support a crucial role for B cells in RA pathogenesis. Yet, knowledge of B cells in the transition from autoimmunity to RA is limited, and therefore we here investigated B-cell changes during the risk-RA phase. B-cell phenotypes in 18 CCP2-positive risk-RA individuals with musculoskeletal complaints were studied, parallel with ten CCP2-positive RA patients and nine healthy controls. Nine of the risk-RA individuals progressed to RA. B-cell phenotypes were investigated using spectral flow cytometry. The results demonstrate that unswitched and switched memory B-cell frequencies in the risk-RA cohort were more similar to controls than RA patients. Yet, risk-RA progressors displayed an early activation profile amongst naïve B cells. Deeper characterization of the memory compartment revealed expansion of CD27-negative IgG+ B cells both in RA compared with controls (p = 0.0172) and in risk-RA progressors versus non-progressors (p = 0.0295). Overall, we demonstrate that the phenotypic distribution of B cells is altered in the risk-RA phase. This includes changes in CD27-negative class-switched B cells, which have been attributed to autoreactive and anergic features implicating a possible contribution to RA development.
Collapse
Affiliation(s)
- Charlotte de Vries
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Wenqi Huang
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Ravi Kumar Sharma
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Kittikorn Wangriatisak
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Sara Turcinov
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Alexandra Cîrciumaru
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
- Center for RheumatologyAcademic Specialist Center, Stockholm Health ServicesRegion StockholmSweden
| | - Lars Rönnblom
- Department of Medical SciencesRheumatology, Science for Life LaboratoryUppsalaSweden
| | - Caroline Grönwall
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Aase Hensvold
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
- Center for RheumatologyAcademic Specialist Center, Stockholm Health ServicesRegion StockholmSweden
| | - Karin Lundberg
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| | - Vivianne Malmström
- Division of RheumatologyDepartment of Medicine SolnaKarolinska Institutet and Center for Molecular MedicineKarolinska University HospitalStockholmSweden
| |
Collapse
|
23
|
Kim NH, Sim SJ, Han HG, Yoon JH, Han YH. Immunosenescence and age-related immune cells: causes of age-related diseases. Arch Pharm Res 2025; 48:132-149. [PMID: 39725853 DOI: 10.1007/s12272-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Immunosenescence is a weakening of the immune system due to aging, characterized by changes in immune cells and dysregulated immune function. Age-related immune cells are increasing with aging. They are associated with chronic prolonged inflammation, causing tissue dysfunction and age-related diseases. Here, we discuss increased pro-inflammatory activity of aged macrophages, accumulation of lymphocytes with an age-associated phenotype, and specific alterations in both functions and characteristics of these immune cells. These cellular changes are associated with development of age-related diseases. Additionally, we reviewed various therapeutic strategies targeting age-related immunosenescence, providing pathways to mitigate effects of age-related diseases.
Collapse
Affiliation(s)
- Nam-Hee Kim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - So-Jin Sim
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Hong-Gyu Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Jeong-Hyuk Yoon
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea
| | - Yong-Hyun Han
- Laboratory of Pathology and Physiology, College of Pharmacy, Kangwon National University, 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, South Korea.
- Multidimentional Genomics Research Center, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
24
|
Khosravi-Maharlooei M, Vecchione A, Danzl N, Li HW, Nauman G, Madley R, Waffarn E, Winchester R, Ruiz A, Ding X, Fousteri G, Sykes M. Follicular helper- and peripheral helper-like T cells drive autoimmune disease in human immune system mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.02.591692. [PMID: 38746102 PMCID: PMC11092663 DOI: 10.1101/2024.05.02.591692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Human immune system (HIS) mice constructed in various ways are widely used for investigations of human immune responses to pathogens, transplants and immunotherapies. In HIS mice that generate T cells de novo from hematopoietic progenitors, T cell-dependent multisystem autoimmune disease occurs, most rapidly when the human T cells develop in the native NOD.Cg- Prkdc scid Il2rg tm1Wjl (NSG) mouse thymus, where negative selection is abnormal. Disease develops very late when human T cells develop in human fetal thymus grafts, where robust negative selection is observed. We demonstrate here that PD-1 + CD4 + peripheral (Tph) helper-like and follicular (Tfh) helper-like T cells developing in HIS mice can induce autoimmune disease. Tfh- like cells were more prominent in HIS mice with a mouse thymus, in which the highest levels of IgG were detected in plasma, compared to those with a human thymus. While circulating IgG and IgM antibodies were autoreactive to multiple mouse antigens, in vivo depletion of B cells and antibodies did not delay the development of autoimmune disease. Conversely, adoptive transfer of enriched Tfh- or Tph-like cells induced disease and autoimmunity-associated B cell phenotypes in recipient mice containing autologous human APCs without T cells. Tfh/Tph cells from mice with a human thymus expanded and induced disease more rapidly than those originating in a murine thymus, implicating HLA-restricted T cell-APC interactions in this process. Since Tfh, Tph, autoantibodies and lymphopenia-induced proliferation (LIP) have all been implicated in various forms of human autoimmune disease, the observations here provide a platform for the further dissection of human autoimmune disease mechanisms and therapies.
Collapse
|
25
|
Geng Z, Cao Y, Zhao L, Wang L, Dong Y, Bi Y, Liu G. Function and Regulation of Age-Associated B Cells in Diseases. J Cell Physiol 2025; 240:e31522. [PMID: 39749652 DOI: 10.1002/jcp.31522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
The aging process often leads to immune-related diseases, including infections, tumors, and autoimmune disorders. Recently, researchers identified a special subpopulation of B cells in elderly female mice that increases with age and accumulates prematurely in mouse models of autoimmune diseases or viral infections; these B cells are known as age-related B cells (ABCs). These cells possess distinctive cell surface phenotypes and transcriptional characteristics, and the cell population is widely recognized as CD11c+CD11b+T-bet+CD21-CD23- cells. Research has shown that ABCs are a heterogeneous group of B cells that originate independently of the germinal center and are insensitive to B-cell receptor (BCR) and CD40 stimulation, differentiating and proliferating in response to toll-like receptor 7 (TLR7) and IL-21 stimulation. Additionally, they secrete self-antibodies and cytokines to regulate the immune response. These issues have aroused widespread interest among researchers in this field. This review summarizes recent research progress on ABCs, including the functions and regulation of ABCs in aging, viral infection, autoimmune diseases, and organ transplantation.
Collapse
Affiliation(s)
- Zi Geng
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yejin Cao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Longhao Zhao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Yingjie Dong
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing, China
| | - Guangwei Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
26
|
Jung M, Kim H, Choi E, Shin MK, Shin SJ. Enhancing vaccine effectiveness in the elderly to counter antibiotic resistance: The potential of adjuvants via pattern recognition receptors. Hum Vaccin Immunother 2024; 20:2317439. [PMID: 39693178 DOI: 10.1080/21645515.2024.2317439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 12/20/2024] Open
Abstract
Vaccines are an effective way to prevent the emergence and spread of antibiotic resistance by preventing diseases and establishing herd immunity. However, the reduced effectiveness of vaccines in the elderly due to immunosenescence is one of the significant contributors to the increasing antibiotic resistance. To counteract this decline and enhance vaccine effectiveness in the elderly, adjuvants play a pivotal role. Adjuvants are designed to augment the effectiveness of vaccines by activating the innate immune system, particularly through pattern recognition receptors on antigen-presenting cells. To improve vaccine effectiveness in the elderly using adjuvants, it is imperative to select the appropriate adjuvants based on an understanding of immunosenescence and the mechanisms of adjuvant functions. This review demonstrates the phenomenon of immunosenescence and explores various types of adjuvants, including their mechanisms and their potential in improving vaccine effectiveness for the elderly, thereby contributing to developing more effective vaccines for this vulnerable demographic.
Collapse
Affiliation(s)
- Myunghwan Jung
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Eunsol Choi
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| | - Min-Kyoung Shin
- Department of Microbiology, Institute of Medical Science, Department of Convergence Medical Science, BK21 Center for Human Resource Development in the Bio-Health Industry, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
27
|
Guerau-de-Arellano M, Morris MA, Sherman MA, Esch TR. Meeting report: Hidden links in autoimmunity. Sci Immunol 2024; 9:eads5884. [PMID: 39705334 DOI: 10.1126/sciimmunol.ads5884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 11/27/2024] [Indexed: 12/22/2024]
Abstract
A NIAID-sponsored workshop was held in September 2024, where challenges to understanding common mechanisms in autoimmune disease were discussed as opportunities to advance research.
Collapse
Affiliation(s)
- Mireia Guerau-de-Arellano
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Margaret A Morris
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Matthew A Sherman
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Thomas R Esch
- Autoimmunity and Mucosal Immunology Branch, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| |
Collapse
|
28
|
Vasilieva MI, Shatalova RO, Matveeva KS, Shindyapin VV, Minskaia E, Ivanov RA, Shevyrev DV. Senolytic Vaccines from the Central and Peripheral Tolerance Perspective. Vaccines (Basel) 2024; 12:1389. [PMID: 39772050 PMCID: PMC11680330 DOI: 10.3390/vaccines12121389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Preventive medicine has proven its long-term effectiveness and economic feasibility. Over the last century, vaccination has saved more lives than any other medical technology. At present, preventative measures against most infectious diseases are successfully used worldwide; in addition, vaccination platforms against oncological and even autoimmune diseases are being actively developed. At the same time, the development of medicine led to an increase in both life expectancy and the proportion of age-associated diseases, which pose a heavy socio-economic burden. In this context, the development of vaccine-based approaches for the prevention or treatment of age-related diseases opens up broad prospects for extending the period of active longevity and has high economic potential. It is well known that the development of age-related diseases is associated with the accumulation of senescent cells in various organs and tissues. It has been demonstrated that the elimination of such cells leads to the restoration of functions, rejuvenation, and extension of the lives of experimental animals. However, the development of vaccines against senescent cells is complicated by their antigenic heterogeneity and the lack of a unique marker. In addition, senescent cells are the body's own cells, which may be the reason for their low immunogenicity. This mini-review discusses the mechanisms of central and peripheral tolerance that may influence the formation of an anti-senescent immune response and be responsible for the accumulation of senescent cells with age.
Collapse
Affiliation(s)
- Mariia I. Vasilieva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Rimma O. Shatalova
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Kseniia S. Matveeva
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Vadim V. Shindyapin
- Research Center for Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia;
| | - Ekaterina Minskaia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Roman A. Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| | - Daniil V. Shevyrev
- Research Center for Translational Medicine, Sirius University of Science and Technology, Federal Territory Sirius, Krasnodarsky Krai, Sirius 354349, Russia
| |
Collapse
|
29
|
Wang L, Vulesevic B, Vigano M, As’sadiq A, Kang K, Fernandez C, Samarani S, Anis AH, Ahmad A, Costiniuk CT. The Impact of HIV on B Cell Compartment and Its Implications for COVID-19 Vaccinations in People with HIV. Vaccines (Basel) 2024; 12:1372. [PMID: 39772034 PMCID: PMC11679862 DOI: 10.3390/vaccines12121372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 01/11/2025] Open
Abstract
HIV causes intense polyclonal activation of B cells, resulting in increased numbers of spontaneously antibody-secreting cells in the circulation and hypergammaglobulinemia. It is accompanied by significant perturbations in various B cell subsets, such as increased frequencies of immature/transitional B cells, activated memory B cells, atypical memory B cells, short-lived plasmablasts and regulatory B cells, as well as by decreased frequencies of resting memory and resting naïve B cells. Furthermore, both memory and antigen-inexperienced naïve B cells show exhausted and immune-senescent phenotypes. HIV also drives the expansion and functional impairment of CD4+ T follicular helper cells, which provide help to B cells, crucial for the generation of germinal center reactions and production of long-lived plasma and memory B cells. By suppressing viral replication, anti-retroviral therapy reverses the virus-induced perturbations and functional defects, albeit inadequately. Due to HIV's lingering impact on B cells, immune senescence and residual chronic inflammation, people with HIV (PWH), especially immune non-responders, are immunocompromised and mount suboptimal antibody responses to vaccination for SARS-CoV-2. Here, we review how functionally and phenotypically distinct B cell subsets are induced in response to a vaccine and an infection and how HIV infection and anti-retroviral therapy (ART) impact them. We also review the role played by HIV-induced defects and perturbations in B cells in the induction of humoral immune responses to currently used anti-SARS-CoV-2 vaccines in PWH on ART. We also outline different strategies that could potentially enhance the vaccine-induced antibody responses in PWH. The review will provide guidance and impetus for further research to improve the immunogenicity of these vaccines in this human population.
Collapse
Affiliation(s)
- Lixing Wang
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Branka Vulesevic
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - MariaLuisa Vigano
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Alia As’sadiq
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Kristina Kang
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
| | - Cristina Fernandez
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada; (L.W.); (C.F.)
| | - Suzanne Samarani
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
| | - Aslam H. Anis
- Centre for Advancing Health Outcomes Centre for Health Evaluation and Outcome Sciences, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada;
| | - Ali Ahmad
- Centre de Recherche, Hôpital Ste Justine, Montréal, QC H3T 1C5, Canada;
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada (M.V.); (A.A.); (K.K.); (S.S.)
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Division of Infectious Diseases and Chronic Viral Illnesses Service, McGill University Health Centre, Montreal QC H4A 3J1, Canada
| |
Collapse
|
30
|
Bagavant H, Durslewicz J, Pyclik M, Makuch M, Papinska JA, Deshmukh US. Age-associated B cell infiltration in salivary glands represents a hallmark of Sjögren's-like disease in aging mice. GeroScience 2024; 46:6085-6099. [PMID: 38656650 PMCID: PMC11493885 DOI: 10.1007/s11357-024-01159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Sjögren's disease (SjD), characterized by circulating autoantibodies and exocrine gland inflammation, is typically diagnosed in women over 50 years of age. However, the contribution of age to SjD pathogenesis is unclear. C57BL/6 female mice at different ages were studied to investigate how aging influences the dynamics of salivary gland inflammation. Salivary glands were characterized for immune cell infiltration, inflammatory gene expression, and saliva production. At 8 months, gene expression of several chemokines involved in immune cell trafficking was significantly elevated. At this age, age-associated B cells (ABCs), a unique subset of B cells expressing the myeloid markers CD11b and/or CD11c, were preferentially enriched in the salivary glands compared to other organs like the spleen or liver. The salivary gland ABCs increased with age and positively correlated with increased CD4 T follicular helper cells. By 14 months, lymphocytic foci of well-organized T and B cells spontaneously developed in the salivary glands. In addition, the mice progressively developed high titers of serum autoantibodies. A subset of aged mice developed salivary gland dysfunction mimicking SjD patients. Our data demonstrates that aging is a significant confounding factor for SjD. Thus, aged female C57BL/6 mice are more appropriate and a valuable preclinical model for investigating SjD pathogenesis and novel therapeutic interventions.
Collapse
Affiliation(s)
- Harini Bagavant
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| | - Justyna Durslewicz
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Marcelina Pyclik
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Magdalena Makuch
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Joanna A Papinska
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Umesh S Deshmukh
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
31
|
Essouma M, Noubiap JJ. Lupus and other autoimmune diseases: Epidemiology in the population of African ancestry and diagnostic and management challenges in Africa. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100288. [PMID: 39282618 PMCID: PMC11399606 DOI: 10.1016/j.jacig.2024.100288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 09/19/2024]
Abstract
Autoimmune diseases are prevalent among people of African ancestry living outside Africa. However, the burden of autoimmune diseases in Africa is not well understood. This article provides a global overview of the current burden of autoimmune diseases in individuals of African descent. It also discusses the major factors contributing to autoimmune diseases in this population group, as well as the challenges involved in diagnosing and managing autoimmune diseases in Africa.
Collapse
Affiliation(s)
- Mickael Essouma
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Cameroon
| | - Jean Jacques Noubiap
- Division of Cardiology, Department of Medicine, University of California-San Francisco, San Francisco, Calif
| |
Collapse
|
32
|
Liu S, Zhang W, Tian S, Zhang Y, Yin Z, Huang G, Zhang H, Li F. B cell-intrinsic IFN-γ promotes excessive CD11c + age-associated B cell differentiation and compromised germinal center selection in lupus mice. Cell Immunol 2024; 405-406:104883. [PMID: 39503082 DOI: 10.1016/j.cellimm.2024.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 12/02/2024]
Abstract
CD11c+ age-associated B cells (ABCs) have emerged as a key component in protective and autoreactive B cell responses. Lupus is an autoimmune disorder linked to reduced efficacy of vaccines and increased susceptibility to infections. Previously, we reported that excessive CD11c+ ABCs not only significantly contribute to autoantibody production but also promote aberrant T cell activation and compromised affinity-based germinal center selection in response to immunization in lupus mice. Yet, the regulation of CD11c+ ABC differentiation is not fully understood. In this study, we show that B cell-intrinsic IFN-γ is required for excessive CD11c+ ABC differentiation in lupus mice. B cell-intrinsic IFN-γ is mainly produced by CD11c+ ABCs. IFN-γ-deficiency leads to decreased expression of ABC characteristic genes. We further show that ablating IFN-γ can normalize T cell overactivation and rescue antigen-specific GC responses in lupus mice. Our study offers insight into the crucial role of B cell-intrinsic IFN-γ in promoting excessive CD11c+ ABC differentiation, which compromises affinity-based germinal center selection and affinity maturation in lupus, providing a potential strategy to normalize vaccine responses in lupus.
Collapse
Affiliation(s)
- Shujun Liu
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Wenqian Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Shihao Tian
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Yan Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, China; The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Huihui Zhang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| | - Fubin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China; Shanghai Institute of Immunology, Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, Shanghai, China.
| |
Collapse
|
33
|
Liu K, Wang M, Li D, Duc Duong NT, Liu Y, Ma J, Xin K, Zhou Z. PANoptosis in autoimmune diseases interplay between apoptosis, necrosis, and pyroptosis. Front Immunol 2024; 15:1502855. [PMID: 39544942 PMCID: PMC11560468 DOI: 10.3389/fimmu.2024.1502855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
PANoptosis is a newly identified inflammatory programmed cell death (PCD) that involves the interplay of apoptosis, necrosis, and pyroptosis. However, its overall biological effects cannot be attributed to any one type of PCD alone. PANoptosis is regulated by a signaling cascade triggered by the recognition of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) by various sensors. This triggers the assembly of the PANoptosome, which integrates key components from other PCD pathways via adapters and ultimately activates downstream execution molecules, resulting in cell death with necrotic, apoptotic, and pyroptotic features. Autoimmune diseases are characterized by reduced immune tolerance to self-antigens, leading to abnormal immune responses, often accompanied by systemic chronic inflammation. Consequently, PANoptosis, as a unique innate immune-inflammatory PCD pathway, has significant pathophysiological relevance to inflammation and autoimmunity. However, most previous research on PANoptosis has focused on tumors and infectious diseases, leaving its activation and role in autoimmune diseases unclear. This review briefly outlines the characteristics of PANoptosis and summarizes several newly identified PANoptosome complexes, their activation mechanisms, and key components. We also explored the dual role of PANoptosis in diseases and potential therapeutic approaches targeting PANoptosis. Additionally, we review the existing evidence for PANoptosis in several autoimmune diseases and explore the potential regulatory mechanisms involved.
Collapse
Affiliation(s)
- Kangnan Liu
- School of Osteopathy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Mi Wang
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Dongdong Li
- Oncology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | | | - Yawei Liu
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Junfu Ma
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| | - Kai Xin
- Rheumatology Department, The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Zipeng Zhou
- Rheumatology Department, Henan Province Hospital of Chinese Medicine (The Second Affiliated Hospital of Henan University of Chinese Medicine), Zhengzhou, China
| |
Collapse
|
34
|
Moysidou E, Christodoulou M, Lioulios G, Stai S, Karamitsos T, Dimitroulas T, Fylaktou A, Stangou M. Lymphocytes Change Their Phenotype and Function in Systemic Lupus Erythematosus and Lupus Nephritis. Int J Mol Sci 2024; 25:10905. [PMID: 39456692 PMCID: PMC11508046 DOI: 10.3390/ijms252010905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, characterized by considerable changes in peripheral lymphocyte structure and function, that plays a critical role in commencing and reviving the inflammatory and immune signaling pathways. In healthy individuals, B lymphocytes have a major role in guiding and directing defense mechanisms against pathogens. Certain changes in B lymphocyte phenotype, including alterations in surface and endosomal receptors, occur in the presence of SLE and lead to dysregulation of peripheral B lymphocyte subpopulations. Functional changes are characterized by loss of self-tolerance, intra- and extrafollicular activation, and increased cytokine and autoantibody production. T lymphocytes seem to have a supporting, rather than a leading, role in the disease pathogenesis. Substantial aberrations in peripheral T lymphocyte subsets are evident, and include a reduction of cytotoxic, regulatory, and advanced differentiated subtypes, together with an increase of activated and autoreactive forms and abnormalities in follicular T cells. Up-regulated subpopulations, such as central and effector memory T cells, produce pre-inflammatory cytokines, activate B lymphocytes, and stimulate cell signaling pathways. This review explores the pivotal roles of B and T lymphocytes in the pathogenesis of SLE and Lupus Nephritis, emphasizing the multifaceted mechanisms and interactions and their phenotypic and functional dysregulations.
Collapse
Affiliation(s)
- Eleni Moysidou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Michalis Christodoulou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Georgios Lioulios
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Stamatia Stai
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Theodoros Karamitsos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Cardiology, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Theodoros Dimitroulas
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 4th Department of Medicine, Hippokration General Hospital, 54642 Thessaloniki, Greece
| | - Asimina Fylaktou
- Department of Immunology, National Histocompatibility Center, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Maria Stangou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.M.); (M.C.); (G.L.); (S.S.); (T.K.); (T.D.)
- 1st Department of Nephrology, Hippokration General Hospital, 54642 Thessaloniki, Greece
| |
Collapse
|
35
|
Huang Y, Li H, Liang R, Chen J, Tang Q. The influence of sex-specific factors on biological transformations and health outcomes in aging processes. Biogerontology 2024; 25:775-791. [PMID: 39001953 PMCID: PMC11374838 DOI: 10.1007/s10522-024-10121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The aging process demonstrates notable differences between males and females, which are key factors in disease susceptibility and lifespan. The differences in sex chromosomes are fundamental to the presence of sex bias in organisms. Moreover, sex-specific epigenetic modifications and changes in sex hormone levels impact the development of immunity differently during embryonic development and beyond. Mitochondria, telomeres, homeodynamic space, and intestinal flora are intricately connected to sex differences in aging. These elements can have diverse effects on men and women, resulting in unique biological transformations and health outcomes as they grow older. This review explores how sex interacts with these elements and shapes the aging process.
Collapse
Affiliation(s)
- Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
36
|
Yolmo P, Rahimi S, Chenard S, Conseil G, Jenkins D, Sachdeva K, Emon I, Hamilton J, Xu M, Rangachari M, Michaud E, Mansure JJ, Kassouf W, Berman DM, Siemens DR, Koti M. Atypical B Cells Promote Cancer Progression and Poor Response to Bacillus Calmette-Guérin in Non-Muscle Invasive Bladder Cancer. Cancer Immunol Res 2024; 12:1320-1339. [PMID: 38916567 PMCID: PMC11443217 DOI: 10.1158/2326-6066.cir-23-1114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/03/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Poor response to Bacillus Calmette-Guérin (BCG) immunotherapy remains a major barrier in the management of patients with non-muscle invasive bladder cancer (NMIBC). Multiple factors are associated with poor outcomes, including biological aging and female sex. More recently, it has emerged that a B-cell-infiltrated pretreatment immune microenvironment of NMIBC tumors can influence the response to intravesically administered BCG. The mechanisms underlying the roles of B cells in NMIBC are poorly understood. Here, we show that B-cell-dominant tertiary lymphoid structures (TLSs), a hallmark feature of the chronic mucosal immune response, are abundant and located close to the epithelial compartment in pretreatment tumors from BCG non-responders. Digital spatial proteomic profiling of whole tumor sections from male and female patients with NMIBC who underwent treatment with intravesical BCG, revealed higher expression of immune exhaustion-associated proteins within the tumor-adjacent TLSs in both responders and non-responders. Chronic local inflammation, induced by the N-butyl-N-(4-hydroxybutyl) nitrosamine carcinogen, led to TLS formation with recruitment and differentiation of the immunosuppressive atypical B-cell (ABC) subset within the bladder microenvironment, predominantly in aging female mice compared to their male counterparts. Depletion of ABCs simultaneous to BCG treatment delayed cancer progression in female mice. Our findings provide evidence indicating a role for ABCs in BCG response and will inform future development of therapies targeting the B-cell-exhaustion axis.
Collapse
Affiliation(s)
- Priyanka Yolmo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Sadaf Rahimi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Stephen Chenard
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Gwenaëlle Conseil
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Danielle Jenkins
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Kartik Sachdeva
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Isaac Emon
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
| | - Jake Hamilton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Minqi Xu
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - Manu Rangachari
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Eva Michaud
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Jose J Mansure
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - Wassim Kassouf
- Division of Urology, Department of Surgery, McGill University Health Center, Montreal, Canada
| | - David M Berman
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Pathology and Molecular Medicine, Queen's University, Kingston, Canada
| | - David R Siemens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
- Sinclair Cancer Research Institute, Queen's University, Kingston, Canada
- Department of Urology, Queen's University, Kingston, Canada
| |
Collapse
|
37
|
Uvarova AN, Zheremyan EA, Ustiugova AS, Murashko MM, Bogomolova EA, Demin DE, Stasevich EM, Kuprash DV, Korneev KV. Autoimmunity-Associated SNP rs3024505 Disrupts STAT3 Binding in B Cells, Leading to IL10 Dysregulation. Int J Mol Sci 2024; 25:10196. [PMID: 39337678 PMCID: PMC11432243 DOI: 10.3390/ijms251810196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Interleukin 10 (IL10) is a major anti-inflammatory cytokine that acts as a master regulator of the immune response. A single nucleotide polymorphism rs3024505(C/T), located downstream of the IL10 gene, is associated with several aggressive inflammatory diseases, including systemic lupus erythematosus, Sjögren's syndrome, Crohn's disease, and ulcerative colitis. In such autoimmune pathologies, IL10-producing B cells play a protective role by decreasing the level of inflammation and restoring immune homeostasis. This study demonstrates that rs3024505 is located within an enhancer that augments the activity of the IL10 promoter in a reporter system based on a human B cell line. The common rs3024505(C) variant creates a functional binding site for the transcription factor STAT3, whereas the risk allele rs3024505(T) disrupts STAT3 binding, thereby reducing the IL10 promoter activity. Our findings indicate that B cells from individuals carrying the minor rs3024505(T) allele may produce less IL10 due to the disrupted STAT3 binding site, contributing to the progression of inflammatory pathologies.
Collapse
Affiliation(s)
- Aksinya N. Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elina A. Zheremyan
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alina S. Ustiugova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Matvey M. Murashko
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Elvina A. Bogomolova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Denis E. Demin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Ekaterina M. Stasevich
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitry V. Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Kirill V. Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
38
|
Deffenbaugh JL, Jung KJ, Murphy SP, Liu Y, Rau CN, Petersen-Cherubini CL, Collins PL, Chung D, Lovett-Racke AE. Novel model of multiple sclerosis induced by EBV-like virus generates a unique B cell population. J Neuroimmunol 2024; 394:578408. [PMID: 39098102 DOI: 10.1016/j.jneuroim.2024.578408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/21/2024] [Indexed: 08/06/2024]
Abstract
Epstein-Barr virus (EBV) is deemed a necessary, yet insufficient factor in the development of multiple sclerosis (MS). In this study, myelin basic protein-specific transgenic T cell receptor mice were infected with murid gammaherpesvirus 68 virus (MHV68), an EBV-like virus that infects mice, resulting in the onset neurological deficits at a significantly higher frequency than influenza or mock-infected mice. MHV68 infected mice exhibited signs including optic neuritis and ataxia which are frequently observed in MS patients but not in experimental autoimmune encephalomyelitis mice. MHV68-infected mice exhibited increased focal immune cell infiltration in the central nervous system. Single cell RNA sequencing identified the emergence of a population of B cells that express genes associated with antigen presentation and costimulation, indicating that gammaherpesvirus infection drives a distinct, pro-inflammatory transcriptional program in B cells that may promote autoreactive T cell responses in MS.
Collapse
Affiliation(s)
- Joshua L Deffenbaugh
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Kyeong-Joo Jung
- Department of Computer Science and Engineering, The Ohio State University, USA.
| | - Shawn P Murphy
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Yue Liu
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Christina N Rau
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Cora L Petersen-Cherubini
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Neuroscience Graduate Program, The Ohio State University, USA
| | - Patrick L Collins
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA.
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University Wexner Medical Center, USA; Pelotonia Institute for Immuno-Oncology, The Ohio State University Wexner Medical Center, USA.
| | - Amy E Lovett-Racke
- Department of Microbial Infection & Immunity, The Ohio State University Wexner Medical Center, USA; Department of Neuroscience, The Ohio State University Wexner Medical Center, USA.
| |
Collapse
|
39
|
McGrath S, Grimstad K, Thorarinsdottir K, Forslind K, Glinatsi D, Leu Agelii M, Aranburu A, Sundell T, Jonsson CA, Camponeschi A, Hultgård Ekwall AK, Tilevik A, Gjertsson I, Mårtensson IL. Correlation of Professional Antigen-Presenting Tbet +CD11c + B Cells With Bone Destruction in Untreated Rheumatoid Arthritis. Arthritis Rheumatol 2024; 76:1263-1277. [PMID: 38570939 DOI: 10.1002/art.42857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVE Subsets of CD21-/low memory B cells (MBCs), including double-negative (DN, CD27-IgD-) and Tbet+CD11c+ cells, are expanded in chronic inflammatory diseases. In rheumatoid arthritis (RA), CD21-/low MBCs correlate with joint destruction. However, whether this is due to the Tbet+CD11c+ subset, its function and pathogenic contribution to RA are unknown. This study aims to investigate the association between CD21-/lowTbet+CD11c+ MBCs and joint destruction as well as other clinical parameters and to elucidate their functional properties in patients with untreated RA (uRA). METHODS Clinical observations were combined with flow cytometry (n = 36) and single-cell RNA sequencing (scRNA-seq) and V(D)J sequencing (n = 4) of peripheral blood (PB) MBCs from patients with uRA. The transcriptome of circulating Tbet+CD11c+ MBCs was compared with scRNA-seq data of synovial B cells. In vitro coculture of Tbet+CD11c+ B cells with T cells was used to assess costimulatory capacity. RESULTS CD21-/lowTbet+CD11c+ MBCs in PB correlated with bone destruction but no other clinical parameters analyzed. The Tbet+CD11c+ MBCs have undergone clonal expansion and express somatically mutated V genes. Gene expression analysis of these cells identified a unique signature of more than 150 up-regulated genes associated with antigen presentation functions, including B cell receptor activation and clathrin-mediated antigen internalization; regulation of actin filaments, endosomes, and lysosomes; antigen processing, loading, presentation, and costimulation; a transcriptome mirrored in their synovial tissue counterparts. In vitro, Tbet+CD11c+ B cells induced retinoic acid receptor-related orphan nuclear receptor γT expression in CD4+ T cells, thereby polarizing to Th17 cells, a T cell subset critical for osteoclastogenesis and associated with bone destruction. CONCLUSION This study suggests that Tbet+CD11c+ MBCs contribute to the pathogenesis of RA by promoting bone destruction through antigen presentation, T cell activation, and Th17 polarization.
Collapse
Affiliation(s)
- Sarah McGrath
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Grimstad
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and School of Bioscience, University of Skövde, Skövde, Sweden
| | - Katrin Thorarinsdottir
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Forslind
- Lund University, Lund, Sweden, and Spenshult Research and Development Centre, Halmstad, Sweden
| | | | - Monica Leu Agelii
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alaitz Aranburu
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Timothy Sundell
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Charlotte A Jonsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alessandro Camponeschi
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna-Karin Hultgård Ekwall
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | | | - Inger Gjertsson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden, and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inga-Lill Mårtensson
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
40
|
Kleberg L, Courey-Ghaouzi AD, Lautenbach MJ, Färnert A, Sundling C. Regulation of B-cell function and expression of CD11c, T-bet, and FcRL5 in response to different activation signals. Eur J Immunol 2024; 54:e2350736. [PMID: 38700378 DOI: 10.1002/eji.202350736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/05/2024]
Abstract
CD11c, FcRL5, or T-bet are commonly expressed by B cells expanding during inflammation, where they can make up >30% of mature B cells. However, the association between the proteins and differentiation and function in the host response remains largely unclear. We have assessed the co-expression of CD11c, T-bet, and FcRL5 in an in vitro B-cell culture system to determine how stimulation via the BCR, toll-like receptor 9 (TLR9), and different cytokines influence CD11c, T-bet, and FcRL5 expression. We observed different expression dynamics for all markers, but a largely overlapping regulation of CD11c and FcRL5 in response to BCR and TLR9 activation, while T-bet was strongly dependent on IFN-γ signaling. Investigating plasma cell differentiation and APC functions, there was no association between marker expression and antibody secretion or T-cell help. Rather the functions were associated with TLR9-signalling and B-cell-derived IL-6 production, respectively. These results suggest that the expression of CD11c, FcRL5, and T-bet and plasma cell differentiation and improved APC functions occur in parallel and are regulated by similar activation signals, but they are not interdependent.
Collapse
Affiliation(s)
- Linn Kleberg
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Alan-Dine Courey-Ghaouzi
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Maximilian Julius Lautenbach
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Färnert
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Sundling
- Division of Infectious Diseases, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
41
|
Gordon RA, Cosgrove HA, Marinov A, Gingras S, Tilstra JS, Campbell AM, Bastacky SI, Kashgarian M, Perl A, Nickerson KM, Shlomchik MJ. NADPH oxidase in B cells and macrophages protects against murine lupus by regulation of TLR7. JCI Insight 2024; 9:e178563. [PMID: 39042716 PMCID: PMC11343599 DOI: 10.1172/jci.insight.178563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Loss of NADPH oxidase (NOX2) exacerbates systemic lupus erythematosus (SLE) in mice and humans, but the mechanisms underlying this effect remain unclear. To identify the cell lineages in which NOX2 deficiency drives SLE, we employed conditional KO and chimeric approaches to delete Cybb in several hematopoietic cell lineages of MRL.Faslpr SLE-prone mice. Deletion of Cybb in macrophages/monocytes exacerbated SLE nephritis, though not to the degree observed in the Cybb global KOs. Unexpectedly, the absence of Cybb in B cells resulted in profound glomerulonephritis and interstitial nephritis, rivaling that seen with global deletion. Furthermore, we identified that NOX2 is a key regulator of TLR7, a driver of SLE pathology, both globally and specifically in B cells. This is mediated in part through suppression of TLR7-mediated NF-κB signaling in B cells. Thus, NOX2's immunomodulatory effect in SLE is orchestrated not only by its function in the myeloid compartment, but through a pivotal role in B cells by selectively inhibiting TLR7 signaling.
Collapse
Affiliation(s)
- Rachael A. Gordon
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Haylee A. Cosgrove
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | | - Jeremy S. Tilstra
- Department of Immunology and
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Allison M. Campbell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sheldon I. Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, New York, USA
| | | | | |
Collapse
|
42
|
Tsai CY, Oo M, Peh JH, Yeo BCM, Aptekmann A, Lee B, Liu JJJ, Tsao WS, Dick T, Fink K, Gengenbacher M. Splenic marginal zone B cells restrict Mycobacterium tuberculosis infection by shaping the cytokine pattern and cell-mediated immunity. Cell Rep 2024; 43:114426. [PMID: 38959109 PMCID: PMC11307145 DOI: 10.1016/j.celrep.2024.114426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 06/17/2024] [Indexed: 07/05/2024] Open
Abstract
Understanding the role of B cells in tuberculosis (TB) is crucial for developing new TB vaccines. However, the changes in B cell immune landscapes during TB and their functional implications remain incompletely explored. Using high-dimensional flow cytometry to map the immune landscape in response to Mycobacterium tuberculosis (Mtb) infection, our results show an accumulation of marginal zone B (MZB) cells and other unconventional B cell subsets in the lungs and spleen, shaping an unconventional B cell landscape. These MZB cells exhibit activated and memory-like phenotypes, distinguishing their functional profiles from those of conventional B cells. Notably, functional studies show that MZB cells produce multiple cytokines and contribute to systemic protection against TB by shaping cytokine patterns and cell-mediated immunity. These changes in the immune landscape are reversible upon successful TB chemotherapy. Our study suggests that, beyond antibody production, targeting the regulatory function of B cells may be a valuable strategy for TB vaccine development.
Collapse
Affiliation(s)
- Chen-Yu Tsai
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Myo Oo
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Jih Hou Peh
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Benjamin C M Yeo
- Infectious Diseases Translational Research Programme and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 2, Blk MD4, 5 Science Drive 2, Singapore 117545, Singapore
| | - Ariel Aptekmann
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Bernett Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore; Centre for Biomedical Informatics, Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; A(∗)STAR Infectious Diseases Labs, Agency for Science, Technology and Research, 8A Biomedical Grove #05-13, Immunos, Singapore 138648, Singapore
| | - Joe J J Liu
- Biosafety Level 3 Core, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Level 15, Centre for Translational Medicine (MD6), NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Wen-Shan Tsao
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA
| | - Thomas Dick
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
| | - Katja Fink
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research, Biopolis, 8A Biomedical Grove, Level 3 & 4, Immunos Building, Singapore 138648, Singapore
| | - Martin Gengenbacher
- Center for Discovery and Innovation (CDI), Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ 07110, USA; Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA.
| |
Collapse
|
43
|
Qin R, Long F, Zhang P, Huang R, Hu H, Guo Y, Zheng Z, Xiao J, He L, Peng T, Li J. Presence of sputum IgG against eosinophilic inflammatory proteins in asthma. Front Immunol 2024; 15:1423764. [PMID: 39091502 PMCID: PMC11291201 DOI: 10.3389/fimmu.2024.1423764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Background Sputum immunoglobulin G (Sp-IgG) has been discovered to induce cytolytic extracellular trap cell death in eosinophils, suggesting a potential autoimmune mechanism contributing to asthma. This study aimed to explore the potential origin of Sp-IgG and identify clinically relevant subtypes of Sp-IgG that may indicate autoimmune events in asthma. Methods This study included 165 asthmatic patients and 38 healthy volunteers. We measured Sp-IgG and its five subtypes against eosinophil inflammatory proteins (Sp-IgGEPs), including eosinophil peroxidase, eosinophil major basic protein, eosinophil-derived neurotoxin, eosinophil cationic protein, and Charcot-Leyden Crystal protein in varying asthma severity. Clinical and Mendelian randomization (MR) analyses were conducted. A positive Sp-IgGEPs signature (Sp-IgGEPs+) was defined when any of the five Sp-IgGEPs values exceeded the predefined cutoff thresholds, calculated as the mean values of healthy controls plus twice the standard deviation. Results The levels of Sp-IgG and Sp-IgGEPs were significantly elevated in moderate/severe asthma than those in mild asthma/healthy groups (all p < 0.05). Sp-IgG levels were positively correlated with airway eosinophil and Sp-IgGEPs. MR analysis showed causality between eosinophil and IgG (OR = 1.02, 95%CI = 1.00-1.04, p = 0.020), and elevated IgG was a risk factor for asthma (OR = 2.05, 95%CI = 1.00-4.17, p = 0.049). Subjects with Sp-IgGEPs+ exhibited worse disease severity and served as an independent risk factor contributing to severe asthma (adjusted-OR = 5.818, adjusted-95% CI = 2.193-15.431, adjusted-p < 0.001). Receiver operating characteristic curve analysis demonstrated that the combination of Sp-IgGEPs+ with non-allergic status, an ACT score < 15, and age ≥ 45 years, effectively predicted severe asthma (AUC = 0.84, sensitivity = 86.20%, specificity = 67.80%). Conclusion This study identifies a significant association between airway eosinophilic inflammation, Sp-IgG, and asthma severity. The Sp-IgGEPs panel potentially serves as the specific biomarker reflecting airway autoimmune events in asthma.
Collapse
Affiliation(s)
- Rundong Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fei Long
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Pingan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Renbin Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hao Hu
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Yubiao Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenyu Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jing Xiao
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Li He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Tao Peng
- Sino-French Hoffmann Institute, School of Basic Medical Sciences, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health; Department of Allergy and Clinical Immunology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Christodoulou A, Tsai JY, Suwankitwat N, Anderson A, Iritani BM. Hem1 inborn errors of immunity: waving goodbye to coordinated immunity in mice and humans. Front Immunol 2024; 15:1402139. [PMID: 39026677 PMCID: PMC11254771 DOI: 10.3389/fimmu.2024.1402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Inborn errors of immunity (IEI) are a group of diseases in humans that typically present as increased susceptibility to infections, autoimmunity, hyperinflammation, allergy, and in some cases malignancy. Among newly identified genes linked to IEIs include 3 independent reports of 9 individuals from 7 independent kindreds with severe primary immunodeficiency disease (PID) and autoimmunity due to loss-of-function mutations in the NCKAP1L gene encoding Hematopoietic protein 1 (HEM1). HEM1 is a hematopoietic cell specific component of the WASp family verprolin homologous (WAVE) regulatory complex (WRC), which acts downstream of multiple immune receptors to stimulate actin nucleation and polymerization of filamentous actin (F-actin). The polymerization and branching of F-actin is critical for creating force-generating cytoskeletal structures which drive most active cellular processes including migration, adhesion, immune synapse formation, and phagocytosis. Branched actin networks at the cell cortex have also been implicated in acting as a barrier to regulate inappropriate vesicle (e.g. cytokine) secretion and spontaneous antigen receptor crosslinking. Given the importance of the actin cytoskeleton in most or all hematopoietic cells, it is not surprising that HEM1 deficient children present with a complex clinical picture that involves overlapping features of immunodeficiency and autoimmunity. In this review, we will provide an overview of what is known about the molecular and cellular functions of HEM1 and the WRC in immune and other cells. We will describe the common clinicopathological features and immunophenotypes of HEM1 deficiency in humans and provide detailed comparative descriptions of what has been learned about Hem1 disruption using constitutive and immune cell-specific mouse knockout models. Finally, we discuss future perspectives and important areas for investigation regarding HEM1 and the WRC.
Collapse
Affiliation(s)
- Alexandra Christodoulou
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Julia Y Tsai
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Nutthakarn Suwankitwat
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
- Virology Laboratory, National Institute of Animal Health, Bangkok, Thailand
| | - Andreas Anderson
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| | - Brian M Iritani
- The Department of Comparative Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
45
|
El Mahdaoui S, Hansen MM, Hansen MB, Hvalkof VH, Søndergaard HB, Mahler MR, Romme Christensen J, Sellebjerg F, von Essen MR. Effects of anti-CD20 therapy on circulating and intrathecal follicular helper T cell subsets in multiple sclerosis. Clin Immunol 2024; 264:110262. [PMID: 38788886 DOI: 10.1016/j.clim.2024.110262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Follicular helper T (Tfh) cells and their interplay with B cells likely contribute to the pathogenesis of relapsing-remitting multiple sclerosis (RRMS). Tfh cells are enriched in cerebrospinal fluid (CSF) in RRMS, but effects of anti-CD20 therapy are unknown. We investigated Tfh cells in controls, untreated and anti-CD20-treated patients with RRMS using flow cytometry. CSF Tfh cells were increased in untreated patients. Compared to paired blood samples, CD25- Tfh cells were enriched in CSF in RRMS, but not in controls. Contrast-enhancing brain MRI lesions and IgG index correlated with CSF CD25- Tfh cell frequency in untreated patients with RRMS. Anti-CD20 therapy reduced the numbers of circulating PD1+ Tfh cells and CD25- Tfh cells, and the frequency of CSF CD25- Tfh cells. The study suggests that CD25- Tfh cells are recruited to the CSF in RRMS, associated with focal inflammation, and are reduced by anti-CD20 therapy.
Collapse
Affiliation(s)
- Sahla El Mahdaoui
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| | - Marie Mathilde Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Malene Bredahl Hansen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Victoria Hyslop Hvalkof
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Helle Bach Søndergaard
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Mie Reith Mahler
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Jeppe Romme Christensen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marina Rode von Essen
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark
| |
Collapse
|
46
|
de Winter N, Ji J, Sintou A, Forte E, Lee M, Noseda M, Li A, Koenig AL, Lavine KJ, Hayat S, Rosenthal N, Emanueli C, Srivastava PK, Sattler S. Persistent transcriptional changes in cardiac adaptive immune cells following myocardial infarction: New evidence from the re-analysis of publicly available single cell and nuclei RNA-sequencing data sets. J Mol Cell Cardiol 2024; 192:48-64. [PMID: 38734060 DOI: 10.1016/j.yjmcc.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION Chronic immunopathology contributes to the development of heart failure after a myocardial infarction. Both T and B cells of the adaptive immune system are present in the myocardium and have been suggested to be involved in post-MI immunopathology. METHODS We analyzed the B and T cell populations isolated from previously published single cell RNA-sequencing data sets (PMID: 32130914, PMID: 35948637, PMID: 32971526 and PMID: 35926050), of the mouse and human heart, using differential expression analysis, functional enrichment analysis, gene regulatory inferences, and integration with autoimmune and cardiovascular GWAS. RESULTS Already at baseline, mature effector B and T cells are present in the human and mouse heart, having increased activity in transcription factors maintaining tolerance (e.g. DEAF1, JDP2, SPI-B). Following MI, T cells upregulate pro-inflammatory transcript levels (e.g. Cd11, Gzmk, Prf1), while B cells upregulate activation markers (e.g. Il6, Il1rn, Ccl6) and collagen (e.g. Col5a2, Col4a1, Col1a2). Importantly, pro-inflammatory and fibrotic transcription factors (e.g. NFKB1, CREM, REL) remain active in T cells, while B cells maintain elevated activity in transcription factors related to immunoglobulin production (e.g. ERG, REL) in both mouse and human post-MI hearts. Notably, genes differentially expressed in post-MI T and B cells are associated with cardiovascular and autoimmune disease. CONCLUSION These findings highlight the varied and time-dependent dynamic roles of post-MI T and B cells. They appear ready-to-go and are activated immediately after MI, thus participate in the acute wound healing response. However, they subsequently remain in a state of pro-inflammatory activation contributing to persistent immunopathology.
Collapse
Affiliation(s)
- Natasha de Winter
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Jiahui Ji
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Amalia Sintou
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, United States
| | - Michael Lee
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Michela Noseda
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Aoxue Li
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Medicine Solna, Division of Cardiovascular Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Andrew L Koenig
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | - Kory J Lavine
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, United States
| | | | - Nadia Rosenthal
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; The Jackson Laboratory, Bar Harbor, United States
| | - Costanza Emanueli
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; British Heart Foundation Centre For Research Excellence, Imperial College London, United Kingdom
| | - Prashant K Srivastava
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom
| | - Susanne Sattler
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, United Kingdom; Department of Cardiology, Medical University of Graz, Austria; Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Austria.
| |
Collapse
|
47
|
Daley AD, Bénézech C. Fat-associated lymphoid clusters: Supporting visceral adipose tissue B cell function in immunity and metabolism. Immunol Rev 2024; 324:78-94. [PMID: 38717136 DOI: 10.1111/imr.13339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/09/2024] [Indexed: 07/23/2024]
Abstract
It is now widely understood that visceral adipose tissue (VAT) is a highly active and dynamic organ, with many functions beyond lipid accumulation and storage. In this review, we discuss the immunological role of this tissue, underpinned by the presence of fat-associated lymphoid clusters (FALCs). FALC's distinctive structure and stromal cell composition support a very different immune cell mix to that found in classical secondary lymphoid organs, which underlies their unique functions of filtration, surveillance, innate-like immune responses, and adaptive immunity within the serous cavities. FALCs are important B cell hubs providing B1 cell-mediated frontline protection against infection and supporting B2 cell-adaptative immune responses. Beyond these beneficial immune responses orchestrated by FALCs, immune cells within VAT play important homeostatic role. Dysregulation of immune cells during obesity and aging leads to chronic pathological "metabolic inflammation", which contributes to the development of cardiometabolic diseases. Here, we examine the emerging and complex functions of B cells in VAT homeostasis and the metabolic complications of obesity, highlighting the potential role that FALCs play and emphasize the areas where further research is needed.
Collapse
Affiliation(s)
- Alexander D Daley
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
48
|
Nicholas CA, Tensun FA, Evans SA, Toole KP, Broncucia H, Hesselberth JR, Gottlieb PA, Wells KL, Smith MJ. Islet-antigen reactive B cells display a unique phenotype and BCR repertoire in autoantibody positive and recent-onset type 1 diabetes patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599914. [PMID: 38979376 PMCID: PMC11230262 DOI: 10.1101/2024.06.20.599914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Autoreactive B cells play an important but ill-defined role in autoimmune type 1 diabetes (T1D). To better understand their contribution, we performed single cell gene and BCR-seq analysis on pancreatic islet antigen-reactive (IAR) B cells from the peripheral blood of nondiabetic (ND), autoantibody positive prediabetic (AAB), and recent-onset T1D individuals. We found that the frequency of IAR B cells was increased in AAB and T1D. IAR B cells from these donors had altered expression of B cell signaling, pro-inflammatory, infection, and antigen processing and presentation genes. Both AAB and T1D donors demonstrated a significant increase in certain heavy and light chain V genes, and these V genes were enriched in islet-reactivity. Public clones of IAR B cells were restricted almost entirely to AAB and T1D donors. IAR B cells were clonally expanded in the autoimmune donors, particularly the AAB group. Notably, a substantial fraction of IAR B cells in AAB and T1D donors appeared to be polyreactive, which was corroborated by analysis of recombinant monoclonal antibodies. These results expand our understanding of autoreactive B cell activation during T1D and identify unique BCR repertoire changes that may serve as biomarkers for increased disease risk.
Collapse
Affiliation(s)
- Catherine A. Nicholas
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Fatima A. Tensun
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Spencer A. Evans
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kevin P. Toole
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hali Broncucia
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Molecular Biology Graduate Program, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Peter A. Gottlieb
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kristen L. Wells
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Mia J. Smith
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
49
|
Gelibter S, Saraceno L, Pirro F, Susani EL, Protti A. As time goes by: Treatment challenges in elderly people with multiple sclerosis. J Neuroimmunol 2024; 391:578368. [PMID: 38761652 DOI: 10.1016/j.jneuroim.2024.578368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/11/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
A demographic shift in multiple sclerosis (MS) is leading to an increased number of elderly people with MS (pwMS) and a rise in late-onset MS (LOMS) cases. This shift adds complexity to the treatment management of these patients, due to enhanced treatment-associated risks and the possible interplay between immunosenescence and disease-modifying therapies (DMTs). In the present paper, we performed a systematic review of the current evidence concerning the relationship between aging and treatment management in elderly pwMS. Our literature search identified 35 original studies relevant to this topic. The gathered evidence consistently indicates a diminished efficacy of DMTs in older pwMS, particularly in preventing disability accrual. Against this background, high-efficacy therapies (HETs) appear to show less benefit over moderate-low-efficacy DMTs in older patients. These data mainly derive from observational retrospective studies or meta-analyses conducted on randomized clinical trials (RCTs). RCTs, however, exclude pwMS older than 55 years, limiting our ability to acquire robust evidence regarding this patient group. Regarding treatment discontinuation in elderly pwMS with stable disease, the available data, which mainly focuses on older injectable DMTs, suggests that their suspension appears to be relatively safe in terms of disease activity. Nevertheless, the first RCT specifically targeting treatment discontinuation recently failed to demonstrate the non-inferiority of treatment discontinuation over continuation, in terms of MRI activity. On the other hand, the evidence on the impact of discontinuation on disease progression is more conflicting and less robust. Furthermore, there is an important lack of studies concerning sequestering DMTs and virtually no data on the discontinuation of anti-CD20 monoclonal antibodies. De-escalation strategy is gaining attention as a de-risking approach alternative to complete treatment discontinuation. It may be defined as the decision to shift from HETs to less potent DMTs in elderly pwMS who have a stable disease. This strategy could reduce treatment-related risks, while minimizing the risk of disease activity and progression potentially associated with treatment discontinuation. This approach, however, remains unexplored due to a lack of studies. Given these findings, the present scenario underlines the urgent need for more comprehensive and robust studies to develop optimized, data-driven treatment strategies for elderly pwMS and LOMS, addressing the unique challenges of MS treatment and aging.
Collapse
Affiliation(s)
- Stefano Gelibter
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.
| | - Lorenzo Saraceno
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fiammetta Pirro
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Emanuela Laura Susani
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Alessandra Protti
- Department of Neurosciences, Neurology and Stroke Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
50
|
Faris A, Hadni H, Saleh BA, Khelfaoui H, Harkati D, Ait Ahsaine H, Elhallaoui M, El-Hiti GA. In silico screening of a series of 1,6-disubstituted 1 H-pyrazolo[3,4- d]pyrimidines as potential selective inhibitors of the Janus kinase 3. J Biomol Struct Dyn 2024; 42:4456-4474. [PMID: 37317996 DOI: 10.1080/07391102.2023.2220829] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/28/2023] [Indexed: 06/16/2023]
Abstract
Rheumatoid arthritis is a common chronic disabling inflammatory disease that is characterized by inflammation of the synovial membrane and leads to discomfort. In the current study, twenty-seven 1,6-disubstituted 1H-pyrazolo[3,4-d]pyrimidines were tested as potential selective inhibitors of the tyrosine-protein kinase JAK3 using a number of molecular modeling methods. The activity of the screened derivatives was statistically quantified using multiple linear regression and artificial neural networks. To assess the quality, robustness, and predictability of the generated models, the leave-one-out cross-validation method was applied with favorable results (Q2 = 0.75) and Y-randomization. In addition, the evaluation of the predictive ability of the established model was confirmed by means of an external validation using a composite test set and an applicability domain approach. The covalent docking indicated that the tested 1H-pyrazolo[3,4-d]pyrimidines containing the acrylic aldehyde moiety had irreversible interaction with the residue Cys909 in the active sites of the tyrosine-protein kinase JAK3 by Michael addition. The molecular dynamics for three selected derivatives (compounds 9, 12, and 18) were used to verify the covalent docking by determining the stability of hydrogen bonding interactions with active sites, which are needed to stop tyrosine-protein kinase JAK3. The results obtained showed that the tested compounds containing acrylic aldehyde moiety had favorable binding free energies, indicating a strong affinity for the JAK3 enzyme. Overall, this current study suggests that the tested compounds containing the acrylic aldehyde moiety have the potential to act as anti-JAK3 inhibitors. They could be explored further to be used as treatment options for rheumatoid arthritis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abdelmoujoud Faris
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Basil A Saleh
- Department of Chemistry, College of Science, University of Basrah, Basrah, Iraq
| | - Hadjer Khelfaoui
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter Sciences, University of Biskra, Biskra, Algeria
| | - Dalal Harkati
- Group of Computational and Pharmaceutical Chemistry, LMCE Laboratory, Faculty of Exact and Natural Sciences, Department of Matter Sciences, University of Biskra, Biskra, Algeria
| | - Hassan Ait Ahsaine
- Laboratoire de Chimie Appliquée des Matériaux, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Menana Elhallaoui
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Gamal A El-Hiti
- Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|